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PREFACE 

Since tiie beginning of the twentieth century there has been a 

great increase of knowledge pertaining to the mechanics of fluids, 

and during this period some (/ the progress in all branclu's of 

engineering has be(‘n founded on or assisted by a better under¬ 

standing of fluid motion. This fact, coupled with the evident 

interest of engim^ering students in fluid flow, suggests tliat sonu' 

of this n(*w knowledge should, if possible, be made availalde to 

undergraduates. Much of the work in fluid mechanics has been 

of great mathematical (a)mplexity but it is lielieved that the 

material presented here is in such a form that it can be mastered 

by the average student having the usual foundation in jihysics, 

mathematics and m(‘chanics. 

Since tlu* fundamental principles g()V(‘rning flow are the sam(^ 

for both gaseous and licpiid fluids it is logical to begin the study 

of flow of both types of fluids in one course. Furthermore such 

a treatment is economical of teaching time. In ord(a’ to empha¬ 

size the universal character of fluid mecdianics th(^ problems dis- 

(‘ussed in this book have becm treated, wherever ])racti(‘able, from 

a rational point of view. Purely empirical nu^thods are men¬ 

tioned but briefly and in general are considered as a means for 

supplying necessary coefficients and exponents apiiearing in the 

equations developed. Tables of coefficients have be(m limited 

to the number necessary to illustrate discussions and solve 

rc^presentative problems. Rational methods have been empha¬ 

sized by the frequent use of the principles qf dimensional analysis 

in developing theory. In the study of fluid motion, stress has 

be(m laid on the significance of the dimensionless parameters, 

Reynolds’ number for viscous fluids, Mach’s number for compres¬ 

sible fluids, and Froude’s number for flow with a free surface. 

The subject matter in the book naturally divides itself into 

statics and dynamics of fluids. The latter division contains 

discussions of flow relative to the usual external boundaries, 

such as pipes and channels, but it differs from older treatments 

in that it also deals with flow relative to internal boundaries, 

that is, flow around objects such as airfoils and ship hulls. Most 

of the usual elementary hydraulics has been retained but it is 
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presented with emphasis on the fluid meclianics involved. The 

book undoubtedly contains more material than can covered 

in a single course, but the arrangement is such that the instructor 

can select those subjects which best fit th(‘ needs and interests 

of his students. In the case of the more advanced subjects th(' 

discussion here must be rc'garded as only an introduction to th(‘sc‘ 

extensive ficdds. For example, the trc^atment of the thermo¬ 

dynamics of (*om})ressible fluid flow is sufficient to show the* 

application of fluid mechanics but is not intended to be compl(‘l(\ 

In jirepariug this book the authors have drawui exttuisively 

upon technical lit(‘rature. Ocnlit is due to the authors, manu- 

facturcu’s^ and professional societi(\s who have kindly granted 

permission to use their material. Rcterences to ])ublications 

are givem in the tc'xt and it is hoped that the aeknowdedgnuuits ar(^ 

complete', but the National Advisory Committee' for Aeronautics 

deserves special mention in this (‘onneedion. The name of 

Professor L. Prandtl of the Univc'rsily of Gottingen is ndern'd 

to more frc'quently than any other. Because' of his jiionee'ring 

work and continuc'd valuable contributions in the fiedel of fluid 

mechanics, this will seem entirely natuial to those wlio 

familiar with the' development of the se'ienice'. Probably no 

single work has bc'cn drawn upon more' frc'e'ly than ^‘Applie'd 

Hydro- and Aero-Mechanics,'’ by Profc'ssor Prandtl ano Dr. (). 

G. Tietjeuis, and ve gladly recognize* our indc'btednc'ss to the'se 

authors. 

It is also a ])leasure to c'xprc'ss our thanks for the valuable* aid 

of our colleagues ami associate's in tlie College of Fingineering e)f 

the University of Michigan. In particular we acknowledge tlie 

many suggestions made by Profe'ssors R. T. Liddic'oat, H. M, 

Hansen and L. A. Baier, The encouragement given and the 

intere^st shown by Professor E. L. Eriksen have been very helpful. 

A substantial contribution was that of Professor R. P. Harrington 

of the Polytechnic Institute of Brooklyn, who read the proof and 

made many constructive criticisms. Finally we wish to express 

our appreciation of the valuable services of Mrs. Helen M. 

Anderson and Miss Reta E. Morden who typed the manuscript, 

and of Messrs. R. S. Frazier, P. E. Theobald and T. L. Vander 

Velde, who assist(‘d in preparing the drawings. 

Ann Arbok, Mk hic-vn, Rxjssell A. Dodge, 

April, 1937. MiLTON J. THOMPSON. 
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FLUID MECHANICS 
CHAPTER I 

PROPERTIES OF FLUIDS 

1. Nature of Fluid Substance.—The term fluid is applied to 

substances which, owing to tlie nature of their internal structure, 

offer comparatively little resistance to a change in form. Fluids 

are commonly classified as incomi)ressible or compressible, that 

is, as liquids or gases. Liquids offer great resistance to change 

in volume while gases have little resistance to change in either 

form or volume. 

A gas occupies all the space in which it is contained. Its 

volume is reduc(‘d by an in(U*eased pressure or (‘ompressive 

force, the pressure within the gas increasing until it just balances 

the applied force. No fluid is capable of any internal adjust¬ 

ment which will enable it to maintain equilibrium at rest while 

subjected to a shear stress, however small. If a shearing force 

is applied to any fluid, the fluid will continue to move as long as 

it is applied. There will invariably be some movement in which 

the velocity is proportional to the applied shear stress. The 

redationship between force and velocity depends, among other 

things, upon that property of fluids known as vis(‘.osity. 

Liquids and gaseous fluids are quite different in compressi¬ 

bility and in the existence of the free surface in the former. 

The behavior of all flowing fluids, whether liquids or gases, is 

quite similar and, when the flow is in (conduits, that is, flow with¬ 

out a free surface, the behavior is identical for most conditions. 

An ideal or perfect fluid is merely one which, for purposes of 

developing theory or making a mathematical demonstration, 

is conveniently assumed to be nonviscous or incompressible or 

both. Such fluids do not exist and theory based upon such 

assumptions is subject in its application to correction for the 

effect of physical properties that have been neglected. 



2 FLUID MECHANICS [Chap. I 

2. Density of Fluids.—The density of a substance is the mass 

of a unit of volume under certain specified temperature and 

pressure conditions. This is not to be confused with weight per 

unit volume or specific weight. If density is p and weight per 

unit volume is w, then 

w 
p = ~ or w = pg 

g being the acceleration of gravity. If w is the specdfic weight 

in pounds per cubic foot and g the acceleration of gravity in feet 

per second per second, then 

__ w ^ lb. sec.^ ^ Ib.sec.*^ M 
'g ~ III It. ft?” TJ 

in which the sign is used to denote dimensional equality. 

Similarly, 

M 
w pg ^ 

The symbols Af, L and T are used to represent the fundamental 

units of mass, length and time, respectively. The unit of mass 

in the English system is known as the slug, so that density is 

measured in slugs per cubic foot. The ratio of weight to mass, p, 

is the acceleration of gravity and in the English system is about 

32.2 ft. per sec. per sec. Its value varies slightly from place to 

place on the earthsurface. The si)ecific weight of fresh water 

at ordinary temperatures is about 62.4 lb. per cu. ft. 

Specific volume is the volume per unit weight. It is the 

reciprocal of specific weight, its dimension being in cubic feet per 

pound or, in fundamental units, L-T^/M. 

Problem 1. What are the dimensions of density and specific weight in 

the metric system, using centimeters, grams weight and seconds? What 

are the density and specific weight of fresh water in these units? 

2. CJompute the specific weight and density of a liquid which weighs 

2000 lb. per cu. m. What is its specific volume in English units? 

3. Compressibility of Fluids.—All fluids are compressible to 

some extent. Liquids are only slightly compressible, so little 

in fact that in most ordinary problems they are considered to be 

incompressible. In some problems, for example, those dealing 

with water hammer, the compressibility is an important factor. 
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The modulus of elasticity of water in compression is about 

300,000 lb. per sq. in. at ordinary pressures. It increases 

slightly with temperature and at extremely high pressures 
becomes much larger. 

Gaseous fluids are highly compressible and are therefore 

subject to a wide variation in d^^ nsity. The distinctive behavior 

of gases in this respect bears less resemblance to that of liquids 

than any other property of gases. The relationship of pressure, 

volume and temperature in gaseous fluids is dis(uissed in the 

following pages. 

4. Boyle’s Law.—If a quantity of fluid is placed in a closed 

container, there will in general be a force acting on the walls and 

bottom of the vessel owing to the fact that the fluid is not capable 

of maintaining itself in a fixed shape but tends to flow as soon 

as the restraining walls are removed. The force prodiu'ed by the 

fluid on the walls of the container is usually studied by noting 

the value of the pressure at various points, this latter quantity 

being the force acting on a unit area of surface. The action 

of the fluid on the walls of the container is, of course, accom¬ 

panied by a rea(‘tion on the fluid which is manifested by the 

existence of pr(*ssures at all points within the fluid. In the case 

of a liquid the pressure at a point beneath the surface is due 

primarily to the weight of the fluid above it, while in the case of 

a gas the pressure is produced by a combination of this effect and 

the activity of the molecules. Thus a volume of gas placed in a 

closed tank may undergo an increase in pressure if the gas is 

heated from an external source. 

The dimensions of a pressure are easily determined if it is 

recalled that this quantity is equivalent to a force acting on a. 

unit area. Thus 
ML 

_ ^ ~ ^ 
^ ~ ^ LT^ 

In the usual English units, pressures are measured in pounds per 

square foot or.per square inch. 

The rule governing the pressure-volume relationship at con¬ 

stant temperature is known as Boyle’s law. It is expressed by 

the equation 

'Bl ^ L or piVi = pv = C (1) 
p Vi ^ 
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in which p and p\ are pressures on the absolute scale and v and 

are the corresponding volumes, while C is a constant. 

Since the density of a given body varies inversely as its volume, 

the former value is directly proportional to the pressure, that is, 

E or ^ 
P Pi w Wi 

(2) 

Expressed in words, Boyle’s law states that the volume of a body 

of gas varies inversely as the pressure when the temperature is 

constant, that is, when conditions are isothermal. 

Problem 3. A cylinder having a volume of 2.5 cu. ft. contains 34 lb. of 

gas at an absolute pressure of 250 lb. per sq. in. If the gas is compressed at 

constant temperature to one-half of its original volume, what will be its 

pressure? Compute the density of the gas b('fore and aft(‘r compression. 

6. Gay-Lussac’s or Charles’ Law.—Gay-Lussac verified experi¬ 

mentally the theory first advanced by Charles that gas(‘s undtu* 

(constant pressure exj)and in jiroportion to an in(*rcas(‘ in tem¬ 

perature and that all gases have the same coeffi(‘ient of expansion. 

The volume of a given mass of gas at any temperature i is 

Vt — t^o(l + oij,t) (3) 

m which Vo is the volume of the given mass at zero temperature 

and ap is the coefficient of expansion at constant pressure. If 

the volume of the same given mass of gas is kept constant, the 

pressure increases in proportion to the increase in temperature, 

the new pressure at temperature t being 

Pt = po{l + aj) (4) 

in which po is the pressure at zero temperature and is the 

pressure coefficient at constant volume. 

The relationship between the coefficients ap and av may be 

determined by considering a mass of gas at the initial conditions 

represented by po, vo and == 0. This gas is to be changed to the 

conditions represented by p, v and t. This change might be 

effected by first holding the temperature constant and changing 

the pressure to the value p. If the corresponding volume is v\ 
then according to Boyle’s law 

pt;' == PqVo (5) 
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The remaining step in this transformation may be effected by 

changing the temperature from zero to t at the constant pressure 

p so that, on applying Eq. (3) and noting that the volume changt? 

is from v' to v, the following expression is obtained: 

= y'(l + apt) (6) 

Now Eqs. (5) and (6) may l)oth be solved for the value of the 

intermediate volume v\ and on equating these values the result 

obtained is 

pv = poV(i{l + dpi) (7) 

The same change could also be accomplished by first changing 

the temperature from zero to t at constant volume. If the corre¬ 

sponding pressure is p", then 

p" = po(l + OCvt) (8) 

The pressure may now be increased from p" to p at constant 

temperature, in which case 

p'^vo = pv (9) 

When values of p" obtained from Eqs. (8) and (9) are equated, 

the result is 

pv = poVo(l + a4) (10) 

Since Eqs. (7) and (10) represent the same final conditions for 

the gas, it follows at once that the values of ap and av must be 

equal, that is, = a. 

According to Eq. (4), the temperature at which the pressure 

in the gas drops to zero is t = —~ and this point is known as thvV 

absolute zero of the temperature scale. It represents a limiting 

condition at which all molecular activity in the gas has ceased. 

On the Fahrenheit scale its value is —459.4°, while on the centi¬ 

grade scale it is —273°. It is frequently convenient to study the 

behavior of a gas using the temperature T measured from the 

absolute zero point rather than from some arbitrary datum as in 

the case of the usual temperature scales. The relation between 

the temperatures t and T is simply 

T = t + - 
a (11) 
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Problem 4. Compute the value of the coefficient of expansion, «, for 

the centigrade and Fahrenheit scales. 

6. The Combined Gas Law.—The statements given in the 

preceding articles may be combined into a single equation which 

represents the behavior of a gas under all possible conditions. 

This equation is known as the combined gas law or the equation 

of state. If the coefficients ap and are replaced by the single 

term a, then Eqs. (7) and (10) becrome identical in form, that is, 

pv = PqVq{1 + at) 

or, if the absolute temperature from Eq. (11) is introdu(‘ed, 

pv = poV^aT. 

If V and V(i are specific volumes, then the quantity p^^v^a is a 

constant for any given gas depending only on the conditions 

when t is zero and on the value of the coefficient of expansion. 

If this constant is designated by the single symbol Rj then 

pv = KT (12) 

The numerical value and the dimensions of R depend upon the 

gas, the temperature scale and the pressure and volume adopted 

as a standard. With these fixed, R is a constant. If Vo is the 

specific volume in cubic feet per pound and po is atmospheric 

pressure in pounds per square foot, then p and v must have 

corresponding dimensions so that 

I? _ ^ 1 _ ft. 
T ft.2 lb. degree ^ degree 

The value of R for dry air is 96.1 ft. per °C. or 53.3 ft. per °F. 

Equation (12) is known as the equation of state for gases. 

Dividing both members by the corresponding members of the 

same equation for any other temperature Ti, 

pv _ 
PiVi Ti 

(13) 

It follows from Eq. (12) or (13) that for constant pressures the 

volume of a body of gas is proportional to the absolute tempera¬ 

ture. This is another way of stating Charles^ law which, 

expressed algebraically, is 
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Tv, = l\v (14) 

It also follows from these equations that for constant volumes the 

pressure is proportional to the absolute temperature. If T 
equals Eq. (13) becomes Eq. (1), piv, — pv^ or Boyle^s law. 

Problem 6. A mass of air having a volume of 3.75 v,u. ft. at a temperature 

of 519°F, ahs. is allowed to expand antil the pressure is 20 per cent of the 

(original value and its temperature is 480'^F. abs. What is its volume after 
expansion? 

6. What is R lor air in Ec^. (12) when d(‘aling with pressure in pounds per 

square inch, specific volume in cul)i(^ feet per pound and temperature in 
degrees centigrade? 

7. Hydrogen has a specific gravity of 0.0000899 at 14.7 lb. per sq. in. 
pressure and at 59°F. What is the value of R? 

8. Air has a specific weight of 0.0705 lb. per cu. ft. at 59“F. and 14.7 lb. 

per sq. in. What is its specific weight at an altitude of 10,000 ft. where the 

pressure is 10.1 lb. per sq. in. and the temperature is 21.2°F.? 

7. Limitations of Gas Laws.—The laws developed in the 

foregoing articles are correct for a perfect gas.^^ For real gases, 

they are accurate at ordinary temperatures and for relatively 

small changes in pressure or voliuru^. It is possible to liquefy 

any gas by the application of a large pressure with the gas at 

low temperature. It is obvious that no gas obeys the gas laws 

at the point of liquefaction. As the gas approaches liquefaction 

there is a wide variation in its behavior from the laws. Thus 

the behavior of gases which liquefy readily at ordinary tempera¬ 

tures diverges widely from the laws while gases like nitrogen, 

oxygen and hydrogen follow the laws closely at usual tempera¬ 

tures and for small pressure changes. Although air is a mixture 

of gases, it follows the gas laws very closely. 

8. Adiabatic Expansion or Compression.—In Art. 4 it was 

noted that Boyle^s law applies only to an isothermal change in 

volume, that is, a change in volume without change in tempera¬ 

ture. If the expansion or compression is accomplished in such 

a way that there is no transfer of heat from or to the gas, the 

conditions are said to be adiabatic. Under such conditions 

there is a change in temperature and the pressure-volume relation 

follows the equation 

piVi^' — pv^ = a constant (15) 

where k = c^j/cv, Cp being the specific heat of the gas at constant 

pressure and the specific heat at constant volume. The ratio 
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Cp/Cv is also the ratio of the thermal capacities of the gas under 

these constant conditions. The value of k for dry air, hydrogen 

and oxygen is 1.406. For additional values of k see Table I. 

Table I.—Values of k for Various Gases 

Acetylene. . . 1.28 Chloriiu! 1 32 
Ammonia. 1.32 Methane. 1.32 
Carbon dioxide,. . 1.31 Nitrogen. 1.41 
Carbon disulphide. 1.21 Steam at 100°C. 1 .33 

The ratio k — Cp/cv is also used as a fa(*tor in deterniiniiig the 

velocity of sound in a gas, a quantity uhich is sometimes an 

important consideration in dealing with the flow of fluids. 

Problem 9. A gas having a spi'cific volume of 12.3 cu. ft. per lb. at initial 

conditions of 20 lb. piT sq. in. pressure is compressed until the pressun; is 

100 lb. per sq. in. Draw curves showing the relation ])etwe(}n pressure and 

specific volume (a) for isothermal compression, {b) for adiabatic compression 

with k = 1.4. 

9. Vapor Pressure.—At the free surface of a liquid there is a 

constant motion of molecules away from the surface. This 

process of vaporization from a liquid is evaporation. If the space 

above the free surface is enclosed it will become saturated with 

vapor and there wdll be no further increase of the number of 

molecules in the vapor state, but the interchange of molecules 

between liquid and vapor at the free surface continues. 

In the saturated state the pressure of the vapor above the 

liquid is equal to the vapor tension at the liquid surface and a 

state of equilibrium exists. Any enclosed spac.e will become 

Table II.—Vapor Pressure op Water at Various Temperatures 

Temperature, 

°C. 
VvlWj 

feet of water 

Temperature, 

°C. 

Pv/lVy 

feet of water 

-20 0.042 50 4.100 

-10 0.096 60 6.630 

0 0.203 70 10.39 

10 0.407 80 15.38 

20 0.773 90 23.40 

30 1.403 100 33.91 

40 2.460 
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saturated if the quantity of liquid is sufficient. Vapor tension, 

and therefore vapor pressure, increases with temperature and 

at the boiling point is equal to atmospheric pressure. If the 

enclosed space above a free surface is filled, at pressure with 

a gas that does not react with the liquid, them vapor will escape 

until the pressure is increased by pv and the new pressure in the 

space is p = p„ + This fact follows from Dalton^s law. 

Valuers of vapor pr(\ssure of water are given in Table II. 

10. Viscosity.—Viscosity is often defined as stickiness or 

treacliness of a substance. A descriptive^ dcfinitie)n of viscosity, 

however, is not sufficient for the purpose of fluid mechanics, an 

adequate physical and mathematical conception of the property 

being necessary to the unde^rstanding of fluid flow. Viscosity 

is the property of a fluid by virtue of which it offers resistane*e te*V 

shear stress and is in linear pfbpbrliem to the abilitylff ttre'Huid' 
to resist such stre^ss. 

~“'Since~air fluids7T)oth liepiid anel gaseous, have viscosity, the 

property must be explained by one or more physical properties 

common to all fluids, such as molecular activity. Owing to 

molecular activity there is a constant interchange of molecules 

and therefore of momentum between contiguous layers of fluid. 

It can be shown that, if the adjacent layers are moving with 

different velocities, this constant interchange of momentum sets 

up a resistance to any relative motion of the two layers. Energy 

is transformed to heat and a steady force is required to replace 

this energy and maintain the velocity. 

The viscosity of gases increases with temperature. When 

the temperature of a gas is raised, the molecular activity and the 

rate of interchange of molecules between layers are increased 

with a resulting increase in force necessary to maintain the rela¬ 

tive motion of adjacent layers. 

The viscosity of a liquid decreases with temperature. The 

interchange of molecules is accelerated by an inctrease in tempera¬ 

ture just as in gases but the viscosity of a liquid must be regarded 

as the combined effect of cohesion and interchange of momentum. 

A change in temperature has opposite effects on cohesion and 

molecular activity, the effect on cohesion being more pronounced, 

so that the greater cohesion at low temperatures results in a 

greater viscosity. Thus temperature changes have opposite 

effects upon the viscosity of liquids and gases. 
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When a shearing force or stress is applied to elastic material 

there is a definite deformation which is proportional to the force. 

A shearing force applied to viscous material (causes continuous 

and unlimited deformation btit at a rate proportional to the for(*e. 
The rate of shear under known conditions then becomes a measure 

of the viscosity of a fluid and is used indirectly in the technique 

of determining viscosity experimentally, that is, in viscometry. 
The behavior of a substance under shearing stress is the only 

criterion by which it may be classified as fluid or solid. Any 

material in which a continuous deformation is caused by a shear¬ 
ing force, however small the force, must be a fluid. From this 

statement, the conclusion may be drawn that any fluid in equilib- 

riiiin is in a state of (complete freedom from shear stress. 

Plastic materials are sometimes erroneously considered to be 

merely very viscous substances. Unlike viscous fluids, plastics 

materials are not moved by indefinitely small shear forces. When 

they do move, the distribution of velocity is quite different from 

that in viscous materials. This difference is due to the fact that 

the motion of plastic, materials is influem^ed by ordinary friction 

of solids, a factor that does not exist in fluid motion.^ 

An idea of the importance of viscosity in certain types of flow 

may be gained from the facts that water at 100°F. is about 

thirty-six times as viscous as air, a light motor oil is over sixty 

times as viscous as water and the viscosity of water at the freezing 

point is six times that at the boiling point. 

A mathematical discussion of viscosity will be found in Chap. 

VIII in which numerical values are given. 

1 For a thorough discussion of viscosity and plasticity, see E. C. Bingham, 

‘‘Fluidity and Plasticity,” McGraw-Hill Book Company, Inc., New 

York, 1922, or Emil Hatschek, “The Viscosity of Liquids,” G. Bell & 

Sons, Ltd., London, 1928. 



CHAPTER II 

STATICS OF FLUIDS 

11. Static Fluid.—A body of fluid at rest or moving bodily 
with uniform velocity is in equilibrium and may be said to be 
a static fluid. In this condition it is not changing its shape in 
any way and every part of it must therefore be free of any stress 
that might cause motion of or deformation of particles within the 

body. There are three kinds of stress to which any body may be 
subjected, namely, compression, tension and shear. 

It is the nature of fluids that they move continuously under 
shear str(\ss and cannot withstand tensile stress. It is well 

p2^AC0s0 

Fi(i. 1.—Free bodies of fluid. 

known that fluids are capable of withstanding compressive stress, 
which is usually (tailed pressure when associated with fluids. 
This compressive stress, or pressure, must be applied to fluids in 
a manner that is special as compared to stresses in solids. Com¬ 
pressive stresses will now be applied to a free body of fluid with 
the purpose of finding this special nature. 

Figure la represents an infinitesimal particle of fluid which 
for convenience is taken to be in the form of a cube. Its hori¬ 

zontal faces are subjected to a compressive stress and the 
vertical sides to a compressive stress p2. Figure lb shows a 
new free body cut off from this particle by a plane AB which 
makes any angle d with the vertical. If the area of face AB is 
taken as 5A, the forces on faces AC and CB are pi dA sin 6 and 
P2 5A cos $, Since the body is a particle of static fluid, that is, 

11 
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fluid without shear stress, the force on AB must be a normal one, 

the total force being the pressure p times the area bA or p bA, 
Taking horizontal (*01111)01101118 of forces and a])plying the laws of 

equilibrium, it follows that 

Pi bA sin 6 cos 6 ~ p^ bA cos 6 sin 6 

and 

Pi = P2 

Taking vertical (‘omponents of forces 

and 

so that 

p bA == P\ bA sin'^ d + P2 bA cos^ B 
p = pi(sin2 B -f- eos^ B) 

V = Vi 

p = pi = P2 (1) 

Equation (1), expressed in words, states that the same pressure 

is acting on the three faces of ABC. Noting that B is any angle 

whatever and that the ])arti(;le 

might be in any position, it is seen 

that the pressure at any point 

within the fluid is the same on 

every plane through the point. 

It may then be stated that the 

pressure at any point in a static* 

fluid is the same in every direction. This important principile is 

known as PascaPs law. 

Fig. — Free surface not in 
librium. 

The pressure exerted on the wall of a container by a static 

fluid is equal and opposite to that exerted on the fluid by the 

container. It has been showm that the latter must be normal to 

the fluid surface, hence the pressure of a static- fluid on a surface 

must be normal to the surface at ev('.ry point. 

The free surface of a static liquid is always horizontal. The 

truth of this statement can be demonstrated by assuming a 

surface in any other position, in which case it would be possible 

to cut away a free body by some inclined plane such as ab in 

Fig. 2. Statically the only forces acting on the body of liquid 

above the plane are the force of gravity in the vertical direction 

and the pressure normal to the inclined plane. These forces 

cannot satisfy the laws of statics and hence such a free body can¬ 

not exist in a static liquid. The surface must therefore be 
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horizontal. A non-horizontal surface may appear to exist in a 

body of very viscous and apparently static fluid, but the existence 

of such a surface is evidence that conditions are not static and 

that flow is taking place, however slowly. 

12. Relation of Pressure to Elevation.—The effect of elevation 

on pressure in a static; fluid can be determined by considering the 

lor(;es on a free body of the fluid. Figure 3 is such a body in 

the form of a vertical right cylinder of cross-sectional area A 
and height h, located anywhere within a larger body 

of static fluid. The only vertical forces acting on the 

body are the pressure forces on the ends, piA and P2A, 
and the weight whA. These for(;es must satisfy the 

laws of statics, whencie 

and 

piA ~ P2A ~ whA 

Pi — P2 = wh (2) 
ra- 

It appears from Eq. (2) that the difference in pres- Fig. 3.— 

sures ^ twojpomt^^m^ Hgiiid is in direcd prop-orr free 

tioii to the difference in elevation, the pressure always body of 

inTTeai5tog“wilTf THTs^ls' strictly true Tor 

fluids of uniform density and approximately correct in gases when 

the pressure difference is so small that the density is nearly 

constant. 

I I I I I I I I It may be seen from Eq. (2) that the pres- 

sure in a body of static fluid is constant 

y[ throughout a horizontal plane. It can also be 

I shown that the density of a static fluid is con- 

^ Pressure staiit ill any horizontal plane. 

Fig. 4.—Pressure- The result expressed in Eq. (2) is independent 
depth relation. relative horizontal position of points 1 

and 2 and can be obtained by considering the equilibrium of a 

prism in any inclined position. 

The pressure at the free surface of a liquid is that exerted on 

it by the gaseous fluid above. This is usually pressure due to 

weight of the atmosphere and is commonly called atmospheric 

pressure, pa. 

The pressure at any point in a liquid can be obtained by apply¬ 

ing Eq. (2) to Fig. 4. Then the pressure at depth h is 

p Pa + wh (3) 
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13. Pressure Units and Scales.—Pressures may be expressed 

in various units and on different scales, the choice of units and 

scales depending upon (nistom or convenience in the work at 

hand. 

In the equation 

V = Va + wh 

the pressure p is said to be on the absolute scale. If the pressure 

at the free surface is called zero, then 

p — wh (4) 

and p is said to be on the gage s(‘ale. Gage pressure is the 

pressure relative to atmospheric })ressure. The difference 

between a pressure expressed on the absolute scale and the 

same pressure on the gage scale is the (*onstaiit pa, having a value 

at sea level under normal conditions of 2116 lb. per sq. ft. or 

14.7 lb. per sq. in. In using Ecjs. (2), (3) and (4), units must be 

chosen so as to make them dimensionally homogeneous. Thus 

if A and h are in feet, w will he in pounds per cubic foot and p 
in pounds per square foot. When the liquid is fresh water, 

Eqs. (3) and (4) become 

p (lb. per sq. ft. abs.) = 2116 + 62Ah (5a) 

p (lb, per sq. ft. gage) = 62Ah (5b) 

and, dividing by the number of square inches in 1 sq. ft., 

p (lb. per sq. in. abs.) - 14.7 + = 14.7 + 0.433^?, (6a) 

p (lb. per sq. in. gage) = 0A33h (6b) 

The atmosphere is a common unit of pressure which is (*on- 

venient in dealing with compressible fluids. Normal atmospheric 

pressure at sea level at a temperature of 15®C. or 59°F. is taken 

as 1 atmosphere. It is equivalent to 2116 lb. per sq. ft. or 

14.7 lb. per sq. in. on the absolute scale. A pressure of 3 atmos¬ 

pheres, for example, is 3 X 2116 = 6348 lb. per sq. ft. abs. 

On the gage scale it is possible to have negative pressures, 

that is, pressures less than zero. The maximum possible nega¬ 

tive pressure is The term vacuum is commonly used to 

indicate negative pressures. A space in which the pressure is 

less than atmospheric is said to be under a vacuum even though 
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the space is entirely filled with gas or liquid. For example, a 

pressure of 5 lb. per sq. in. abs., is —9.7 lb. per sq. in. gage, or a 

vacuum of 9.7 lb. per sq. in. 

Problem 10. Derive the relation of lOq. (2) between pressure and eleva¬ 
tion by eonsidering the equili})rium of an inelined prism of liquid of con¬ 
stant small cross seid-ion having both ' nds submerged. 

14. Equivalent Head.—From Eq. (4) it is evident that the 

depth of liquid required to produce a given gage pressure is 

A = ?' (7) 
w 

The expression p/w is called the pressure head and it is common 

practice to indicate pressure or vacaium by stating the correspond¬ 

ing head. If p is in pounds per square foot and w is the weight 

per cubic foot of liquid, h becomes f^et of head. Pressure head 

is also stated in inches of mercury, f(Kd of water or any other 

convenient unit of length of fluid column. 

Example.—The water in a salt sea weighs 68 lb. per cu. ft. What is the 

absolute pressure in pounds per square inch at a depth of 20 ft. when the 
atmospheric pressure is 2080 lb. per sep ft.? At what depth in fresh water 
would the pressure be the same? 

Solution.—The absolub; pressure at any point in the water is the absolute 
pressure at the fr(^e Rurfa<‘e plus the increase in 
pressure due to the depth of water. Then 

2080 + 20(68) - 3440 Ib./.sq. ft. abs. 

3440 -f- 144 - 23.89 Ib./sq. in. abs. 

The pressure at depth h in fresh water is 62.4//,. 

Then 62.4/i = 20(68) and h = 21.79 ft. 
Problem 11. What is the pressure in pounds 

per square foot absolute and gage at a point 10 

ft. below a free water surface? 

12. What is the pressure in pounds per square 
foot absolute and gage at a point 10 ft. below the 

free surface of a liquid having a specific gravity of 3? 

13. At sea level the atmosphere has specific weight of 0.0765 lb. per cu. ft. 

What is the absolute pressure in pounds per square inch at elevations of 
10 ft. and 1000 ft. above sea level, assuming the atmosphere to he of constant 

density? 
14. Compute the pressure in pounds per square inch gage at points A, B, 

r, D, in Fig. 5. 
15. At what distances below a free water surface are the pressures 1 atm. 

gage and 3 atm. absolute? 
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16. Find the equivalent of a pressure of 10 lb. per sq. in. gage (a) in f(^et 
of water, (6) in inches of mercury. 

17. Find the equivalent of a vacuum of 4 lb. per sq. in. (a) in inches of 

water, {h) in pounds per square inch absolute. 

16. Standard Air.—In the preceding articdes equations have 

been developed which express relations between pressure, 

volume, temperature and density of gases. In order to get 

numerical results from th(‘se (‘quations it is necessary to start 

from known values of these properties under certain standard 

(‘onditions, and in scientific* work it is common to consider tlie 

properties at 0°C. and at a pressure of 1 atmosphere as standard. 

The advance of aeronautics and the necessity for comparing 

})erformances of ain-raft under standard conditions have led to 

the adoption of a so-called ^^standard air.'^ Standard air is 

air at 59°F. or 15°C. under a pressure of 29.92 in. or 760 mm. of 

mercury (2116 lb. per sq. ft.). Under these conditions air has the 

following properties: 

Specific weight w = 0.07651 lb. per cu. ft. 

Specific volume v — l/w = 13.07 cu. ft. per lb. 

Density p = 0.002378 slug per cu. ft. 

Viscosity g = 3.723 X lO'*^ lb. sec. per sq. ft. 

The temperature of the* atmosphere reduces with altitude 

at an average rate of 3.57°F. per thousand feet. Thus the 

temperature at any elevation, 2 ft., is 

/ - 59 - 0.003570 C¥.) (8a) 

or 

T = 518.4 - 0.003570 (°F. abs.) (86) 

The temperature gradient is practi(;ally constant to an altitude 

of about 35,300 ft. At this altitude the temperature is — 67°F. 

and so far as is known remains constant at greater altitudes. 

The actual temperature, and therefore density and pressure, 

may vary considerably from those of standard air at sea level. 

The lower atmosphere in which the temperature varies is known 

as the troposphere, and the upper stratum at constant tempera¬ 

ture as the stratosphere. There is no sharp division between 

the two, the change from one to the other being in the nature of 

a gradual transition. While the change to isothermal conditions 

takes place at an altitude of 35,300 ft. in standard air, the actual 
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altitude of the lower side of the stratospliere varies from about 

4 miles at the poles to 9 miles at the equator. 

16. Relation of Pressure to Elevation for Isothermal Gases. - 
In studying the relation of pressure to elevation in compressible 

fluids it is necessary to take into consideration the change of 

density resulting from change of altitude. 

Figure 6 is a diagram showing the variation of pressure p with 

th(i altitude z. Equation (2) can be apjdied to a small difference 

in elevation dz^ the cylindrical free body shown in Fig. 6 corre¬ 

sponding to the free Ijody previously shown in Fig. 3. It should 

Fig. 6. - Preseuro-olovation diagram for compressiide fluids. 

be noted that in Eq. (2) h is head, whereas in the following z 
is elevation, dp being a decrement. Then 

dp = ~w dz (9) 

and, by integrating between the pressure p at elevation z and 

pressure p„ at zero elevation, 

V = Pa - Jjw dz (10) 

The integration of the last term depends upon the way in which 

w varies with 5;, and it becomes necessary to find the pressure- 

elevation-density relationship. The development of this relation¬ 

ship for an isothermal gas follows. 

According to Boyle's law, both the density and specific weight 

of a gas vary directly as the pressure for isothermal conditions, 

that is, 
y’ _ 

V ~~ Pa 
and w = Wa" 

Pa 
(11) 
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Integrating Eq. (9) in the form dz = from pressure p„ to 

pressure p at a greater elevation, 

The expression pa/wa is sometimes calked the atmospheric 

head ha. It is the height of a hypothetical column of air of 

uniform weight Wa which will produce a j)rcssure differen(*(i 

Physically it may be interpreted as llu^ depth of a uniform 

atmosphere, with nothing above, which would produce atmos¬ 

pheric pressure pa. Thus for standard air 

Pa _ 2116 lb./ft.2 

Wa 0.07651 Ib./ft.^ 
27,600 ft. 

By substituting any two elevations, Z] and z^, and the corre¬ 

sponding pressures, pi and p2, in Eq. (12), 

Then 

or 

and 

Zl = ha log. 
Pa 

Vl 
and Z'l = ha log, 

P2 

- Zl ^ 

Z2 Zl ha log, —- 
P2 

—22 
P2 = PlC 

(13) 

(14) 

The pressure at any elevation z in terms of j:)ressure pa at zero 

elevation becomes 
z 

p = Paf (15) 

liquations (14) and (15) are useful in computing barometric 

pressures under isothermal conditions. Figure 6 is a graph of 

Eq. (15). The pressure approaches zero at great altitudes. The 

line cutting the ^-axis at 2 = /la represents the pressure-elevation 

curve for an imaginary atmosphere of uniform v/elght Wa. 

17. Relation of Pressure to Altitude with Temperature 
Gradient.—In making accurate computations of pressure or 
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density of gases over a wide range of altitude, the effect of tli(' 

temperature gradient must be recognized. If the temperature 

gradient is and the absolute tempi^rature at zero ('levation 

is To, then tlie absolute tcmiperature at any elevation z is 

T = Tr.- fiz 

Ret urning to Eq. (9) and noting that w 

dp = ~ w dz - 

1/r, 

” dz 
V 

(16) 

(17) 

From the equation of state, Eq. (12), page 6, pv — RT and 

V = RT/p. Putting this expression for and the above expres¬ 

sion [Eq. (16)] for T in Eq. (17) 

dp _ dz __ dz 
~Rf ~ 

(18) 
p KT R(Ta - I5z) 

Integrating between the pressure p at elevation z and pressure 

Pa at zero elevation, 

_ _ 
P Rfi 

_ J_ 

or 

[l»B. p]'_ - (^- - z)l 

On substituting the limits, this becomes 

(■ - ¥) 

or, finally 

; = (■ - f!) 

J_ 
R0 

(19) 

For standard air = 2116 lb. per sq. ft., /3 = 0.00357°r. 

per ft., R = 53.3 ft. per “F., and Ta = 59“ + 459.4° = 518.4°r. 

Then 

0.00357zV“' 
P = 2116(i - ) (lb. per sq. ft.) (20) 
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Density and specific weight are proportional to pressure and 

inversely pro})ortionaI to temperature. Therefore 

JL 
W _ p _ p Ta _ Ta(. (SzY^ 

Wa Pa VaT TV TJ 

Substituting T = Ta — fiz from P]q. (16) 

For standard air 

w == pg = 0.07651^1 - (Ih- Pfr cu. ft.) (22) 

ICquations (19) to (22) are valid up to the isothermal region 

or stratosphere. Pressure in the stratos])here can be computed 

by applying p]q. (19) up to the stratosphere and then using 

p]q. (14) over the remainder of the altitude. If Zg is the altitude 

at which the stratosphere begins and Va i^s the corresponding 

pressure, then applying Eq. (19) 
I 

In the stratosphere at a total altitude z the condition of constant 

temperature prevails and from Eq. (14) the corresponding prf^s- 

sure, where hs = is 

z, — z 

P = PaC (24) 

Example.—Determine the temperature and pressure in an atmosphere 
having a temperature gradient of 0.00357''F. per foot at altitudes of 

30,000 and 60,000 ft. if the stratosphere begins at 45,000 ft. 

Solution.—At sea level standard atmospheric conditions are assumed: 
ta = 59°F., pa = 2116 lb. per sq. ft. abs., pa = 0.002378 slug per cu. ft. 
Then designating conditions at 30,000 ft. and 60,000 ft. by the subscripts 1 
and 2, respectively, the temperature at point 1 is obtained from Eq. (8a), 

which is f = 59 — 0.003572. Hence 

it = 59 - 0.00357 X 30,000 - 59 - 107 - --48°F. 
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At llie heginiiijig of tlie stratonphere 

and 
I, ^ 59 — 0.00357 X 45,000 = “lOl.S^^F, 

rj =2116^1 0 00357 X 45,000\6.2/.6 
518.4 211() X 0.142 

~ 300 lb./s(p It. a}>H. = 2.09 Ib./sq. in. abs. 

Point 2 18 in tlie stratospljon^ wliero Die ttanporalmo is constant so that 

/•j — is — - 101.8 . Iho pmssuro at point 2 is given in terms of bv 

Fq. (14), that is, 

(2* —fz) 

hs ” 
P2 ^ P.,C 

From tlie ecpiation of state, 

1\ 357.0 
hs = /i«“ = 27,000 X 4 ^ 

41ien 

P‘i = 300(2.718) 

15000 

■ i'oofio m) 
2.20 

= 130.3 lb. /s(|. ft. al)s. 
= 0.95 Ib./scp in. abs. 

Problem 18. What is the temperature in standard atmosphere at an 
altitude of 12,500 ft.? Wiiat is the temperature gradient in standard air in 
degrees centigrade if ilu^ altitude is measured in iinders? 

19. At what elevation in an isotliermal atmosphere is the pressure 12 lb. 
per sq. in. abs.? 

20. The jiressure at a certain point in an isothermal atmosphere is 13 lb. 
per sq. in. abs. What is the pressure at a point 10,000 ft. higher? 

21. What is the pressure in an atmospliere having the standard ttunper- 
ature gradient at altitud(‘s of 15,000 ft. and 50,000 ft. and at the base of the 
stratosphere ? 

22. Compute the density of standard air at, tlie thr(‘e altitudes stated in 
Prob. 21. 

18. Manometers.—The name manometer is given to a great 

variety of hydrostatic devices for indicating fluid pressure. The 

simplest of these is the open piezometer tube,| Fig. 7a, which 

is merely an open tube connected to the container full of liquid. 

The height of the column of liquid in the open tubes above the 

point B is a measure of the difference between the pressure in 

the liquid at B and the atmospheric pressure on the surface at 

the top of the column. Using Eqs. (3) and (4), the pressure at 

point B is found to be 

or 

p = + wh (on the absolute scale) 

p == wh (on the gage scale) 
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The constants to be used depend upon the units in which it is 

desired to express the pressure. They are discussed in Art. 13. 

In simple piezometer tubes the height h ~ p/w and the 

pressure head at B may be instantly stated as h feet or inches of 

the liquid. The distance h in Fig. 7a is the same in all tubes and 

is independent of their shape or diameter except insofar as the 

diameter affects (‘apillary acdion. 

When a piezometer tube is (‘onne(‘ted to a container in which 

the pr(‘ssure at B is less than atmospheric pressure, it must be 

in a position similar to that of the right-hand tube in Fig. 7a. 
The free surface in the tube will then be bc'low the level of B 
in the container. 

Fiu. 7.—Piezometer tube^j. 

Figure 76 shows a piezometer tube connected to a pipe in 

which the liquid is moving. The height hi in this figure is a 

measure of pressure at the wall of the pipe if the opening is at 

right angles to the wall and free of any roughness or projection 

into the moving liquid. With these precauitions the head h 
indicates the static pressure independent of the velocity, the 

pressure at the wall of the pipe being pi = whi and that at the 

axis p — wh. 
The manometers shown in Fig. 8 can indicate the pressure in 

either a gas or a liquid. Figure 8a is an example of a simple 

U-tube manometer in which a liquid of specific weight Wi in 

the U-tube is used to indicate the pressure at B in another fluid 

of specific weight w. Starting with atmospheric pressure at the 

free surface in the open end of the tube and noting that pres¬ 

sure increases with depth, the resulting expression for pressure 

at B is 
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Ph (aVjsoluto) = Pa + Wih — ivy (25a) 
or 

Pb (gage) = wih — wy (256) 

If the fluid at B is a gas, tluin w is very small as compared to Wi 

and for most practical puri)oses Eqs. (25) become 

Pb (absolute) = + ivih or ps (gage) = Wih (26) 

By making the lower portion of the tube flexible, as in Fig. 86, 

the right side of the tube can be adjusted until the liquid in the 

left side is at the level of B. By this adjustment the term wy in 

Eqs. (25) is eliminated and they reduce to Eq. (26). This 

fa' (b) (c) 
Fr<i. 8.—Manometer tubes. 

arrangement lias the double advantage of placing the zero of the 

h scale in a fixed jiosition and of having the scale read pressure 

or head in any desired unit independent of the density of the fluid 

at B. 

The purpose of the flexible tube can be accomplished by the 

arrangement shown in Fig. 8c, which provides a reservoir for the 

indicating liquid in which the normal level is the same as point B, 

If the horizontal section of the reservoir is large as compared to 

the cross section of the tube along the scale, the level in the 

reservoir will change very little with small changes in pressure 

and in cases not demanding great accairacy the level may be 

considered constant. The zero of the scale is then in a fixed 

position and the height h on the scale indicates the head or pres¬ 

sure directly and Eq. (26) applies. 

In the positions shown the manometers of Fig. 8 are indicating 

pressures greater than atmospheric. Any of them could also 

indicate pressures lower than atmospheric. In the latter case 
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h is measured in the opposite direction, and again proceeding 

from the free surface to B, the equations for Fig. 86 or He are 

Pb (absolute) ~ pa ~ wji (27a) 

or 

Pb (gage) = ~wih (276) 

or 

vacuum = Wih (27(V 

Most of the equations in this and the following articl(^s sliow 

the relation between lu’ossure and manometer reading. The 

scale may be graduated so as to road directly in any unit of 

pressure or pressure head. 

Liquids used in manometers are commonly chosen because 

they have a specific weight which gives a (convenient height of 

column. ValiKis of the specific gravity of (‘ommonly used 

manometer liquids are given in Tabh' ITI. 

Table III.—Specikc Gravity of Manometer Liquids at 20^C. 

Liquid Specific Gravity- 

Mercury. 13.546 
Acetylene teirabromide. . 2.96 

Alpha-cliloronapht halene. 1.194 

Ethyl alcohol. 0.789 

TolueiK'. 0.866 

Ethyl chloroacetate. 1.159 

It is desirable that licpiids used in manometers leave the tube 

and fittings clean, that they be only slightly volatile and that 

they be noncorrosive to tubes and fittings. Where two fluids 

are in contact, they must be immiscible. 

19. Differential Manometers.—The manometers discussed in 

the last article all have one end open to the atmosphere and all 

indicate the difference between the pressure of the atmosphere 

and that in the container. If the atmospheric pressure is known, 

the reading indicates an actual value of the pressure in the 

container. 

There is a class of manometers not open to the atmosphere 

and therefore incapable of indicating an actual pressure. When 

connected to a fluid at two different points, they show the differ¬ 

ence in pressure and are commonly called differential manometers 

or gages. Examples of these are shown in Figs. 9 to 12. 
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Figure 9 shows a tube connected to a pipe in such a way as to 

indicate the difference in pressures at M on the upstream side 

of a reducer and N on the downstream side. The specific weight 

of the fluid in the pipe is w and that of the manometer liquid 

is Wi. Beginning at point M and proceeding through the tube 

to N, always increasing pressure with depth, the equation for the 
system is 

whence 
Vm + wy + wh — wih — wy = 

Pm — Pn = (wi — w)h (28) 

Thus the difference' in pressure is indicated by the height of the 

liquid column h and is indei)endent of y. That is to say, the 

manometer may be placed any reasonable 

distance above or ])elow j)oints M and N 

without changing the reading, provided 

that the tube is full of fluid. When points 

M and N are not at the same level, Kq. (28) 

must bo rewritten to im-lude the differema) 

in level. If the flowing fluid in Fig. 9 is a 

gas, its w('ight w is very small as compared 

with Wi and can often be m'glected, in which 

case Eq. (28) becjomes 

PAf — Pn = Wih 

If the flowing fluid is water and the tube contains mercury 

(specific gravity, 13.6), Eq. (28) becomes 

Pm — Pn ~ (13.6ie — w)h — 12.6te/i (30) 

The difference in pressure heads, measured in feet of water, is 

EE - El =: 12M (31) 
w w 

20. Micromanometers.—In some work, especially that dealing 

with aerodynamics, it is necessary to read pressures or pressure 

differences with great accuracy. The micromanometer is a 

special manometer designed to attain great accuracy or sensitivity. 

Sensitivity of the devices shown in Figs. 7 and 8 can be in¬ 

creased by using a light liquid and thereby increasing h. If the 

liquid in the tube of Fig. 9 has a specific gravity only a little 

Fia. 9. - -Differential 
manometer. 

(29) 
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greater than unity and the fluid in the pipe is water, the reading 

h from Eq. (28) will be very large and the manometer will be very 

sensitive. 

A combination of two reservoirs and two liquids of slightly 

different density may be used as shown in Fig. 10. The reservoirs 

contain liquid of specific weight W2 and in the lower portion of the 

U-tube there is a slightly heavier liquid of specific weight Wi. 

Spaces M and N above the free surfaces are connected by tubf\s 

to any two other containers in which the j)ressures are the same 

as at M and N. If the areas of horizontal cross s(x*tions of 

Fig. 10. -Sensitive differential manometer. 

the reservoirs and the tube are A and a, respectively, then the 

displacement of the column in either tube is accompanied by the 

fraction a/A times as much displacement in the reservoir. Thus 

Beginning with the pressure at M and proceeding through the 

tube to A, the following equation results: 

Pm + + With — Wih - = Pn 

Pm — Pn = (Wi W2)h + (32) 

This type of gage has the advantage of giving a large reading 

for small pressure differences and also of entirely balancing any 

effect of capillary action. The last term of Eq. (32) may be 
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neglected in many cases, depending npon the value of the ratio 
a/A and the accuracy desired. 

In the manometer shown in Fig. 11, the incdined tube is 

^'mployed to gain sensitivity. It has a reservoir of area A and 

an inclined tube oi cross section a. The scale is parallel to the 

tube, the reading on it l)eing larger than that on a verti(;al tube 

in the ratio y/h, with a corresponding increase in sensitivity. 

Spaces M and N are connected to two points for which a difference 

in pressure is wanted. The ratio of areas being a/A^ the surface 

at N is raised for a scale reading of y. Starting with the 

pressure at M and following pressure changes through the tube 

to neglecting the weight of gas in spaces M and Ny 

Pm - Wiy sm 0 — Wx-jij = p^ 

from which 

In terms of the slope of the tube, m or tan 0, and the diameters 

of the tube and reservoir, d and Z>, respectively, Eq. (33) takes 

the form 

^ Vu-V^ = + g,) (34) 

Manometers of this type intended for accurate work, are 

equipped with spirit levels, leveling screws, reading glass and a 

means for adjusting the inclination of the tube. A photograph 

of such a device used in the University of Michigan wind tunnel 

is shown in Fig. 12. 
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Such things as varying density of liquid, weight of neglected 

gas columns, nonuiiiform diameter of tubes and varying effects 

of capillarity tend to prevent the attainment of extreme accuracy 

Fi(}. 12.—Inelinpd-tubo manometer. 

and make it necessary to calibrate this instrument and other 

accurate manometers for the conditions undt^rwhicli they aroused. 

Example.—A U-tube having an internal cross section of 0.25 sq. in. con¬ 
tains mercury to a depth of 10 in. What is the pressure at the bottom? 

What is the pressure after 3 cu. in. of acetylene 

tetrabromide is added to one leg of the tube? 
Solution.—The specific gravity of mercury is 13.6 so 

that its specific weight is 13.6 X 62.4 lb. per cu. ft. 

Then the pressure at a depth of 10 in. or ^ %2 ft. is 

X 13.6 X ^ = 0.833 X 13.6 X 0.433 = 

4.91 Ib./sq. in. gage 

Adding the acetylene tetrabromide, sp<‘cific gravity of 

2.97, its depth is 3 0.25 = 12 in., and the mercury 
stands as in the figure. The pressures or pressure heads 

at points 1 and 2 must be equal so that 

2.97 X 12 = 13.62/ and y « 2.62 in. 

The depth d is now 10 -j—^ = 11.31 in. and at point 3 the pressure is 
11 qi 

p3 = X 13.6 X 0.433 « 5.56 Ib./sq. in. gage. 
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Example. A U-tube 20 in. high is filled with mercury to a depth of 12 in. 
One end is then closed and mercury is added to the other until it is 14 in. 
deep in the closed end. How deep is the mercury in 
the open end? 

Solution.—If the cross section of the tube is A sq. in., 
then the initial volumti of air in the closed end is SA 

cu. in. and the new volume is 6A. Then since pv = 

(\ piVi ~pj(6/l) = ]4.7(8A) and Pi - ^^(14.7). Since 
points 1 and 2 are at the same level in the mercury, it 

follows that Pi ~ p‘2. Expressing the latter in terms of 
head of mercury, h in., 

Pi = |(14.7) = 14.7 + 13.()(0.433)^ 

and 

h = 10.0 in. 

The final depth of mercury in the open tube is 14 -1- 10.0 -- 24.0 in. 

Problem 23. In Fig. 7a the pn^ssure at B is 2 lb. per sq. in. gage and the 
liquid is water. Compute h. 

24. In Fig. 7a the liquid is oil, specific gravity is 0.8 and the pressure at B 
is 10 lb. per sq. in. abs. Where does the liquid stand in the right-hand tube, 
the other tubes being closed? 

26. In Fig. 7b the pressure at the ccuiter of the pipe is 20 lb. per sq. in. 
gage. Compute h if the fluid is water. 

26. In Fig. Sa the liquid at B is water and that in the tube has a specific 

gravity of 3. If p = 18 in., compute h for pB — 4 lb. per sq. in. gage and 
11 lb, per sq. in. abs. 

27. The pressure at B of Fig. Sb is 5 lb. per sq. in. gage. The liquid is 
water and the tube contains mercury. Compute h. If th(i pressure is now 

increased by 2 lb. p(u* scj. in. and the flexible tube is not adjusted, compute 
the new h measured from the zero of tlu‘ scale, 

28. The liquid in the tube of Fig. 8c has a specific gravity of 3 and B con¬ 
tains gas. What length of scale corresponds to a change of pressure of 

1 lb. per sq. in. (a) if the reservoir is very large, (h) if the reservoir diameter 

is three times the diameter of the tube? 
29. In Fig. 9 t he pipe contains water. In what ratio is the gage reading, 

h, magnified by changing from mercury to a gage liquid having a specific 

gravity of 3? 
30. In Fig. 10 spaces M and N contain air, the reservoirs a liquid with 

specific gravity of 0.8 and the tube a liquid with specific gravity of 1.2. The 
diameters of the reservoirs and tube are 3 in. and respectively. 

Compute h for a difference in pressure head of 1 cm. of water. 
31. In Fig. 11 the angle 0 is 10 de^g. and the diameters of the tube and 

reservoir are 6 ram. and 10 cm., respectively. What, percentage of error is 

introduced if the rise in the reservoir level is neglected when spaces M and N 
contain air? Is the percentage of error the same if these spaces contain a 

liquid? 
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21. Barometers.—The barometer is a simple hydrostatic; 

device used to measure atmospheric or barometric pressure. If a 

tube closed at the upper end is filled with liquid and then placed 

as shown in Fig. 13a, the liquid will stand in the tube at a height 

depending on the atmospheric j)ressure on the free surface and the 

pressure in the tube. If all the air could be removed, the only 

pressure in the tube would be the vapor pressure necessary to 

balance the vapor tension of the liquid. Then proceeding 

from the closed space and through the 

liquid to the free; surface, the equation 

J)v -t- wh = Pa (35) 

is obtained, in whi(;h pv is the vapor 

pressure. Writing this in the form 

^ _ L“ (36) 
W W 

it is seen that the scale reading is 

^ ^ reduced by the vapor pressure to the 

extent of pv/w. For this reason it is 

important that the liquid used in such a barometer be one with a 

low vapor pressure and, to make the height small and easily 

readable, it should also be h(;avy. Mercury best satisfices these 

requirements and is the liquid commonly used. A typical 

mercury barometer tube is shown in Fig. 136. 

For standard air a barometer containing water would stand 

at a height 

p, ^ 2116 

w 62.4 
^ = 33.91 - — (ft.) 
w w 

This value of h represents the maximum height of water column 

which can be supported by atmospheric pressure and it is there¬ 

fore the maximum theoretical suction lift of a pump. Since the 

density varies with temperature, it is necessary to adjust both 

terms of Eq. (36) for high temperatures. Values of the vapor 

pressure for water are given in Table II, page 8. The column in 

a mercury barometer in standard air stands at a height of 29.92 

in. or 760 mm. 

Problem 32. How high is the column of a water barometer at 100°F. 

when the atmospheric pressure is 14.1 lb. per sq. in.? 
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33. A baroinetor has a column of mercury 28 in. high covered with 2 in. 
of water. II the temperature is 90°h\, what is the atmospheric pressure? 

22. Pressure Gages.—The use of manometers is limited to the 

measuring of pressures which produ(;e a practical and readable 

length of column. In measuring high pressure's or very small 

pressures it is necessary to use some other form of pressure gage. 

Such gages usually contain some elastic (dement which, when 

deformed by the pre^ssure, has its motion transmitted by a 

mechanism to a ])ointer or dial. The elastic element may be a 

Fig. 14.—Koichardi pressure gage. 

diaphragm, a bellows or sylphon, a Bourdon tube, a piston work¬ 

ing against a spring, or a wire in torsion. 

The torsion principle is used in a gage developed by Reichardt,* 

Fig. 14a, which is sensitive to pressures of the order of 10“'^ mm. 

of water. 
This gage, shown in plan in Fig. 146, has two chambers con¬ 

nected to the points for which the pressure difference, p — po, 

is desired. The wall between the chambers has a small round 

opening c. A small glass piston a, in the form of a circular arc, 

passes freely through the opening and is .suspended by a vertical 

wire at S. The wire is subjected to torsion when the piston 

moves and the pointer 6, which is also suspended by the wire, 

moves along the scale. There is some flow around the piston 

> Reichasdt, H., Druckniesser fur sehr kleine Druckunterschiede, z. Ver. 
d&ut. Band 79, p. 1503, 1936. 
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and through the opening which is corrected for in the calibration 

of the instrument. 

23. Hydrostatic Devices.—Hydrostatic devices have many 

interesting applications in engineering and industry. One of 

these, the King-Seeley Telegage, Fig. 15, has a wide use for 

measuring depths, volumes or weights of liquids. It consists of 

a hydrostatic gage or nianomet(!r connected to a chamber C 
immersed in the liquid. This chamber is open at the bottom, 

and by pumping air into tube D th(‘ liquid level in the tube is 

forced down until air escapes into the tank A. The air pressure 

> ..—in the chamber is then the same 

^--^ as the liquid i)ressure at the 

□y same level in the tank and is also 

]| equal to tlic pressure on the 

I __^ surface of the manometer fluid 

reservoir B, Th(^ scale having 

A ^ its index at the level of the free 

^ surface in B will then measure 

--lEfl— the pressure at the bottom of the 
Fig. 15.- The King-Scoioy Toiogage. or, wlieii (.‘onnected as 

shown, the difference in pressures at the surface in the tank 

and in the air chamber. By considering the horizontal section 

of the tank and weights of fluid and manometer fluid, the Tele¬ 

gage may be made to indicate depth, volume or weight in any 

desired units. 

A variation of the U-tube is sometimes employed both in 

running levels and measuring vertical distances. A device used 

at the General Motors Proving Ground for taking close vertic^al 

measurements of automobiles is shown in Fig. 16. It consists of 

a reservoir B connected by flexible tubing to manometer C. 
The reservoir is placed in a level position on the part to be meas¬ 

ured and the liquid in the manometer comes to the same level 

as that in the reservoir. Since the total quantity of fluid is 

constant, the depth of the fluid in the reservoir varies. The scale 

of the manometer is adjusted to compensate for this change in 

depth so that elevation is read directly. Thus, if the horizontal 

section of the reservoir is A and the cross section of the tube is 

a, the divisions of the scale representing an elevation of 1 in. 

will have a length of (xi.) in. The zero reading, which 
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varies with temperature, may be adjusted by expanding or 

contracting a sylphon which is connected to the base of the 
manometer. 

A device^ used in the wind-tunnel laboratory of the Daniel 

Guggenheim Airship Institute at Akron is shown in Fig. 17. 

Fig. 16.—Hydrostatic device for taking verti(;al measurements. {Courtesy 
General Motors Proving Grounds.) 

It consists of a closed reservoir A completely filled with liquid 

and connected by a tube such as to a manometer. The force 

to be measured is transmitted by a wire T to the flexible dia¬ 

phragm head of the reservoir. The diaphragm carries an adjust¬ 

able initial load L, the variation in total load corresponding to 

the variation in tension in wire T, Any change in position of 

^ Troli.br, T., The Vertical Wind Tunnel of the Daniel Guggenheim 

Airship Institute, Daniel Guggenheim Airship Institute, Pub. 1, pp. 11-22. 
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the diaphragm is shown in the reading on the manometer scale, 

which, after careful calibration, is a measure of the tension in T. 
24. Pressure Forces on Surfaces.—In Art. 11 it was shown 

that the pressure exerted on any surface by a static fluid is normal 

to that surface. The pressure force acting on area dA is p dA and, 

the pressure on all elements of a plane area being in the same 

direction, the total pressure force is ^p dA, In gaseous fluids 

Fia. 17.—Hydrostatic device for measuring force. {Courtesy Dr, T, Troller,) 

the pressure is practicially constant over areas of ordinary size 

and therefore the resultant pressure forc^e is 

This equation also holds for a horizontal area subjected to liquid 

pressure because the pressure on such an area is uniform. 

Figure 18 represents a submerged plane area MN at an angle 0 
with the free surface of a liquid. It is desired to find the resultant 

pressure force exerted by the liquid on one side of the area. The 

pressure at depth h being p = wh, the pressure force dP on any 

clement of area is 
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or, in terms of y, the di.stain^e measured along the surface from 

its intersection 0 with the free surface of the liquid, 

dP ^ w(y sin d)dA 

The resultant pressure force P is 

P = \dP = uo sin 6 jy dA 

From the definition of a centroid, J?/dA = yA, where y is the 

centroidal distance; since th(‘ d(‘j)th of the ('ciitroid is fi -= y sin 6, 

]> = w{y sin d)A = xvfiA (38) 

In Eq. (38) tlu^ i)rodu(;t wh is the pressure at the (*entroid of 

the area. Thus it is apparent that the resultant i)n3ssure force 

o 

on a i)lane area is the pressures at the centroid multiplied by 

the area and also that tlie aA^erage pressure on a plane area is 

equal to wh^ the pressure at the centroid. 

It will be noticed that tlie above discussion is based entirely 

upon gage pressure, atmospheric pressure being neglected. If 

the area is considered as closing an opening with the same atmos¬ 

pheric pressure on the dry side and on the surface of the liquid, 

then the real pressure force on an (dement of the wetted area 

is {pa + wh)dA and that on the dry side is dA, Thus the 

effective pressure force is seen to be 

ipa + wh)dA — Pa dA = wh dA = dP 

just as used in the development of Eq. (38), and it is obviously 

permissible to neglect atmospheric pressure whenever both 

sides of the area in question are affected by the same atmosphere. 
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Example.'—Compute the pressure force exerted by water on the sub¬ 

merged vertical plane area ABCD. 

Solution.—The centroid of the area is found to 

be 2.57 ft. btdow BC. The head or depth of water 

at the center of gravity is 1.5 -f- 2.57 = 4.07 ft. 
and the pressure force is 

/> wRA = 62.4(4.07) (42) - 10,680 1b. 

If preferred the area can be divided into parts 1 
and 2, for which the centroidal positions are well known. It is then 

unnecessary to find the ci'ntroid of the whole area since the pressure force 
may Vie written as 

F = F\ P2 ~ wRiA\ “I- ivh'iAz 

= 62.4(4.5)(24) + 62.4(3.5)(18) = 10,680 1b. 

Problem 34. Compute the pressure force exerted by water on the 
following plane areas: (^u) a vertical circle 4 ft. in diameter with its horizontal 

diameter 5 ft. below the fr(‘e surface, {b) a vertical equilateral triangle with 

6-ft. sides having one side in the water surface, (r) a n^ctangle 4 by 6 ft. 

making an angle of 60 deg. with the w'ater surface and having a 4-ft. edge m 
the surface, (d) a vertical 4- V^y 4-ft. area with the upper edge 3 ft. b(‘low the 

water surface. 

25. Center of Pressure.—If the })ressure on a plane area is 
uniform, the resultant pressure foree passes through the centroid 
of the area. This will b(' the case only if the area is horizontal 
or when the jiressure is that of a gas and (‘an be considered as 
j)ractically uniform. For areas not horizontal, it is often requirc'd 
to find the point at which the resultant pressure force intersects 
the area. This point is commonly called the center of pressure. 

Since the elementary forces on the plane are all in the same 
direction, the process of finding the center of pressure is merely 
that of finding the position of the resultant of a system of parallel 
forces as it is done in statics. 

Since the pressure force on an element of area dA (Fig. 19) is 
dPf the resultant force is P = JdP applied at a distance 
from the intersection of the area with the water surface. The 
moment of P about this intersection is Pyp and the moment 
of dP around the same line is y dP. Equating the moment of 
the resultant foree to the sum of the moments of all its parts, 

Pyp = !y dP (39) 

This may be considered a fundamental equation and it often 
affords the simplest and most direct method of finding yp. In 
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setting lip the equation, y and yp may be measured from any 

line parallel to the free surface and the plane. Letting 

dP — wh dA = wy sin d dA 

and P = JdP, Eq. (39) becomes 

(jr 

ypW sin 6^y dA = w sin B^y^ dA 

Vp 
hP dA ^ 
jy dA Ay (40) 

in which I is the moment of inertia about the axis from which y 
is measured and Ay is tlie moment of the area about the same axis. 

The moment of inertia aVxmt the origin 0 may be expressed 

in terms of moment of inertia about a parallel axis through 

the centroid of the area as la + Ay\ Substituting this value 

in Eq. (40) 

Ta + Ay’^ 

Ay 
(41) 

In many problems Eq. (41) furnishes a convenient means for 

finding yp. It is also important because an inspe(*tion of it shows 

that the (;enter of pressure is alw^ays below the center of gravity 

by the distance lo/Ay measured along the plane. The value of 

[g/Ay decreai^es with depth, that is, the center of pressure comes 

closer to the center of gravity as the depth is increased. 

The relative horizontal position of the center of pressure on 

an area can often be determined by inspection. If necessary, 

the principle of moments may again be utilized, taking moments 
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about an axis in the plane and normal to its intersection with the 

free surface. The moment ecpiation is then 

Pxp = j'x dP 

Example.—Find the eont(^r of pressure on the vertical trapezoidal surface 

shown in the figure. 

Solution.—Begin with a horizontal element 
^ j depth of y and having a width dy. 
'li? y Draw the line AD parallel to BC. Tluai the 

\ ■ distance ED is 2.5 ft. and from the geometry 

M 

111 
2 

A du ^he figure FG = (?/ — 4)/2. Then the 
^ ?/ — 4 

length of the (‘hunent of area is — +1) = 

4 4- f • Th(‘ area of the element is 

ciA = (4+lyiij 
and the force acting on it is 

dP = wy dA — w^4y 

The moment of dP around MN is y dP and, dividing the total moment by 

the total force, 

Vv 

dy 

jdP £(av + ^.l,. 
- t>.95 ft. 

Problem 36. Compute values of i/p starting from Eq. (39) and check 

results by Eq, (41): (a) for Fig. 20a, (5) for Fig. 205, (c) for Fig. 20c. 

i_ 
li 

(a) 
Fig. 20.—Submerged plane areas. 

36. The center of pressure of a 4- by 9-ft. rectangle having the 9-ft. edge 
vertical is 5 ft. below the upper edge. At what depth is the upper edge? 

37. Using Eq. (39) prove that (a) for a rectangle with one edge in the 

liquid surface, yp = two-thirds of the altitude; (5) for a triangle with the 

vert.ex in the liquid surface and the base parallel thereto, yp = three-fourths 

of the altitude; (c) for a triangle having one edge in the liquid surface, 
2/p ~ one-half of the altitude. 
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88. A trapezoid 5 ft. wide has parallel sides 6 ft. and 10 ft. long. Where 
is the center of pressure (a) when the 6-ft. edge is in the water surface, (6) 
when it is 4 ft. below the surface and the trapezoid is vertical? 

26. Pressure Distribution and Pressure Volume. -A graphical 

concept of pressure distribution and pressure force is often help¬ 

ful. Figure 21 shows diagrams of the variation of pressure with 

depth, in which is a plane surface and the ordinate extending 

from AB to AC is the pressun', p = wh, at any depth h. 
The pressure distribution on an area is shown in Fig. 22. The 

rectangle A BCD is an area subjected to hydrostatic pressure, 

the amount and direction of which are represented at any point 

by an ordinate perpendicular to 

the area and extending to sur¬ 

face MNOP. The i)ressure 

force on dA, an element of area 

in surface ABCDj is p dA. 
This expression is also an 

element of volume, dV^ extend¬ 

ing from surface ABCD to 

surface MNOP. Then the 

resultant pressure force on the 

area is 

p = jdP = Jp dA = id V = V 
(42) 

in which V is the volume of the 

figure ABCDPMNO. The 
quantity V is called the pressure volume and will be expressed 

in some unit of force, as pounds or tons. 1 he process of finding 

the position of the centroid of this pressure volume is the same 
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as that of finding tlie position of the resultant pressure on area 

ABCD, since 

Fy^ = iy dP = iy dV = Yyv (43) 

and it follows that the center of pressure and (‘enter of the 

pressure* volume are at the same distance from plane ABNM 
or any parallel plane. 

Fi(i. 23. Typical presHurc volumow. 

All inspetdion of the piTssure volume will often readily reveal 

the position of the (‘enter of pressure. Three common areas with 

their pressure volumes are shown in Fig. 23. The pressure 

volume for a rectangle with one edge in the free surfa('e is a 

wedge, and it is apparent that the center of pressure is at tw^o- 

0 thirds of the total depth. The 

pressure volume for a triangle 

with its vertex in the free surface 

and its bas(' parallel to th(* sur¬ 

face is a pyramid, and from the 

geometry of the figure the center 

of pressure is at on(Ui seen to 

be at three-fourths of the total 

depth. The pressure volume for 

a triangle with one edge in the 

Fig. 24.—Effect of rotation on the Water Surface is a tetrahedron, 
center of pressure. center of gravity, and there¬ 

fore the center of pressure, being at a depth equal to one-half 

of the total depth. 

When any plane area is rotated about the intersection of its 

plane with the free surfa(je, as in Fig. 24, the center of pressure 

remains in a fixed position on the plane. This is evident because 

all pressure ordinates are reduced in exactly the same pro*- 

portion. This fact is also apparent from Eq. (40) or (41), 
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27. Pressure Forces on Curved Surfaces.—The determination 

of pressure forces on curved surfaces sometimes involves exten¬ 

sive calculations. The problem may often be simplified by 

giving attention to the components of pressure force rather than 

to the force itself. In Fig. 25, A BCD represents a curved surface 

of area dA. For convenience it will be taken to have its radius of 

curvature R in a plane parallel to the xy-plsune and at angle 0 
with a parallel to the ?/-axis. The area is subject to fluid pressure 

y 

p and the pressure force is dP — pdA in the direction of R, The 

x- and y-compoiients of the pressure force are dPx = p dA sin $ 
and dPy = p dA cos 6, The products dA sin 6 and dA cos 6 are 

the projections of area dA on the yz- and a:2:-planes, respectively, 

whence 

dPx — p dA sin B = p dAyz (44) 

dPy — p dA cos 6 — p dAxt (45) 

It may be stated as a principle that the component in any 

direction of pressure force on an area having only elementary 

dimensions is equal to the pressure force on the area projected 

on a plane normal to the component. When the pressure is 

uniform, the principle holds for an area of any size. 

Figure 26 shows a curved area ABCD of finite dimensions, sub¬ 

ject to the pressure of a liquid, the free surface intersecting the 

curved surface along line AB. The pressure force on an element 

of area dA is dP wh dA. The horizontal component of this 

force is 

dPx = dA sin B = wh dAyz 
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and the resultant horizontal force is 

P. = idP. = lojhdAy. = whAy, (46) 

in which h is the head on the centroid of the projected area, Ayx. 
The horizontal component of the resultant pressure force on 

area A BCD is the pressure force on its j)roje(‘.tion on the y2-plane, 

that is, A'B'C'D^ and the amount and position of this com¬ 

ponent are found in exactly the same way as for a plane area. 

Y 

The vertical component of dP is 

dPy — wh dA (ios d = wh dA xz 

The expression wh dA^z is the weight of a vertical prism of liquid 

extending from dA to the free surface and may be written w dV 

where dV = hdAxz. Then letting V be the total volume of 

Uquid above the curved area, the vertical component of the 

;esultant pressure force is 

= jdPy = wih dAxz = w^dv = wV (47) 

The product wV is the total weight of liquid in the volume 

ABCDEF lying above the curved area. Thus the resultant 

vertical pressure force is caused by and equal to the weight of this 

volume and it can be demonstrated that it acts vertically through 

the centroid of the volume. For the sake of convenience the 
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area used in this demonstration has been taken as a cylindrical 

area with its elements normal to the xy-plane. The principle 

involved in finding components of pressure force on a warped 

surface is no different except that for su(;h a case a component of 

force parallel to the 2:-axis is introduced. 

If the lower side of area ABCD is subject to pressure of a 

liquid having its free surface at the same level as in this discussion, 

the components of pressure force will be found in the same way 

but will be opposite in direction. 

Example.—In the figure oiu'-hjilf of a right circular cone is just subnKU’god 
in water with the triangular face horizontal. Compute the horizonlal and 
vertical components of pressure force, Pa- and 

Pyj respectively, on the curved surface. 
Solution.—Tlie component P^ is the same as 

the pressure force on the projection of the area, 
which in this case is the semicircle BDC. The 

area is then 7rr“/2 = 0.28 sq. ft., the center of 
gravity is at a distance 

from the diameter and 1h(‘ head on the center of gravity is 

h = 2 - 0.848 = 1.152 ft. 

Then 

I\ =■ whA - 62.4 X 1.152 X 6.28 = 452 lb. 

The vertical component Py is the weight of the water above the surface. 

In this case the volume is that of a triangular prism less the half cone and 

the force is 

1\ = [(12 X 2) - m X 6.28 X 6)162.4 = 714 lb. 

Example.—A 16-in. st eel pipe carries air at 200 lb. per sq. in. What is the 
circumferential tensile stress in the wall of 

the pipe if it is 0.25 in. thick? 
Solution.—Consider a portion of the pipe 

1 in. long. The resultant pressure force on 
any half of such a section is equal to the 

pressure times the projected area, which in 

this case is 16 sq. in. Then 

F = 16 X 200 = 3200 lb. 

and the tension in each side is T = P/2 = 1600 lb. The stress is 

'/’/area = 1600 0.25 =- 6400 lb. per sq. in. 

Problem 39. With what force is a hemispherical suction cup 1 in. in 

diameter and having no air under it held against a windshield? 
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40. An opening in the bottom of a tank is closed by a hemisphere 4 ft. in 

diameter with the convex surface uppermost. If water stands 2 ft. above 
the crest of the hemisphere, with what pressure force is it held against the 

bottom? 
41. A cone 2 ft. in diameter and 3 ft. in altitude is held vertex downward 

with its base at the water surface. What is the resultant pressure force on 
, the conical surface? 

42. Fig. 27 shows a partial section and 
end view of a tank containing water. 

Find (a) the vertical component of pres¬ 

sure force on BC, {b) the horizontal com¬ 

ponent of pressurti force on BCD, (c) the 
resultant pressure} force on BC. 

General Problems 

43. Compute the pressure at B in Fig. 
28, (a) when the fluid at B is air, (6) wlnm 

it is water. If the pressure at B is now 

incr(‘ase(l by 5 lb. persq. in,, what is the 
new difference in elevation of the mercury 

Section End 
Fig. 27. 

surfaces (c) with air at B, {d) with w'ater at B7 
44. Compute the difference in pressur(‘s at M arid N of Fig. 29. The pipe 

contains water and tlu} bottom of th(‘ U-tub<* contains mercury. 
46. In P'ig. 15 the liquids in the tank and manometer have specific 

gravities of 1.20 and 3.00, respectively. The pressure on the surface insid(} 

of the tank is 4 lb. per sq. in. and the opening of 

the chamber C is 5 ft. below the surface. What is 
the reading of the manometer in inches? 

46. The pressure at a given point on a gas main 

is indicated by a 2-in. column of water in a U-tube 

open to air at one end. If the gas weighs 0.035 

Mercury. 

Fia. 28. Fig. 29. 

lb. per cu. ft. and the air is standard, what is the reading of a similar U-tube 

at a point 400 ft. higher under static conditions? 
47. A cubical tank measuring 6 ft. on each side is filled with water. 

Find (a) the pressure force on the side, (5) the pressure force on the bottom, 

(c) the depth at which a horizontal line must be drawn to divide the pressure 

force on a side evenly, (d) the center of pressure on the lower half of one 
side. 
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48. A cylindrical barrel 1 ft. in diameter and 3 ft. long is fitted with a 
1-in. pipe extending 50 ft. above the barrel. The barrel lies on its side and 

the staves are held by four hoops. If the pipe is filled with water, what is 
the average tensihi force in the hoops due to water pressure? 

49. A right triangle having a base of 4 ft. and altitude of 6 ft. is immersed 
in water with its base horizontal 

and the f>-ft. side vertical. Find 
both coordinates of the cent(‘r of 

pr(\ssure (a) with the vertex in the 
water surface, (h) with the vertex 3 ft. 

l)elow the surface. 

60. The gate, a cross section of 

which is shown in Fig. 30, is 5 ft. 

wide. Find the pressure force and 
the center of pressure (a) on the right 

surface of the gate, (h) on tlie left 

surface of the gate; (c) find the 
vertical force at D to open the gate, 

neglecting its weight. 
61. What is the resultant of iho 

pressure force's on the two side's e)f the' 

gate of Fig. 30? 
62. A box measuring 4 ft. on e'ae'h e'dge is half filk'el with licjuid e)f spea'dfic 

gravity of 2, the upper half hieing filleel with wate^r. Find (a) the pressure 
force on a side of the box, (5) the^ center of pressure on a siele, (c) the center 

of pre)ssure on the lowe'r half of a side. 
63. A square area having eliageinals 12 ft. long is subinergeel in water. 

Find the total pressure and locate the center of pressurt^ when one diagonal 

is vertic.al and ends in the fn^e surface. 

64. A submerged cinadar area 0 ft. in diameter is in a vertical position and 

tangent to the water surf act;. Where is the center of pressure? At wdiat 
depth is the center of the area if the center of pressure is 3 in. below the 

center? 
66. In Fig. 31 a circular opening is closed by a sphere. The pressure at 

B is 50 lb. per sq. in. abs. What horizontal force is 

exerted by the sphere on the opening? 
66. A right cone having a base 2 ft. in diameter and an 

altitude of 3 ft. has its axis vertical and base uppermost, 
and is filled with water. What is the horizontal pressure 
force on one-half of the internal area? If the same cone 
is held submerged in the same position with its base in the 

water surface, what is the upward force on the outside of the cone? What 

is the horizontal force on one-half of the outer surface? 
67. A vertical tube of \iniform diameter and 8 ft. long is open at the bottom 

and closed at the top. Originally full of air, it is submerged vertically in 

water until it is half full of air. To what depth is the top submerged? 
68. In Fig. 32 a pressure of 164.7 lb. per sq. in. gage in cylindrical space B 

;brces the movable piston D to the right, thereby reducing cylindrical space 

Fig 
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C which is filled with oil. The fixed piston E is perforated by a tiib(\ 
What is the pressure in line F leading to a closed space? 

Ftg. 32 

69. A spherical balloon is 10 in. in diameter when inflated to a pressure of 
2 lb. p('r sq. in. gage. What is the tensile^ force in the walls per inch of 

circumference? 

60. The gate shown in cross section in 
Fig. 33 is 10 ft. long. The curved face BC 
is a circular arc. Find (a) the moment 

about the hinge of the i)ressure forc(^ on 

the gate, (h) the vertical and horizontal 

components of pressure force on BCy (c) 
the resultant pressuni force on BC. 

61. Find the depth of the center of 

Fig. 33. Fig. 34. 

pressure on Fig. 34 when the area is vertical. How far is the center of pres¬ 

sure from AB if the surface makes an angle of 30 deg. with the vertical? 

62. A closed airtight box is 4 ft. square and 8 ft. high. It is filled to a 

depth of 6 ft. with water, the pressure in the air space above being —0.866 lb. 

per sq. in. gage. What is the effective pressure fon^e on a side of the tank? 



CHAPTER III 

FLOTATION 

28. Buoyant Force or Static Lift.—Archimedes stated the 

principle that a body immersed in a fluid is buoyed up or sup¬ 

ported by a force equal to the weight of fluid displaced. The 

truth of this priindple may be demonstrated by considering the 

pressure forces on a submerged 

body. 

Figure 35 represents a body 

completely surrounded by any 

fluid. It may be divided into 

vertical prisms such as MN. 
Using the principle of projectted 

areas discussed in the previous 

articles, the upward vertical com¬ 

ponent of pressure force on the 

lower end of the prism is dA 
while the downward component 

of pressures force on the top is 

Pn dA. Then the difference be¬ 

tween the upward and downward pressure forces is 

Fig. 35.—Buoyant force or static lift. 

Pm dA - py dA = {pM - pN)dA = wl dA = w dV 

in which dV is the volume of the elementary prism MN, Thus 

the resultant vertical pressure force on the prism is the weight of 

fluid displaced by the prism, and the sum of all such elementary 

forces is 

Fb = jw dV = wV (1) 

The product icF is the total weight of fluid displaced, that is, 

the ''displacement'' of the body. It is the buoyant force or 

static lift. It acts vertically through the center of gravity of the 

displaced fluid, which point is commonly called the center of 

buoyancy. While it is convenient to determine the amount of 
47 
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static lift by computing displac(‘ment, it is often helpful to note 

that it is merely the resultant vertical pressure force. 

A body floating at a plane of s(^paration between two fluids 

presents the (‘ommonest problem in buoyancy, the usual fluids 

being air and water. Let Fig. 36 repn^sent a body sul)merged 

partly in a fluid of spe(*ific, weight and covered by a lighter 

fluid of specific' weight w^. Tin' difl*erence in u])ward and down¬ 

ward j)ressures on the vertical element of volume dV is 

{:Pm — p.\)dA — (will + uhl^dA = tci/j dA + w4<2, dA = 
uu dVi + W2 dV2 

dV\ and di'a being, respectively, the portions of dV displacing 

fluid of specific weights Wi and W2. 
The total static lift is 

Fii — jwidVi + jw2dy2 ~ 

%0iVi-\-W2V2 (2) 

which is again the total weight of fluid 

displaced. 

In the case of bodies floating at the 

free surface of a liquid, Wi is usually 

Fig. 36.—-Statics lift in two neglected because it is very small as 

compared to The static lift is there¬ 

fore only the weight of displaced liquid. 

The horizontal pressure forces on an immersed body can be 

investigated by dividing it into horizontal prisms. The axial 

components of i)ressure force on the two ends of any such prism 

are equal and opj)osite and, their sum being zero for every ele¬ 

mentary prism, there can be no resultant horizontal pressure 

force for the body as a whole when the fluid is static. 

Problem 63. A sphere 2 ft. in diameter floats half submerged in water 

when free. What force is needed to hold it completely submerged? 

64. A body weighing 400 lb. and having a specific gravity of 0.4 is held 

submerged in water by an anchor weighing 150 lb. per cu. ft. What is the 
minimum weight of the an(;hor? 

66. A hemisphere 4 ft. in diameter is under water with the flat side against 

a vertical surface, all fluid being excluded between them. What is the 

buoyant force? The water is 6 ft. deep and the hemisphere rests on the 

bottom with all fluid excluded. What central force is required to lift it? 

66. A cylindrical body 6 in. in diameter and 2 ft. long is designed to 
float half above the plane of separation of two liquids which have specific 

gravities of 1.25 and 1.05. What is the weight of the body? 
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67. A box 4 it. square by (’> ft. long outside has sides and one end 6 in. 
thick. It is submerged in wate^r with the open end down, tlie closed end 
flush with the water surface, and it is half filled with air. What, is the static 
lift on the box? 

68. A body weighing 50 lb. per cu. ft. floats in water having a specific 
gravity of 1.04. If the volume above water is 10 cu. ft., what is the total 
volume? 

\ 

I 1 
1 f 1 
V w >/ 

i(i. 37.—Stable eqiiilib- 
riuin. Center of Rravity be¬ 
low center of buoyancy. 

29. Equilibrium of Floating Bodies. 
In discussing flotation or equilibrium 

the word displacement will be used 

not only in the previously employed 

sense to indicate weight of displaced 

liquid but also in the sense of change 

of position. Thus linear displacement 

and angular or rotational displaceimuit 

will designate change of position effected by linear or rotational 

movement from the })osition of equilibrium. 

A floating body in equilibrium is supported by a static lift 

which is equal, opposite to and in the same line of action as its 

weight. The equilibrium of the body is said to ])e stable if any 

change from its position, however small, is a(H*ompanied by the 

introduction of torches or moments tending to return it to its 

original position. The equilibrium will always be stable if the 

center of gravity of the floating body is lower than the center of 

buoyancy, as illustrated by Fig. 37. In order for the relationship 

between center of gravity and center 

of buoyancy shown by this figure to 

exist, it is necessary that the body be 

weighted or otherwise nonhomogeneous. 

It will remain in the position shown 

unless it is rotated by additional forces 

into another position of stable equilib¬ 

rium and it will always recover from 

any slight linear or rotational displacement because such a 

displacement immediately introduces an unbalanced force or a 

stabilizing inorpent. 

A homogeneous cylinder or sphere having the center of gravity 

on its geometrical axis will float in a condition of neutral equilib¬ 

rium, as shown in Fig. 38. It will remain in any given position 

unless displaced and will not recover from any rotational displace¬ 

ment. This may be seen by noting that the buoyant force Ls 

Fb=wV-W 

Fio. 38.—Neutral equilibriuni. 
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the vector sum of the pressure forces, all of which are radial and 

therefore pass through the (‘enter of gravity. This being true, 

these forces, including weight, are concurrent, and the sum of 

the moments of all forces is zero. There can be neither a stabiliz¬ 

ing nor an overturning couple and the equilibrium is said to be 

neutral. 

30. Metacenter and Metacentric Height.—Stable equilib¬ 

rium of floating bodies is not limited to cases in which the center 

of gravity is below the center of buoyancy. There are other 

stable conditions which are more readily studied by introducing 

the notion of metacenter and metacentric height. 

Figure 39a represents one cross section of a floating body with 

the center of gravity and center of buoyanc'y of the entire body 

at G and B, respectively. Although the center of gravity is 

above i?, the equilibrium is stable if any rotation of the body 

from the position shown is accompanied by the introduction of 

forces tending to restore it to its original position with the axis 

vertical. If the body is rotated through a small angle to the 

position shown in Fig. 396, the displacement is reduced by an 

amount AFb on the left and increased by a like amount on the 

right. As a result of this change in shape of the displacement, 

the buoyant force is shifted to a new center of buoyancy, 5i, 

and it then intersects the extension of line GB at point M, For 

very small angular displacements point M is the metacenter of 

the floating body. When the metacenter lies above G, the weight 

W and the equal and opposite static lift Fb are in such relative 

positions that they constitute a couple tending to turn the body 

back to its position of equilibrium. If G is above Af, there is no 
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righting couple and the force system is unstable. Then point M 
represents the limit above whi(‘h G must not go, hence the term 

metacenter, which means limit center. Strictly speaking, it is 

the center of curvature of the path traversed by B at the instant 
the body starts to rotate. 

The moment of the righting couple is Wr, For small angles of 

heel the position of M (ihanges very little, the distance m = MG 
is nearly constant and the 

righting couple may be written 

T = Wind (3) 

from which it is seen that the 

restoring moment is proportional 

to m. The metacentric height 

is then a measure of the stability 

and for that reason it is a very 

important property of a boat or 

any floating structure. 

Example.—A scow having a uni¬ 
form cross section 18 ft. wide has a 
draft of 4 ft. and its center of gravity 

is 5.5 ft. above the bottom. It is 

tipped to the position in the figure. 
Find the distance MG and the mo¬ 

ment arm of the righting couple. 
Solution,—The new center of buoy¬ 

ancy, Bi, is the cemtroid of the trape¬ 
zoid defg. This is found to be 2.04 ft. from the bottom and 0.75 ft. from 

the axis of symmetry. The distance Gy — 5.50 — 2.04 = 3.46 ft. From 

similarity of triangles hod and BiyM^ My/Bvy = hojhd and 

Mp - 9 X 0.75 = 6.75 ft. 

Then 
MG = 6.75 - 3.46 = 3.29 ft. 

The angle 0 — tan"^ }'i = 6°20'. The perpendicular distance between 

W and the buoyant force is 

Gq = MG sin 0 - 3.29 X 0.1103 = 0.363 ft. 

Problem 69. A square timber 6 ft. long and 12 in. square floats with 11 in. 

submerged and the sides vertical. If it is tipped so that one edge is in the 

water surface, what are the metacentric height and the righting couple? 

31. Computation of Metacentric Height.—In dealing with a 

floating body such as a ship, the cross section varies from place 
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to place along the longitudinal axis in such a way that the posi¬ 

tions of Bi and M are not readily computed. Figure 40 shows a 

section and the water line of such a body whose longitudinal 

axis is ZZi and whose cross section at the center of gravity is 

DEFHy the original water line on this section being LJ. It is 

displaced by rotation through a very small angle By the new water 

line being KN and the water surface KZNZi, 

Fig. 40.—Computation of metacentric height. 

In undergoing an angular displacement By the buoyant force 

has been changed by the addition of a wedge of displacement 

NJZZi on the right and the loss of another wedge of displacement 

KLZZi on the left. These wedges must be of exactly the same 

volume and it can be demonstrated that the line of intersection 

of the old and new water surfaces contains the center of gravity 

of the water plane for any shape of body when angle 6 is small. 

Owing to the change in form of the volume of water displaced 
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by the body, the Inioyaiit for(^e Is shifted from the original 

position, to i^], the new center of buoyancy. In finding the 

position of Bi it is convenient to form a notion of the new force 

Fb acting through Bi as consisting of : 

a. The original buoyant force Fb. 
b. An increment of upward force AF equal to the displacement 

of wedge NJZZi, acting at a distance X/2 to the right of ZZi. 
c. A decrement of upward force AF equal to the displacement 

of wedge KLZZij acting at the same distance to the left of ZZi. 
Using this notion, it follows that 

Fb' == Fb + AF - AF 

or, in words, that the resultant is the sum of parts. Setting the 

sum of the moments of the forceps in the second member equal to 

the moment of their resultant Fb' and adopting point B as the 

center of moments, 

Fb'{1) = n(0) + {AF)X 

from which it is seen that the center of buoyancy has been 

shifted from B to Bi through a distance 

(4) 
r B T b 

The wedges of displacement form a couple of moment {AF)Xy 
which can be reduced to more convenient terms by considering 

the wedges to be made up of elements of volume such as dV. 
The length of the element is xB and the horizontal section is dA 
so that its displacement in units of force becomes 

dF = w dV = wxd dA 

and the moment of the element of force about axis ZZi is x dF. 
Then the sum of the moments of all such forces over the entire 

water section, KZNZij about axis ZZi or any parallel axis, is 

^xdF = wjxdV = wBfx-dA = wBl (5) 

in which I is the moment of inertia of the entire water section 

of the body about axis ZZi. By substituting this expression for 

the moment of the couple in Eq. (4) 

(AF)X _ wBl _ BI 

^ ^ ~ Fb ^ U 
(6) 
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From the geometry of Fig. 40, I = 6MB and it follows that 

MB = I (7) 

In words, this equation states that the distance MB for a small 

angular displacement is equal to the moment of inertia of the 

water section of the body divided by the volume below the water 

section. The metacentric height of a body for small angles of 

heel is then 

m = ~ ~ GB or m ~ + (JB (8) 

depending upon whether the center of gravity is, respectively, 

above or below B. If the body is wall-sided, that is, with 

fairly vertical sides, the metacentric height is nearly constant for 

angles up to several degrees. It appears that m will be smallest 

for the smallest possible value of /, that is, when I is taken about 

the axis of minimum moment of inertia, and that the body will 

be least stable against rotation about that axis. It is also 

apparent that the body is most stable, that is, it has the maximum 

metacentric height, when rotation is considered to be about the 

axis through the centroid of the water section for which I is 

maximum. 

When the metacentric height as obtained from Eq. (8) is 

negative, that is, when M is below (/, there is no righting couple, 

but on the contrary an overturning one, and the equilibrium is 

unstable. 

32. Floating Vessel Containing Liquid.—In the previous 

article it was shown in Eq. (6) that when a floating body is rotated 

through a small angle 6 the center of buoyancy is moved trans¬ 

versely through a distance I = ~ 'y' case of a float¬ 

ing vessel containing liquid with a free surface (Fig. 41), it can be 

shown by a method paralleling that used in the last article that 

the center of gravity G of the load is shifted transversely through 

a horizontal distance 

_ w^er 
^ wV (9) 
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in which is the specific weight of the liquid in the vessel and 

r is the moment of inertia of the free surface within the vessel 

about the axis through 0' normal to the cross section shown. 

Under these conditions the righting couple consists of a vertical 

force W = wV acting downward through Gi and H and an equal 

upward force acting through Bi. The distance between the 

forces constituting the couple is reduced by the distance q so 

that the new arm r' is 

r' = r — q 

and the effective metacentric height is reduced from MG by 

the distance TJG = q/6 = w'ffwV. The new metacentric 

height m' is then m' = MH = r'/O and for the case illustrated 

m'==MH=^MB--W--GE 

or 

V w V 

A comparison of Eqs. (10) and (8) shows that the presence of a 

free liquid surface impairs the metacentric height by the amount 

of w'l'IwV. The stability is reduced by a corresponding 

amount. The effect of the shifting load can be decreased by 

dividing the vessel with bulkheads and thereby decreasing I', 
in which case 7' becomes the sum of the moments of inertia of 

all the free surfaces about their respective axes. 
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Example.—A scow 60 ft. long has a uniform cross section 18 ft, wide and 

draws 4 ft. of water. The center of gravity is 5.5 ft. above the bottom. 
Find the metacentric height and check against the distance MG as found in 

the example on page 51. 
Solution.—The horizontal section at the water surface is a rectangle 18 ft. 

by 60 ft. Its moment of inertia about 

\M the longitudinal axis through O is 

I = ^ ^ = 29,160 ft.‘ 

and the volume of water displac.ed is 

K = 60 X 18 X 4 = 4320 cu. ft. 

From Eq. (8) the metacentric height is 

This is to be compared with MG — 3.29 ft. as obtained for the same scow 

by another method in the last example. It appears that the difference is 
only about 0.04 ft. when the angle of heel is 6 deg. 

Problem 70. A limber b ft. square and I ft. long is assumed to float in 

water with the sides vertical. Compute the metacentric height when (a) 

specific gravity is 0.16, (6) specific gravity is 0.5, (c) specific gravity is 0.84. 
71. A caisson in the form of a cylinder closed at the bottom floats in 

water with the axis vertical. It is 24 ft. in diameter and floats with 18 ft. 

submerged. The center of gravity is on the axis and 7 ft. above the bot tom. 
Compute the metacentric height. What is the limiting height of the center 
of gravity above the base for stability? 

72. If the caisson has walls 2 ft. thick and there is 2 ft. of water inside, 
compute the metacentric height, other conditions 
being the same as in Prob. 71. 

33. Immersed Bodies.—In order for a body 

completely immersed in any static fluid to be 

in stable equilibrium, the usual conditions for 

stable vertical equilibrium must exist and 

the metacentric height must be positive in 

sign. The metacenter when immersion is 

complete is at the center of buoyancy B 42.—Submerged 

(Fig. 42), which for homogeneous fluids is the 

center of the volume of displacement. The metacentric height 

MG can then be positive in sign only when the center of gravity 

G is below B, If a rigid body in an absolutely incompressible 

liquid is in equilibrium at any depth, it will also be in equilib¬ 

rium at all other depths. When the body is nonrigid or is of 
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varying displacement and when the medium in which it is 

immersed is of varying density^ complicating factors are 

introduced. 

The gas-filled balloon, Fig. 43, is an example of a nonrigid body 

in a compressible medium. It is usually permissible to consider 

the density of botli the air and gas as constant throughout the 

height of the balloon, the variation being only a fraction of 1 per 

cent. It is never permissible to consider the pressure as constant 

through the height because, as heretofore explained, buoyant 

force is due entirely to pressure differ¬ 

ence, and to eliminate that difference T 

would be to eliminate completely all i 

buoyancy or static lift. Conditions for j 

equilibrium of a balloon are identical ^ 
with those for a body submerged in 

liquid. For vertical stability the total 

displacement of air must equal the total 

weight of the balloon including its load 

and the gas with which it is inflated. 

Let Wa and W(j be the specific weights at a 

pressure of 1 atmosj)here of air and gas, Fig. 43.—Equilibrium of a 

respectively, and let W be the total balloon, 

weight of balloon and load. Then, when the balloon is inflated 

to its full volume F, it is just in equilibrium if 

WaV = IF + w^,y or W = {wa ~ Wa)V (11) 

in which the expression — W(f)V is the net static lift on the 

bag and the relatively very small lift on other parts is neglected. 

If this quantity is greater than IF, the balloon is subjected to a 

resultant upward force of 

R = (wa — Wg)V — W (12) 

If the bag were entirely closed, the gas would tend to expand 

as the external pressure decreased with altitude and would 

eventually rupture the bag. With the appendix open at the 

bottom, the gas can escape as the balloon rises, and the internal 

and external pressures are just balanced at the open end and 

approximately so throughout. Letting the new specific weights 

of air and gas at any altitude be w/ and w/, respectively, with 
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the volume of the bag remaining practically constant, the 

resultant force at any altitude is 

R = {wj - wJ)V -W=^L-W (13) 

If the temperatures outside and inside of the bag are equal, the 

specific weights of gas and air are in the same ratio at all alti¬ 

tudes, that is, W(j/Wa = Wg IwJ. By writing the equation for net 

static lift on the bag in the form 

L = {wj - w,')V = (l - (14) 

it can be seen that L in this equation and in Eq. (13) is propor¬ 

tional to iVa'Vy the weight of air displaced, for the condition of 

equal temperature for gas and air. 

The external pressure and internal pressure being equal at the 

open end of the appendix, there will be an excess of internal 

pressure at all higher points, the excess being greatest at the 

summit where the valve is placed. The resultant static lift 

may then be adjusted either by discharging gas through the 

valve or by throwing out ballast. 

If the pressure at point N is pi and the density is taken to be 

constant throughout the vertical distance ?/, the external pres¬ 

sure at M is 

Pm (external) = pi — wj]! 

and the internal pressure is 

Pm (internal) = pi — w^y 

The difference between the external and the internal pressures, 

that is, the effective pressure on the surface of the bag at M, is 

p' = (Pi - w)/^) - (pi - wjy) = {wj - Wg')y (15) 

As long as this is positive in sign, the bag is taut, but when it 

becomes negative, that is, when internal pressure in places is less 

than external pressure, the bag will become slack and the equa¬ 

tions of this article are not applicable. 

General Problems 

78. A piece of wood weighs 4 lb. in air and a piece of lead weighs 4 lb. in 

water. The lead and wood together weigh 3 lb. in water. What is the 

specific gravity of the wood? 
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74. A pole 24 ft. long and 4 in. square has a specific gravity of 0.5. One 
end is in water and the other is suspended by a string which holds it 6 ft. 
above the surface. Find (a) the length of pole submerged, {h) the pull on 

the string and its direct ion. 

75. A piece of timber having width h 
and depth a has a specific gravity of 
0.5. What minimum ratio, 6/tt, will 

allow it to float in water with the sides 

vortical? 
76. Figure 44 shows a thin-walled 

inverted box 5 ft. long and 1 ft. square, 
which was full of air before i?nmersion. 
It is held in water in position (1) by 1 
cu. ft. of concrete weighing 150 lb. 

Compute di. At what other depth, 
is the system in equilibrium. Is this a 

case of stable equilibrium? 
77. The solid timber raft shown in 

Fig. 45 floats half submerged when it 
has no load. Find {a) the position of 

the new water line on end CDEF if a 
load of 624 lb. is placed at the; center of the raft, (h) the position of the new 

water line on end CDEF if a (*lockwise couple of 5616 ft.lb. in plane AECD is 
exerted on the raft with no other load, (c) the position of the new water line 

if a load of 624 lb. is placed at the middle of CF. 

Fm. 45. 

Fro. 44. 

78. The raft in Fig. 45 is half submerged and is hinged along edge B. 
If the water rises 2 in., where is the water line on CDEF? With the water 
as shown, what load at the mid{)oint of CF will just submerge this edge? 

79. A stick of timber weighing 40 lb. per cu. ft. is 20 ft. long and 1 ft. 
square. It would normally float on 

Fio. 46. 

merged in sea water (64 lb. per cu. ft. 
81. The spherical buoy of Fig. 46 

in fresh water by an anchor attached 

its side. How many steel plates 1 ft. 

square, H in. thick and weighing 10 
lb. each must be added to one end to 
make the timber float with the axis 

vertical? 
80. A submarine of 1200 tons dis¬ 

placement has its center of gravity 1 

ft. below its center of volume. What 
is the righting couple when it is sub- 

) ahd the angle of heel is 5 deg.? 
weighs 600 lb. It is held submerged 
at B. What is the righting couple on 
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In what position is the buoy when the axis i4jB is turned through 20 deg.? 

axis AB if the anchor line is attached at C? 
82. A stick of timber 6 in. square and 24 ft. long weighs 22.4 lb. per cu. ft. 

Find the amount and direction of the force at one end 

to submerge 20 ft. of the timber in water. What is the 

position of the timber? 
83. A log 1 ft. in diameter weighs 31.2 lb. per cu. ft. 

What is the shortest length that will float in water with 

the axis horizontal? 

84. The gate, a cross section of which is shown in Fig. 
47, closes an opening 5 ft. by 6 ft. The gate weighs 1200 

lb., the center of gravity being 1 ft. from AB and BC, 
Compute the reactions at the hinge A and at B, assuming 
the latter to be horizontal. 

86. Figure 48 shows a section through a cylindrical float. What load on 
the top will make it flush with the water surface? 

86. A scow 20 ft. wide by 80 ft. long has a draft of 8 ft. The center of 
gravity is 5 ft. above the bottom. What is yr 

the metacentric height? Through what 
distance does the water line rise on the side if 

a 10-ton weight is shifted 15 ft. across the I | ^ 
scow? * 

87. A homogeneous cylindrical float, 8 

Fio. 47. 

A / r 1™ 

*.to'-.4 

r 

Fig. 48. Fi(i. 4W. 

ft. long and 1 ft. in diameter, floats half submerged. What is the longi¬ 
tudinal metacentric height? 
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88. In Fig. 49 a gate 4 ft. square and 1 ft. thick is hinged at A. It is 
subjected to water pressure on both sides. What force 7’ is required to 
open the gate if it weighs 400 lb.? 

89. A solid float 1 ft. deep, 3 ft. wide and 8 ft. long floats with 2 in. in 
water and 6 in. in oil (specific gravity 0.8). What is the specific weight of the 
float? Is it more stable or less stable than it would be when floating in 
water? 

90. The timber AB oi Fig. 50 is 0 in. by 6 in. Find the specific weight of 
the tim])er and the total weight of the anchor if it weighs 150 lb. per cu. ft. 

91. A balloon of 50,000 cu. ft. displacement is filled with hydrogen, which 
under the same conditions as standard air has a specific weight of 0.0069 lb. 
per cu. ft. Assuming the volume of the balloon to Ixi constant, (‘onipute the 
static lift after ascending to an altitude of 10,000 ft. in standard air. 



CHAPTER IV 

ACCELERATED LIQUIDS IN RELATIVE EQUILIBRIUM 

34. Forces on Fluids in Uniform Acceleration.—A .static* fluid 
has been previously defined as a body of fluid at rest or moving 
bodily at a uniform velocity. If a container of fluid is given a 
constant acceleration, the fluid, after adjusting its position or 
pressure distribution or both, comes to rest relative to the 

Fig. 51.-—Liquid with uniform linear aeceleration. 

container and is said to be in a condition of relative equilibrium. 
It is then being accelerated as a body of constant form, and here, 
just as in static fluids, the body must be entirely free of any shear 
stress. 

Figure 51 shows a vessel containing liquid which has a uniform 
acceleration of a toward the right. Considering a particle of 
fluid at J5, it is found to be subject to two real forces, namely, 
the pressure force P of the surrounding liquid and the weight W 
of the particle. Since there is no shear force, P must be normal 
to the free surface. Following D^Alembert^s principle, an imagi- 

W 
nary force —a, called the reversed effective force or inertia force, 

may be added to the system, after which the system of three 
62 
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forces must obey the ordinary laws of statics. Applying the 

equations = 0 and ^Fy = 0, it is found that 

W tan 0 — -5^ or tan d = - (1) 
g g 

From this equation the slope, tr.n B, of the surface in relative 

equilibrium is seen to ])e the ratio of tlie horizontal acceleration 

to the ac^celeration of gravity. 

When the acceleration is horizontal the vertical forces are the 

same as in a static liquid. Thus the pressure at distance h below 

the free surface is that required to support the weight of a vertical 

column of licjuid ajid p — ivh as in static fluids, the pressure being 

constant in a plane parallel to the free surface. 

Equation (1) may be verified by applying Alembert^s 

principle to a horizontal prism MN having one end at the free 

surface and the other at a distance h below the surface. The 

length being I and the cross section dAy the weight is wl dA and 

the reversed effective force is —~—a. Applying the equation of 

statics ^Fx = 0, 

whence 

p dA = wh dA — 
ivl dA 
-a 

g 

h 
I 

- = tan B 
g 

wdiich confirms Eq. (1). 

36. Relative Equilibrium of Rotating Fluids.—If a container 

of liquid is rotated about its vertical axis, the motion is trans¬ 

mitted by shear stress to the liquid, which after a short time has 

the same angular velocity throughout as the container and is in 

equilibrium relative to it. The free surface is now curved in the 

form shown in Fig. 52. The principles used in the last article 

may be employed to study the form of the surface and the forces 

involved. 
Any particle such as B, with an angular velocity cu about the 

axis OY and at a distance x therefrom, has a normal or centrip¬ 

etal acceleration of This acceleration and the effective 

force causing it always act toward the axis of rotation, and the 
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reversed effective force —acts away from the axis. FoUow- 
Q 

ing D^Alembert’s principle, this force and the real forces of 

pressure P normal to the surface and W acting vertically are 

y 

placed on the particle. The laws of statics may now be applied 

to the particle and from SFx = 0 and = 0 

W 
W tan 6 = —o)^x 

g 

in which B represents the inclination of the surface as shown in 

Fig. 526. Then 

tan B = 
0)^X 

g 
(2) 

whence, by integration, the constant of integration being found 

to be zero from conditions at 0, 

2g 
or y = w (3) 
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This is the equation of a parabola DOF with axis vertical and 

the origin of coordinates at 0 and the surface generated by its 

revolution is a paraboloid. It can be shown that the volume 

between the paraboloid and a horizontal plane through DF is 

one-half the volume of a circumscribed cylinder of diameter DF 
and height OE] the static free surface GHI is therefore midway 

between 0 and E, 
It is noteworthy that, by letting the velocity of a rotating 

jmrticle at radius x be V ~ ojXj Eq. (3) may be written y — V^I2g. 
The expression V‘^/2g occurs v(iry frequently in hydraulics, 

where it is known as velo(dty head. 

Because the acceleration is horizontal in direction, the vertical 

forces on any free body taken from the rotating liquid are the 

same as for static conditions. The pressure at the bottom of 

prism MN is then wh and any surface of equal pressure is a 

paraboloid parallel to the free surface. If the container holds 

two liquids having a surface of separation, that surface becomes 

a paraboloid parallel to the free surface. 

Equation (3) may also be obtained by applying D^Alembert\s 

principle to a free body of the rotating liquid in the form of a 

radial prism of length dx and cross section dAy Fig. 52c. The 

pressure force on the inner end is then p dA and that on the 

outer end is (p + dp)dA; the reversed effective force is mass 

. . UU IJfyU/ 1 

times acceleration or —and, letting SF, = 0, 
g 

w dx dA 
(4) {p + dp)dA — p dA =- 

9 

dp = —o)‘^x dx = wdy 
9 

(5) 

By integration 

co^X^ 
(6) 

which verifies Eq. (3) above. 
Equations (4) and (5) are adaptable to the case of a gas rotat¬ 

ing uniformly with its container. The horizontal prism of 

Fig. 52c may well be a free body of gas and Eq. (4) is correct as 

before. The specific weight is dependent upon the pressure p 
and at a given temperature p = Cw from Eq. (1) of Chap. I. 

Substituting w pIC in Eq. (5), 
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(7) 
V Cg 

Integrating this equation from pressure po at the axis to p on the 

same level at any radius x, 

V = (8) 

36. Hydrostatic Accelerometer.—A simple device for measur¬ 

ing accelerations which is based on the principles of relative 

equilibrium consists of a U-tube, Fig. 53, in which the difference 

in level of the two legs indi(‘ates the acceleration of the tube. 

a 

Fig. 53.—Hydrostatic accelerometer. 

The liquid in the horizontal portion of the tube may be taken 

jis a free body of length I and cross section A with pressure forces 

on each end. A reversed effective force equal to mass times 

acceleration is placed at the center of gravity and, applying 

D’Alembert^s principle, 

. . wlA 
PiA — p^A =-a 

g 

Canceling A and expressing p in terms of head, 

Then 

whi — whz — wl~ — wy 

y a 
f = - = tan B or 
I g 

(9) 
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The reading of the instrument Ls seen to be the same for all 

liquids. The pressure head at any point B is the distance h 
measured from B to the pressure grade line CD. If a piezometer 

tube were inserted anywhere in the U-tube, the liquid would 

rise in it to line CD. In more complicated instruments various 

combinations of liquids and reservoirs may 

be used to magnify the readings. 

If the U-tube shown in Fig. 54 is rotated 

about axis Oy through one of the legs, the 

pressure grade line takes the form of a 

parabola, the equation of which is ?/ = 

02VI2g, Eq. (3). This can be seen by 

referring to Eqs. (5) and (6) or by using a 

horizontal prism of unit cross section and •'‘>4-—Rotating IT- 

length O’ as a free body; with the reversed 

effective force at the center of its length equal to mass times 

acceleration of the centt'r, it appt^ars that 

and 

WX 

vi- V2 = —-Y ^ 

^ ~ 2g 2g 

(10) 

If a U-tube is rotated about a vertical centroidal axis, the liquid 

I does not change its position in the tube. 

Tiie pressure gradient is a parabola ABC 
of Fig. 55 and, if the speed exceeds that 

at whi(*h the pressure at D becomes zero 

absolute, tlie column will break and a 

cavity will be formed at D. 

G_^ 

// 
/ ^ 

/ ' 

b" 1 

1 ^ 

b Example.—A tank of water 5 ft. deep 
Fig. 56. U-tube rotating allowed to fall vertically with an acceleration of 

about its central axis. 1 rx <> wri. x • xu xu 
16.1 ft. per sec.What is the pressure on the 

bottom of the tank? At what acceleration is the pressure reduced to zero 
gage? What maximum acceleration can the tank have if the water is to 
remain in contact with the bottom? 

Solution.—Consider a prism of water of horizontal cross section A extend¬ 
ing to a depth d where the absolut.e pressure is 71. The forces are then p^A 
on the top, pA on the bottom and a weight equal to wAd. Adding the 

reversed effective force, —and writing = 0, 
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\PaA 

_L_1 
A "^1 

wAda j 
9 1 

1 d 
wAd- J 

i 

j 
_ 

pA — paA — wAd -f wAd - 0 
9 

and 

p = Pa H- wd(^\ — 

Substituting d = 5 and a = 16.1, the pressure is 

p =2116+62.4 X 5(1 -gi) 

= 2272 Ib./sq. ft. abs. 

From inspection of the equation it is seen that the pressure is po al)sohite 
or pjero gage throughout when a ~ that is, when the tank falls freely. 

If the tank is given such an acceleration that the pressure at tlie bottom 

is zero absolute, the water starts to break away from the bottom and a 
space or cavity is formed. This is a simple case of the phenomenon known 
as cavitation. Setting p ~ 0 in the equation and solving for a, 

and 

0 — pa wd(^l — 

“ = ‘'te + 0 " ^ 0 
In this case, 

« = g{^H + 1) = 7.8^ = 251 ft./sec.2 

37. Flotation in Accelerated Liquids.—In Chap. Ill it was 

pointed out that buoyant force or static lift is produced by and 

equal to the excess of upward pressure of the fluid on the body. 

The parabolic pressure grade line existing in rotating fluids sug¬ 

gests that there are cases in which the downward pressure force 

on a submerged body may exceed the upward, with an apparent 

reversal of direction of buoyancy. Such a case is illustrated 

by Fig. 56. 

Let A BCD be a tube closed at A and D and open only at E, 
The pressure at E being atmospheric, the pressure gradient 

during rotation is represented by the parabola PEG. Considera¬ 

tion will now be given to the pressure on a prism of liquid of 

length ds along the tube and cross section dA normal to it, lying 

at a distance x from the axis. Considering the equilibrium of 

this body along the axis of the prism to be affected only by forces 

having components parallel thereto, the forces involved are 

p dA an the lower end, a larger pressure force (p + dp)dA on the 
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upper end, the weight W = w ds dA and the reversed effective 
Wo)^x w ds dA „ . 

torce —~ -Taking components of these forces 

parallel to the tube, tlie equation of equilibrium is 

(p + dp)dA — p dA — —(‘OS a — w ds dA sin a (Tl) 

and 

dp Ip dA — w( cos a — sin a] 
\ 9 / 

(12) 

dp = ~~ c^dx (13) 

By noting that o^^x/g is the slope of the tangent to the parabola, 

Eq. (13) could have been written directly. When tan a, the 

/w^x \ 
slope of the tube, is less than the term I-tan ay is 

positive and the downward or inward pressure exceeds the pres¬ 

sure on the inner end of the prism. 

It is now assumed that the prism used in developing Eqs. (12) 

and (13) is replaced by a new body of specific weight wi and total 

weight Wi. The forces acting on it are a pressure force parallel 

to the tube which is the same as dp dA from Eq. (12), the reversed 

effective force Wi o)^x/g and the weight TTi. These forces have a 
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resultant R along the tube which will be taken as positive in the 

downward direction and which is 

R 

from which 

or 

\ WlO) 
= n I — cos a — sin a J- 

\ g / 9 

R = (W - cos a - sin 

B = {W - - tan cos a 

COS a + Wi sin a 

(14) 

(15) 

With TF > TFi and tan a < oP'x/gy R is imsitive and the light 

body will therefore travel down the tube. It will come to 

equilibrium again if it reaches a place where tan a ~ co'^xlQy 
that is, a place where the tube and the tangent to the parabola 

are parallel. The force R is reversed if IkT > TF. If the tube is 

horizontal, an object lighter than the liquid always comes to the 

axis of rotation and a heavier object always moves away from 

the axis.^ 

It follows from the above that any homogeneous object placed 

in the rotating liquid of Fig. 52 will move to point 0 if it is lighter 

than the liquid and to the outside of the bottom if it is heavier. 

If its center of gravity is below the center of gravity of the 

displacement, a floating body will move to the level DF. 

General Problems 

92. The tank of water in Fig. 57 is given a uniform aceoleration of 

8.05 ft./sec.2 toward the right. How deep is the water along AB? What is 

the pressure force on end i4B if it is 18 in. 
wide? 

93. The tank of water in Fig. 57 is given 
a downward acceleration of 16.1 ft./sec.^ 

What is the pressure in pounds per square 
foot on the bottom? 

94. The cylindrical tank of Fig. 58 is half 
full of water and is rotated about its vertical 

axis. What speed of rotation will cause the water to reach the top? What 

will then be the maximum pressure in the tank? If the water is 3 ft. deep 

at the sides, what is the speed and how deep is it at the center? 

^This analysis follows that by G. M. Minchin, Treatise on Hydro¬ 

statics,^' Vol. I, p. 91, Clarendon Press, Oxford, 1912. 

C 

% 
Ch 

_i. 

.-> 
D 

Fto. 57. 
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96. The tank of Fig. 68 is half full of oil, specific gravity, 0.75. What 

speed of rotation is necessary to expose one-half of the bottom diameter? 
How much oil is lost in attaining this speed? 

Fjg. 58. Fig. 59.—Open U-tube of uniform 

diameter containing mercury. 

06. The H-tubo of Fig. 59 is given a uniform accc^leration of 4.02 ft./sec.^ 

toward the right. What is the depth in AB and the pressure at B, G and i)? 

97. Th() U-tube of Fig. 59 is rotated around HG so that the velocity of B 

is 10 ft. per sec. What is the pressure at B and (r? 
98. The U-tube of Fig. 59 is rotated about IIG. At what angular velocity 

do(;s the pressure at G become zero gage? What angular velocity is required 

to produce a cavity at U? 

99. At what speed must the U-tube of Fig. 59 be rotated about AB to 
empty leg AB? What is then the 

pressure at G and /)? 

100. The U-tube of Fig. 69 is 

rotated about EF at such a speed 
that AB is (unpty. What is the 

angular velocity? 
101. The tube of Fig. 60, contain¬ 

ing mercury, rotates about AB. 
Compute the angular velocity (a) to 

make the pressure at A zero gage, 
(5) to form a cavity at A, (c) to empty AB. 

102. A tank of water is given an acceleration of 5 ft./sec.^ parallel to and 
down a plane which makes an angle of 30 deg. with the horizontal. What is 

the angular position of the surface? What is the pressure at a point 4 ft. 

below the surface? 
103. The tank of Fig. 58 has a cover with a small hole at the center. If it 

is full of water and has an angular velocity of 8 rad. per sec., what is the 

pressure at B and A? 
104. The tank* of Fig. 58 contains 2 ft. of water c.overed by 1 ft. of oil 

(spe.cific gravity, 0.75). What speed of rotation will cause the oil to reach 

B? What is then the pressure at A? 
106. The tube of water in Fig. 61 is rotated about axis AB. What 

angular velocity is required to make the pressures at B and C equal? At 

that speed what and where is the minimum pressure in tube BC? 
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106. In Fig. 66 the distance BC = 12 in. and a = 46 deg. What mini¬ 

mum angular velocity will cause a light particle m CD to move to tube 
107. In Fig. 62 the lower vertical tube is 0.4 in. in diameter and contains 

mercury; the upper tube is O.'J in. in diameter and contains oil (specific 

Fkj. 62. 

gravity, 0.8). The reservoir is large in area as compared with the tubes. 

What acceleration is required to produce the conditions shown in the 

r\gure? 



CHAPTER V 

DYNAMICS OF FLUIDS 

38. Forces in Fluids in Motion.—In studying the flow of 
fluids there are in general five types of forces which must be 
considered. They are: 

1. External forces such as those produced by gravity. 
2. Forces caused by difference in pressure at various points. 
3. Inertia forces represented by the product of mass and 

acceleration of fluid particles. 

4. Forces due to viscosity, that is, shearing forces set up 
between adjacent particles of moving fluid. 

5. Elastic forces due to compressibility of gases. 
The first two of these types are involved in hydrostatics, 

the first four are present in flowing liquids, and all five types 
must be considered when dealing with flowing gas. 

For the present, however, consideration will be given to a 
so-called ideal fluid which is assumed to be nonviscous and 
incompressible. The first assumption seems to be fairly justi¬ 
fiable for such fluids as water and air which, as has been pointed 
out in Chap. I, are relatively low in viscosity, while the hypothe¬ 
sis of an incompressible fluid ap})ears to be reasonable for water 
but not for gases. However, the general procedure to be followed 
in studying the dynamics of fluids will be first to discuss the 
important characteristics of an ideal fluid and then to introduce 
the effects of viscosity and compressibility as qualifying factors. 

39. Streamlines. Steady and Unsteady Motion.—In fluid 
motion, it is sometimes possible to draw lines through the fluid 
so situated that at any point the velocity vector is the tangent 
to the line which passes through that point, as shown in Fig. 63. 
These lines, which in general are curves in three dimensions, are 

known as streamlines. 
When the motion is of such a character that the forces, velocity 

and pressure, are independent of the time, and for any given point 
do not change from one instant to the next, the fluid is said to be 

73 
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in a state of steady motion. If at any one point these quantities 
are continually ciianging with time, the flow is called an unsteady 
motion. This distinction in the character of motions of fluids 
may be clarified by means of the concept of the streamline. In 
the case of steady motion, the streamlines remain unchanged in 
shape with time and may be considered as representing the paths 
followed by the fluid particles. If the flow is unsteady, then tlu^ 
streamlines may be considered only as curves drawn instantane¬ 
ously through the fluid, and will be continually changing in 
shape from one instant to the next. In this ease they do not 
represent the paths of the particles. 

The fully developed flow of a current of air past an airplane 
wing or the flow of water from an opening in the bottom of a 
tank, the level in the tank being kept constant, may be con¬ 
sidered as cases of steady motion. In the latter example, if the 
level of the water in the tank were allowed to vary during the 
discharge, the motion would be unsteady. The majority of 
engineering problems in fluid mechanics are concerned with 
flow of the steady type. While unsteady motion is sometimes 
of considerable importance, for the present the assumption of 
steady flow will be added to the other idealizing conditions. 

40. Continuity of Flow.—If a state of steady motion exists in 
a mass of fluid in which there are no cavities, and if a small closed 
curve such as mn of Fig. 64 is considered within the fluid, then 
streamlines drawn through every point of this curve form what is 
known as a stream tube. Since the surface of this tube consists 
entirely of streamlines, there can be no flow of fluid across its 
boundary, and the tube thus has the appearance of a pipe with 
a solid wall, but, in general, with a variable cross section, as 
shown in Fig. 64. Furthermore, if there are no points at which 
fluid is either created or destroyed, then the mass of fluid passing 
any cross section of the tube must be a constant, that is, referring 
to Fig. 64, 
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or for any section 

pAV = constant (1) 

where p represents the density of the fluid, A the area of the cross 
section and V the velocity at that section, while the subscripts 
a and h refer to any two particular sections of the tube. This 
equation represents the simplest general statement of the so- 
called condition of continuity which must be satisfied by most 
types of fluid motion. In the case of an incompressible fluid, 

d 

Va 

Fig. 64.—Flow tlirouKh a stream tube. 

there is no variation in the density p between any two points so 
the equation of continuity may then be written as 

AV = constant (2) 

Strictly speaking, the cross-sectional area of a stn^am tube is an 
infinitesimal, but the condition of continuity may usually bo 
applied to flows through passages of finite area. Thus in the case 
of a pipe, full of water flowing from one end to the other, its inte¬ 
rior may be divided up into a large number of small stream tubes 
and the total quantity of fluid passing any cross section will be 
the sum of the quantities passing through the individual tubes at 
that section. If the areas of the individual tube cross sections 
are represented by AAi^ AA2, . . . AAa:, . . . AAn, and the 
corresponding velocities are Fi, F2, . . . F^;, . . . F„, then the 
total quantity of fluid passing this cross section of the pipe will be 
the limit of the sum of the quantities passing through the ele¬ 
mentary stream tubes as their number is allowed to become 
infinite. From the definition of an integral 

Q = lim XatI.F, =/yrfA (3) 
“ i = 1 

If the velocity is uniform, or if V represents the average veloc¬ 
ity and A the total cross section, then Eq. (3) may be written 

directly as 
Q=‘AV (4) 
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in which form it is known as the discharge equation. With A 
in square feet and V in feet per second, it gives the rate of flow 
or discharge through any cross section of a stream in cubic feet 
per second. 

The mass flowing through any cross section is 

Qm = pAV (5) 

so that the constant of Eq. (1) is Qa/, the mass discharge. With 
A and V in foot and second units and p in slugs per cubic foot, Qm 

is measured in slugs per second. 
The application of Eqs. (4) and (5) to successive cross sections 

of a stream results, respectively, in 

AaVa = Ai^Vt = AV (6) 
and 

PaAaVa = PuA,V, = pA 7 (7) 

These are the commonly used forms of the continuity equation, 
Eq. (7) being especially applicable to compressible fluids. 

The condition of continuity is really a special case of the general 
physical law of the conservation of matter applied to the fluid 
within a stream tube. 

41. Further Applications of Continuity.—The (condition of 
continuity of flow as applied to the stream tubes of a fluid motion 
may be employed to advantage in studying the character of the 
flow around bodies immersed in a stream. This is particularly 
true if the motion is “two dimensional,^^ that is, when the flow 
may be considered as being identical in pattern in any number of 
parallel plane cross sections. The motion of a stream of fluid past 
an indefinitely long cylinder in a direction perpendicular to the 
cylinder generators is an example of this type. In such a case 
the layers of fluid situated between adjacent streamlines, which 
are now plane curves in any one of the above-mentioned cross 
sections, may be considered as stream tubes. As an example, 
the streamlines for the flow of an unlimited mass of fluid around 
the cross section of an airplane wing or vane are shown in Fig. 65. 
The fluid is assumed to have a uniform velocity at a great dis¬ 
tance upstream from the airfoil and the streamlines are chosen so 
that they are uniformly spaced in this region. The quantity of 
fluid passing between any two adjacent streamlines is therefore 
the sajne; furthermore, this quantity must, according to the condi- 
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tion of continuity, remain constant for the entire length of the 
stream tube. Thus in Fig. 65 it will be noted that, while at great 
distances ahead of and behind the airfoil the streamlines are 
uniformly spaced, they crowd together in the region immediately 
above the wing and spread apart below the wing. It may be 
concluded that at points above the wing the fluid has experienced 
an increase in velocity over that ol the undisturbed stream, while 
below the wing the flow has been retarded. 

Fig, 65.—Flow past an airfoil section. 

Example.—Water flows steadily at a rate of 225 g.p.m. from a cylindrical 

tank through the pipe and nozzle shown in the accompanying figure. Deter¬ 

mine the av(‘rage velocities at sections aa and hh and at the end of the 

nozzle. 

Solution,—Since 1 gal. =231 eai. in., the discharge is 

Q = ^^31 = 30,1 CU. ft./min. = 0.502 c.f.s. 
^ 1728 

At section aa, Q = AoFo and, since Aa = ir X 25/4 = 19.6 sq. ft., 

-TO 

g _ 0.502 

A, 0.196 
2.56 ft./sec. 

At section hh 
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At the end of the nozzle 

V ^ Jl == 0.502 
” An 0.049 

10.24 ft./see. 

Problem 108. A circular pipe carrying water converges uniformly from 

an inlet diameter of 3.6 ft. to an outlet diameter of 1.2 ft. in a length of 100 ft. 

If the discharge is 748 g.p.m., determine the velocity at the inlet and at 

points 25 ft. apart along the axis of the pipe. 

109. A circular slack lias a diameter of 50 ft. at its base and converges 

uniformly to a diameter of 35 ft. at a height of 125 ft. Coal gas, having a 

specific weight of 0.025 lb. per cu. ft., enters tlu^ staitk at the bottom. Its 
specific weight increases uniformly until at the top it has a value of 0,035 lb. 

per cu. ft. Calculate the velocity in feet per minute and the discharge in 
cubic feet per minute for every 25 ft. up the stack if the v(4ocity at the top 

is 15 ft. per sec. 

110. The streamlines of the flow past a long cylinder are uniformly 
spaced at distances of 2 in. apart far ahead of the cylinder, the velocuty of 

the stream being 65 ft. per sec. Near the cylinder the streamlines crowd 

together so that the spacings between adjacent lines are 1 in., 1.25 in., and 

1.50 in. What are the average velocities bi^tween these lines? 

42. Energy of Fluids in Motion.—Fluids at rest or in motion 
must conform like all other matter to the law of conservation of 
energy. Energy, which is defined as the ability to do work, 
exists ill several forms in nature. In the case of fluids, the kinetic, 
potential and pressure (‘iiergies are of particular importance. 

Kinetic energy is that energy whi(*h a mass possesses by virtue 
of its motion. A mass W/g having a velocity V has a kinetic 
energy given by the expression 

Kinetic energy == (8) 

In terms of the fundamental units of mass, length and time, 
kinetic energy has the dimension ML^/T^ and, in the English 
or foot-pound-second system, it is measured in foot-pounds. 

Potential energy is that energy which a body possesses by 
virtue of its position above some horizontal datum plane. It 
represents the amount of work that the body is capable of doing 
if it is allowed to descend to the datum plane. This energy is 
equal in magnitude to the amount that must have been expended 
in raising the body to its assigned elevation. Thus for a body 
having a weight W and being located at a distance z above the 
datum plane mn of Fig. 66a, the potential energy is 

Potential energy = Wz (9) 
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As in the case of kinetic energy, this quantity is measured in 
foot-pounds. 

Pressure maintained in a fluid represents a certain ability to do 

work. This may be shown by considering a closed pipe filled 

with liquid under a pressure p. If a tube is connected to the pipe, 

the surface in the tube stands at a height p/ie, as shown in Fig. 666. 

When a particle of liquid is removed from the top of the tube, the 

surface again rises to height p/w if the pressure p is maintained. 

In this manner any quantity could be lifted by the pressure to this 

m V _Reference Plane_ n 
Fig. 66.—Potential energy and pressure energy. 

height. In lifting a total weight W the work done by the pres¬ 

sure is 

Pressure energy ^ (1^) 

Since the expression Wp/iv represents the energy content of a 

weight of fluid equal to IF, the term p/w must therefore be equal 

to the energy per unit weight. In English units, it is measured in 

foot-pounds per pound, that is, 

p _ ilf ^ M _ . 

w L f - 

which checks with the previous result that p/w represents a 

pressure head and therefore has the dimension of a length. 

Referring to Eq. (8) which gives the kinetic energy of weight W 
of fluid, it is seen that the kinetic per unit weight is V^/2g; since 

Y1 k ^ T 

the dimension is a length. The expression V^/2g is commonly 

called the velocity head and is usually measured in feet. It is 
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obvious from Eq. (9) that the potential energy per unit weight, 

relative to the datum, is z. 
It is well to note that all the forms of energy discussed in 

connection with the motion of a fluid are relative, that is, each 

of the quantities represented by the expressions (8), (9) and (10) 

indicates the energy content of a certain weight of fluid referred 

to some arbitrary level or condition. Thus kinetic energy usually 

represents the differtmce in energy content between a particle of 

fluid in motion and one at rest. Potential energy is measured 

with reference to some arbitrarily chosen plane, so that it repre¬ 

sents the difference in energy between a particle above the plane 

and one on it. In the case of pressure energy, the reference point 

is usually the zero on either the absolute or the gage pressure 

scale, depending on the nature of the problem at hand. 

43. Bernoulli’s Theorem.—With a knowledge of the various 

forms of energy that are present in a fluid in motion, the principle 

of conservation of energy may be applied to any flow of the steady 

type. This principle states that the total energy of any mechani¬ 

cal system must remain constant. For a particle of fluid of 

weight W located at a point where the pressure is p, the velocity 

is F, the elevation is 2, the total energy is the sum of its 

kinetic, potential and pressure energies. Thus from Eqs. (8), 

(9) and (10) 

--c ^ ]Yz - constant (11) 
2g w ^ 

Canceling the term W, this becomes 

+ -? + « = H 
2g w (12) 

As explained in the last article, each of the terms on the left of 

Eq. (12) represents energy per pound of fluid and, having the 

dimension of a length, they are called velocity head, pressure 

head and elevation head, respectively. The sum H is called the 

total head. 

If each term of Eq. (12) is multiplied by Wy the weight per 

unit volume, then these terms represent energy per unit volume 

and the equation becomes 

wV^ 

2^ 
+ P + = wH 
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Substituting f>g for this equation takes the form 

^ + p + == pgH — E (13) 

in which E is the total energy per unit volume and is therefore ly 
constant. 

liquations (12) and (13) for the steady motion of an ideal 

fluid were first stated in 1738 by Daniel Bernoulli, a famous 

mathematician. They are known as Bernoulli's theorem and 

H and E are the Bernoulli constants. Whether Be^noulli^s 

theorem is to be used in the form of Eq. (12) or of Eq. (13), 

it is essential that consistent units be employed throughout. 

Thus if the velocity is given in feet per second, the pressure 

should be expressed in pounds per square foot, the density in 

slugs per cubic foot and the elevation in feet. 

Problem 111. A G-in. water pipe (tarries 1200 g.p.m. at a pressure of 
4 lb. per sq. in. What is the Bernoulli constant relative to a datum 10 ft. 
below the pipe? 

112. A stream of water 8 ft. deep flows with a uniform velocity of 12 ft. 

per sec. If elevations are measured from the bottom of the strcjam, what 
are the values of the potential, pressure and kinetic energy per pound and 

the Bernoulli constant for points on the surface, at mid-depth and at the 
bottom of the stream? 

113. A natural wind current has a uniform velocity of 22 m.p.h. Assum¬ 
ing the air to have a constant specific weight of 0.0765 lb. per cu. ft., compute 

the pressure, potential and kinetic energies per unit volume and the Ber¬ 

noulli constant for altitudes of zero and 2000 ft. 
114. A horizontal water pipe reduces gradually from a diameter of 18 in. 

at point A to 6 in. at point B, The flow in the line is 5 c.f.s. and the pressure 

at jB is 10 lb. per sq. in. What is the pressure at A? 
116. A pipe line enlarges from a diameter of 6 in. at A to 12 in. at point B, 

wdiich point is 6 ft. higher than A. The flow of water in the line is 6 c.f.s. 
and the pressure at A is 10 lb. per sq. in. What is the pressure at B? 

116. In Prob. 109, what is the pressure at the base of the stack? 

44. Alternative Proof of Bernoulli’s Theorem.—It should be 

mentioned that Bernoulli’s theorem is true for all points in a body 

of fluid in motion provided the streamlines originate in a region 

where the fluid is at rest or where all particles are moving with the 

same total energy. Under such conditions the total energy of the 

particles moving along any two streamlines is the same and 

the constants H and E have the same values for all points in the 

fluid. If, however, the motion is nonuniform in character at its 
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beginning so that the particles which move along different stream¬ 

lines begin their journeys with different total energy contents, 

then Bernoulli's theorem cannot be applied to points that are not 

on the same streamline. 

This restriction on the application of Bernoulli's theorem may 

be shown more clearly by basing its derivation on a consideration 

of the forces which act on an infinitesimal element of fluid moving 

along a streamline. Let the length of such an element be dl 
measured along the streamline, its cross-sectional area dA and the 

velocity with which it is moving L, as shown in Fig. 67. On the 

left-hand end of the element there is a pressure p, and on the other 

end a larger pressure p + dp, where dp represents the change in 

pressure that occurs in passing from one end of the element to the 

Fig. 67.—Equilibrium of a fluid element. 

other. Thus the net force on the element produced by the pres¬ 

sures is 

(p + dp)dA — p dA ^ dp dA 

Considering an upward displacement to be positive this force, 

being downward in direction, must appear in force equations 

as —dp dA, 
This same convention in regard to the sign of forces will be 

employed in the remainder of this development. The accelera¬ 

tion is assumed to be upward, that is, positive in sign. 

There is also a component of the weight of the element which 

acts in the axial direction. From Fig. 67 it is evident that this 

component is 

— pg dl dA cos 6 

where 6 is the angle between the vertical and the tangent to the 
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streamline at the point where the element is located. But from 
the figure 

dz being the projection of dl on the vertical. The desired com¬ 

ponent of the gravitational force ip then 

dz 
— pg dl dA-jj = — pg dA dz 

If the velocity V is considered as varying from point to point 

along the streamline, that is, V is a function of Z, then the accelera¬ 

tion is the rate of change of the velocity with time, so that 

^ dt dl dt 

But dl/dt is by definition the velocity, so that 

a = = 1 Z!) 
dl 2 dl 

The effective force required to accelerate a mass is the product of 

the mass and the acceleration so that the reversed effective force is 

-pdldA-l-^- = -^dAd(V^) 

Now, according to D’Alembert’s principle, the sum of the applied 

forces and the reversed effective force must be zero, that is, 

— dp dA — pg dA dz — ^ dA d{V^) = 0 

On canceling the area dA and changing signs, this expression 

becomes 

dp + pgdz + ^ d{V^) = 0 (14) 

which is really a differential equation relating the pressure, 

elevation and velocity of the fluid element. The differential 

quantities in the above equation represent the changes in the 

various terms which occur in a distance dl measured along 
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a streamline. The equation may therefore be integrated along 

such a line, giving as the result 

py2 
p + pgz + = constant (15) 

Since the left side is identical with that of Eq. (13), the constant 

of integration may be put equal to E, In general, then, E will 

have different values depending on which streamline is chosen 

for the integration, except when all the streamlines originate 

under the same conditions, in which case E is constant for all 

points in the fluid. 

46. Torricellis Theorem.—Bernoulli's 

equation is applied readily to the proof 

of a theorem that was demonstrated by 

Torricelli in 1644, nearly a century before 

Bernoulli's work. 

The tank of Fig. 68 is filled with liquid 

to a height h above the center of the open¬ 

ing N in its side. It is assumed that the 
Fig. 68.—Velocity of efflux. 

tank is large in comparison with the opening, that the free surface 

and the jet are acted upon by the same atmospheric pressure 

and that the former is maintained at a constant level. The 
7) 

pressure head at M is equal to Hm + “ on the absolute scale, 

and the potential head, taking a refereiuie plane through is 

h — hia. Having assumed that the tank is large in proportion 

to the opening, the velocity head at M may be neglected. Then 

the Bernoulli constant H for point M is 

H-{h. + '^) + ih-h„) = ^ + h 

and the value of H for point N is 

w 

in which V is the velocity at N, Equating these values of it is 

found that 
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This will be recognized as the velocity attained by a body in 

falling freely in a vacuum through a height h. The fact that the 

velocity of efflux and the velocity attained in free fall are equal 

is known as Torricelli’s theorem. 

46. The Siphon.—The action of a siphon may be studied 

advantageously by the use of Bernoulli’s theorem. If the tube 

shown in Fig. 69 has one end submerged in a tank of liquid, the 

end D b(dng below the free surface, and the tube is filled with 

liquid, there will be a discharge at Z>, 

the lower end of the tube. The free 

surface and the discharging jet are 

subject- to the same atmospheric pres¬ 

sure 'Pa. The pressure head at B is 

then Pal'Wj the elevation head referred 

to a plane through D is h and, 

assuming the tank to be large in com¬ 

parison with the tube, the velocity 

head at B may be neglected. At D 
the velocity head is V being 

the velocity of efilux, and the pressure head is pa/w. 
Equating the expressions for the total head at these two points 

gives the result 

Fig. 69.—The siphon. 

'El 
W 

‘t: M XI 
w 2g 

or 

y = (17) 

If the area at the outlet end of the siphon is A, then the dis¬ 

charge is 

Q = AV = A\/2gh 

In order for the tube to flow full of liquid, the absolute pressure 

at the summit of the siphon must be greater than zero. The 

velocity at that point may be determined by applying the equa¬ 

tion of continuity in the form 

.4.r. = AV 

where A, and V, an; the area and velocity, respectively, at the 

summit. The pressure may then be calculated by means of 

Bernoulli’s theorem, the total head, determined from the condi- 
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tions at either the inlet or the outlet, being equated to the total 
head at the summit. If the result of such calculations yields a 
negative absolute pressure at the summit, then the application 
of the equation of continuity is not justified, for the vsiphon will 
flow only partly full in the lower part of the outlet leg. For this 
reason the maximum elevation of the crest of a siphon flowing 
full is Pa/w if the diameter is uniform. In actual operation this 
distance is further limited by separation of air and vapor from 
the’ liquid at low pressure'. 

Problem 117. The siphon of P’ig. 09 has a uniform diameter of 6 in., 
his 9 ft. and Za is 15 ft. Find the veloeity and quantity of water being dis¬ 
charged. What is the pressure at the summit? 

118. In Fig. 69 the opening at Z> is 3 in. in diameter, the pipe is 6 in. in 
diameter, h is 9 ft. and 2, is 15 ft. Find the veloeity at D, discharge, and 
pressure at the summit. The liquid is water. 

119. In Fig. 09 the pipe is 0 in. in diameter, is 40 ft., y is 9 ft. and the 
liquid is water. Compute the maximum discharge of the si})hon. What 
are the pressure at fi and the head under whicdi the siphon is operating? 

120. Work Prob. 118, changing the liquid to oil with specific gravity of 
0.75. 

47. Measurement of Velocity and Pressure.—The determina¬ 
tion of the velocity and pressure at points in a moving fluid 

presents a group of problems to which Bernoulli's theorem may be 
applied with considerable success. If it is required to find the 
velocities and pressures in a body of initially stationary fluid 
caused by the motion of a solid object through the fluid, it is 
convenient to consider the motion of the fluid relative to the 
object rather than relative to fixed axes. The body may be 
considered as stationary with a stream of fluid moving past it 
such that at a great distance from the body the stream behaves 
as a uniform current with a velocity equal but opposite to that 
originally possessed by the body. Such a flow is illustrated in 

Fig. .76. 
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In general, there is at least one point, usually somewhere on 

the forward portion of the body, where the fluid is brought com¬ 

pletely to rest, such a point being known as a stagnation point. 

If the pressure and vekxiity in the undisturbed part of the 

stream arc known and are represented by po and Fo, respectively, 

them the pressure at the stagnation point may be calculated by 

applying Bernoulli's theorem to this point and the one in the 

undisturbed fluid. In order to simplify the problem, it will be 

assumed that these two points are both at the same distance 

above the reference plane so that their elevation heads are equal. 

In the case of gases such as air, this assumption is justified because 

of the low specific w^eight of the fluid, except in cases where 

extremely large differences in elevation are considered, as, for 

example, in meteorology, in which the behavior of the earth^s 

atmosphere is studi(‘d. 

The application of Bernoulli's theorem in the form of Eq. (13) 

gives the following relationship: 

= Pa (18) 

where represents the pressure' at the stagnation point. Writ¬ 

ing this equation in the form 

- Po = 
pEo^ 

2 
(19) 

it may be seen that the rise in pressure produced by bringing a 

fluid to rest at a stagnation point is equal to pFo^/2. This last 

expression is commonly known as the impact or dynamic pressure 

of the stream and in aeronautics is usually denoted by the 

symbol q. 

If the position of the stagnation point on a body is known, the 

measurement of the pressures at that point and in the undis¬ 

turbed fluid makes it possible to determine the velocity of the 

fluid stream, for Eq. (19), when solved for Fo, gives 

Fo (20) 

The stagnation-point pressure may be determined experimentally 

by inserting a small tube into the interior of the body so that one 
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end of it is brought out flush with the surface at the stagnation 
point. The other end is connected to a suitable manometer or 
draft gage, from the reading of which p, may be determined. 

The same method may also be employed for measuring the 
pressure distribution over the surfaces of such objects as airship 
hulls, tall buildings and stacks, and many other bodies which are 
located in moving fluid. In such problems it is necessary to 
insert a large number of pressure tubes at various points on the 

Fio. 71.—Measurement of pressure distribution over upper surface of an airfoil. 

surface of the body, each tube being connected with an individual 
manometer. An arrangement of this kind for the determination 
of the pressure distribution on an airplane wing is shown in 
Fig. 71. 

In certain cases it is of importance to know not only the pres¬ 
sure distribution but also the variation of velocity over the surface 
of a body placed in a stream of fluid. If, for example, the pres¬ 
sure at a point such as A in Fig. 70 has been determined by the 
experimental method described above and is designated by p, 
then the corresponding velocity V may readily be found by 
writing Bernoulli's equation for the point A and for a point 
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the undisturbed stream. Again assuming that the difference in 
potential energy between these two points is negligible, then 

Po + 
pF/ 

2 P + 
PF^ 

2 

from which the velocity at A is 

4''’’ + ~(Po 
P 

P) (21) 

It may be shown from this n^lationship that the maximum pres¬ 
sure which may exist in a fluid stream is that which occurs at a 
stagnation point where V — 0. 

Example.—A submarine travels forward at a velocity of 10 m.p.h. in salt 
water (specific weight, 64.2 lb. per cu. ft.) with its axis horizontal and at a 
depth of 60 ft. (n) What, is the gage ^ 
pressure at the nose? (b) If its 

largest cross section is 25 ft. in V^-IOmi.f^rhf. : 
diameter and the pressuni at the 

highest point on this cross section 

is 15 lb. per sq. in. gage, what is the 

relative velocity at that point? 
Solution.—a. Coiisid(;ring the rela¬ 

tive motion of a stream of water 
past the stationary submarine, the 
flow is steady and Bernoulli’s theorem may be applied. Point A in the 

figure is a stagnation point; waiting Bernoulli’s theorem between A and point 

M on the surface and considering th(i surface to be at datum, the result is 

PA + — “o"" 

The atmospheric pressure on the water surface is taken as zero. Then 

(Vm^ \ 
lU = 

and since zx — —CO and 60 m.p.h — 88 ft./sec. 

p,„r(io X I so] 
VX = 64.2|^ ”2 X 32:2 + 

=» 64.2(3.34 -h 60) = 4066 Ib./sq. ft. gage 

= 28.2 Ib./sq. in. gage 

6. To find the velocity at point B, Bernoulli’s theorem may be applied 

either to points M and B or to A and B. Considering M and B, the result is 

Vb 
w + Zb A- 2g 

jV 



90 FLUID MECHANICS [Chap. V 

from which 

Putting ^ - 15 X ~ = 33.6 ft. and 25 = -(60 - 12.5) - -47.5 ft., 

then 

Vb = \/64.4(3.34 - 33.6 -f 47.5) 

= VTlTo = 33.3 ft./sec. 

= 22.8 m.p.h. 

Problem 121. What is tho dynamic pressure head at a stagnation point 

on a body immersed in a stream of water moving with a velocity of 20 ft. 

per sec.? What is the total pressure head at this point if it is 10 ft, below 

the water surface? 
122. The gage pressure head at a stagnation point in a stream of standard 

air is 3 in. of water. What is the velocity of the stream? 

123. The velocity and pressure of an airstream are 60 m.p.h. and 14.7 lb. 

per sq. in, abs. and, at a point on a body immersed in it, the pressure is 

14,27 lb. per sq. in. abs. What is the local velocity at this point? Density 

of air is 0.00225 slug per cu. ft. and may be assumed constant. 

48. Measurement of Static Pressure.—The determination of 
the static pressure of a fluid stream at points that are not on the 
surface of a body or at the walls of a conduit requires special 
devices. In the case of fluid flowing through a pipe, the pressure 
at the wall may be measured by inserting a piezometer tube. 
The end of the tube must be flush with the inside wall of the pipe 
and any burrs or projections around the hole in the tube must be 
eliminated. With such an arrangement, the flow is entirely 
parallel to the pipe wall so that, for a pipe of a given size, the 
pressure is unaffected by changes in velocity. For this reason 
the pressure transmitted through the piezometer tube is known 
as the static pressure. 

When it is desired to know the static pressure at points in the 
fluid which are not on the wall, some means must be provided for 
measuring that pressure without introducing the influence of the 
velocity. This might be done by moving the piezometer tube 
and the pipe wall in which it is placed out into the stream without 
changing the character of the flow. 

In practice this may be accomplished by the use of an instru¬ 
ment such as Ser's disk, shown in Fig. 72a. This device consists 
of a small tube inserted into a flat circular plate having a diameter 
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usually four or five times that of the tube. The end of the tube 
is open and is just flush with the surface of the disk, the edges of 
which are usually beveled on the lower surface. In use the 
instrument is placed in a stream so that the surface of the plate 
is parallel to the direction of flow. No appreciable disturbance 
is produced by the instrument in the immediate neighborhood 
of the hole in the disk. The fluid flows smoothly over the upper 
surface of the disk without change in its original velocity and 
only the static pressure is transmitted through the hole into the 
tube, whence it may be led to a manometer for measurement. 

The static-pressure tube shown in Fig. 726 is another device 
for the same purpose. It consists of a tube which is bent to 
form two legs at right angles to each other. The end of the 

Static Pressure Openings 

/ Direction of 
Fluid Stream 

(a) 
Ser's Disk 

Fig. 72.- 

(b) 
Static Pressure Tube 

" Static-Dressure instruments. 

horizontal leg is fitted with a rounded or tapered nose so as to 
minimize the disturbance caused by the tube. At some distance 
back from the nose, usually six or seven times the diameter of 
the tube, a number of very small holes are drilled through the 
wall. The vertical leg of the instrument serves as a support by 
means of which the device may be held in a fluid stream with the 
horizontal leg parallel to the direction of the flow. The fluid then 
moves smoothly past the small holes and the static pressure is 
transmitted through them into the vertical leg which is connected 
to the manometer. In order to eliminate any interference 
caused by the vertical leg of the tube, it is necessary that the 
bend be placed some distance downstream from the small holes. 

Both Ser^s disk and the static-pressure tube must be very 
carefully aligned with the direction of the stream at the point 
where the pressure is to be measured. There are several types 
of direciiuneinerers whici? are capable of measuring simultane- 
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ously without special alignment the static pressure, velocity and 
direction of a stream, the principle upon which they operate 
being based on Bernoulli’s theorem. The description and 
theory of these devices, however, are beyond the scope of this 
book.^ 

49. The Pitot Tube.—^The measurement of the velocity of a 
fluid stream may be made by utilizing the effect of the dyjuimic- 
pressure. The most frequently employed instrument for this 
purpose is the so-called Pitot tube, named after the Frencli 
scientist who was the first to use it. A drawing of a typical 
modern Pitot tube for use in air is shown in Fig. 78. The end 

of the tube pointing upstream is left opcni while the other end is 
connected to a manometer. Hence fluid cannot flow through 
the tube and the nose is to be regarded as a stagnation point. 
The theory of the first portion of Art. 47 leading to the develop¬ 
ment of Eq. (20) may thus be applied directly so that, if the total 
pressure at the nose of the instrument is and the static pressure 
is po, then the velocity of the flow is 

V = (22) 

When the measurement of velocity is the chief concern, the 
Pitot tube just described may conveniently be combined with a 
static tube to form the Pitot-static tube, an example of which is 
shown in Fig. 74. In this instrument, the wall of the Pitot tube 
portion is constructed in the form of an annular passage, in the 
outer surface of which the static-pressure holes are drilled. The 

^ OwER, E., “The Measurement of Air Flow.'' Chapman and Hall. 
Ltd., London, 1927. 
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total pressure of the atrearn is thus carried through the central 

passage while the static pressure is transmitted through the outer 

passage. These two passages may be connected to opposite 

ends of a differential manometer, which then indicates the head 
equivalent to the dynamic pressure. 

In this type of instrument, interfereiK’e and misalignment 

produce errors. The errors in static and total pressures tend to 

compensate so that the instrument is much less sensitive to mis¬ 

alignment than either the simple static or the Pitot tubes. The 

National Physical Laboratory in Kngland has developed an 

instrument of this kind for use in airstreams winch may be turned 

Direcfion of' 

as much as 25 deg. from the direction of flow with a resultant 

error of only 2.3 per cent in the velocity. 

Another type of Pitot-static tube, in which the total pressure 

and static-pressure tubes are separated, is shown in Fig. 75. 

Instruments of this type are frequently used as air-speed indi¬ 

cators for airplanes. 

Pitot-static tubes are often used for measurements in water 

and some are designed for permanent installation in a pipe line. 

Figure 76 shows the head and part of the shank of a Pitot tube 

used by Professor Gardner S. Williams in his nisearches on flow 

of water in pipes. The ellipsoidal head is about three-quarters 

of an incli in length. The opening at the nose is at the stagnation 

point. By means of tubes passing through the shank, this 

opening is connected to one leg of a differential manometer and 
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all the pressure openings on the side are connected to the opposite 

leg. The manometer scale or recording instrument may be 

Fia, 75,—Pitot and static tubes of an air-speed indicator. {Courtesy Pioneer 
Instrument Company.) 

arranged to read or record pressure difference, head, velocity 

or rate of flow. In making velocity measurement Eq. (22) may 

be applied. However, in the 

case of liquids, such as water, 

it is convenient to measure the 

pressure difference in terms of 

the equivalent head of the 

flowing liquid and to replace 

w/p by g. The expression for 

velocity then becomes 

V = V2gW^'^) (23) 

All the equations of this arti¬ 

cle must be modified by coeffici¬ 

ents determined by calibration 

of each particular instrument. 

Such calibrations are required 

principally because of inter¬ 

ference effects produced by the presence of the tube in the 

stream* In practice, Eqs. (22) and (23) take the forms 

Fio. 7b.—Pitot-static tube for use 
in water. {Courtesy L. E. Ayres, Mem. 
A.S.C.E.) 
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y _ - po) 
(24) 

V = CV2g{h, - h) (25) 

in which the quantity C is a coefficient determined by calibra- 
tion. 

In the case of a Pitot-static tube intended to measure discharge, 

the calibration also corrects for the effect of nonuniform velocity 

distribution. 

Problem 124. A Pitot-static tube placed in an airstream is connected to a 
manometer containing alcohol (specific gravity, 0.80). If the manometer 

reading is 6.5 cm. of alcohol, what is the speed of the stream? 

125. A Ser’s disk and a Pitot tube are placed at a depth of 5 ft. in a stream 

of water having a velocity of 15 ft. per sec. What heads will be indicated 
by these instruments? 

126. A Pitot-static t ube mounted on an airplane is attached to a pressure- 

type gage which indicates velocity in miles per hour. Jf the gage is cali¬ 

brated for standard air, what is the true air speed when the indicated speed is 
176 m.p.h. and the density is 0.00212 slug p(^r cu. ft.? 

60. The Venturi Meter.—The Venturi meter is a device which 

is widely used for measuring the quantity flowing in pipe lines. 

Fia. 77.—The Venturi meter. 

It was invented in 1881 by Clemens Herschel, an American 

engineer, and was named by him in honor of Venturi, an early 

Italian experimenter in hydraulics. 

This device consists of a tube by means of which the pipe is 

reduced and again enlarged, usually to its original size, and 

generally placed in a horizontal position as shown in Fig. 77. 

It has an inlet section which is tapered or rounded, a short section 

of constant diameter, known as the throat, and a gradually 

diverging section or outlet having an angle between the axis and 

the wall of 3 of 4 deg., never in excess of 6 deg. The area, pres¬ 

sure and velocity at the inlet are Ai, and Fi, respectively, and 

the corresponding quantities at the throat are A 2, P2 and F2. 

Then equating the values of the total head at these points as given 

by Bernoulli's equation, 
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Ei 4. Zi' = £2 + Zl" 
w 2g w 2g 

The equation of continuity is 

from which 

A,Vi = A2V2 

(26) 

where n = A1IA2. If this value of Vo is substituted in J]q. (26), 

it is found that the velocity at the inlet is 

or letting K - 

The discharge or quantity of fluid flowing through the meter 

is 

Q - A,V, . A.K^2,Jrj - a) (29) 

From Eqs. (28) and (29) it appears that either the velo(*ity or 

discharge through a Venturi tube can be computed after measur¬ 

ing the difference between prcvssures at the inlet and throat. This 

measurement may be made by providing openings in the wall 

at the entrance and throat. The pressures are transmitted to 

gages or recording devices which may be graduated to give 

discharge or velocity directly. Figure 78 shows a Venturi 

meter for use in a water line. 

For accurate results the discharge from Eq. (29) must be 

modified by a coefficient determined by experiments. This 

coefficient corrects for the effect of loss of energy and nonuniform 

distribution of velocity, which was assumed to be uniform in 

the development of the equations. The values of the coeflScient 

range from 0.95 to slightly more than unity. 

51. The Venturi Meter for Gases.—The theory of the Venturi 

meter as developed in Art. 50 is applicable to the flow of gases 
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as well as liquids if conditions are such that the fluid may be 

considered as incompressible. The velocity or quantity of a 

gas flowing through a pipe line may then be determined by 

means of Eqs. (28) and (29), In dealing with air flow, the density 

Fig. 78.—Venturi meter for use in a water line. {Courtesy Builders Iron Founary, 
Providence, R,I.) 

of the fluid rather than the specific weight is usually employed. 

If w/g is replaced by p, Eqs. (28) and (29) become 

and 

Q = A,K, 

(30) 

(31) 

A comparison of Eq. (30) with Eq. (22) for the Pitot tube shows 

that the relations between velocity and pressure difference are 

identical except for the presence of the factor K in the Venturi- 

meter formula. Recalling that K = it is seen that 

K may be given any desired value by varying n, the ratio of inlet 

and throat areas. For n — \/2> if = 1, while for n > \/2, 

if < 1, so that for a given velocity the pressure difference must 

be larger than that obtained with a Pitot-static tube. This fact 

is a decided advantage in the measurement of gas flow, because 

with the Pitot-static tube the pressure difference is likely to be 

quite small. The use of a Venturi meter with a proper value of 

n appreciably magnifies the pressure difference, so that more 

accurate readings may be obtained. 

All the devices used for measurement of velocity and dis¬ 

charge of gases require calibration just as in the case of the 
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instruments used with liquids. Additional errors are introduced 

when the fluid is compressible, but for low velocities these are 

usually negligible. A detailed discussion of the effects of com¬ 

pressibility will be given in Chap. XIII. 

Example.—In a horizontal pipe line water flows from an 8-in. pipe into a 
5-in. pipe, between which is placed a 

Venturi tube having a 3.5-in. throat. 
A U-tubc connected to the throat and 

outlet sections of the Venturi as shown 

in the figure indicates a pressure diffeiv^ 

ence of 3.46 in. of mercury. Deter*- 
mine the velocity at the Venturi throat 

and the discharge. 

Solution.—Applying Bernoulli’s theo¬ 

rem between points 2 and 3, the equation obtained is 

Bl -i- Zl^ A- — 
w 2g w 2g 

But from continuity 

A2V2 = AsVs 
or 

and 

d2^V2 = 

0.49 V2 

Then substituting this value of F3 in the first equation, 

The velocity at the throat is 

F2 -V 
^64,4 X 3.63 

0.76 
VsbS » 17.6 ft./sec. 
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The discharge is 

Q = A2V2 X 17.5 

= 1.17 C.f.8. 

Problem 127. A Venturi meter in a 12-in. water line has a 6-in. diameter 

throat. When the flow is 4 c.f.s. and th- pressure at the throat is 20 lb. per 

sq. in. gage, what is the pressure at the upstream end of the meter? 

128. A Venturi meter with a 6-in.-diameter throat placed in a horizontal 

water line 18 in. in diameter has connections from the inlet and throat to a 

U-tube containing mercury. What are the velocity and discharge through 

the line when the difference in level of the mercury is 12 in.? 

129. A Venturi meter having a 6-in.-diameter throat is installed in a 

12-in. pipe line carrying gas (specific weight, 0.047 lb. per cu. ft.). The 

pressure taps at the throat and inlet are connected to opposite sides of a 

simple U-tube containing water. What is the difference in level of the 

water columns when the velocity at the throat is 17.5 ft. per sec.? 

62. Energy Losses in Fluids.—Whenever a real fluid is in 

motion, a certain portion of its total energy content is consumed 

in overcoming resistance to tlie flow. This situation is analogous 

to the operation of any machine in that the energy output is 

always less than the input. Bernoulli's constant at any one 

point in a flowing fluid is 

H ~ £. 
w 

72 

but the statement that the total energy and therefore the total 

head H is constant along a streamline requires some qualification. 

At point 1 in a flow, the total head is 

= 2-* + w 
Zi! 
2ff 

+ 2l 

while, for a second point 2 on the same streamline, 

//, = w 2g + 22 

In passing along the streamline from point 1 to 2, the fluid loses 

a portion of its original energy content. The value of Hi is 

therefore less than Hi by hi, the latter quantity representing the 

lost energy per unit of weight, that is, lost head. Then 

Hi = Hi + hi 
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or 

w 2g 
+ = 

V2 , V2^ 

w 2g 
Z2 hi 

In this equation all the energy of the fluid is accounted for and 

this relationship is therefore a correct statement of the principle 

of conservation of energy applied to fluids in motion. 

The nature of the loss in head in a flow is frequently quite 

compli(uited. In general, it is due to tlie effec^t of viscosity and 

to the manner in which the fluid flows past solid boundaries. 

For exaniph', in th(‘ case of flow through a pipe, losses exist 

because of the viscosity of the fluid and because energy is required 

to make the fluid flow through valves or bends or past obstruc¬ 

tions. The loss of enc'rgy consists in the transformation of part 

of the original energy content of the fluid into heat, and in most 

cases this heat cannot be reconverted into pressure, kinetic or 

potential energy. The detailed study of the loss in head in fluid 

flows will be taken up in later chapters. 

Problem 130. A horizontal water line reduces from a diameter of 18 in. 

to 12 in. The pressure at the downstream end of the reducer is 22 Ih. per 

sq. in. and the flow is 10 c.f.s. What is the ])ressure at the upstream end if 

the head lost in the reducer is 3 ft.? 
131. A water line changes from a diameter of 0 in. at A to a diameter of 

12 in. at B, which is 4 ft. above A. The pressun^s at A and B are 10 lb. per 

sq. in. and 9 lb. per sq. in., respectively, and the velocity at B is 5 ft. per sec. 

Find the lost head and the direction of flow. 
132. The loss in head between the inlet and throat of a Venturi meter 

placed in a water main is 2 ft. What is the velocity in the pipe when the 

pressure difference is 4 lb. per sq. in. and the ratio of inlet to throat diameter 

is three? 

63. Cavitation.—There are a number of important cases of 

fluid motion in which cavities or holes are formed in the interior 

of the fluid. This phenomenon is described by the term cavita¬ 

tion. The analytical methods of the previous articles cannot be 

applied to flows in which cavitation has occurred, but they are 

useful, nevertheless, in rigorously defining the conditions at the 

beginning of cavitation and in indicating the nature of the 

phenomenon. 

A simple example of cavitation is found in static liquids. 

If a cylinder full of water is fitted with a piston which is initially 

in contact with the water and which is then gradually moved 
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away from the fluid, a space is formed between the piston and 

the water in which no fluid is present. However, as the pressure 

in this region is reduced, the water will reach its boiling point 

at a temperature below the normal value, so that actually the 

cavity will be filled with water vapor. A similar situation may 

arise when the fluid is in motion. If, for example, the piston 

of a reciprocating pump is given an acceleration so high that the 

water cannot maintain contact with the piston on thc^ suction 

stroke, a cavity is formed and a disruption of the normally con¬ 

tinuous flow takes jflace. 

Cavitation is also found in fluid motions in which the velocity 

at some point reaches a vahn^ that is sufficiently high to cause 

Fi<}. 79.—Vonturi tube. 

the pressure to approach zero absolute. A simple case of this 

kind is found in the flow of liquid through a Vcaituri tube. 

Let it be supposed that the Venturi tube of Fig. 79 is a portion 

of a pipe line carrying water and assume for the present that the 

flow^ through the pipe is continuous. If a datum plane through 

the horizontal axis of the pipe is selected, thereby eliminating 

elevation head, the relation between pressures and velocities 

at the inlet and throat is 

Pi , Vr ^ -L Z?! 
w 2g w 2g 

(32) 

Solving for p2/w and substituting V2 — nViy the result is 

£2 = Pi _ 
ww 2g 

(33) 

An inspection of this equation shows that, as Fi is increased, 

Pi/w becomes smaller. It is clear that a condition may be 

reached in which the velocity becomes sufficiently high so that 

the absolute pressure ps approaches zero. The velocity at the 

inlet at which this condition is attained may be determined by 

letting p2 = 0 in Eq. (33). The result is 
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A zero value of the absolute pressure represents a perfect 

vacuum and any further decrease in pressure is impossible. 

When the velocity exceeds the value given by the above equa¬ 

tions, the region of zero pressure expands until a cavity of 

appreciable size is formed within the fluid. Fully developed 

cavities of this kind are shown in Fig. 80. The light-colored 

areas indicate the vapor-filled cavities formed when water 

breaks away from the sides of the diverging portion of a Venturi 

Fig. 80.—Cavitation in a Venturi tube. (Hunmker, J. C., Cavitation Research, 
Meek. Eng., vol. 51, no. 4, pp. 211-216.) 

tube. The white line shows the variation of pressure along the 

tube. The picture shows only one phase in the development 

of the cavity. The vapor in the cavity is immediately swept 

away and a new one begins to form at the throat. 

In liquids there is always a small pressure in those regions in 

which cavitation has occurred because of the fact that, as the 

pressure drops, the liquid boils and the pressure within the cavity 

is the vapor pressure of the liquid surrounding it. Cavitation 

therefore occurs in a Venturi tube when the throat pressure p2 is 

equal to the vapor pressure The corresponding velocity of 

flow in the straight part of the pipe would then be 
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The subscript c has been used as an indication that this is the 

velocity at which cavitation begins. The corresponding velocity 

at the throat is 

V2C = nVie (36) 

It will be noted from Eq. (35) that the velocity at which cavita¬ 

tion begins in a Venturi tube is inversely proportional to the 

square root of the specific weight of the fluid. Then if all other 

conditions are identical, the velocity of cavitation is considerably 

greater for a gas than for water. However, it will be found that 

the velocity at which cavitation begins in a gas is usually so high 

that it is not permissible to treat the fluid as incompressible; 

the discussion of this phase of the subject will therefore be 

postponed to Chap. XllI, in which the flow of compressible 

fluids is studied in detail. 

Problem 133. A cylinder containing water at 80°F. is fitted with a piston 

initially in contact with the water. If the piston is moved away from the 

water, what is the pressure in the cavity thus formed? 

134. A Venturi meter installed in a 12-in. pipe line has a throat diameter 

of 5 in. The pressure at the inlet is 20 lb, per sq. in. gage. At what velocity 

in the main line will cavitation begin (a) if the fluid is water at a temperature 

of 90°F., (b) if the fluid is air at 59°F. and the density is assumed constant in 

the meter? 

136. The relative velocity of the water at a certain point on the blades of a 
propeller is always three times the velocity of the submarine wliich it 

propels. If this point is 10 ft. below the water surface, what will be the 

velocity of the submarine when cavitation begins at the propeller? What 

will be the velocity when the depth is 40 ft.? Temperature is 50®F. 

64. Effect of Cavitation on Fluid Flow.—The Venturi tube was 

discussed in the last article as a simple example of a device in 

which cavitation makes a marked difference in performance. 

In any hydraulic machine such as a pump or turbine or a marine 

propeller, cavitation may occur under certain conditions of opera¬ 

tion which cause the local pressure at some point in the system 

to be reduced to the vapor pressure of the liquid. The details of 

the effects of cavitation on the behavior of such machines cannot 

be taken up here. It is characteristic of cavitation that it 

produces a sudden drop in the efficiency of the device in which it 

occurs. 
As an illustration of how cavitation affects the performance 

of a hydraulic machine, the Venturi tube again forms a simple 
example. The Venturi tube may be regarded as an instrument 
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for the production of a low pressure at the throat and the sub¬ 

sequent reconversion of kinetic energy into pressure at the outlet. 

If no losses occurred, the Venturi tube would be 100 per cent 

efficient and the inlet and outlet pressures would be equal. The 

efficiency may be defined as the ratio of the pressure recovery 

Fig. 81.— Variation of Venturi tube cfficieney with throat pressure head. 

between points 2 and 3 of Fig. 79 to the pressure drop between 

points 1 and 2, or 

P8 _ £2 

_ pressure recovery _ — p<i _ w w \ 

pressure drop 

This definition has been proposed by Moody and Sorenson.^ 

In their experiments on a Venturi tube, the rate of discharge 

was increased until the pressure at the throat corresponded to 

the vapor pressure pv of the water; when this condition was 

reached, it was noted that the efficiency dropped almost instan¬ 

taneously to much lower values than those existing at higher 

throat pressures. The results of a typical test run are shown in 

Fig. 81. Because of the marked change in the efficiency of the 

tube after cavitation occurs, it is apparent that there must be a 

(considerable alteration in the nature of the flow. 

^ Moody, Lewis F., and Alfred E. Sorenson, Progress in Cavitation 

Research at Princeton University, Tram. A.S.M.E.y vol. 57, no. 7, October, 

1935. . 
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66. Corrosion Produced by Cavitation.—Another extremely 

important condition which is found to re^sult directly from cavita¬ 

tion is the corrosion or pitting of solid materials immersed in the 

fluid. This action is of much consequence in the operation of 

hydraulic machinery because it may completely destroy parts 

of the machine. In the past it was believed that this destruction 

of turbine blades and other such elements was caused primarily 

(c) Brass (d) Cast iron 
Fig. 82.—Results of oscillation tests on metal disks in water. Duration of 

test = 40 min.; frequency — 8500 cycles per sec.; amplitude == 0.01 mm. 
{Courtesy Professor H. Peters.) 

by a chemical action resulting from the liberation of air and its 

constituent oxygen from solution in the water. However, it 

has been found that even materials which are highly resistant to 

oxidation are subject to the damaging effects of cavitation, and 

recent experimental work has shown that this action is more of 

a mechanical one. It appears that under certain conditions the 

cavities in the fluid will periodically collapse, producing an 

impact of fluid and solid material which causes severe deforma¬ 

tion of the latter. 
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A convenient and rapid method^ for studying the nature of 

the corrosion problem has been recently developed. A small 

disk of the material to be tested is oscillated at a high frequency 

in a container of fluid. In this way the nature of the cavi¬ 

tation corrosion produced on a given material by water or 

any other liquid may be found in a short time. Examples of 

results obtained by this method are shown in 

Fig, 82. 

General Problems 

136. A 1-in. nozzle on a 2)^-in. hose discharges a jet 
horizontally at a velocity of 80 ft. per sec. What is 

the pressure at the base of the nozzle? If, with this 
pressure, the velocity of discharge is 75 ft. per sec., what 

is the head lost in the nozzle? The fluid is water. 
137. An open tank containing liquid has a small 

opening 4 ft. below the free surface. What is the velocity of efflux from the 

opening (a) if the liquid is water, (b) if the liquid is oil (specific gravity, 0.75). 

138. The tank of Fig. 83 is closed and contains air at a pressure of 1 lb. 
per sq. in. gage above the surface of the liquid. Compute the velocity of 

efflux through the opening {a) when the liquid is all 

water, (b) when it is oil (specific gravity, 0.75), (c) when A I 
it is water covered with 3 ft. of oil. 

139. In Fig. 84 a 12-m. pipe takes water from a 

reservoir at the rate of 15.7 c.f.s. What is the pressure 

head at B? 
140. If the 12-in. pipe of Fig. 84 is delivering 7.85 

c.f.s. and a pressure gage at B reads 4.6 lb. per sq. in., 

compute the head lost between A and B. 
141. (a) Neglecting loss, compute the discharge at F of 

Fig. 85 under the conditions shown. Find the pressure 

at C and D. (b) If the discharge at F is 5.5 c.f.s. under 

the conditions shown, how much head is lost in passing into and through 

the tube? 
142. Assuming no loss of head and neglecting vapor pressure, how much 

can the discharge in Fig. 85 be increased by making EF longer? What is 

then the pressure in the tube at D? 
143. A Pitot-static tube is placed in a 6-in. pipe line carrying 3 cu. ft. of 

water per second. The tube is connected to a manometer which indicates 

a head of 3.3 in. of mercury. What is the calibration coefficient for the 

tube if it is to be used to indicate average velocity? 
144. The cylindrical gas holder shown in Fig. 86 is closed at the top with 

a cover weighing 42,400 lb. which is constructed so that it descends freely 

' Hunsakbr, J. C., Progress Report on Cavitation Research at Massa¬ 

chusetts Institute of Technology, Trans. A.S.M.E.^ vol. 57, no. 7, October, 

1935. 

Wafer 

Fig. 84. 

Fiq. 83. 
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when gas is withdrawn. What will be the velocity of discharge at the end 
of the pipe line, neglecting losses? How long will it take to draw off 8000 

cu. ft. of gas? Assume gas incompressible and w = 0.0424 lb. per cu. ft. 

145. An airship is moving through still air of standard density at a 
velocity of 76 m.p.h,, with the axis of the hull pointing in the direction of 

D motion. A vertical differential manometer con¬ 

taining alcohol (specific gravity, 0.796) is connected 
to a hole in the nose and one on the side of the hull. 
If the manometer reading is 9.65 in., what is the 

Fig. 86.—Siphon. Fig. 8G. 

relative velocity of the air at the point on the side? If this point is the 

highest on the hull, what is the absolute velocity of the air? 

146. A Venturi meter with a ratio of diameters of 2.6 has a loss of head of 
0,4 ft. between inlet and throat when the throat 

velocity is 20 ft. per sec. Compute the difference 
between inlet and throat pressures. If the loss in the 

diverging section is 1.2 ft., what is the total drop in 

pressure in the meter if th(5 fluid is water? 

147. What is the pressure at B in Fig. 87 if the tube 
below B is of uniform diameter? If the diameter at B 
is 6 in. and that at C is 4 in., compute the pressure 

at B and the discharge. 
148. A horizontal water pipe 4 in. in diameter 

diverges gradually to 12 in. and discharges into a 

reservoir at a point 6 ft. below the surface. What is 
the discharge when the pressure is zero gage where the 

pipe starts to diverge? 
149. A pump takes water at the rate of 2000 g.p.m. 

from a horizontal 12-in. pipe where the vacuum is 8 
in. of mercury and delivers it at a pressure of 10 lb. per sq. in. gage to an 

8-in. pipe at a point 4 ft. higher. Assuming an efficiency of 80 per cent from 

pipe to pipe, what power is required by the pump? 



CHAPTER VI 

IMPULSE AND MOMENTUM IN FLUIDS 

66. Impulse and Momentum Equations.—Following Newton’s 

second law of motion, it may be stated that a mass M, having 

impressed upon it an effectiv^e force F, is given an acceleration a 
which is proportional to F and inversely proportional to M. 
Mass M may be expressed as weight W divided by g, the ac(*elera“ 

tion of gravity. Then the law may be written algebraically as 

F = Ma = ~ (1) 
9 

Expressing a in terms of increments of velocity and time, this 

equation becomes 

F 
, (it g (it (2) 

which can be written 

Fdt ^ —dV 
g 

(3) 

Integrating from time zero to time t, during which period the 

velocity changes from Fo to F, and treating F as a constant, 

there results 

Ft (4) 

or 

TF 
Ft = y(F - Fo) (5) 

The product Ft is known as the impulse of the force and the 
TF 

product of mass and velocity, — F, is the momentum of the mass 

or quantity of motion, the dimension of both quantities being 

MLfT, In words, Eq. (4) states that the change in momentum 

is equal to the impulse of the applied force. Letting the symbol 

U represent momentum, Eq. (3) may be written in the form 

108 
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F = 
dt 

and Eq. (4) may be written as 

F = 

(6) 

(7) 

From these equations it is seen that the effective force is equal 

to the rate of change of momentum. 

Impulse and momentum are vector quantities, just as force 

and velocity, and it can therefore be shown that, even with F, 
V and 7o in different directions, Eq. (4) may be written as a 

vector equation, that is. 

the bar over a quantity being used here to indicate a vector. 

Then taking components along any arbitrarily chosen x- and 

2/-axes, 

Equations (9) are equivalent to 

F^ = j{V. - FoJ 

F,t = ^(Fv - Vo,) 
^ J 

(10) 

which form is usually preferred because it is convenient to deal 

with the change of velocity represented by the binomial in Eq. 

(5) and Eqs. (10) rather than with the change in momentum of 

Eqs. (9). 
67. Conservation of Momentum.—It follows from the laws of 

motion that a mass cannot undergo a change of momentum 

except by the application of an external force. This is also true 
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for any system of masses. It can be demonstrated that the total 

momentum within a system is unchanged by an exchange of 

momentum between two or more masses of the system. This 

latter fact, known as the priruriple of conservation of momentum, 

will be demonstrated for the simple case of two masses moving 

in the same direction. 

In Fig. 88 the mass M i, moving with 

velocity Fi, overtakes the mass M2, 

which has a smaller velocity F2. While 

Tofaf bodies are making or breaking 

contact there is a force toward the left 

on Ml and an equal and opposite force 

on M2. However complicated the 

variation of these forces may be, they 

are at all times equal. The impulse 
t^iewMomentumduring time is F td. The total 

Fig. 88.-Conservation of impulse, ^^{F M), acting toward the 

left on Ml is then equal in magnitude 

and opposite in direction to that on M2. The new momentums 

of Ml and Ms are [MiFi - :^(F M)\ and [M2F2 + 2(FA^)], 

respectively, and the total momentum after impact is then 

[MiFi - S(F AO] + [M2F2 + 2(FA/)] = MiFi + M2F2 (11) 

Thus the total momentum after impact is the same as before 

impact. This is true for any number of masses moving in any 

direction; in genera) 

MiFi + M2F2 + • • • + M„F„ = MiFi' + M7f7 + • ■ • + 
MnF./ (12) 

in which F and F' are, respectively, the velocities before and 

after impact. This is a vector equation; therefore a similar 

equation may be written for the components of momentum taken 

in any convenient direction. 

If the two masses discussed above are of such materials that 

there is no rebound after impact, they will move along together 

with a velocity F, which can be computed by equating the 

original momentum to the new momentum. That is 

(Ml + M2)F = MiFi + M2F2 (13) 
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After computing F, the loss in kinetic energy due to impact 
can be found, it being merely the difference between the initial 
and final kinetic energies of the masses. The transfer of momen¬ 
tum fr.om mass to mass is always accompanied by a loss in kinetic 
energy. This fact largely accounts for the energy required to 
maintain the flow of a fluid. 

68. Momentum of a Stream.—The equations of momentum 
are readily applied to problems dealing with flowing fluids. In 
such x^roblems the mass considered may be the mass discharged 
in any convenient time t. The volume per second being Q, the 
volume in time t is Qt, the total weight involved is Qwt and the 
mass is Qwtig. Equation (5), for example, then becomes 

n . - F.) 
and the components of force obtained from Eqs. (10) are 

QS^y^ 
(14) 

The forces Fx and Fy are components of the force acting on the 
mass having its momentum changed, namely, the fluid mass. 
The force acting upon whatever object produces the change is 
equal and opposite, the components being 

Px = y(Fo. - Vx) (15) 

Py = - Vy) (16) 

The quantity Qw/g in Eqs. (15) and (16) being the mass per 
second, the right-hand member is the change in momentum per 
second. It may therefore be stated that the force exerted on an 
obstruction by a moving stream is the rate of change of momen¬ 
tum produced by the obstruction. 

69. Forces Exerted on Fixed Surfaces by Open Jets.— 
An open jet which is deflected from its course by a fixed curved 
surface is shown in Fig. 89. If it is assumed that the jet is 
tangent to the iSurface hi the point of first contact so that there 
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is no loss in shock, and also that the surface is very smooth so 
that there is no reduction in velocity as the jet moves along the 
surface, the forces can be computed from the momentum equa¬ 
tions. With these assumptions the velocity is changed in direc¬ 
tion only, the jet being deflected through an angle d. Then F, 
the initial velocity, and F', the final velocity, are numerically 

the same. Taking the- x-axis as parallel to the jet, the velocity 
components of the jet leaving the surface are 

Fx' = F' cos ^ = F cos d 
and 

F/ = F' sin ^ = F sin 0 

The components of force on the surface following Eqs. (15) and 
(16) are then found to be 

p, = - V cos e) = - cos e) 
0 Q 

T> Tr ■ QwV . „ 
= —( — V sin 0) - — -— sin 0 

S 9 

(17) 

(1«) 

In the latter equation the negative sign indicates a downward 
force on the surface since the upward component of velocity 
was taken as positive. The amount and direction of the result¬ 
ant P are found from Px and Py. The re^sultant may be found 
directly by first finding the vector change in velocity, which in 
this case is vector F — vector F', or, in the vector diagram, 
7 The resultant force P is then 

p = 
9 

(19) 
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the direction being parallel to AF This can now be divided into 
Fx and Py if desired. 

The fiat plate at right angles to a jet shown in Fig 90 is a special 
case in which ^ is a right angle The jet is 

divided equally by the plate so that the net L 

change of momentum at right angles to the 

jet is zero. Parallel to the jet the change 

in velocity is b and the force normal to the —y-7- -^1 
plate IS 

Sxamplc* Two ch1)k* foot of water per second an* 90 Jet deflected 
discharged from above into a tank 1 he jet is at an ^ normal flat plate 

angle of 30 deg with the hoiizontal and has a velocity of 50 ft per sec 

Find the (‘omponents of force exerted l)\ the jet on the tank if the latter is 
moving horizontally toward the right at a veloeity of 1 5 ft per sec 

Solution' The mass having its momentum 
c hanged eat h set ond is 2 X 62 4/32 2 slugs 
Then tlio change in vertical velocity is from 

, vertual force 
-tiXi I - j. II .. the tank is 

2 X 62 4 
^ —(25 — 0) = 96 9lb , downward 

The change in horizontal velocity is from 43 3 to 15 ft per sec and the 
horizontal force on the tank is 

109 7 lb toward the right 

dC 
Example.—A 2-in jet of water with a \ elocity / 

of 60 ft. per sec. is deflected by a fixed curved / 

plate as shown m the figure What are the / 

horizontal and vertical componentfe of force on —|— 
the plate? \ 

Solution —The area of the jet is ir/144 sq ft. 

Then the mass per second is ^ X 60 X = V 

60 ft per sec 

^'J^254 
60 fi per sec 

2 54 slugs. The components of velocity on contacting and leaving the sur¬ 
face are as shown. Then the horizontal force is 

P* =« 2 64[30 ~ (—54 4)1 « 214 lb , toward the nght 
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The vertical force is 

Py - 2.54[-52 - (-25.4)] = -67.61b. 

Thift is a downward force on the surface since the downward velocity was 

taken to bo negative. 
Problem 160. A mass of putty weighing 32.2 lb. and moving with a 

velocity of 40 ft. per sec. overtakes and strikes a similar one of 64.4 lb. mov¬ 

ing in the same direction with a velocity of 20 ft. per sec. What is the 
velocity of the bodies after impact? 
How much energy is lost? 

161. Two bodies weighing 25 lb. each 

collide head on at velocities of 22 ft. per 

sec. and rebo\md at velocities of 20 ft. 
per sec. Compute the lost energy. 

What impulse do the bodies give each 
other? 

162. A loosely piled rope weighs 2 lb. 
per ft. What force applied at the end is 

necessary to pull the end across a frictionleas floor at the rate of 5 ft. per 
sec.? 

168. A tank car having no resistance to rolling is pulled along a straight 
track at a uniform velocity of 5 ft. per sec. Water is poured into it ver¬ 

tically from above at the rate of 0.5 c.f.s. What pull is required to keep the 
car moving? 

164. What force is required to hold a flat plate at right angles to a jet of 
water 2 in. in diameter and having a velocity of 30 

ft. per sec.? 

166. A nozzle discharges 2 c.f.s. at a velocity of 

50 ft. per sec. tangentially against a vane which 

turns the jet through 135 deg. What total force 

is required to hold the vane? 
166. A jet having a velocity of 50 ft. per sec. and 

a diameter of 2 in. is deflected by a fixed surface as 

shown in Fig. 91. Compute forces and Py 

required to support the surface. 
167. In Fig. 92 the fixed vane divides the jet so 

that 1 c.f.s. goes in each direction. If the velocity is 50 ft. per sec., com¬ 

pute forces Px and Py to support the vane. 

60. Plane Surface Not Normal to Jet.—A smooth jet striking 
an oblique plane surface is divided in a manner that can be readily 
determined by making two simplifying assumptions. Assuming 
no shock or loss of energy, the velocity must be unchanged, and, 
assuming the plate so smooth that there is no tangential force, 
there can be no change in momentum in a direction parallel to 
the plate. In Fig. 93 the jet strikes the surface at an angle B 
with a velocity 7, and the quantity Q is divided into Qi and ^2* 
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The new momentums of these quantities are QiivVjg and 

QtwV/g parallel to the plate. The components of the original 

momentum, QwV/g, parallel and normal to the plate, are 
QwV ^ OwV . 

- cos 6 and —-— sin 6, Since there is no force parallel to the 

plate, there is no change in momentum in that direction. Then 

the original momentum parallel la the plate is equated to its 
final value so that 

QjeK cos b = (21) J 
g gg M 

from which Q cos 0 = Qi — Q^. 

From the continuity equation / _ y/ff'd 
Q = Qi + Q2. Combining these Q .^. 

two equations, 

I n\ /00\ //M V Qi — 2 (1 + 

Q2 = ^(1 - C^) 
Fkj. 93.—Division of jet by an 

oblique plate. 

Problem 168. If angle 6 in Fig. 93 ik 60 deg. and the jet disoharges 2 c.f.s. 

at a velocity of 40 ft. per sec., compute tlie force necessary to hold the plate. 

Fig. 94.—Quantity deflected by a single moving vane. 

61. Quantity Deflected by Single and Multiple Vanes.—A 

single moving vane in the path of a jet deflects only that part of 

the total discharge which overtalces the vane. If the jet of 

Fig. 94 has a discharge Q, a velocity V and cross section A, the 

volume in time At is represented by the prism CE of length V At 

and cross section A, whence 

Q At = AV At (24) 
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During the same time the vane moves from C to D with a velocity 
Vj the distance being v Atj and that part of the jet which is 
deflected by the vane is the prism DE having a volume 

A(V - v)M. 

Letting Q' represent the rate at which the liquid overtakes the 
vane, then 

Q' A{V - v)M (25) 

and from Eqs. (24) and (25) 

Q’ = (26) 

The mass having its momentum changed by the single vane in 
unit time is Q"wlg. 

A series of vanes can be so arranged that the (‘iitire discharge 
of the jet is deflected by the vanes. The rate at which the liquid 
is being deflected is then Q, the total discharge of the jet. This 
is usually accomplished by vanes correctly spaced on the periph¬ 
ery of a wheel. 

62. Forces Exerted by Jets on Moving Vanes.—In Fig. 95 
the vane has a velocity y in the same direction as the jet that is 
tangent to the vane at the point of contact. The jet strikes the 

V 

Fig. 95.—Jet deflected by a moving vane. 

vane with a relative velocity of F — and, assuming no friction 
along the surface, the relative velocity is constant in magnitude, 
being changed only in direction. The absolute velocity F' 
of the jet leaving the vane is the vector sum of its velocity relative 
to the vane, (F — v), and v, the velocity of the vane. The addi¬ 
tion of this relative velocity and vane velocity to produce F' is 
indicated by the vector diagram of Fig. 95. From the geometry 
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of this figure the components of F' are Fx' == + (F — v) cos 6 
and Fy' == (F — «;) sin 6. Substituting these components in 
Eqs. (15) and (16), in which the forces on the deflecting surface 
are shown to be equal and opposite to the rate of change of 
momentum of the fluid, there results for the components of the 
total force on a series of vanes 

or 

and 

Px = ~{V ~ [v + (V — v) cos 0]} 

P. = ^-(F - *.)(1 - cos e) (27) 

t 

Py = -^(F - v) sin e (28) 
Q 

The force on a single vane is found by replacing the Q of Eqs. 
(27) and (28) with Q' — Q(V — v)/V from Eq. (26), with the 
result: 

Px 

Py 

Qw (F — vY 

T V (1 — cos 6) 

Qv) (F — vY^ 

T F sin 6 

(29) 

(30) 

63. Power Developed by a Series of Vanes.—In the last 
article the force exerted in th(^ direction of motion by a jet having 
velocity F on a series of vanes moving with velocity v was shown 
to be 

F. = ^(F - y)(l - cos e) (31) 
Q 

The work done on the vanes by this force in 1 sec., that is, the 
power, is the product of the force and the distance traveled by 

the vane, or 

E = p,v = ^(Vv - t;2)(l - COB d) 
ff 

The value of 9 for maximum power is found by inspection to be 
180 deg. The proper velocity of the vane to produce maximum 
power for a given jet velocity may be found by equating dE/dv 

to zero. Thus 



118 FLUID MECHANICS (Chap. VI 

^ = 9^{V - 2t;)(l - cos 0) = 0 
dv g ' 

and 

= I (32) 

Then the power from a series of vanes will be a maximum 
when V = F/2 and 6 = 180 deg. Suppose an attempt is made 

v-v V' 

(a) (b) 
Flu. 96.—Vane velocity for maximum power. 

to realize both of these conditions, as in Fig. 96a. The velocity 
of the jet relativ(‘ to the vane is V — v — \k The final velocity 

_ __ of the water is then the veloc¬ 
ity V of the vane toward the 
rigid, plus (y -- v), the velocity 
of water relative to the vane, 
toward the left. This sum is 
zero when e = 7/2 and all the 
kinetic energy will have been re- 
moved. This is obviously im¬ 
practicable because no fluid can 
be discharged at zero velocity. 

In practice the angle must 
be made somewhat less than 
180 deg. as in Fig. 96b, but the 
relation i; = 7/2 corresponds 
closely to the usual working 
conditions. If the jet is di- 

Fia, 97.~impui8e wheel for a 30,000- vided evenly by the cusped 
hp, unit. {Courtesy Aiiu^choimerH Mfg. yaiie of Fig. 965, the rcsultant 

transverse force is zero. 
The impulse wheel shown in Fig. 97 is an example of a series 

of cusped vanes. The speed of the wheel is such that the velocity 
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of the buckets under normal operating conditions is nearly y/2. 
Then if N is the r.p.m. of the wheel and d the diameter of the 
bucket circle, the best speed is N = SOF/ttc?. 

Example.—A jet of water having a velocity of 50 ft. per sec. discharges 
3 c.f.s. of water against a series of vanes. The vanes are moving with a 

velocity of 20 ft. per sec., as shown in the figure, and angle 6 is such that 
there is no shock, that is, the water 
moves tangent to the vane. Compute 

angle Py and the horsepower 
and efficiency of th(‘ vanes. 

Solution.—Since this is a series of 
vanes, the quantity striking the 

vanes is the total 3 c.f.s. and the 

mass per second is 

3 X 62.4 -r- 32.2 ~ 5.81 slugs/sec. 

Now the velocity relation at impact 

is such that 

Velocity of water — velocity of vane -f velocity of water relative to vane 

or 

Y = V u 

This condition is shown graphically by the vector diagram Imo. By simple 

trigonometry In = 43.30, tnn — 23.30, no = 25, 

d = tan"^ — = taii-i 
mn 23.30 

and u = 34.2 ft. per sec. If there is no loss, the relative velocity continues 

to be 34.2 ft. per sec. along the face of the vane, being changed only in direc¬ 

tion, and at the discharge end there is the vector relation 

T' = V + w' 

This condition is shown graphically by vector diagram qrt and from this 

as = 34.2 cos lO” = 33.7, rs = 6.94 and V = = 14.93. 
13.7 

The direction of V' is defined by P = tan“^ = 66®30'. 

The X- and ?/-components of the initial velocity V and the final velocity 

V' can now be used to compute the forces. Then 

P^ - 5.81143.3 ~ (-13.7)] = 331 lb. 
Py = 5.8U-25 - (-5.94)] = -111 lb. 

The work done by Px in 1 sec. is force times distance, or 331 X 20 = 6620 ft. 
lb. per sec. This can be checked by taking the difference between the kinetic 

energy of the water as it strikes and as it leaves the vanes. Thus 
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Initial K.E. por so<*,. 

Final K.E. por soc. 

Work per sec. 

Efficiency 

Problem 169. Suppose a single flat plate to be carried at a velocity of 

10 ft. per sec. towanl a nozzle that is discharging 60 g.p.in. of water with a 

velocity of 30 ft. per sec. At what rate in gallons per minute does the water 

strike the plate? What force is needed to carry the plate if it is normal to 

the jet? 

160. A vane curved through an arc of 60 deg. receives a tangential jet of 

water which has a velocity of 100 ft. per sec. The vane is moving in the 

same direction as the jet with a velocity of 40 ft. per sec^ Find the absolutes 

velocity of the water leaving the vane, the change in kinetic energy per 

pound of water and the angle through which the jet is deflected. 

161. A series of vanes which are curved through an arc of 135 deg. is 

moving with a velocity of 50 ft. per sec. They receive 2 c.f.s. in a tangemtial 

jet which has a velocity of 120 ft. per sec. What are the forces parallel and 

normal to the axis of the jet? What power is developed. 
162. The cusped vanes on an impulse whe(d are curved through an an^ of 

160 deg. The wheel is driven at its best speed, 240 r.p.m., by a 2-m. jet of 
water having a velocity of 300 ft. per sec. CompTitcj the force on the vanes 

and the power developed. 

163. For a single vane, what is the relation of vane velocity to jet velocity 

for maximum power? Use the method employed in deriving Eq. (32). 

64. Pressure on Pipe Bends.—The interior surface of a bend 
in a pipe line is subjected to a pressure due in part to the normal 
pressure under which the line operates and in part to the fact that 
the direction of the momentum is changed. The body of fluid 
within a bend which turns through an angle of 6 is shown in 
Fig. 98a. It is subjected to pressure forces on all sides, the force 
11 being the resultant pressure force on the fluid at the walls of 
the bend and the force pA on each end being the pressure force 
exerted by the adjacent fluid. For convenience, components of 
forces and velocities are taken parallel and normal to OB, the 
bisector of the angle 6. Then letting the applied force equal the 
change of momentum per second, and noting that there is no net 
change of momentum normal to OB, 

^ X 502 « 7260 ft.lb. 
2 g 2 

= 1 ^ ^ X iTol* = 647 ft.lb. 
2 g 2 

= initial K.E. — final K.E. — 6613 ft.lb. 

output 6613 
= -7—^—r = = 91.1 per cent 

input 7260 
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or 

R == 2pA sin ^ sin ^ (33) 
2 g 2 

If the bend is not supported in its plane in any other way, the 

force on it must be balanced by a tensile force T in the pipe line 

as shown in Fig. 986, in which R is the pressure force on the bend. 

The force T can be determined by again considering components 

Fig. 98. Forces on a pipe bend. 

parallel to OB, using the value of R from Eq. (33) and writing 

^Fqb = 0, whence 

2T sin I = 7^ = 2 sin 

and 

T-pH+SSl (34) 

It appears from this equation that T is independent of the angle 

and that any curvature, however small, of an unsupported line 

results in a tensile force. 
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66. Forces on Reducing Bends and Reducers.—The pressure 

forces on the interior of a reducing bend can be found by con¬ 

sidering the forces on the body of fluid within the bend. This 

body, shown in Fig. 99a, has pressure forces on the ends exerted 

by the adjacent fluid and a pressure force exerted by the side 

walls, the resultant of which is R. Suppose the liquid to enter 

the bend from the left with velocity Fi and to leave with a velocity 

F2 at an inclination of 6. Then the original momentum is 

QwVi/g and the components of th(^ final momentum are 

{QwVi cos 6)/g and {QwV-z sin d)/g. 

Fig. 99.—Forces on a reducing bend. 

Equating the effective forces on the fluid to the rate of change 

of momentum and writing separate equations involving the 

X- and ?/-components gives 

piAi - P2A2 cos e - = cos e - Fi) (35) 
9 

and 

— P2A2 sin 6 + Ry = sin 6 (36) 

In these equations and Ry are forces acting on the fluid and 

the forces acting on the bend are equal and opposite. Then 

solving for R^. and Ry^ the forces on the bend in Fig. 996 are 

found to be 

R, = ^(Fi - Fj cos 9) + (piAi - ptAi cos d) (37) 



Aet. 66] IMPULSE AND MOMENTUM IN FLUIDS 123 

+ ^2-^2^ sin e (38) 

In Eq. (37) a positive is a force toward the right on the bend 

and in Eq. (38) a positive Ry is a downward force on the bend. 

The equation for the case of a simple reducer with no bend, 

such as shown in Fig. 100, is readily obtained by letting the angle 
e be zero in Eq. (37). Then 

~ — F2) + (pi^i — ^2-^2) (39) 

The force on the reducer will always act toward the smaller end. 

Thus the force on a nozzle placed on 

the end of straight line of pipe or 

hose is always such as to pull on the 

line and place it in tension. This 

can be readily seen without the aid 

of Eq. (39) by inspection of the internal and external pressures 

on the nozzle. 

Problem 164. What is the tensile force in a 6-in. pipe line (paused by an 

unsupported 90-deg. bend if it is under a pressure of 40 lb. per sq. in. (a) 

if there is no flow, {h) if the flow of water is 10 c.f.s.? 

166. The end of a horizontal 12-in. pipe is fitted with a tube which diverges 

gradually to 18 in. in diameter. It discharges 20 c.f.s. of water into the 

atmosphere. Determine by inspection of the prcjssures the direction of the 

force on the end of the 12-in. pipe. Compute the amount of this force. 

166. A 60-deg. bend reduces a pipe line from 12 to 6 in. The pressure in 
the 12-in. line is 25 lb. per sq. in. when the flow is 10 c.f.s. Find the force 

in the bend parallel and normal ijo the 12-in. line. Does this force change 

if the direction of flow is reversed, the pressure in the 12-in. line being 

unchanged and losses being neglected? 

66. Work Done in a Rotating Channel.—Figure 101 represents 

a rotating channel such as one of the water passages in a reaction 

turbine. It is rotating about an axis through 0 with an angular 

velocity w, so that the velocities of point 1, the entrance end, 

and point 2, the exit, are ui = cori and U2 = wr2, respectively. 

Water is caused to enter at the outer end with an absolute velocity 

of Fi and a velocity relative to the channel of vi. By maintaining 

the proper relation between Fi, ui and the angle on, the velocity Vi 
is in the direction of the tube. A similar situation prevails at 
point 2 where the absolute and relative velocities are F2 and v^r 

Fig. 100.—Pipe reducer. 
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respectively. At points 1 and 2 or at any point in the channel 

the absolute velocity of the water is the vector sum of the 

velocity of the vane, and v, the velocity relative to the vane; 

that is, F = + y as indicated by the vector diagrams at points 

1 and 2. 

The tangential components of Vi 
and F2 are Fi cos ai and Fa cos 0:2, 

and the corresponding tangential 

components of momentum of the 

discharge Q are — Fi cos ai and 

Qw^ 
2 cos a2. 

It is known that the torque T 
applied to a rotating mass is equal 

to the rate of change of angular 

momentum, or rate of change of 

moment of momentum, of the mass. 

The moment of momentum is the 

product of the tangential component 

of momentum and the radius. The 

radial component has no moment. 

Then in this case the moments at 

points 1 and 2 are “(Fi cos ai)ri 

The applied torque on the channel is then 

Fig. 101.—Velocity diagram for a 
rotating channel. 

and ~(F2 cos a2)r2. 

T = ^^(Fi cos ai)ri - ^(F2 c cos a2)r2 

The work done by a torque is the product of the torque and angle 

through which it works. In this case the work done on the chan¬ 

nel by each pound of water is 

Tc*) 1 
Work per lb. = ^ = -[(Fi cos ai)riO) — (F2 cos (41) 

This represents the input of energy to the channel per pound 

of water, or feet of head taken from the water by the channel. It 

may be written as 
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hi = “[(^^1 cos ai)ui (V2 cos ^2)1^2] (42) 

Bernoulli's equation for points 1 and 2, corrected for the 

energy lost and for the work done by the water on the channel, is 

+ ^ + z. w 
111 
^9 

— + ^2 + /?7 + hi 
w 

(43) 

From the vector diagrams 

V+ v{* + 2u\Vi cos 

V2' = V2" + V2^ + 2U2V2 (^OS ^2 

and 

Fi (*os a I — Ui + Vi cos 131 

V2 cos a2 ~ U2 + V2 cos 132 

Equation (43), aftc'r substituting the value of hi from Eq. 

(42), inserting the a))ove values of V'^ and V cos a and simplifying, 

becomes 

^2l 
2g w 

+ Zi O-1-T <^^2 d" 2g w 2r~' 
Ihl (44) 

In this form it is known as Bernou]li^s equation for rotating 

channels. The expression (ai^ — U2^)l2g is commonly called the 

centrifugal head. 

General Problems 

167. A series of vanes of the form shown in Fig. 966 have cross sections 

which curve through an arc of 135 deg. on one side of the cusp and 170 deg. 

on the other side. What is the axial thrust on the wheel having these vanes 

if it is driven at best speed by a jei of water of 2 e.f.s. having a velocity of 

300 ft. per sec.? 
168. The tank of Fig. 102 is discharging 3 e.f.s. 

of water at a velocity of 16 ft . per sec. Neglecting 

friction, what force is required to keep the tank at 

rest? 
169. If the tank of Fig. 102 is discharging 3 e.f.s. 

of water at a velocity relative to the tank of 16 ft. ^ 

per sec. and if it is moving toward the left with a jq2. 

uniform velocity of 6 ft. p(U’ sec., what is the force 

on the car? What is the head K neglecting losses? 

170. A nozzle discharges 3 e.f.s. at a velocity of 100 ft. per sec. and the 

jet impinges tangentially on vanes which curve through an arc of 120 deg. 

The vanes have a velocity of 40 ft. per sec. parallel to the jet. Compute the 

•rrfTfTTTTTTyyTTrrrrrfrrrrrrrrr 
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absolute velocity of the water leaving the vanes, the forces parallel and 

normal t-o the jet, the change in kinetic energy of 1 lb. of water and the power 

developed. 
171. A jet of water of 200 g.p.m. with a velocity of 40 ft. per sec. strikes 

a series of vanes as shown in Fig. 103 and leaves 
them with an absolute velocity of 20 ft. per 

seM;. in the direction shown. What forces 

parallel and normal to the jet are acting on the 

vanes? What power is developed? 
172. A boat is propelled at a speed of 15 

in.p.h. by a pump which takes in water and 

discharges it at the rate of 10 c.f.s. through a 
6-in. pipe at the stern. What propelling force 

is exerted on the boat? Compute the work 

per second done on the boat, the kinetic energy 
in the water discdiarged each second and tlui efficiency of the propelling 
system, assuming the pump to be 100 per cent t^fficient. 

173. A body shown in Fig. 104 is moved toward the jet of water with a 
velocity of 20 ft. per sec. The jet has a dis¬ 

charge of 1 c.f.s. at a velocity of 60 ft. per sec. 
Find the power required to move the body and 

the absolute velocity of th^^ water as it leaves. 
174. A jot of water of 3 c.f.s. at a velocity of 

100 ft. per sec. strikes a series of vanes as in Fig. 
105. The relative velocity of the jet is tangent 

to the moving vanes. Find the angle a, the work 
done per second and the efficiency. What is the 

force normal to v, the velocity of the vane? 
176. A horizontal 12-in. pipe bends 90° into a horizontal 6-in. line. If the 

pressure in the 12-in. line is maintained at 20 lb. per sq. in., what force is 
required to support the bend against the action of the water (a) when there 

is no flow, (6) when flow is at the rate of 10 c.f.s.? 

176. In a machine having passages similar to that shown in Fig. 101, 

Vi * 30 ft. per sec., ri = 1»5 ft., ra — 0.75 ft., Vi = 1.6t>2, «i = 30 deg., 

Vi =* uu ^2 90 deg., pi = 15 lb. per sq. in. and Q » 50 c.f.s. Find /3i, t>i, 

ui, w, wa, Fa, pa, torque and power developed. Assumehead lost to be 0.2t>i*/2(7. 



CHAPTER VII 

DYNAMIC LIFT AND PROPULSION 

67. The Theory of Lift.—When the resistance or force pro¬ 

duced by the motion of a body through a mass of fluid is dis¬ 

cussed, it s(iems natural to think of this force as acting in such a 

way as to oppose the motion of the body. There are, however, a 

number of important cases where not only is such a resistance 

produced but where, in addition, the complete reaction of the 

fluid on the body has a component in the direction normal to 

that of the motion. Usually the component opposing the motion 

is referred to as the drag, while the cross-stream component is 

(jailed the lift, even though it may not always be acting vertically 

upward. As examples of bodies which produce both of th(\se 

force components, there are the rotating cylinder or sphere, the 

vanes of a turbine wheel, the sails of a ship and the wings of an 

airplanes 

If the flow around a body is known ii\ (‘omplete detail, so that 

the velocity at any point on tlie surface can be determined, the 

lift and drag components of the resultant force can be calculated 

by using Bernoulli's theorem to determine the corresponding 

pressures and then summing up the proper components of the 

elementary forces which they produce over the entire surface. 

Another method which is particularly suitable in some cases is 

to consider the time rate of change of momentum of the flow in 

the direction of the desired force component. Both of these 

methods will be employed in the discussions that follow. 

Problem 177. A body placed in a uniform stream of air develops a 

resultant force of 75 lb. actin^? upward and toward the left at an angle of 

85 deg. with the horizontal. What are the lift and drag components (a) 

when the stream of air is flowing horizontally and toward the left, (b) when 

It is flowing toward the left and upward at an angle of 10 deg. with 

the horizontal? 

68. The Magnus Effect on Rotating Cylinders.—It was first 

demonstrated experimentally by Magnus, in 1852, that, if a 
127 
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(‘ircular cylinder is rotated about its axis and at the same time is 

caused to move forward through a mass of fluid, a cross-wind 

force or lift is produced. The same result is obtained if the 

rotating cylinder is placed in a stream of fluid which moves with 

a uniform velocity at a great distance from the cylinder, the 

relative motion with respect to the body being the same in both 

cases. An estimate of the magnitude of this lifting force can be 

made if it is assumed that the (cylinder is infinitely long in the 

direction of its axis so that the flow patterns in any two planes 

perpendicular to that axis are identical. Such a flow is said to 

be two-dimensional since all the velocity vectors representing 

the flow in any one of these perpendicular planes lie entirely in 

that plane and there are no lateral com})oneiits. 

Fio. IOC.—Streamlines for two-dimensional flow past a (‘ircular cylinder. 

It is well known in the field of classit^al hydrodynamics that 

the flow of a uniform stream of fluid past a nonrotating circular 

cylinder gives rise to a system of streamlines, as shown in Fig. 

106. The velocity at any point on the surfat^e of the cylinder is 

found in classical hydrodynamics to be 

Vs = 2Fo sin e (1) 

where Vo is the velocity of the stream far ahead of the cylinder 

and 6 is the polar angle that determines the position of the point 

on the circumference for which the local velocity is to bo com¬ 

puted. The flow illustrated in Fig. 106 is represented by Eq. 

(1), and is set up so that its general direction is from right to left. 

The complete development of this flow pattern and the determi¬ 

nation of the value of the velocity at any point are problems 

which are outside the scope of this work. 

Now, if the pressure in the undisturbed stream is represented 

by po and that at a point on the cylinder by p, an application of 

Bernoulli's theorem to these two points shows at once that 
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P = Po + ~(Fo" “ = po + ~(1 - 4 sin2 6) (2) 

Differences in elevation between the two points considered have 

been neglected. The pressure difference p — po may be expres- 

Fig. 107.—Theoretical prcBsuro distribution on a circular cylinder. 

sed as a ratio to pFoV^, the dynamic pressure of the undisturbed 

stream, for from Eq. (2) this ratio is readily found to be 

2-^ = 1 - 4 sin^ 0 (3) 

The nature of the pressure distribution on the surface of the 
cylinder is shown in Fig. 107, in which the values given by Eq. (3) 
have been plotted along the radii corresponding to the different 
values of 6. The boundary of the cylinder has been taken as 
the line of zero pressure difference and all the values are plotted 
radially outward, whether positive or negative. The regions 
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of positive pressure are shaded, while the negative values occur 

in the unshaded areas. It is evident at once that, because of the 

complete symmetry of this diagram, there can be no resultant 

force in either the direction parallel to or perpendicular to that 

of the undisturbed stream; that is, both the lift and drag are 

equal to zero. 

If the cylinder shown in Fig. 106 is supposed to be located in a 

mass of fluid which is completely at rest and if an agency is 

provided whereby the cylinder may be rotatc^d about its axis, a 

circulatory flow such as that shown in Fig. 108 will be produced. 

In order to establish such a flow in a real fluid, it is necessary to 

consid(5r the action of viscosity 

between the cylinder surface and 

the layers of fluid adjacent to it, 

but, once the flow is fully developed, 

it may l>e considered as though it 

were taking place in a nonviscous 

fluid. It is to be expected that the 

velocities produced in the fluid by 

the rotation of the cylinder will 

vary inversely as the distance from 

the center; that is. 
Fig. 108,—Circulatory flow 

around a rotating circular 
cylinder. (4) 

where F is a constant, r is the radius drawn to the point in ques¬ 

tion and V is the velocity perpendicular to that line. Thus, if 

the radius of the cylinder is represented by a, the peripheral 

velocity on its circumference is 

The case of a cylinder rotating in a stream of moving fluid 

may now be considered as a combination of the two flows previ¬ 

ously discussed. The resulting flow pattern is of the character 

shown in Fig. 109a, while the velocity on the circumference is 

now the sum of the values given by Eqs. (1) and (5), so that 

V - 2Fo sin ^ + 7^ (6) 
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There is obviously an increase in velocity above the upper surface 

and a decrease below the lower. The pressures in these regions 

will therefore be lower and higher, respectively, than their values 

for the case of no rotation. Hence it is to be expected that there 

will be a force acting on the cylinder in the direction normal to 

that of the undisturbed stream. If this force or lift is represented 

by L for a unit length of the cylinder in the direction of its axis. 

then, as shown in Fig. 1096, the lift dL on an element of area a dO 
is —pads sin B. The total lift is 

L = ^ (7) 

The value of the pressure p may be obtained by using Bernoulli's 

theorem as in the previous example. With the introduction of 

the value of the local velocity obtained from Eq. (6), the result is 

V-V.+'I’’ - 

When this expression is substituted in Eq. (7) and the integration 

is carried out, the value of the lift force is found to be 

L = prFo (8) 
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A similar evaluation of the drag force shows it to be zero, a 

result which might be expected from the symmetry of the flow 

about the vertical axis. 

Example.—A cylinder 4.2 ft. in diameter rotates about its axis in an air- 
stream having a velocity of 80 m.p.h. It develops a lift of 45 lb. per ft. of 

length. Detonnino the rotational speed and the location of the stagnation 

points, assuming that the flow conforms with the perfect-fluid theory. 

Solution,—Thu lift per unit length is 

from which 
L - pPFo 

L 
pFo 

Assuming the air to be of standard density, 

45 
r = 

0.002378 X (80 X «%o) 
101.3 ft.‘V«cc. 

From Eq. (5), r - 27ra.Fp, where Vp is the peripheral speed of the cylinder. 
Also Vp = 27rrtA/60, N being r.p.m. Hence, in terms of the diameter tf, 

r = 
' 50 

from which 

N - 
60r 60 X 161.3 

(3.14 X 4.2)2 
= 55.7 r.p.m. 

When F = 0, the value of sin 6 from Eq. (6) is 

D/redion afdr^sfm sin d 
4:Ta Fo 

161.3 
= -0.0521 

4 X 3.14 X 2.1 X 117.2 
e = sin-1 (-0.0521) = -3° or 183° 

Problem 178. At what points on the surface of 

the circular cylinder shown in Fig. 106 is the pressure 

difference p — po equal to zero? What are the 
maximum and minimum values of the pressure difference and at what 

points are they found? 

179. A circular cylinder 2 ft. in diameter is rotated about its axis in a mass 

of fluid initially at rest. If the velocity at a point 3 ft. from the surface is 

15 ft. per sec., what is the peripheral speed of the surface of the cylinder? 

180. What values of 0 (see Fig. 109) determine the location of the stag¬ 

nation points of the flow of a uniform stream past a rotating circular cylin¬ 

der? What is the value of the speed ratio VpfVo when these points coincide? 

181. A cylinder of elliptical cross section is placed in a uniform stream of 

fluid, as shown in Fig. 110. The difference in pressure between point B and 
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the undisturbed stream is —0.47 lb. per sq. in. Determine the magnitude 

and direction of the components of this pressure acting parallel to the lift 
and drag axes of the cylinder. 

69. The Circulation.—It will be noted that the constant 

r appears in the expression for the lift force acting on the rotating 

cylinder. It is now necessary to investigate the physical signifi¬ 

cance of this quantity. The value of T may be determined from 

Eq. (5) for the velocity due to the circulatory flow, as 

r = 27raFp (9) 

This quantity is therefore equal to the product of the peripheral 

velocity of the cylinder and its circumference, and is known as 

the circulation. In its most general form, the circulation around 

a closed curve is defined as the integral of the product of the 

tangential comyjonent of velocity multiplied by the corresponding 

elements of length of the path. Hence 

y = fv cos iV,ds)(ls (10) 

in which (V^ds) denotes the angle between the velocity and the 

tangent to the curve. This definition is analogous to that of 

work, for, if the velocity vector is replaced by a force and the 

element ds is considered as a displacement of a mass particle, 

then Eq. (10) would be equivalent to the general definition of 

work in mechanics. The value of the lift per unit length of the 

circular cylinder, as given by Eq. (8), may now be said to be 

equal to the product ejf the density of the fluid, the circulation 

around the cylinder and the velocity of the stream far ahead of 

it. This relationship is known as the Kutta-Joukowski theorem 

and will later be shown to be true for a cylinder of any cross 

section, provided there is a circulation F around it. 

70. The Lift Coefficient.—If the value of the circulation 

around the circular cylinder is determined on the basis of Eq. (9), 

then from Eq. (8) the expression for the lift force per unit of 

length may be written as 

L = 2wpaV^Vo (11) 

Following aeronautical practice, it is convenient to express this 

force in terms of the lift coefficient Ciy that is, 

pFo^ 



134 FLUID MECHANICS [Chap. VII 

where S represents a characteristic area of the body. For bodies 

which produce a lift force, this area is usually taken as that of 

the projection of the body on a plane normal to the direction 

of the lift vector. It should be noted here that the lift force is 

always taken as perpendicular to the direction of the velocity 

of the undisturbed stream far ahead of the body. From Eq. (12) 

it is apparent that the lift coefficient has the value 

C, = (13) 

so that it may be regarded as the ratio between the actual lift 

on the body and the force that would be produced if the dynamic 

pressure of the stream acted at every point of its projected area. 

In the case of the rotating cylinder, the area S for a span of 

unit length is numerically equal to the diameter 2a, so that the 

lift coefficient is 

C t 
2Tr paY pVq 
pFo^ 

2a 

(14) 

Thus, the lift coefficient is directly proportional to the ratio of 

the peripheral and forward speeds of the cylinder, this theoreti(ial 

result being shown in graphical form in Fig. 111. 

It is now of interest to compare the theoretical value for Cl 
given by Eq. (14) with the results obtained experimentally. 

In order to duplicate experimentally the conditions that have 

been set up in the theoretical development, it is necessary to 

find some way of obtaining a two-dimensional flow, since it is, 

of course, impractical to make the cylinder of infinite length. 

This has been accomplished with good success by attaching 

plates in the form of circular disks to the ends of the cylinder so 

as to eliminate as far as possible any lateral flow that would 

otherwise take place in these regions. 

Tests have been made in this way in an airstream by Ackeret, * 

and his results are shown by the experimental curve in Fig. 111. 

The agreement is not at all satisfactory, the principal reason 

‘ MtiLLER, W., ^^Mathematische StrCmungslehre,^^ p. 118. Julius 
Springer, Berlin, 1928. 
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for the discrepancy being that the theoretical value of the 

circulation is not developed in the actual flow. For the values 

of VpfVo between zero and unity, it appears that there is an 

appreciable lag in the transfer of the circulatory motion from the 

cylinder to the surrounding fluid. In the range from Fp/Fo = 1 

to about 3, the lift coeflScient increases in approximately a linear 

manner but the rate is considerably less than the theoretical 

value of 27r. Beyond Fj,/Fo = 3, the rate of increase of Cl 
becomes considerably less and, while the experimental curve 

shown does not giv(^ a definite maximum value, it appears that a 

value of Cl between 9 and 10 is the highest obtainable and would 

Vo 

Fig. 111.—Variation of lift coefficient with speed ratio for a rotating cylinder. 

correspond to a speed ratio between 4 and 5. In general, it can 

be said that all these differences are due directly or otherwise to 

the effects of the viscosity. In spite of the fact that there are 

large differences between theory and experiment, it should not be 

considered that the theory is entirely worthless, because it does 

give a satisfactory explanation of the general nature of the flow 

and presents a good qualitative representation of it. 

Problem 182. A cylinder 2 ft. in diameter is rotating about its axis at 

120 r.p.m. in an airstreain having a velocity far ahead of the cylinder ot 

25 m.p.h. What are the values of the lift per foot of length of the cylinder 

and the theoretical lift coefficient? 

188. Determine the values of for points on the surface of a cir- 

cular cylinder rotating in a uniform stream when the speed ratio Vp/Va 



136 FLUID MECHANICS [Chap. VI T 

is 1.5. Take values of B in increments of 10 deg. and plot the results in the 
manner used in Fig. 107. 

184. What is the lift coefficient for a rotating cylinder 6 in. in diameter 
if the lift force on it is 400 lb. per ft. of length when it is moving through 
water with a velocity of 20 ft. per sec.? What is its rotational speed in 
r.p.m., assuming the Kutta-Joukowski theorem holds? 

186. A cylinder 1.5 ft. in diameter is rotated at 250 r.p.m. in an airstream 
having a velocity of 100 m.p.h. and develops an actual lift of 18 lb. per ft. of 
length. What is the ratio between the actual and theoretical lifts? 

71, The Lifting Vane.—There are bodies, such as airplane 
wings, whieli are capable of producing a lift force when moved 
through a mass of fluid. Such bodies may be considered under 
the general classification of lifting vanes and it is now proposed 

Leading edge 

attack Direction of stream 
Fig. 112.—Cross section of a typical lifting vane. 

to discuss the theory of lift as applied to bodies of this kind. As 
in the case of the rotating cylinder, the lifting vane will be 
considered as a cylinder of infinite length placed in a stream of 
fluid perpendicular to the generators of the cylinder. A typical 
cross section of such a vane is shown in Fig. 112. In determining 
the shape of the section, some arbitrary line, usually drawn 
tangent to the undersurface and through the rear edge, is chosen 
as a base line. The projection of the vane section on the base 
line is known as the chord, and the base line is frequently referred 
to as the chord line. The inclination of the section is used in 
evaluating the forces acting on it and is determined by the value 
of the angle between the chord line and the direction of the 
undisturbed stream of fluid. This angle is called the angle of 
attack. The forward or novse portion of the section is called the 
leading edge, while the rear portion, which is frequently sharp, is 
known as the trailing edge. 

In developing an expression for the lift force acting on this 
(cylinder, it is convenient to consider first a row consisting of an 
infinite number of such blades or vanes of identical shape, as 
shown in Fig. 113. These vanes are placed at the same angle 
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of attack, with the forward edges on a line MN perpendicular 
to the direction of the stream of fluid and uniformly spaced along 
the row at a distance h apart. With this arrangement the flow 
pattern will repeat itself periodically, the distance between cor¬ 
responding streamlines being equal to the blade spacing. The 
lines AB and CD are to be regarded as two such streamlines, the 
lines AC and BD being drawn parallel to MN. The average 
velocities over the lines AC and BD are represented by Vi and 

M 

F2, respectively, their components in the direction perpendicular 
to MN being Ui and 1^2, while those parallel to MN are vi and v^. 
The corresponding average pressures are pi and p2. 

It is now proposed to study the relationships between the 
various forces acting on the fluid enclosed within the area ABDC, 
a slice of unit thickness in the direction normal to the cylinder 
generators being selected for this purpose. In considering those 
components acting parallel to ilfiV, upward forces and velocities 
will be treated as positive. There are no forces acting in this 
direction on the ends AC and BD, and any forces due to pressures 
acting on the streamlines AB and CD will exactly balance 
because of their identical shape. There is no flow across the 
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streamlines AB and CD, but there is a flow through ends AC and 
BD which involves a change in momentum. The mass of fluid 
entering the space ABDC in unit time through the face AC is 

m = phui 

and the vertical component of its momentum, in the upward 
direction, is 

ikfi = phUiVi 

Considering the flow to be steady, the same mass must leave 
through the face BD and its vertical momentum is 

M2 = phu 1V2 

The density is considered constant throughout. The force re¬ 
quired to produce the change in momentum of the fluid is 

M2 — Ml = phui(v2 — Vi) 

and the force L on the vane is 

L = Ml — M2 = pliui{vi — V2) (15) 

For the direction perpendicular to MN, the change in momen¬ 
tum of the fluid in unit time is 

M2 — Ml = phui{u2 — wi) 

But in order to satisfy the condition of continuity, 

hui == hu2 or Ui = U2 

and this change in momentum is therefore equal to zero. The 
force due to differences in pressure on the ends of the area acting 
in the directions Ui and U2 is h(jpi — P2). Since the change of 
momentum in this direction is zero, the total force on the body 
ABDC in this direction is also zero. Then the pressure force 
must be equal and opposite to the force exerted by the vane. 
The force or drag on the vane is 

D = h{pi - P2) 

According to Bernoulli's equation, 

Pi + = P2 + 
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and, on introducing the components of the resultant velocities 
and noting that Ui = U2, this relation may be put in the form 

Pi - P2 = - Vi^) 

Thus the drag is 

D = (16) 

In the case of the rotating cylinder, it was found that the 
circulation around the cylinder was of considerable importance 
in the determination of the value of the lift force. It is now 
proposed to determine if such a relationship exists for the lifting 
vane. If a positive circulation around the area ABDC is taken 
in the counterclockvdsc direction, then 

r = h{px - v^) (17) 

and the substitution of this value in Eqs. (15) and (16) leads 
to the results 

L = pYui (18) 

Z) = - (19) 

In order to determine the values of these force components 
for a single blade acting independently, the spacing between the 
blades is increased indefinitely, the blade within the area ABDC 
being fixed in position. At the same time the end sections AC 
and BD are moved infinite distances ahead of and behind the 
vane. During this process the circulation is to be kept constant; 
it follows at once from Eq. (17) that, if h approaches infinity, 
then in the limit 

i;i — 1)2 = 0 or Vx = V2 

But at an infinite distance ahead of the vane the stream is per¬ 
pendicular to the line MN so that Vi, and therefore V2f must be 
equal to zero. After this limiting process is carried out, there 
remains only a. single blade immersed in an infinite stream of 
fluid and having a circulation T around it. If the velocity of 
the stream at infinity is represented by 7o, then the force com¬ 

ponents acting on this blade are 

L - pTVo (20) 
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and 
2> = 0 (21) 

It will be noted tha-t these results are identical with those obtained 
for the rotating cylinder. Thus, in its general form, the Kutta- 
Joukowski theorem states that, for an infinitely long cylinder of 
any cross section having a circulation T around it, the lift force 
per unit of length, measured perpendicular to the undisturbed 
stream, is given by Eq. (20). As in the case of the rotating 
cylinder, tlie circulation around a lifting vane produces an 
increase in the velocity on the upper surface and a decrease in 
the velocity on the lower surface as compared with the values 
that would exist if there were no circulation. The application of 
Bernoullitheorem shows at once that there must be a suction 
on top of the vane and an increase in pressure underneath it. 
The lift forc'e may be regard('d as the resultant of the upward 
components of these pressures. 

The theoretical result that the drag force or resistance to 
motion is equal to zero is an example of the so-called paradox of 
D'Alembert and is, of course, contrary to observed facts. This 
paradox results from the facts that no consideration has been 
given the effects of viscosity in producing skin-friction forces 
over the surface of the vane and also that the flow is assumcKl 
to be streamline in character throughout and without any forma¬ 
tion of wake or eddies behind the body. Actual lifting vanes, 
such as airplane wings, are of finite span and there is an additional 
source of drag in the flow that is produced at the tips. This 
problem of the so-called induced drag will be discussed in Chap. 
XII. 

72. The Development of Circulation.—In the study of the 
dynamics of the rotating cylinder, it was not difficult to explain 
how the circulation in the surrounding fluid was prodin^ed. The 
rotational motion of the periphery of the cylinder and the acjtual 
viscosity of all real fluids are the conditions responsible for the 
development of the circulation in this case. In the case of a 
lifting vane, tlie production of circulation is a much more com¬ 
plicated process and requires more detailed study. The explana¬ 
tion presented here is essentially that given first by Prandtl.^ 

^ Prandtl, L., Applications of Modern Hydrodynamics to Aeronautics, 

NACA Tech, Kept, 116. 
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In the classical hydrodynamics of nonviscous incorapressibh^ 
fluids, it is demonstrated that, for any curve drawn in a body of 
fluid so as to consist always of the same fluid particles, the 
circulation along that curve remains constant with time. On the 
basis of this statement, which is known as Thomson\s theorem, 
it would appear that, if a body of fluid is initially at rest and is 
to be made to flow past a lifting vane, then no circulation can b(j 
developed because of the fa(*.t that its value was initially zero and 
must remain constant with time. There is a theoretical flow 
which satisfies these conditions and there are also indications 
obtained from visual studies of actual flows that in the early stages 
of its development the flow is of this type, that is, without circula¬ 
tion. However, the theory also shows that, for a lifting vane 
set at an inclination so that the lift is different from zero, the 
velocity at the rear edge of the vane tends to become infinite. 
Such a velocity could not exist in nature; in the actual flow, differ- 
eiK^es from the theorc^tical pattern of streamlines are first noted 
in th(' neighborhood of the rear edge. It is found that the layers 
of fluid which pass ov(^r the upper and lower surfacjes of the vane 
meet at the trailing edge with slightly different vekxdties, with 
the result that at first a so-called surface of discontinuity is 
formed, across which there is a sudden variation in the magnitude 
of the velocity. Such a surface is inherently unstable and very 
quickly rolls up into an eddy or vortex, which is a type of cir¬ 
culatory flow that is accompani(‘d by a circulation. The details 
of the process by which the surface of discontinuity and the subse¬ 
quent eddies an? formed will be discussed more completely in 
the chapter that follows. 

The eddy generated at the rear edge of the vane increases in 
strength until the circulation accompanying it reaches a value 
which produces a finite velocity at the trailing edge of the vane. 
The flow is then fully developed and steady conditions prevail 
if no alteration is made in the velocity of the main stream or in 
the position of the vane. The generation of this so-called starting 
vortex is accompanied by the production around the wing itself 
of a countercirculation whose strength is equal but opposite to 
that produced by the eddy. For a curve surrounding the entire 
system of wing and starting vortex, the total circulation is equal 
to zero in accordance with Thomson's theorem. A stage in the 
development of this flow is shown in Fig. 114. 
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In the actual flow, the eddy, after reaching the proper strength, 
breaks away from the airfoil and moves downstream with the 
general fluid motion, leaving behind only the circulation around 
the vane. Thus the starting eddy is of significance only in 
explaining how the circulation around the vane originates; once 
the circulation is fully developed, only its final value need be 
considered in computing the lift force acting on the vane. 

73. The Lift Coefficient for the Lifting Vane.—The theoretical 
determination of the value of the circulation around a lifting 
vaiK^ which will lead to the proper adjustment of the velocities 
at the rear edge of the vane is a problem of too advanced a nature 
to consider here. The basis of the method involves the use of a 

Fig. 114.—Development of circulation around a lifting vane. 

conformal transformation of the circular section with its accom¬ 
panying translatory and circulatory flows into a shape suitable 
for a lifting vane. The application of this method requires a 
rather extensive use of the theory of functions of complex vari¬ 
ables and only the final results can be presented in this text. 
For a lifting vane whose chord is Z, the theory shows that finite 
velocities will be maintained at the rear edge if the circulation 
around the vane has the value 

r = ttZFo sin ao (22) 

In this expression ao denotes the inclination or angle of attack 
of the section referred to the direction of the undisturbed stream 
and measured from the zero lift axis. This axis is ordinarily 
drawn as a line through the rear edge of the section parallel to 
the direction of the fluid stream when the lift force is equal to 
zero. In practice it is frequently more convenient to measure 
the a,ngles of attack from the chord line rather than the zero lift 
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axis, so that, if ^ represents the angle between these two lines as 
shown in Fig. 115, then 

cxo = a P (23) 

a being the angle between the chord line and the velocity vector. 
Thus the circulation may also be expressed in the form 

r = tIVo sin (a + 13) (24) 

The substitution of the valu(^s in Eqs. (22) and (24) for r in 
Kq. (20) for L gives 

The lift coefficient is now de~ Oirecfhnofflow 

fiiKMl as for the rotating cylinder, attack for a lifting vane, 

the area employed being the 
product of the chord and a unit di.stance in the direction of 
the length of the vane. Thus the value of Ci, is 

Cl 
L 

2”^ 

= 2'7r sin ao 

or, in terms of a, 

Cl = 2ir sin {a + 

(26a) 

{26h) 

Comparison of th(> tln'oretical values of the lift coefficient 
with those found experimentally shows that the theory is valid 
only for a small range of angles above and below the zero lift 
position. For most sections this range varies from about 
+10 to ±20 deg., so that it is usually permissible to consider the 
sines of the angles involved in Eqs. (26a) and (266) as equal to 
the angles themselves when measured in radians. The lift 
coefficient may then be expressed in the approximate forms 

Cl = 27rao (27a) 

and 
Cl = 27r(a + fi) (276) 
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It thus appears that for a small range of values, at least, the lift 
coefficient is a linear function of the angle of attack. It is equal 
to zero when a = —p. Experimental tests have been carried 
out in which the condition of two-dimensional flow in planes 
normal to the length of the vane was maintained. The results^ 

cc 
Fi(i. 116.—-Theoretical and experimental curves of Cl versus a for a Joukowski- 

type lifting vane of infinite length. 

for a vane known as the Joukowski type are showm in Fig. 116 
The agreement here is much better than that obtained in the 
case of the rotating cylinder, but it still leaves something to be 
desired. The two values of the angle of zero lift are reasonably 
close, while the experimentally determined slope of the curve is 

^ Pbandtl, L., Applications of Modern Hydrodynamics to Aeronautics, 

NACA Tech. Rept. 116. 
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somewliat less than the theoretical value. The most noticeable 
difference is found for angles beyond 10 deg,, at which the 
(‘Xperimental curve shows a maximum while the theoretical one 
continues on upward as a sine curve [see Eq. (265)] and would 
have a maximum value at an angle of 90 degrees. The condition 
that is responsible for the falling off of the lift in the actual case 
is known as burbling or stalling of the flow and involves the 
separation of the fluid from the upper surface of the vane and the 
formation of a strong eddying wake behind it. Thus the flow no 
longer is of the streamline (diaracter assumed in the theory and 
as a consequence the results cannot be considered as at all 
satisfactory beyond the position for which this burbling phe¬ 
nomenon begins. Th(‘ detailed nature of the mechanism of 
separation can be explained only by considering the effects of 
viscosity and its discussion will therefore be postponed to 
Chap. XII, in whicli problems of skin friction and resistanc^e in 
geiKTal are treat(‘d. 

The difference between the theoretical and exp(;rimental 
values of the lift curve slope is due to the fact that tlie vane does 
not operate at the full theoretical efficiency in the reduction of 
circulation. Experimental data are available which indicate 
that the lift for(*e is x)roperly given by Eq. (20) if T is also deter¬ 
mined from exj)erimental measurements of the velocity field 
around the vane. The expressions for the lift coefficient are 
more nearly correct w\wn written in the forms 

and 

Cf, = 2Tkao (28o) 

Cl — 27rk{a + (3) (28fc) 

where k is an efficiency factor which for usual vane sections has 
a value of approximately 0.885. These last equations are, of 
course, valid only for angles of attack below the stalling position. 

Example.—An airplane weighing 4500 lb. has a wing area of 210 sq. ft. 

and a span of 35 ft. Determine its lift coefficient when flying horizontally 

at 185 rn.p.h. in air of standard density. Compute the theoretical values of 

the circulation and the angle of attack measured from the zero lift axis. 

Solution,—In level flight the weight is equal to the total lift; hence 
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from which 

2TV _ 2 X 4500 

pFo-.S 0.002378(185 X »?6o)' X 210 

The circulation may be obtained from the Kutta-Joukowski theorem, 

L - pFoF, where L is the lift per foot of span. Then for the entire wing of 

span b 

Lt ~ pVoVh 

or 

Y — _ = 199 ft" /see 
“ pV,h - 0.002378 X 271 X 35 ^ 

The angle of attack measured from the zero lift axis is obtained from the 

equation Cl — 27rQ5o so that 

^ 0.245 

27r 6.28 
- 0.039 rad. = 2.24° 

An alternative method is to use the relation F — irlV^ sin ao, where I is the 

chord. Assuming a rectangular wing planform, 

7 ^ A 
' = 6 = -35 ® 

F 199 
sin oq = —iTT = ■ ^ ~ u.uoy 

TrlVa 3.14 X b X 271 

ao - 0,039 rad. - 2.24° 

Problem 186. Calculate the theoretical lift force per foot of span and the 

lift coefficient for a lifting vane placed in an airstream with its chord line at 

an angle of attack of 5 deg. The angle 

of zero lift is —4 deg., the velocity of the 

stream is 80 m.p.h. and the chord of the 

Fig. 117. vane is 1ft. 

187. The circulation around a lifting 

vane of 5-ft. chord is 500 ft.^/sec. when placed in an airstream having 

a velocity of 90 ft. per sec. Determine the theoretical values of the lift 

per foot of span, the lift coefficient and the angle of attack measured from 

the zero Lift axis. 

188. A lifting vane has a symmetrical cross section, as shown in Fig. 117, 

the axis of symmetry being used as the chord line. What are the values of 

the theoretical lift coefficient at angles of attack of 0, 5 and 10 deg. ? 

189. What is the theoretical value of the angle of zero lift for a vane 

having a lift coefficient of 1,2 at an angle of attack of 10 deg.? 

190. The wing of an airplane has an area of 100 sq. ft. and the airplane is 

flying at 126 m.p.h. in standard air. What is the weight of the airplane if 

the lift coefficient is 0.64? 



Aht. 74] DYNAMIC LIFT AND PROPULSION 147 

191. What is the effi(!iency factor for a vaiic if its angle of zero lift is 

— 3 deg. and its lift coefficient is 1.00 at an angle of attack of 8 deg. measured 
from the chord line? 

74. General Characteristics of Blade Screws.—The lifting 
vane as described in the preceding articles is primarily a device 
for the production of a force at right angles to its motion. The 
blade screw in general consists ol a number of blades or arms 
mounted radially around a center or hub and rotating about an 
axis through the center in a plane perpendicular to the axis. 
As a result of such rotation, there is usually produced a force 
in the direction of the axis of the screw known as the thrust. The 
exact nature of this force will depend on the form of the blade 
screw and also on whether it is placed in a stream of fluid moving 
normal to its plane of rotation, whether it is mov(id in the direc¬ 
tion of its axis through a stationary mass of fluid or whether it is 
merely rotated in a body of fluid at rest. Tlu^re are then three 
principal types or classes of blade screws typified by the windmill, 
the proi)eller and the fan. 

The propeller is caused to rotate by the application of a 
torque from some suitable power unit. Its major function is to 
dc'velop an axial thrust by means of which the machine to whicdi 
it is attached may be made to move. The most familiar applica¬ 
tions of the propeller are found in aircraft and water craft. 

The windmill type of screw is acted upon by a current of fluid 
moving in the direction of its axis which causes it to rotate. The 
rotation of the blades develops a certain torque which may be 
utilized for the generation of power. This action also results 
in the development of a thrust in the direction of motion of the 
fluid stream, but this force does no useful work. 

In the case of the fan, its rotation in a body of stationary 
fluid causes the fluid to move in the direction normal to the 
plane of rotation. In some cases the fan may be placed in a 
closed duct so that the fluid approaches the plane of rotation with 
some initial velocity. The action of the device is then quite 
similar to that of the propeller, with the exception that in the 
case of the fan it is usually desired to give the mass of fluid 
the highest possible velocity, while with the propeller the princi¬ 
pal function is the production of the largest possible thrust. 

The shape of the blades of a screw depends largely on the 
purpose to which the screw is to be put, but in general the 
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blades resemble the airplane' propelk'r and the watcM* turbine 

runner shown in Fig. 118. 

(«) (/>) 

Fig. IIS.—Examples of blade-serew forma. 

(а) Controllable-pitch airplane })r()peller. {(Uturirsu Hamilton Standard 

Propellers.) 
(б) Nagler propeller-typo water turbin,e runner, {('ourfe.sp AUis-Chalmers 

Manufactvring (Uympany.) 

If the airplan(‘ propelh'r is moving upward, as shown in Fig. 
119, with a velocity Fo and at the same' time is rotating about 

Vo 

Fig. 119.—Resultant velocity at the blade element of an airplane propeller. 

its axis at a speed such that the element at A has a peripheral 
velocity equal to Vp, then the resultant velocity of A is 

p* = vtvnv (29) 
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Now the .section throuj2;h the blade of the propeller at the point 
A is generally constructed in the form of a lifting vane set so that 
its chord line is inclined to the plane of rotation at an angle d, 
known as the blade angh^. This arrangement is sliown in Fig. 
120, which is a projection in the plane of Vo and Vp of the blade 
section and velocity vectors shown obliquely in Fig. 119. The 
vertical line OB at the right of the diagram repn'sents the axis 
of rotation, while the liorizontal distance^ OA is equal to th(‘ 
radius d/2 of the circh^ on which the blade element rotatc^s. 
This distance may also be used to repres(ait the peripluu'al 

Fig. 120.—Velocity and force components for a i>ro]>eller-l)hide ehmiont. 

velocity Vp == irru/ in which n represents the rotational speed 
of the blade in revolutions per second. If Vp is laid off on a scal(‘ 
of 1 ft. = 27m ft. per sec., then OA may be considered as the 
vectorial representation of Vpj its direction being from O toward 
A. The forward velocity Fo ndative to the blade element is 
directed vertically downward and may be laid off to the same 
scale along the axis of rotation with the forward end of the 
vector located at 0. The resultant velocity Vr is the vector 
sum of Vp and Vo and is directed as shown in the figure. Thus 
it appears that the blade section is operating at an angle of 
attack a whos(' valuta is 

(30) 
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where D is the over-all diameter of the propeller. The ratio 
Fo/n reprcvsents the distance that the blade element advances 
in the time required to make one revolution and is therefore 
known as the advance per turn. The quantity Vq/uD is called 
the advance-diameter ratio of the screw. 

If the propeller were operating as a mechanical screw in a 
solid medium, the blade element would advance in one revolution 
a distance parallel to the axis equal to 

p = wd tan 8 (31) 

This distance is known as th(' g(^ometri(* pitch of the section. 
In Kg. 120, the angle BAG is equal to 0, and, if OA is considered 
as the radius d/2j then 

so that 

tan 6 — 
OB 
d/2 

In general, the blade angle 8 is not constant along the radius, 
the blades being twisted. The pitch therefore will vary from 
one section to another, but in practice propellers are specified 
by the value of their nominal geometric pitch, which is arbitrarily 
taken as the value of p for the section at two-tbirds of the tip 
radius from the center. The nominal pitch is usually given as 
a ratio to the propeller diameter. 

The advance per turn for a blade screw represents the actual 
distance that an element moves forward in one revolution and 
is sometimes called the effective pitch. The value of the effective 
pitch when the thrust produced by the section is equal to zero 

is called the experimental pitch. The 
advance per turn when the thrust of 
the whole propeller is zero is known as 
the mean experimental pitch. 

Example.—An 8.5-ft.-diameter propeller 

rotates at 1750 r.p.rn. and moves forward at a 

velocity of 210 m.p.h. Determine the angle 

of attack of the blade element at 75 per cent 
of the radius if its blade angle is 32 deg. What are the values of the 

geometric and effective pitches for this element? 
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Solution.—The forward velocity is 

Fo = 210 X 8%o = 308 ft./sec. 

The peripheral speed at the blade element is 

6.28 X 0.75 X 4.25 X 1750 Vf, 27rrn 
60 

584 ft./sec. 

Then, as shown in the figure, the angle between the resultant velocity and 
the instantaneous plane of rotation is 

tan-' - tan-' = tan-' (0.r)28) - 27°49' 

The angle of attack is 

« = , _ tan-' (L“) 
= 32^ - 27°49' = 4m' 

The geometric pitch is 

p = ird tan - 3.14 X 0.75 X 8.5 X 0.625 = 12.52 ft. 

The effective pitch is 

V, 
n 

- 308 
1750 

60 
10.54 ft. 

76. The Blade-element Theory.—It api)ears from the last 
article that the ekunents of a blade screw may be regarded as 
lifting vanes which move along helical paths. In the case of 
the propeller, th(‘r(» will consequently be a resultant force pro¬ 
duced on the elenu'iit which will have components of lift and drag 
respectively perpendicular and parallel to the direction of the 
resultant motion. These components are shown in Fig. 120. 
The resultant force R may also be split into components parallel 
and perpendicular to the axis of rotation. The component T 
parallel to the axis is the thrust produced by the element, while 
Fq, taken at right angles to the axis, is the torque force which 
must be overcome by the source of power that drives the pro¬ 
peller. Inasmuch as the lift and drag forces acting on the blade 
element are dependent on the angle of attack a, it is apparent 
that the thrust and torque force will also be functions of this 
angle. Furthermore, since a as given by Eq. (30) is a function 
of the advance-diameter ratio, Y^jnD^ it is to be expected that 
this ratio should be a parameter of fundamental importance in 
the study of propeller operation. This is true of all types of 
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blade screws. In studying their performance it is standard 
practice to consider the variation of such quantities as thrust, 
torque and efficiency with the advance-diameter ratio as the 
independent variable. 

Th(‘ analysis of the performance of a blade screw, based on a 
study of the behavior of the individual elements, regard('d as 
lifting vanes, constitutes the so-called blade-element tlu^ory 
which was first proposed by Drzewiecki.^ The compl(‘t(‘ applica¬ 
tion of this method requires the determination of the thrust and 
torque components for a number of sections of the blades, and 
the values for the entire s(*Tew are then found by integration 
along the radius. In some special cases this int('gration may 
be carried out analytically, but in the majority of cases graphical 
methods are employed. In any cas(' the ])roc(‘dure is quite 
involved and lengthy and will not lx* taken up in detail here. 
The reader who is interested in th(' subject will find full discus¬ 
sions in the literature.^ 

Problem 192. A proj7(‘ller rotates at ISOO r.p.m. in an 

airstream having a velocity of 175 ni.p.h. Tlie f)lade angle of the section at 

two-thirds of the radius is 30 deg. (a) What are tlie angle of attack and the 

resultant veUxtity? {h) Doterinine the valix^s of the (‘lenuaitary thrust and 

torque fonte per foot of t)lade length at this section due to the lift, if the lift 

coefficient is 0.27 and the chord is 8 in. N(igleet the drag force. 

193, The ratio of tin; g€Knnetric pitch to the over-all diameter for the 

blade element of a 7.5-ft.-diameter propeller at one-half the radius is 0.6. 

If the effective pitch is 3.23 ft., what are the angle of attack and the advance- 

diameter ratio? 

194. A 12-ft..-diameter propeller has the blade sections sot. at a constant 

angle of attack of 2 deg. when the forward speed is 120 m.p.h. and the 

propeller is rotating at 1500 r.p.m. Determine the blade angles of the 

sections at 25, 50, 75 and 90 per cent of the radius. 

76. The Momentum Theory of Propellers.—The earliest 
application of the screw-type propeller is found in the case of 
seagoing vessels. The first attempts to develop a propeller 
theory were therefore made by men working in this field, the 
originator of the theory being W. J. M. Rankine. Extensions of 

’ Pronounced Je-vee-yeCski. 
2 Weick, F. E., ^^Aircraft Propeller Design,” McGraw-Hill Book Company, 

Inc., New York, 1930. 

Glauebt, H., “Airplane Propellers,” Div. L of “Aerodynamic Tht^ory,” 

edited hy W. F. Durand, Julius Springer, Berlin, 1935. 
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Rankine^s work were made by R. E. Froude. The basic concept 
of the Rankine-Froude theory is that, as the fluid passes through 
the disk swept out by the propeller blades, its relative velocity 
with respect to this disk is made greater than the velocity with 
which the propeller is advancing. The body of fluid that has 
passed through th(' propeller disk is known as the slipstream and, 
as a result of the increased mouientum of this slipstream, a 
thrust is produced on the propeller. 

In setting up the propeller problem so as to apply the momen¬ 
tum theorem to it, it is convenient to make use of the principle 
of relative motion and to consider the propeller as rotating at a 
fixed position in space while a stream of fluid moves past it, as 
shown in Fig. 121. Far ahead of the propeller there is a current 
of fluid of infinite extent moving in the direction of the propeller 
axis with a uniform velocity Vo. As the fluid approaches the 
propeller disk, the velocity of the i)ortion of the stream directly 
in front of the disk is increased to a value Vi. At the propeller, 
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this body of fluid, which constitutes the slipstream, has the same 
diameter D as the propeller, while far upstream, where the veloc¬ 
ity is Fo, its diameter is larger and is represented by Do. The 
fluid, after passing through the propeller, experiences a further 
increase in velocity to the value V2, with an accompanying reduc¬ 
tion in slipstream diameter to D2. The boundaries of the slip¬ 
stream are tlie heavy curved lines shown in Fig. 121. 

In the simple momentum theory, th(' propeller is treated as 
an actuator disk which is responsible for the change in velocity 
of the slipstream. Accompanying this change in velocity, 
there is also a variation in pressure. Far ahead of and behind 
the propeller, the pressure is that of the undisturbed fluid, repre¬ 
sented by po. As the a(;tuator disk is approached, the pressure 
drops to Pi in accordance with Bernoulli\s theorem, but in passing 
through the disk the pr(\ssure experiences a sudden increase. 
Bernoulli’s theorem cannot be applied directly from one side of 
the propeller to the other because of the fact that energy has 
been added to the lluid at the actuator disk and the total head of 
the fluid is therefore increased. On the downstream side of the 
propeller the pressure is therefore p/ and from this value it 
decreases to po at a great distance away. The variations in 
velocity and pressure along the axis of the slipstream are indi¬ 
cated qualitatively in Fig. 121. 

The mass of air passing through any s(^ction of the slipstream 
in unit time may be computed on the basis of conditions at the 
propeller. This mass is 

ttD^ 
m = -j-pVi 

The flow through the slipstream is assumed to be continuous so 
that initially this same mass had a velocity Fo, while far behind 
the propeller it has acquired a velocity F2. The change in 
momentum in unit time is therefore equal to 

AM = m(F2 - Fo) 

This change in momentum is equal to the force acting on the 
propeller in the direction opposite to that of the flow; if this 
force or thrust is denoted by T, the result is 

T = - Fo) (32) 
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It is now necessary to find some relation between the velocities 
involved in h]q. (32). The thrust may also be calculated by 
considering it as equal to the force produced by the difference in 
pressure on the two sides of the actuator disk. When Bernoulli\s 
theorem is applied to the flow to the left of the propeller, the 
result is 

Z^o + ‘2' Z>i + 
pFi 

while for the downstn^am side 

Z>o + 
2 Vi + 2 

The value of tlu^ desired pressure difft^reiice may be found by 
subtracting the first of these equations from the second. This 
value is 

Pi' - P. = ^(^2^ - 

Hence the thrust of the propelh^ is equal to 

T = - F„2) (33) 

A comparison of the values of T given by Eqs. (32) and (33) 
indicates that the velocities must be related so that 

F. = (34) 

Thus the slipstream velocity at the i)ropeller is the arithmetic 
mean of the velocities far ahead of it and behind it. 

Then the total increase in velocity through the slipstream is 
divided so that half of this increase takes place ahead of the 
propeller and the remaining half behind it. 

The energy absorbed by the propeller may be calculated in 
either of two ways. This power may be considered as equal 
to the work done by the propeller on the fluid in unit time and is 
therefore 

E - TV I 
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If the value of T as given by p]q. (33) is introdueed, the expression 
for this energy ])eeoinos 

K = -^-pV,{V^ - V^) 

SiiK^e the mass of fluid passing through the slipstream is 

'in = ~^f)V\ 

it is seen at once that the above (expression is equivalent to the 
change of kinetic energy from one end of the slipstream to th(' 
otluer. 

The theoretical efficiency of the propeller may now be ('Xpress(ed 

as the ratio between the work done by the thrust of the propcll(‘r 

in advancing with a velocity W and the energy absorbed hv it, 

that is, 

^ TVo ^ Vo ^ 2Vo 
tK f. V2 + Vo 

If the total increase in slipstream velocity, Vz — Fo, is repre¬ 
sented by AF, then the velocity at the propeller is 

Fi = F„ -h 
AF 

so that the efficiency may also be expressed in the form 

Fo 
V = 

F„ + 
AF (36) 

The thrust as given by Ecp (33) may be written in the form 

T = - Fo)(F, -b Fo) 

The first term in parentheses is the total increase in slipstream 
velocity, AF, while the second term may be written as 

F2 + Fo - (F2 -- Fo) + 2Fo = 2Fo + AF 
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Substituting these quantities in tlu* above expression for 
the result is 

T 

This last ox})rossion may b(‘ considerc'd as a quadratie equation 

in AV. The value of AT in terms of the thrust is found to be 

AV — — I'o + H-Wo" 

Only the positive root of the radical is of any physical significance. 

It is now convenient to introduce a thrust coefficient into this 

expression. There are a number of different forms emi)loyed 

but the one most commonly used in the United States and Eng¬ 

land is defined by the equation 

T = Crpn^)^ (36) 

in which n is the rotational speed in revolutions i)er second and 

Ct is a nondirnensional co(?fficient. The value of the velocity 

increase in terms of Ct is 

so that the relationshi}) V)etween efficiency and thrust coefficient 

finally is 

The power absorbed by the propeller may also be conveniently 

expressed in terms of a power coc'fficient such tliat 

E = (38) 

so that an alternative formula for the efficiency is 

Problem 196. A propeller 5 ft. in diameter moves through water at 

20 m.p.h. If i< develops a t hrust of 3200 lb., what is the total increase in the 
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relative velocity of the slipstream? What is the relative velocity at the 

propeller? 

196. An 8.5-ft.-diameter airplane propeller develops a thrust of 1200 lb. 

when flying at 110 m.p.h. and at a rotational spt'cd of 1500 r.p.m. Com¬ 

pute the values of the thrust coefficient, the ideal efficiency and the advance- 

diameter ratio. What is the theorf^tical value of tlu' povv er absorbed by the 

propeller? 

77. Comparison of the Momentum Theory with Experimental 
Data.—It is now of considerable interest to make a comparison 

0 0.2 0.4 0.6 0.8 1.0 1.2 

JSl 
nD 

Fiq. 122.—Typical performance curves for a model propeller. {Durand, W. F., 
Tests of Thirteen Navy Type Model Propellers, N AC A Tech. Rept. 237.) 

of the results derived from the above analysis of propeller per¬ 

formances with those obtained experimentally. Tests on pro¬ 

pellers are carried out by having the propeller mounted on a 

test stand so that the torque and thrust developed by the entire 

unit may be measured at various values of the advance-diameter 

ratio. A typical set of test results for a model airplane propeller 

having a pitch-diameter ratio of 1.0 are shown in Fig. 122, in 

which the values of Ct, Ce and ri have been plotted against 

Vo/nD. The theoretical values of the efficiency, based on Eq. 

(37) and using the experimentally determined thrust coefficients, 
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are also shown. The theoretical efficiency curve is seen at once 

to be considerably higher than the experimental one, owing 

mainly to the fact that the tln^ory is based on a numlx^r of 

simplifying assumptions. It lias been assumed that the propeller 

blades can be rotated witliout any frictional losses, while such 

questions as rotational flow and interference have also been set 

aside. Thus, while the theondicai efficiency approaches a unit 

value when the thrust coefficient axiproaches zero, the actual 

(‘fficiency drops to zero at this point because of the fact that the 

power coefficient is still finit(‘. In spite of the large discrepancies 

between the theoretical and actual efficiency curves, the theory is, 

nevertlu‘less, of considerables usc^ in that the theoretical efficiency 

rejiresciits an ideal that an actual propeller may only partially 

ap})roach. 

A more detailed study of the })ropell(‘r would involve con¬ 

siderations of the effi'ct on ])(Tformaiice of such cliaracteristics 

as blade planform, sha})(\s of vane sections, variations of the 

nominal pitch and the variation of pitch along the radius. 

The operating characteristics of fans and windmills may also be 

studied by applications of the momentum theorem similar to 

that Lisc'd for the propeller, but it is not possible' to consider these 

problems in detail In^re, 

General Problems 

197. A (urcular c.yliiKlor 8 ft. in (liaiiu'le'r is mount (id with its axis veirtical 

on a flat car and is rotated at 225 r.p.in. The ear moves along a straight 

track at 30 m.p.l). into a head wind of 20 m.p.h. which is directed at an angle 

of 30 deg. to the track. What is the lift force i)er foot of length of the 

cylinder and what is its component along the tracjk? 
198. Calculate the circulation and theoretical lift per foot of length for a 

cylinder 3 ft. in dianuder if the velocity at the point 6 = 45 deg. (see Fig. 109) 

on its surfa(;e is 30 ft. per sec. The cylinder is rotating in an airstream hav¬ 

ing a velocity of 20 ft. per sec. 
199. The landing speed of an airplane, which is determined by the 

maximum lift coefficient of its wings, is to be 75 m.p.h. Assume that the 

airplane is flying at sea level in standard air. (o) If the wings carry an 

average load of 20 lb. per sq. ft., what is the maximum value of the lift 

coefficient? (6) If the airplane weighs 4200 lb. and the maximum lift 

coefficient of the wings is 1.3, what is the wing area? 
200. A plank having an area of 20 sq. ft. is towed under water at a velocity 

of 25 m.p.h. If its lift co(ffiicient is 0.64, what load will it support, neglect¬ 

ing buoyancy? 
201. A kite is made in the form of a plane surface having an area of 12 sq. 

ft. It is flown in a horizontal wind current having a velocity of 15 m.p.h. 
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sf> that its surface makes an angle of 0 deg. with the horizontal as shown in 
Fig. 123. If the string is at an angle of 45 dog. with the horizontal and has 

a pull of 2 lb., what is the weight of the kite, assuming that it develops its 

full theoretical lift? 
202. The blade element at the three-quarters radius section on an 8-ft.- 

diameter propeller has a blade angle of 19 deg. The lift and drag for(*es on 
this element are 20.7 lb. p(T ft. and 
1.78 lb. per ft., respectively. Th(i 

forward velocity is 120 ft. per sec. and 

the rotational spec^d is 1250 r.p.m. 

Determine the values of the thrust and 
torque force per foot of blade length 

acting on this element and the angle of 

attack of the element. 

203. A 10-ft .-diameter propeller has 
the blade element at two-thirds of the radius set at a blade angle of 25 deg. 
Determine the value of its angle of attack for rotational specnls of 1000, 

2000 and 3000 r.p.m. wlien the forward velocity is 120 m.p.h. If the 

blade section develops its maximum lift coefficient at an angle of attack of 
12 deg., what should be the limiting value of the rotational speed of this 
propeller? 

204. A 7-ft,. propel I(‘r is mounted on a test stand in an airstream having a 
velocity of 90 m.p.h. At a rotational speed of 1200 r.p.m. th(‘ UKuisiired 

values of the thrust and power input are 750 lb. and 240 hp., respectively. 
Determine the values of thrust and power coefficients and the ideal and 
act uai efficiencies. 



CHAPTER VllI 

THE FLOW OF VISCOUS FLUIDS 

78. Effect of Viscosity.—In the foregoing pages the discuissions 
liave dealt with ideal or perft'ct fluids; gases have been assumed 
to be without viscosity and perfectly elastic; liquids have been 
taken as non viscous and incompressible. In hydrostatics thes(^ 
assumptions do not introduce any error except in the case of 
liquids at extremely high pressure. In dealing with flowing 
fluid, however, an explanation of many of the phenomena 
requires an adequate conception of viscosity and its effect. This 
is true not only when the flowing fluid is oil, as in lubrication 
problems, or some oth(‘r of tlie many viscous materials found 
in engineering and industry, l)ut also in dealing with air and 
water, the common(\st of flowing fluids. Even though the latter 
are of relatively low viscosity, this property is often the prime 
factor in determining the quantity or character of their flow. 
Viscosity is in fact th(' greatest singh' differences between ideal 
and real fluids and for that reason this chapter is devoted largely 
to a consideration of its nature and effect on fluid flow. 

79. Reynolds’ Experiment on Flow in Pipes.^—In the earlier 
discussion of nonviscous fluids, the flow was clasvsified as steady 
motion or unsteady motion, having in mind the flow of the stream 
as a whole. The same classification can be made in the case of 
viscous fluids. It is important to note, however, that, even 
if the motion of a stream as a whole is steady, conditions at 
points within the stream may be quite unsteady and the detailed 
structure is very complicated. The nature of this deviation 
from steady flow within the stream is defined most clearly by 
describing the classical experiments of Osborne Reynolds,^ an 
English scientist, who was the first to demonstrate its existence. 

^ Reynolds, 0., An Experimental Investigation of the Circumstances 
Which Determine Whether the Motion of Water Will Be Direct or Sinuous, 
and of the Law of Resistance in Parallel Channels, Phil Trans. Roy. Soc.^ 
London^ 1883, or Sci. Papers, vol. 2, p. 11. 

161 
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Reynolds^ experiments werci made with an apparatus such as 
that shown in Fig. 124. A straight pit'ce of round glass tube 
with a flared inlet is placed in a glass-walled tank full of water at 
rest. One end extends through the wall of the tank and is fitted 
with a valve that controls the rate of flow. A small reservoir of 
colored liquid is arranged so that it dis(diarges the dye through a 
fine nozzle into the inlet end of the tube with the same velocity 
as the water, and the behavior of this jet of dye indicates qualita¬ 
tively the type of flow in the pipe. 

Wlien the velocity in the tube was maintainc^d at a sufficiently 
low value, the jet of dye traveled down the pipe as a straight line 
without appreciaVde disintegration as shown in Fig. 125a, 
indicating the existence of what Reynolds termed direct^’ or 
^bstreamline” flow. This type of motion was steady in character. 
The next step in the experiments was to increase the velocity of 
flow until a speed was reached at which the jet of dye no longer 
traversed the length of the pipe as an unbroken hne, but mixed 
more or less completely with the surrounding water, indicating a 
condition of flow which Reynolds called sinuous.In the 
latter case, shown in Fig. 1256, the motion as a whole could still 
be regarded as steady in character if the pressure in the pipe and 
the rate of discharge were maintained as constant, but in its 
detailed structure the flow was unsteady. 
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80. Laminar and Turbulent Flow.—The most commonly 
used modern terms for the two kinds of motion seen in Reynolds' 
experiment arc laminar and turbulent and these expressions 
will be employed throughout the remainder of this work. Lam¬ 
inar flow is also deseribi^d as viscous or nonsinuous motion. 
These two types of motion also characterize many cases of flow 
other than that in pipes, for example, the flow near the surface 
of an airfoil or sphere. 

In laminar flow the fluid moves in parallel laminas or layers, 
the velocities in these; laminas not ne(*essarily being the same, and 

Streamline or laminar flow. 

{h) Sinuous or turbulent flow. 
Fia. 125.—Tyi>es of flow in pipes. 

at any point in the fluid the velocity is independent of the time. 
In turbulent flow the velocity at any point may be varying both 
in magnitude and in direction with time, while the average 
velocity may vary from point to point just as in laminar flow. 
Thus, in the case of a two-dimensional or plane flow which is 
turbulent, the velocity components at a particular point might 
be represented by expressions of the form 

u = u + u' V — V + v' (1) 

where u and v are the time averages of these velocity components 
and in general are functions of the coordinates of the point, while 
w' and v' are the deviations from these average values and are 
functions of the time as well as the coordinates. Ordinarily 
the deviations are rather irregular functions of time. 
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As will be shown later, there is a fundamental criterion which 

determines whether a fluid motion is of the laminar or of the 

turbulent type. In the case of Reynolds^ experiments, with 

water at a given temperature and for a pipe of a given diameter, 

the average velocity of the flow is the determining factor. The 

shape of the entrance to the pipe and the condition of the water 

in the tank before the valve is opened are other factors of great 

importance. Although considerable information can be obtained 

about the nature and value's of this crite'rion both by theoretical 

and by experimental methods, there is at present very little 

knowledge of the actual mechanism that is involved when a 

flow changes from laminar to turbulent. The situation is 

somewhat analogous to that which existed in the science of 

electricity a decade or so ago, before the developments of modern 

physics, in that it is at pn^sent possible to calculate the (effects 

of this flow phenomenon although there is no completely satis¬ 

factory theory as to its inherent character. 

81. Basic Hypotheses Concerning Viscosity.—In considering 

the effect of viscosity on fluid flow, it is first necessary to intro- 

(a) Ib) 
Ficj. 126.—Motion of a viscous fluid particle. 

duce two fundamental assumptions. These assumptions form a 

basis for certain theories and will be justifi(id by a comparison 

of such theories with experimental results. The first of these 

assumptions is that, wherever a fluid is in contact with a solid 

boundary or wall, there is no motion or slip, relative to the bound¬ 

ary, of the fluid particles immediately adjacent to it. In other 

words, the fluid adheres or sticks to the boundary surface. The 

second assumption was first introduced by Newton. His 

hypothesis states that the shearing stress between adjacent layers 

of fiuid of infinitesimal thi(*-kness is proportional to the rate of 

shear in the direction perpendicular to the motion. If a particle 

of fluid, shown in Fig. 126a with sides of lengths Ax and Ay, is 

set in motion with a velocity u on its lower surface and u + Au 
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on the upper, it will be distorted into the form shown in Fig. 

1266. The rate of shear in tlie direction normal to the motion 

is then Au/Aj!/ if the particle is assumed to be moving in the 

a:-direction. In a general case the vekxaty u will vary with both 

coordinates x and y for points throughout the fluid, so that, if 

the particle is infinitesimally small, the limiting value of the rate 

of shear at any point is dufdy, the partial dc'rivative of ii with 

n^spect to y. This expression is often called tln^ velocity gradient. 

Newton’s assum])ti()n in r(‘gard to the value of the shearing str(\ss 

r at any point in th(' fluid may now be written as 

T = M 
du 

dy 
(2) 

where fj. is a coefficient of ))roportionality. 

An analogy is oftcai drawn betw(‘en tlie coefficient g and the 

shear modulus of elastic* matc^rials. The latter is the ratio of 

shear str(\ss to unit deformation while fu, may be written as 
T . 

shear stress to transverse velocity gradient. 

There' is, however, an important distinction between the effects 

of shear strc'ss on solids and on liquids, in that a given stress on a 

solid produce's a definite deformation while a given stress on a 

fluid produces continuous deformation at a definite rate. 

82. Definition of Viscosity.—In the study of the mechanics of 

(elastic solids, the coeffickmt of proportionality between stress 

and strain is known as the modulus of elasticity. A similar 

proportionality factor in the mechanics of visc^ous fluids is 

represente^d by the coefficient jjl which appears in Eq. (2) and 

is known as the coefficient of visc*osity or, more simply, the 

viscosity. The nature of this coefficient may l)e indicixted more 

clearly by considering the laminar motion of a viscous fluid 

bounded by tw^o flat parallel plates, one of wdiich is stationary 

and the other moving parallel to its surface with a constant 

velocity V. The plates are assumed to be very large so that the 

flow may be considered as twm-dimensional; a cross section of 

it made by a plane perpendicular to the plates and parallel to 

the direction of motion is shown in Fig. 127. If the upper plate 

is the one which is in motion with a velocity V and if the velocity 

of the fluid is referred to axes fixed with respect to the stationary 

plate, then, according to the fundamental hypothesis of no slip 
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at the boundaries, the fluid must have zero velocity at the lower 

plate and a velocity equal to V at the upper. The particles 

in the uppermost layer are carried alon|>; with the moving plate 

and this layer in turn imparts a forward motion to the one 

immediately below it, this effect being transmitted downward 

through the fluid with an intensity that diminishes as the dis- 

Fiq. 127.—Laminar flow between parallel plates in relative motion. 

tance from the uppcT plate is increased. Thus at any point at a 

distaiKie y above the lower plate the velocity is 

u (3) 

where h is the distance between the plates. The rate of shear is 

dlt T 
— = y and in this case is constant throughout the fluid. Then 

the shearing stress at any point is 

(4) 

The force necessary to move the plate against the resistance 

produced by the motion of the fluid is simply the value of r 

multiplied by the area of the plate. A force of the same magni¬ 

tude, but acting in the opposite direction, must also be applied 

to the stationary plate to hold it in a fixed position. 

This arrangement of two parallel plates separated by fluid 

serves as the basis for the standard definition of the coefficient 

of viscosity as first proposed by Maxwell. If Eq. (4) is solved 

for /i, the result is 
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If the velocity of the moving plate and the gap between the 

plates are both taken as unit values, thc'u ju is exactly equal in 

magnitude to the force per unit area acding on either plate. 

MaxwelPs definition of viscosity stated in words is as follows: 

If two horizontal plane surfaces are t)laced parallel to one 

another and at a unit distance apart, the space between them 

being completely filled with fluid, and if one plate is moved in a 

direction paralhd to its surface with a unit velocity relative to 

the other, then the forca^. per unit area acting on either plate 

in the form of a resistance to the motion is numerically equal to 

the viscosity or coefficient of viscosity of the fluid between the 

plates. 

In dealing with viscosity mathematically it is convenient to 

take jx from Eq. (2), that is, 

^ "" du/dy 

and treat it as ihc ratio of shear stn'ss to transverse velocity 

gradient. Maxwelks definition merely refers to a special (;ase 

of this more general iormula. 

83. Kinematic Viscosity and Fluidity.^—In some problems it is 

convenient to introduce a modified form of the coefficient of 

viscosity which is obtained by dividing the value of /x by the 

density of the fluid, p. This quantity, which is usually denoted 

by the symbol v, has the value 

and is known as the kinematic coefficient of viscosity, as dis¬ 

tinguished from the coefficient p, which is frequently called the 

absolute viscosity. 

Fluidity is a term used to indicate the facility with which 

a fluid flows. . Qualitatively this property is the antithesis of 

viscosity, and quantitatively it is the reciprocal of the absolute 

viscosity. Then the fluidity is 

1 
<p = - (8) 
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The specific viscosity of a fluid is defined as the ratio of its 

absolute viscosity to that of water at 20°C. Laboratory and 

commercial methods for the determination of these various 

coefficients will be studied in Chap. XVI, while numerical values of 

/X and V for some of the commoner fluids will be given in Art. 88. 

84. Dimensions and Units of Viscosity.—The coefficients of 

viscosity as defined by the statements given in the two i)rec('ding 

articles are not diniensionl(‘ss quantities since their valu(\s will 

depend on the units (unifloyed for their measurement. On 

introducing the fundamental units of mass, length and time in 

Eq. (5), 

_ h _ force length _ /ML l\/ L \ M 

^ ~ ~ area velo^ ' V ~ Lf 

from which it appears that m has the dimensions MjLT. The 

coefficient of viscosity may thus be measurcHl in slugs divided 

by foot-s(‘conds in English units, or in grams mass divided by 

centimeter-seconds in the metric system. Tliis latt(‘r combina¬ 

tion of units is called a poise in honor of Poiscaiille, one of the 

earliest expcirimenters in the field of viscous fluid motion. The 

poise may be divided into 100 equal parts, giving the unit known 

as the centipoise. It happens that the viscosity of water at 

20°C. is almost exactly 1 centipoise so that the viscosity in centi- 

poises is numerically equal to the specific viscosity as defined 

in the last article. 

The kinematic coefficient of viscosity as defined by Eq. (7) 

is readily seen to have the dimension L-/T, that is, feet squared 

per second or centimeters squared per second. The unit of 

kinematic viscosity in the metric system is known as the stoke 

in honor of Sir George Stokes, an English mathematician who 

(‘ontributed much to the theory of viscous fluids. A one-hun¬ 

dredth part of a stoke is called a centistoke. 

The problem of conversion of the units of viscosity from one 

system of measurement to the other requires some detailed 

attention. Confusion sometimes results because of the fact 

that most data on viscosity are found in tables prepared by chem¬ 

ists and physicists, in which an absolute system of units is 

employed, while in engineering work the gravitational system is 

commonly used. For comparison, the absolute and kinematic 
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viscositios of air will now be expressed in both met rie and Englisli 

units. 

The ^dscosity of air at 15°C. and a pressure of 1 atmosphere ns 

given in the International Oitieal Tables’ is 

jjL == 1.783 X 10“'’ —~— or poises (10) 
cm. see. 

Since the dimensions of yu are M/LT, it is apparent that the gram 

used in Eq. (10) is the gram mass. This unit is defined as the 

mass of 1 cc. of water at 4°(\ and a pressure of 1 atmospliere. In 

order to find the kinematic viscosity of air, its dcaisity must hv 

determined in the same units as those used in h]q. (10). The 

specific gravity of air is 

Specific gravity = ^ 1.225 X lO”*’ 

and, since the density and specific gravity are numerically equal, 

the density of air at 15°C. is 

p = 1.225 X 10-3 g./cm.3 

The kinematic viscosity of air is then 

- ^ - 1-783 X 10~^ g./cm.sec. 
^ p ^ 1.225 X 10-3 g./em.3 

= 1.456 X 10“^ cm.V>soc. 

This value may be convertc'd to the English system of measure¬ 

ment by changing centimeters to feet. Thcui 

The absolute viscosity p may be exprc^ssed in the English 

system by multiplying tlu^ above value of u by the density 

expressed in the proper units. The density of air is 

p = 0.002378 slugs/ft.3, 

so that 

p = 1.567 X 2.378 X 10-^ (ft.Vsec.) (slugs/ft.3) 

= 3.726 X 10"^ slugs/ft.sec. (11) 

1 ''International Critical Tables/^ vol. V, pp. 2-3, McGraw-Hill Book 

Company, Inc., New York, 1926—1930. 
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The value of jjl in English units may also be obtained directly 
from Eq. (10) if the proper units of mass are employed. In 
order to carry out this conversion, it is necessary to determine 
the relation between the gram, which is the unit of mass in the 
metric systt'm, and the slug used in the English system. In 
the absolute metric system the unit of mass is the gram and the 
unit of force is the dyne, which is that force which will give a 
mass of 1 g. an acceleration of 1 cm. per sec. per sec. The 
weight of a gram mass or the force produced on it by gravita¬ 
tional attraction is therefore 981 dynes. In the gravitational 
system this force is regarded as the unit of weight and is known 
as the gram weight. Hence 

1 g.wt. = 981 dynes 981 g.cm./sec. 
or 

Ig. 
_ 1 g.wt. 

981 cm./sec. “ 

But 
1 g.wt. = 0.002205 lb. 

and 
1 Ib. = 1 slug ft./sec.2 

Also noting that 981 cm./sec.^ = 32.2 ft./sec.2, the equivalent 
of the gram mass is finally found to be 

_ 0.002205 slugs ft./sec.2 

32.2 fi7/s^ 
= 6.85 X 10~^ slugs 

If this relationship is introduced into the value of /x as given 
by Eq. (10), and the unit of length in centimeters occurring 
therein is changed to feet, then 

_ 1.783 X 6.85 X 10“® slugs 
M - 1 /on - - ft.sec. 

= 3.723 X 10 

1/30.48 

7 

ft.sec. 

which agrees closely with the result given by Eq. (11). 
In comparing the two systems of units, it should be noted 

that in the English gravitational system of measurement there is 
available the unit of mass known as the slug, which is equivalent 
to a 1-lb. force divided by a unit acceleration, while in the 
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absolute metrie system the unit employed is the gram mass, whieh 
is equal to a gram weight dividend by the acceleration of gravity. 

Problem 206. The space between two parallel horizontal platc's which are 

3^2 in. apart is filled with oil having an absolute viscosity of 0.032 slugs per 
ft. sec. If tlie upper plate is moved with a velocity of 10 ft. per sec. and the 

lower one is stationar}^, what, is the shear stress in the oil? 

206. The absolute viscosity of a fluid having a spe^cific gravity of 0.8 is 
0.890 poises. I)et(*rrnine the kinenuitic viscosity in stokes and tlie fluidity. 

207. The absohde viscosity of wat(‘r at 15°C. is 0.01144 poises. Compute 

the kinematics viscosity in stokes and th(^ kinematii; and absolutes viscosities 

in the English system. 

208. Tlie kiiifunaticr viscosity of an oil is 0.017 ft.'”^ per sec. and the 

specific gravity is 0.86. Determine the absolute viscosity in the English 

and iru'tric systems and the kinematic viscosity in the metric S3\stem. 

86. Laminar Flow in Circular Pipes. The Hagen-Poiseuille 
Law.—One of the carli(\st important studies in the field of vis(‘ous 
flow wtis an (‘xperijncntal inv(‘stigation of the (‘l)ara(;teristics of 
laminar flow in strjiight pip(\s of circular cross section. This 
work was doiK^ indt'pc'udtaitly by two men, the first being Hag(*n, 
a German (aigiiKKU’ whoso results w(‘r(‘ publish(‘d in 1839, while 
the scKtond investigation was that of Poistmille, a French staentist, 
whose first work on tlu^ subjiad- was issut^d in 1840. Hagen 
experimented with water flowing through brass tub(\s, while 
Poiseuille workial wit h water flowing through fine capillary tubes, 
sinc(^ he was interc'sted in the behavior of blood as it Hows through 

the veins of the body. 
As a result of the studies of Hagen and Poiseuille it was 

determined that the quantity of a given viscous liquid which 
flows through a small tube in a given time is proportional to the 
pressure differenct) causing flow, to the fourth power of the 
diameter of the tube, and inversely to its length. This is known 
as the Hagen-Poiseuille law. 

This law was later derived theoretically, and will be proved 
here by considering the equilibrium of a body of fluid moving 
through a pipe. In Fig. 128 are shown the longitudinal and 
cross sections of a horizontal straight circular pipe of int(^rnal 
diameter d. The flow is laminar in character and is assumed to 
be steady; attention is to be focused on the cylindrical portion of 
fluid, MNOP, of length I and diameter 2y, If the fluid is moving 
from left to right through the pipe, there being an average 
pressure pi on the left end and p2 on the right, then the force on 
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the cylinder in the direction of motion produced by this pressure 
diflFerence is 

(pi - P2)7ri/2 

If it is assumed that the flow is steady and that the velocity does 
not change along any line parallel to the axis of the pipe, then 
there is no accelerating force acting on any of the fluid particles. 
There is, however, a force du(^ to the shearing stresses a(*ting 
on the outer surface of the cylinder of fluid. Since the velocity 
is independent of Xy the distance measured along the axis of the 
pipe from some convenient origin, the velocity gradient need no 
longer be written as the partial derivative of u with respect to y 

but is now equal to du/dy so that the shearing stress at any point 

i 

Fio. 128.—Laminar flow in a circular pipe. 

is T = iJL{du/dy), The total shear force on the outside of the 
cylinder is the product of the shear stress and the area of this 
cylindrical surface or 

du^ 7 

The negative sign is nece^ssary because, with the coordinate sys¬ 
tem here employed and with the velocity greatest at the center, 
du is a decrement. 

Since the cylindrical body is in uniform motion, which is a 
c.ondition of equilibrium, the sum of the axial forces is zero, or 

(pi - P2)ry^ = -ix~2iryl 

which may be simplified to give the differential equation 

^ _ (pi - pdy 
dy 2ixl 

(12) 
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This expression when integrated gives the result 

u — + A 

The constant of integration A is determined by the fact that 
there is no slip of fluid at the boundary so that, when y = d/2y 

u = 0, which requires that A have the value 

(Pl - P2)j 
A = 

The velocity at any point is thus found to be 

u = (13) 

indicating that the maximum velocity oc(*urs at the center of the 
pipe and has the value 

IQijlI 
(14) 

Equation (13) also indicates that the distribution of velocity is 
in thf> form of a paraboloid of revolution or that for the longi¬ 
tudinal section shown in Fig. 128 it is a parabola. The average 
velocity may be readily dett^rmined by integration or more simply 
by recalling that the average height of a paraboloid such as that 
represented by Eq. (13) is one-half of the maximum ordinate. 
Thus the value of the average velocity is 

y ^ (pi - P2)(P 
32/xZ 

(15) 

The discharge or quantity of fluid passing any section in unit 
time is the product of the average velocity and the area, that is, 

Q - 
Tf(Vi - P2)d^ 

12Sfxl 
(16) 

This equation is a mathematical statement of the Hagen-Poiseuille 
law. It indicates that the discharge from a pipe under steady 
laminar flow is directly proportional to the pressure difference on 
the ends of the pipe and to the fourth power of its diameter and is 
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inversely proportional to the viscosity and to the length of the 
pipe. 

The validity of the Hagen-Poiseuille law lias been well 
established not only by the experiments of the m(‘n whose 
names it bears but also by many otluT investigators. Because 
of the excellent agreement betw(^en theory and experiments, 
the latter serve as verifications of the hypotheses that the shearing 
stress in a viscous fluid is directly proportional to the velocity 
gradient and that the fluid in contact with a solid boundary must 
be at rest with respect to it. 

It follows from the above discussion that laminar flow in a 
pipe is meiely a continuous deformation of the fluid. In Fig. 129, 

a ^-^ 

b n 

c 
d P- 

Ficj. 129.—Result of laminar flow in a pipe. 

for example, particles of fluid at a, d, m and p do not move, but 
such particles as &, c, n and o take the positions V, c', n' and o' after 
time tj so that the fluid which was in the cylinder ampd is then 
bounded by the pipe and the paraboloids ah'd and mn'p. In 
the same time any similar body of fluid in the pipe undergoes a 
like de^formation. 

86. Loss in Head in Laminar Flow through a Pipe.—The 
application of the Hagen-Poiseuille law to engineering work is 
usually concerned with the calculation of the loss in pressure or 
head due to viscosity. For a given discharge, Eq. (16) may be 
.solved for pi — p2, the rf^sult being 

Pi - P2 = 
l2%Q}d 
~ Trd^ 

(17) 

This pressure difference may be expressed as a difference in head 
by dividing both sides of Eq. (17) by w, the specific weight of the 
fluid. Thus 

USQfil 
hi — h% = 

wd^w 
(18) 

This last formula may be still further modified by substituting 
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pg for w and then replacing the quotient jjl/p by the kinematic 
vLscosity v, so that finally 

, , USQvl 
hi- h ^ 

Problem 209. An oil havin^^ an ylKsoliite viscjosity of 0.001 slugs per ft. 

sec. flows through a l-in.-diaiueter pipe at an average velocity of 1.00 ft. per 

sec. Compute the pressure drop in 100 ft. of pipe and the velocity at a 

distance of 0.25 in. from the wall of the pip(‘. 

210. A liquid having a viscosity of 250 centipoises flows through a pipe 

10 cm. in diameter with a-n average velocity of 50 cm. per sec. Plot curves 

showing the distribution of vcdocity and shearing stress in a c.ross stadlon of 
the pipe. 

87. Motion of Bodies through a Nonturbulent Fluid. Stokes’ 
Law.—The probhnns so far discussed in connection with the 
laminar motion of viscous fluids have, for the most part, been 
concerned with the moveni(‘nt of the fluid past stationary bound¬ 
aries. Anotlier group of problems which is of great importam^e 
treats of the resistance to motion produced by moving a solid 
body through a mass of fluid that was initially at rest. Sucii 
problems an^ freqiKvitly found in aeronautics and in marine and 
automotive (‘iiginec'ring. The mathematical tlu'ory involved in 
the solution of these ])roblems is extremely complicated and 
results have been obtained for only the simplest forms, such as 
the sphere and an infinit(‘ly long circular cylinder moving at 
right angles to its axis. No attempt will be made to discuss the 
theoretical details except to mention that the fundamental 
hypothesis on which tlu' problems have been solved is that the 
motioJi is such that the inertia forces on the fluid particles may be 
negh^cted in comparison with the shearing forces due to vis(;osity. 

In the case of a sphere moving with a constant velocity V 

through an infinite mass of fluid, it has been found that the resist¬ 
ance opposing the motion has the value 

D == (20) 

where yu, as before, is the coefficient of viscosity and d is the 
diameter of the sphere. This formula is known as Stokes^ law 
and was first demonstrated by him in 1851. Experimental 
data on the resistances of spheres will be disc.ussed in detail in 
Chap. XII, but at this point it may be mentioned that Stokes’ 
law holds only for a very restricted range of conditions. In the 
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case of ordinary fluids, such as water and air, the size of the sphere 
must be so small as to be practically microscopic in character, 
while with larger spheres, either the fluid must be extremely 
viscous or the velocity must be very low. These latter cases are 
often referred to as '^Teeping^’ motions. 

In spite of these restrictions Stokes^ law has not been without 
its practical applications. For example, it forms the basis for 
one method of measuring viscosity and has also been used to 
advantage in investigating the settling out of material susp(‘nded 
in liquids and in solving problems in diffusion. A recent applica¬ 
tion of much interest is conc(‘rn(‘d with the amount of ash deposit 
from stack gases in the vicinity of coal-burning power plants.^ 

88. Numerical Values of Viscosity.—In using the equations 
of the previous articles in this chapter, it is necessary to have 
some numerical data on viscosity. Air, water and castor oil are 
examples of fluids of low, medium and high viscosity. The 
accepted values of the absolute and kinematic, viscosities of these 
fluids under standard (conditions anc given in Table IV. 

Table IV.—Viscosity of Air, Water, and Castor Oil at kSTANDARD 

Conditions of 59°F., 29.92 In. Hg (15®C., 760 Mm. Hg) 

Fluid 

Absolute viscosity, n Kinematic viscosity, v 

Poises 
Slugs per 

ft. S(‘C. 
Stokes 

Sq. ft. per 

sec. 

Air. 1.783 X 10-4 
1.144 X 10-2 

15.14 

3.723 X 10-^ 

2.389 X 10 "^ 
3.16 X 10-2 

1 

1.455 X 10-1 
1.145 X 10-2 

15.70 

1.566 X 10-4 

1.232 X 10-i» 

1.690 X 10-2 

Water. 

Castor oil. 

The values of n in poises given in Tables IV, V and VI are taken from '‘International 

(Critical Tables,’' McGraw-Hill Book Company, Inc., New York, 1926-1930. 

The range of values of absolute viscosity for a few common 
liquids at room temperature is indicated below in poises. 

Liquid Viscosity, Poises 

Gasoliiie. 0.003-0.006 

Kerosenes. 0.02 

Light lubricating oils. 0.025-1.5 

Medium lubricating oils. 1.5 -3.5 

Heavy lubricating oils. 3.5 -20 

^ CROFr, H. O., The Calculation of the Dispersion of Flue Dust and 

Cinders from Chimneys, Trans, A.S.M.E.^ vol. 57, pp. 5-10, 1935. 
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Viscosities of a few common gases in poises are as follows: 

Oas and temporaturo 
Viscosity, 

j)ois(‘.s 
(ins and tcMUperatiin^ 

Viscosity, 

poises 

Hydrogen at 20.8°C. . . . 0.000089 Steam at lOO^C. 0.000127 
Helium at 21.4"C. 0.000199 St(v!m at 207”C. 0.000168 
Nitrogen at 23®C. 0.000177 Methane at 100° P. 0.000115 
Oxyg(‘n at 23°C. 0 000204 Carbon dioxide at 21 °C . . 0.000148 

89. Effects of Temperature on Viscosity.—The effects of 
cluinges in temperature and pressure on the vdscosity of fluids 
are best studied separately. It has airt^ady been nu^ntioned in 
Chap. I, Art. 10, that liquids and gases are o}q)Osite]y affc'ctc'd 
by changes in temperature, liquids exhibiting a decrease and 
gases an increase in visc^osity with an increase in tempc'raturc'. 
Water and air may be taken as examples of a liquid and a gas. 
The ivLct that they behave in opposite ways under a change in 
temperature is verified by the data given in Table V. Empirical 

Table V.—Viscosity of Air and Water at Various Temperatures 

(Pressure = 700 Mm. Hcj) 

1 

Temperature, 

°C. 

1 

Water Air 

M X 102 
poises 

Density, 

g. per cc. 

M X Kb 
poises 

0 1.793 0 9998 1.709 

20 1.008 0.9982 1.808 

40 0.653 0.9922 1.904 

60 0.469 0.9832 1.997 

80 0.357 0.9718 2.088 

100 0.283 0.9584 2.175 

200 2.582 

300 2.946 

400 3.277 

500 3.583 

formulas representing the variation of the viscosity of water 
and air are also available.^ Helmholtz, using Poiscaiille's 

experiments, found that for water 
iLamb, H., Hydrodynamics/^ 5th ed., p. 545, Cambridge University 

Press, 1924. 
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0.01779 
I + 0.03368^ + 0.00022(j99^2 (21) 

while for air, according to Griiidley and Gibson, the viscosity is 

= 0.0001702(1 + 0.00329^ + 0.0000070/2) (22) 

In these expressions t is the temperature in dc’jgrees centigrade and 
is the vis(;osity in poises. 
The variation of viscosity with temperature is especially 

important in the case of lubricating oils since an oil that is 
satisfactory at the beginning c^f operation of a bewaring may be 
insufficiently viscous when the full operating temperature is 
reached. On the other hand, an oil that is suitable for high- 
temperature work may have suc^h a high vis(‘Osity at low tem¬ 
peratures that considerable^ difficadty may be ex])erienced in 
starting the machine after it has been allowed to cool off. Thc^ 
effect of temperature on oil is illustrated by the figures on caistor 
oil given in Table VI. 

Table VT.—Viscosity of Castor Oil at Various Temperatures 

(Pressure - 760 Mm. Hg) 

Ternpeniiure, 

“C. poi.ses 

Dim.siiy, 

g. p(T CO. 

5 37.60 0.9707 

10 24.18 0.9672 

15 15.14 0.9638 

20 9.86 0.9603 
25 6.51 0.9569 

30 4.51 0.9534 

35 3.16 0.9499 
40 2.31 0.9465 
65.6 0.605 0.9284 

100 0.169 0.9050 

90. Effect of Pressure on Viscosity.—The effect of changes of 
pressure on the viscosity of fluids is practically negligible under 
ordinary conditions. Some liquids, such as ether and benzene, 
show a very slight increase while water exhibits a decrease in 
viscosity with increasing pressure, but in all these cases the 
changes are unnoticeable except at extremely high pressures. 
Liquid carbon dioxide behaves in much the same manner as ether 
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and benzene, })ut the changes in viscosity are appreciable in 
inagnitiide only in the neighborhood of the critical temperature 
where the licjuid l)e(‘omes gaseous in form. A(^cording to the 
kinetic theory of gases, the viscosity of such fluids is independent 
of the pn^ssure and this statennait is corro}>orat('d l^y the available 
experimental evidence, with the exception that the vis(a)sity 
shows rather large variations in value wlien the gas is near its 
critical temperature. In the case of lubrifaiting oils, the viscosity 
increases with the pressure much fasten for mineral oils than for 
the fixed oils, a fact wliich is of consideral^h^ importan(*(‘ in the 
operation of bearings under heavy loads. Tlie effect of pressure 
on the viscosity of Mobiloil is shown by the following data.* 

Gage ])ressure. Mt 
kg. per srp cm. poises 

0 0.495 

74.25 0.578 

227.6 0.755 

550.5 1 .519 

864.6 3.355 

1019 5.105 

1134 7.630 

1164 10.950 

91. Dimensional Homogeneity.—The general problem of 
fluid mechanics is to det,(‘rmine and to describe completely the 
nature of the flow of a fluid with respect to a certain specified 
arrangc'inent of boundari(‘s. As a part of this problem, it is 
frequently desirable to obtain an expression relating the funda¬ 
mental quantities that characterize the fluid and its motion. 
Thus, earlier in this chapter formulas w(ue given for the loss in 
head involved in the laminar flow of a viscous fluid through a 
circular pipe and for the resistance experienced by a sphere when 
moving with a constant velocity through a viscous fluid. In 
the majority of flows, particularly those concerned with viscous 
fluids, it is not possible to derive such relationships by analytical 
methods and it then becomes necessary to resort to experimental 
means. If, however, some indication is given of the important 

^Landolt-Bornstein, “Physikalisch-chemische Tabellen/' vol. I, p. 

169, Julius Springer, Berlin, 1923. 



180 FLUID MECHANICS [Chap. VIII 

quantities on whieli the flow depends and whether or not there 
is any partieular eombination of them which is significant, the 
experimental WH)rk can be more readily systematized, and in 
some cas(\s (*onsiderably reduced in amount. 

The process of determining the })roper (combination of the 
significant physical quantities in any flow may be carried out 
by the methods of dimensional analysis. The basic primdple 
of this method is that any equation relating physical magnitudes 
must be dimensionally homogeneous. In other words, if a. 
formula is to represent an (‘xpression for resistance to the motion 
of a body through a fluid, tlicn, since the rc'sistance is a force, 
the quantities on which this force d('pends must be so arrangc^d 
that th(dr combination will also have tlu' dinKmsioiis of a force. 
In applying this method it is usually convenient to nnluce all 
quantities to the fundamental units of mass, length and tim(\ 
These units are designated as fundamental because no on(‘ of them 
involves (dther of the others. If the problem at hand involves 
three distinct quantities, then, since there are three fundanumtal 
dimensions, it is possible to determine completely the form of 
their combination. If thenc are four quantities, three of them 
can be expressed in terms of the fourth but the problem cannot 
be solved completely exc(q)t by more detailed analyticcal or 
experimental methods. 

92. Application of Dimensional Analysis to Pipe Flow.—As 
an example of an application of the methods of dimensional 
analysis, the problem of the head lost due to friction in a circular 
pipe, as studied in Arts. 85 and 86, will be considered. Equation 
(18) of Art. 86 for the loss in head was 

(2S) 

Since the discharge is Q 

be written in the form 

Ai 

The form of this equation can be found by dimensional analysis 
if it is assumed that the loss in head is dependent on the mass 
density, the viscosity, the velocity and the pipe diameter. Equa¬ 
tion (24) also contains the length of the pipe but this may he 

= and w = gpy this may also 

32Vfxl 
— 

d^pg 
(24) 
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oxpresHed as a constant times the diameter. The acceleration g 

which appears in Eq. (24) will be omitted because of the fact 
that neither inertia nor gravitational forces are involved in the 
flow as it was originally set up. 

It is now assumed that the loss in head along the pipe may be 
written in the form 

hi — hn = /(p, p, F, d) 
or 

hi ~ hi ~ kp^fjL^V^d*' (25) 

in which k is a nondimensional coefficient of })ro})ortionality 
and a, 6, c and c are undetermined exponents. The left side of 
Eq. (25) represents a head which is measured in units of length. 
Expressing all tlie (juantitic's in this equation in terms of th(j 
fundamental units My L and T. the following dimensional equality 
is obtained: 

Inasmuch as the fundamental dim(‘nsions M, L and T are inde- 
pendemt, Eq. (26) can b(‘ satis6(‘d only by equating the expomjnts 
of the corr('sponding terms. In this way three s(‘parate equa¬ 
tions are obtained, whicli are 

1 ~ — 3a ~ + c + e 

0 = a T" ^ 
0 _ ^}y ^ 

These expressions may be solved simultaneously for three of 
these (‘xponents in terms of the fourth. If all are expressed in 
terms of h, then 

a — —b 

c = —h 

6 = 1 — 6 

HO that Eq. (25) for the loss in head now becomes 

Since k is nondimensional and since the right side of this (expres¬ 
sion should have the dimension of a length, it is obvious that the 
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combination of terms ix/pVd should be nondimensional. That 
this is the case may be verified by direct substitution of the 
dimensions of the quantities involved. But P]q. (27) does not 
appear to correspond in form to the original Eq. (24). However, 
the nondimensional combination yu/pEri may be introduced into 
the latter, giving as a rt^sult 

In this form the velocity head V^/2g lias the linear dimension 
L, while the last two factors are dimensionh'ss, so that tlu* 
equation is still dimensionally homogeneous. 

93. The Reynolds’ Number.—The application of the methods 
of dimensional analysis to the pipe-flow problem does not give 
the result in the same form as that obtained by direct analysis. 
However, it does bring out the fact that there is a nondimensional 
combination of the physical quantiti(\s which describe the flow 
and on which the loss in head is dependent. This combination 
is known as the Reynolds’ numlxT after Osborne Reynolds, 
who was the first to show its meaning and importance. It will 
hereafter be designed by the symbol 

Nh = ~ (29) 

p]quation (28) thus indicates that, for a given value of the Rey¬ 
nolds’ number, the loss in head in a pipi^ is directly proportional 
to the velocity head and to the ratio of length to diameter. If 
dimensional analysis had not suggested that the quantity Nr 

was of some significance, this simpler form for the loss in head 
might have remained hidden in the form in which Eq. (24) is 
expressed. When both the Reynolds’ number and the length- 
diameter ratio are constant, the loss in head is proportional only 
to the velocity head. With l/d constant, such flows have 
geometrically similar boundaries while, as will be shown in Chap. 
XV, a constant value of Nr indicates so-called '^dynamic simi¬ 
larity” of the flows, that is, the forces acting on the fluid particles 
are in the same ratio at corresponding points. 

In studying the motion of bodies through a fluid, it is found 
that the resistance is dependent on a combination of quantities 
which is analogous to the Reynolds’ number for flow in pipes. 
The Reynolds’ number for pipe flow is proportional to the diam- 
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eter; in the cas(‘ of the moving body this term is replaced by some 
(convenient length which is indicative of the size of the body. 
In many cases this quantity is taken as the length of the body 
measured in the direction of its motion. In all types of viscous 
fluid flows, the motion is found to be dependent on a general 
form of the Reynolds^ number which may be written as 

Nu 
pVl 

(30) 

in which I represents sonuc characteristic dimension of the ])ody 
or bounding surfacfcs. 

The significance of Reynolds’ number in the case of a body 
moving through a viscous fluid may be exemj)lified by means of 
Stokes’ law for the resistance of a sphere. If the value of the 
r{\sistance given by Eq. (20) is multiplied and divided by the 
density, velocity and diamet(‘r, the r(\sult is 

~ pVd 
ZirpY'^d 

\pVdJ 

SttpJW 
(31) 

In this case the Reynolds’ numIxT is Nu — pUdjthe diameter 
of the sphere having been tak(‘n as its characteristic length. 
The impression should not be obtained from Eep (31) that the 
drag of the sphere is proportional to the square of the velocity. 
This difficulty will be avoided if it is remembered that the 
Reynolds’ number contains the velocity to the first power. 

94. The Critical Reynolds’ Number.—In the earlier discussion 
of Reynolds’ experiments on the flow of water through circular 
pipes, it was mentioned that he found that under certain condi¬ 
tions the flow would be laminar in character and that under 
others it would be turbukmt. It is now possible to discuss 
quantitatively the criterion which determines the type of flow 
that takes place under any given set of circumstances. The 
results of Reynolds’ original experiments, as well as those of 
many other workers in this field, particularly those of Schiller,^ 
have shown that at a certain so-called critical value of the 
Reynolds’ number, based on the pipe diameter and the average 
velocity, the flow begins to exhibit turbulence. Thus for a 
pipe of a given diameter and carrying a fluid of a certain viscosity, 
the flow is laminar until the velocity reaches the value correspond- 

* Schiller, L., Forschungsarheiten Ver. deut. Ing., vol. 248, p. 16. 
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ing to the critical Reynolds' number. For slightly higher sptHnls 
the flow becomes turbulent at a point at a considerable distan(*(^ 
down the pipe from the inlet, but this turbulence may be of an 
intermittent character and does not extend throughout the 
entire remaining length of the pipe. As the velocity is still 
further iiujreased, the turbulence becomes more and more 
complete until finally the entire length of the pipe beyond th(^ 
point where turbulence first commenced is filled mth fluid in 
which the motion is of this type. It appears that the change 
from laminar to turbulent flow is not an instantaneous one but 
occurs more or less gradually over a range of values of Reynolds' 
numbers known as the transition range. The Reynolds' number 
at which laminar flow ceases to exist is known as the critical 
Reynolds' number or Reynolds' criterion. It will be desig¬ 
nated by Nc. 

Although considerable information is now available concerning 
the effects of turbulent flow on the velocity distribution, pressure 
drop and other external characteristics of the motion, very little 
is known about the actual mechanism by means of which turbu¬ 
lence is produced. The most satisfactory explanation offered 
is that in any flow there are initially certain small disturbances 
and that when laminar flow exists, these disturbances are rapidly 
damped out, while turbulent flow is the result of their augmenta¬ 
tion. While this is a very sketchy and incomplete attempt to 
explain the fundamental nature of the difference between these 
two kinds of flows, it does give some insight into their processes of 
formation. From this i)oint of view it would appear that 
conditions in the fluid before and at the inlet to the pipe would 
have considerable influence on the motion, and this supposition 
is borne out by the evidence obtained from experiments. If 
the fluid in the reservoir which feeds into the pipe is allowed to 
stand for several days before any tests are made, so that it has 
attained an almost complete state of rest, it is possible to obtain 
much higher values for the critical Reynolds' number than would 
otherwise be the case. Likewise a carefully flared and polished 
mouthpiece placed on the inlet of the pipe makes it possible to 
increase the value of the critical Reynolds' number. The most 
reliable experiments indicate that there is no definite upper limit 
to this critical value and values have been obtained ranging all 
the way from about 2400 to 50,000, depending on the care taken 
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to minimize the effects of initial disturbanc(^s. However, it 
docs af)pear that the critical Reynolds^ number has a lower 
limit; that is, there is a value below whi(^h turbulent flow does 
not persist and below which the motion is always laminar in 
character, even for extremely violent initial disturbances. The 
value of this ‘Tower critical Reynolds' number," as determined 
by Schiller, is 2320. 

When the Reynolds' numb(‘r for the flow in a ciicular pipe 
excHH^s the lower critical value of 2320, there is always the 
possibility that the flow may b(^ turbulent rather than laminar, 
so that for values higluT than 2320 the Hagen-Poiseuille law 
should not bc‘ applied unless there is evideruje that the critical 
value for the installation in question is hipjher than this lower 
limit. Since the great majority of actual flows found in engi¬ 
neering work have proved to be turbulent in character, turbulent 
flow is sometimes known as hydraulic flow. Its detailed study 
in the case of pipes will be taken up in the next chapter. 

Turbulence and the transition from laminar to turbukmt 
flow are of importance not only in connection with the flow in 
pipes but in many other exami)les of fluid motion. An outstand¬ 
ing instance is found in th(i so-calh^d boundary-layer theory for 
the determination of the n^sistanct' of bodies moving through 
fluids of small viscosity such as air or water. In this theory 
the effects of viscosity are confined to a thin film of fluid adjacent, 
to the surface of the body and in this layer the flow may be of 
either a laminar or a turbulent character. The nature of tlu^ 
flow has, as might be expected, a marked effect on the resistance 
of the body. A fuller discussion of such problems will be found 

in Chap. XII. 

Example.—An oil having a specific gravity of 0.78 and an absolute 

viscosity of 0.075 poises flows through a horizontal j2-in.-diameter pipe 

line 40 ft. long. Determine the liighest av(^rag(^ velocity for which the flow 

is certain to be laminar and compute the pressure difference necessary to 

maintain this flow. 
Solution.— absolute viscosity of the oil is 

M = 0.075 poises = 0.075^-^^ 

and, since 1 g. = 6.86 X lO-* slugs (see page 170) and 
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then 

M = 
0.075 X 6.85 XU)-' 

0.0328 
.. 1.566 X 10-^ 

ft.sec. 

The limiting vc^lecity for laminar flow corresponds to the condition whore 
the Reynolds' number is equal to its critical value, that is, 

3 Vd 
= Nc 

iJ-Nc 

pd 

Now Nc = 2320 and 
w 0.78 X 62.4 

P ^ ~ = 1‘'>1 Slugs/Cll. ft. 

Then 

V == 

32.2 

2320 X 1.566 X lO" 

1.51 X 
12 

5.77 ft./sec. 

The pressure drop in ternis of the average velocity, as obtained from 
Eq. (15), is 

32TV 32 X 5.77 X 1.566 X lO'^ X 40 
Pi P2 - f^Y 

V w 
-■ 667 Ib./sq. ft. or 4.63 Ib./sq. in. 

Problem 211. Water at 40°C. flows through a 1-in.-diameter pipe. What 
is the lowest velocity at. which the flow can be turbulent? What is the 
corresponding value for air at atmospheric pressure and 40°C.? 

212. Compute the highest velocity at which the flow of water in a 32-i^^- 
pipe is certain to be laminar at z(u-o and 100°C. 

213. Compute the Reynolds' number for a sphere 30 in. in diameter in 
atmosphere at 15°C. moving at a velocity of 60 m.p.h. 

96. Surfaces of Discontinuity and Vortex Formation.—The 
forces due to viscosity are present in real fluids only when there 
exists a velocity gradient in the direction normal to the motion 
of the fluid. This is immediately evident from Newton^s law 
for the shearing stress between adjacent layers of fluid as written 
in the form of Eq. (2). The layers of fluid dealt with there are of 
infinitesimal thickness and there is a continuous variation in 
velocity from layer to layer. In many cases circumstances may 
arise which lead to the presence of two adjacent layers of fluid 
having velocities differing from each other by a finite amount. 
The velocity distribution and its gradient normal to the motion 
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can no longer be regarded as continuous functions and the theory 

of viscous fluids develoi)ed in the preceding pages is not strictly 

applicable. There is a marked difference in the magnitudes 

of the velocity on the two sides of the surface separating the two 

layers of fluid, and for this reason this surface is commonly 

known as a surface of discontinuity. 

In general, surfaces of dis(!oniinuity are very unstable and 

remain intact for only a short period of time during the early 

stages in the development of a flow. The surface rolls up into a 

series of eddies or vortices which adjust themselves so as to form 

a stable arrangement. The dev(‘lopment of these eddies from a 

surface of discontinuity has been explained by PrandtT and is 

best illustrated by means of an example. 

(CT)-Symmefrico(l Flow (b)-Asymmetrical Flow 
withouf Discontinuity Discontinuity 

Fig. 130.- Forming of surface of discontinuity. 

The streamlines of the two-dimensional flow of a uniform 

stream past a strut having a symmetrical cross section are shown 

in Fig. 130a. In this case th(‘ direction of the undisturbed 

flow is parallel to the axis of symm(d>ry of the section and the 

fluid layers passing along the upper and lower surfac.es meet at 

the trailing edge with equal velocities so that no surface of 

discontinuity is formed. If the dir(‘(*tion of the flow is inclined 

upward, then the layer of fluid passing along the upper surface 

reaches the trailing edge with a lower velocity tlian that of the 

layer passing along the lower surface as shown in Fig. 1306. 

A surface of discontinuity is thus formed in the fluid between 

these two layers after they leave the trailing edge of the section. 

Initially the surface of discontinuity leaves the trailing edge 

of the strut as a smooth line, but through the action of any small 

disturbances it soon acquires a wavy formation. The breaking 

down of this flow into a series of eddies may be shown by using a 

system of axes which moves with a velocity equal to the mean 

1 Ewald, P. P., Poschl, T., and Prandtl, I.., “The Physics of Solids 
and Fluids,^' pp. 225-227, Blackie & Son, Ltd., London, 1930. 
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velocity of the two layers of fluid. Th(' wave system advances 

with this same v('locity relative to the strut so that, with respect 

to the new coordinat(‘ system, the w[iv(‘s are at rest as shown in 

Fig. 131a. The heav}' line represents the wavy surface of 

discontinuity and the fluid below it is moving to the left while 

that above it moves to the right. From the character of the 

streamlines, it is possible to locate at once the regions of increased 

and decreased prcvssurf', these bdng indicated by the plus and 

minus signs in the figure. Because of these diffenmces in pres< 

sure, the waviness of the surface^ of discontinuity increases, taking 

on the shape shown in Fig. 1316 and finally rolling up into eddies 

as shown in Fig. 131c. 

Fig. 131. Surface of discontinuity breaking down into eddies. 

In all actual flows whore discontinuities may appear, the 

fully developed flow consists of a system of eddi(\s which has 

adjusted itself in strength and position so as to form a stable 

arrangement. The wake behind a normal plate or bluff-shaped 

body is represent(‘d by a double row of eddies known as a vortex 

trail. Cases where an isolated eddy or vortex is formed in a 

fluid are frequently found in nature, the tornado and waterspout 

being two of the ])est known examples. 

96. Properties of Vortices.—-An eddy or vortex formed in a 

real fluid consists of a relatively small core rotating about an 

axis within itself as though it were a solid rod. The action of 

viscosity on its outer surface transmits this rotation to the sur¬ 

rounding fluid and causes the latter to circulate around the core 

with a velocity that varies more or less inversely with the distance 

from its center. In hydrodynamic theory where viscosity is 

neglected, there is also a flow known as a vortex, which may be 
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defined by saying that the velocity is inversely proportional 

to the distance r from its center, that is, 

V J1 
2wr 

(32) 

The constant F is known as the strength of the vortex and is 

equal to the circulation around i^ The fluid moves around the 

center on concentric, circular str(‘amlines and there is no core as 

in the actual vortex. The velocity at the center of the mathe- 

mati(‘al vortex (*onsequently b(‘comes infinitely large, a condition 

which could not exist in nature, while the velocity approaches 

zero only at an infinitely great distance from the (tenter. In the 

Re011 Vortex MothemCTticoil Vortex 
Fui. 132.—Flow duo to a real and a mathematical vortex. 

real vortex the velocity drojis off somewhat more rapidly than 

would be indicated by Eep (32) bec^ause of the effect of viscosity. 

The nature of the flow in a right cross section of a real and 

mathematical vortex is shown in some detail in Fig. 132. Equa¬ 

tion (32) may usually be employed for approximate calculations 

of the velocity field around a vortex whi(;h has an infinitely long 

core in the form of a straight line, provided that such information 

is not want(‘d for points in the immediate neighborhood of the 

core. When the core is curved the calculations are more com¬ 

plicated and will not be discussed here. It might be mentioned, 

however, that the problem is mathernatic^ally idcuitical with one 

in electricity, that is, the determination of the strength of the 

magnetic field around an infinitesimal conductor carrying a 

constant current. The velocity outside the vortex core corre- 



190 FLUID MECHANICS [Chap. VIII 

spends to the strength of the magnetic field and the strength 

of the vortex to the magnitude of the current passing through 

the conductor. 

Helmholtz, who was the originator of the mathematical theory 

of vortex motion, demonstrated several laws concerning their 

behavior. These laws are as follows: 

1. A vortex is of constant strength throughout its entire 

length and cannot terminate at a point within the fluid, except at 

a boundary. 

2. The strength of a vortex remains constant with time. 

3. A vortex always consists of the same fluid j)articles as it 

moves through the fluid. 

The first of these laws would imply that, in the case of the 

tornado, the vortex must extend upward an infinite distance 

from the surfa(^e of the earth. However, in a real fluid, such as 

air, this is not necessarily true because the action of viscosity will 

produce a dissipation of energy in the vortex and cause it to 

disintegrate at a finite distance from its boundary. For calcula¬ 

tions of the velocity near the earth\s surface produc^ed by the 

tornado, the assumption that the vortex obeys Helmholtz^ first 

law will give reasonably accurate results. The second and third 

laws are also not strictly true for real vortices, and again the 

differences may be attributed to the effecd-s of viscosity. An 

example of a vortex whose core is in the form of a closed curve is 

the smoke ring, which is easily produced for dcunonstration 

purposes. 

Many fruitful applications of the theory of vortices have been 

made in problems of fluid mechanics, particularly in the calcula¬ 

tion of the resistanc^e of bluff bodies, using the idea of the vortex 

trail mentioned above, and in the aerodynamics of airplane wings. 

The circulatory flow used in the study of the rotating (‘ylinder 

in Chap. VII may be considered as being obtained by the super¬ 

position of a uniform flow on that produced by a vortex located 

at the (tenter of the cylinder cross section. This vortex does not 

exist in the actual flow but may be regarded as producing an 

effect which is theoretically the same as that produced by the 

cylinder. 

Further light may also be thrown on the concept of the surface 

of discontinuity by regarding it as being made up of a number of 

infinitesimally small vortex filaments all rotating in the same 
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direction. When a uniform stream of fluid passes over such a 

vortex layer, it is at once evidemt from Fig. 133 that a discon¬ 

tinuity of velocity will result. The vortices appear to act as a 

series of roller bearings between th(‘ two layers. When infini¬ 

tesimal vortices are distributed continuously throughout a body 

of fluid, the lattc^r is said to possess vorticity. Such a concept 

is sometimes used for studying the behavior of the turbulent 

Fig. 133.— Surface of discontinuity roprcHontcd by a vortex layer. 

motion of viscous fluids. S(‘veral of these? jiroblems will be 

treated in greater detail in later chapters of this book. 

General Problems 

214. A splicrc is in a stream of gn.s having a kinernatie viscosity of 10 

stokes and a velocity of 20 ft. per sec. Its Reynolds’ mimher is 200. What 

is the Reynolds’ number of the same sphere in a stream of air at 20°C. and 

a velocity of 40 m.p.h.? 

215. Compute tb(^ velocity at which castor oil at 15"C. will flow through a 

tube 0.4 cm. in diameter and 4 ft. long under a head of 18 in. What is the 

Reynolds’ numbtjr? What head would be required to reach the critical 

velocity? 
216. A vertical shaft 2 in. in diameter rotates at 240 r.p.in. in a concen¬ 

tric cylindrical bearing 2.5 in. in diameter. The bearing contains lubri¬ 

cating oil having a vis(?osi{y of 0.495 poises. Assuming a straight-line 

distribution of velocity in the oil, what is the shear stress in thii oil next to 

the shaft? If 1 ft. of length of the shaft is in oil, what is the tonpie on the 

shaft due to the oil? 
217. A capillary tube 0.2 cm. in diameter and 10 cm. long discharges 1.0 

liter of liquid in 10 min. under a pressure difference of 2 in. of mercury. If 

the specific gravity of the liquid is 0.9, what is the viscosity? 



CHAPTER TX 

FLOW OF FLUIDS IN PIPES 

97. Motion of Fluid in a Pipe.—A fluid in a pipe is constrained 

laterally by pressure forces at the walls so that the general 

motion of the fluid must be along the axis of the pipe. These 

lateral forces, being normal to the direction of motion, can have 

no effect on the velocity. The velo(*ity of the flow is controlled 

and maintained by the axial forces, namely, the pressure differ¬ 

ence and the axial component of gravity forces. An idea of the 

manner in which theses forces act may be gained by considering a 

cylindrical body of fluid contained in a portion of pipe of length 

Al and cross section A, such as that shown in Fig. 134a. It is 

affected by an axial force due to the difference in pressure forces, 

Ap A, and the axial component of weight, wA Al sin 6 = ^vA Az; 
the simplified force condition is as shown in Fig. 1346. When 

Ap A == wA As, the fluid is static, that is, Ap = w Az, which is 

the usual condition for static fluids. If Ap > tc Az, the flow will 

be upward and toward the right at such a velocity that the 

resistance to flow is downward and equal to 

R — Ap A — wA Az = A (Ap — w Az) 

When Ap < w Az, the flow is down and toward the left at such 

a velocity that the resistance is upward ana equal to 

R = wA Az — Ap A == A{w Az Ap) 
192 
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Figure 135 represents a portion of a pipe line liaving a length 

I and a constant cross-sectional area A. Points 1 and 2 are at 

elevations Zi and respectively, above any horizontal datum 

plane BB. The Bernoulli constants for points 1 and 2 referred 

to this datum are 

and 

2g w 
H, (1) 

1^2- 

2(7 
+ “ -f 2:2 = H2 

IV 
(2) 

[t will he recalled from Art. 43 that the terms of Bernoulli's 

constant when written in the above form represent energy 

A 
grade/me 

A 
h / ~~ - A 

i 

Pj 
w 

vi 

' f 

Ps 
w 

_ 

Z2 

Fi(i. 135.—Hydraulic grade line and energy grade line. 

content of the several forms in foot-pounds per jiound of fluid, 

a quantity having the dimension 

foot-pounds 

pounds 
feet 

The terms are therefore commonly called velocity head, pressure 

head and potential head, respectively, while their sum H is 

the total head. The difference in total heads at points 1 and 2 is 

then 

If the fluid is a liquid or if the change in density is negligible, 

the velocity in a pipe of uniform diameter is constant and the 
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velocity heads in Eqs. (1), (2) and (3) are all equal. Then 

from Eq. (3) 

+ zi) - (f + 22) = h (4) 

The terms of Eqs. (3) and (4) appear in Fig. 135, and an 

examination of that figure shows that, in the case of a i)ipe carry¬ 

ing a liquid, h in this equation is the difference in elevation of the 

free surfaces in open piezometc^r tubes connected to th(^ pipe' at 

the points in question. A line connecting such free surfaces is 

known as the pressure grade line or hydraulic grade line, a very 

useful device in dealing with flow in pipes. The line drawn at a 

distance V'^l2g above the hydraulic grade line is known as the 

energy grade line since its ordinate measured from the datum 

plane represents the total Bernoulli constant. The velocity 

being constant, the direction of flow in a pipe is always down 

the slope of the energy grade line and is independent of the slope 

of the pipe itself. 

The fall in the energy grade line along a pipe is the loss of head 

or energy loss per pound of fluid. It is the energy which in tlu^ 

case of a liquid has been transformed to heat and no longer 

exists in any of the thn^e forms represented by the terms of th(^ 

Bernoulli constant. This loss, or, more properly, this trans¬ 

formation of energy, results from natural resistance to flow. 

98. Nature of Resistance to Flow in Pipes.—The study of the 

nature of the resistance to flow in pipes and the gathering of 

data to be used in computing the loss of energy or head due to 

such resistance have occupied the time of great numbers of 

scientists and engineers. 

The resistance to laminar flow of fluids is due entirely to 

viscosity. The loss of energy is commonly called the friction 

loss but it is not to be supposed that there is friction in the 

sense in which the term is used in dealing with relative motion of 

solids in contact. There is no motion or slip of the fluid at the 

walls of the pipe. As heretofore explained in Art. 85, laminar 

flow consists merely of a continuous change in shape of the body 

of fluid in the pipe at any time. The only resistance to this 

change in shape is due to viscosity of the fluid, which property 

must, therefore, be charged with all lost head or energy in 

laminar flow. 
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When the flow in a pipe is turbulent, the motion is so (complex 

that no rigorous analysis or detailed description of the motion has 

been made. Parti(‘les of turbulent fluid may successively 

occupy different positions in tlie cross section of the pipe and are 

no longer confined to a particular lamina. There is then an 

interchange of momentum, not only between molecules of the fluid, 

but also between finite masses of fluid as they move to other parts 

of the cross section. It is certain that such finite masses do not 

long remain intact and that there is a very thorough mixing of the 

fluid. The resistance to tur])ul(ait flow is the combined effect of 

forces due to viscosity and those due to inertia. 

An idea of tlu^ great differen(‘e between resistances to tins two 

kinds of flow which may exist in i)ip(‘S can be gained from the 

fact that in laminar flow the resistance or loss varies directly 

with the first power of velocity wliile in turbulent flow it varies 

approximately with th(» second power of velocity. 

99. Reynolds’ Number for Pipes.—The significance of Rey¬ 

nolds’ numl)er as a critc'rion of the kind of flow in a pipe was dis¬ 

cussed in Arts. 93 and 94. The expression Nr = pVdliJ, = Vd/v 
contains the factors which affect resistance^ to flow and for that 

reason has been referred to as a ^deast common denominator” of 

pipe flow. 

The critical value of Nr, called Reynolds’ criterion Nc, is the 

same for all fluids. Ail have laminar motion in a pipe when 

N'r is less than the critical value of 2320 and they may, and 

usually do, have^ turf)ulent motion when Nr is higher. This 

number is also a crite^rion for velocity distribution and the dis¬ 

tance required for its adjustment in the case of laminar flow. 

Experiments on one fluid may be used to predict definitely 

the resistance to flow of any other fluid, even in a pipe of different 

diameter and at a different velocity, provided that Nr is the same 

for the two cases. 

Two pipes of different diameters, containing fluids of different 

densities and viscosities moving at unequal velocities, may be 

likened to two similar triangles in that whatever they have in 

common must be dimensionless. In the triangles that thing is 

the angle or the ratio of corresponding sides; in pipes it is the 

dimensionless combination of factors known as Reynolds' 

number. The use of this quantity as a parameter in studying 

and plotting experimental data on the flow of fluids has done 
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much to advance the knowledge of the nature of such flow and 

also of the numerical constants involved because it serves to 

correlate the data on all fluids. 

100. Velocity Distribution in Cross Section of a Pipe.—The 

nature of velocity distribution for laminar flow in pipes is sus¬ 

ceptible to exact analysis. It was shown in Art. 85, in connec¬ 

tion with the derivation of the Hagen-Poiseuille Law, that when 

the velocity is plotted against position on the diameter of a pipe 

the resulting curve is a parabola with its axis coinciding with the 

Fio. 130.—Ideal velocity distribution for laminar flow. 

axis of the pipe, as in Fig. 136. The velocity at any distance y 
from the axis of the pipe is given by Fa\. (13), page 173, as 

The velocity at the center is maximum and, letting 2/ = 0, it is 

found to be 
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Expressing Q in terms of the average velocity V and the area 

of the pipe and equating this value to that given by Eq. (8), 

Q = 

whence the average velocity is 

V = (9) 

This could have been deduced from the fact that the volume of 

the paraboloid DEO is half of the volume of the circumscribed 

cylinder BCDE. 
llie ideal parabolic distribution of vekx'ity exists only at a 

considerable distance downstn^am from the entrance to the pipe 

and at values of Nr not too (‘lose to the critic^al value Nc. The 

Fig. 137,—Transition i>f velocity distribution for laminar flow. 

velocity distribution at the rounded entrance to a pipe is approxi¬ 

mately uniform except at the walls. A short distance down¬ 

stream it becomes a combination of a nearly parabolic distribu¬ 

tion at the walls and a core in which the velocity is lu^arly 

uniform. Thus there is a gradual transition from the distribution 

shown in Fig. 137a to the ideal parabolic distribution of Fig. 

137c. The distance from the entrance required for practically 

complete transition has been shown theoretically by Boussinesq 

andexperimentally by NikuradseHobesuch thata:/iV'ied = 0.065, 

in which x is the distance from the entrance and d is the diameter. 

Here again Nh plays an important part since the dimensionless 

expression x/Nnd is a criterion for velocity distribution; that is to 

say, the variation of velocity in a cross section is the same in 

different pipes for equal values of x/Nnd. 

^Prandtl, L., and O. J. Tietjens, “Applied Hydro- and Aero-me¬ 

chanics,^' p. 25, McGraw-Hill Book a)mpany, Inc., New York, 1932. 
This work gives velocity distribution diagrams after Nikuradse and con¬ 

tains a thorough discussion of the subject. 
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With turbulent motion the dintribution of velocity does not 

follow any simple mathematical curve. Many empirical formu¬ 

las have been devised to express the relation between velocity and 

distance from the axis, each of which has some limitation.’ 

Velocity distribution in turbulent flow is more nearly uniform 

than for laminar flow. At points well 
\^-Curve for downstream from any disturbance and 

for values of Nn W(dl abovfi Nv, the 

average velocity in the cross secition is 

Fully developed 
vehcify 
dislribufion 

V == 0.82?^.,, or 1.227 (10) 

Fig. 138.—Velocity distri¬ 
bution of turbulent flow for 
Nr well above Nc- 

^urbuhnf 

The latter figure is sometimes found as 

high as 1.25 and 1.235 may be taken as 

an average value over a long range of 

Nr. The typi(^al velocity distribution 

is establish(M in a distance of 25 to 50 

diameters from the entrance, this distance being shorter than 

for laminar flow and ap])arently independent of Nn. The^ 

velocity curves in the transition region do not differ so widely 

from that finally established as in the case of laminar flow. 

Figure 138 affords a comparison of the estab¬ 

lished vekxaty curve with one in the transition 

region and Fig. 139 shows a comparison of 

typical velocity curve's for laminar and turbu¬ 

lent flow at the same average velocity. 

Stanton,2 in very carefully conducted experi- Fig. 139.- Com¬ 

ments, found no evidc'uce of any slipping of velocity 

fluid along the wall of the pipe, and several bulent and laminar 

others have confirmed his results. There is a 
n • 1 • 1 1 velocity. 

very thm annular space at the wall m which the 

flow is laminar. The presence of this thin laminar sub-layer has 

been demonstrated experimentally and theoretically and PrandtP 

shows that it has a thickness of 5 == 125.4rA^/j''^^ Between this 

very thin laminar boundary layer and the center of the pipe the 

•' Lot mi netr 

^ Lea, F. C., Hydraulics,*^ 5th ed., p. 203, Longmans, Green & Com¬ 
pany, New York, 1930. This book gives a summary of empirical formulas 

for this purpose. See also Art. 107 of this text. 

* Stanton, T. E., The Mechanical Viscosity of Fluids, Proc. Roy. Soc., 
vol 85, p. 366, 1911. 

. 2 Prandtl and Tietjens, op. dt., p. 78. 
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flow is turbulent. It is not to bo supposed that there is a sharp 

division between the laminar and turbulent portions of the cross 

section. On the contrary, turbulence diminishes gradually near 

the wall. 

In either type of flow the v(^locity distribution is altered by 

any change in form or alignmcait of the pipe, by any convergence 

or divergence of the walls howevta* gradual or by a temperature 

gradient across the pipe. The thorough mixing of fluid in 

turbulent flow makes a marked t(anperatur(‘ gradient impossible 

exc(‘pt in the laminar sub-layer. 

The effect of temperature gradient is more pronounced in 

laminar flow owing to the change of viscosity witli temperature. 

If heat is being lost through th(‘ wall of the pipe, a li(iuid is more 

viscous at the wall than in the center and the ideal velocity 

diagram of Fig. 136 or 137c is distorted so as to be sharper at the 

center and to have a smaller slope at the wall. If heat is being 

absorbed by the liquid at the wall, the velocity diagram becomes 

mon' blunt at the v(U’t(^x. The effect of temperatuix^ gradient on 

velocity distribution of a gas in laminar flow is directly opposite 

to its effect in the case of a liquid. Large temperature gradients 

across tlu^ pipc^ make accurate computation of resistance quite 

difficult if not imi)ossible. 

All changes in velocity distribution change the required energy 

content and may have considerable effect on the r(\sistance to 

flow. 

101. Relation of Kinetic Energy Content to Velocity Dis¬ 
tribution.—It has been demonstrated in })revious articles that 

the kinetic energy per pound of fluid having velocity u is u‘^/2g, 
the velocity head. Th(‘ total kinetic energy contained in the 

fluid passing in 1 sec. through a cross section over which the 

velocity is uniformly V is the product of the total number of 

pounds per second and or 

K.E. per sec. == ft.lb./sec. 

When the distribution of velocity is nonuniform, the average 

velocity being F, the kiiu^tic energy content will invariably be 

more than QwV^I2g. 
In laminar flow with parabolic velocity distribution, for 

example, it can be readily shown that the kinetic energy content 



200 FLUID MECHANICS (Chap. IX 

is 2QwV'^l2gj or twice as much as for a uniform velocity of 

F, Referring to Fig. 136, the ring-shaped element of area is 

= 2Try 3^ and the velocity through it is u, whence the ele¬ 

mentary discharge is^ 

dQ — u (TA = 2Truy dy (11) 

The kinetic energy in the fluid passing dA each second is 

TTW r- 
<iQ?r = —u^y dy 

Q 
(12) 

From Eq. (7) and Eq. (9) 

“W Wrn .(l - fj) - - fi) 
Substituting this value of u in Eq. (12) and integrating over 

the entire area, that is, from t/ == 0 to y = r, the total kinetic 

energy per second is 

K.E. per sec. 
g 

TW F'V^ 
x(>-sy 

== 2Qw 

yy 
y.2 

Y1 
^g 

y dy 

(13) 

From this it is seen that the total kinetic energy for parabolic 

distribution of velocity is twice as much as for a uniform velocity 

of F. 

In the case of turbulent flow the total energy content is not 

conveniently found by integration at this time because the 

velocity distribution curve is not represented by a simple equa¬ 

tion. For the purpose of arithmetic integration the crovss 

section may be divided into small rings of area AA. The kinetic 

energy of the fluid passing through each A A in 1 sec. is then 

AA uWey- = AE and the total kinetic energy content of the 
^g 

quantity per second is X(AE) == S (aa • By taking values 

of u for each AA from the velocity distribution curve, it is found 

that the total kinetic energy per second for turbulent flow is 
F2 

about l.lQw-^ or 10 per cent more than for uniform velocity. 

* In terms of the type dA the symbol d denotes a differential, the bai- 

being used to avoid confusion with diameter d. 
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This quantity is based upon the assumption that the local 

velocity is parallel to the axis of the pipe and that the motion 

does not vary with time. Neither of thcise assumptions is strictly 

true and the coefRcieiit 1.1 is therefore somewhat small. 

102. Energy or Head Lost in Pipes. Laminar Flow.—The 

head lost in laminar flow in a pipe can be computed directly 

from the Hagen-Poiseuille law, the only empirical data required 

being the viscosity and density of the fluid. Using this law in 

the form of Eq. (15), page 173, 

(pi - P2)c/" 

32Mr 
(14) 

in which d is the diameter and I is the length of pipe between 

points 1 and 2, the drop in prc'ssure for a horizontal })ipe is found 

to be 

Z2^1V 
p, - TH = - (15) 

and, dividing by the specific weight, the head lost is 

= El __ 22 = 
IV IV ivd^ 

(16) 

Multiplying both numerator and denominator of this expres 

sion by p Vd and then substituting Nr — p Vdip, the lost lieac^ 

in terms of Reynolds' number is seen to be 

h 
32 p 

wd'^ p Vd 
W{p Vd) - 

32p IV^ 
wNnd 

(17^ 

Noting that p = w/g and canceling w, 

= ^LYl 
NRd2g 

(18^ 

This form is considered very convenient because it contains 

the expression for velocity head V'^I2g and also because it resem- 

bles the well-known Darcy formula. The pressure difference for 

horizontal pipes expressed in terms of velocity head and Rey¬ 

nolds' number is 
64ip I 

V^-V^- -N^d2g (19) 



202 FLUID MECHANICS [Chap. IX 

While these formulas are eonvenient in the forms given in 

Eqs, (17), (18) and (19), they should not be allowed to obscure 

the fact that losses in laminar flow vary directly with the first 

power of V and not with F^, since Nr contains F as a factor. 

The above formulas for laminar flow, which are based on 

theoretical considerations, are well substantiated by experiment. 

The only empirical data required is the viscosity since resistance 

to laminar flow is independent of the roughness of the walls of 

the pipe if it is not so great as to cause an actual change in the 

interior dimensions or shape. 

103. Energy or Head Lost in Pipes. Turbulent Flow.—The 

head lost in turbulent flow in pipes is computed from formulas 

involving the velocity, the length and diameter of the pipe, 

and the viscosity and density of the fluid. The formulas have a 

fairly rational basis but invariably depend for their usefulness 

upon an empirical coefficient. One of the most generally 

accepted of these is that by Darcy, ^ 

in which the terms Z, d and F are as previously defined and / is 

a dimensionless coefficient. The latter varies widely with the 

condition and diauH'ter of the pipe and the velocity. Many 

experimenters have coll(K*led data from which / has been com¬ 

puted and a few values for water under ordinary conditions are 

given in Table VII. Most of these experiments were performed 

on flow of water in pipes and, while their number is large, 

most of the experiments made with water are included in a com¬ 

paratively short range of Reynolds' numbers. 

It has been shown definitely that values of / for turbulent flow 

are closely related to Reynolds' number, but this relationship is 

such that it cannot be contained in one simple mathematical 

expression. Empirical formulas, notably those of Blasius and 

Lees, have been devised which express the relationship between 

/ and Nr, but to cover the whole range of available experiments 

and engineering problems it is convenient to resort to a graph in 

which values of the coefficient / are plotted against values of Nr, 

^ Mso variously credited to Chezy, Eytelwein, Weisbach and Fanning. 
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Table VII.—Values of / for Cast-iron Pipe Carrying Water 

Velocity 

Diameter, in. 

4 6 8 12 16 18 20 24 

0) 
Oi 1 0.028 0.027 0.026 0.025 0.024 0.023 0.022 0.021 

2 0.027 0.026 0.025 0.024 0.022 0.022 0.021 0.020 
a 4 0.025 0.024 0.023 0.022 0.021 0.020 0.020 0.019 

6 0.024 0.023 0.023 0.021 0.020 0.020 0.019 0.018 

T? 8 0.023 0.022 0.022 0.021 0.020 0.019 0.019 0.018 
d a H) 0.023 0.022 0.021 0.020 0.019 0.019 0.018 0.018 

43 
12 0.022 0.022 1 0.021 0.020 0.019 0.019 0.018 0.018 

16 0.022 0.021 0.021 0.020 0.019 0.018 0.018 0.017 

a All 0.0‘19 0.046 0.044 0.042 0,040 0.038 0.037 0.036 
O 'a velociti(\s 

Example.—A line of clean G-in. cast-iron pipe shows a pressure of 10 lb. 

per sq. in. at A and 24 lb. per sq. in. at B, which is 600 ft. from A and 20 ft. 
lower. What is the quantity flowing and the direction of flow in the line? 

Solution.—First compute Pvi/?e = 10 -r 0.433 = 23.1 ft. and= 55.5 

ft. Now, after sketching the hydraulic grade line, ah, it is (wident that the 
flow is from B to A and that the head lost is 55.5 — 20 — 23.1 = 12.4 ft. 

Then 

./iZ! 
^ d2g 

. ,000 
12 4 -f-fMA and 

0.815 

Vf 

But / is unknown and its value depends to some extent on the velocity, 

which is also unknown. Using Table VII as a guide, assume a reasonable 

value of /, say 0.022. Then 

y = . jlZiZ = 5.50 ft./aec. 
■v/a022 

Ret erring again to Table VII, it is sccti that 0.023 is a more appropriate value 

of / than 0.022, which was used. Repeating the process with / = 0.023, 

y = = 6.38 ft./sec. 
Vo^ 
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and 

Q ^ AV ^ 0.196 X 5.38 = 1.05 c.f.s. 

It is never necessary or beneficial to interpolate values of / beyond the two 

figures given in the table. 
Problem 218. The flow in a pipe has an average velocity of 0.8 ft. per sec. 

Compute the maximum velocity in the pipe (a) if Nr — 4000, (6) if 

Nr - 2000. 
219. If the flow in a 3-in. pipe is such that Nr = Nc/2, at wliat distance 

from the rounded entrance does the v<docity distribution beconu; parabolic? 

220. • An oil having a viscosity of 0.02 slugs per ft. sec. and specific gravity 

of 0.9 flows through a 2-in. pipe line at one-tenth the critical velocity. If the 

line is horizontal, what is the pressure difi’erence for points 300 ft. apart? 

221. A line of new 6-in. cast-iron pipe delivers water at the rate of 2.0 c.f.s. 

If the line is horizontal, what is the pressure difference at points 1000 ft. 

apart? If the flow is from point A to point B, which is 70 ft. higlier, what 

is the difference in pre.ssure, the distancf^ being 1000 ft.? 

222. A clean 12-in. cast-iron pipe line shows a drop in energy gradient of 

20 ft. in a length of 1500 ft. Compute the quantity flowing in the line. 

104. Stanton’s Diagram.—The graphical representation in the 

form shown in Fig. 140 of the relation Ixitween valu(‘s of Nr and 

the coefficient / in the Darcy formula is frequently called Stan¬ 

ton’s diagram because Stanton was among the first to employ a 

graph in this form. 

In this diagram values of the two dimensionless quantities 

/ and Nr are plotted as ordinates and abscissas, respectively, on 

logarithmic scales. The single straight line at the left gives 

values of / for laminar flow based upon the Hageri-Poiseuille 

law. The equation of this line is 

It applies to all round pipes and the only data required are those 

necessary to compute Nr = p Vd/in. 
For values of Nr greater than Nc the relationship between / 

and Nr becomes more complex and is represented graphically by 

a curve. In the diagram the lower curve gives values of / for 

smooth tubes such as those made of glass, lead, brass or any 

drawn metal while the upper curve gives values of / for pipes of 

steel or cast iron of the quality ordinarily used in commercial 

work. The curves shown are as drawn by Drew, Koo and 

McAdams^ and are based upon a large number of tests by other 

1 Drew, Koo and McAdams, The Friction Factor for Clean Round 

Pipes, Am. Imt. Chem. Eng., vol, 28, p. 56, 1932. 
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experimenters. The lower curve is in good agreement with that 
determined by Stanton and others. The points on the curve for 
high Reynolds' numbers are necessarily obtained by experiments 
on the flow of air in which V can be very large and /x quite small 
but the lower curve has been checked with heated wat(^r up to 
Nr = 1,600,000 by Streeter.^ The values of f in turbulent flow 
are valid for any fluid and any combination of conditions, with 
certain limitations in the case of compressible fluids. Within 
the range of the diagram the values of / for laminar flow are 
(‘orroct except for extremely viscous fluids in very small tubes.- 

Blasius proposed a formula for loss in smooth pipes which 
when reduced to the form of the Dar(*y formula becomes 

0.316 IV^ 

"^NRd 2g 
(21) 

from which it is seen that the term in the Blasius formula cor¬ 
responding to f in the Darcy formula is 

o_3m 
'\/Wr 

(22) 

If values of / computed from this equation are plotted on Fig. 
140, they fit the lower curve well for values of Nr up to 150,000. 
Equation (22) may then be regarded as an empirical equation 
for that part of the curve. This fully covers the range of Nr for 
ordinary hydraulic practice. Beyond this point the equation 
of the curve is more complicated and the entire length cannot be 
represented by so simple a function. The equation of Dn'w, 
Koo and McAdams 

/ - 0.0056 + 0.500iV;j-'“'32 (23) 

fits the curve for smooth pipes very well but is not so convenient 
in form as Eq. (22). 

The position of the curve at the transition from laminar to 
turbulent flow depends much upon the initial conditions. Either 
type of flow has a tendency to persist and by exercising great 
care laminar flow may exist at very high values of Nr. It is 

^ Streeter, V. L., Frictional Resistance in Artificially Roughened Pipes, 

Proc. A.S.C.E , February, 1935. 

2 Prandtl and Tietjens, op. cit.y p. 21. This gives lower limits. 
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always certain that the flow will be laminar below the critical 
value of Nr = 2320 and it is always possible and quite probable 
that flow will be turbulent for higher values. 

Example.—What is the liead lost iii 1000 ft. of smooth 6-in. steel pipe 
carrying 0.7 c.f.s. of water at (a) 20°C., (b) 80°C.? 

Solution.—The area of a 6-in. pipe is 0 196 scp ft. The velocity is 

Q 2 —0.7 -7-0.196 = 3..57 ft. per sec. 

The viscosity of water at 20°C. is 1.008 X 10“2 poises, that is, 0.01008 g. per 

cm. sec. and, since 1 g. == 6.85 X lO”*^ slugs and 1 cun. = 0.0328 ft., 

0.01008 X 6.85 X JO-^ 

0.0328 
= 2.10 X 10 ^ slugs/ft. sec. 

In the same way the viscosity at 80°C. is found to be 

M = 0.744 X 10~® slugs/ft. sec. 

The Reynolds’ numbers at 20°C. and 80°C., considering the change in 

dcmsity with temperature, are then 

Nr 

Nr 

Vdp 3..57 X 0.5 X 1.943 
2.10 X lO-*^ 

3..57 X 0.5 X 1.887 
07744 X 10-^ 

= 165,000 at 20°C. 

- 453,000 at, 80'^(h 

and the values of/ from Stanton’s curve are 0.0195 and 0.0180, respectively. 

From the Darcy formula the liead lost is 

h = 0.0195 X -”*’5 X = 7,7 ft. at 20°C. 
0.5 64.4 

and 

h O.OISO X X ^ 7.1 ft. at 80°C. 

Problem 223. A smooth pipe 6 in. in diameter carries water at a velocity 

of 8 ft. per sec. Compute tlu* head lost in 1000 ft. of pipe when the temper¬ 

ature of the water is (a) 20°C., (b) 100°C. 
224. A 1-in. pipe carries castor oil at a velocity of 2 ft. per sec. What is 

the head lost in 100 ft. of pipe (a) when the temperature is 20°C., {h) when 

itis40°C.? 
225. A clean 12-in. cast-iron water pipe shows a drop in the hydraulic 

gradient of 8 ft. per 1000 ft. Compute Q if the temperature is 60°C. 

105. Effect of Roughness.—The coefficient / for laminar flow 
is independent, within certain limits, of the roughness of the 
walls of the pipe. Unless the roughness is so marked that it 
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constitutes an obstruction to flow or a decrease in the diameter, 
/ may be taken as equal to M/Na- Roughness has a tendency 
to limit the range of laminar flow, the critical value of Nr being 
lower for very rough pipes than for smooth ones. 

In turbulent flow the roughness of the walls of a pipe has a 
decided effect on resistance to flow, /, for rough pipes, being 
much larger than given by the curves of Fig. 140. 

Ordinary ideas of roughness as a physical property of a surface 
cannot be applied directly to the problem of finding / for a pipe 
and must be supplanted by a notion of hydraulic roughness. 
Two pipes are said to have the same hydraulic roughness when 
they have equal values of / for flow at equal values of Nr. They 
do not necessarily have surfac^es of the same texture; on the 
(‘ontrary, rough pipes with wall surfaces of the same texture and 
different diameter will not have the same / because the relative 
roughness is different. In order to have the same relative 
roughness, pipes must have the same values of K/r, where r is the 
radius and K is some linear measure of absolute roughness. 
Since roughness cannot be described or characterized by a 
simple linear dimension, K must be something anore complex 
and at present it is purely hypothetical. 

Nikuradse4 found that pipes with the interior surface (H)vered 
with sand grains of diameter K' had values of / represented over 
a wide range of Nr by 

1 

1,74 + 2 log 

Some experimenters have sought to characterize roughness by 
computing from this formula the size of sand grain necessary to 
produce the / of the experimental pipe in question.^ The above 
expression for f does not change with Nr and in general / for a 
given rough pipe is fairly constant except for values of Nr near 
the transition from laminar to turbulent flow. 

Natural roughness of pipes is usually caused by deterioration 
such as corrosion, tuberculation or depositing of solids. The 
change with age is progressive and takes place at a rate depending 

' Nikuradse, J., Stromungsgesetze in rauhen Rohren, V D I, Forschungs- 

heft No. 361, 1933. 

*Bee footnote 1 on p. 200. 
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upon the iiiaterial, th(‘ fluid and the use and maintenance of 
the line. It is therefore impossibh' to state the condition of a 
rough pipe in terms of material or age. Excessive values of / 
cannot be attributed to ordinary roughness but must be due to 
fouling of the pipe by projections or de])osits which are so large; 
as to have the effec't of reducing the diameter or deforming the 
passage through which the fluid must flow. It is quite impossible 
to sc;parate the; e'ftects of two kinds of ro\ighness. Many engi- 
neH;rs l)(;lie've that ordinary roughness canne)t produce an / 
exceeding that for commercially smoe)th pipes at the critical 
Nity or 0.054, and on this basis the^y comj^ute the diameter of a 
pipe of equivalent capacity having this value of /. 

It is usually impossible to seqiarate the effect of surface rough¬ 
ness from that of rougluiess of the line due to poor joints and 
pe)or alignment, whiedi may be more important in some cases 
than the surface condition. Any c.ondition causing r(;peated 
changes in direction, velocity or velocity distribution will greatly 
in(;r(;as(‘ resistance to flow. 

The distribution of velocity in rough pip(^s does not follow the 
form shown in Fig. 138 and discussed in Art. 100. 

106. Shearing Stress at a Pipe Wall. --Resistance to flow in 
pipes is occasioned by the ndative motion of particles of fluid 

and the actual loss of energy ® 7' @ 
in flow’’ is the work done by p^A — ^ ^ 
internal forces due to ndativc; i ; _ I 

motion and inii)act of fluid F^rndl 

upon fluid. Since there is no U.—I.-> 
motion at tiie walls of the pipe, • -Hosistanro to flow, 

the shear force at the wall cannot be said to perform work. This 
shear force performs much the same function as the frictional 
force exerted by a track on the rim of a car wheel. This force is 
static and does no work although it makes possible the rotation 
of the wheel and the performing of work at the bearings. The 
two forces are also similar in that they are a measure of the work 

performed by internal forces. 
The numerical value of the resistance to flow in a pipe can be 

computed by using the head lost. Figure 141 represents the 
body of fluid at any time in a pipe of length I and cross section A. 
For convenience the pipe is taken to be horizontal and of uniform 
diameter; in which case the head lost is the difference in pressure 
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heads at points 1 and 2. The pressure difference causing uniform 

flow from point 1 to point 2 is opposed by a shear force F at the 

walls. The motion being uniform, the sum of the external forces 

on the body of fluid is zero or 

F = v,A - v,A (24) 

From Eq. (15) the pressure drop for laminar flow is 

32m^F 

Substituting in Eq. (24) and expressing A as 7rdV4, the resistance 

to laminar flow is 

F = SttmZF (25) 

The total shear force on the surface of the cylinder is the unit 

shear stress r multiplied by the area irdl or F = irdlr. Substitut¬ 

ing this value of F in Eq. (25) and solving for r, the result is 

SfiV 
^ ~ d 

Introducing Nr - p Vd/p in Eq. (26), 

8pF2 

~Nh 

or in the dimensionless form 

jr ^ 8_ ^ / 

pF“ Nr 8 

In Stanton’s original diagram, he plotted rfpV^ against Nr and 

this is common practice in English t(^xts. 

In order to get an expression for resistance to turbulent flow, 

it is necessary to use some empirical formula for pressure drop or 

lost head. Using the Blasius formula, Eq. (21), 

^ 0,S16wl F2 
Vi — P2 ~ tea == —^p====r -j — 
^ ^ -^Nr d 2(7 

Substituting this value in Eq. (24) and putting A — ir(Pf4, 

_ 0.31610 Tdl F* 

4 2g 

(26) 

(27) 

(28) 

(29) 
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The unit shear stress at <l>e wall is 

^ F ^ ^ 0.0395py=» 

and with dimensionless terms 

T ^ 0,0395 ^ / 

py^ 8 

(30) 

(31) 

107. Seventh-root Law for Velocity Distribution in Smooth 
Pipes.—There are several empirical formulas giving the relation 
between velocity and position in the cross section of the t)ipe. 
Bazin proposed three which were either cubic or biquadratic 
equations and others are very complicated or are based on false 
premises. Praiidtl and von Kdrmdn, working independently, 
developed an exponential relation between velocity and position 
in the cross section founded upon tlie empirical formula of 
Blasius for pressure drop. The^y assume that the velocity dis¬ 
tribution at the wall is dependent upon the shear at the wall, 
that r is independent of the radius and that the form of the 
velocity distribution curve does not change with velocity. The 
latter assumption is expressed mathematically by the statement 
that the ratio of u to is always the same at a given position 
in the cross section. Thus, if y' is the actual distance from the 
wall of the pipe, y'/r is the relative distance in a pipe of radius r 
and 

u = = 1.235V4>(^'^ (32) 

Supposing 4>{y'/r) to be a simple exponential function, Eq. (32) 
(‘,an be written 

u = 1.235F(^^y (33) 

In the last article the shear stress at the wall of the pipe, based 
upon the Blasius formula for pressure drop, was found to be, 

Eq. (30), 

, = (34) 

Writing Nr = p Vd/n = 2p Vr/fi, Eq. (34) becomes 

0.0395p pW _ 0.0395 pVi n/x 
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Now substituting the value of V obtained from Eq. (33), th(‘ 

expression for the shearing stress becomes 

_ ^0395 / r 

Ay2(l235)^^^ ~ V7 (35) 

Having assumed that shear stress at the wall is independent of r, 

t he exponent of r in Eq. (35) must be zero, whence 

7 1 A a 1 -ru — ; = 0 and n — 
4 4 7 

Using this value of n in Eq. (33), the exponential equation for 

velocity at any point at a distance y' from the wall is 

u = 1.235T"^-^;y 

This equation fits the actual turbulent velocity distribution very 

closely. Thus by placing the origin of <‘oordinates at the wall 

of the pipe there results a simple exponential formula for velocity 

distribution which can be used wherever the Blasius formula is 

applicable. 

Problem 226. Compute the velocity at a point 3 in. from the side wall 
in a smooth 12-in. pipe which carries water at 60°C. and at an average 
velocity of 2 ft. per sec. What is the maximum vc'hxnty in the pipe? 

108. Energy Losses Due to Changes in Velocity.—When fluid 

flowing in a pipe is forced to undergo any cliange in vtdocity or 

velocity distribution, there is a loss of energy or head, that is, 

energy in the forms included in the Bernoulli constant is trans¬ 

formed to heat. At the entrance to a pipe lint', at enlargements, 

contractions or obstructions, and at bends the change in velocity 

or velocity distribution entails losses whic^h in some cases com¬ 

prise a relatively large part of the total loss and cause a con¬ 

siderable part of the resistance to flow. 

The amount of such losses can be approximately determined 

in some cases by theoretical means, but on the whole theii 

computation depends upon certain experimentally determined 

coefiicients. 

Sudden enlargement offers the best opportunity to determine 

a loss by theoretical means. In the sudden enlargement shown 

in Fig* 142 the stream initially has a cross section Ai and is 
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discharged into a pipe of cross section A2. The transformation 

in size of the stream requires some distance and the face of the 

expanding stream is a surfa(‘e of discontinuity outside of which is 

eddying fluid not taking part in the general downstream motion. 

The pressure in the jet at the h(‘ginning of the larger pipe is the 

same' as that in the surrounding fluid. Considering the pressure 

forces on the body of fluid CIJEFj th(n*(' is a total force of P1A2 

acting toward the right on face CD and a forc(‘ P2A2 exerted 

toward the left on fac(' EF. If ^ ^ 

th(‘ shear force along the wall ^  j — i 

of the pipe' is neglected, the net ^ ZM j, 

('ffective' force' accelerating the ; i 

body CDEF is piA^ — P2A2. ^ ....- ; 

In passing through the spacer P P 
e n r 142.—Suflden enlarKcment. 

CDEF, a quantity of Q c.f.s. 

has its velocity changed from Vi to F2. Equating the effective 

force to the rate of change of momentum, 

(pi - P2)A2 = ^kV2 - El) = —- Fi) 

Hi — El Yl 
ir w g 

(Fi - F2) 

Writing Berneiulli’s equatie)n between points 1 and 2 and cor¬ 

recting for the loss K gives 

Zi! + E' = I?' + Pi 
2(7 w 2g w 

from which the loss is 

(II - -(Pl-2l) 
\2g 2g) \w w) 

Substituting the value of the latter term as given by Eq. (37), 

the loss is found to be 

= (II _ lA 
\ 2g- 2g ) 

_ (Fi - 

2(7 

HV^ - V,) 
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Equation (39) is known as Bordaks formula. It is based 

entirely on theoretical considerations, but for water it is well 

supported by the experimental work of W. H. Archer,^ who 

developed the formula 

he = 1.098^-- - - (40) 

El 2 
It is often desirable to express this loss in the form he = in 

which Ke is a coefficient varying in value with tlie ratio of velo(i- 

ties, diameters or areas. Equating this expression for he to 

that in Eq. (39) and solving for Key 

and 

2> 

(41) 

(42) 

Sudden conlractlon produces losses that can be compl(‘tely 

determined only with the lielp of experimental coefficients. 

Fig. 143.—Sudden contraction. 

Figure 143 represents a pipe in which the area is suddenly reduced 

from A] to A2. When fluid is made to pass over a surface having 

such a sharp curvature that it cannot follow it, as around the 

sharp corner in this case, the stream leaves the surface and is 

contracted. As the fluid rounds the sharp corner of the sudden 

contraction, the cross section is reduced or contracted from A 2 to 

Ao and Ao = CcA2, in which Cc is a coefficient of contraction. 

This coefficient changes with the ratio A2/A1, being larger for 

large values of the ratio and reaching a minimum of about 0.62 

for water when Ai is very large. Downstream from plane 00 

^ Archer, W. H., Experimental Determination of Loss of Head Due to 

Sudden Enlargement in Circular Pipes, Trans. A.S.C.E., vol. 76, p. 999, 

1913. 
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the stream expands to fill the pipe again. The loss in this expan¬ 

sion is far larger than the loss in the contraction just upstream. 

Considering the latter to be negligible, the loss may be determined 

from Eq. (39), which, when applied here, becomes 

he = 
- (^0 - ^2)^ 

^9 

Expressing the loss in contraction in the form he = K, 

equating this to K from Eq. (43) and solving for 

= (Ai _ lY = (1 _ lY 
\A„ V \Cc ) K, = 

and 

=-.f={k - ■)■' 
2^ 

2g 

(43) 

F2^ 

2g’ 

(44) 

(45) 

Weisbach^ gives the following values of Cr for sudden con¬ 

traction with water: 

A,/A, 0.1 
1 

0.2 
1 

0.3 0.4 0.5 
i 

0.6 0.7 0.8 0.9 l.O 

Cc 0. G24 0.632 0 643 0.659 0.C81 0.712 0.755 0.813 0.892 1.00 

The loss as given by Eq. (45) is only approximate as it is based 

upon theory which neglects the loss upstream from section 00 

of Fig. 143. Furthermore, experiments show that there is a 

slight variation of Kc with V. 

The loss at entrance to a pipe line de^pends upon the form of the 

opening. The sharp-cornered entrance of Fig. 144 is a special 

case of sudden contracjtion. The total loss is about ^A%V^/2g 

and is usually taken to be Commonly used values 

for the loss computed from Eq. (19) of Chap, XI are shown in 

Fig. 144. The rounded entrance causes a very small loss while 

the re-entrant pipe causes a large loss. 

Bendsy teeSy valves and other fittings or obstructions in a line of 

pipe cause losses which depend in amount upon the construction 
y2 

used. Any such loss may be stated in the form h = In 

1 Weisbach, Julius, ‘‘Die Experimental-Hydraulik,” p. 133, J. S. Engel¬ 

hard t.- Freiberg, 1855. 
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work involving a largo number of such fittings, it is convenient 

to adjust for such losses by increasing the length of pipe in the 

Darcy formula by a length which it is estimated would clause the 

same loss as the fitting.^ These equivalent lengths are based 

on the assumption that the pipe is in good condition. For pipes 

with a different value of/ the equivalent hmgth may be adjusted 

according to the ratios li/h — /2//1. 

Knowledge of the subject of minor losses in pipes for all fluids 

appears to be in an unsatisfactory state. All the values give]) 

here may be considered approximations. Any enlargement, 

Ftg. 144 —Loss at. entrance to a pipe line. 

contraction or other fitting disarranges the velocity distribution, 

and for that reason the losses caust'd by them ar(^ not confined 

to their immediate vicinity but extend downstream until the 

velocity distribution is again normal. Bends always set up a 

rotation in a pipe which may have an important effect on loss in 

the line downstream from the bend. 

As shown in Art. 101 of this chapter, the energy involved in 

laminar flow is much greater for a given average velocity. Lam¬ 

inar flow requires a much greater distance downstream from a 

disturbance for the velocity distribution to return to normal and 

the rotation induced by a bend is probably more important than 

for turbulent motion. It is to be expected then that the coeffi- 

cient K in the expression h — is somewhat larger for laminar 

flow than those given here for turbulent flow. 

^ For equivalent lengths for fittings, see D. E. Foster, Effect of Fittings on 

Flow of Fluids through Pipe Lines, Trans. A.S.M.E., vol. 42, p. 647, 1920; 

and W. A. Thomas, “Resistance of P^ittings Chart.,” p. 203, The Val^e 

World,*Crane Co., Chicago, November, 1932. 
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Example.—The pressure in a pipe line changes from 12 lb. per sq. in. to 

10 lb. per sq. in. where the diameter is changed suddenly from 20 to 12 in. 

Compute the quantity flowing in the line. 

Solution.—The pressure heads at points 1 and 2 are 

= ]2 ^ 0.433 = 27.71 ft. 

and 'p2/'ir = 10 -r- 0.433 = 23.1 ft. These arc plotted in the figure. The 

loss as given by Eq. (45), taking ^ 

Weisbach’s values of Cc for A^lAi- ~ ^ 
0.36, is 

‘■-(A 

Bernoulli’s equation between 1 and 2, corrected for this loss, is 

+ 27.71 = —+ 23.10 + 0.283-^ 
zg Zg Zg 

After finding from AiVi ^ AiVz that = 0.130-^» 

I'.,2 1^,2 y 2. 
4.01 = V- + 0.283-^ - 0.130-^ = 1.153.^ 

2g 2g 2g 2g 

from which Y2^l^g - 4.00 and V\> - 16.04 ft. per sec. The discharge 
is Q2 — A2V2 — 0.785 X 16.04 =• 12.59 c.f.s. The drop in the energy 
gradient is the lost head, in this ease 0.283F22/2<7 = 1.13 ft., and the initial 

velocity head is 0.130Ti‘'*/2g' = 0.52 ft. 
Problem 227. A water pipc^ carrying 8 c.f.s. is enlarged abruptly from 

12 to 18 in. in diameter. What is the change in the eiKirgy grade line and in 

the hydraulic grade line? 
228. A water pipe carrying 8 c.f.s. is reduced abruptly from 18 to 12 in. in 

diameter. Compute the (diange in energy and hydraulic grade lines. 
229. A 12-in. water pipe connected to a reservoir has a sharp-cornered 

entrance. The hydraulic grade line just downstream from the entrance is 

1.5 ft. below the surface of the reservoir. Compute the quantity flowing 

in the pipe. If the line had a carefully rounded entrance, what would be the 

drop in hydraulic grade line with the same quantity flowing? 

109. Hydraulic and Energy Gradient for Nonuniform Flow.— 
In the case shown in Fig. 135 and discussed in Art. 97 the hydrau¬ 

lic grade line is affected only by the head lost in uniform flow. 

When the flow is nonuniform as in a line having contractions and 

enlargements, the changes in velocity and velo(*ity head and the 

resulting losses complicate the hydraulic grade line. Velocity 
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being fixed by the conditions of the continuity equation, and 

elevation being controlled by the position of the pipe, all changes 

in velocity head and all losses must be reflected in the pressure- 

head term of the Bernoulli constant. The fall in the pressure 

gradient in this case is then due to the loss of head and the crea¬ 

tion of velocity head. 

In drawing the grade line shown in Fig. 145 it is assumed that 

the losses and transformation of energy take place in a short 

distance as compared with the length of straight pipe, that the 

gradient for the straight portion is a straight line unaffected by 

the disarrangement of velocity distribution at the changes, and 

that the velocity head F^/2$r repres(uits the average kinetic 

energy content per pound of fluid. In spite of the fact that the 

two latter assumptions are never strictly correct, the grade line 

is helpful in studying the flow. 

The pressure drop at the entrance can be determined by 

Bernoulli’s equation for points 1 and 2, whence 

(loss at entrance) 
Zg w 

the pressure head at point 2 being 

'72^ 2l 
w 

+ 

It is seen from this equation that the drop in grade line is 

+ ho 

(46) 

2i - hr = V) 
TV 
2g 
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It should be noted that it does not consist of the loss alone but is 

affected by both loss and change in velocity head. 

Applying the same method, it can be shown that the drop in 

grade line between points 3 and 4 is the increase in velocity head 

plus the loss, that is, 

and it can likewise be shown that there is a rise in pressure head 

at th(‘ (Uilargement bc^tween {Kjints 5 and 6 of 

owing to the partial transformation of the higher velocity head 

at 5 to pressure head at 6. The value of he is given by Eqs. (39), 

(40) or (42) and K can b(^ computed from Eq. (43) or (45). 

When a pipe discharges into a n^servoir of liquid as in Fig. 145, 

most of the velocity head is lost. This is a special case of sudden 

enlargement. Writing the Bernoulli (equation between points 7 

and 9 and computing the loss from the Archer formula, Eq. (40), 

which in this case becomes 

A/= 1.098-^— (49) 
2g 

it is found that — is loss than z^. The quantity Zt — — 

represents that part of VT^f2g which is not lost when the stream 

expands in the reservoir. It is quite common practice to assume 

tliat the loss is just which case pi/w = 29. 

If the quantity flowing is known, the pressure anywhere in the 

line can be found by using the Bernoulli equation between point 

1 and the point in question and including all losses. 

Bernoulli's equation between points 1 and 9 takes the form 

= 2:9 + (all losses between 1 and 9) 

from which 

Zi — Zg = ho h}{ he hs he hr + hj — H (50) 

or 

It Vt 
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At first glance this (equation appears quite formidable. The 

velocities are related through the continuity equation but some 

of the coefficients are dependent upon the unknown velocities. 

In solving for any velocity or Q it is ne(*.essary to use a series of 

approximations starting with assumed A^alues of / which (^an be 

corrected when making the second solution. With Q given, the 

solution for H is direct. 

The upper line in Fig. 145 is plotted by adding the velocity 

head to the elevation of the pressure gradient, its elevation at 

Vb Vb^ r 
any point B being-— This line is the energy gradi(‘nt 

w zg 

and its elevation above datum represents the total eiuagy 

referred to datum. The vertical distance from the energy liru' 

at any point to the level of point 1 represents the energy lost- 

and it follows that the line must always slope downward in the 

direction of flow. 

The slope of the hydraulic gradient is the hydraulic slope of 

the pipe, independent of the position of the pipe. The pipe in 

Fig. 145 could have been in a po.sition higher, lower or inclined, 

within limits, without change in the hydraulic grade line or slope. 

When a pipe line contains a large number of valves, bends and 

changes in size and where the straight runs are comparatively 

short, the hydraulic grade line cannot be accurately drawn. 

The velocity distribution is never ideal and the conditions 

under which experimental values of / are detfTinined ar(^ not 

even approximated. Such problems require the exercise of 

consid(?rable judgment as accurate computation of losses is not 

possible. 

110. Minor Losses Neglected.—In many pipe lines the fluid 

flows through comparatively great distances between dis¬ 

turbances such as those caused by obstructions, contractions, 

enlargements or bends. If the distances are sufficiently large' 

the minor losses due to these disturbances are relatively unim¬ 

portant and may be dropped from such an equation as Eq. (51), 

which then becomes 

The uncertainty in choosing values of / is often such that there 

is no real refinement of results to be had by using the minor 
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losses. Tlie lengtli of pip(‘ for which such losst‘s are negligible 

depends upon th(i conditions at hand and the accuracy desired. 

If the flow is turbulent, the minor losses have relatively little 

effect on discharge when the undisturbed lengths are 1000 

diameters or more. In solving for V and Q the errors introduced 

will be small but, when II is computed from a known Q, the per- 

(‘(uitage of (uror will be much larger. 

For the pipe line shown in Fig. 146 the Bernoulli equation from 

the free surfac^e to the end of the pipe, corrected for losses and 

referred to a datum plane through the outlet, is 

ya y2 7 y2 

Neglecting the velocity lu^ad and entrance loss, this becomes 

U T' ^ = 

and the hydraulic grade line is men'ly a line assumed to be 

drawn straight from the free surface to the outlet. 

Problem 230. In Fig. J45 the hnigths of the three pipes are //^ = 300 ft., 

L = 100 ft. and It — 450 ft., and the diameters are PS, 12 and 18 in., 

respectively. The (piaiitity flowing is 10 e.f.s. and the pipes are new cast 

iron. Coin])ute the total head H and plot the liydraulie and energy grade 

lines. 
231. In Fig. 145 the lengths of the three pipes are Ir — 500 ft., Is — 1200 

ft. and Ir = 900 ft., and the diameters an^ 12, 18 and 12 in. respectively 

The material is old cast iron and the total head is 30 ft. Compute the flow 

of water (a) (auisidering all losses, (6) neglecting minor losses and velocity 

changes. 

111. Other Hydraulic Gradients.—If the pipe is of uniform 

condition or roughness and if the slope of the pipe is such that 

axial lengths do not differ much from the horizontal distances, 

the hydraulic gradient is essentially straight. 

Thus the hydraulic grade line for the pipe of Fig. 146, neglect¬ 

ing minor losses, is a line from the free surface to the outlet. If 

minor losses are considered, the grade line dro])s a distance 
y2 
5- -f /lo at the entrance end. 

The pressure head at such points as B and D is indicated by 

the vertical distance of the pipe below the hydraulic gradient and 
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it follows that, when the pipe is above the hydraulic gradient, 

the pressure head is less than atmospheric by an amount equal 

to the difference in elevation. This difference is limited theo¬ 

retically to the difference between the atmospheric pressure 

head and tlie vapor pressure, that is, - — For practical 

reasons the negative head is further limited because at such low 

Fig. 14(),— Hyclraiilio grade line and profile of a pipe lino. 

pressures there is a tendency for air entrained in a liquid to 

separate and colk^ct at a crest such as point C. Fven in lines 

entirely under pressure this accumulation of air may become 

troublesome, for the pipe becomes ^^air bound^^ and its (*apacity 

is greatly reduced unless provision is made to remove the air. 

A pipe in the position shown in Fig. 146 must ))e structurally 

(C3.) (b) 

Fig. 147.—Pipes on stoop inclines. 

capable of resisting a load from the outside. Other pipes often 

collapse when accidentally subjected to negative pressure. 

In the case of the vertical or sharply inclined pipes of Fig. 147, 

it is impractical to draw a true hydraulic gradient. Since it is 

merely a device to assist in the study of pipe flow, the user is 

free to adopt any workable convention as, for example, in Fig. 

147a. In this case the hydraulic slope of the pipe is h/l. This, 

however, is not the slope of the grade line as drawn. In the 
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vertical pipe of Fig. 1476 the liquid always stands higher in the 

upstream tube by the amount of the lost head and the hydraulic 

slope is again h/l. 

Problem 232. Sketch llio hydraulic grade line for Fig. 146, (a) with a 
nozzle on the end of the line, {h) with a vent to the atmosphere at C, (c) with 
the pipe closed at (7, (d) with the pipe cut off at D. 

233. The water pipe in F'g. 146 is 800 ft. long and 12 in. in diameter and 
/ = 0.02. Point G is 30 ft. below A and Cis 6 ft. below A and 300 ft. from E. 
Compute tlie discharge and the pressure at C, Corretd for all losses. 

112. Divided Flow in Pipes.—In such a system of pipes as 

shown in Fig. 148 the liquid flowing from reservoir A to reservoir 

B is divided between pii)es 2 and 3. The drop in the hydraulic 

grade line in either pipe is 

(S + = = h 

and the flow must divide itself to satisfy this condition. In 

doing this the flow in the two pipes from C to Z> is analogous 

to the flow of electricity in parallel conductors over which the 

drop in potential must be equal. Neglecting minor losses, the 

conditions shown establish the following equations: 

62 — 63 

hi -f" 62 hi — II 

Qi = Qa 
Qi = Q2 Qs 

Each 6 and Q may be expressed in terms of a corresponding 

velocity and there are then four equations in Fi, F2, F3, F4, 

the first two of which contain values of / depending to some 

extent on the unknown velocities. A direct solution may then 
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])e both difficult and futile and the trial solution is indicated. 

One convenient method of solving for Q when H is known is to 

assume a value of hi and compute Qi^ Q4, hi, A2, hs, Q2, Q:i in order. 

If the computed values of Q satisfy the last of Eqs. (55), they are 

correct; otherwise another trial is necessary. On the next trial 

the solution may be started with an assumed value of Ai or (?i, 

using the first results as a guide. 

In the systtun shown in Fig. 149 the flow in pipes 1 and 3 is 

evidently toward the right. If tlu' elevation of C and the 

elevation of the free surfaces in the reservoirs are given, there is 

often no indication of the direction of flow in i)ipe 2. The 

direction can be quic'.kly d('termined by assuming no flow in i)ipe 

2, thus placing the hydraulic grade line (dotted) at the junction 

D at the same level as the free surface in B. Qi and Q3 can then 

be computed. If Qi is greater than Qs, it is evident that the 

flow is into B, It is thtui known that the grade line at D is above 

B and the following conditions an^ to be fulfilled: 

hi -h h2 = Za — Zb) 

hi + h == Za — zc> (56) 

Q2 Qs — Qi ) 

These equations can be satisfied by trial, one method being 

to assume hi, compute A2, As, Qi, Q2, Qs and check the values of Q 

by the last equation. 

Example.—In the figure reservoirs A, B and C are connected by pipes 

1 and 2, which are clean cast iron, and pipe 3, which is old cast iron. Find 

the quantity flowing in each pipe. 

Sohdion.—The direction of flow is at first unknown and it is therefore 

impossible to set up equations for the system. If it is first supposed that 

there is jio flow in pipe 1, the grade lines are as shown in dotted lines. Then 
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h% — 20 ft., /is — 22 ft., and and can be computed. For this purpos*. 
it is convenient to write the Darcy 

formula as V = \/2ghdJlf. Considcr- 

f>i to be 0.020, 

V 

and 

^ 1500 X 0, 020 
— 6.55 ft./sec. 

Q2 = A.F, - 0.785 X 6.55 = 5.15 c.f.s. 

Likewise, taking/;, = 0.038 from Table Vli, 

64.4 X 22 X 1.." 
- = 5.91 ft./soc. 

and 
(h 

1600 X 0.038 

A,Vs = 1.77 X 5.91 - 10.46 c.f.s. 

It is obvious that these values of Q2 and Qs are incompatible. There must 
be flow toward th(‘ right in pipe 1, which means that the grade line at D 
is lower than (‘levation 200, the new system of grade lines being as shown 
])y tlie f\ill lines. It is now possible to write the equations for the system, 

whicli are 

h. - /?i = 20, fh + hs = 22, Qs - (?, + Q2 

These c.'iu be solved ])y t rial. With the grade line lowert'd at D, it is apparent 

tliat Q> must be greater than 5.15 c.f.s. and that Qs must be less than 10.46 

c.f.s. Hence the flow in jhpc 1 must be less than 

10.46 - 5.15 = 5.31 c.f.s. 

As a first trial, assume that Qi is, say, 3 c.f.s. Then 

Ai 
^ = 3 ^ 0.785 = 3.82 ft./sec. 

and, taking / from the table, 

,„=0.22l^‘m'=6.0ft,. 

Now h-i = 20 + 6 = 26 and hs 

V 

liO that Q2 - 5.71 c.f.s. and 

1 64.4 

22 — 6 = 16, from which 

\ 15l 

4 X 26 X 1 
1500 X 0.021 

= 7.28 ft./sec. 

'64.4 X 16 X 1.5 

1600 X 0.038 
5.04 ft./sec. 

so that Qs = 8.92 c.f.s. Now the assumed Qi plus the computed Qi is 
3 4. 71 = 8.71 c.f.s. as coniDarcd to 8.92 c.f.s., the computed value of Qs. 
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This is considered good agreement and well within the limits of error in 

choosing values of / for a pipe. Then the discharge can be taken as Qi ~ 3, 

§2 = 5.8 and Qz — 8.8. If good agreement is not obtained, another trial 

is necessary. The neglect of the small losses at entrance and exit has little 

effect on the results or on the accuracy in this problem. 

113. Equivalent Pipes.—Many systems are so eomplieated 

that it becomes convenient to substitute a pipe of equivalent 

capacity for two or more pipes of the system. The new pipe 

can be made of equivalent capacity for one set of arbitrary con¬ 

ditions which should approximate the conditions under which 

the system is operating. For example, pipes 2 and 3 of Fig. 148 

could 1)6 replaced by an equivalent pipe having an arbitrary 

length I between lengths I2 and h and a capacity Q — Q2 + 

with the same loss of head as pipes 2 and 3. The value of h 

should be about the same as in servi(‘e, and a valiKi of / about the 

same as for pipes 2 and 3 should be used. Then, after computing 

Q2 and Qz from the arbitrary /i, 

h = fir ^ fir9' 
^d2g ^ d2gTTH^ 

and the diameter of the equivalent pipe is 

By repeating this or similar operations many systems of pipes 

either in series or parallel can be reduced to a single equivalent 

pipe. 

Problem 234. A teat of a 10-iii. pipe shows that / = 0.32, which is 

excessive for a clear line. Assuming that legitimate roughness cannot 

produce a value of / more than 0.05, compute the diameter of an equivalent 

pipe of this roughness. 

235. In Fig. 148 the lengths of the pipes are h = 2000 ft., U — 1800 ft., 

U =* 1000 ft., li = 2400 ft., and the diameters are 18, 12, 12 and 24 in., 

respectively. Letting Qi — 12 c.f.s. of water and taking/ from Table VII, 

compute H. The pipes are clean cast iron. 

236. In Fig. 149 the pipe lengths are h - 2000 ft., U = 1000 ft., 

U - 1600 ft. The diameters are 12, 12 and 18 in., respectively, and the 

elevations of A, B and C are 200, 180 and 160 ft., respectively. Compute 

Qs, using / for clean cast-iron water pipe. 
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287. In Fig. 149 tako diameters and lengths as in Prob. 236. A and C are 

at elevations 200 and 170, respectively, and Qs ~ 10 c.f.s. of water. Find 

the elevation of B, taking f = 0.02 for all pipes. 

114. Flow of Compressible Fluids.—In Art. 104 it is stated 

with some qualification that Stanton's curve can be applied to 

both liquid and gaseous fluids and that much of the curve is in 

fact determined by experiments on flow of air. It can be further 

stated that the methods of this chapter an^ in general applicable 

to all fluids within certain limits. The flo^ of compressible 

fluids may be entirely similar to the flow of a fluid at some section 

of a pipe but quite diffenmt in respect to the variation along the 

length of the pipe. The absorption by the fluid of all or part of 

the energy lost and the changes in temperatun^., pressure, density 

and viscosity must be giv(UJ considf^ation according to the princi¬ 

ples of thermodynamics. These problems, which become some¬ 

what involved, are discussed in Chap. XIV. Acceptable results 

following the methods of this c.hapter may often be obtained by 

dividing a line of pipe into reaches over which the pressure drop 

is small as compared to the absolute pressure and the Reynolds’ 

number nearly constant. Tlu'-re is no safe general rule for 

telling when this method can be safely applied and the results of 

such work should be fn^quently checked against the more exact 

theory of Chap. XIV. 

The discussion in this chapter of minor losses applies particu¬ 

larly to flow of liquids and should not be applied to compressible 

fluids where changes in velocity are great. 

116. Noncircular Pipes.—The work of this chapter thus far 

has referred to the flow of fluids in pipes of circular cross section. 

It can b(^ applied with fair results, however, to turbulent flow in. 

noncir(‘ular tubes and annular spaces. The term d in Nr or in 

the Darcy formula must be replaced by a new term having the 

same dimension as d, for whi(di purpose the hydraulic radius is 
introduced. The hydraulic radius of any cross section is 

^ _ area of cross se(*-tion 

' ” wetted perimeter of cross section 

In the case of a round pipe 

^ 7rdV4 d 
-I 

or d = AR (58) 
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Substituting this value for the Reynolds^ number becomes 

Ng = (59) 
M 

and the Darcy formula is 

h ILYl 
iR2g 

(60) 

Equations (59)^and (60) used in connection with the Stanton 

diagram give fair results for all ordinary shapes if the flow is 

turbulent. 

When the flow is laminar these equations cannot be used except 

for shapes nearly circular or square. Tb(' difference in results 

for the two types of flow is attributed to the great difference in 

(a) (b) 

Fig. 150. —(a) Annular space with large ratio r/a. (6) Annular space with small 
ratio r/a. 

velocity distribution. The error introduced by using the hydrau¬ 

lic radius is especially large for laminar flow in annular spaces 

such as those shown in Fig. 150. The equation for laminar flow 

given by Lamb^ for the quantity flowing through a tube of this 

form is 

0 - j — 

XogJj/a) _ 
(61) 

When r/a == 10 this equation gives a correct value of Q only 

slightly more than half of that for a full circle as computed from 

Eq. (16) of Chap. VIII. The hydraulic radius method in this 

case would give a value of Q which is about 80 per cent too large. 

When the proportions are as shown in Fig. 1506, the flow can 

be computed by F^q. (61) or as between two parallel plates of 

1 Lamb, H., ^‘Hydrodynamics,’’ 6th ed., p. 587, Cambridge University 
Press. IQS? 
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width 27r—2— with a space between of thickness r — a. The 

equations for this latter case are given in Chap. XVL 

116. Flow in Pipe Bends.—When fluid is made to flow around 

a bend in a pipe, the centrifugal force which is introduced pro¬ 

duces an excess of pressure on the outer surface of the bend. If 

it should be supposc'd that the flow is laminar and that each 

lamina remains parallel to the axis of the bend, then the outer 

laminas would have to acquire more velocity. But this incniase 

in velocity would nec(\ssitate a reduction in pressure at the out¬ 

side of the bend which is quite incompatible with the above idea 

of an increase due to centrifugal force. The supposition that 

the motion around the bend is a mere speeding up of outer parti- 

(;les or retardation of the inner ones must therefore be abandoned. 

Consider the prisms ah and dc in the square cross s(H*.tion of 

Fig. 1516. Prism ah has the higher velocity because it is less 

affected by the sides than dc, and accordingly the centrifugal force 

is greatest on ah. This builds up a pressure difference such that 

pb > Pc and pd > Pa and the motion indicated by the arrows is 

induced, with a similar motion in the opposite direction in the 

other half of the section. This motion is also present in round 

pipes, as shown in Fig. 151c, and exists in both laminar and 

turbulent flow. The induced or secondary motion is superim- 
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posed upo!) the original motion and it ran be shown that the 

resultant motion may involve a smaller total energy content than 

when the velocity is merely assumed to increases outside the axis 

and decreases within. The presvsure increase at the outside and 

decrease at the inside may cause eddies in the regions mn and rs, 

the latter being eliminated as soon as the secondary motion or 

vortex pair is strong enough.^ 

When this secondary motion is once established, it tends to 

persist for a considerable distance downstream so that the lowSS(\s 

caused by a bend are not confined to the bend itself. In exp(‘ri- 

mental work with air the secondary motion is eliminated or 

minimized by providing vanes at the bend as shown in Fig. 151d. 

General Problems 

238. A 30-in. water pipe carries 20 c.f.s. At point B the pressure is 25.5 lb. 

per sq. in. gage and the elevation is 120 ft. At })oint C, which is 5000 ft. 

from B, the pressure is 45.2 Ih. per .sq. in. alnsolule and th(j (‘kwation is 

100 ft. Compute/ in the Darcy formula. 

239. A liquid having a viscosity of 2 j)oises and a weight of 60 lb. per cu. ft. 

is pumped through a smooth 6-in. pipe at the rate* of 0.1 c.f.s. What is the 

difference in pressure at two poiiit.s on the same level and 6000 ft. apart? 

What is the actual kimdic energy per pound of fluid flowing? 

240. A pump at an elevation of 60 ft. is coniu'cted to a reser\^oir at an 

eh^vation of 100 ft. by 4500 ft. of old 18-in. cast-iron pip(i. At a point in this 

line 1500 ft. from the reservoir an old 12-in. pipe is connected. It is 1200 ft. 

long and leads to a point at elevation 85 whc're it dischargers at the ratt; of 

6 c.f.s. Taking/ as 0.032 for all pipes, compute the pressure that must be 

maintained by the pump. The fluid is water. 

241. Water is pumped through a smooth 6-in. pipe line 1200 ft. long at the 

rate of 100 g.p.rn. What is the head required if the temperature is (a) at 

the freezing point, (h) at the boiling point? 

242. What is the largest diameter of pipe that will carry 200 g.p.rn. of 

castor oil with laminar flow at 30°C.? 

243. Two water reservoirs are connected by 2000 ft. of 12-in. pipe for 

which / is 0.038 and the flow produced by the difference in level is 6.0 c.f.s. 

If a new 12-in. pipe 1500 ft. long is laid from the higher resenmir, parallel to 

the old line and connected to the old line 1500 ft. from its inlet, compute the 

total quantity flowing. For the new pipe / = 0.019. 

244. In Fig. 152 pipes A, B and C have diameters of 24, 18 and 12 in. and 

lengths of 2000, 3000 and 4000 ft., respectively. If the flow in pipe A is 

known to be 15 c.f.s., compute the head //. Use values of / for old cast-iron 

water pipe from Table VII. 

^ For discussion, photographs and bibliography on flow in bends, see W. 

Kaufman, ^‘Hydromechanik,'' vol. II, p. 84, Julius Springer, Berlin, 1934. 
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245. A horizontal line of new east-iron pipe, 4 in, in diameter and 600 ft. 

long, is conne(?ted to a pump which maintains a pressure of 50 lb. per sq. in. 

gage. What is the discharge of water (a) when the end of the pipe is open, 

(b) when it is fitted with a 1-in. nozzle in which the loss is 0.1 of the velocity 
head at exit? Use / from Table VII. 

Fig. 152. 

246. It is desired to pump 30 g.p.m. of oil through a pipe at a v(4ocity 

which (tould be doubled and still have the flow remain laminar. The oil has 

a viscosity of 2.0 poises and its specific gravity is 0.8. Compute the diam¬ 

eter of the pipe. 

247. An annular space between two tubes has a mean diameb'r of 3.75 in. 
and a thickness of 0.25 in. Assuming laminar flow', at what rate does water 

at 20*^0. flow' through this space with a pressure difference of 0.2 lb. per 

sq. in. in 100 ft.? 

248. An oil is pumped through 2000 ft. of smooth G-in. pipe at a velocity 
equal to twice the critical velocity. Compute the head reijuired if = 0.6 

poises and w — 58 lb. per cu. ft,. 

249. A smooth 12-in. pipe 400 ft, long is coniHuded to two reservoirs with 

a difierence in level of 10 ft. The entrance and outlet of th(^ pipe are square- 

cornered and submerged. Compute the quantity of water at 20®C. which 

wdll flow through the pipe. 
260. At a sudden enlargement of a water line from a diameter of 12 in. to 

one of 24 in., the hydraulic grade line rises 
0.4 ft. Estimate the quantity flowing in 

the line. 
251. In Fig. 153 the flow of water from 

reservoir A to reservoir B is 3.1 c.f.s. under 

a head of 25 ft. Is the pipe clean or old? 

If the line is broken wide open at C, what Fio. 154. 

is the discharge at this point? 
252. In Fig. 154 points A, B and D have elevations of 220, 205 and 150 ft., 

respectively. The pipes have lengths and diameters of h = 8000 ft., 



232 FLUID MECHANICS [Chap. IX 

k - 9000 ft., h 10,000 ft., di 12 in., dt = 18 in, and dz ~ 24 in. 

The pressure at D is 15 Ih, per sq. in. gage. Using values of/ for new pipe 

from Table VII, find the elevation of the water surface at C. 
263. An old 12-in. east-iron pipe 1800 ft. long and a new 12-in. cast-iron 

pipe 2600 ft. long both connect a point at which the pressure is 10 lb. per 

sq. in. gage with a reservoir in which the water surface is 40 ft. higher. 

What is the diameter of an erpiivalent new pipe 2000 ft. long? 



CHAPTER X 

FLOW WITH A FREE SURFACE 

117. Nature of Flow with a Free Surface.—^The flow of liquid 

witii a freo surfac^e is, in most cases, extremely complicated 

compared with flow in pipes, the difficulties involved in tlie two 

subj(M*ts being comparable only in the very simplest case of 

uniform flow in channels, a condition requiring the cross section 

to be constant in area and form. Even after making the simj)lify- 

ing assumption of uniform flow, the wide range of forms of cross 

section and of conditions of channel surface makes it practically 

impossible to formulate a gcuieral description of the motion. 

The free surfaces of a flowing fluid is under constant pressure 

since every part of the surfacH^ is exposed to the same atmosphere; 

the pressure being thus constant, the only force causing flow is 

the weight of the fluid or a component of it. The forces resisting 

motion are the viscosity forces when the flow is laminar or a 

combination of vis(;osity and inertia forces when the flow is 

turbulent. 

With respect to the forces producing and resisting motion, the 

flow in pipes and uniform flow in channels with a smooth free 

surface are similar, but they are quite different in the manner in 

which the gravity forces are applied. In pipes flow is accom¬ 

panied by a drop of pressure while uniform flow in channels is 

always accompanied by a change in elevation. When the flow 

in a channel is nonuniform it is not possible to treat the channel 

as a whole and it becomes ne(*-essary to account for difference in 

(devation, change in velocity and resistance to flow over every 

elememt of length of the channel. 

Water is, of course, the usual fluid involved in flow with a free 

surface and the empirical coefficients and formulas offered in 

this chapter are based upon experiments with that liquid. Any 

theory presented is, however, applicable to any liquid. The 

use of open channels in transporting industrial liquids is not 

uncommon. 
233 
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118. Hydraulic Slope.—The energy or head required to main¬ 

tain flow in a channel is always obtained at the expense of poten¬ 

tial energy. In uniform flow the velocity is constant, and, there 

being no change in kinetic energy, the entire change in elevation 

of a stream is chargeable to the maintaining of flow. 

Figure 155a shows a longitudinal section of a channel in which 

the flow is uniform. Writing Bernoulli's equation for a stream 

tube connecting points 1 and 2 on the surface, 

h — *2^- + (lost head) (1) 

A similar equation for any stream tube lying parallel to the 

surface, such as that connecting points 3 and 4, is 

f + 5 + ^ ^ + S + (2) 
By canceling equal terms in these equations it is seen that 

h — lost head (3) 

from which it appears that the head lost is the same for all 

(a)>Profile of Channel <b)-Cross Section of Channel 
Fiq. 155.—Flow in an open channel. 

stream tubes and is equal to tlie drop in the free surface. The 

hydraulic slope of the free surface is the ratio 

and, since h is the number of foot-pounds of potential energy 

given up by each pound of liquid in flowing a distance Z, this 

ratio represents the head lost per unit length of channel. It is 

equal to the sine of the angle between the surface and a horizontal 

plane but in most cases it is practically equal to the tangent or 

to the angle itself. 

In Fig. 155a the sloph of the surface and the slope of the bottom 

are equal. Later in dealing with nonuniform flow it becomes 
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necessary to distinpiuish carefully between the slope of the chan¬ 

nel bottom, the slope of the free surface and the ratio 

— head 
^ kmgth 

119. Hydraulic Radius.—Resistam^e to flow is equal to the 

total shear force on the wetted surface. Channels having a 

shape in which the wetted surface is large in proportion to the 

cross s(M*lion of the stream have a ndatively large resistance, and 

vice versa; formulas involving resistance must therefore contain 

some expression of the relation between cross-sectional area and 

th(' area of the wetted walls of the channel. For this purpose 

the hydraulic radius, sometimes called the hydraulic, mean depth, 

is introduced. 

The hydraulic radius of a given cross section of channel is 

equal to the area of that cross section divided by its wetted per¬ 

imeter. Thus in Fig. 1556 the hydraulic radius is 

_ *di\vd ABCD 

The hydraulic radius might be calked a section factor since it 

describes th(' shape' of a section. It is not completely descriptive 

of a section and should be used with caution in dealing with 

unusual shapes of channels. 

120. Open-channel Formulas.—Formulas dealing with flow in 

channels must contain te'rins representing the mean velocity F, 

the slope s, the proportions of the channel or the hydraulic 

radius R and the condition of the walls in contact with the liquid. 

There is no entirely theoretical derivation for the relationship 

between these? four variables and in developing formulas dealing 

with them it is necessary to assume the form of the equation and 

to insert three or more exponents or coeffleients determined by 

experiments. 

On the basis of experiments made in 1775, Chezy proposed a 

relationship that can be expressed in the form 

V = CVKs (5) 

in which C is a (‘coefficient largely dependent upon the roughness 

of the walls. The term C is a dimensional coefficient, its dimen¬ 

sion being L^JT. Later experimenters, notably Darcy, Bazin, 
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and Ganguillet and Kutter, showed that Chezy's C also varies 
with R and developed empirical formulas for it containing R and 
also another quantity n, expressing the roughness. The formula 
of Ganguillet and Kutter, unfortunately and probably wrongly, 
also contained an 6* term. Its use became so general that the 
best known medium for stating the roughness of a channel is the 

so-called Kutter^s n. 
The most eonveniemt formula adapted to the use of Kutter^s n 

is that by Manning, 
1.486,,2, -/r 

n 
(6) 

and by comparing this equation with Eq. (5) it appears that 
Manning’s value for Chezy’s C is 

C = 
1.4867r' a) 

Because of its simi)licity and its adaptation to Kutter’s ?i, the 
Manning formula is being more widely used each year.^ 

A few values of Kutter’s n are given b(4ow. These coefficients 
are based upon expcuiments with water at ordinary tcuiipcTatures 
and they are not applicable to other liquids. 

Type of Surface Kutt-er’s n 
Planked surfaces. O.Oll 
Smooth concrete surfaces. 0.012 
Smooth metal. 0.011 
Corrugated metal. 0.022 
•Earth canals in good condition. 0.025 
Earth canals with stones or weeds. 0.035 

Open-channel formulas may be applied to pipes, in which case 
R = d/4. The Chezy formula and the Darcy formula for pipes, 
Eq. (20), page 202, when solved for V are similar in form. 

121. Resistance to Flow.—The manner in which the walls of a 
channel resist flow of a liquid is the same as in the case of pipes. 
Here again the shear force at the walls sets up a complex motion 
within the fluid, the maintenance of which requires a continuous 
input of energy. When flow is uniform, the potential energy 
given up by the liquid as it flows downstream is just sufficient to 

^ For a discussion of open-channel formulas and tables of Rutter’s n, 
see H. W. King, “Handbook of Hydraulics,” McGraw-Hill Book Company, 
Tnc., New York, 1929. 
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provide the required input of energy and there is no acceleration 

of the stream as a whole. 

The average tractive force per unit area at the wall of the 

channel can be computed by considering the equilibrium of the 

body of liquid of length I between sections aa and hb^ Fig. 156. 

The stream having a cross section A, the total weight of the body 

under consideration is wAl with a component parallel to the 

motion equal to wAl sin 6 = wAls. The w(‘tt(‘d perimeter being 

Py the area of contact is PI and the total trac*tiv(‘ force or resist¬ 

ance is rPl = Fy where r is the tractive stress. 'I'he pressure 

forces on the two ends of the 

prism being equal and the con¬ 

dition being one of equilibrium, 

it follows that 

F = rPl = wAls (8) 

and 

r = w “ ,s‘ = wRs (9) 

or, in words, the average shear i^o. -Rosistanno to flow in a channel, 

force per unit area at the wall of the channel is the product of 

the specific weight of the licpiid, the hydraulic radius of the 

channel and the slope. Sul)stituting the empirical value of the 

product Rs as obtained from the Chezy and Manning formulas, 

_ wV‘^ _ wn^ 

~ W ^ (T4W2 W 

When a channel is wide in proportion to depth d and when the 

sides are short, the effect of the sides is small and R is approxi¬ 

mately equal to the depth. The tractive force per unit area is 

then 

r == wds (11) 

Example.—An earth canal of trapezoidal cross section having side slopes 

of 1.5 horizontal tx> 1 vertical is t,o be 4 ft. deep and is to carry 234 c.f.s. at a 
velocity of 4.5 ft. per sec. Assuming the 

canal to be in good condition, what is the 

U" 'A J Solution.—The cross section of the stream is 

QfV ^ 234 4.5 ~ 52 sq. ft. The area in terms of the bottom width 6 is 

46 + (4 X 6) = 52 
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Problem 254. A V-shaped chaniH'l with si<le slopes of 1 to 1 has a maxi¬ 

mum dci)th of 4 ft. when the dis(‘harge is 32 c.f.s. and the flow is uniform. 

Find the slope of the (diannel if it is lined with smooth concrete. 

256. A canal is 20 ft. wide and has vertical sides. It carries 300 c.f.s. in 

uniform flow at a velocity of 5 ft. p(^r sec. and it is lined with plank. What is 

the slope? 

266. A semicircular flume of corrugat<‘d iron is 8 ft. in diameter and has a 

fall of 4 ft. in 2i500 ft. of length. Whal is the discdiarge when it is flowing 

full? What is the average drag or shear force per square foot of surface? 

257. An earth canal in good condition has side slopes of 1 to 1 and a depth 

equal to oiuvquarter of the bottom width. It carriers 240 c.f.s. in uniform 

flow at a velocity of 3 ft. per sec. What is the slope? 

258. A channel has a V-shaped cross sec^tion with side slopes of 1 to 1. 

When the depth is 4 ft. the discharge is 32 c.f.s. What is the discharge 

when the depth is 6 ft.? The flow is uniform in both (aises. 

122. Laminar Flow in Open Channels.—The Chezy and 

Manning formulas of Art. 120 and Eq. (10) for tangential stress 

are applicable only to turbulent flow, in which case the slope or 

resistance is known to be nearly proportional to the velocity 

squared; these equations are not to be used in laminar flow. 

There is abundant evidence that flow in channels is laminar 

at low velocities and it might be correctly supposed that there 

exists a critical velocity, in the sense in which the term is used in 

connection with flow in pipes,^ below which the flow is laminar 

and above which it is turbulent. It is not possible to predict 

this limiting value for laminar flow in channels by comparison 

with Reynolds’ criterion for pipes, as laminar flow is known to 

exist at much greater velocities in channels than in pipes of the 

same hydraulic radius. 

^ The tenn critical velocity will be used in an entirely different sense in 

the fallowing articles dealing with flow in channels. 
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The loss or rosistanco in laminar flow is proportional to the 

velocity, that is, the slope is proportional to velocity, and the 

formula for velocity would be of the form 

V = KHh (12) 

in which K might vary to some (^x^ent with R. 

123. Velocity Distribution in Cross Section of a Channel. The 

distribution of velocity in an open chamnd is affected by the 

traction on the walls in the same manner as in pipes and in addi¬ 

tion it is influenced by the presence of the free surfacje. The 

velocity varies widely over any cross section, b(‘ing greater at 

the point or points least aff(i(rted by the solid boundaries and the 

free surface. Figure 157 shows a cross section of a channel and 

diagrams showing the distribution of velocity along two vertical 

lines aa and bb and a horizontal line cc. 

Th(‘ thn^ad of highest velocity in the channel in this case is hi 

the' cenite'r of the' section on line^ aa and at a depth of about one- 

fourth of (I. The depth of the point of maximum ve'locity 

increase's for relatively narreiwer e'hannels anel alsei iiUTeases for a 

position iK'are'r to the side, such as line bb of Fig. 157. It has 

been shown conclusively that there is no slip of fluid along the 

walls of a iiipe, the velocity at the wall being zero, and it is there¬ 

fore certain that the velocity is also zero imme^diately at the walls 

of an open channel. 

The distribution of velocity along the horizontal line cc is 

typical, being more nearly uniform at greater depths; the maxi¬ 

mum is more prominent near the surface. At the surface the 

region of maximum velocity, commonly designated by the 

German term thalweg, is usually plainly visible. 

It has been observed by GibsoiF and others that the flow in a 

channel is spiral in nature, the rotational component of the 

velocity being as shown in Fig. 157, with downward flow at the 

center and upward flow at the side. The rotational velocity is 

small in comparison to the downstream component. Gibson also 

observed that the level of the surface is slightly higher at the 

thalweg than at the sides. 

Even in the simpler forms of channels, for example the semi¬ 

circular flunu', the distribution is too complex to admit of mathe- 

1 Gibson, A. H., “Hydraulics and Its Applications," 4th ed., p. 329, 

D. Van Nostrand Company, Inc., New York, 1930. 
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matical analysis. Irregularity of form or change of alignment 

of the channel or wind over the surface will alter the velocity 

distribution. At a bend in a channel there is an increase of 

velocity near the outside of the bend, the distribution of velocity 

Cross Section 
Curves of Velocities 
inVerticoil Sections 

Section cc 

Velocities in Horizonte*! Seefion 
Fig. 157.—Velocity distribution in a straight (ihauncl. 

along a liorizontal section being as shown in Fig. 158, and the 

surface is slightly higher at the outside. Since the velocity is 

greater near the surfat^e than near the bottom, the effect of 

centrifugal force is greater at the top. This establishes a spiral 

motion as indicated in Fig. 158 with an outward component of 

Cross Section 

Section aa 
Fig. 158.—Velocity distribution at a bend in a channel. 

velocity near the surface, a downward component at the outside 

and an inward component near the bottom. 

The kinetic energy content of any stream of nonuniform 

velocity is greater than that computed by using the average 

velocity. The energy term in Bernoulli's equation is neverthe- 
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less written as V^/2g wher6> V is the averag(^ velocity, thereby 

introducing an error which is usually, but not always, compen¬ 

sated for by tlie empirical coefficients. Assuming the average 

kinetic energy per pound of flowing liquid to be V‘^/2gy the total 

kinetic energy per second is QwV^I2g. It will be recalled from 

Art. 101 that the (corrected total kinetic energy per second in 

pipes is 2QwV‘^l2g for laminar flow and about l.lQwV‘*/2g for 

turbulent flow. It is likely that equal or larger corrections 

should apply to flow in channels. 

124. Specific Energy and Critical Depth.—The total energy 

j>er unit weight of liquid flowing in a channel, referred to the 

bottom of the channel as datum, is known as the specific (mergy. 

In Fig. 159 consider any particle at a depth di IxOow the free 

surface and having a velocity T^i. The total (mergy per unit 

weight, referred to the l)ottom immedi¬ 

ately below point 1, is found from the 

B(Tnoulli constant to be 

E = + ^-'- + {y 
2g w 

dO (13) 

Assuming the j)ressur(^ to be the saim^ energy, 

as for static conditions, p\ — ivdi and this (Xpiation be(*omes 

(14) 

Replacing Vi by the average' veloeaty F, the value of E for aii}^ 

particle is 

E = y + Y1 
2g 

(15) 

This quantity, under the assumption of uniform distribution ol 

velocity in a cross section, is a constant for all particles in a cross 

section and in uniform flow is the same at all sections of the chain 

nel. It is the specific energy. The quantity has the dimension 

of a length and, when the distance E is plotted from section to 

section, the upp^r line in Fig. 159, marked “Energy Gradient,'" 

is produced. 
Substituting for V the expression Q/A, Eq. (15) becomes 

E = y + 
2gA^ 

(16) 
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For a unit width of rectangular channel with a constant discharge 

per unit width equal to the velocity is F = q/y and the specific 

energy may be written 

(17) 

Each term of Eqs. (15), (16) and (17) is represented in Fig. 160, 

in which the specific c^iergy E is plotted as abscissas against 

ordinates representing depth. At very small values of y the curve 

is asymptotic to the horizontal axis and at large values of y it 

approaches a 45-deg. line, the equation of which is 

That part of any abscissa between the potential energy line 

(45-deg. line) and the curve represents the kinetic energy term, 

F2/2g, Q^/2gA^ or q^/2gy\ For either large depths or very small 

depths, the latter requiring excessive velocity, the specific energy 

becomes very large. 

An examination of the curve of Fig. 160 shows that there are 

two depths for a given value of the specific energy and a single 

depth at which the energy is a minimum. A very special interest 

attaches to the depth for minimum specific energy. This mini¬ 

mum can be found by the usual procedure of placing the first 

derivative equal to zero, which will now be done for the simple 

case of the rectangular channel. The algebra becomes very 
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involved for the trapezoidal channel. The first derivative of E 

with respect to y is 

whence 

(m 

dy gy' 
+ 1=0 (18) 

(19) 

and, since q — Vy^ the velocity for minimum specific energy is 

1' = Vgy (20) 

From P]q. (20), y = V‘^/g and, substituting this m Kq. (15), 

E = I: 4, XI 
^g ^ g 

from which it may be seen that, for minimum specific energy in a 

rectangular (jhaimcl, 
2 

Potential energy ~ y — ^E (21) 

and 

Kinetic (*nergy \E (22) 

The depth at which this condition of minimum specific energy 

obtains is called the critical depth yc and the corresponding 

velocity is the critical velocity. 

Up to this point this article has dealt largely with the specific 

energy content for a given quantity g. The equations will now 

be examined with the object of determining the q for a given 

specific energy. Equation (17) may be written in the form 

= 2g(Ey^ - y^) (23) 

This equation being a cubic in z/, it might appear that there are 

three depths at which a given q can flow with a given E and there 

will be two maximums or minimums of q for a given E. Taking 

the first derivative of q with respect to y and equating it to zero, 

g = k2Ey - Zy^) = 0 
dy q 

(24) 
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whence 

2Ky — == 0 (25) 

und 

y = 0 aad y — %E (26) 

An examination of these roots shows that r/ is a maximum when 

y = and confirms the result that might well have been 

expected, namely, that the conditions for maximum q with a 

given E are precisely the sam(‘ as for a minimum E with a given 

Qy and both are found at critical depth. 

Solving Eq. (23), it is found to be satisfied by two positive' real 

values of y and one negative value of no physical significaru'e. 

Of the two positive real roots, one is always greater than ijr and 

the other is l(\ss than yc. The velocity at critical depth is 

Fc = Vmr (27) 

and it follows from an examination of Ecj. (15) and Fig. 160 

that at depths gi*('ater than critical the velocity is such that 

V < \/~^j and for depths less than critical V > \/gy. 

When the depth is greater than critical the flow^ is said to be 

tranquil or streaming; when the depth is less than critical the 

velocity is high and the motion is described as shooting or rapid 

flow. 

It is well to note that although the specific energievs may be 

equal for two corresponding depths, one with tranquil flow and 

the other with shooting flow, the energy input required to 

maintain flow is quite different in the tw^o cases, a mindi greater 

slope being required for continued shooting flow^ 

Example,—A rectangular channel lined with coiicr(*tc and 20 ft. wide 

carries 400 c.f.s. at a velocity of 5 ft. per sec. What is the spt^cific energy? 

At what depth would this quantity flow with minimum specifics energy? 

Solution. "The area of the channel mQ/V ~ 400 4- 5 = 80 sq. ft. Then 

the depth ?/ is 80 20 = 4 ft. The specific energy is 

= 0.39 + 4 = 4.39 ft. 

The velocity of 5 ft. per sec. is less than \/gy so the flow is streaming, that 

is, the depth is greater than critical. 

The specific energy will be a minimum when F = Fc = V^. The depth 

and velocity are then critical and 
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But Vc = Q/A — 400/20/7,. — ^0///c and, substituting ( his for Vc, 

202 1/202 \ 

3V64.4j/.“ ''V 2/r - 2.32 it. 

Then Tc = 20 -v- 2.32 S.02 ft. per sec. and the miniinuni specific energy is 

T,- 
2^ -f //,. - I.in -f 2.32 - 3.48 ft. 

Problem 269. A rectaDgular cluiiuiel 20 ft. widt^ and 4 ft. d(‘ep (.*arries 
400 c.f.s. What is the sjK'cific energy? Is the dc^pth more or less than 
critical depth? 

260. In a rectangular chanm‘l 20 ft. wide what is the maximum How for a 

sj^ecific energy of ti ft.? What slop<‘ is nece.ssary if the channel is lined with 
concrete? 

261. At what, two depths will a na'-tangular channel 30 ft. wide; carry 

300 c.f.s. with a spcanfic energy of 4.5 ft.? 

126. Nonuniform Flow.—The foregoing artitdes of this eliapter 

have dealt entirely with uniform flow, a condition requiring a 

cross section constant in both area and form and hence a surface 

slope parallel to the bottom slope. In a particular form of chan¬ 

nel and for a given quantity and slope, there is only one depth at 

which flow will be uniform. This is called the normal depth. 

There is, howevtir, an unlimited number of ways in which the 

same quantity of water might be made to flow through the same 

channel with a variable depth and a surface slope different from 

the slope of the bottom. If the depth is controlled so as to be 

greater than normal, the effective slope is less than the bottom 

slope, and conversely depths less than normal require effective 

slopes greater than the bottom slope. In this connection the 

term effective slopt^ is used to di'signate the slope of the energy 

gradient, line mn of Fig. 161. 

If the dexjth is other than normal, the surface profile is a curve, 

the equation of which can be developed by making the usual 

assumption of uniform velocity in a cross section and computing 

the loss of energy in the same manner as for uniform flow, that is, 

by the Chezy or some other channel formula. 

Figure 161 illustrates a case in which the velocity is being 

reduced, the bottom having a slope i and the energy gradient a 

slope s. The total head at any section referred to the horizontal 

datum is the ordinate to the energy gradient 
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The total head at a section downstream a distance dx is 

E' = {K - i dx) + {y + dy) + + d(^ (29) 

in which i dx is an increment of fall, dy is an increment of depth 

and d{V‘^/2g) is a decrement of velocity head. In the figure dh 

is an increment of lost head and the cliange in total head in dis¬ 

tance dx is E — E' — dh. Referring to Arts. 118 and 120, it will 

be noted that the hc^ad lost foot of distance traveled is the 

slope of the energy gradient, in this case dhjdx. Assuming now 

Fig. 161.—Equation of rionuniform flow. 

that loss in nonuniform flow is the same as for uniform flow and 

using the Chezy formula, V ~ C^/'Rs 

.s' 
cm " 

II (30) 

From the geometry of Fig. 161, or by letting dh — E ~ - E' and 

subtracting Eq. (29) from Eq. (28), it follows that 

dh = i dx — dy 
-<f) 

(31) 

and 

dh . ^ _ ±(Y^ (32) 
® cm dx ^ dx dx\ 2g/ 

This general equation for (fliannel flow can be simplified by 

introducing V — Q/A and noting that the increment of area 

mdA =6 dy, in which h is the surface width of the channel. The 

last term of Eq. (32) then becomes 
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= ±( \ ^ ^ -Q^b^ 
dj\2g) dx\2gAy 2gA-' dx gJ^' dx ^ ’ 

Substituting tliis expnvssion in Eq. (32), 

s = t ^ -p ^ 
f^T ri Her 

j —9^.^ 
d_y ^ i - s ^ 

dx _ _ Q'% 

gA^ gA ^ 

The expression dy/dx is tlie convergence or divergence of the free 

surface from the plane of the channel bottom. Although it 

rarely is possible to integrate this equation, it is not without 

value, because an examination of it will often reveal helpful facts 

about the surface profile. For this purpose it may be simplified 

by substituting the velocity V = Q/A and introducing the mean 

deptli D — A/b. It is then written 

(34) 

(35) 

dx 

72 

Z' 
gD 

(36) 

On inspecting this equation it app(‘ars that 

1. When i is greater than the slope s necessary for uniform 

flow at the given depth, the numerator is positive in sign, and vice 

versa. 

2. When V > \/^D the denominator is negative and when 

V < the denominator is positive. 

3. At critical depth, that is, when V — V^, the denominator 

is zero and dy/dx is mathematically infinite. 

It appears then that Eq. (36) may represent a great number of 

surface profile forms. The third statement is of special interest in 

explaining the fact that water flowing at critical depth has an 

unstable wavy surface. The depth can never be exactly critical 

over any finite length of channel. At this stage any small varia¬ 

tions of D, such as may be caused by minor irregularities which 

are always present, will result in values of dy/dx that are alter- 
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nately negative and positive. The surface is then wavy and 

unstable. 

The surface in nonuniform flow may assum(‘ a variety of forms, 

depending upon the way in which th(‘ flow is controlled by inlet 

and outlet structures, dams or other obstructions and changes in 

grad(‘ of the canal. These profiles may be determined by apply¬ 

ing Eq. (35) to short reaches of the clianm'l or by applying the 

B(‘rnoulli equation from point to point, for example, to s(K*tions 

1 and 2 of the channel illustrat(^d in Fig. 162. Let I be any 

convenient length, keeping it small enough so that there is not a 

wide difference between conditions at the two sections, and let 

Vm and Rm be the mean velocity and mean hydraulic radius for 

the reach 1. The head lost between sections as computed by the 

Chezy formula, V = C\/liSy is then 

h = si = 

Vr,n 
C'Rn 

and the Bernoulli equation corrected for loss is 

Fi2 Fo2 F 2/ 
^ + + = + + ^ (37) 

In obtaining any quantity from this equation a solution by trial is 

necessary. The value of Vm is computed either as the mean of Fi 

and F2 or as where A is the area of a cross section having a 

depth equal to the mean of yi and 2/2. Likewise Rm either may be 

taken as a mean or may be based on a mean section. Neither 

method of computing Vm and Rm is strictly correct but the results 

are acceptable if the reach I is short. 

Problem 262. A smooth concrete-lined channel has side slopes of 1.5 

horizontal to 1 vertical and a bottom width of six times the depth. If 

Q = 400 c.f.s. and s = 0.0001, what is the normal depth? 
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263. A canal is regulated so that the slope of the energy gradient is 0.0008. 
The bottom slope is 0.006 and at a point where the depth is 6 ft. the velocity 
is 9 ft. per sec. At what rate is the depth changing? Is the stream deeper 
or less deep downstream? 

126. Hydraulic Jump.—Under favorable cireumstances flow 

at a depth less than critical depth may suddenly change to flow at 

a certain depth greater than critical with a corresponding reduc¬ 

tion in velocity. This abrupt change in depth is known as the 

Fi(i. lf>3. Typos of hydraulic jump. 

hydraulic jump. Tlui plienomenon consists of a sudden vertical 

expvansioii of tlie stream in the form shown in Fig. 163a if the jump 

is high, or of the form shown in Fig. 1635 if the initial depth is not 

much below critical. In tlie first (uise the liquid is rolling back 

down the fa(;e of the jump and this eddying portion contains much 

entraim^d air. If colored liquid is added to this face, several 

seconds are required for it to b(‘com(‘ clear again. In the second 

case the surface is waving but not broken and there is no back roll. 

The relation between the depths and velocities upstream and 

downstream from the jump can be developed by applying the 

principles of impulse and momentum. Figure 164 represents a 

profile taken through a hydraulic jump in a horizontal (diannel. 

The only forces capable of causing a change in momentum are 

the pressure forces exertcnl by the water on the left of section 1 

and on the right of secdlon 2. Assuming these pressure forces 

to be the same as for static conditions, they are respectively 
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Pi = whiAi and P2 — wh^A^y in which h is the depth of the center 

of gravity of the cross-sectional area A. The momentum of the 

quantity Q which passes section 1 in 1 sec. is QwVi/g and the 

momentum of the same Q as it leaves through section 2 is QwV^/g. 

Neglecting tangential forces at the walls of the channel, the only 

force in the direction of motion is Pi — P2. By equating this to 

tlie change of momentum per second, 

whiAi — wh^A^ —-— (38) 
g g 

Substituting velocity in terms of Q and Ay canc'cling w and trans¬ 

posing terms, this equation becomes 

+ ^1.41 = + h^A^ (39) 
gAi gA^ 

Considering only a unit width of a rectangular channel, the 

pressure forces are wdi^/2 and wd2^l2; the momentum is ivVrdi/g 

before the jump and wY<pd2lg after. Th(‘ impulse and 

momentum equation corresponding to Eq. (38) is then 

wdY" _ _ wV2H2 _ wViHi 
2 2 'g~ g 

which can be written 

diVP dP ^ ^2^2^ d2^ 
g 2 g- 2 

(40) 

(41) 

Using the continuity equation Vidi = ^2^2 and after considerable 

manipulation of Eq. (41), the expressions for di and ^2 are found 

to be 

di — 
di . 

"2 9 ^ 4 
(42) 

<^2 = 1 +
 l2diVi^ 

g 4 
(43) 

If El = V^i, the condition for critical depth, is Substituted in 

Eq. (43), it is found that d2 == di, that is, there is no jump. It 

can he proved from Eqs. (42) and (43) that the jump can take 

place .only from an initial depth less than critical depth. 
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The solution of Eq. (39) to find the height of jump in a channel 

not rectangular is far more complicated than the above expres¬ 

sions for di and The solution for any given form of channel 

may be expc'dited by tn^ating the expression ^ from 

Eq. (39), as a function of the depth, which function, for lack of a 

better name, may be called the momentum function since it is 

obtained from the momentum equation, Ecj. (38). Since the 

factor w was canceled, the momentum fumdion does not have the 

dimension of momentum. Bakhmeteff^ plots this momentum 

d d 

(a)-Chaiiriel Section (6)-Momentum Functif>n (c)-Specific Energy 

Fig. —Solution of hydraulic jump e(jnations. 

function against depth in a diagram of the form shown in Fig. 165. 

The curve is drawn by plotting values of ^ + hA computed for 

any given Q and various depths. The depth d^i to which the 

flow may change from any initial depth di is found by drawing a 

vertical line he through the point on the curve where d = di, 

the upper intersection with the curve being at depth d^. The 

depths di and d^ are not depths of equal energy since the jump is 

accompanied by a considerable loss of energy, which may be 

computed by writing the Bernoulli equation between points 1 and 

2. The loss could also be scaled from the specific energy diagram, 

Fig. 165c, where it is represented by the difference between the 

specific energy before and after the jump, Ei 

127. Examples of Critical Depth.—In Art. 124 it was explained 

that flow at critical depth is flow having a minimum specific 

^ Bakhmeteff, Boris A., Hydraulics of Open Channels,” McGraw- 

Hill Book Company, Inc., New York, 1932. This book contains a very 

complete discussion of the hydraulic jump. 
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energy content for a given Q or a maximum Q for a given specific 

energy. An example of critical depth may bo found at the 

entrancio to a steep channel. The flow from a reservoir into a 

channel is controlled by the critic^al depth at entrance provided 

the slope of the bed is such that the channel is capable of taking 

away all incoming flow at a depth less than (Titic^al. Under these 

conditions, illustrated in Fig. 166, the available head D can be 

safely assumed to be divided naturally into velocity head and 

depth in that proportion which will produce maximum flow. 

Writing th(‘ Bernoulli equation for 

points 1 and 2, while neglecting 

velocity h(uul at 1 and the loss 

betw(H‘n 1 iind 2, 

+ y (M) 
Fig. 1C().—Oitical depth at entrance, j ... i xi i -x • 

Letting \ ^/2g = /?, the velocity is 

V = V2gh. Tlio area pt^r unit width of channel at sc'ction 1 is 

D — h, making the quantity per unit width ('qual to 

q = \/2gh{D - h) - V^g(I)h^-^ - (45) 

To find the value of h which will produce maximum the first 

derivative of q with respect to h is equated to zero. Thus 

a = V25(iwr>' - - 0 (46) 

and 

Then 

2 
, . jO . 2/. = 2^ 

and 

F = (47) 

Equation (47) expresses the condition for flow at critical velocity, 

which now appears to exist at the entrance to a channel of ample 

slope. Then y is the critical depth dc. 

Figure 167 shows the profile of a channel with a large increase in 

slope. The upstream part has a slope for which the normal depth 
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is greater than dc while the normal depth for the steeper down¬ 

stream portion is less than dc. The depth at some point slightly 

upstream from the brt^ak in grade must be equal to d^. 

The free overfall illustrated in Fig. 168 is an extreme case of 

the change in bottom slope shown in Fig. 167 and the depth will be 

critical some distance ui)stream from the drop. Critical-depth 

relations have b('en developed in 

this chapter on the assumption of 

a static distribution of pressure, r, 

The ])r(\ssur(^ downstream from 

the critical-depth section in Fig. fig. i<i7. 

168 is progressively less than 

static and is zero in the; freely falling sliced. Tli(‘ thickiu'ss t 

of th(‘ overfalling sheet is not far different from th(‘ (aid depth 

dr, and the elevation of the cent('r of the stnaim at ovf*rfall is 

approximately t/2. Assuming the velocity to be uniform in the 

(Titical depth at change 
of slope. 

Fi(i. 168.—Free discharge of channel. 

falling sheet and neglecting the small loss of head, Bernoulli's 

ecpiation between the ccaiters of sections c and e is 

2(7 ^ 2 ^ 2 
Y1 4- 1 

2 

From the continuity efpiation and the relation K, 

discharge per unit width is 

V = 

(48) 

’Vgdc the 

q = deVe = dc\^c = Vt 

Substituting 'V^/2g ~ dr^/2U and Vr\/2g = dr/2 in Kq. (48), it 

reduces to 

F - 3drF + dF = 0 (49) 

This equation is satisfied by the root t = 0.65t/c-, whicli agrees 

very well with the value dr - %dc since d^ is necessarily slightly 
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larger than t. The latter value was obtained by O'Brien/ using 

momentum theory, which might be expected to agree well with 

the energy theory employed here where the lost energy is small. 

From a series of experiments on water with a free overfall O^Brien 

found that 

de = 0.643d. (50) 

and also found the discharge to be given by the empirical formula 

q = 11.0d/«' (51) 

From the theoretical considerations of this article q might be 

estimated at 

q = VW = 

In the same experiments upon which Eqs. (50) and (51) are based 

it was determined that d. is upstream from the fall a distance 

/ = 11.6d.. 

128. Weirs.—The weir is a device widely used for measuring or 

controlling the flow of water in channels. The term is applied 

to overflow structures and devices of many shapes and arrange¬ 

ments, a few of which are shown in Fig. 169. Such weirs as those 

shown in Fig. 169c and d are overflow sections of dams intended 

primarily to control the depth of wat(‘r upstream from the dam 

while those illustrated in Fig. 169a and e are usually used in 

measuring flow. The latter an' sharj)-crested weirs, the crest 

being of metal with a trim right-angled edgc^. 

Flow over weirs is cdiaracterized by a drawing down or contrac¬ 

tion of the free surface immediately upstream from the weir where 

the velocity is increasing rapidly. If the upper edge or crest of 

the weir is sharp or of a very small radius, the liquid breaks away 

from it and there is a crest contraction (line ed. Fig. 169a). If the 

ends, as in Fig. 1696, are of the same sharp-edged form, there is 

also an end contraction. The dimensions of the overfalling sheet 

or nappe are reduced by these contractions. The entire body of 

water upstream from the weir is moving and a large part of it must 

change the direction of its motion in approaching the opening., 

This change does not take place suddenly because acceleration 

^ O^Brien, M. P., Analyzing Hydraulic Models for Effect of Distortion, 

Eng, News-Record, Sept. 15, 1932, p. 313. 
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cannot bo infinite; on the (contrary, the change is gradual, the 

path of a particle is curved, and the nappe is contracted where 

the liquid rounds the crest. 

The horizontal dimension L is called the length of the weir or 

nappe; the vertical distance H from the crest to the free surface. 

(oi)-Sharp-Crested Weir with Free Overfall Detail of 
"Sharp"Crest 

(b)-Sharp-Crested Weir (c)-Broad-Crested Weir 
with End Contractions 

(oD-Broad-Crested Weir (e)-V-Notched Weir 
Submerged 

Fig. 169.—Types of weirs. 

measured at a point far enough upstream to be unaffected by the 

surface contraction, is called the head. The average velocityin 

the cross section of the channel at which H is measured is termed 

the velocity of approach. Computations of discharge over a 

weir are usually based upon measured values of //, L and the cross 
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section of the channel, but are always dependent upon certain 

empirical data obtained by calibration of the weir in question or 

similar ones. 

129. Sharp-crested Rectangular Weir.—The discharge Q over 

a weir is dependent principally on the length L of the crest and the 

measured head //. In developing the relation between Q, H and 

L it is necessary to consider the kin(*tic (Miergy of tlu^ water as it 

approaches the weir. In Fig. 170, section hb is taken to be 

upstream so that the de{)th is only slightly affected by th(‘ (*on- 

traction of the surface. The average velocity V at se(*tion bb is 

(tailed the velocity of approach. 

Fici. 170. --Sharp-cmsf,o(l reftarijsiilar weir. 

Section aa is the section where the nappe is no longer affecte^d 

by surface contraction or crest contra(*tion. The nappe continues 

to contract below section aa, how(wer, because its velocity 

increas(.'S as it falls. Beyond aa th(‘ nappe has ac(‘eleration g 

and it is surrounded by air at atmospheric* pressure. The pres¬ 

sure in this part of the nappe is therefore taken to be atmospheric. 

The average velocity at aa is designated by U. 

It has been shown experimentally that the coordinates of the 

surface profile immediately upstream, measured from the crest, 

and the dimensions of the nappe downstream from the weir are 

proportional to H. The thickness of the nappe measured along 

aa can therefore be expressed as K2H where K2 is some constant. 

The quantity KJI is the distance from the free surface to the 

center of the mass passing through aa in any unit of time, the loca¬ 

tion of this center depending partly upon the distribution of 

velocity in section aa. 
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The values of kinetic* energy at hh and aa are V^I2g and U^/2q 

ft. Ib. per lb., respectively. Since these values are based on 

average velocities, their use introduces some error. 

Bernoulli's equation between this point in aa and any point in 

section hh, for example, m, is 

y2 T]2 

^ + (52) 

from which the velocity in the nappe at aa is 

" - ^^4’'''"+4’ ■ ^^'^''4'+2,4b 
If thf' velocity ol approach is neglected, the velocity at aa is 

(/, = V2gK4H (54) 

The cross st‘ction of the iiappe at aa is K^HL and from the con¬ 

tinuity equation thc' total quantity pen* second is 

Q = K^HLU = K,HLV2W^H^i + (55) 

and 

<3 = K,V2gK,LlI'‘‘^\ + (56) 

The terms V- and Ui~ wc^re introduced with the assumption that 

the velocity is uniform through both sections bb and aa. This is 

only approximated in the nappe and does not agree with the facts 

in section bb; therefore it is uecc'ssary to modify the ratio V^IUi^ 

by a coefficient a, making it read aV'^/Ui'\ Letting A be the 

cross section of the channel of approach, the velocity of approach 

can be written 

V 
Q ,, K,HL 

whence 

(57) 

Placing this in Eq. (56) and modifying the whole by a coeff.cient 

C' to correct for lost head, the expression for discharge is 
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Q = C'K2V2gKiLJP'^yJl+^^^y (58) 

Letting C'K2\^2gKi = C, expanding the radical quantity and 

retaining only the first two terms of the expansion because the 

sum of the following terms is very small, this becomes 

Q = CLW^ 1 + (59) 

The four coefficients C', Xi, K2 and a in these equations have 

not been determined separately, but empirical values of the 

products C = C'K2\/2gKi and aK2^/2 appear in the formula 

developed by King, ^ which is 

Q = 3.34L//1 1 + 0.56 

This formula is based chiefly on experiments by Francis^ and 

Bazin,^ giving more weight to the extensive wa)rk by Bazin who 

himself proposed the formula 

Q = 1 + (61) 

The Francis formula as proposed by him is 

g = .334(H.0‘-(0‘] 

When reduced to the form of Eq. (59) the Francis formula becomes 

approximately 

Q = 3.33LH«|^1 + 0.26 

There are numerous other empirical weir formulas^ which cannot 

be given here. 

^ King, H. W., Handbook of Hydraulics,^’ McGraw-Hill Book Company, 

Inc., New York, 1929. 

* Francis, J. B., “Lowell Hydraulic Experiments,” D. Van Nostrand 

Company, Inc., New York, 1871. 

* Bazin, H., Ann, ponts chauss^esy 1888. 

* For a summary of weir formulas and experimental work, see footnote 1, 

above, and W. Kauffman, “Hydromechanik,” vol. II, Julius Springer, 

Berlin, 1934. 
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The quantities in these formulas and those in the following 

pages arc in foot and second dimensions. The constants are 

determined by experiments on water and are not necessarily 

applicalde to other liquids. 

Example.—A roc,tangular channel 30 ft. wide is to be regulated by a sharp- 

crested weir so that the water upstream from the weir is 4.5 ft. deep when 

Q — 125 c.f.s. The weir extends entirely across the channel and the over- 
fall is free. How high is the weir? 

Solution.—Using the King formula, Eq. (60), 

Q = 3.34LH‘"|^1 + 0.5fi(^)’‘j 

and, substituting the given data, 

125 = 3.34 X 30H- «[l + 0.5fy(^y ] 

The last e(}uation is rather difficult to solve algebraically. The factor in 

brac^kets however is only slightly more than unity. If it is taken as unity 

temporarily, then 

125 = 3,34 X and H = 1.163 

approximately. This value of H is a little too large but may be used, slightly 

reduced if desired, to evaluate the bracketed quantity. Thus 

125 3,34 X 1 -f 0.56 
/30 X 1.16\n 

V 30 X 4.5 y J 

The quantity in the brackets is 1,037 and, solving for 

J{\A1 ^ ---] 203 
3.34 X 30 X 1.037 

H - 1.134 

A repetition of the process will give a new H more closely representing the 

formula but probably not more accurate. 

130. End Contractions.—A weir with end contractions is illus¬ 

trated in Fig. 171. The edges at the ends are sharp like the crest. 

The nappe is contracted at the ends as well as at the crest and at 

the surface, and the cross section of the nappe is reduced in its 

horizontal dimension by the amount of the contractions. This 

contraction was found by Francis to be about 0.177 at each end, 

making the effective length of the weir 0.2H less than the actual 
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length of crest. Then the value of L which must be used in the 

equations of Art. 129 is 

L == L' ~ 0.2// (64) 

This correction is not entirely satisfactory and end (‘ontractions 

are to be avoided where the weir cannot be calibrat(id. It is 

unsafe to use ordinary weir formulas with this correction if 

L < ZH. To insure complete contraction the end of the weir 

should be at a distance of at least 2// from the sides of the channel. 

O.JN VOJH 

Fig. 

F. Frese and the Swiss Society of Architects and EngiiKH^rs offer 

rather cumbersome formulas which apply to contracted w('irs of 

all proportions.^ Wh(Mi th(‘ 

construction is such as to 

eliminate or suppress end con¬ 

tractions, th(‘ weir is said to b(‘ 

a suppressed weir. 

Problem 264. A sharp-(*n‘st(‘(l 

weir 2.5 ft. high extends across tlu^ 

end of a channel 20 ft. wide with 

vertical sides. TIk^ water upstr(*ani 

from the weir is 3.75 ft. deep. 

Compare th(' discharges computed by formulas (00), (01) and (03). 

266. A sharp-crested weir 2,5 ft. high with a crest 10 ft. long is instalh'd 

at the end of a rectangular chamud 20 ft. wide in sucli a way that there are 

two end contractions. The water in the channel is 3.75 ft. deep. Compute 

the discharge. 

266. A rectangular (diannel 15 ft. wide carries 75 c.f.s. It is desired to 

construct a sharp-crested weir entirely across the discharge end whi(di will 

maintain a depth of 4 ft. upstream from the weir. Determine the height of 

weir. 

267. A rectangular (diannel 25 ft. wide carries 150 c.f.s. and a sharp- 

crested weir 3 ft. high (extends across the outlet end. How deep is the waUu* 

a short distance upstream from the weir? 

171.- - Correction for end contrac¬ 
tion. 

131. Notched Weirs.—Rectangular weirs having a relatively 

short crest and also a wide variety of weirs having openings other 

than rectangular are classified as notches. The commonest of 

these is the V-notch weir, illustrated in Figs. 1696 and 172. 

The usual V-notch weir is sharp-edged and is located so that 

the nappe is completely contracted on the two sides and at the 

surface. The nappe is triangular at the plane of the weir, chang- 

^ See Kauffman, op. cit., vol. II, p. 47. 
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ing to a crescentlikp cross section in a short distance and finally, 
if allowed to fall far enough, to a nearly circular jet. Any dimen¬ 
sion of the nappe is proportional to the head II and the area of any 
cross section is therefore proportional to H-. At some section 
such as aa the pressure in the nappe is atmospheric and the veloc¬ 
ity is fairly uniform over the crr»ss se(‘tioii, the area of which, 
being proportional to can be expressed as K2ll\ The vertical 
distance from the free surface to the mass center of the water 

Fi<}. 172.—V-notchod weir. 

flowing through section aa is proportional to II and can therefore 
be written Kill. 

Tlie effect of \^elocity of approacii is very small and may be 
neglected. Bernoulli's ('quation from any j)oint in hh to section 
aa, wher(‘ the avf'rage velo<*ity is taken as U, is then 

= 27 

whence U = y/2gKiH and the discharge is 

Q = V2gKJ{ KilP = \/2~gK,K2^ 

The Q can l)e corrected for lost head and nonuniform vcdocity 
distribution by introducing a factor C', after which 

Q = C'V2gK^^ H'-i (65) 

Replacing the product C'-\/2gKiK2^ by C, this becomes 

Q = CH'‘‘ (66) 

Values of C have been determined by various investigators,' 
1 For a bibliography on the subject of notches, see F. W. Greve, Flow 

of Water through Circular, Parabolic, and Triangular Vertical Notch- 
Weirs, Purdue Univ. Eng. Bull. 40. This bulletin also gives results of 
researches by its author on notches other than 90-deg. notches. 
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most of whom have found the exponent of II to be slightly less 

than The C of Eq, (66) is not a constant but on the contrary 

varies slightly with H. The formula proposed by King/ based 

upon the calibration of a 90-deg. notch made of commercial steel 

plate, is 

Q = 2.52^2.47 (G7) 

The formula obtained by Barr^for a 90-deg. notch cut from a brass 

plate is 

Q = 2.48//2-4« (68) 

Notches can be designed so that Q varies with any desired power 

of H within practical limits. If a notch is to be designed so that 

Q varies with H to the power iV, the opening in the plane of the 

weir must be shaped so that the area varies with Then 

the area at section aa is and 

Q = = CH^ (69) 

When iV = 2 the crest is in the form of a parabola with a 

vertical axis, the equation being = 4a//. Parabolic weirs 

have been calibrated by Greve,^ who found the discharge to be as 

given by the formula 

Q == 2.09a«-^79//i-9‘‘> (70) 

Figure 173 illustrates the form of weir opening for several values 

of N, The exponent N cannot be made less than unity and can¬ 

not be exactly unity since theoretically this would require infinite 

width at the bottom as indicated in Fig. 173a. A compromise 

form shown in Fig. 1736 is used to regulate flow in channels in 

which it is desired to have a constant average velocity for all 

depths. If placed at the end of a channel of width 6 in which the 

velocity is F, 

Q = hHV = CH 

and 

C 
b 

(a constant) 

* Kino, op. dt. 
* Bahr, James, Flow of Water over Triangular Notches, Engineering, 

April, 1910. 

® See footnote, p. 26L 
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For N > % outline of the crest is convex upward as 

in Fig. 173/ and becomes increasingly so with higher powers 

of H. 

Problem 268. A rectanj^ular channel 6 ft. wide carries a maximum of 

8 c.f.s. and a minimum of 5 c.f.s. The outlet is a 90-doj;. V-notched w'eir. 

At what level should the notch be placed to make the maximum depth 
4 fiuit? What is then the minimum depth? 

269. A parabolic notched weir is to have a head of 1 ft. when Q is 2 c.f.s. 

What is the width of tlie opening; at the level of the water surface? 

h--.*. 

(e)-Q=OT4 (f)-Q=CH^ 
Flo. 173.-“Notched weirs for various powers of H. 

132. Broad-crested Weirs.—Weirs other than the sharp- 

crested type, for example, those shown in Figs. 169c, 169o!, 174 

and 175, are classed as broad-crested weirs. Such weirs are 

usually part of a dam or some* other structure for the (iontrol of 

water and they are not well adapted to the measurement of flow. 

If the upstream edge of the crest is sharp and the nappe leaps 

clear of the downstream edge, as in Fig. 174a, the discharge at a 

given head is practically the same as for a sharp-crested weir. 

If the thickness of the weir is more than about 0.47//, the falling 

nappe does not clear the weir and the flow is as shown in Fig. 1746. 

Figure 174c shows a section with a rounded upstream cor’.or and 

a gently sloping top face. If the rounding of the edge is sufficient to 

eliminate contraction and if the slope is sufficient to maintain flow 

at critical depth, the flow is controlled by the critical-depth condi¬ 

tions shown in Fig. 166 and discussed in Art. 127. Neglecting 
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velocity of approach, it was th(‘rc shown that d = ^3// and 

h = H/Z^ whence the theoretical q per unit width is 

q = (area) (velocity) - (I'^y 2ff~ = 3.09//’^ 
O 

(71) 

It has been shown experimentally that a good approximation 

to the actual discharge is given by the equation 

q = 3.03//'- (72) 

(c)-Rounded Corner with Slight Top Slope 

Fig. 174.—Broad-crested weirs. 

The discharge over broad-crested weirs is usually computed by 

the basic formula 

Q - (73) 

The coefficient C is not exactly constant, and may vary consider¬ 

ably with II. The use of the formula therefore depends upon 

tables or graphs of C determined by experiment.^ 

Several experimenters have developed formulas, each of which 

applies only to a particular form of weir. 

Problem 270. A weir of the form shown in Fig. 169c is 75 ft. long and 

discharges 1400 c.f.s. when H is 3 ft. Compute C. What would H be for 

the weir of Fig. 174c for the same length and discharge? 

^ For values of C consult Robert E. Horton, Weir Experiments, Coeffi¬ 

cients and Formulas, U. S. Geol. Survey Water Supply and Irrigation Paper 

200, and J. S. Woodburn, Tests on Broad-crested Weirs, Trans. A.S.C.E., 

vol. 96, 1932. 
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133. Submerged Weirs.—Submerged weirs are those which 

are so situated that the downstream water level is higher than the 

crest. The free surface affected by a submerged weir takes one of 

the three forms shown in Fig. 175 if the depth of the upstream 

channel is greater than critical depth. When a distinct hydraulic 

jump is formed as in Fig. 175a, the depth of th(^ water down¬ 

stream from th(^ weir has no t'ffect on the discharge, even when the 

downstream surl’ace is higher than the weir. When no jump 

is formed, as in Fig. 1756 and c, the effect of submergence on dis¬ 

charge is very small for JI2 < 0.5^i. 

(c) Wave nappe 
Fig. 175.—Submerged weirs. 

Up to a certain value of the ratio Fh/Hi the nappe for a given 

weir is of the plunging type in Fig. 1756, while above this critical 

value the surface is of the wave form shown in Fig. 175c and the 

nappe does not plunge. These changes in form were recorded 

by Bazin and have been studied by many later experimenters. 

In experiments with a weir model of the form shown in Fig. 176, 

Keutner^ found the flow to be of the wave type only for values of 

H2/H1 > 0.85. This ratio is not necessarily valid for weirs 

of different height or form. Keutner also found that the dis- 

^ Keutner, C., Neues Berechnungsverfahren ftir den Abfluss an Wehren 
aus der Geschwindigkeitsverteilung des Wassers liber der Wehrkrone, 

Die Baviechnikj p. 575, 1929. 
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charge could be represented by a formula of the type used in free 

overfall for values of H2/H1 < 0.775. For greater degrees of 

submergence it was necessary to use a formula including a func¬ 

tion of in which formula the coefficients were quite differ¬ 

ent for the two types of surface. 

A rational formula for discharge over a submerged weir must 

include h, the height of the weir; otherwise it will give erroneous 

results for some cases. Probably no formula is valid if //i > ^3/1. 

When Hi is large in proportion to h there is very little disturbance 

of the surface, the presence of the weir being indicated only by a 

slight depression direcdly above 

it. 

The formula by Bazin for 

discharge over a submerged 

sharp-crested weir extending 

Fig. 17C).—Submerged weir model. across a rectangular channel is 

Q = LFi?^^3.248 + ^)(l 4 0.55^'j X 

X ^1.05 + -- (74) 

For depths less than critical, that is, for shooting flow, the effect 

of a low obstruction or wear is to produce a swell such as that 

shown in Fig. 177a. The free surface on the downstream face of 

the obstruction is somewhat disturbed because the stream is 

expanding to assume a greater de^pth. The now depth is 

necessarily greater because there has been a loss of energy and a 

corresponding reduction in velocity. That such an increase of 

depth must accompany a loss of energy in shooting flow is evident 

from an inspection of Fig. 160 or 165c. If the obstruction is 

made sufficiently high, the continuity of the surface is broken and 

a hydraulic jump is formed upstream from the weir as in Fig. 1776. 

Problem 271. A sharp-crested weir 3 ft. high extends acToss a rectangular 

channel 20 ft. wide. The water upstream from the weir is 4 ft. deep. Com¬ 

pute the discharge when the depth downstream from the weir is (a) 2 ft., 
(6) 3.5 ft. 

134. Critical-depth Meter.—The weir as a device for measuring 

flow is open to the objections that the formula is complicated by 

the correction for velocity of approach and also that considerable 
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fall must be allowed. These two objections are partially elimi¬ 

nated by making use of a combination of the phenomena of critical 

depth and hydraulic; jump as sketched in Fig. 178. 

(a) 

If the obstruction is wcdl proportioned, the criti(;al depth will 

exist near but not necessarily at the (Test. Bernoulli\s equation, 

written from any point in section 1 to any point at the critical 

Fig. 178.—Critical-depth meter. 

section, where the average velocities are V and f/, respectively, 

reduces to 

I! 
2(7 

IP 
+ H-^+d. 

whence 

V - + - d) - vm 



268 FLUID MECHANICS [Chap. X 

and the discharge per unit width of channel, the product of veloc¬ 

ity U and the area dc, is 

q = d,^2gh (75) 

It was shown in Art. 124 that at critical depth the velocity head is 

half the depth or 

^ = 2 
(76) 

and, combining this with Eq. (75), 

q = Vgd7 (77) 

This is a simple rational equation for q which requires no correc¬ 

tion for velocity of approach. Its use requires only one measure¬ 

ment, dc. 
The above theory is inaccurate in that V and V have Ixh'u 

assumed uniform, the pressure is assumed to be static and losses 

have been neglected. It is also (pnnstionable because dc is taken 

as a vertical linear distance which cannot possibly be at right 

angles to all stream tubes since they are not parallel. Moreover, 

the critical depth does not ocrcur at the same horizontal })osition for 

different depths. This fact was substantiat(?d by Woodburn and 

Webb.' 

The device can be used by establishing a surface^ gage for 

measuring d at a point near tlu* mean position of criticail depth. 

The equation can be written 

q = eVgd^ (78) 

the coefficient C being determined by calibration. It is not a 

constant but varies with d and will be only slightly h'ss than 

unity. 

136. Use of Weirs.—A weir intended to measure flow should 

be calibrated in the exact position in which it is to be used. After 

calibration the working conditions should not be altered. The use 

of any weir formula for the accurate computation of discharge? 

depends not only upon the formula but also on the almost exact 

duplication of the conditions for which the formula was developed. 

The conditions to be duplicated include the material of the weir 

^ See footnote, p. 264. 
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plate, the sharpness of the edge, the cleanliness of the weir, the 

detailed nature of the flow in tiu* approaeli channel and the 

method of measuring the h(‘ad. 

Many experiments have shown that roughness of the weir plate 

increases discharge for a given head. For example, weirs of 

glass, brass and steel have differ^^mt coefficients, that for steel 

being greatest and that for glass smallest. Grease on any of 

these surfaces affects the shape of the nappe and the discharge. 

Fh(‘ manner in whicdi water approaches the weir has an impor¬ 

tant effi'ct on the discharge, but the details of flow are difficult 

to duplicate in another channel. Moreover, a given flow regime 

in a channel cannot always be reproduced in another series of 

tests and may even change suddenly during a test without any 

apparent cause. It has been found that a weir with end con¬ 

tractions or one inclined downstream tends to promote stabler 

conditions in the channel of approach.’ 

The plac^e and manner in which the head is measured are other 

factors on which the accuracy of weir mciasurements depends. 

For exact similitude the head would have to b(' nnuisured at 

diflferent plac(\s for different heads and heights of weir. The 

practice is to make a connection to the channel well upstream so as 

to avoid the influence of surface contraction. A pip(' leads from 

this connection to a contain(‘r in which the gage is instalkHl. 

If the weir is so situated that the spacer under the nappe is 

closed, it is necessary to (connect this space with the atmosphere. 

If the nappe is not a(‘rated in this way, the moving water draws 

the air out and a partial vacuum exists under the i^appe, which is 

depressed or which may cling to the face of the weir. 

136. Transitions in Channels.—A change in velocity or velocity 

distribution incident to a change of form or size in a channel 

always involves some loss of head. Kven if thc^ loss could be 

avoided there would be a change in elevation of the free surface 

equal to the increment of velocity head. Figure 179 shows the 

plan and profile of a reduction and of an enlargement typical of 

the case in which the flow of a canal is carried for some distance 

by a flume of smaller cross section, with a transition at each end 

of the flume. 

^Hailer, R., Sources of Error in Weir Measurements, Trann. Hydraulic 

Inst. Munich Tech. Univ., Bull. 3, ed. by D. Thoma, translated by K. C. 

Reynolds, A.S.M.E., 1935. 
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The Bernoulli equation fn)m point 1 to 2 for both reduction 

and enlargement is 

and 

z 

+ loss 

"T loss. 

In the enlargement 2 will usually be negative; in other words, the 

free surface will rise. 

(a)“Confroic+ion (b)“ Enlargement 

Fi«. 179.—Channel transitions. 

According to Hinds^ the losses may be readily reduced by good 

/IV FiA 
design to 0,1 -^ ^ reduction or ~ j for 

an enlargement. 

The conversion of the stream from one form to a new one usually 

takes place in a transition structure. The reducing transition 

will be satisfactory if its shape is such that the flow follows all 

the walls and if it provides for the necessary drop in the free 

surface. The purpose of the enlargement structure is to expand 

the stream so that it has a distribution of velocity nearly as good 

as will exist in the canal and to do this with a minimum of lost 

for a reduction or 0.3 (II _ lA 
\^9 2gJ 

energy. This result is usually obtained by using a long tapering 

structure designed to produce a smooth free surface tangent to 

1 Hinds, Julian, The Hydraulic Design of Flume and Siphon Transi¬ 

tions, Trans. A.S.C.E., 1928, p. 1423. 



Art. 137] FLOW WITH A FREE SURFACE 271 

that of the channels it joins. Even very long tapering enlarge¬ 

ments are not always successful because there is a tendency for 

the stream to separate from one side* of the transition and to con¬ 

tinue at high velocity along the 

stream canal. Testa of models 

redistribution of velocity can be 

accomplished in a very short dis¬ 

tance by placing a submerged 

hump or obstruction as sliown in 

Fig. 180. This hump distributes 

the flow and nearly (*liminates 

the eddies at the sides of the 

channel. The structure is short, 

its shape is simple, all surfaces 

being planes, and it do(^s not 

obstruct floating debris. 

The function of the hump is 

to increase the depth and pn^ssure at the center, tlu^reby forcing 

the stream to expand and fill the transition. A similar effect 

has been produced by reducing the pressure at the side walls by 

means of suction tubes. ^ 

Problem 272. A Iriipezoidal channel carrying 105 c.f.s. has a bottom 

width of 10 ft., a depth of 3.2 ft. and side slop(\s of 1.5 horizontal to 1 vortical. 
It discharges into a semicircular flume 8 ft. in diameter. If the loss in the 

transition is two-tenths of the velocity head in the flume, what is the 
elevation of the bottom of the flume relative to the bottom of the channel? 

273. A chaiintfl takes water from a pond at a vidocity of 4 ft. per se(r. 

If the (Fannol is 3 ft. dec^p, w^hat is the elevat ion of its bottom relative to 

the pond, the loss being two-tenths of the velocity head.^ 

137. Nonstatic Pressure.—Throughout this chapter the Ber¬ 

noulli constant and the expression for specific energy have been 

written with the assumption of static distribution of pressure; 

that is, the pressure at a given depth in the moving liquid has been 

assumed to be the same as in a liquid at rest. This assumption is 

permissible only when the motion is nearly linear and for slopes 

such that the cosine of the slope angle is nearly 1. 

J Benson, M. H., Model Tents of Outlet Transitions, Civil En^., vol. fl, 

p. 760, 1936. 
* See P. P. Ewald, T. Poschl and L. Prandtl, “The Physics of Solids and 

Fluids,'* p. 288, Blackie & Son, Ltd., London, 1930. 

other sid(i well into the down- 

by Benson^ indicate that the 
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Figure 181 shows a case of uniform flow with a steep slope, the 

thickness t of the stream being materially different from the 

vertical distance cb. The pres¬ 

sure at the bottom can be com¬ 

puted by considering the forces 

on the prism dh. Letting its 

end ar(‘a be A and its weight 

wtAy the component of weight 

normal to the bottom is 

wiA cos B = 

and ph = cos B) 

from which it appears that 

the (‘ffective pressure head on 

the bottom is i cos B, which is distance eb in the figure. 

When the patli of the stream is a vertical curve the mass has a 

centri])(‘tal accek^ration toward the center of curvature. The 

force necessary to produce this acceleration is such that pi < wd 

Fig. 181.—Uniform flow on a steop 
slope. 

Fig. 182.—Effect of curvature on pressure. 

when the center of curvature is below the stream (Fig. 182a) and 

Pb > lod when it is above (Fig. 1826). 

General Problems 

274. A canal in earth has a bottom width equal to four times the depth 

and side slopes of 1 to 1. It is to carry 240 c.f.s. at a velocity of 3 ft. per sec. 
What slope is required when the canal is in good condition? With the same 

conditions, what is the slope of a semicircular canal with the same n? 

276. Determine the arc of the circumference of a circular sewer which is 

wetted when the hydraulic radius is maximum. What is the (corresponding 

depth in terms of the diameter? 

276. A semicircular concrete flume 6 ft. in diameter has a slope of 0.003 

and the flow is uniform. It discharges into a trapezoidal section with side 

slopes of 1 to 1, bottom width of 7 ft. and a depth of 3 ft. If the loss in the 

transition is four-tenths of the kinetic energy in the flume, what should be 

the relative elevations of the bottoms of the flume and the channel? 
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277. A channel has Hoi Ki(i(‘ slopes and a bot tom widt h of four times the 

depth. Find the (‘riti(*al depth when Q is 00 e.f.s. What is the critical 
velocity? 

278. Water is flowing 1 ft. de(‘p in a rectangular concrete (diannel at a 

velocity of 12 ft. per sec. Can a jump be formed? What is the depth 

downstream from the jump? If the channel is 14 ft. wide and the flow is 
uniform, what is the slope upstream from the jump? 

279. A rectangular (diannel 12 ft. wide carries 144 e.f.s. A hydraulic 

jump is formed witli the watcT 4 ft. deep on th<‘ downst ream side. What is 

the depth u})stream and how much head is dissij)ated? 

280. The crest of a critical depth meter is 3 ft. higher than the bottom of 

a rectangular channel 20 ft. wide. Estimate the depth \ipstreani from the 
meter wluai Q is 80 (;.f.s 

281. The flow in the channel of Fig. 183 varies from 8 to 30 e.f.s. and it is 

desired to r(‘gidat(? the depth by installing 90-deg. V-not(rh weirs at the end. 

How many weirs are needed to limit the variation in depth to 0.2 feet? 

What will be the maximum //? 

282. The flow in a channel varies from 12 to 19 e.f.s. It is desired to 

discharge not less than 9 e.f.s. or more than 11 e.f.s. over a 90-deg. V-notch 

weir into one channel, while the remainder goes over a sharp-(^rested rec¬ 

tangular weir. Find the length of the rectangular weir and the maximum 

head on both weirs. 
283. The bottom of a rectangular planked channel 20 ft. wide is 4 ft. 

below th(^ surface of a pond from which it takes water. What is the maxi¬ 

mum discharge that it (!a,n take from the pond and what minimum slope of 

channel is required? 
284. A trapezoidal channel in the form of a half hexagon carries 100 e.f.s. 

a distance of 2000 ft. with a fall of 1.6 ft. What is the area of the cross 

section? What area is required with the same side slopes but with the 

bottom width four times the depth? In both cases n == 0.025. 
285. A trapezoidal channel with a bottom width of 12 ft. and side slopes 

of 2 horizontal to 1 vertical carries 140 e.f.s. The depth at the end is to be 
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maijitainod at 5 ft. by a contrartod weir 14 ft. lon^?. Find the height of the 
weir. 

286. A rectangular channel 40 ft. wide is 4 ft. deep and the flow is uniform. 
It. has a slope of 0.004 and Kutter’s n is 0.025. A weir is built in the channel 

which inakoK the depth 8 ft. just upstream from the weir. Compute the new 

depth at points 200, 400 and 000 ft. upstream. 

287. At the edge of an abrupt waterfall the thickness of the overfalling 

nappe is 2 ft. What is the depth about 25 ft. upstream? Compute the 
discharge per unit width. 

288. A rectangular concrete channel 10 ft. wide carries 20 c.f.s. in uniform 

flow. What is the critical slope? If the velocity is twice critical, to what 
height might the water jump and what is the specific energy Ix'fore and after 

the jump? What head is lost? 

289. A square conduit is in the position shown in Fig. 184. Find d in 

terms of h for maximum velocity and for maximum discharge, assuming 

Manning’s formula to hold. 



CHAPTER XI 

FLOW THROUGH ORIFICES AND TUBES 

138. Flow through a Small Opening.—An expression for the 

velocity of discharge through a small opening is obtained by apply¬ 

ing the principle of conservation of energy as embodied in the 

Bernoulli equation. The container of liquid in Fig. 185 has a 

small opening shaped so that the emerging particles move in 

parallel paths. The area of the free surface is A, and the cross 

S(iction of the issuing jet is A. The jet is discharging into atmos¬ 

phere and the pressure throughout its cross section can therefore 

be assumed to be atmospheric. The pressure at a point imme¬ 

diately inside the opening is more than atmospheric, is less than 

the static pressure due to the head of liquid 

above and becomes nearly equal to that static 

pressure as a streamline is followed from 

the orifice back to regions of lower velocity. 

Writing Bernoulli's equation between the 

free surface, which, because of the discharge, 

is falling with a velocity Fa, and the center 

of the jet, which has a velocity of efflux u, 

^’ + 8= + *& 2g w 2g w 
Fig. 186.—Velocity of 

efflux. 

in which H represents the total head or effective head. When 

the ratio of A^ to A is large, the term Va^l2g is relatively small and 

can be neglected, in which case 

u = y/2^ 

From this equation it appears that the velocity of efflux under a 

static head h is the same as for a body falling freely from rest 

276 
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through a vertical distance h. This fact is known as Torricelli’s 

theorem. The velocity may be referred to as the Torricelli 

velocity to differentiate it from the actual velocity, which is 

slightly smaller. Then 

Ur = (2) 

The quantity flowing based on the Torricelli velocity is 

Qt = Aut = A\/2gh (3a) 

or, using the total head, 

Qt = AV2jH (36) 

139. Effective Head on Small Openings.—There are numerous 

cases in which the application of Torricelli’s theorem is more 

(a) (b) 
Fig. 186.—Effective head on orifices. 

complicated than in the one just discussed. For example, 

Fig. 186a shows a case in which the upstream free surface of area 

As is subjected to a pressure Pb while the opening at a distance h 
below the free surface permits discharge into space D, in which the 

pressure is pn. Writing Bernoulli’s equation from the free surface 

to a point in the jet just outside the opening, where the velocity 

is ut and the pressure is 
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The effective head H is the quantity under the second radical. 

By a similar process an expression for effective head can be 

obtained for any case. 

Point M in Fig. 186a is at the level of the opening and 

far enough removed so the pressun^ p at M is little affected by 

the presence of th(‘ opening. Neglecting VM^/^g^ the Bernoulli 

equation from Af to the jet is 

p ^ p± 
w 2g IV 

and 

= V2gH (5) 

which shows that the effective head II is the difference in pressure 

heads on the two sides of the opening. This is true irrespective 

of the manner in which the pressure is maintained. 

An orific.(^ in th(‘ sc^tting shown in Fig. 1866 is said to be sub¬ 

merged. The effective head is hi — and the velocity is 

Ut = \/2g{hi — Ih) = s/^gH. 

Problem 290. In Fig. 186a the pressun^ in space Z> is 12 Ih. per sq. in. 

abs., in space B it is 4 lb. per scp in. gage, h ~ \2 ft. and the water in D 

stands 5 ft. above the opening, (a) Coinputi^ the velocity of the jet. (b) 
Assuming pB, pn, h and the depth to be as above, compute the velocity of 

the jet if the specific gravity of the licjuid is 0.7. 

291. In Fig. 186h, hi = 10 ft. and h‘i — 4 ft. Compute the velocity of the 

jet under these conditions. Find the value of hi whicli will produce a veloc¬ 

ity of 24 ft. per sec. in the jet, /12 being unchanged. 

140. Effective Head on a Large Opening.—A special problem 

presents itself when the head on an opening in a vertical plane is 

relatively small, that is, when the head is only a few times the 

vertical dimension of the opening. Theoretically the velocity 

through a horizontal element of area of such an opening is 

u = \/2^ where y is the effective head on the element. The 

average value of ■\/2gy is not exactly equal to its value for the 

center of the opening and it may therefore be necessary to use 

other means in finding the average velocity. In the following 

development both y and H are measured from the energy gradient. 

Thus H is the total effective head at the center of the opening. 
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Figure 187 shows a large rectangular opening so shaped as to 

discharge a full-sized jet. The Torricelli velocity through any 

element of area is 

ut = \/^ (6) 

The quantity flowing through the element of area dA = bdy is 

dQi' - Ut dA = h\/2gy dy (7) 

Fifi. 187.—Large orifice. 

and, integrating over the entire area, 

or 

= h^y2g P dy = %hV2g(yA^ 

Qr = HbVTg[(^H + 0'' - (// - ly] (8) 

After expanding the binomials, dropping all terms except the 

first two and dividing out \AH and d, this becomes 

Qr bdVm(l - (9) 

Since the product bd is the area A, the value of Qt from Eq. (9) 

is equal to that of Eq. (3) multiplied by the quantity in brackets. 

The. bracketed expression equals 0.989 for H/d = 1, 0.997 for 
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H/d = 2 and 0.999 when///d = 3. From these values it appears 

that there can be only a small error in using Eq. (3) and the effec¬ 

tive head is, for all practical purposes, equal to the head on the 

centroid of the opening. The error is even h^ss for a circular 

opening. When the head is small enough to require correction, 

a vortex extending from the free surface into the jet will form and 

this will vitiate any formula, however correct in theory. 

141. Contraction of Jets.—The openings shown in Figs. 185 

to 187 are shaped so that the issuing jet has a cross-sectional area 

equal to the area of the opening. The approach to the opening 

is from every part of the container and the necessary change in 

dire(*tion is completed within the container so that all particles 

Slot 
(b)-Circuloir Orifice in 

Horizontal Plate 
1. 188.-- Contraction of jets. 

(c)-Circular Orifice 
in Vertical Plate 

move in parallel jiaths as they pass through the plane of 

the opening. 

Figure 188 shows several openings which are usually designated 

as sharp-edged orifici's. The inner corner of such an orifice may 

be either a right angle or any acute angle. The approach is 

again from every part of the interior but the change in direction 

of the streamlines is not completed within and it continues on the 

downstream side. The streamline grs, for example, bends through 

an arc of 90 deg. downstream from the plane of the opening. As a 

result of this necessary change in direction, the jet is smaller 

than the opening and it is said to be contracted. The section at 

which this contraction is complete is called the vena contracta. 

Here the streamlines are parallel and the pressure throughout 

this cross section is considered to be the same as in the surrounding 

medium, which is usually the atmosphere. 

In the case of flow through a long sharp-edged slot, the cross 

section of which is shown in Fig. 188a, it can be shown by methods 
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of classical hydrodynamics^ dealing with an ideal fluid that the 

thickness t of the sheet of water is --- times the width h of the 
TT "t” 

opening. Theoreti(‘alIy this (‘ontraction is completed at infinite 

distance from the orifice but practically it is complete at a dis¬ 

tance of about one-half h or one-half th(‘ diameter D in the (drcuilar 

orifice. 

The ratio of the cross section Ac at the vena contracta to the 

area A of the orifice is the coefficient of contraction CV. Thus 

Ac = CcA (10) 
TT 

The theoretical value of Cc for a long sharp-edged slot is = 
TT -j- Z 

0.611, which is also very near the value of Cc for flow of water 

through sharp-edged orifices with D equal to or larger than 2.5 in. 

The value of Cc is not known to l)e less than 0.611 for a 

circular orifice. Values of Cc for water obtained experime ntally 

by Smith and Walker^ are given in Tal)le VIII below. Inspec- 

TaBLE VIII.—('oEFFK’IENT OF CONTRACTION Cc FOR CIRCULAR 

Shakp-edobd Orifices* 

Head d, 

ft. 

Diain(‘t(T, in. 

0.75 1.0 1.5 2.0 2.5 

1.0 0.688 0 657 0.626 0.019 0.615 

2.0 0.680 0.652 0.624 0.617 0.614 

4.0 0.671 0.644 0.621 0.617 0.614 

6.0 0.669 0.642 0.620 0.617 0.614 

8.0 ! 0.668 0.640 0.620 0.617 0.614 

10.0 0.667 0.639 0.620 0.616 0.614 

20.0 0.667 0.639 0.618 0.616 0.613 

40.0 0.666 0.639 0.617 0.615 0.613 
60.0 0.666 0.639 0.617 0.615 0.613 

* Smith and Walkkr, op. cit., pp. 34-36. 

tion of this table shows that Cc decreases with head up to about 

60 ft. and with diameter up to 2.5 in. and tends to become con¬ 

stant for larger heads or diameters. This is taken by some writers 

1 Ramsey, A. S., ^‘Treatise on Hydromechanics,” part II, p. 132, George 
Bell & Sons, Ltd. London, 1920. 

* Smith, Demster, and William J. Walker, Orifice Flow, Proc. Imt. 

Meek. Eng. {London)^ 1923, p. 23. 
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to indicate that perfect contraction is not to be had for low heads 

or for diameters less than 2.5 in., a view supported by the coeffi- 

Tajble IX.—Coefficient of Velocity Cv for Circular Sharp-edged 

Orifices* 

Head, 
Diameter, in. 

ft. 
0.75 1.0 1.5 2.0 2.5 

1 0 0.954 0.962 0.973 0.980 t.987 
2.0 0.957 0.966 0 980 0.984 0.990 
4.0 0.956 0.973 0.983 0.984 0.990 
6.0 0.954 0.975 0.984 0.984 0.990 
8.0 0 951 1 0.977 0.985 0.984 0.990 

10.0 0.953 1 0.977 0.985 0.986 0.990 
20.0 0.953 1 0.978 0.988 1 0.986 0.993 
40.0 0.954 0.978 0.990 0.988 0.993 
60.0 0.954 0.979 0.990 0.988 0.993 

* Smith and Walker, ojt. cit., pp. 34- 35. 

Table X.—('oeffkient of Discharge C for ('ihcular Sharp-edged 

ORIFICEsf 

Head, 
Diameter, in. 

ft. 
0.75 1.0 1.5 2.0 2,5 

1 .0 0.657 0.633 0.612 0.607 0.606 

2.0 0.651 0.630 0.611 

4.0 0.641 0.627 

6.0 0.638 0.626 

8.0 0.635 0.626 

10.0 0.635 0.625 

20.0 0.635 0.625 

40.0 0.635 0.625 

60.0 0.634 0.624 0.611 0.607 0.606 

t Smith and Walker, op. cit., pp. 34-35. 

cients obtained earlier by Judd and King^ and Biltori.^ The 

coefficient Cc appears to be nearly constant for any orifice with 

^ Judd, Horace, and Roy S. King, Some Experimmils on Krictionless 

Orifice, Eng. Newa, S<‘pl. 27, 1906. 
* Bilton, H. J. I., Coefficients of Discharge through ('ircular Orifices, 

Eng. News, July 9, 1908. 
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a head more than 10 ft. and for the larger orifices at much lower 

heads. 

142. Coefficients of Velocity and Discharge.—The velocity as 

given by Torricelli\s theorem is never quite realized because the 

conversion of energy in a real fluid cannot be accomplished with¬ 

out loss. The average velocity Ur ~ must be modified 

by a coefficient of velocity Cv so that the real velocity is 

V = c\Ut = c.VWh (11) 

This c<^fficieiit is nearly unity for water. It is about 0.95 for a 

^4-in. sharp-edged circular orifice and increases to 0.99 for a 

diameter of 2.5 in. It is nearly constant for a given orificje, 

increasing slightly for high heads. Values of for water are 

given in Table IX. 

The discharge is the product of the real velocity and the area at 

the vena contracta, or 

Q = .4.K = CcAC.V^H (12) 

This may be writt(‘u as 

Q = CAV^H (13) 

in which C = CcCv is the coefficient of discharge, so called because 

it is the ratio between the actual Q as given by Eq. (12) or (13) 

and Qtj uncorrected by contraction or velocity coefficients, as 

given by Eq. (3). For small circular orifices C decreases slightly 

with increasing heads and diameters, becoming nearly constant 

for diameters of 2.5 in. or more. Values of C for water are given in 

Table X. Fair approximate values to remember are C = 0.60, 

Cv = 0.98, Cc = 0.611. 

Example.- A jet of water is discharged through a 1-in. diameter orifice 

under a head of 2.10 ft., the total discharge 

being 228 lb. in 90 sec. The jet is observed to 

pass through a point 2 ft. downward and 4 ft. 

away from the vena contracta. Compute Cc 

and Cv. 

Solution.—Neglecting air resistance, the hori¬ 

zontal component of the jet velocity is un¬ 

changed, that is, it continues to be F, the actual 

velocity at the vena contracta. It falls with 

the acceleration of gravity. If a particle of 

water travels from E to F in t sec., the distances EG and GF in terms of t are 

i ^ Vt and 2 - }4(S2.2)t^ - 16. 
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From second equation I -■ 0.352 sec. and, substituting this in the first , 
V == 11.36 ft. per sec. The Torricelli velocity is 

Then 

Ut = \/2gH - V'64.4 X 2.10 - 11.62 ft./sec. 

11.36 
11.62 

0.978 

The discharge is 228 (62.4 X 90) = 0.0406 c.f.s. and, substituting this iii 
the discharge equation, Q = CA\/2gTi, 

and 

Then 

HO that 

0.0400 = (,<5:'^..^? V«4.4 X 2.10 
J 44 

C = 0.f)41 

c - c,c„ 

C. = ^ = 0.041 4- 0.978 = 0.655 
( • V 

143. Incomplete Contraction.—The extent of the contraction 

of a jet from an orifice is changed by any condition that alters the 

manner in which the fluid approaches___ 

the opening. The sharixdgod diaphragm 

orifice in a pipe lino shown in Fig. 189 dis¬ 

charges a contracted jot which expands and 

again fills the pipe. The amount of con¬ 

traction for a given ch diminishes with an 

increase in d, and Cc is a function of d/d], 

the ratio of diameters, or a function of A/Ai, the ratio of area of 

the opening to the cross-sectional area of the pipe. Values of Cc 
d(3termined by Weisbach^ for water follow. 

Fig. 

t... 

189.—Diaphragm 
orifice. 

A/A, 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Cr 0.624 0.632 0.643 0.659 0.681 0.712 0.755 0.813 
1 

0.892 1.000 

When an orifice is located near one or more side walls of a 

container, the approach of the fluid to the adjacent side of the 

orifice is somewhat restricted and the contraction of the jet is 

incomplete. If the orifice plate is very rough, the approach from 

See footnote, p. 215. 
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tho sides is likewise restricted, the contraction is less and conse¬ 

quently the coefficient of discharge is increased. 

Problem 292. Compute the diameter of a jet of water from a 2-in. 

circular sharp-edged orifice when the head is 10 ft. What are the exact 

velocity and discharge, using coefficients from the tables? 

293. The velocity at the vena contracta of the jet of water from a 4-in. 

circular orifice is found to be 23.4 ft. per sec. when the head is 9 ft. and the 

discharge is 1.26 c.f.s. Compute Cv and Cc. 
294. In Fig. 189 di = 12 in. and d = 6 in. When Q is 2 c.f.s., what are 

the velocities of the water in the pipe and at the vena contracta? If C„ is 

0.98, what is the effective head on the orifice? 

144. Correction for Velocity of Approach.—Velocity of approach 

may have considerable effect on the quantity discharged through 

(oi)-Diaphraqm Orifice (b)-Orifice Meter 
Fig. 190.—Orifices in pipe lines. 

orifices such as those shown in Fig. 190. The effective head on 

such openings is 

\w w 2g J w 2g 

Neglecting velocity of approach, the rate of discharge can be 

expressed as 

Q = (14) 

The coefficient of discharge C in Eq. (14) would vary greatly with 

head or Ap because it would have to correct for velocity of 

approach as well as for energy loss and contraction. A rational 

equation correcting for velocity of approach is often desirable. 

The velocity without correction for loss is 
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Ut 

and the actual discharge is 

Q = CA Ut 

Substituting Fi = Q/Ai 'm the expression for Ut, the expression 

for Q becomes 

g - + jg-.) 

and, solving for Q, 

Q (15) 

A similar expression is obtained by writing 

Then letting Vi = Qt/Ai and solving for Qt 

Modif3nng this by the coefficient of discharge, 

Equations (15) and (16) become identical when C is nearly unity, 

that is, when the contraction is small. For cases in which the 

contraction is large, the values of C in Eqs. (15) and (16) will 

differ. In any event they must be determined by (experiments, 

and Eq. (16) lends itself more readily to such determinations. 



286 FLUID MECHANICS [Ohap. XI 

Fair values of C for water flowing through the orifice of Fig. 190a 
can be obtained by taking the product of an estimated value of 

Cvy say 0.98, and the values of Cc given 
in Art. 143. 

Orifices arranged as in Fig. 190 are 
commonly called orifice meters,^ and a 
comima-cial orificcvmeter installation is 
shown in Fig. 191. Equations (15) and 
(16) api)ly not only to those but to any 
cas(' in which thci velocity of approach 
is important, as, for (‘xample, the end 
orific(^ and the simpk^ nozzle of Fig. 192. 

In setting up th(‘ expressions for Ur 
and Qr in this article it was assumed 
that tlu; kinetic emu'gy per pound of 
fluid is repr(\sented by Vi‘^/2(j. Since 
the velocity distribution upstream is 
nonuniform, the a(‘lual kinetic energy is 
much greater than Vr/2gy while the 
kiiudic eiuu'gy in the v(‘na contracta 
wherci the velocity is quite uniform is 

Fig. 191.—Orifice-nicter in- iK'arly V-/2g. This excess of actual 
Htallation. (Courtesy of The kiiietic energy over the assumed FiV2a 
Foxboro Company.) i i . 

results in some (!ases in very high 
experimental values of Cv or C, the former often closely approach¬ 
ing unity. The values of C depimd to some 
extent upon the location of tin; pressure taps 
and in choosing coefficients the location of 
the taps must be considered. 

1 
T 

Problem 296. IJHiiig Cv = 0.98 and Weisbach^s 
(•coefficient of contraction, compute the discharge of 
water from the (i-in. orifice in Fig. 192a when the 
pressure in the 12-in. pipe is 10 lb. per sq. in. gage. 
What is the discharge^ under the same conditions if 
the liquid has a weight of 55 lb. per cu. ft.? 

296. The orifice in the 12-in. pipe of Fig. 1905 is 
4 in. in diameter and discharges a of the same size. 
The (;oeffici(Uit of discharge is 0.94 and Q is 3 c.f.s. 

(a)-End Orifice 

(b)- Nozzle 
Fig. 192.—Free 

charge. 
dis- 

What is the difference betwetni the pressure upstream and t hat in the jet? 

’ For further theory and coefficients on orifice meters, s(^e Fluid Meters, 
Their Theory and Application, A.S.M.E. Research Puhl., 1931. 
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146. Loss of Head in Orifice Flow.—The Torricelli velocity 

with a total effective head of H is Ut ~ \/2^ but the real veloc¬ 

ity in the jet is only 

r = (17) 

Writing Bernoulli's equation from a point upstream to the vena 

(‘ontracta and noting that the effective head II is the Bernoulli 

constant on the upstream side, 
y2 

H = -—h loss 

and 

loss = // - 
^g 

(18) 

After eliminating either V or H l)y substituting its value as 

ol)tained from Eq. (17), the loss of head can be expressed as 

loss = , - _i)Z! 

hg (19) 

loss = (1 - ( (20) 

Equation (19) expresses the loss of head in terms of the actual 

velocity head after loss while Eq. (20) expresses it in terms of the 

total initial head. The dimension is a length, usually feet of head 

of the fluid in question. 

Problem 297. Compute the head lost in a 2-in. orifice discharging 0.3 

c.f.s. under a head of 9 ft. if Cc is 0.61. What is C,.? 

298. A jet from a small orifice in a vertical plane falls vertically 2.58 ft. 

from the orifice while moving 6.4 ft. horizontally. The measured head on 

the orifice is 4.2 ft. Compute the velocity, the lu'ad lost and C,,. 

146. Converging Orifices.—An orifice shaped so that the side 

walls converge will either reduce or entirely eliminate any contrac¬ 

tion of the jet downstream from the plane of the opening. 

With the shape sliown in Fig, 193a the stream converges within 

and there is no contraction beyond the plane of the opening. The 

coefficients of velocity and discharge are equal and have a value 

of about 0.98. 
With the conical form in Fig. 1936 there is a slight contraction 

within the tube at M and a further contraction of the free jet 
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jiist outside of the cone, which latter contraction diminishes as the 

degree of convergence is reduced. The coefficient of velocity 

increases with 6 and the maximum value of C = CcCv is obtained 

when the angle is about 14 deg. It is then about 0.95. 

It will be seen from Fig. 193c that even a slight rounding of the 

supposedly sharp edge of an orifice will have considerable effect 

on the size of the jet and will thereby increase the quantity 

discharged. 

Fig. .t93.—ConvergiriK orifices. 

147. Short Tubes.—The term short tube is applied to orifices 

with downstream extensions not long enough to be classed as 

pipes. Such a tube is shown in Fig. 194. The orifice formulas are 

well adapted to the computation of discharge for such devices. 

A standard short tube is a smooth tube with a sharp internal 

corner and a length equal to 2.5 diameters. Such a tube can flow 

with the jet remaining clear of the tube as in Fig. 194a, in which 

case the form of jet and the quantity discharged are the same as 

for a sharp-edged orifice, or it can discharge a stream as large as 

the tube as in Fig. 1946. The latter type of flow is obtained by 

first stopping the tube and then permitting flow or by momentarily 

obstructing the flow of Fig. 194a, whereupon the tube begins to 

flow full. With the tube flowing full, the jet is not smooth and 

the flow is evidently turbulent. 
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With the tube flowing full, the jet is as large as the opening, 

Cc — I and C = C\. The coefficient C is found experimentally 

to be about 0.82 for water. The loss of head computed by 

Eqs. (19) and (20) is 

or 

( 
1 72 

0782^ - U2g = (21) 

(1 - 0.82=)// = 0.328W (22) 

This loss of head is many times that for the sharp-edged orifice, 

which is to be expectt'd because the stream is caused to diverge. 

By inspection it is evkhuit that the pressure at the vena con- 

tracta within the tube is less than atmospheric and also that, if 

the tube is adequately vented to the air at C, it cannot flow full. 

The stream within the tube is probably contracted as much as 

for the orifice and is probably contracted somewhat more for a 

given depth of water if the tube is less than 2.5 in. in diameter. 

148. Limitation of Standard Short Tube.—The fact that the 

pressure at the vena contracta within the standard short tub" 

is less than that at the end of the tube places certain limitations 

on the device. Let it first be assumed that Ac/A = 0.62. Then 

from the continuity equation V = 0.627^ and 

^ JL Z: = 2 fioZ! 
2g 0.622 2g ^ ^ 

The loss upstream from the vena contracta can be assumed to 

be about the same as for an orifice, that is, 0.04 Fc^/2g, which is here 
F2 

equal to (0.04) (2.60)^ = 0.104^* Now in Fig. 1945 the loss 

between C and D is the loss from Bio D less that from B to C, and 

from Eq. (21) it can be estimated as 

y2 y2 y2 
loss (C to D) = 0.487^ - 0.104^ - 0.383^ 

Writing Bernoulli's equation between C and D and correcting for 

loss, 
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After eliminating Vc and solving, 

TPs = ‘h - 1.22^ 
10 w 2g 

or, since V == 0,S2\/2gIl and V*^/2g == 0.672/7, 

& = ^ _ 0.82// 
w w 

(24) 

(26) 

The fact that pc never can be l(\ss than zero and practically can¬ 

not be less than the vapor pressure establishes the limiting liead 

for which the tube can flow full. Above this limit the jc't r*I('ars 

the tube as in Fig. 194a. The limiting liead, neglecting vapor 

pressure, that is, assuming pc f o be zero, is 

which agnjes fairly well with expcu-iments. 

Problem 299. A standard short tube 2 in. in diaiiK'ter is under a head 

of 16 ft. What are the discharge and lost head (a) wlien flowing full, (h) 
when flowing as an orifice? CoinpuU^ the maxiinuin discharge the tube can 

have when flowing full. 

300. When a short tube 3 in. in diameter is flowing full under a head of 

10 ft., what is the minimum pressure in the tube? 

149. Re-entrant Tubes—Borda Mouthpiece.—Openings in the 

form of tubes which extend from the wall of the container into the 

body of fluid, that is, re-entrant tubes, have a jet contracted 

somewhat more than that from the sharp-edged orifice in the plane 

of the wall. As the angle 6 of Fig. 195a diminishes, the contrac¬ 

tion increases. When the sides are parallel as in Fig. 1956, the 

coefficient of contraction is 0.5. 

The tube of Fig. 1956 with a sharp internal edge and with 

parallel sides about 2.5 diameters in length is known as a Borda 

mouthpiece and is of special interest because the coefficient of 

contraction of 0.5 can be obtained by the methods of classical 

hydrodynamics or by elementary mechanics, as is done in Art. 

150. The coefficient of velocity is about 0.98 for water, making 

C = 0.49. Values of Ce for re-entrant tubes lie between 0.62 

for the plane orifice and 0.5 for the tube with parallel sides. 

These values increase with 0, the angle of convergence. 



Art. 150] FLOW THROUGH ORIFICES AND TUBES 291 

160. Contraction of Jet in Borda Mouthpiece.—The inner end 

of a Borda mouthpiece is far enough from the wall of the con¬ 

tainer so that the presence of the opening has very little effect 

on the pressure at the wall. If it be assumed that the opening 

does not affect this pressure, the distribution of pressure on the wall 

having the opening and on the oj)posite wall is as shown in Fig. 

196 by diagrams abc and def, r(\spectively. Tliere is an excess of 

pressure force, equal to whAy acting toward the left on the con¬ 

tainer or toward the right on the liquid. This effective force gives 

momentum to Q c.f.s. and equating force to chang(‘ in momentum 

whA = 
g 

If Cv is taken as equal to unity, 

then V = \/2gh and Q = 

Ac\^2gh. After substituting 

these in the above equation 

and solving 

4^ = 0.5 = C, 
A 

Fig. 196.—Pressure distribution with 
Borda mouthpiece. 

This result has been closely approximated by experiments with 

water in which the actual discharge was measured and was 

assumed to be 0.98. 
The contraction of the jet within a Borda mouthpiece flowing 

full, as in Fig. 197, can also be investigated by elementary 

mechanics. It is again assumed that there is no loss upstream 

from the vena contracta and no change in pressure at the walls 
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of the container. The loss of head in the expanding stream is 

identical with that discussed in Art. 108. Making the appropri¬ 

ate substitution in Eq. (42) of that article 

Loss 
hv _ (1 - c.y 
2g 2g 

Writing Bernolllli^s (equation from the free surface to the 

discharging jet and neglecting the small loss upstream from the 

vena contracta, 

h 

and 

F 

The change in momentum of the discharging water is again 

equated to the effective pressure force, whence 

, . wQV wAV^ 
9 9 

After substituting the above expression for V and solving, 

Cc = 0.5 

This result is to be expected since it is based on the same assump¬ 

tions as was Cc for free discharge. The expansion of the jet 

serves only to reduce the pressure and increase the effective head 

at the vena contracta. 

IBl. Diverging Tubes.—If the sides of the tube shown in 

Fig. 198 do not diverge too rapidly and if the total divergence is 

not too great, the stream expands and fills the diverging portion 

of the tube. 

^ (1 - F^ 
2g ~Cy 2g 

/ (J 2 

= + (1 - 
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The pressure at the throat of th(‘ tube is less than at any other 

point. It can be computed by writing Bernoulli's equation from 

the throat C to the discharge end. The pressure at I) is atmos¬ 

pheric and, negl(‘cting losses, which are usually large in an expand¬ 

ing stream, Bernoulli's equation from C to D is 

1 " _L = Z! 4. 
2g w 2g w 

The absolute pressure head at C is then 

^ _(Vl _ M 
w w \2g 2g) (26) 

The actual velocity at D is V = Cv^ 
ing no chang(^ in siz(‘ of the jet l)eyond 

D. The total loss of head is — 1 

Most of the loss occurs downstream from 

the throat and, if it is assumed that all 

of it is downstream, the pressure head at 

C corrected for loss is 

and C = Cvf assum- 

198. — Diverging 
tube. 

= 2!’ 

w w 
(27) 

The coefficient C varies with the size, shape and angle of the 

tube. Many experiments have been made on such tubes but 

the data are scattered and not readily correlated. 

It is certain that C diminishes rapidly as the angle increases 

or as the length increases for a given angle. For example, 

RusselV from experiments on a tube 1.22 in. in diameter and 

6 in. long, finds C = 0.83 for ^ = o deg. and C = 0.32 for 

B = 15 deg. and, with the same throat and a length of 12 in., 

C == 0.61 for 6 — b deg. and 0.15 for ^ = 15 deg. 

With increasing head the difference in velocity heads increases 

rapidly and pc/w becomes small. Practically it cannot become 

zero owing to vapor pressure and separation of air. There is 

therefore a limiting head for each tube above which it cannot 

flow full. 

‘Russell, George E., ''Textbook on Hydraulics,p. 114, Henry Holt 

<fe Company, New York, 1934. 
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If the tube is considered to consist of the orifice of Fig. 193a 

with an added diverging portion, it will he seen that the orifice, 

which discharges against atmospheric pressure when alone, is 

discharging against a smaller pressure when fitted with the 

diverging section. The diverging section has them reduced 

the i)ressure at C. In other words, it has placed a suction or 

draft on the orifice and is therefore often called a draft tube. 

Problem 301. A diverging tube is 3 in. in diameter at the throat and 

4 in. at the end. Neglecting losses, find (a) the discharge of water under a 
head of 4 ft., {h) the maximum head for which it can flow full of cold water, 

(c) the maximum head for which it can flow full of water at 70°C. 

302. A diverging tube is 3 in. in diameter at the throat and 4 in. at the 

end. The taper is such that C = 0.6. What is the discharge of water 

under a head of 4 ft. if the tube flows full? If the diverging portion is 

removed and C is then 0.97, what is the discharge? Computi' the head 

lost for both cases. 

162. Discharge under Falling Head.- In computing the time 

required to empty a vessel through an orifict', it is necessary to 

treat the head as a variable. Since the 

rate of discharge is proportional to the 

square root of h(‘ad, th(‘ average head 

during the time of discharge is not to b(' 

used. It will 1)(‘ assiimtxl that C is 

a constant over the range of head 

involved and that the rate of discharge 

at any time under the existing condi¬ 

tion of unsteady flow is the same as if 
Fig. 199.-Falling head. steady. 

The container shown in Fig. 199 is being emptied through 

an orifice of area A. It has a free surface of area which is to 

be lowered from a distance hi above the center of the orifice to a 

new level h^. The rate of discharge at any time is Q — CA\/2gh 
and the volume discharged during an element of time^ di is 

Q di = CA^/2ghdL During this same time dt the free surfaces 

Aa is lowered and the head is reduced by a decrement dh. The 

volume discharged must equal the space vacated in the tank, 

whence 

—^.1 

h 

__) 

^ 1 

It'-— 

Q dt = CA\^2gh dt 

Solving for dt and integrating, 

-Ag dh (28) 
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t = rdt = ■ r’h-iidh J CAV2gj . 
and 

OA 

‘ - 

Flqiiation (29) is useful if C is practically a constant. If As 
is not constant but can be; exi)rcssed in terms of /i, the time of 

dis(^harge can be determined by substituting the expression for 

As in Eq. (28), solving for dt and inb^grating. 

Problem 303. A tank 4 ft. square has a sharp-edged orifice 2 in. in 

diameter in its side. If the water .surfa(;e stands 9 ft. above the orifice, 

cornpiito the time required to lower the water 4 ft. 
304. F'igure 200 shows a section of a tank which has 

vertical ends and a length of 20 ft. The orifice has an area 

of 24 sq. in. and C — 0.0. What tinui elapses while the 

surface is lowered 0 ft. from ,the position shown? 

163. Inversion of Jets.—In the earlier articles 

of this chapter it lias beom assumed tliat the pres¬ 

sure at the vtnia contracta and points beyond on a jet is zero. 

This is not strictly true for smooth jets such as the one from a 

circular orifice because^ it is surrounded by a surface film. This 

film is in tension and the jet must therefore be under a small 

pressure. The streamlines in the top and bottom of a jet have 

slightly different v('lociti(\s and tend to converge. This forces the 

film to be slightly ellipti(;al instead of round; the former form 

being unstable, thu film pulls itsidf and the jet back into a circular 

cross section. The transverse motion thus set up continues until 

the cross section is elliptical with the axis vertical. This action 

continues and the jet is alternately elliptical and round with the 

major axis of the ellipse turned through about 90 deg. in each 

half cycle of the motion. The slight rotation of the jet keeps 

the angle from being exactly 90 deg. 

Figure 201 shows typical jets from sharp-edged orifices. The 

jet from the triangular orifice is nearly hexagonal at the vena 

contracta, takes a form of cross section having three lobes, one 

opposite each angle, and then completely inverts so that the 

lobes move through 180 deg. Meanwhile there is a slight rota¬ 

tion and the lobes become less distimd as the inversion is 

repeated. 
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The jet from the square orifice goes through a similar inversion, 

being first octagonal and then four-lobed in cross section. The 

jet from a rectangular opening has a similar form, the longest 

lobes being opposite the long sides. 

164. Effect of Viscosity on Velocity of Efflux.—The expression 

for velocity in a j(d from an orifice was dev(doi)ed without con¬ 

sideration for density or vis(‘osity. With no losses this velocity 

{h) Triangular orifice, (c) Rectangular orifice. 
Fig. 201.—Inversion of jets from sharp-edged orifices. 

was found to be Ut — \^2gH and, corrected for losses, 

V = Cv\/2gHj in which C^, the coefficient of velocity, is nearly 

constant. The possible effect of density and viscosity may be 

studied by assuming the velocity to depend on p and p as well as 

on g and H. The velocity is then a function of all four and 

might be expressed in the exponential form 

V = Kg-IPp^p^ (30) 

Keeping K dimensionless and substituting the fundamental 

dimensions ikf, L and T for the other quantities gives 

L 
T 

For dimensional homogeneity it is necessary that 

(31) 
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0 - r + d 
1 - a h — c — M 
1 “ 2a + c 

Solving these equations for n, h and d, they are found to be 

a 
3r 

- and d ~c. Th(‘n Eq. (30) becomes 

1_—r 1 — Hr f. 

V = Kg~^ ir^ 
P" 

If it is true that varices as tlien h = 
1 ~ 3e 1 

(32) 

and c is 

zero. 

It follows then that, if V varies with the scjuare root of //, the 

velocity is quite independcuit of both viscosity and density. 

Examination of Table IX, page 281, indicates a slight variation 

of Cv with head and it is therefore likely that viscosity does have 

some effe(d but a \^ery small one. 

(a) (b) (c) 
Fig. 202.—^Dischargp of gates. 

(d) 

The above statements (‘annot be applied to tui)es and nozzles 

because it is to be expected that viscosity effects will be introduced 

by any extension of an orifice downstream from the vena contracta. 

166. Discharge of Gates.—The orifice theory is applied to 

many types of openings and conduits. For example, the dis¬ 

charge of a (uilvert is often expressed as Q = X\/7/, and that 

through a sluice gate as Q = KA\/2gH. Figure 202 shows 

outlines of such gates. In Fig. 202a the jet is supported for some 

distance and the pressure at any depth is the same as for static 

conditions anywhere downstream from the vena contracta. 

The effective head is then h in the figure. If the jet is only 

partially supported, as in Fig. 2026, the pressure in the jet is 

diminished and the effective head is increased. With conditions 

as in Fig. 202c, the discharge is likely to be greater than for 

Fig. 202a or 6. From the discussion of Fig. 168 in Art. 127 the 
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conclusion might be drawn that the supported length must be a 

minimum of about 12d if the true head is to be h in Fig. 202a. 

With conditions as in Fig. 202d the effective head is /i, the differ¬ 

ence in level of the surfaces. If a hydraulic jump is formed down¬ 

stream from the vena contracita, then the head is increased by the 

distance s. 
The computation of discharge from gates must be based upon 

experimental coefficients for conditions closely duplicating work¬ 

ing conditions. The effects of sills, contrac'tions and slightly 

rounded edges are difficult to predict and may result in erratic 

variations in coefficients. 

General Problems 

306. The jet from a 1-iii. (;ircular orifice in a vertical plane pavsses through 

a point 2 ft. below and 3 ft. horizontally from the vena contracta. The 

measured head on the orifice is 1.2 ft. and the measured discharge is 226 lb. 

of water in 2 min. Compute (7,, and Cc. 

306. A tank 4 ft. in diameter and 10 ft. high has a 2-in. circular orifice 

9 ft. below th(i top. The water surface can be lowered 5 ft. from the top in 

230 sec. by discharge through the orifice. Compute the coefficient of 

discharge. 

307. A plate orifi(!e 2 in. in diameter is placed in a 6-in. water line. What 

is the diameter of the jet? F'ind the drop in pressure when the discharge is 

0.4 c.f.s. if Cv is 0.98. Compute the lost head. 

308. R( \servoir A, which has a water surface area of 2000 sq. ft., is con¬ 

nected to reservoir B by a 6-in. diameter standard short tube. The water 

surface in A is initially 6 ft. above the center of the tube and that in B is 

always 3 ft. above the center of th(^ tube. What 

time is required to lower the surface in A 1 ft. by 
discharge through the tube? 

309. A short tube 2 in. in diameter is placed in 

the end of a 20-in. water line. What is the maxi¬ 

mum discharge when the pressure in the pipe is 

(a) 16 lb. per sq. in. gage, (h) 20 lb. per sq. in. gage? 

310. Water flows into the tank of Fig. 203 at 

a rate varying from 2 to 4 c.f.s. The tank has 

two outlets, a 6-in. circular orifice for which C ~ 0.6 and a 90-deg. V-notch 

weir 6 ft. above the center of the orifice. Compute maximum and minimum 

values of d and of Q for the orifice. 

311. A 4-in. water turbine nozzle on a 12-in. pipe has coefficients Cv ~ 0.97 

and Cc = 0.94. The pressure at the base of the nozzle is 100 lb. per sq. in. 

gage. What Q and what horsepower are delivered to the turbine? 

312. A new 16-in. cast-iron water line with a well-rounded entrance leads 
900 ft. from a reservoir to a turbine nozzle which is 300 ft. below the reser¬ 

voir. The diameter of the jet at the vena contracta is 3 in. and Cv ~ 0,97. 

Find the head lost in the pipe, the head lost in the nozzle and the power 
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delivered to the wheel. What percentage of the total power is lost in 
delivering the water? 

313. In Fig. 204 all the openings are 2 in. in diarnciter and the tubes are 
6 in. long. Compute the effective 
head and the discharge for each 
opeping. C — 0.71 for (a). 
'^14. A large pipe carrying water at 

50°C. and a pressure of 41b. per sq. in. 

gage leads to an orifi(ai near the top 
of an airtight tank in which there is 

initially a perfect vacuum. Tlie 
orifice is 2 in. in diameter and C = 

0.05. Find tlie time n'qiiired for 1500 
gal. to flow int(i the tank. 

316. A vertitail cylindrical tank has an orifice for its outh't. When the 
water surface in the tank is 10 ft. above th(' orifice, the water can be lowered 

12 ft. in 20 min., the j)ressure on the surface of water l)eing atmospheri(\ 

What uniform air pressure must. b(‘ applied to the surfac(; if the same volume 

is to be discharged in 10 min.? 
316. A vcirtical cylindrical tank has an orifice in its side at a point 2 ft. 

above the bottom. If the discharge rediua^s the d(‘pth of water in the tank 

from 18 to 12 ft. in 78 sec., what time is re(iuired to redinre the depth from 

10 to 4 ft.? 
317. A cylindri(!al tank 3 ft. in diameter and 10 ft. high contains 3 ft. of 

water, 4 ft. of oil (specific gravity, 0.8) and air at 16 lb. per sq. in. abs. 

Find the velocity and rate of discharge through a sharp-edged orifice 2 in 

in diameter and 1 ft. above the bottom of the tank. 

318. A tank car containing water has an orifice in the left end for which 

Cr = 1, Cc — 1.0 and A = 0.025 s(p ft. The water surface is 6.25 ft. above 
the opening. What is the discharge when the car is (a) at rest, (6) moving 
uniformly toward the left 8 ft. per sec.? 

319. A jet of water from a 1-in. nozzle in the end of a 3-in. pipe line is 

discharged vertically upward. The velocity at the vena contracta is 

50 ft. per sec., the diameter is 0.95 in. and = 0.96. What is the diameter 

of the jet 20 ft. above the vena contracta? Find the pressure at the base of 

the nozzle if it is 2 ft. below the vena contracta. 

Fig. 204. 

320. The coefficient of discharge in Fig. 205a is 0.9 and the total depth of 

water on the downstream side is 4 ft. Compute Q. Assuming the same 

coefficient, compute Q for Figs. 2055 and c. The openings are 5 ft. wide. 



CHAPTER XII 

THE RESISTANCE OF IMMERSED AND FLOATING 

BODIES 

166. Fluid Resistance.—When a solid body moves through a 

fluid, a resistance is produ(‘ed which opposes this motion and 

energy must be expended in order that the motion may continue. 

Thus, when a submarine moves through the water or an airplane 

flies through the atmosphere, the propeller must supply a force 

acting in the direction of motion of sufficient magnitude to 

balance the resistance. A sailboat mov(\s over the surface of an 

expanse of water if a wind current is directed against its sails so 

as to produce a propelling force. Its motion is opposed by a 

fluid resistaiK^e which consists of three* se'parate parts, namely, 

the resistance due to the submerged portion of the hull moving 

through the water, the* resistance due to the formation of waves 

on the surface of the water and the n^sistance caused by the 

motion through the* air of the superstructure or portion of the 

ship above the water surface. It appears that, whenever there 

is a relative motion of a body with respect to a fluid, a resisting 

force results. A knowdedge of the nature of this resistance is of 

great importance in engineering. 

One of the earliest attempts to develop a rational theory of 

resistance was made by Newdon. Although Newton\s theory, 

using the momentum principle and based on the concept of a 

hypothetical fluid of discTete particles, does not agree at all with 

experimental data, the form of the expression is of considerable 

interest, even in connection with the modern idea of a fluid as a 

continuous medium. As a body moves through a fluid the 

particles of the latter are given momentum and the time rate of 

change of this quantity must, according to the momentum 

theorem, b(^ equal to the force acting on the fluid. This force is 

equal and opposite to the resistance of the body. 

Considering the changes in momentum in the direction of 

motion of the body, the quantity of fluid affected in unit time is 

300 
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in general dependent on the veloeity of the body and its size. 

The size may be eonveniontly eonsidered as proportional to the 

area of the body projected on a i)lan(^ normal to the direction of 

motion. If the fluid has a density p and tlu^ body is moving 

with a constant velocity V and has a projected area equal to Ay 
then the mass of fluid affected by the body in 1 sec. is 

m = kipAV (1) 

where k] for the present is an unknown coefficient of proportion¬ 

ality. Now this mass of fluid which initially is at rest acquires 

an average velocity proportional to the velo{*ity of the body, 

that is, 

V = k^V^ (2) 

and (‘onsecjuently th(» momentum impartcHl to the fluid is 

M = mv = kik2pA V- (3) 

Since this last ecpiatioii represcaits the monumtum imparted 

to thi‘ fluid in unit time, it also repr(\sents the force acting on th(^ 

lK)dy in th(' direction oi)posite to its n\otion. Following aero¬ 

nautical parlance, this force or resistance is (allied drag and is 

denoted by the symbol J). 
If th(‘ product of the two constants ki and /c2 in Eq. (3) is 

replaced by a single constant koy then tlie drag is 

D = kj>pAr^ (4) 

This is tlie Newtonian or so-called V-squared law of fluid resist¬ 

ance. It has the same form as the expression for the lift forces 

acting on a vane or airfoil, developed in Chap. VII. 

167. Drag Coefficients.—The coefficient kD of Eq. (4) is known 

as the drag coefficient. An inspection of Eq. (4) shows that it 

is a nondimensional quantity, and for this reason it is often 

spoken of as an absolute drag coefficient. The form of this 

equation for the drag is that commonly employ(^d in England; 

ku and the corresponding coefficient of lift, defined by the 

equation 

L - k^pAV^ (5) 

are therefore called the English force coefficients. In the 

United States and in most other countries the expression for 
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drag is modified by multiplying and dividing by two and replac¬ 

ing the factor 2kii by a new coefficient Cd so that 

D = Cn^A (6) 

It will be recalled that the expression pV‘^/2 represents the 

dynamic pressure of a fluid stream, that is, it is the value of tlu^ 

rise in pressure at a stagnation point over that of the undisturb(‘d 

stream. If this quantity is denoted by the symbol q, then the 

drag force is equal to 

D == CnqA (7) 

The drag coefficient from this equation is 

C„ 
qA (8) 

and Cd may therefore be interpreted as representing the ratio 

between the actual drag and the force that w^ould be produced if 

the area A were acted on by a uniformly distributed pressure of 

magnitude q. 
In some engineering work the equation for drag is written in 

terms of a coefficient which includes the density and is con¬ 

sequently no longer a pure number. This form, however, is 

gradually passing into disfavor since it does not bring out so 

clearly as do those given above the fact that the form of the 

resistance equation is essentially the same for all fluids. If a 

consistent set of units is used in either Eq. (4) or (6), the cor¬ 

responding force coefficients wdll have the same numerical values 

whether the system used is metric or English. There exist 

certain hybrid coefl^cients which correspond to combinations of 

units obtained when density is expressed in slugs per cubic foot, 

velocity in miles per hour and area in square feet, but because of 

their clumsy form the use of these coefficients has little justifica¬ 

tion. In general the material presented here will be given in 

terms of the absolute coefficient Cp of Eqs. (6), (7) and (8). 

It follows from either Eq. (6) or (8) that, if the density of a 

fluid, the velocity and area of a body moving through it and the 

magnitude of the resisting force are known, then the correspond¬ 

ing drag coefficient may be readily calculated. The same 

equations also hold in the case of the resistance produced when 
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the body is held stationary in an infinitely large current of 

fluid which, at great distance from the body, has a uniform veloc¬ 

ity y. Some attempts have been made to determine the value 

of the resistance and corresponding coefficients by theoretical 

methods but these have been without success except in a very 

few special cases. In general the use of the mathematical theory 

of perfect fluids leads to a zero resistance, except in cases where 

surfaces of discontinuity or vortex trails exist in the wake of the 

body. This inability of the hydrodynamics of perfect fluids 

to give results which approximate those of experiments is known 

as the paradox of D'Alembert and is undoubtedly one of the 

principal reasons why this theory has had so little application in 

engineering work until recent years. Because of the complic^ated 

nature of problems in tlu^ det(irmination of fluid resistance, 

quantitative information on this subject is obtained by experi¬ 

mental methods with a few notable exceptions. 

Example.—A body having a projected area of 12.5 sq. ft. has a drag 

cotdficient Cn = 0.47. It travels through air in a direction normal to the 

plane of its projected area. Determine the drag force and the power 

necessary to maintain the motion at velocities of 50 and 100 m.p.h. 

Solution.—At 50 m.p.h. or 73.3 ft. per sec., a.ssuming the air to be of 

standard density, the drag force is 

,, ,, , 0.47 X 0.002378 X (73.3)=^ X 12.5 _ r.. ,u 
Lf — C- jy—^—A —-^ — o/ .i)0 ID. 

The power is ecpial to the work done per second, that is, 

p = UY ^ 37.55 X 73.3 - 2755 ft. lb./sec. 

or 
2755 550 - 5 hp. 

The drag at 100 m.p.h. may be computed in the sanni manner or, noting 

that D is proportional to 

D = 37.55(^o%o)=' = 150.2 lb. 

If the power is written in the form 

F DV 
CdpV^A 

2 

it is seen that P is,proportional to F®. Then at 100 m.p.h. 

P = 2755(10^0)* = 22,000 ft. lb./sec. 

= 40 hp. 

Problem 321. A body having a drag coefficient Cd = 0.25 and a pro¬ 

jected area of 5 sq. ft. moves through a fluid with a velocity of 60 m.p.h. 

Compute the drag force if the fluid is (a) water, (h) air. 
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322. A body moving through air is acted upon by a resistance of 260 lb. 

If the projected area is 7.5 sq. ft. and the velocity is 110 m.p.h., determine 

the values of the drag coefficients kn and Cn. 
323. A torpedo is launched with sufficient power so that, after it has 

reached a state of steady motion, its velocity in salt water {w = 64.0 lb. 

per cu. ft.) is 35 m.p.h. What speed would it attain in fresh water if (a) the 

resistance is the same, (h) the power is the same? 

324. An automobile moving in still air has a drag coc^fficient C/> — 0.45. 

The proj(^cted area is 36 sq. ft. Determine the values of the resistance at 

speeds from 20 to 100 m.p.h. in intervals of 20 m.p.h. and plot the results 

as fumdions of V and V^. What type of curves are obtained? 

158. The Effects of Viscosity.—The luoriientum theory of 

resistance developed in the preceding articles does not consider 

the effect of viscosity. It seems natural to expect, however, 

tliat this property of fluids should he one of the chief causes of 

such resistance. The manner in which viscosity affecds the drag 

may be determined by the methods of dimensional analysis. 

If it is assumed that the drag of a body is depcuident on the 

velocity, the proj(‘cted area and the density and viscosity of the 

fluid, then the equation relating theses (quantities may be written 

in the form 

D = (9) 

where kn as before is an absolute or nondimensional coefficient 

and wher(‘ the exponents a, 6, c and d are to l)e determined. Tin? 

condition of dimensional homogeneity of Kq. (9) h^ads to the 

relationship 

4.» 
where M, L and T are the fundamental dimensions of mass, 

length and time, respectively. On equating the exponents of 

each of these dimensions independently, three simultaneous 

linear equations are obtained, from which three of the unknown 

exponents may be calculated in terms of the fourth. These 

three equations are 

\ — a + d 
1 = _3a + 26 + c - rf 

~2 = ~c - d 

and the values of a, 6 and c obtained therefrom in terms of d are 
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so that the resistance equation becoiiH's 

The term in the parenth(\ses may bo replaced by a linc^ar 

factor ly which is some characteristic* dimension of the body, })y 

simply changing the value of the drag coefficient. The result is 

then 

D - 

Multiplication and division by the factor 2 make it possible to 

replace the coefficient ki/ by the coefficient C;/, thus making 

the expression for the drag directly comparable with Eq. (6). 

This modified form of the expression for the drag is 

The expression pTZ/m will be recognized as NRy the Reynolds^ 

number of the flow, and the resistance equation in terms of Nr 
is then 

D = C A 
Nr'^ 

(10) 

It thus appears that this number is of considerable importance 

in determining the nature of the resistance of a body moving 

through a viscous fluid. A comparison of Eqs. (6) and (10) 

shows that when viscosity is taken into account the* former 

equation is correc^t only when its value of Cd is considered as a 

function of Reynolds' number. The coefficients in these equa¬ 

tions are therefore not identical but 

Cj. (Eq. 6) 
Cx>' (Eq. 10) 

Nr^ 

The linear dimension I which appears in the above expression 

for Reynolds' number is to a certain extent an arbitrary quantity, 
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hut in most cases it is taken as the principal dimension of the 

body measured as nearly as possible in the direction of motion. 

In some problems it is either impossible or inconvenient to employ 

such a dimension, and some other length which is more char¬ 

acteristic of the shape of the body may be selected. For instance, 

in the case of a thin circular disk moving in a direction normal 

to its surface, the dimension in the direction of motion would 

be the thickness of the disk, which is of little significance in 

determining the value of the resistanc.e and is usually replaced 

by the diameter. In the case of a sphere the resistance is the 

same for all directions of motion and the characteristic length 

is obviously the diameter. In Eq. (31) of Art. 93 Stokes’ law 

for the resistance of a sphere in creeping motion” was given 

in the form 

^ Nu 

where Nr = pVdlji. In this case the projected area is A = Trd'^/4: 

so that 

n ^ 

and the drag coefficient as defined by Eq. (6) is 

Cn 
24 

Nr 
(11) 

which shows that Ci; is a function of the Reynolds’ number. 

In some cases the nature of the relationship between Cd and 

Nr may be determined by theoretical methods but in the majority 

of problems it is necessary to resort to experimental means 

because of the difficulties in setting up and solving the mathe¬ 

matical equations that accurately represent these fluid motions. 

More detailed studies of resistance show that the Reynolds’ 

number of any flow may be considered as an index of the relative 

importance of the inertia and viscous forces involved in the fluid 

motion. In Chap. XV it will be shown that Vi? is actually 

proportional to the ratio between these forces, that is, 

inertia force 
Nr a 

viscous force 
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Although a proof of this statomont will not b(' given at present, 

this relation may be used to considerable advantage in explainiiig 

the variation of drag with Reynolds^ number. When the 

Reynolds^ number is small the viscous forces are large as com¬ 

pared with those due to the inertia of the fluid particles, while 

when Nr\^ large the opposites is true. In the first case th(^ motion 

is determined entirely by the viscosity of the fluid and is inde- 

])endent of its inertia and therefore of its density. Stokes’ 

solution for the drag of a sphere as given above and by Eq. (20) 

of Art. 87 is based on this type of flow. However, it is found 

that for bodies of any shape the drag is given by a similar equa¬ 

tion of the form 

D = kVh 

so that the drag coefficient is 

^ ^ 2kVln ^ 2k 
pV\ pV'^A pVA 

2 pi 

or, putting A = k'P, 
^ ^Jk ^ K 

^VW Nr 

M 

The coefficients k and K depemd on the shapes of the body. 

For large values of Reynolds’ number the viscosity has no 

appreciable effect on the flow so that the drag is independent of 

Nr. The exponent d in Eq. (10) is then equal to zero and the 

drag coefficient Cd of ]']q. (6) is a constant for a body of a given 

shape. 

It thus appears that when Nr is small tlui drag force on a body 

is proportional to the first power of the velocity and Cd is inversely 

proportional to Nr. When the Reynolds’ number is very large, 

the drag is proportional to the square of the velocity and Cd 
is independent of Nr. For intermediate values of the Reynolds’ 

number it may be expected that the drag will depend on some 

power of the velocity between 1 and 2 while Cd will depend on 

the Reynolds’ number to a power between —1 and 0. In the 

articles which follow a survey will be given of the most important 

theoretical and experimental results that have been obtained for 

bodies of various shapes. 
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Problem 326. A body having a length of 5 ft. moves through fluid 

Nvith a velocity of 75 m.p.h. What is its Reynolds' number for air and 

water at a temperature of 59°F.? 

326. A sphere 0.01 ft. in diameter moves through oil having a kimmiatic 

viscosity of 0.002 ft.^ per sec. at a velocity of 0.075 ft. per sec. Determine 

the drag coefficient and the drag force if the specific gravity is 0.82. 

327. A body 3 ft. long moves through air and its Reynolds' number is 

3 X 10®. At what velocity must it move through water at 59°F. in order 

to have the same drag coefficient? 

169. The Boundary-layer Theory.—The majority of engineer¬ 

ing problems which involve questions of fluid resistance arc 

concerned with the motion of bodies through air or water and, 

since these are both fluids cjf relativcdy small viscosity, it might 

be assumed that the drag of objecdns moving through them is 

practically independc'ut of Rc^ynolds^ number. This hypothesis 

implies, as will be shown in Chap. XV, that the inertia forces 

acting on the particles of fluid are so mucli larger than th(^ 

viscous forces that the latter may be neglected. Such an assump¬ 

tion formed the basis of the c^arly attempts to apply the mathe¬ 

matical theory of nonviscous fluids but, as has already been 

mentioned, these methods wore not very successful, leading to a 

zero value for the r(\sistance to the steady motion of a body 

except in cases where account was taken of the formation of a 

wake. 

The principal reason for the inability of perfect-fluid theory 

even to approximate actual values of resistance is the fact that 

the hypothesis of zero slip at the boundary of the solid has been 

abandoned. It will be recalled that the shearing stress in a 

viscous fluid is proportional to the velocity gradient normal to 

the direction of the flow as well as to the viscosity so that, even 

though the latter valuer is extremely small, stresses of appreciable 

magnitude will exist if the velocity gradient is large. Such 

conditions may exist near the surface of a solid body in a stream 

of fluid where the velocity changes rapidly from zero at the 

surface of the body to a value that may be quite large at a small 

distance from the body. These conditions were first taken into 

consideration by PrandtP in formulating his boundary-layer 

theory which was first published in 1904. 

^ Pkandtl, L., On the Motion of Fluids with Very Little Viscosity, 

NACA Tech. Memo. 452. Translated from “Vicr Abhandlungen zur 

Hydrodynamik und Aerodynamik," Gottingen, 1927. 
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Tlie basis of Praiidtrs theory is tliat tlie fluid surrounding the 

body may be divided into two portions: (1) a thin layer close 

to the surface of the body in which the vekxaty gradient is 

large enough to produce viscous forces of an appreciable magni¬ 

tude; (2) the remaining portion of the fluid outside this boundary 

layer, in which the viscous forces may be neglected in com¬ 

parison with the inertia forces, or, in other words, in which the 

Reynolds^ number may be assumed to b(^ infinitely large. Under 

the assumption that th(^ tliickness of the boundary layer is small 

and that the radius of curvature of the surface of the body is 

large as comparc'd to this thickness, Prandtl was able to simplify 

the differential equations which represent th(‘ motion of a viscous 

fluid, Tliis was an extremely important advaiK'o in the develop¬ 

ment of fluid rneclianics because of the fact that previously only 

such special problems as Stokes^ solution for the splu're and th(‘ 

Hagen-Poiseuille law for pipe flow had been obtained from the 

more g(meral equations first set up by Navier and Stokes as early 

as 1827.' 

The mathematics of the boundary-layer equations is too 

advanced for this text; only the physical basis of the theory and 

soiiK^ of the r(‘sults will be discusscni here. One of the important 

facts d(Hlueed from the th(‘ory of th(‘ boundary layer is that 

pressures are transmitted without change through the layer in 

din'ctions normal to the bounding surfac(\ B(a*ause of this 

fact the vcdoeity at the outer limit of the boundary layer may be 

computed from an expc'rimentally d(dermin(xl pressure distribu¬ 

tion on the body by using Bernoulli\s theorem. In some cases 

the methods of the hydrodynamics of p(u-fect fluids may be 

employed for this purpose, provided the contour of the body and 

its surrounding boundary layer are amenable to mathematical 

tn^atment. 

160. Laminar and Turbulent Boundary Layers.—In the study 

of the flow of fluids through pipes it was pointed out that at the 

critical Reynolds^ number the flow begins to change from a 

laminar to a turbulent character, and the expressions for the 

^ The general (iquations for the motion of viscous fluids were first published 

by Navier in 1827, by Poisson in 1831, on a different basisby St. Venantin 

1843 and by Stokes in 1845. See L. Prandtl and O. G. Tietjens, Funda¬ 

mentals of Hydro- and Aeromechanics,'’ p. 259, McGraw-Hill Book Com¬ 

pany, Inc., New York, 1934. 
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drop in pressure along the pipe are decidedly different in form 

in the two cases. When a fluid of small viscosity moves past any 

solid surface, the flow in the boundary layer b('haves in a similar 

manner. The characteristic length which appears in the Rey¬ 

nolds^ number here is taken as the length of the surface measured 

in the direction of motion. For low valu(\s of this Reynolds’ 

number the velocity distril>ulion in the boundary layer cor¬ 

responds to laminar flow. As the Reynolds’ number is inert'ased 

the boundary layer be'gins to show the characteristics of turbu- 

lenc(% this condition starting at the rear or tail end of the surface'. 

For further increases in Reynolds’ numl/er the point e>f transitieni 

from laminar to turbule'iit flow moves forward alenig the surface' 

until eventually, at a high value of Nthe entire be)unda.ry layer 

is turbulent. In the transitiem re^gime the change from laminar 

to turbulent flow does not oe'cur at a definite' pe)int e)n the' surface', 

although in the thee)ietie*al work on these* proble'ins the assump¬ 

tion is made that siu'h is the case. Actually the change takes 

place more e)r less gradually over an appreciable lemgth e)f the^ 

surface in a maniu'r anale)ge)us to the corresponding change in 

the flow thre)Ugh a jupe'. 

The variation of the velocity with distance from the surfae'-e* is 

different for laminar and for turbukmt flow. In the exact 

solution of these problems the velocity in the boundary layer 

approaclu's asymptotically the vc'locity d(‘termined by the 

pressure divStribution on the body so that tlu^ thickness of the 

boundary layer does not have a d(‘finite value. Approximatf' 

expressions for the boundary-layer thickness may be obtained by 

various methods, oik' of which is to define the thickness as that 

distance from the surface at which the velocity differs from that 

of the flow outside the layer by an arbitrary amount, say 1 per 

(*ent of the latter velocity. In general the determination of the 

shear stress and resistance requires a knowledge of the velocity 

variation along the surface at the outer limit of the boundary 

layer. 

161. Transverse Velocity Distribution in Boundary Layers.— 
The first solution of Prandtl’s boundary-layer equations was 

given by Blasius^ for the case of the flow of an infinitely large 

stream of fluid past a thin flat plate paralk'l to the direction of 

^ Blasius, H., Grenzschichten in Fliissigkeiten mit kleiner Reibung, Z. 
Math. Physik, vol. 56, 1908. 
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motion. This problem is extremely complicated in its mathe¬ 
matical details, but a considerable simplification in the method of 
treatment was introduced by von Kdrniitn^ by means of a con¬ 
sideration of the changes in momentum that occur in an element 
of the boundary layer. The application of this method requires 
an assumption as to the variation of velocity in the boundary 
layer with the distance normal to the bounding surface. For a 
laminar boundary layer fairly satisfactory rc'sults can be obtained 
by assuming a parabolic velocity distribution. If x and y are 
coordinates measured along and normal to the surface as shown 

Fig. 206.—Velocity distribution in laminar and turbulent boundary layers. 

in Fig. 206, them, for any value of x, the velocity parallel to the 
surface may be considered as a function of y of the form 

u a + hy + af (12) 

The terms a, h and c are constants determined by the three 
conditions: 

1. No slip at the boundary and therefore = 0 when i/ = 0- 
2. At the outer edge of the boundary layer the velocity is u; 

therefore u == u when y = 5, the boundary-layer thickness. 
3. At the outer edge of the boundary layer the tangent to the 

velocity distribution curve is parallel to the ^/-axis so that 

^ = 0 when ?/ = 5. 

When these conditions are satisfied, Eq. (12) becomes 

* Von KarmXn, Th., tTber laminare und turbulente Reibung, Z. angew. 
Math. Mech.f vol. I, 1^21. 
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»- •>l(^ ~!) (>•’) 
The distribution represented by this equation is shown by the 

solid curve in Fig. 206. 

For the case of a turbulent boundary layer von Kdrmdn 

showed that the velocity in the boundary layer varies as the 

*^7 power of tlie distance from th(‘ wall, the exact relation being 

(14) 

This distribution is represented by the dotted line in Fig. 206. 

This expression was obtained from an analysis of Blasius^ law for 

the pressure drop in pipes with turbulent liow. In the case of 

the pipe the entire flow may be regarded as a boundary layer 

where the thickness h corresponds to tlie radius r. If 6 is replaced 

by r and u is replaced by the vekxdty at th(i center of the pipe, 

Eq. (14) l)ecomes the same as Eq. (36) of Art. 107. 

Problem 328. The thickness of a boundary layer is 2 in. at a certain 
point on a body when the velocity at the outer edge of the layer is 10 ft. per 

se(\ Draw curves showing the velocity distribution for laminar and 

turbulent flow by plotting values of velocity at intervals of 0.5 in. 
329. The boundary-layer thickness at a certain point on a body is 1 in. 

for laminar flow and Vi in. for ti.rbtdent flow, th('. velocity at the outer edge 
being 25 ft. per sec. in both cases, l^raw curves showing the velocity 

distributions under these conditions by computing the velocities for 
y ~ 0.255, 0.505 and 0.755. 

330. Calculate the shearing stresses at intervals of 0.5 in. in a laminar 
boundary layer 2.5 in. thick when the; velocity at the outer edge is 15 ft. 

per sec. and the fluid is water at 15°C. 

162. Separation of Boundary Layers.—The calculation of 

resistance is a perfectly straightforward process if the boundary 

layer remains in contact with the body over the entire surface. 

The thin flat plate set parallel to the direction of its motion 

satisfies this condition and, as will be shown later, the theory is 

in good agreement with experimental n^sults. The boundary 

layer also remains in contact with the surface of other bodies such 

as cylinders (struts and airfoils) and bodies of revolution (ellip¬ 

soids, airship hulls, etc.) provided neither the inclination of the 

body to the direction of motion nor the ratio of its thickness to 

length is too great. When the inclination or this ratio exceeds 
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certain limits, the boundary layer on the rear portion of the body 

may detach itself from the surface and a surface of discontinuity 

forms immediately in the rear. Because of its inherent insta¬ 

bility this detached layer usually rolls up into vortices which are 

left behind the body and form what is known as the wake. 

The process of separation of tin* boundary layer and the forma¬ 

tion of a wake produces a region of r(‘duced pressure over the rear 

of tlie body, and as a (‘ons(‘(]uen(‘e the resistance is matfu’ially 

incn^ased. The total drag of the body is tluai made uj) of the 

direct effect of viscosity in the production of shearing stresses 

along tliosc' parts of the surface where the layer lias not se[)arated 

and th(' indirect effect of viscosity which results in the formation 

of a wake. 

163. The Mechanism of Separation. - The mechanism involved 

in boundary-layer separation can be explained by considering 

the case of a circular cylinder immersed in a stream which moves 

in the direction perpcmdicular to its axis. Siijjpose the (cylinder 

to be of sufficient length so that the flow may be regarded as 

two-dimensional. The classical hydrodynamics of perfect fluids 

shows that the streamlines of the motion are defined by the 

equation 

Af — — sin B (15) 

where r and 6 are the polar (n)ordinates of any point in a plane 

cross section of the flow referred to the center of the circular 

cross section of radius a. The velocity of the stream at a great 

distance from the cylinder is V and has a constant numerical 

value for each individual streamline. The flow is in the direc¬ 

tion ^ = TT at a great distance from th(? (‘ylinder. The nature 

of these streamlines is illustrated by Fig. 207. The velocity at 

any point M in the fluid has the radial and tangential components 

Vr = — F^l — cos 6 (16a) 

1 + sin 6 (166) 

On the boundary of the cylinder r = a and Fr = 0; the velocity is 

purely tangential and has the magnitude 

Vc = 2F sin e (17) 
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From the symmetry of the flow about the vertical axis, the pres¬ 

sures at corresponding points on the front and rear of the cylinder 

are equal and there is no drag. If the flow of a slightly viscous 

fluid such as air or water resembled that of Fig. 207, then Eqs. 

(16a) and (166) could be used to determine the velocity at the 

outer edge of the boundary layer and the drag could be com¬ 

puted. However, the flow shown in Fig. 207 does not completely 

resem])le that which actually exists for usual values of the 

Reynolds’ number because separation takes place. This separa¬ 

tion is the combined effect of energy losses diu^ to viscosity and 

of the pressure distribution over the surface of the cylinder. The 

Fig. 207.- Motion of a perfect fluid past a long circular cylinder. 

theoretical pressure distribution corresponding to the perfect 

fluid motion of Eq. (15) was developed in Art. 68 and was shown 

in Fig. 107. The ratio of the gage pressure at any point on the 

cylinder to the dynamic pressure of the stream as given by Eq. (3) 

of Art. 68 is 

pFoV2 "" 1 ^ ^ 08) 

The values of this ratio are plotted in Fig. 208 in exactly the 

same manner used in obtaining Fig. 107. 

In the flow of a perfect fluid a particle near the surface of the 

cylinder experiences changes in its kinetic energy as it moves 

around the circle, but these changes are exactly balanced by 

the changes in pressure so that, when a particle moves from the 

forwaid end of the horizontal diameter to the downstream end, 

its total energy remains unchanged. It will be noted in Fig. 208 

that between points C and E on the surface the pressures are 
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increasing toward E so that there is a pressure gradient opposing 

the motion of the particle in this region. Thus a particle moving 

along the surface must have acquired enough additional kinetic 

energy in the first part of its 

journey between A and C to 

enable it to continue around 

the circle to point E. In the 

motion of a perfect fluid this 

(condition is just satisfied, but 

when the fluid is viscous there 

is a continual decrease in the 

kinetic energy in the direction 

of motion so that somewhere 

between points C and a point 

is reached where the particle 

can no longer continue its 

motion toward point E against 

the pressure but starts to 

reverses its direction. It im¬ 

mediately collides with other 

particles still moving rearward from C and the resulting disturb¬ 

ance causes the boundary layer to separate from the surface, 

thereby forming the wake behind the body. The resulting flow 

after these changes have been stabilized is shown in Fig. 209. 

The pressure distribution is no 

longer that of Fig. 208 although 

the changes which result from 

separation are confined princi¬ 

pally to the rear portion of the 

cylinder, as is shown by the ex¬ 

perimentally determined values 

which are plotted in Fig. 210. 

As a result of this discussion of 

Fig. 209.—Actual flow past a long separation it is Seen that there 
circular cylinder. i general three distinct 

regions in the fluid through which a body is moving, instead of 

two as previously mentioned. In addition to the boundary layer 

and the fluid outside it, one must consider the possible existence 

of a wake behind the body in which there is an eddying motion. 

^ Pbandtl and Tietjens, op, cit., p. 279, Fig, 6. 

Fig. 208. —Theoretical pressure distribu¬ 
tion on a circular cylinder. 
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The resistance of a body may now b(' considered as made up 

of two parts: (1) the direct effect of viscosity producing shearing 

stresses, the resultant of which is called skin-friction drag, and 

(2) the drag caused by the formation of the wake, the latter 

being commonly known as eddy-making resistance. The shape 

of the body determines the character of the pressure distribution 

on its surface, and it is possible to construct ))odies on which tla^ 

changes in pressure are very gradual so that, if any separation 

j occurs at all, it is very close to 

the rear and the wake produced 

is extremely narrow. The eddy¬ 

making resistance in such cases is 

either negligible or only a very 

small ])ari. of the total drag, most 

of the drag Ixnng due to skin fri(*- 

tion because the boundary layer 

now covers almost the entire sur¬ 

face. Bodies for which tho eddy¬ 

making drag is extremely small 

are known as streamlined shapes 

because the flow around them is 

of approximately the same char¬ 

acter as the streamline flow that 

Fig. 210.—Actual pressure distribu- would be obtained with a hypo- 
tion on a circular cylinder. xii-i • u-i ah 

thetical nonviseous fluid. A per¬ 

fectly streamlined body might be defined as one for which the 

eddy-making drag is zero. 

Problem 331. A stream of air having a velocity of 50 ft. per se(5i., moves 

past a circular cylinder in a direction perpendicular to its axis. Assuming 

the air to be nonviseous, determine the values of the gage pressure, 

velocity and kinetic and total energies per unit volume for points on the 

surface of the cylinder. Plot the results as functions of 0, using a rectangular 

system of axes and taking 6 in increments of 10 deg. 

164. Effects of Laminar and Turbulent Flow on Separation.-- 
In the discussion of separation just completed, the question of 

whether the boundary layer on the body ahead of the separation 

point was laminar or turbulent was not considered. It has 

been shown experimentally that the nature of the boundary- 

layer flow not only affects the value of the skin-friction drag 

but that it also plays an important part in determining the 
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magnitude of the eddy-making drag. That this is the case may 

be shown by a detailed study of the flow in the boundary layer 

in the neighborhood of the separation point. Figure 211 shows a 

Fio. 211 a.—Boundary-1 ay or velocity distribution near a separation point. 

Fia. 2^116.—Boundary-layer flow near separation point. 

magnified sketch of the boundary layer between the points C 

and E of Fig. 208 as well as a photograph of an actual flow^ 

showing a particular stage in the development of the eddying 

^ Prandtl and Tietjens. op. cit, p. 290, Fig. 29. 
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flow which results from separation. The velocity-distribution 

curves for several points in this region are also drawn, the one on 

the extreme right at point 1 corresponding to a profile of the type 

defined by either Eq. (13) for laminar flow or Eq. (14) for turbu¬ 

lent flow. This profile is one which has not yet been greatly 

modified by the loss in energy due to viscosity but, as the motion 

is followed toward the rear part of the; body, the change in tho 

boundary-layer velocity profiles becom(\s apparent. The parti¬ 

cles nearest to the surface are, of course, retarded the most so 

that there is a general stt^epening of the curves corresponding to 

a decrease in the velocity gradients. The separation point 

is defined as the point where the tangent to the velocity-distribu¬ 

tion curve at the surface becomes normal to the surface, and in 

Fig. 211a this occurs at point 2. At point 3 the profile shows the 

reversal of flow which leads to separation, while the general 

character of the flow as a whole is indicated by the streamlines 

that have been sketched in. 

Experiments have shown (;onclusively that, when the boundary 

layer is turbulent, separation does not oc(‘ur quite so soon as in 

the case of a laminar boundary layer. This conclusion may also 

be reached by an examination of the laminar and turbulent 

velocity profiles of Fig. 206. The laminar distribution curve has 

a tangent at the boundary which makes an angle ^ — tan" ^ -j 

with the tangent to the surface, whereas for turbulent flow this 

angle is zero. Thus, to make the tangent normal to the surface, 

more energy must be dissipated for the turbulent flow than for 

the laminar one, with the result that the separation point is 

farther toward the rear of the cylinder in the former case. It may 

be concluded that, because of the smaller wake, the eddy-making 

resistance with a turbulent boundary layer on the forward portion 

of the cylinder will be appreciably less than when the boundary 

layer is laminar. 

166. Skin-friction Drag of a Thin Plate.—The thin flat plate 

placed parallel to the motion of a uniform stream in which it is 

immersed is an example of fluid motion for which there is no 

separation and for which the resistance is therefore due entirely 

to skin friction. As has already been mentioned, a theoretical 

solution to this problem for laminar flow has been obtained by 
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Blasius. Pohlhausen^ has applied von Kdrmdn^s momentum 

theorem in a manner which gives approximate results agreeing 

very well with the exact solution. Von Kdrmdn and Prandtl 

have worked out independently the case of flow with a turbulent 

boundary layer. In all these solutions the assumption is made 

that the velocity and pressure at the outer edge of the boundary 

layer do not vary in the direction of motion and that the former 

value is equal to the velocity of the stream. Under these 

conditions the momentum theorem may be applied^ by con- 

u U 

Pro. 212.-“ Boundary “layer velocity distribution for a flat plate. 

sidering the transverse velocity distribution upstream from 

the plate and at any point on the plate. Upstream from the 

plate in Fig. 212, the velocity is uniform. A set of rectangular 

axes, X and is chosen so that the x-axis coincides with the 

plate and the origin is at its forward edge. At any point x 

on the plate the velocity distribution is assumed to be of the form 

The boundary-layer thickness 6 increases in the direction of 

motion and is therefore a function of x. Since the velocity 

u at the outer edge of the layer is assumed constant, the 

ratio of the velocity u within the layer to u will be the same for 

a given value of y/b for all values of x. The velocity profiles 

are therefore of the same general shape. The arrangement of 

1 PoHLHAUSEN, K., Zur nahcrungswciscn Integration der Differential- 

gleichung der laniinaren Grenzschicht, Z. angew. Math. Mech.j vol. I, no. 1, 

1921. 

* Von KXrmAn, Th., Turbulence and Skin Friction, J. Aero. Sci., vol. 1, 

no. 1, 1934. 
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axes and the velocity profile for point A upstream and for point B 
on the plate are shown in Fig. 212. 

Considering the plate to have width 6, the mass of fluid passing 

through an element of thickness dy of the boundary layer at B is 

puh dy in unit time and its momentum is pu^b dy. When this 

mass of fluid passed the cross section at A, it had a velocity u 

and its momentum was initially puuh dy. The net change in 

momentum for this element of fluid is therefore pub(u — u)dy 
and for the entire boundary layer at B it is 

u(u — u)dy 

This change in momentum is the force due to skin friction 

acting on the plate from the forward edge up to the point B. 
This force for one side of the plate only has the valiK* 

- u)dy (20) 

For an elementary strip of area of the surface of width dXy 
the frictional force is 

dDfx — bTo dx 

where To is the shearing stress at the plate at this point. The 

value of To may therefore be written in the form 

idDj, d r . ,, 

If the value of u from Eq. (19) is introduced in Eq. (20), the drag 

becomes 

Replacing the relative ordinate y/8 by 77 and putting dy=8 dri^ 
this expression becomes 

Df. = V(v)[l - Kvm 
Now letting 

f^S{v)[l-Siv)]dr, (22) 

the drag is 

Dfx ~ pbu^ha (23) 
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Substituting this value of D/* in Eq. (21) and noting that a is 

independent of x, the value of the shearing stress becomes 

—o . 

To = pmW (24) 

This stress may also be expressed in the alternative form 

or, putting u = u /(??) and 

To 

dr) 

8 

v—o 
(25) 

(26) 

hJquating expressions (24) and (26) for the shearing stress leads 

to the differential equation 

dx pua 

This can be integrated and, siiu^e the boundary-layer thickness 

is zero at the leading edge, the constant of integration is zero. 

The value of the boundary-layer thickness is then 

s = (27) 
\ a pu 

If this value of 5 is introduced in Eq. (26), the shearing stress is 

_ lafippu^ 

The total drag may then be computed by integrating the ele¬ 

mentary shear force over the surface so that 

Dfx — hJ\odx == b\/2a^pixu^x (29) 

For the entire surface of one side of the plate the length is a: = Z 

so that the total drag is 

D/ = b\/2afippuH (30) 
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It is desired to express this drag in terms of a drag coefficient 

based on the dynamic pressure and some characteristic area, 

as was done in p]q. (6). In the case of the plate this area is 

taken as that of the exposed surface so that for one side of the 

plate the area is hi and the drag coefficient is 

where Nr — pul/ti, the Reynolds^ number. 

166. Skin Friction for Laminar Boundary Layer.—When the 

general theory outlined above is applied to the case of the 

laminar boundary layer, the assumption of a parabolic velocity 

distribution as defined by Eq. (13) is introduced. The solution is 

completed by determining f{r)) from Eq. (13) and the values of 

a and from Eqs. (22) and (25). In this case these values are 

a = = 2 

When these values are introduced in Eqs. (27), (28) and (31), 

the resulting eixpressions for the boundary-layer thickness, the 

shearing stress and the drag coefficient are as follows: 

The exact solution of Blasius gives an expression for the drag 

coefficient of the same form as Eq. (34a) with the exception that 

the numerical coefficient is 1.327. The exact expression 

C/ 
1.327 

vir. (346) 

agrees somewhat better with experimental data and will be 

employed in the remainder of this work. 

167. Skin Friction for Turbulent Boundary Layer.—When the 

boundary layer is turbulent, the use of the J^^-power-law velocity 

distribution of Eq. (14) would seem at first glance to imply that 
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the shearing stress at the wall is infinitely large if the relation 

To = fji(du/dy)y^o is employed. This difiiculty is avoided by 

making use of the close analogy that exists between boundary- 

layer flow and the flow in pipes. In Art. 106, Eq. (30), it was 

shown that the shearing stress at the wall of a pipe in which the 

flow is turbulent is 

^ 0.0395py^ 

\/Wu 

where V is the average velocity and Nr = pVdljji, This expres¬ 

sion was obtained from Blasius’ empirical law for pressure 

drop which forms the basis for the ^y-power law for velocity 

distribution. 

The maximum velocity at the center of the pipe is = 1.2351^ 

and, if this relation is introduced in the above expression and at 

the same time d = 2r is substituted, the shearing stress becomes 

(^3% 

= o.o23p»„....=‘ 

*1 2 
V17235 At 

In developing the -power law it was assumed that r is inde¬ 

pendent of the radius of the pipe for a given Reynolds^ number. 

The boundary layer on a flat plate may be regarded as the same 

as that in the pipe if it is imagined that the pipe is cut longi¬ 

tudinally and its surface unrolled so as to form a plane. The 

radius of the pipe then corresponds to the boundary-layer 

thickness 6, and the velocity at the center is equivalent to u, 
the velocity at the outer edge of the boundary layer on the 

plate. The shearing stress at the surface of the plate is then 

0.02Spu^ 
(35) 

When formulas (35) and (24) for the value of Tq are equated, a 

differential equation for 8 is obtained which may be written in 

the form 

0.023 

(5) a 
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SO that after integration b is 

6 = 
\ a J \pux/ 

(36) 

The value of u from Eq. (14) is now introduced so as to determine 

a, which, as in the case of laminar flow, is defined by Eq. (22). 

The result is 

« == T72 

When this is substitiitod in Eq. (36), the boundary-layer thick¬ 

ness becomes 

5 0.377 X (37) 

This expression for 6 may now be introduced in Eq. (35) for 

shearing stress, which finally is 

.. . o.O.W7^’(^)“ (38) 

The drag of one side of the entire plate of length I is found by 

evaluating the integral in the expression 

Df 

which leads to the result 

D,-o.onuf[^y 

Th(! drag coefficient is then equal to 

„ 0.073 

^ {Nn)^ 

(39) 

(40a) 

But in order to obtain a slightly better agreement with experi¬ 

mental data, the numerical coefficient is changed to 0.074 so that 

cv 
0.074 

(406) 

From a physical standpoint there might be some objection to 

the use of the 3^^-power velocity distribution for turbulent flow 
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because of the infinite value of the velocity gradient at the wall. 

As an explanation of this point it has been remarked^ that in 

turbulent flow the velocities used in the above analysis are really 

mean values and that the actual flow is obtained by superimpos¬ 

ing a fluctuating stream of relatively small amplitude upon them. 

In the immediate neighborhood of the bounding surface these 

fluctuations tend to disappear, leaving an extremely thin laminar 

sublayer underneath the turbulent one, with the result that the* 

stress at the wall is not infinites but is accurately represented by 

Eq. (35). Experimental evidence supports this explanation 

(see footnote 2, page 319). 

Problem 332. Determine the boundary-layer thickness at several points 

on a flat plate when placed in an airstreain having a velocity of 25 ft. per 

sec. at a temperature of 20°C. Th(; plate is 3 ft. long. Make the calcula¬ 

tions for both laminar and turbulent flow at points 9 in. apart along the 

plate. 

333. A flat plate 2.5 ft. long is immersed in a stream of water at 40°C. 

moving parallel to its surface with a velocity of 8 ft. per sec. Determine 

the shearing stress at the (tenter and trailing edge of the plate and the drag 

coefficients for both laminar and turbulent flow. 

334. Gjinpute the drag coefficient for a flat plate at a Reynolds’ number 

of 250,000 for both laminar and turbulent flow. In each case determine 

the effect of doubling (a) the length, (/>) the velocity, (c) th(^ kinematic 

viscosity. 

168. The Transition from Laminar to Turbulent Flow.—In the 

previous articles the skin-friction drag and boundary-layer 

characteristics have been determined for a flat plate in the cases 

of completely laminar and completely turbulent flow. As 

already mentioned in Art. 160, there is a range between these 

two stages in which the forward portion of the boundary layer is 

laminar in character, while the remaining portion at the rear is 

turbulent. A solution of the resistance problem for this transi¬ 

tion range has been given by PrandtP by means of an ingenious 

combination of the results already obtained. 

When the boundary layer on the flat plate becomes turbulent 

just at the trailing edge, the Reynolds^ number corresponding to 

this condition and based on the length of the plate I has the 

critical value Nc> For further increases in the Reynolds^ number 

^ Prandtl and Tietjens, op. cit.y pp. 78-80. 

* Prandtl, L., “Ergebnisse der Aerodynamischen Versuchsanstalt,” Got¬ 

tingen, vol. Ill, 1927, p. 1. 
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the transition point moves forward from the trailing edge and 

the boundary layer is partly laminar and partly turbulent as 

shown in Fig. 213. When the transition point is at a distance 

x(0 ^ X ^ 1) from the leading edge of the plate, the Reynolds' 

number based on the distance x must be equal to the critical 

value, that is, 

( ^ = at. 

and for this part of the surface the drag coefficient is obtained by 

substituting Nc for Nr in Eq. (346). The drag acting on it is 

Df (lam.) 
1,^21 pu%x 

2VTc 
(41) 

The drag of the rear portion of the plate, over which the flow 

is turbulent, may be calculated by subtracting the drag of the 

Fig. 213.—Boundary-layer contour in the transition range. 

forward portion of the plate from that of the entire plate, both 

of these drags being computed on the basis of the turbulent-flow 

coefficient of Eq. (406), The result of this calculation gives for 

the drag of the rear portion of the plate the value 

Df (turb.) 
0.07Apu%l 0.074pw26x 
■ 2(iV«)H 2{Nc)^ 

(42) 

and the sum of Eqs. (41) and (42) gives for the total drag 

pu^bll 
Dr = 

0.074 
0.074f 

2 IVNc (iV«)H (^■c)>‘J 
(43) 

The total drag coefficient is based on the area of one side and 
therefore has the value 

C/ = 
0.074 

0.074| 1.327^ 

Woj^ 
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Now the ratio x/l = pux/fx pul/fj. = Nc/Nny «o that the 

above expression becomes 

Cf 
0.074 

0.074(iVc)^ - 1.327(iVc)^ (44) 

The value of the critical Reynolds’ number Nc depends on 

many factors such as the roughness of the surface of the plate, 

the shape of its leading e^dge and the initial turbulence of the 

stream of fluid before it reaches the plate. The most reliable 

experiments, which will be discussed in greater detail in the next 

article, indicate that for smooth plates this critical value may 

be in the neighborhood of 500,000. When this is introduced in 

Eq. (44), the result is apinoximately 

^ 0.074 _ 1700 
(45) 

For other experimental conditions a different value of Nc may 

be obtained, but this affects only the coefficient of the second 

term of Eq. (45) and the necessary correction can easily be 

introduced by referring back to Eq. (44). 

169. Experimental Data on Skin-friction Drag of Flat Plates.— 
Some knowledge of the validity of the boundary-layer theory 

and a justification for the various assumptions used may be 

obtained by comparing the theoretical results with values deter¬ 

mined experimentally. The most complete data of this kind 

have been obtained by four German experimenters, Blasius, 

Wieselsberger, Gebers and Keinpf, some being obtained in water 

and some in air. The results of their work, which cover the 

range of Reynolds’ numbers from 10^ to about 5 X 10®, are shown 

graphically in Fig. 214. Logarithmic scales have been employed 

in plotting these data in order to facilitate comparison with the 

theoretical formulas. It will be recalled that the expressions 

for the drag coefficient in the cases of completely laminar and 

completely turbulent flow are of the form 

so that 
log Cf - log K — n log Nr 
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The curve representing such an equation becomes a straight 

line of slope — n when log C/ is plotted against log Nr. Three 

of the curves drawn in Fig. 214 represent the values of the drag 

coefficients as calculated from Eqs. (34?>), (405) and (45) for 

the laminar, turbulent and transition regimes, respectively. 

Except for a few scattered points, the agreement with the experi¬ 

mental results is excellent, although for Reynolds^ numbers 

greater than about 3 X 10^ certain deviations appear which 

indicate that the turbulent-flow formula gives values of C/ 

which are appreciably lower than the experimental ones. 

Fio. 214.—Variation of skin-friction drag coefficient with Ileynolds’ number for 
flat plates parallel to the flow. 

Recent measurements of boundary-layer velocity-distribution 

profiles show that the } ^'-power law w^hich was used in the deriva¬ 

tion of this formula is not entirely satisfactory for high Reynolds’ 

numbers, but that more nearly correct results are obtained by 

using a velof^ty distribution of the form 

where the exponent k is itself a function of the Reynolds’ number. 

The value fe == is satisfactory up to the limit Nr == 3 X 10^, 

but beyond this point it gradually decreases, taking on the 

successive values of 3^^, etc., as Nr increases. It is possible 

to take this change in k into account in determining the drag 

of the plate, but a more satisfactory method which does not 
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depend on an empirical determination of k as a function of 

Nr has been developed by von K^rmdn.^ His treatment of the 

problem will not be given in detail hc^re ex(!ept to mention that a 

logarithmic expression for the v^elocity distribution is employed 

which according to Schoenherr^ leads to the formula for the drag 

coefficient 

0.^2 
— logio {NhCf) (46) 

This expression is rather clumsy to use in calculations but may 

be replaced by the simpler form suggested by Schlictiiig 

0.455 

(logio 
(47) 

which agrees (‘losely with th(‘ values c()mput(‘d from Kq. (46) in 

the range 10*^ ^ Nr ^ 10^. 

In connection with this discussion of thcioretical and experi¬ 

mental values for flat-plat(^ resistance coefficients, it might be 

well to mention the effect of surface conditions. In general it 

may be stated that in the case of laminar flow roughness has little 

eff('ct on the resistance' as long as the dimensions of the hills and 

valleys, measured normal to the surface, are small enough so 

that the projections on the surface do not penetrate the boundary 

layer. Roughness on the forward portion of the plate will cause 

the transition to turbulent flow to begin at a lower critical 

Reynolds^ number than for a smooth plate. When the rough¬ 

ness is so coarse that the projections on the surface extend outside 

the boundary layer, the body ceases to be a flat plate in the 

sense considered here and there is a considerable increase in 

resistance due to separation and wake formation. 

The shape of the nose of the plate also has some effect on the 

critical Reynolds’ number in that, when the nose is sharpened, 

the transition to turbulent flow will not set in so quickly as with a 

rounded nose. Wieselsberger’s results, shown in Fig. 214, were 

obtained with a relatively blunt round-nosed plate. This explains 

why his points for the lower Reynolds’ numbers remain on th(‘ 

turbulent-flow curve. 

^ See footnote 2, p. 319. 
* ScHOENHERR, K. E., Rosistaiicc of Flat SurfaceH Moving through a 

Fluid, Trans. Soc. Naval Arch, and Marine Eng., vol. 40, p. 279, 1932. 
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Example.—A flat plate 1 ft. long is placed in a stream of water at 40°C. 

with the flow parallel to its surface and in the direction of the lemgth. The 

velocity is 11.73 ft. per sec. Find the location of the point where the 

boundary-layer flow changes from laminar to turbulent and determiiui 

the thickness of the layer at several points on the plate. 
Solution.—For water at 40°C. the absolute viscosity as given by Table 

V, page 177, is 

fx == 0.653 X 10-2 poises - 1.368 X 10-^ slugs/ft. sec. 

The density is p = w/g = 62.4/32.2 = 1.94 slugs/cu. ft. Then the Rey¬ 

nolds’ number is 

_pul 1.94 X 11.73 X1 
M ■ 1.368 X 10"" 

16.63 X 10" - 1,663,000 

For this value of Nr the boundary-layer flow is in the transition range. 

Assuming that Nc = 500,000 the distanca^ from the leading edge of the 

plate to the transition point is given by the relation 

X _ Nc 
T ~ Nr 

or 
, Nc 

X = I Xr- 
A(/j 

1 X 500,000 

1,663,000 
= 0.30 ft. 

From X = 0 to 0.3 ft. the boundary layer is laminar and its thickness is 

determined by Eq. (32) with Nr put equal to Nc. Then 

a, = 5.48V1 = = 0.00424V? 

For the turbulent portion of the boundary la>’er the thickness is the same 

as if the flow were turbulent over the entire surface. Then Eq. (37) applies 

and 

dt - 0.377 X 0.377 im) X 

0.3771^ H 0.377 X 1 

(16.63 X 
0.0215X''' 

Values of S are given in the following table: 

i 
5-Laininar 1 5-Turbuleiit 

Xj ft. X, ft. 

Ft. In. Ft. In. 

0 0 0 0.3 ! 0.0082 0.0984 

0.1 0.00134 0.0161 0.5 0.0124 0.149 
0.2 0.00190 0.0228 0.75 0.0171 0.210 

0.3 0.00232 0.0278 1.00 0.0215 0.258 

Problem 336. The conditions of flow past a flat plate correspond to a 

Reynolds’ number of 750,000. Compute the drag coefficient, assuming (a) 

that the boundary layer is completely turbulent, (b) that the flow is in the 

transition range with Nc - 500,000. 
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336. (a) An increase in the surface roughness of a flat plate causes the 

critical Reynolds’ number to drop to 250,000. What is the equation for 

Cf in the transition range? (6) Compute the drag coefficient for Nr ~ 10®, 

when Nc = 500,000 and when the plate has th(^ roughness indicated in (a). 

337. Determine the boundary-layer thic^kness at quarter-points on a 

smooth plate 10 ft. long for which No ~ 500,000 when (a) Nr - 100,000, 

(h) Nr — 1,000,000, (c) Nr — 10,000,000 and tlie flow is assumed to be 

completely turbuleni.. 

338. The boundary layer on a flat plate is completely turbulent. Deter¬ 

mine the values of C/ by means of the t^-power-law ff)rmula and by Schlict- 

ing’s formula for Nr — 10’ and 10®. Assuming Schlicting’s formula to be 

correct, what arc the errors in C/, using the t-?-power-law formula? 

170. Eddy-making Resistance.—The mechanism of wake 

formation and the production of resistance as a result of the 

Fig. 215.—Theoretical two-dimensional flow past a normal flat plate without 
wake formation. 

formation of eddies have been explained in detail, but theoretical 

methods for the calculation of the magnitude of this drag are far 

from being satisfactory, and for most bodies it is necessary to 

determine this resistance by experimental methods. The theory 

of perfect fluids, when separation is not taken into account, 

is of little value. For example, the two-dimensional flow past an 

infinitely long plate normal to the direction of the stream is, 

according to this theory, of the character illustrated in Fig. 215. 

Because of the symmetry of the flow with respect to the line of the 

plate, there can be no resistance opposing its motion. This 

flow is an example of the paradox of D^Alembert. 
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The type of flow illustrated in Fig. 215 is not even approxi¬ 

mated by the flows of real fluids except possibly in the case of 

an extremely low Reynolds^ number corresponding to the creep¬ 

ing type of motion. At the more usual values of Nr separation 

takes place at the edges of the plate and a strong eddying wake is 

Fig. 216.—Flow normal to a flat plate. {PrantUl and Tirijens, '^Applied Hydra 
and Aeromechanics,^^ AfcGraW’-HUl Book Company, Inc., New York, 1934.) 

"Dead waier'* 
region 

formed as shown in Fig. 216. A theoreti(?al method based on the 

perfect fluid but taking into account this wake formation was 

developed by Helmholtz and Kirchhoff and has been applied both 

to the normal plate and to plates inclined at fairly large angles 

to the direction of the flow. In 

o/' former case the flow in the 
a*sconfinuify • • i i- i . i 

wake IS idealized to give the 

streamlines shown in Fig. 217. 

_ Surfac(\s of discontinuity are 

^^regTon^^ assumed to start at the sharp 

(Mlges of the plate and to extend 

indefinitely downstream behind 

it* These surfaces are stable in 

form and enclose a mass of fluid 

which is at rest and at the same 

pressure throughout as the 

^ stream far ahead of the plate. 

T. his portion of the fluid is some¬ 

times called the “dead-water” region. The eddies formed in the 

actual wake, shown in Fig. 216, are not taken into account in 

this theory, nor is any consideration given to the fact that there 

Fig. 217.—Theoretical flow past a nor¬ 
mal flat plate with “ dead-water” wake. 
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is an appreciable reduction in pressure beliind tlu^ plate which 

increases the drag. The theoretical draf»; coeffici('nt, which has 

the value 

c„ = - = 0.88 (48) 

is thus appreciably lower than experimental values. For a 

plate of infinite length wdlh two-dimensional flow past any cross 

section, the drag coefficient is approximately equal to 2.0. In 

the case of rectangular plates of finite length the drag coefficient 

is a function of the ratio of the length and breadth as shown by 

the results plotted graphically in Fig. 218. The reduction in 

Fig. 218.—Variiition of drag coefficients for normal plates with ratio of length to 
breadth. 

drag coefficient for a rectangular plate as compared with one 

infinitely long is due to the fact that, when the length is finite, 

fluid flows around the narrow ends into the wake and increases 

the pressure in that region. It is obvious that the drag coeffi¬ 

cients for plates whos(^ length-breadth ratios are reciprocals are 

identical in value. For circular disks the drag coefficient is 

about 1.10 at high Reynolds^ numbers. 

The effect of variations in Reynolds^ number on the resistance 

of normal plates is of considerable interest. Although most 

work of this kind has been concerned with circular disks, the 

results are very similar to those obtained with plates of other 

forms. Values of the drag coefficient for the circular disk at 

Reynolds' numbers based on the diameter and covering the 

range from Nr = 0.4 to 10® are shown in Fig. 219. For extremely 
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low values of Nr the drag eoefficient is large but decreases rapidly 

as the Reynolds’ number is increased. Beyond a value of Nr 

equal to about 10^ the drag coefficient is practically constant and 

equal to 1.10. The results shown by this curve are in accordance 

with the statements given in Art. 158. When Cd is plotted as a 

function of Nr on logarithmic scales as in Fig. 219, the curve for 

very low Reynolds’ numbers, repnvsented by the equation 

Cd ~ K/Nrj is a straight line having a slope equal to —1. In 

the case of the disk this relation holds only for Rc'ynolds’ numbers 

up to about 2. It is interesting to note that in this range the 

log,0 Nr 

Fig. 219.—Variation of clrag coefficient of circular disk with Reynolds’ number. 
(F. Eisner, Das Widerstandsproblem, Proc. Third T?it, Cong. App. Mech. (Stock’- 
holm), 1931.) 

experimental curve is closely approximated by Stokes’ law for 

the sphere. This would indicate that the shape of the body has 

little effect on the drag when viscous forces predominate. 

For values of Nr above 10'^ the drag coefficient is independent 

of Nr and the drag is proportional to the square of the velocity. 

In this range the inertia forces predominate in determining the 

character of the flow. Separation, once begun, always takes 

place at the sharp edge of the disk so that there is little change 

in the wake with further increases in Reynolds’ number. 

The detailed nature of the wake behind such bodies as normal 

plates and circular cylinders was first investigated experimentally 

by B4nard, who demonstrated the existence of a definite arrange- 
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meiit of eddies or vortices in the region behind the body. A 

theoretical investigation by von Kdrmdn showed that, when 

the vortices are arranged periodically in two rows parallel to the 

ih) 
Fig. 220.—Vortex trail behind a circular cylinder, (a) Camera at rest with 

respect to cylinder. (6) Camera at rest with respect to undisturbed fluid. 
(Prandtl and Tietjms, '^Applied Hydro- and Aeromechanics,'^ McGraw-HUl Book 
Company, Inc., New York, 1934.) 

direction of motion as shown for the circular cylinder in Fig. 

220, the system is stable provided the centers of the vortices are 

staggered and the ratio between the spacing of the rows and 
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the longitudinal spacing of the vortices is equal to 0.281. An 
application of the momentum theorem gives a value for the 
resistance, due to the formation of this vortex trail, which 
depends on the ratio of the velocities of translation of the body 
and the vortices and also on the ratio of the longitudinal spacing 
of the eddies to some characteristic length of the body. The 
complete solution is obtained by an experimental determination 
of these ratios and appears to give results which agree reasonably 
well with test data.^ 

The formation of a vortex trail behind a circular cylinder is 
sometimes found to be the cause of undesirable vibrations of 
structures having such a shape. The eddies in the wak(' separate 
from the rear surface of the cylinder at a definite frequency and, 
if this value is in the neighborhood of the natural frequency of 
the structure, a condition of resonance may result in which 
the vibration of the striu^ture may actually become dangerous. 
This periodic vortex formation has been found to be responsible 
for the vibration of electric transmission linos and gas stacks 
which are exposed to the action of natural wind currents. In 
some cases the vibration may occur at very low speeds for which 
the average wind force on the structure is practically insignificant. 

Eddy formation of this type also occurs behind lifting vanes 
at high angles of attack and is often an important factor in 
connection with the vil^ration of turbine and propeller blades 
and the flutter of airplane wings. 

Problem 339. Determine the resistance of a signboard 8 by 20 ft. in a 
wind current of 35 in.p.h., standard density, and in a direction normal to 
the surface of the sign {a) when mounted far off the ground, (5) when the 
20-ft. edge rests on the ground. Neglect boundary la^^er at ground. 

340. The drag coefficient of a parachute is approximately the same as 
that of a circular disk of the same diameter. What is the rate of descent of 
a man with a 16-ft.-diameter parachute if the total weight is 200 lb.? 
Assume drag equal to weight and air of standard density. 

341. Certain specifications for parachutes require that the velocity of 
descent shall be the same as that attained in jumping from a height of 6 ft. 
What diameter parachute would be required for a total load of 200 lb.? 
.\ssun>,e drag coefficient equal to that of circular disk of same diameter and 
air of standard density. 

^ For a detailed discussion of this subject, see Prandtl and Tietjens, 
op. cit.^ pp. 130-136; H. Lamb, Hydrodynamics," 5th ed., pp. 208, 212, 
Cambridge University Press. 1926. 
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171. Resistance of Bodies of Revolution.—The modern 

(uiginoer is frequently called upon to determine the resistance of 

such shapes as the body of an airship, airplane, submarine or 

automobile. Efficient operation of sucli vehicles requires that, 

the resistance be made as low as possible. The determination of 

the resistance of such forms is usually a rather complicated 

problem but light may be slied on it by a consideration of th(^ 

n‘sistance of bodies of revolution. Such bodies are produced by 

revolving a symmetrical contour around its axis. 

The pro])lem of finding bodies of revolution of minimum 

n^sistance is an exceedingly complicated one and must be treated 

tixperinumtally in most cases in order to obtain quantitative 

data. Usually the problem is to find a shape having a certain 

Fia. 221.—Longitudinal section of a streainlined body of revolution. 

specified length, projected area or volunn^ and the lowest possible 

drag. In general it may be said that such a shape should have a 

w(dl>rounded nose rather than a sharp one since the motion of 

a body through a fluid is not a cutting action. The point of 

maximum diameter should be back from the nos(‘ a distance of 

three to five tenths of the length of the body, and the ratio of the 

length to the maximum diameter should, if possible, be between 2 

and 3. The section should have a gradually ta})ering tail so as to 

avoid unduly high pressure gradients which tend to produce 

separation. For the same reason sharp corners should be avoided 

all along the section except the rear, which, if practical, should be 

brought to a sharp point. These statements indicate that an 

ideal streamlined body should have a longitudinal section of the 

type illustrated in Fig. 221. 

Direct comparisons of the drag coefficients of bodies of revolu¬ 

tion of different sections are difficult to make because of the 

variation of these coefficients with Reynolds^ number. The 

most exhaustive studies in this connection have been made on 

spheres and the results of a large number of such investigations 

are shown in Fig. 222. The extremely low values oi Nr cor- 
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respond to the viscous type of flow in wliich Stokes’ law is valid. 

This solution as g;iven by Eq. (11), C/> = 24/jV/f, is also included 

in Fig. 222, and it appears that this equation agrees with the 

experimental data only for values oi Nn up to about 0.4. For 

higher values of Nr the inertia forces become more important and 

the drag coefficient decreases less rapidly with the Reynolds’ 

number, approaching a practically constant value in the range 

from UF to 10^ 

Beyond Nr = 10^ the flow is characterizcHl by the existein^e 

of a boundary layer, and the sudden drop in Ci, between tlu' 

values of Nr oi lO*"* and 10® is due to a change in the boundary- 

iog,oi^R 

{F. Eisner, Das Widerstandsprohlem, Proc. Third Int. Cong. App, Mech. {Stock’- 
holm), 1931.) 

layer flow from a laminar to a turbulent character. This 

transition is somewhat analogous to the change in tin) drag of a 

parallel flat plate under similar circumstances but in that case 

the transition resulted in an increase in the drag coefficient. 

The drag of the sphere in this range of Reynolds’ numbers 

consists of skin-friction and eddy-making drags, the latter being 

the predominant factor. When the boundary-layer flow changes 

from laminar to turbulent, the separation point at the rear of 

the sphere is moved backward as explained in Art. 164. The 

wake then becomes narrower and the eddy-making drag is 

decreased. This transition is also accompanied by an increase 

in skin friction but the combined effect is a marked reduction 

in the total drag coefficient as shown in Fig. 222. 
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As in the case of the parallel flat plate, an increase in surface 

roughness of the sphen^ or of the initial turbulence of the stream 

causes the transition to take place at a lower value of Nr. Smoke 

pictures made by Wieselsberger of the flow of air past a sphere, 

illustrating the effect of increased roughness, are shown in Fig. 

223. In Fig. 223a is shown the flow past a smooth sphere at 8 

Fiu. 2%\.—Effect of surface roughness on flow past a sphere, (a) Smooth 
sphere. (f>) Smooth sphere with wire. {Prandtl and Tietjens, '"Applied Hydro- 
and Aeromechanics," McGraw-Hill Book Company, Inc., New York, i934.) 

Reynolds' number below the critical. Here the boundary layer 

is laminar, separation takes place at the ends of the vertical 

diameter and the wake is wide. If a very fine wire is placed 

around the sphere in a plane parallel to and slightly forward of 

the plane of the vertical great circle, the boundary layer is 

artificially changed to a turbulent flow and the picture shown 

in Fig. 223& is obtained. A similar picture could be obtained 
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by increasing the Reynolds’ number to a value higher than the 

critical. 

The curve of Fig. 222 does not extend far beyond the transition 

point but the indications are that, once the boundary layer has 

become completely turbulent, the form of the wake does not 

change appreciably and the drag coefficient is again practically 

constant. The critical Reynolds’ number for a sphere is usually 

defined^ as that value oi Nr for which the drag coefficient is 

equal to 0.3. 

The sphere offers an interesting example for studying the 

nature of the flow around bodies of revolution but it is not a 

satisfa(‘tory shape where low resistance is desired. For such 

cases a more elongated form is pn^ferred. By extending the 

rear portion of the sphere so as to produce a body of revolution 

with a gradually tapering tail, the resistance may b(^ materially 

decreased. When the body is properly ‘^streamlined” the wake 

behind it is almost completely eliminat(‘d and the drag is prac¬ 

tically all due to skin friction. It has been proved experimentally 

that for low drag forms, such as airship hulls, there is no separa¬ 

tion and consequently no eddy-making resistance so long as the 

axis of revolution is parallel to the direction of the motion of 

the hull. 

The effect of modifying the spherical shape may be studied 

by considering the drag of ellipsoids of revolution of different 

proportions. In this connection the ratio of the major and 

minor axes is important. For a body of revolution of any shape 

having a longitudinal section such as that shown in Fig. 221, this 

quantity is known as the fineness ratio and is equal to the 

expression 
- ^ _length_ _ I 

^ maximum diameter 

Experimental values of the drag coefficients for a series of 

ellipsoids of different fineness ratios plotted against Reynolds’ 

number are shown in Fig. 224. The values of Cit are based on 

the area of the largest cross section and the length used in 

determining Wij is the diameter of this section. The curves for 

the sphere, circular disk and a typical airship hull are also 

included in Fig. 224. 

1 Dryden, H. L., and A. M. Kubthe, The Effects of Turbulence on 

Wind Tunnel Measurements, NACA Tech. Kept. 342. 
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In general the curves for the ellipsoids are similar in shape to 

the sph(‘re drag curve. There is a transition from a laminar to a 

turbulent boundary layer which causes a reduction in the value 

of CD but, as the fineness ratio increases, the change in Cd 

becomes less marked and the critical Reynolds' number at which 

it occurs decrc'ases. The normal circular disk has a fineness 

Fio. 224.—Variation of drtip; copffirionts for bodies of revolution with Reynolds’ 
number. {W. Muller, " Mathematische Strfimnngslehrc,'' Julius Springer, Berlin, 

1928.) 

ratio of zero and the fact that its drag coefficient is practically 

constant in the range of Reynolds' numbers considered might 

be taken as evidence that its critical Reynolds' number is 

infinitely large. A comparison of the drag coefficients for the 

sphere with those of Fig. 222 shows a large discrepancy at 

Reynolds' numbers above the critical. This may be due to 

differences in experimental technique, surface roughness and 

initial turbuleii(*e of the streams. Althougli the curve of Fig. 222 

represents the usually accepted values ol Cd for the sphere, the 

data given in Fig. 224 are nevertheless of value in presenting a 
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picture of the relative resistance of bodies of different firnuiess 

ratios. 

Example.—Determine the drag force acting on the following bodies of 

rev^olution when placed in an airstream having a velocity of 100 ft. per sec.: 

Circular disk. 

Sphere. 

Ellipsoids — / = and 3. 

Airship hull — / = 0. 

In (‘ach case the niaximuin diameter is 6.02 in. and the axis of symmetry 

is parallel to the direction of the stream. 

Using the circular disk as a standard, deterjuine the percentage nulinUion 

in drag due to streamlining for each body. 

Solution.—Assuming standard air, the density is p = 0.002378 slugs per 

cu. ft. and the kinematic viscosity from Table IV, pagt' 176, is 

= 1.566 X 10-^ Kysoc. 

Then the Reynolds’ number based on the maximum diameter is 

Nr 
pVd 

!()(> V 
Vd ^ 12 

p “ 1.560 X 10-< 
= 3.2 X 10‘ 

The drag force, using coefficients based on the area of the maximum cross 

section, is 

A = 
Cd X 0.00237S X (100)* X 

7r/^2y 

A 12 ) 
= 2.35Ci> 

The values of Co are taken from Fig. 224. The remaining computations 

are conveniently put in tabular form as follows: 

Body Cd 

1 
D, lb. Di)iBk — D 

(i>i)Mk — D) 

Disk. 1 .108^ 2.60 0 0 

Sphere. 0.209 0.49 2.11 81 .2 

Airship hull. 

Ellipsoids: 

0.044 0.10 2.50 96.2 

/ = ^ 0.541 1.27 1.33 51.2 

/ = « 0.123 0.29 2.31 88.9 

f = % 0.064 0.15 2.45 94.3 

/ .3 0.056 0.13 2.47 95.0 

* Extrapolated. 

172. Resistance of Cylinders.—In studying the resistance of 

cylinders of different cross sections, it is convenient to consider 
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first only those shapes which have a section with at least one axis 

of symmetry. The problem is further simplified by placing 

this axis parallel to the direction of flow and having the cylinder 

generators perpendicular to that direction. 

Most of the experimental data available are concerned with 

circular cylinders, and the variation of Cd with Reynolds^ 

number is shown in Fig. 225. This curve is similar in charac¬ 

ter to that for the sphere shown in Fig. 222. At low values 

of Nr the drag coc^fficient varies inversely with Nr while at higher 

fogioNR 

Fig. 226. -Variation of drag coefficient with Reynolds’ number for a circular 
cylinder. (F. Eisner, Das Widerstandsprohlcm. Proa. Third Int. Fong. App. Mech. 
{Stockholm), 1931.) 

values Cd is practically constant up to A/e equal to about 10^ 

Between Reynolds^ numbers of 10^ and the drag coefficient 

show\s the characteristic drop due to the transition from laminar 

to turbulent boundary-layer flow. 

When it is desired to obtain a cylinder of low resistance, the 

cross section should be similar in shape to the contour shown 

in Fig. 221. As in the case of bodies of revolution the drag is 

closely related .to the fineness ratio. According to Diehl,^ the 

ratio of the drag coefficient to its minimum value varies with 

fineness ratio as shown in Fig. 226. More recent experimental 

data show a considerable disagreement wdth Dichrs results. 

^ Diehl, W. S., '‘Engineering Aerodynamics,” p. 74, Fig. 46, Ronald 

Press Company, New York, 1928. 
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Tests ^ made by the National Advisory Committee for Aero¬ 

nautics give the results indicated by the curve marked ^^NACA” 

in Fig. 226. The discrepancies may bo due to differences in 

experimental technique. Similar data for airship hulls are also 

included in Fig. 226. 

f 
Fig. 226.—Variation of (-D 'Crhum with fineness ratio for oylinders and bodies 

of revolution. 

An empirical formula^ for cylinders having sections of the 

type shown in Fig. 221, which is satisfat.tory for fineness ratios 

from infinity to about 3, is 

C/. - 0.0065 + 0.125^,^ (49) 

where / is the fineness ratio. This expression is based on experi¬ 

mental data obtained from tests on symmetrical airfoil sections 

at Reynolds' numbers of about 3 X Because such sections 

closely resemble the parallel flat plate, the drag coefficient in 

Eq. (49) is based on the area projected on a plane parallel to the 

direction of flow rather than normal to it and the Reynolds' 

number is computed by using the length of this projection in the 

direction of motion. 

Cylindrical bodies of rectangular cross section are shapes of 

high resistance, being comparable to the normal flat plate. 

While such shapes should be carefully avoided in machines 

1 Biermann, D., and W. J. Herrnstein, Jr., The Interference between 
Struts in Various Combinations, NACA Tech. Kept. 468. 

* Upson, R. IL, and M. J. Thompson, The Drag of Tapered Cantilever 
Airfoils, J. Aero. Set., vol. 1, October, 1934. 
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designed for high-speed transportation, they are unavoidable in 

buildings where the question of wind resistance is an important 

one, particularly in extremely high structures. Obviously the 

use of a streamlined section for a skyscraper would be imprac¬ 

ticable even if the structural difficulties were surmounted 

because of the continually changing direction of the natural wind 

currents. Some knowledge of the resistance and pressure 

distribution on cylinders with square and rectangular cross 

sections is tln^refore of vahui. 

Because of the presence of sharp corners, separation always 

occurs at the edges of the upstn^am face of the prism, and the 

variation of drag with Reynolds^ number is practic^ally negligible. 

In most (tases the co(^fficients for normal fiat plates are employed, 

although there is evidence that an increase of the length of the 

cross section in the direction of motion tends to decrc^ase the drag 

(‘oefficient somewhat. EiffeP found experimentally that, for a 

right circailar cylinder with its base normal to the direction of 

flow, the drag vari(‘s with length-diameter ratio as shown by the 

following data. The actual drag coefficient is not given here but 

only its ratio to that of the normal circular disk. These results 

l/d 0.5 1 .0 1 .5 , 2.0 3.0 4.0 7 

Cn i 

Cd (disk) 
1 0 1 0 

j 
0.83 0.80 

1 
0.77 

i 
0.77 0.78 0.89 

show that an increase in length produces an appreciable reduc¬ 

tion in drag for length-diameter ratios up to about 3. This is 

undoubtedly due to a reduction in eddy-making drag. When 

the length-diameter ratio is greater than 3, the surface area of 

the cylinder is so large that any reduction in eddy-making drag 

is more than balanced by an increase in skin friction. The total 

drag then shows an increase. 

Example.—Compute the drag force per foot of length for a round strut 

1 ft. in diameter and for a streamlined strut of symmetrical cross section 

having a maximum thickness of 1 ft. and a fineness ratio of 3. Both struts 

are placed in an airstream of 200 ft. per sec. velocity, the axis of symmetry 

of the cross section of the streamlined strut being parallel to the direction 

of the stream. 

1 Eiffel, G., ‘'The Resistance of the Air and Aviation,” p. 66, Archibald 
Constable & Company, Ltd., London, 1913. 
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Solution.—For standard air p = 0.002378 slugs per cu. ft. and 

V = 1.566 X 10“^ ft.* per sec. 

(Table IV, page 176). Then for the round strut 

Nn 
Vd 200 X 1 

1.566 X 10-" 
= 1.277 X 10® 

From Fig. 225 Cd = 0.365 so that 

^ pF2 0.365 X 0.002378 X (2(X))2 X 1 
D = Cd-yA - --2-- 17.35 lb./ft. 

For the streamlined strut tu3M.x. = 1 ft. and, since f = 3, the chord is 

Z = 3 ft. The Reynolds’ number based on the cluird is therefore 

Nh - 
VI 200 X 3 

1.566 X 10-^ 
= 3.83 X 10« 

Assuming that Eq. (49) holds for this value of Nn, the drag coefficient is 

Cl, - 0.00C5 + =--- o,oo(ir> + = 0.0204 

Since this coefficient is based on the area projected in the plane of the chord, 

the drag is 

^ ^ pV‘^, 0.0204 X 0.002378 X (200)* X 3 
u = iD~7rA =-o- 2.91 lb./ft. 

Problem 342. A long circular cylinder 6 in. in diameter moves through 

water at 20°C. in a direction perpendicular to its axis. Determine the 

drag force per foot of length at velocities between 2 ft. per sec. and 25 ft. 

per sec., taking enough values so as to determine definitely the drag in the 

criti(!al range. Plot a curve of D versus F. 

343. Determine the drag of a strut 12 ft. long and of a 10-in. chord placed 

in a stream of standard air. The fineness ratio is 4 and the Reynolds’ 

number is 3 X 10®. Wliat is the velocity? 

344. The diameter of a sphere and the maximum diameter of an ellipsoid 

of revolution are 5 in. The fineness ratio of ^he ellipsoid is 3. Determine 

the drags of these bodies in standard air at a velocity of 75 m.p.h. 

346. What is the wind force on the face of a building 350 ft. high and 50 ft. 

wide if its drag coefficient is the same as for a rectangular plate? The air 

is standard and the velocity is 60 m.p.h. 

346. What is the limiting velocity of the flow of an oil (p = 0.0025 slugs 

per ft. sec., specific gravity = 0.79) past a sphere of 0.001 in. diameter 

for which Stokes’ law is valid? What are the drag coefficient and the drag 

force under these conditions? 

347. An airship hull having a maximum cross section 85 ft. in diameter 

and a fineness ratio of 6 travels through standard air at 90 m.p.h. What 

are the drag force and power required to maintain this speed? 
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173. Resistance of Lifting Surfaces.—The lifting vane or 

airfoil was discussed in Chap. VII and the nature of the lift force 

was studied in detail. The drag of such bodies, which are non- 

symmetrical cylinders, behaves in much the same way as that 

for the symmetrical shapes discussed in Art. 172 of the present 

chapter, but the problem is complicated by the variation of 

Fig. 227.— Variation of lift and drag coefficients of the NACA 2412 airfoil with 
angle of attack. {E. N. Jacobs, K. E. Ward and R. M. Pinkerton, The Charac¬ 
teristics of 78 Related Airfoil Sections from Tests in the Variable-density Wind 
Tunnel, NACA Tech. Rept. 460.) 

drag with inclination of the surface. When the vane is long so 

that end effects are minimized, there is an angle of minimum drag 

which is usually close to the position of zero lift. This minimum 

drag is increased by increases in either the maximum thickness 

or the curvature of the section but for most well-designed sections 

it consists primarily of skin-friction drag. As the inclination 

of the section is increased, the drag increases approximately with 
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the square of the angle, this ehange being similar in nature to 

the effect of an increase in fineness ratio for a symmetrical 

cylinder. Finally, when the inclination is sufficiently high, 

separation occurs on the upper surface at a point forward from 

the trailing edge and on the lower surface at the trailing edge. 

This separation is known as the burbling of flow and the position 

at which it occurs is known as the burble point. This separation 

is responsibk? for the fa(*t that the lift of the airfoil reaches a 

maximum in the neighborhood of this position, while at the same 

time the strong eddying w^ake which is formed causes a sharp 

increase in the drag. The values of the drag coefficient for a 

typical section based on its plane area arc' shown in P^ig. 227 for 

angles varying from zero lift to beyond the maximum lift. P'or 

convenience the lift curve has also bc'cn plotted in this diagram. 

174. Induced Drag of Lifting Vanes.—For the vane of infinite 

span the drag is made up of skin-friction and eddy-making 

Fig. 228.—Tip vor^iceH on an airfoil of finite span. 

componcmts but when the span is finite there is an additional 

drag produced by the action of the lift. For any cross section 

of a vane producing an upward lift, it is known that there is a 

decrease in pressure over the upper surface and an increase on 

the lower. In the case of a finite span these two pressures tend to 

equalize c^ach other in the neighborhood of the wing tip and fluid 

flows around the tip from the bottom of the airfoil to the top. 

'Phis flow produces a vortex which is left behind the wing as it 

moves forward through the fluid, the direc^tion of rotation of the 

vortex being as shown in Fig. 228. The effects of the vortices, 

one being formed at each tip, are to induce a downward velocity 

at the wing which has the principal result of decreasing the effec¬ 

tive angle of attack. If the lift is to be maintained constant, 

then the apparent angle of attack must be increased by an amount 
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where w is the average induced velocity and V the forward veloc¬ 

ity and their ratio is assumed to be small. These conditions are 

shown in detail in Fig. 229. For the wing of finite span the 

true lift is measured perpendicular to the true velocity vector 

so that its vertical component is 

L = cos e = Loo (51) 

There is also a horizontal component of the lift, which 

is known as the induced drag and has the value 

Di = Loo sin (52) 

The drag of the vane when the span is infinite is known as 

the profile drag because it depends only on the profile or cross 

(oi)-Infinite Span (b)-^ Finite Span 

Fig. 229.—Forces on an airfoil section for infinite and finite spans. 

section of the vane. The total drag for a vane of finite span is 

then the sum of the profile and induced drags. 

The calculation of the value of the induced vekxaty w is 

carried out by methods similar to those used in electricity in 

determining the strength of a magnetic field around a straight 

conductor carrying a current. The results of these calculations 

for a wing of elliptic plan form show that the induced drag has 

the value 
2L2 

wpbW^ 
* (53) 

where b is the span. In terms of lift and drag coefficients, bascnl 

on the plan-form area S, the result is 

(64) 



350 FLUID MECHANICS [Chap. XIT 

in which R = b'^/S is called the aspect ratio. The induced 

angle may be calculated from the relation obtained from Fig. 229 

* L ~C, ~ tR 
(55) 

These expressions are but slightly modified in the case of other 

plan forms. From formula (54) it may be concluded that, in 

order to keep the induc(‘d-drag co(‘ffici(int at a mininuun, the 

aspect ratio of an airplane wing should be made as large as 

possible. For a given area this means using the greatest possible 

span without producing a wing that is unsatisfactory from the 

structural standpoint. In practice vnluess of the aspect ratio 

usually lie between 4 and 10. 

Fig. 230.---Vortex system behind a cylinder of finite length. 

Although the induced-drag th(H)ry has ])een employed pri¬ 

marily in connection with airplane-design problems, its develop¬ 

ment has been made on a perfectly geiu^ral basis and it may 

therefore be applied to the determination of the induced resist¬ 

ance of cylinders of the same order of fineness ratio as airfoils 

moving through any fluid. The problem of the airfoil has been 

investigated experimentally and it appears that this theory is 

quite satisfactory for wings of aspect ratios above 2 and for the 

high ^alues of the Reynolds' numbers which are encountered in 

aeronautical work. 

For shapes like the circular cylinder, for which the pressures are 

the same on the top and bottom, there is no lift and therefore no 

induced drag. However, when the fineness ratio is small for a 

symmetrical shape, or when an airfoil is set at a high angle of 

attack, there is evidence of a much more complicated tip flow. 

Thus in the case of the circular cylinder it appears that two 
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vortex filaments are generated at each of the ends and that these 

filaments join together the ends of the lateral vortices produced 

in the wake in th(‘ manner shown schematically in Fig. 230. 

There is, however, no theory analogous to that of induced drag 

for determining the effect of this type of flow on the resistance 

(except the vortex-trail method developed by von Kiirman for 

infinitely long cylinders. 

Example.—An airfoil has an area of 300 sq. ft. and a span of 45 ft. and its 

profile' is tlie NACA 2412 sciction. At what apparent angle of attack will it 
develop a lift coefficient of 0.5? What is the induced-drag force at this 

angle if the wing is attached to an airplane weighing 6500 lb. and flying 

horizontally at constant speed? 

Solution.—For infinite aspect ratio Fig. 227 shows that Cl ~ 0.5 at 
ot = 4.75 deg. In this case the aspect ratio is i? = b‘^/S = (45)V300 — 6.75 

so that the induced angle, assuming that the elliptic wing formulas aj^ply, is 

‘ = 0.0236 riwl. = 1.3')° 
ttR 3.14 X 6.75 

The apparent angle of attack is then 

a - 4.75 + 1.35 - 6.10° 

Th(^ induced drag is given by Eq. (53) and is Di = 2L^/irpb‘‘^V^. In level 

flight the lift equals the weight, lhat is, 

w = /, = 

so that the reejuired velocity is 

2 X 6500 

Then 

D. = 

^ 0.5 X 0.002378 X 300 

2 X (6500)2 

3.14 X 0.002378 X (45)2 X (191)2 

— 191 ft./sec. 

153.2 lb. 

An alternative method is to find Cd^ and V and them to use the relation 
pP2 

Di — Cd^—^S. In this case 

and 

Coi = 

Di - 

Cl^ (0.5)2 
= 0.0118 

7r/2 3.14 X 6.75 

0.0118 X 0.002378 X (191)2 X 300 
- 153.2 lb. 

Problem 348. A long airfoil having the NACA 2412 section moves 

through standard air at a velocity of 125 m.p.h. and at an angle of attack 
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of 8 deg. Determine the lift and drag forceps per foot of span if tlie chord 

is 6 ft. What is the maximum lift force that this airfoil can develop at this 

speed? 

349. Calculate the induced-drag force and coefficient for the airfoil of 

Prob. 348 when the span is 40 ft. and tlie angle of attack is 8 deg. 

360. Determine the coefficients of profile, induced and total drag 

for the NACA 2412 airfoil when the asi)ect ratio has values of 4, 8 and 12 and 

the effective angle of attack is 12 deg. 

176. Resistance of Floating Bodies.—When a body, such as 

the hull of a ship, floats on the surface of a liquid and at the same 

time is moved across this surface, a resistance to motion is 

produced which is somewhat more complex in nature than the 

resistance of a completely submerged body. As in the latter 

case, a portion of the drag is due to skin friction and there may 

also be some eddy-making drag. Besides these items there is a 

resistance due to the formation of waves. This new component 

in the expression for total Resistance of the body is therefore 

known as the wav^e-making resistance. 

No attempt will be made here to go into a detailed study of 

the nature of wave motion or of the effects of body form on wave¬ 

making resistance. In general it may be said that the formation 

of waves on the surface of a liquid requires a certain amount ol 

energy and, wlum the waves are caused by the motion of a body, 

this energy is manifested in the form of an increased resistance 

of the body. In liquids two different types of waves may be 

formed. Waves of the first type, due to surface tension, are 

known as capillary waves or ripples and are of little importance 

except in the case of bodies whose dimensions are small as com¬ 

pared with the size of the waves. In the case of a ship, waves 

of the second type are more important. These are produced 

l)y the action of gravity on the masses of water which, because of 

differences in pressure between points on the submerged portion 

of the hull and the free water surface, tend to pile up around the 

sides of the ship. For the usual form of ship hull two sets of 

waves are produced, one originating at the bow and the other 

at the stern. Each of these sets consists of the familiar diverging 

waves which may be readily observed from a ship in motion; in 

addition there is a series of transverse waves whose crests and 

troughs are perpendicular to the direction of motion. The 

sketch shown in Fig. 231 illustrates this wave arrangement 

around a typical ship hull. 
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176. Froude’s Number and Wave-making Resistance.—In 

order to obtain some information of an analytical character 

about the nature of wave-making resistance, the methods of 

dimensional analysis may be used to good advantage. In some 

cases the wave-making resistance is such a large part of the total 

that variations in the skin-friction drag with Reynolds' number 

may be neglected. Even though this is not always justifiable, 

the omission of viscosity and its effects from the resistam^e 

(npiation simplifies tlu' analysis (*-onsiderably and this factor can 

readily be reintroduc(‘d on the basis of the discussion of Art. 158. 

Fig. 231.—Wave pattern around a ship hull. (./. H. Biles, “ The Design and 
Construction of Ships," Charles Crijfin and t'o., Ltd., London, 1911.) 

It will therefore be assuiiKHi that the drag of a floating body in 

motion is dependent on the density of the fluid, p, the volume of 

displacement of the body, A, its velocity V and the ac(*eleration 

of gravity, the last term appearing because of the action of 

gravitational attraction in producing the waves. Thus 

D = kop^A^VY (5h) 

The introduction of the dimensions of these quantities leads to 

the dimensional equation 

ML /My /Ly/LY 
Ti- « 

The determination of the exponents by the methods used 

earlier in this chapter sliows that three of the exponents may be 

expressed in terms of the fourth and that these values are 
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a = 1 
2 + rf 

2d 

D T 
Equation (56) may thus be written in the form 

In the expression whieli (tarries the exponent dy the 

term may be replacf^d by a eharacteristic length of the body, 

Z, usually measured in the direc^tion of motion. The drag then 

becomes 

D = (57) 

The combination of terms V/\/lg, whose square appears in this 

equation, is known as Fronde’s nuinlxu’,^ named for William 

Froude, the pioneer in the field of naval architecture who first 

introduced it. It plays a role in the expression for drag due to 

wave making which is analogous to that of the Reynolds’ number 

in the resistance due to viscosity. If Fronde’s number is repre¬ 

sented by the symbol Np and the drag coefficient Ud is replaced 

by C/>/2, then the resistance to motion is 

(7i.pT"^A'^Y 1 
(58) 

177. General Equation of Drag of a Ship Hull.—In a practical 

case the drag consists of viscous and eddy-making effects as well 

as the effect due to the formation of waves. The introduction 

of viscosity into the problem may again be made by the methods 

of dimensional analysis and it will be found that, when both 

viscous and gravitational forces are present, the resistance 

equation becomes 

2 
D = ■MNp)MNn) (59) 

The drag coefficient used in Eq. (59) is not the same as that in 

Eq. (58). A comparison of these equations shows that Co in the 

former is a function of Reynolds’ number and includes the term 

MN^). 
The details of the methods used in practice for separating out 

these various items and for converting from model test data to 

^ Some writers prefer to use the expression V*/lg as Froude’s number. 
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full-scale ship forms will be given in Chap. XV. The basis of 

Froude^s method, which, with some modifications, is commonly 

employed for making these conversions, is that the resistance may 

be divided into the three separate parts: skin-friction, eddy-mak- 

ing and wave-making resistance. The eddy-^iaking drag for 

most ship forms is quite small and variations in its magnitude 

within the usual range of Reynolds^ numbers may ]>e neglected. 

The skin-friction drag for any given Reynolds' number may be 

computed by using the data on flat plates and is assumed to be 

independent of Fronde's number. The difference^ b(‘tween the 

skin-friction drag and the total drag gives th(‘ residuary 

resistances," in which wave- and eddy-making drags are lumped 

together, these quantities ))(‘ing considered as functions of 

Fronde's number. In model tests, conditions of dynamic 

similarity betwe(*n the model and its prototy])(' are obtainc^d 

when th(‘ Fronde's number has the same value in both cases. 

Under these assumptions the resistance ('quation becomes 

CyA MN,) + CrA^%{N,) (60) 

where A is the ‘^wetted surface" of the hull in contact with the 

water, A is the volume of displacement and CV is the coefficient of 

residuary resistances 

Some difficulty is frequently exp(*rien(^ed in the determination 

of the skin-friction drag of actual ship hulls Ix'cause of the lack of 

exact knowledge of the condition of the surface. The surface 

of a new hull is quite vsmooth, but after a certain period of oper¬ 

ation, depending on the climate and location, the surface be(‘omes 

coated with slime and barnacles so that the roughness is a rather 

indeterminate quantity. As a consequence the accuracy of skin- 

friction drag calculations is open to question and the proper 

allowance to be made for these effects must be estimated by the 

naval architect. The methods used in different countries for the 

determination of the skin-friction drag vary but all of them are 

based on the supposition that this resistance is the same as that 

of a flat plate parallel to the direction of motion and having a 

total area equal to the wetted surface of the ship, the Reynolds' 

number for the plate being equal to that based on the length of 

the hull. The methods then differ only in the relation between 

the skin-friction drag coefficient and the Reynolds' number. For 
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a full-scale ship the flow in the boundary layer is completely 

turbulent under the usual conditions of operation. In addition 

to the formulas given in Arts. 166-169 there are several empirical 

expressions which have been obtained by such experimenters 

as Froude, Gebers and Tideman. 

178. Form and Resistance of Ship Hulls.—Because of the 

presence of wave-making resistance the ideal form for a ship hull 

or any floating body is quite different from that of a completely 

submerged body. In order to minimize the amount of energy 

dissipated in wave formation, it is desirable to use a pointed nosei 

rather than a rounded one as in the case of the submerged shapes. 

This nose is then followed by a straight or parallel midsection and 

A 

I .m IMstfer surface 

(oi)-Vee Section at A-A (b)“U Section oit A-A 

P^iG. 232.—-Plan and mid-sections of typical ship hulls. 

the stern is rounded off, or in some slow-speed vessels is simply cut 

off square when there are other considerations of greater impor¬ 

tance than a low resistance. A typical horizontal section of a 

ship form is as shown in Fig. 232. The vertical sections of the 

hull, which are also included in this figure, depend on the type of 

service in which the ship is to operate. For low-speed vessels the 

V-shaped cross section, shown in Fig. 232a, has been found most 

efficient, but for faster ships the U-shaped section of Fig. 2326 is 

more satisfactory. This latter shape also has the advantage of 

providing more space for cargo than the V-type. 

The values of the total resistance for a typical ship-huU model 

at different values of Froude's number, F/\/igr, are shown by the 

curve in Fig. 233. The values of the skin-friction drag obtained 

by means of formula (45) for the transition range have also been 

determined for the corresponding values of Reynolds’ number, 

based on the length of the hull. The difference between total 
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drag and skin friction gives the residuary resistance. The 

corresponding coefficients based on the wetted surface are also 

plotted in Fig. 233. It will be noticed at once that the total 

resistance curve has a peculiar form consisting of a series of humps 

and hollows with a general upward trend as the FroudeAs number 

is increased. These same humps and hollows are more prominent 

in the curve of total resistance coefficients. Their presem^e is 

du(^ to the fact that at certain values of Ny the transverse waves 

produced at the bow and st(‘rn are superimposed so that they 

Fig. 233.—Curves of total, skin-friction and residuary resistance for a typical 
ship hull model. (//. C. Sadler, Some Experiments on the Effect of Longitudinal 
Distribution of Displacement upon Resistance, Trans. Soc. Naval. Arch, and 
Marine Eng., vol. 15, pp. 13-19, 1907.) 

are out of phase and ten d to counteract each other, while at other 

and possibly lower values of Nf they are in phase and intensify 

each other so that the coefficient of wave-making resistance may 

actually be larger in the latter case. One of the problems in the 

design of a ship which is to operate at a certain speed with a given 

amount of power is to find the length that will give a value of Nf 
corresponding to one of the hollows in the curve of wave-making 

resistance. 

In addition to the components of the total resistance of a ship 

which have just been discussed, there is also some drag due to the 
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motion of the superstructure through the air. Except for high¬ 

speed passenger vessels this drag is only a small fraction of the 

total and can be estimated satisfactorily. In the case of airplanes 

of the seaplane or flying-boat class, which are designed to land on 

and take off from a water surface, the resistance problem is further 

complicated by the fact that the hull or pontoons must operate in 

two different fluids. During take-off wave resistance due to 

motion over the surface of the water vshould be kept at a minimum, 

while after the plane has gotten into the air it is important that 

air resistance be kept at a minimum. It is usually impossible to 

find a shape which will have the minimum resistance under both 

sets of conditions; therefore the forms used on actual airplanes 

are designed on a compromise basis. 

Problem 361. (a) A ship 325 ft. long is traveling at a speed of 25 m.p.h. 

What is the value of Fronde's number? (6) A model of this ship is 12 ft. 

long. What must be its velocity if it is to be tested at the same value of 

Nf as the full-size ship? 

362. A ship hull 150 ft. long has a total resistance of 6000 lb. at a speed 

of 22 ft. per see;, and a water temperature of 20°C. Determine the values 

of the residuary and skin-friction drags if the wetted surface is 3600 sq. ft. 

What are the values of the resistance coefficients based on the wetted 

surface? 

General Problems 

363. (a) An automobile has 75 hp. available for driving it forward. The 

rolling resistance is constant and requires 15 hp., the balance being used in 

overcoming air resistance. Determine the value of this resistance if the 

maximum speed is 80 m.p.h. in standard air. Compute the drag coefficient 

for wind resistance if the projected area is 32 sq. ft. (h) What would be 

the saving in power at speeds of 40 and 80 rn.p.h. if the body were stream¬ 

lined so that Cl) = 0.15 Assume Cd is independent of Nr. 
364. The minimum drag coeffi(;ient of an airfoil as determined from a 

model test in standard air at 90 m.p.h. is Cd ~ 0.012. The chord is 10 in. 

Estimate the value of the drag coefficient for the full-size wing when th(i 

velocity is 250 m.p.h. and the chord is 8 ft. Assume that the ratio of the 

full-scale and model coefficients is the same as for a flat plate on which 

the boundary layer is turbulent and for which the M-power law holds. 

366. Develop expressions for the skin-friction drag of the forward- and 

the rear-quarter lengths of a flat plate of total length, Z, placed parallel to 

a stream of fluid. Determine the ratio of these values. Assume that 

the boundary layer is completely turbulent and that its velocity distri¬ 

bution follows the J^-power law. 

866. (a) Compute the skin-friction drag for an airship hull having a 

maximum diameter of 35 ft., a fineness ratio of 6 and a surface area of 



Art. 178] RESISTANCE OF IMMERSED BODIES 359 

15,000 sq. ft. and flying at 120 ft. per sec. in standard air. Assume that 

this drag is equal to that of a flat plate of the same length and area and 
that Schlicting^s formula for completely turbulent flow applies. (6) Calc\i- 
late the drag coefficJent based on th(; area of the maximum cross section 
and compare the result with the data given in Fig. 224. 

367. An airplane has a weight of 5000 lb. Its wing is an NACA 2412 

airfoil having an area of 250 sq, ft, and a span of 45 ft. Determine the 
profile, induced and total drags when it is flying in standard air at an apparent 

angle of attack of 4 deg. Assume lift equal to weight. 



CHAPTER XIII 

DYNAMICS OF COMPRESSIBLE FLUIDS 

179. Elastic Properties of Fluids.-—Th(‘ theories eoiu erned with 

the problems of fluid flow and resistan(*e whieh liave been diseiissed 

in the preceding chapters have all been based on the assumption 

that the fluid is incompressible. This assumption means that a 

particle of the fluid having a certain volume at, say, atmospheric 

pressure, will continue to have the same volume no matter how 

the pressure is changed. In the case of liquids such as water the 

hypothesis of incompressibility is not far from the truth for 

ordinary values of the pressure, but for gases it is obviously incor¬ 

rect to assume generally that changes in pressure can take place 

without (dianges in volume. It has been shown in earlier discus¬ 

sions that in any fluid motion there are usually differences in 

pressure from one point to another, while in some cases variations 

in pressure at a single point may occair. If the fluid is readily 

compressible it is to be expected that the flow may be appreciably 

different from that which would exist if th(‘ fluid were incompressi¬ 

ble. The purpose of this chapter is to consider the nature and 

extent of the modifications of the incompressible fluid flow which 

must be introduced when the effect of compressibility is 

considered. 

The degree of compr(‘ssibility of a fluid is determined by the 

value of its modulus of elasticity; this, as in the case of solid 

materials, is defined as the ratio between the stress and the cor¬ 

responding strain on a particle. Fluids are never found under 

conditions of zero absolute pressure, that is, there is always some 

initial stress. In defining the modulus of elasticity, the stress is 

considered as an increment of pressure while the strain must 

correspond to the change in volume of the fluid particle produced 

by this pressure increment. The modulus of elasticity of a fluid 

is therefore frequently referred to as the bulk modulus. 

If a particle of fluid having an initial volume v under a pressure 

p is subjected to a larger pressure p + Ap so that the volume 
360 
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decreases by an amount At;, then the increment of stress is Ap and 
the increment of strain, being the change in volume per unit of 

— At^ 
volume, is —— The modulus of elasticity is then 

E = 

Ay 

or, in the limit as Ay approaches z(‘ro, 

E - (1) 

Since the volume decreases when the pressure increases, dp/dv 
is negative so that E as given by Eq. (1) Ijas a positive v^alue. 

For water at ordinary pr(\ssures E has a value of about 300,- 
000 lb. per sq. in. In the case of gases it is necessary to know the 
relationship between pressure and sp(‘cifi(^ volume in order to 
determine the value of this modulus. If conditions in the gas 
are isothermal, then 

pv = Cl 
and 

dp _ _p 
dv V 

so that E = p. It thus appears that the modulus of elasticity of 
a gas is a variable and for isoth(‘rnial conditions is equal to the 
pressure. 

If the pressure-volume relation for the gas is an adiabatic one, 

then 
p?/ = C2 

and 
dp _ _kp 
dn V 

In this case E = kp. 

Problem 368. A closed cylinder 6 in. in diameter contains 3.5 cu ft. of 
water at an average pressure of 16 lb. per sq. in. abs. What is the decrease 
in its volume if the pressure is increased to 20 lb. per sq. in. abs.? If one 
end of the cylinder is moved inwardly a distance of 0.75 in., what is the 
pressure? 

369. Air at a pressure of 45 lb. per sq. in. abs. and a temperature of 120°F. 
is allowed to expand iso thermally until the pressure is 20 lb. per sq. in. abs. 
Determine the initial and final values of the bulk modulus and the specific 
volume. 
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360. Solve Prob. 359 for the case of an adiaba1i(^ expansion, 

361. Del ermine the values of the bulk modulus for air and methane at 

atmospheric pressure for isothermal and adiabatic conditions. 

180. Pressure Waves. The Velocity of Sound.—Wlien a 

disturbance producing a change in pressure occurs at a point in a 

fluid, this disturbance is propagated through the fluid in the form 

of a longitudinal wave of the same type as a sound wave. Suc.h a 

wsivo consists of a stories of condensations and rarefactions which 

move through the fluid with a certain velocity that is superim¬ 

posed on any other motion which the fluid may have. It will be 

shown presently that the velocity of the wave is independent of 

the wave length and will therefore have the same value for any 

longitudinal wave no matter what the cause of the disturbance. 

Fro. 234.—^Longitudinal wave motion in a straight tube. 

The velocity of propagation of a wave form is identical with 

the velocity of sound through the fluid, since sound is known 

to be transmitted by waves of this type which merely happen to 

have frequencies that make them audible. 

In order to determine the velocity of propagation of a longi¬ 

tudinal wave, it may be supposed that such a wave is traveling 

through a tube of constant cross section, as shown in Fig. 234, 

the fluid in the tube being assumed to be initially at rest. The 

positions of the condensations and rarefactions at a particular 

instant are shown by the vertical lines drawn across the tube 

while the variation in pressure along the tube at this instant is 

given by the graph. It is assumed that a continuous series of 

waves is passing through the fluid from right to left. For the 

purpose of analysis a velocity equal but opposite to that of the 

wave motion is imposed on the fluid in the tube. Then with 

respect to the tube the wave form is at rest, but the fluid particles 
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have velocities which are the vector sums of the velocity just 

added and those of the oscillatory motion of the wave. 

The condition of continuity is now applied to the fluid contained 

between two sections of the tube aa and hh. Since the wave has 

been fixed in position, the velocity due to the wav(» motion alone, 

the pressure and the density are constant for any one section of 

the tube. The values of these quantities will be designated by 

pi, Pi and Ui at section aa and ps, P2 and 1/2 at section hb, and th(^ 

velocity of projDagation will be represented by c. The mass of 

fluid contained between the s('ctions aa and hh is c(jnstant so that 

th(^ amount (‘iitering through hb must equal that leaving through 

aa. This mass is therefore 

??i = (c — ai)piA = (c — 112)92^. (2) 

where A is the cross-sectional area of the tube. 

Now the force acting on the mass of fluid due to the difference 

in pn'ssure on its ends is 

{pi - pi)A (3) 

and this force must be equal to the change in momentum of the 

fluid in unit time. The momentum of the fluid mass m at section 

hb is 

Mib = m(c — U2) 

while that at section aa is 

Maa = 'fft'ic — Ui) 

so that the net change in momentum in unit time from aa to hb is 

AM = Maa — Mbh = ni(u2 — Ui) 

The values of Ui and U2 may be obtained from Eq. (2) and are 

m 7n 
Ui = C ~ -J— U2 — c — — 

Api Ap2 

When these values are substituted in the expression for the change 

in momentum, the result is 

or, ill terms of the specific volumes vi and V2 and the acceleration 

of gravity, / 
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AM = ■“ ^2) (4) 

The change in momentum in unit time represented by Eq. (4) 

is equal to the i)ressure force as given by Eq. (3), that is, 

W! 2 

{V2 - pi)-4 = g-j{vi - 

Solving for the ratio of the mass of fluid to tlu' cross-s(ictional area 

of the tube, the r(‘sult is 

g(v, - 1U2) 

The modulus of elasticity may be expressed in terms of the 

pressures and sp(‘cific volumes used above. The increment of 

stress on a particle moving from bh to aa is now ('qual to the chang(* 

in pressure between the two sections of the tube, that is, — P2, 

while the corresponding strain is (vi — Thus the modulus 

has the value 

E ^ - 

When this value is substituted in Eq. (5), the result obtained is 

m- _ E 
gvi 

(6) 

The quantity of fluid affected by the wave motion may be cal¬ 

culated in a slightly different manner if it is assumed that the 

changes in pressure, density and velocity due to the wave motion 

alone are small in comparison with their average values. If these 

average values are assumed to be equal to the values they would 

have if there were no wave motion, but only a uniform 

flow through the tube of velocity c, then the mass passing any 

cross section is 

. cA 
m = cpA — — 

vg 

so that 

m _ ^ 

l.~ vg 
(7) 

where p and v are the density and specific volume, respectively, 
of the fluid before any change of pressure due to the wave. In 
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Eq. (6) the specific volume Vi may be considered as equal to v so 

that, if the values of m‘^/A^ obtained from Eqs. (6) and (7) are 

equated, the result may be solved for the velocity of propagation, 

c, which turns out to be 

c = ^/Evg = (8) 

This result was first obtained by Newton and the proof given 

above is essentially that presented in advanced textbooks in 

physics. ^ 

The definition of the modulus of elasti(dty as given by Eq. (1) 

was 

E 
dv 

Now 

dv 

and since v = l/pQj then 

so that 

dp 

dv 

(I 
\dp /\dv/ 

= ~P‘‘g 

dp 

^ % 
E — p- 

The expression (8) for the velocity of propagation then becomes 

c (9) 

The velocity of propagation for a longitudinal wave is also th(> 

velocity of sound in the medium. In the case of air, if no change 

in temperature occurs as the wave passes through it, the pressure 

and density are related by the expression 

P 

the right-hand term being a constant. Then 

^ See, for example, W. Watson, ‘‘A Text Book of Physics,” 7th ed., 

pp. 364-367, Longmans, Green Co.. London, 1920. 



366 FLUID MECHANICS [Chap. XIII 

so that 

. = (.0) 
For air under standard atmospheric conditions at a temperatun' 

of 59°F., p = 2116.8 lb. per sq. ft. while p = 0.002378 slugs per 

(‘ii. ft. and the velocity of sound has the value 

c — 943.5 ft./sec. 

This value is considerably lower than the experimentally deter¬ 

mined velocity of 1120 ft. per sec. 

The explanation of this large discrepancy lies in the fact that 

the temperature does not actually remain constant. The changes 

in pressure are usually so rapid that there is no opportunity for 

heat to be transferred to or from the fluid or from one particle of 

fluid to another. The relationship between pressure and density 

is therefore more accurately represented by the adiabatic law 

where C2 is a constant and k is the ratio of specific heats at con¬ 

stant pressure and constant volume. In this case 

^ = fcCs'p"-* = ^ 
dp p 

and the velocity of sound is 

For standard air, taking k — 1.406, this formula yields the value 

of 1118.7 ft. per sec., which is in excellent agreement with the 

experimental value. In fact Eq. (11) is considered by physicists 

to be sufficiently exact to serve as the basis for the experimental 

determination of A; for various gases. The velocity of sound is an 

important factor in all studies of the motion of compressible 

fluids. It is often referred to as the acoustic velocity. 

For air at any other conditions of pressure and density the ratio 

of pressure to density may be obtained from the gas law pv = RT. 

Putting V = 1/pg, this gives p/p — gRT so that the velocity of 

sound is 

c ~ \/kgRT (12) 
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Equation (12) shows that for a given gas the velocity of sound 

varies only with the absolute temperature, the other terms under 

the radical being constant. 

Problem 362. Determine tlie velocity of sound in water and in methane, 

th(‘ latter having a density of 0.00132 slugs per cu. ft. at a pressure of 

14,7 Ih, per sq. in. abs. 

363. Plot a curve showing the acoustic velocity in air for temperatures 
from 0 to 150°F. 

364. What is the value of k for a gas if it is found experimentally that the 

acoust ic. velocity is 1550 ft. per sec. when the pressure is 20 lb. per sq. in, abs. 
and the density is 0.0015 slugs per cu. ft.? 

181. Bernoulli’s Theorem for Compressible Nonviscous Fluids. 
In discussing the dynamic proi)erties of the motion of a compn'ssi- 

ble fluid, (‘onsiderable light may be shed on the subject by a 

reconsideration of B(‘rnoulli\s theorem. The assumption of 

constant density wdll now be abandoned but it will be supposed 

that som(^ analytical rcdationship between the pressurcj and 

density still exists. The condition of equilibrium of a particle of 

fluid, as given by Eq. (14), page 83, under the assumption that 

viscosity may be neglected, is 

dp + pg dz + -^d{V^) = 0 

or 

^ + + = 0 (13) 
P ^ 

If the average motion is assumed to be .steady and streamline in 

character, then this equation may be integrated along a stream¬ 

line, the result being 

+ gz + ^ ^ E' (14) 

in which E' is a constant for any one streamline and is now the 

total energy per unit of mass. 

In order to evaluate the integral which constitutes the first 

term of Eq. (14), a relationship between the pressure and density 

must be introduced. The physical nature of the motion of the 

fluid is again such that the assumption of an adiabatic law is a 

rational one. The pressure and density are therefore related by 

the formula p/p* = C*/ so that the pressure-density integral of 

Eq. (14) becomes 
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n r *-> j ^'2'^: A: 
- = c2aJp* ‘ = ir=n[ 

and Bernoulli's theorem is then 

k p 

I p + + T 
(15) 

In most cases the term due to the elevation of the particle of fluid 

may be neglected and Bernoulli\s theorem then becomes 

k p 

fc - 1 p 2 
= J5J' (16) 

The constant E' on the right side of Eq. (16) may be eliminated 

by considering the pressures, densities and velocities at two points 

on the same streamline wliich are designated by the numbers 1 

and 2. Writing Bernoulli’s theorem for these two points leads to 

the result 

The relation between the pressures and densities at the two points 

is 

and the introduction of this expression into the second term 

of the above equation makes it possible to rewrite the latter in the 

form 
/fc—1 

Referring to Eq. (11) it appears that the combination of terms 

kpifpi m Eq. (17) is equal to the square of the velocity of sound at 

the point designated by the subscript 1. This velocity will be 

found to be of great significance in dealing with the flow of com¬ 

pressible fluids. 

Substituting = kpi/pi in Eq. (17), the expression becomes 
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The ratio of the pressures at the two points in question may be 

ealcAilated from Eq. (18) and is found to be 

Vl 
Vi 

1 
1 U-i 

(19) 

182. Pressure at a Stagnation Point.—An interesting ai)pli(*a- 

tion of this analysis is found in tlie steady flow of a uniform stream 

of gas past a solid body. Th(^ velocity, pressure and density at a 

point in the undisturbed stream corresponding to point 1 in 

Eq. (19) may be represented by Fo, po and po, respecti\ (‘ly, while* 

at the stagnation point corresponding to point 2 the prc'ssure is 

the density is and the velocity is F« = 0. Making th(‘se 

substitutions, Eq. (19) becomes 

vt ^vV-' 
Po V 2 CoV 

(20) 

where Co is the acoustic velocity in the undisturbed fluid. 

If the* ratio Vo/co is small enough so that the term 
k - 1 Fo^ . 

Co¬ 
ls 

less than unity, then the right side of the above* expression may be 

expand(‘d into a converg(*nt series by means of the binomial 

theorem. The result is 

p« ^ Fo^ _{k -2) Fo^ 
Po 2co^ 24 

If both sides of this (*xpression are multiplied by po and the 

quantity kpo/cif is replaced by its equivalent po, then tlie formula 

for pressure at the stagnation point be(?omes 

(k_- 2) Fo^ 

■' 24 ■ cc^‘ ' ' ' 
(21) 

III the case of an incompressible fluid the pressure at a stagnation 

point was found to be [see Eq. (18), page 87] 

= Po + - 
PoFo^ 

(22) 

A comparison of Eqs. (21) and (22) shows that comprt*ssibility 

causes an increase in the stagnation-point pressure, this increase 
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being dependent on the ratio of the velocity of flow to the aconstie 

velocity in the undisturbed stream. 

The ratio V/c will be found to appear in all flow problems where 

compressibility is an important factor. It is known as Mach\s 

number, being so named in honor of the Austrian scientist who 

was responsible for much of the early work in this fic^ld. In what 

follows Mach^s number will be represented by the symbol INm. 

The ratio To/co in Eq. (21) may be replaced by Nm so that the 

pressure at a stagnation point is then 

Po + ~ 
Po 

1 + (i ZL.2) 
24 

Nm^ (23) 

When NM is less than unity the series is convergent and wlien 

NM is small the (‘rror caused by assuming the fluid to be com¬ 

pressible is not large. Thus, in the case of air at standard atmos¬ 

pheric conditions moving with a velocity of 280 ft. per sec., 

Nm == stagnation-point pr(\ssure is 

P. = Po + --^(1 + el + 10343 • ■ • ) = P" + 10157 - 2- 

SO that at this speed the error in the measununcMit of the prc'ssure 

difference — Po i« only 1.57 per cent. 

The stagnation-point pressure in a stream of gas may be d('t(T- 

mined satisfactorily by means of Eqs. (20) and (23) as long as the 

velocity of the flow does not exceed that of sound or as long as 

Mach\s number does not becomes greater than unity. For speeds 

in the range above Nm — 1, the assumption of adiabatic changes 

is no longer sufficiently accurate and a more elaborate tlieorf‘tical 

treatment of the problem must be employed.^ 

The theory developed above has an important application in 

connection with the use of such instruments as the pitot-static 

tube for the measurement of velocity in gases. It is apparent 

from Eqs. (21) and (22) that the pressure difference p* — po is 

larger in a compressible fluid than in an incompressible one for 

the same speed of the stream. If the measured value of this 

pressure difference is used in the formula for velocity [Eq. (20), 

page 87], based on the assumption of an incompressible medium, 

iLord Rayleigh, “Scientific Papers,“ vol. VI, pp. 407-415, Cambridge 

University Press, 1920. 



Art. 182] DYNAMICS OF COMPRESSIBLE FLUIDS 371 

the velocity obtained will be higher than the true value by an 

amount that increases with Machos number. The values of the 

stagnation-point pressures in air with and without the assump¬ 

tion of compressi})ility have been computed by Zahm^ for a large 

range of velocities, the variation of this pressure with velocity 

being showm graphically in Fig. 235. 

V, ff.persec. 

Fig. 235.—Variation of stagnation-point pressures with speed for air with and 
without the assumption of oomprcssibility. 

Problem 366. In the undisOirbed portion of a stream of air which flows 

past a body, the pressure is 14.7 lb. per sq. in. abs., p — 0.002378 slugs per 

cu. ft., the velocity is 500 m.p.h. and the acoustic velocity is 1120 ft. per sec. 

What is the velocity at a point near the body where the pressure is 13.9 lb. 

per sq. in. abs.? What would be the velocity at this point if the fluid were 

assumed incompressible? 
366. The velocity at a point on a body immersed in a stream of air is 

720 ft. per sec. In the undisturbed stream the velocity of flow is 640 ft. 

per sec., the pressure is 14.5 lb. per sq. in. abs. and p = 0.0021 slugs per 

cu. ft. What is the pressure at the point on the body? 

367. At point A in an airstream the velocity is 320 ft. per sec., the pressure 

is 14.2 lb. per sq. in. abs. and the density is 0.00229 slugs per cu. ft. At 

another point B the pressure is 13.4 lb. per sq. in. abs. Determine the 

value of Mach's number for both of these points. 

1 Zahm, a. F., Pressure of Air on Coming to Rest from Various Speeds, 

NACA Tech. Kept. 247, 1926. 
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368. What is tho stagnation-point, pressure in a stream of earhon dioxide 

if in the undisturbed stream the pressure is 20.3 lb. per sq. in. abs., the 

density is 0.0042 slugs per cu. ft. and the velocity is 425 ft. per sec.? 

183. Stream Tubes in a Compressible Fluid.—The determina¬ 

tion of the effect of (compressibility at points in a moving fluid 

oth(u- than a stagnation point is rather difficult if Eq. (16) is 

us(^d alone. A method which, though qualitative, is much simpler 

and giv(\s more easily interpreted information is based on an 

analysis of the condition of continuity as applied to a stream tube 

in the fluid. If the cross-sectional area of such a tube is 

represented by A and the density and velocity at any point in it 

are represented by p and F, resp(H‘tiv(‘ly, the condition of con¬ 

tinuity for the tube is 

pVA — (constant 

It is desired to study the manner in which the area A varies with 

the velocity V. Differentiating with respect to V and then divid¬ 

ing by pVAj the result obtained is 

1 JL 1^ ^ 
A \IV V '^ pdV 

(24) 

Bernoulli^s theorem in the form of Eq. (16) may also be differ¬ 

entiated with respect to F, giving the expression 

Since the adiabatic relation betwc^en pressure and density is 

assum(^d to hold, the acoustic velocity may be written in either of 

the two forms 

and the introduction of these values in Eq. (25) gives 
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so that 

^ ^ _pV 
dV 

The substitution of this quantity in Eq. (24) gives for the rate of 

change of area with velocity the expression 

^ - - t(‘ - - - 7<‘ - 
This result may be interpreted by considering the two cases of 

flow in which the velocity is either above or below the acoustic 

velocity and in whi(‘h Mach^s number is therefore eithcT greater 

or less than one. When N» < 1 the value of dA/dV is negative, 

indicating that an increase in the velocity causes the stream tube 

to diminish in cross-sectional area but at a slower rate than in an 

incompressible fluid. When the velocity of the fluid exceeds that 

of sound and Nm > 1, then dA/dV is positive and the stream 

tubes in(!r('ase in size when the velocity becomes still larger. It 

thus appears that there is a decided difference in the type of flow 

that takes plac(^, depending on whether the velocity is above or 

below th(‘ acoustic velocity. 

184, The Venturi Meter for Compressible Fluids.—The theory 

of the Venturi meter for incompressible fluids has been given in 

Arts. 50 and 51 of Chap. V and the formulas worked out there are 

satisfactory for liquids, but when the fluid is a gas the effect of 

compressibility must be considered. Applying Eq. (18) to the 

inlet and throat sections, denoted by the subscripts 1 and 2, 

respectively, the following relationship between the corresponding 

velocities is obtained 

The equation of continuity is now piViAi = p^V2A2 so that the 

velocity at the throat is 

= (28) 
P2 ^2 

Again assuming an adiabatic relation between pressure and 

density, the ratio of densities is found to be 
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- = (29) 
P2 \P2/ 

If the area ratio AijA^ = n, then, substituting this value and 

Eq. (29) in Eq. (28), the throat velocity is 

1 

{P2/Vl)k 

and the expression for velocity at the inh't obtained from Eq. (27) 

is 

It is convenient to express the velocity in terms of the tfunpera- 

ture rather than the density of t he gas. The value of the velocity 

of sound at the inlet is 

and, since the gas law p/gp = RT is applicable, the ratio of 

pressure to density at the inlet may be written as 

Rl PJ} Tl 
pi Po T0 

where the subscript 0 refers to some standard condition of tem¬ 

perature and pressure for which the density po is known. The 

acoustic velocity in terms of the temperature is 

and, substituting this value in Eq. (30), the expression for the 

inlet velocity is found to be 
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If the coefficient of the temperature term \/T~i/To is represented 

by Y then the velocity is equal to 

Values of Y for air under the conditiorls of 760 mm. mercury 

pressure and a temp(u*ature of 0°C. have been cakailated^ for 

sev(iral values of n and values of p^/pi ranging from 1 to 0.6. 

These valu(\s are giv('n in Table XI. In general a Venturi meter 

should be calibrat(‘d against some other method of measuring 

velocity or discharges, but the theoretical formulas serve to indi¬ 

cate the nature of the results that may be expe(‘ted. 

Table XL—Values of F, Ft. per Sec. 

p-ilpi n — 4 n ~ 9 n = 16 

0.9998 4.74 2.05 1.150 

0.999 10.60 4.59 2.57 
0.995 23 .65 10.24 6.74 

0.99 33.34 14.11 8.09 
0.98 46.48 20.3 11 .38 

0.95 72.8 31 6 17.7 
0.90 99.8 43.4 24.3 
0.80 131.7 57.5 32.2 
0.60 157.9 69.3 38.9 

Computed on tins Hssurni)tioris pv = HT, Cv = constant; — 1.400 

po = 14.692 Ib./sq. in. 
po = 0.0012928 K./cm.'^ at 760 mm. and 0°C. 

It is found that the theory of the Venturi meter based on the 

assumption of an incompressible fluid gives satisfactory results 

for a gas only when the pressure ratio P2/P1 is close to unity. 

The inlet velocity in the case of an incompressible fluid as given 

by Eq. (30), page 97, is 

For purposes of comparison with Eq. (31), the pressure ratio 

p^/pi may be introduced. Putting K = ■\/ll{n^ — 1), the 

expression for the inlet velocity is 

1 Buckingham, E., Tho Theory of the Pitot and Venturi Tubes, NACA 
Tech. Rept., vol. 1, no. 2, p. 110, 1916. 



376 FLUID MECHANICS [Chap. XIII 

■ S) 
An inspection of Eqs. (31) and (33) shows that for P2/P1 = 1, 

Fi = 0 in both cases. For other values of P2/P1 a comparison 

is difficult except by consideration of a numerical examplf‘. 

Suppose that a Venturi tube has an area ratio of 4 and is placed 

ill an air liri(\ The pressure and temperature at the Viuituri 

inlet are 14.7 lb. per sq. in. and 59°F., respectively, so that 

Pi 

Fia, 23G,—KlTecit of compressibility on Venturi tube characteristics. 

Cl = 1120 ft. per sec. The value of k is taken as 1.406 and the 

velocities are computed for values of P2/P1 running from 1.0 to 

0.9, using formulas (30) and (33), the results being plotted graph¬ 

ically in Fig. 236. It appears from the figure that the error in 

using the incompressible fluid formula is loss than, say, 3 per cent 

only when the pressure ratio is greater than 0.951. 

When the same meter is used in a water line, formula (33) gives 

satisfactory results for a much larger range of pressure ratiosr 

in fact conditions seldom arise in practice where this formula is 

not suitable for use with liquids. For gases it is in general 

difficult and unsafe to draw any exact conclusions about the range 

of pressures in which compressibility may be neglected except 
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by consideration of specific cases, as in the above example. 

Although formulas (30) and (31) are considerably more com¬ 

plicated than Eq. (33), the use of the first two is advisable for all 

gases while the latter expression should be employed only with 

liquids. 

Problem 369. A Venturi meter having an area ratio of 3 is inst alh^d in a 

(>-in. air line. The pressures at the inlet and throat are 145 lb. per sq. in. abs. 

and 133 lb. per sq. in. a})s., respectively, and the temperature at the inlet ivS 

80°F. What are the velocity at the inlet and the weight discharge? 

370. A Venturi meter having an area ratio of 2.5 is placed in a pipe line 

carrying ac^etylene. At the inlet the pre.ssure is 110 lb. p(;r sq. in. abs. and 

the Umiperature is 75°F., while at the throat the pn^ssure is («) 105 lb. per 

sq. in. abs. (b) 96.8 lb. per sq. in. abs. Determine the inlet velocity in each 

case, assuming tin? gas to be incompressible and then compressible. For 

acetylene R — 59.34 ft. per '^F. 

186. Resistance in Compressible Fluids.—There are a number 

of important problems in which velocities greater than that of 

sound may be attained. For example, these may be cases where 

solid bodies move through a large expanse of fluid at high speeds 

that exceed th(' acoustic vt^locity. Examples are found in the 

flight of rifle bullets and the motion of the elements of high-speed 

airplanes. The problem of determining the effect of compressi¬ 

bility on the resistance of such objects at speeds both above and 

below the acoustic velocity will now be discussed in detail. 

As in the discussion of visex:)us and wave resistance, the methods 

of dimensional analysis may be employed advantageously in 

obtaining a gene'ral resistance equation for high-speed motion. 

It is now assumed that the resistance depends on the density of 

the fluid, the projected area of the body and its velocity, as before, 

and in addition on the rate at which pressures are propagated 

through the fluid, in other words, on the velocity of sound. Thus 

the formula for the drag of a body becomes 

D == (34) 

in which a, 6, rf, and e are unknown exponents. The introduction 

of the dimensions of the various quantities involved in this 

equation leads to the expression 
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On equating separately the exponents of mass, length and time 

for the two sides of the equation, three simultaneous equations 

are obtained which are as follows: 

1 = tt 
1 = —“h 26 “f* “f“ c 

-2 = -d- e 

The solution of these equations gives for the exponents of Eq. (34) 

the values 

a = I 

d = 2 - e 
b = 1 

so that the value of the drag is then 

D = kopAV^-c^ = (35) 

or, in terms of the dynamic i)ressure and Mach\s number, 

It thus appears that Mach\s number plays an important part in 

determining the resistance of a body moving through a compressi¬ 

ble fluid. 

186. Motion at Subsonic and Supersonic Velocities.—The 

dimensional analysis used in deriving Eq. (36) does not make any 

distinction between flows at velocities above and below the veloc¬ 

ity of sound. Only the investigation of Art. 183 on the behavior 

of stream tubes is available as an indication that the value of 

NAf = 1 forms a demarcation between two radically different 

types of flow with correspondingly different values for the func¬ 

tion of Machos number that appears in Eq. (36). Some further 

insight into this problem may be obtained by considering the 

cases of an infinitesimal particle or point disturbance moving 

through a fluid, first at a subsonic and then at a supersonic veloc¬ 

ity. The first case is illustrated in Fig. 237. Point A represents 

the initial position of the particle assumed to be traveling along 

the line AB with a uniform velocity V which is less than the acous¬ 

tic velocity c. At the instant the particle passes point A, a 

pressure wave having a spherical front with point A as its 



Art. 18t)] DYNAMICS OF COMPRESSIBLE FLUIDS 379 

center is produced. This wave travels outward in all directions 

with the velocity c so that, if the particle reaches point B in tim(^ 

the radius of the wave front will then be ci, while the distance 

AB = Vt, The intermediate points between A and B are sources 

of other spherical pn^ssure waves but, since the initial wave 

starting from A is moving faster than the particle, tlieso will 

always be contairu^d within the sphere of radius d. 
When the particle moves at a supersonic velocity, the situation 

is as illustrated in Fig. 238. As in the previous case a spherical 

Fig. 237.—Wave front produced by a parti(ile moving at subsonic velocity. 

pressure wave originates at A at the instant the particle pasvses 

that point, but in the time t required to reach point B the particle 

has traveled a greater distance than the radius of the sphere 

whose center is at A, Spherical waves also emanate from the 

intermediate points between A and B and have radii which are 

proportional to the distances of these points from B. Thus the 

entire system of spherical pressure waves combines to form a 

conical front with its vertex at B. The half angle a at the vertex 

of this cone is readily shown to be equal to 

. , Ct . , C . . 1 /c\m\ 

a = sm-‘ = sm-i ^ = 8m-‘ y- (37) 

The angle a is commonly known as Mach’s angle. 

The fundamental difference between the two types of motion 

may perhaps be clarified by the following discussion. In the case 

of subsonic velocities the particle or body is able to telegraph 



380 FLUID MECHANICS [Chap. XIJI 

ahead, by means of the prevssure waves whieh it sets up, the faet 

that it is approaching so that the upstn'am particles of the fluid 

have an opportunity to adjust themselves at least partially to the 

motion before th(‘ body n^aches their positions. On the other 

hand, wlum the l)ody moves at a supersonic; velocity these pres¬ 

sure waves fall bc‘hind so that, as the body conu's in contact with 

th(‘ fluid particles which were initially ahead of it, a considerable' 

shock is involved. For this reason the conical wave front shown 

\ 

Fi(j. 238.—Wave front produced by a particle niovinK at sui>er9onic velocity. 

in Fig. 238 is known as a shock wave. Actually the sho(;k wave is 

a form of discontinuity and in real fluids, such as air, has a finite 

thickness. Conditions within the shock wave have been the 

subject of considerable study^ but this problem is too advanced 

for treatmemt here. 

187. Effects of Compressibility on Resistance.—Although the 

discussion of the preceding article was based on a study of the 

motion of an infinitesimal solid particle, the conclusions reached 

are in general applicable to bodies of finite dimensions. It would 

thus seem that there would be a considerable difference in the 

^Taylor, G. I., and J. W. Maccoll, ‘^Thc Mechanics of Compressible 

Fluids,” Div. H, vol. II, of ‘‘Aerodynamic Theory,^^ edited by W. F. 

Durand, Julius Springer, Berlin, 1935. 
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values of the resistance coefficient of a body for velocities above 

and below the acoustic velocity. Experimental verification of 

this supposition is shown in Fig. 239/ in which the drag coefficients 

for two artillery projectiles as obtained from the equation 

are plotted against Machos number. In this equation the coef- 

fici(‘nt Ci> is equivalent to Cn{l/NmY of Eq. (36). The curves 

show that there is a suddcai increase in the value of Cd in the 

Fi(}. 239. Variati<m of Cd with Nm for artillery proje(^tiles. 

neighborhood of Nm = 1. It is also interesting to note how the 

sharp nose of projectik' a causes an appreciable drop in the value 

of CD beyond Nm = 1.2, although it never becomes so low as the 

values for speeds well below that of sound. The higher drag of 

the cylindrical projectile is due to the fact that its blunt nose pro¬ 

duces a stronger shock wave than that of th(^ sharp-nosed shell. 

A photographic method available for the study of the external 

form of shock .waves was originated by Topler^ and has yielded 

^ Figures 239, 240 and 24i are reprinted from the artiele by J. Ackeret, 

^‘Gasdynainik,” in ‘TIandbueh der Phyaik,” vol. VII, pp. 336-338, Julius 

Springer, Berlin, 1927. 

2 Ewald, P. P., T, Poschl and L. Phandtl, “The Physics of Solids and 

Fluids/' p. 261, Blackie & Son, Ltd., London, 1930. 
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some extremely valuable results. The procedure, known as the 

schlieren method, consists in passing light through the region of 

the gas in motion. Because the refraction of light by the gas 

depends on the density of the latter, the flow when illuminated 

Fig. 240.—Schlieren photograph of flow produced by a sharp-nosed projectile 
moving at a supersonic volo(‘ity. 

Fig. 241.—Schlieren photograph of flow produced by a blunt-nosed projectile 
moving at a supersonic velocity. 

in this manner and photographed gives a picture in which the 

sho(‘.k waves are represented by sharp, dark lines. Photographs 

of this kind are shown in Figs. 240 and 241 for sharp- and blunt- 

nosed projectiles similar in shape to those for which the drag 

coeflBcients are given in Fig. 239. 
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In the ease of the sharp-nosed shell the forward sho(‘.k wave' 

appears to be essentially a straight line running out from the tip 

so that the value of Maeh’s angle can be readily det(‘rinined 

Such measurements, along with the use of Eq. (37), make it 

possible to determine tluj value of Machos number for the motion 

and consequently the speed of the projectile. The shock wave 

formed at the nose of the blunt shell is not so sharp nor is its con¬ 

tour a straight line but, if the measurements of Mach’s angle are 

bas(^d on the straight portioiis of the wave behind the shell, 

fairly a(*.curate speed determinations can be made. 

The resistaiKjc of a high-speed projectile is in general a function 

of both Mach’s and Ib^ynolds’ numbers but, because of the high 

values of the latte^r, compressibility is usually a considerably more 

important factor ihan viscosity. Thus it is to be expected that 

the forms of bodies of minimum drag will not necessarily be the 

same as those discussed in Chap. XII where viscosity alone was 

considered. The data shown in Fig. 239 illustrate the importance 

of using a sharp nose for a shell. More detaih'd information of 

this kind is presented graphically in Fig. 242, in which the drag 

coefficients of sludls with different-shaped noses are plotted against 

Mach’s number. The nose contours are defined by the radii 

shown in the accompanying table. It is apparent from these 

curves that an increase in the small radius at the nose leads 

to an appreciable increase in the value of Cd for Mach’s number 

greatc^r than unity, while, for velocities just below that of sound, 

small variations in this radius are of little importance. At much 

lower velocities, not shown in Fig. 242, the shape of the nose is of 

considerable importances in determining the drag of the shell. 

In this region viscosity is again the governing factor and the ideal 

shell has a well-rounded nose of the type represented by shell a 
of Fig. 242. 

The shape of the base of the projectile is of considerable impor¬ 

tance at subsonic velocities, and at these speeds the resistance is 

appreciably lowered by the addition of a streamlined tail. How¬ 

ever, at supersonic velocities the shape of the tail does not have 

much effect on the drag. The reason for this lies in the fact that, 

when the acoustic velocity is reached in the wake, the pressure 

there drops nearly to zero so that this region is almost a perfect 

vacuum. A higher speed cannot produce any greater reduction in 

pressure in the wake and the eddy-making drag therefore remains 
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almost (constant with further increases in speed and is practically 

independent of the shape of the tail. 

The use of a fully streamlined tail on an artillery projectile 

presents certain mechanical difficulties in firing. Such a shape 

also has the aerodynamic disadvantage of being considerably mon' 

unstable than the flat-tailed shell. It is difficult to maintain its 

Fkj. 242.™-Effect of nose radios on resistance coefficient of projetdiles. (F. R- 
W. Hunt, “ The Reaction of the Air to Artillery Projectiles,*' iti “ The Mechanical 
Properties of Fluids," Blackie <fc Son, Ltd., Londo7i, 1923.) 

path of flight in a vortical plane and the accuracy of gun fire 

with such shells is considerably reduced. A compromise solution 

to the problem has been obtained by the use of shells of a so-called 

boat-tail form, the rear ends having a slight taper of from 5 to 

10 deg. for a short distance so that a longitudinal section resembles 

the plan view of a boat hull. These shells are very stable and 

show appreciably lower drag coefficients than the flat-tailed shapes. ^ 

^ For a more complete discussion of the application of fluid mechanics, 

the reader is referred to the article, “The Reaction of the Air to Artillery 
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188. Effects of Compressibility on the Lift and Drag of Air¬ 
foils.—Althougli the remarks of the pre(‘eding article were con¬ 

cerned with the effect of compressibility on the resistance of 

projectiles, the results given therein are in general applicable to 

bodies of all forms. In the case of lifting elements siudi as air¬ 

foils, th(‘ problem is further (H)mpli(^ated by tlu' fact that com¬ 

pressibility has an effect on the lift force as well as on the drag. 

It may be shown iliat the presence of a lift force in geiunnl 

tcnids to aggravate the (effect of compr(^ssibility. On the upper 

surface of an airfoil which is producing a certain positive lift as a 

r(‘sult of its motion r(‘lative to the air, there is, as was shown in 

Art. 71, a considerable increase in local velocity over that of tln^ 

undisturbed stream. For instance, it is not at all unusual to find 

(‘xperimentally that the negativ(‘ pressure on the top of an airfoil 

may b(‘ as low as the pressure of the undisturbed stream dimin¬ 

ished by four to five tiiiu's th(‘ dynamic pressun' pil'F/2. Thus 

th(‘ pre^ssure on the airfoil in terms of conditions at point 1 in 

the undisturbed stream is 

/>2 = Pi - (38) 

The substitution of this value in Kq. (18), page 308, gives for the 

square of the velocity at the i)oint on the airfoil 

The value of local velocity at point 2 is readily found by taking the 

square root of both sides of Eq. (39). Putting kpi/pi = ci^ and 

Vi/ci = Nin the term inside the brackets, this expres¬ 

sion becomes 

v, = Fi== - 1 - * - l| (40) 

Inasmuch as Mach\s number appears to be a significant factor 

in connection with high-speed motion, it is now proposed to 

determine the value of this quantity for the conditions prevailing 

at the point on the airfoil. In the undisturbed stream the 

Projectiles” by F. R. W. Hunt, Chap. X, “The Mechanical Properties of 
Fluids,” Blackie & Son, Ltd., London, 1923. 
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acoustic velocity is Ci = \^kpi/pi and in this region Machos 
number is 

(41) 

At point 2 both the pressure and density have values different 
from those existing at point 1. The acoustic velocity at point 2 is 
C2 = \/kp2/^2 and, after substituting the value of p2 as given by 
Eq. (38) and making use of the adiabatic law, pi/pi^ = pi!P2 \ the 
value of this velocity is 

k-\ 

2k 

(42) C2 = Cl 
nk 

Machos number at point 2 is the quotient of Eq. (40) divided by 
Eq. (42) and is equal to 

N Mi — Yi 
C2 

2- 
‘ k-l 

1 - 

k-l 
k 

Cv 
Tlk / -Kj \ef 

k^ 
2k 

or 

iVAfj — 
k - 1 1 - 

k-\ 
k 

2 _ 

1 - 

k- 1 
I 2k 

(43) 

The two values of Mach\s number given by Eqs. (41) and (43) 
are referred to, respectively, as the Machos number of the undis¬ 
turbed stream and the local value of Mach’s number. 

The significance of the result given in Eq. (43) is best brought 
out by means of a numerical example. The flow of air will be 
considered in which ci = 1120 ft. per sec., p\ = 2116.8 lb. per 
sq. ft., Pi = 0.002378 slugs per cu. ft,, k = 1.406 and n = 4. 
The results of computations with Eq. (43) for several values of 
Nm, are shown graphically in Fig. 243, in which Nm^ has been 
plotted against Nm,. It appears from these calculations that the 
velocity at the low-pressure point on the airfoil exceeds the cor¬ 
responding velocity of sound when the value of Mach’s number for 
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the undisturbed stream is only 0.383 and the corresponding veloc¬ 
ity is 429 ft. per sec. 

The curve of Fig. 243 shows that, at a certain value of N 

Nm^ tends to become infinitely large. This limiting value of Nm, 

Nm, 

Fig. 243.—Variation of local value of Mach’s number with its value for an undis¬ 
turbed airstream. 

may be found from Eq. (43) by putting the denominator equal to 
zero. Its value is 

and, for n = 4 and k = 1.406, Nm^ =0.594. The corresponding 
value of velocity of the stream is 

The local pressure at point 2 on the body may now be determined 
from Eq. (38) and is equal to 

P2 = Pi - 
npi 2p 
2 npi 

= 0 
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The most important conclusion to be drawn from the above 

analysis is that, in the case of the flow of a gas past bodies such as 

airfoils, local increases in velocity caused by the body may 

produce reductions in pressure of such a nature that the local 

values of Mach\s number approach the critical unit value much 

more rapidly than does the Macdi’s number for the undisturbed 

stream. Consequently the effects of (‘ompressi])ility become 

noticeable for values of Nm, considerably l(‘ss than unity. 

Local effects of this type are found on symm(dri(*al bodies such 

as artillery proje(‘til(\s for whi(*h thc^ air r(‘action is entirely a drag 

force, but they are by no means so severe as in the cas(' of airfoils 

because th(' reductions in pressure are considerably smalk'r in 

magnitude. It seems logical to expect that at high spet'ds the 

drag of an airfoil will vary with velocity in much the same way as 

that of a projectil(‘, with the exception that the effects of com¬ 

pressibility will b('. noticeable at lower values of the Mach’s 

number for the undisturbed flow. 

As to the effect of compressibility on lift, it may be conelud('d 

on the basis of the preceding discussion that this is in gtmeral a 

detrimental one. If the pressure at a point on the upjjer surface 

of an airfoil has dropped to zero, it is obvious that then' can be no 

further increase in the suction producc'd by tlu' ehmumt of surface 

at this point with an increase in spe('d. The lift therefore 

increases at a rate somewhat less than the square of tlie velocity 

and the lift coefficients computed on the basis of the usual 

“V-squared^' law show a decrease in value. 

Some studies of the flow of compr(\ssible fluids past solid bodies 

have been made by means of the methods of theoretical hydro¬ 

dynamics but this work is for the most part extremely limited in 

its application. The exact effects of compressibility are best 

determined by experimental means, although a basic th(^ory is of 

considerable value in correlating test data and in bringing out tlu'. 

significance of the most important factors. 

189. The Compressibility Burble.—The remarks m the pre¬ 

ceding paragraphs about the effects of compressibility on the lift 

and drag of airfoils have been verified by tests made in high-speed 

wihd tunnels. Most of the work done in the United States has 

been carried out by the Bureau of Standards and the National 

Advisory Committee for Aeronautics and some typical results of 

tests made at the laboratories of the latter organization are shown 
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in Fig. 244. The sections on which the tests were made are 

typical of the kind used for the elements of propeller blades. 

It may be noted from the curves of Fig. 244 that, as the Ma(^h's 

number of the airstream is increased, both the lift and drag coef- 

fi(deiits for any angle of attack increase slowly until a value of 

Nof about 0.8 is reached. Beyond this point the lift coef¬ 

ficient drops off very rapidly while the drag coefficients show a 

marked increase'. This sudden change in th(^ values of the lift 

and drag coefficients is more clearly shown by means of the curves 

Fia. 244,^—Effects of compressibility on lift and drag coefficients of the 3R6 
airfoil. (.7. Stack, The NACA High Speed Wind Tunnel and Tests of Six Pro- 
peller Sections, NA(!A Tech. Kept. 4G3.) 

of Fig. 245. In this figure the slopes of the lift curves of Fig. 244 

are plotted as functions of Machos number, that is, dCL/da with a 

in radians is plotted against NMy The minimum drag coeffi¬ 

cients CDmin. plotted against NMy In these tests the 

model extended completely across the air jet so that the coeffi¬ 

cients shown correspond to wings of infinite aspect ratio and do 

not include the effects of tip vortices. 

Schlieren photographs of the high-speed flow of air past air¬ 

foils show that, under the conditions for which this marked change 

in lift and drag coefficients begins, a shock wave originates at the 

nose of the airfoil. This phenomenon is known as the com- 
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pressibility burble^ and is quite similar in character to the shock- 

wave formation found in the motion of high-speed projectiles. 

The compressibility burble is apparently caused by the fact that 

at some point on the airfoil surface the velocity has become 

suflSciently high to cause the pressure to drop to zero. The shock 

wave encloses a region at the rear of the airfoil in which the gas is 

Fig. 245.—Variation of lift-curve slope and minimum drag coefficient with 
Mach’s number for the 3R0 airfoil. 

in an extremely rarefied state. If the speed of the stn^am is 

increased, this low-pressure region expands but at a rat(‘ which 

is lower than the rate of increase of the square of the velocity, 

thus producing the decrease in lift coefficient and increase in 

drag coefficient shown in Fig. 245. 

There is some similarity between the conditions producing the 

compressibility burble in a gas and those leading to cavitation in 

the flow of liquids. Both occur at relatively high velocities, but 

the detailed natures of the flows involved in the two cases are 

quite dissimilar. 

^ Stack, J., The Compressibility Burble, N AC A Tech. Note 543. 



CHAPTER XIV 

THERMODYNAMICS OF COMPRESSIBLE VISCOUS 
FLUIDS 

190. Gases Considered as Compressible Viscous Fluids.—The 

discussions of Chap. XIII hav(' all been based on the assumption 

that the fluids under consideration could b(^ regarded as non- 

viscous. Although gases have relatively low coefficients of 

viscosity, the fact tiiat t'xtreinely high velocities are often encoun- 

tend makes it possible that frictional losses may appreciably 

modify the results previously obtained. The introduction of 

viscosity greatly comi)licates the theory and experimental 

methods an' usually rc'sorted to in order to determine the behavior 

of compressibki viscous fluids. There are, however, a number of 

cases of the flow of gases in which both compressibility and 

viscosity can be taken into consideration without unduly com¬ 

plicating the analysis. This is particularly true of the flow 

in pipe lines of constant (^ross section. The theory to be pre¬ 

sented in th(^ next three' articles is intended to serve' as a founda¬ 

tion for a discussion of that subject. 

191. Bernoulli’s Theorem for the Flow of Gases.—When a 

stream of gas movers in contact with solid boundaries, the effect 

of viscosity is to produce a resistance to the motion which is 

responsible in part for the dissipation of the total energy content 

of the particles of fluid. If there are no losses due to friction or 

any other causes, then Bernoulli’s theorem, as given by Eq. (13), 

page 367, is 

+ gdz + 
p L 

= 0 

In this expression each term represents energy per unit mass. 

The energy relation for a unit weight of fluid may be obtained 

by dividing the above equation by p. After putting pg ^ l/y, 

where v is the specific volume, the above equation is 

r dp + dz + = 0 

391 
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Wlien corrected for the loss in energy due to the resistance 

to flow, this equation becomes 

V dp 4“ dz H—^ -|- dEf = 0 (1) 

in which dEf is the energy lost by a unit weight of fluid. It is 

obvious that some knowledge of the way in which Ef varies along 

a streamline must be available before this equation can be 

integratcxl. In the case of a flow in a pijxi the loss may be 

obtained from the resistance formulas developed in Chap. IX. 

However, before considering any special applications of this 

modified form of Bernoulli's theorem, the (uiergy ndations involved 

in the flow of gases will be discussed from another point of view. 

192. The Thermodynamic Equations for Gas Flow.^—In view 

of the fact that in engineering work the motion of gases is often 

closely connected with some process involving the intc'rchange of 

heat, it seems advisable to consider the eiuu’gy relations from the 

standpoint of thermodynamics. When energy in the form of heat 

is added to a gas, two changes may occur. First, the addition of 

heat may produce a rise of temperature and an incrc^ase in the 

sensible heat content or intrinsic energy of the gas; second, the 

gas may expand against the pressure on the walls of its container. 

This second form of the change of the original heat energy is 

known as external work and is present only when tlu^ walls of the 

gas container are flexible or movable. The calculation of the 

intrinsic energy will be discussed in the next article. 

The magnitude of the external work done by a gas during any 

heat transfer may be readily calculated in terms of its pressure 

and specifics volume by considering an infinitesimal element of the 

fluid in the form of a small cylinder of length Z, of cross-sectional 

area dA and of unit weight. Suppose now that, as a result of 

the addition of heat, the element expands in the direction of its 

length to a new value I + dl while the cross-sectional area remains 

unchanged. Then, if the pressure acting on the element is p, 

the work done by this expansion is p dA dl — p dVy since 

dA dl = dVj the change in volume of the element. Furthermore, 

since th(' element was originally assumed to be of unit weight, v 

represents the specific volume of the gas. 

It is often convenient to represent the changes in pressure and 

specific volume of a gas that occur while it is doing external work 
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by iiK'ans of a curve plotted on a system of re(^tangular coordinate 

axes, tlu' abscissas representing the specific volume while the cor¬ 

responding pressures are plotted as ordinates. Such an arrange¬ 

ment is illustrated in Fig. 246, the particular case shown therein 

being a typical cycle of operations on a g^s. The cy(de begins at 

point A where the gas has a certain initial pressure and specific 

volume. The pressure is then incTeased to that represented by 

point B while the volume remains constant, this process requiring 

the addition of heat. After reaching B the gas is allowed to 

expand first at coiLstant pressure to C, after which the pressure 

decreases to the condition repre¬ 

sented by D. The cycle is com- 

})Iet('d by compressing the gas at 

constant pressure from D back to 

the initial point A. As shown 

above, the external work done by 

a small element or parti(4(^ of gas 

is p dv so that in the cycle of opera¬ 

tions shown in Fig. 246 the total 

work done by a unit weight of the 

gas is Jp dv or simply the area 

('iiclosed by the curve A BCD A. 

Fig. 246.- -Preasure-volumc diagram 
for a gas cycle. 

The relationship between heat added, intrinsic energy 

external work may now be put in the form of an equation 

dQ dl + 
p dv 

and 

(2) 

when applied to an infinitesimal particle of fluid of unit weight. 

In this expression dQ is the heat added externally, dl is 

the in (crease in intrinsic energy and p dv/J is the external work 

done, J being the factor that converts energy in the form of work, 

measured by the product of force times displacement, into units 

of heat energy. In the English system this latter unit is known 

as the British thermal unit (B.t.u.) and the ratio between 1 B.t.u. 

and 1 ft. lb. is / = 778. 

In the case of a flow in which resistance to motion is involved, 

the energy expended in overcoming resistance is converted into 

heat, which is then added to the gas just as though it came from 

an external source. When this loss is taken into account, 

p]q. (2) must be modified to read 
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dQ + ^ = dl + ^ (3) 

In addition to this relation, another expression may be worked 

out which involv(‘s the kinetic and potential energies of the flow. 

In Fig. 247 is shown a portion of a strt'am tube and consideration 

is to be given to two sections, at the first of which the elevation is 

01, the pressure is pi, the velocity is Fi, the specific volume is V\ 
and the cross-sectional area of the tube is Ai. At the second 

section the corresponding values are 02, P2, F2, ih and A 2. The gas 

is assumed to be flowing from point 1 to 2. If the weight of fluid 

flowing through the tube in unit time is IT, then the equation of 

(K)ntinuity may be written in the 

form 

W 
AiFi 

Vi 
A2F2 AF 

V2 
(4) 

The difference in energy con¬ 

tent of the fluid between the two 

levels considered may be deter- 
Fig. 247.—Stream tube for the flow mined in two different ways. 

This relation will first be deter¬ 
of a gas. 

mined by considering the differences in kinetic, intrinsic and 

potential energy l)etween points 1 and 2 as well as the work done 

against resistance to flow. The kinetic energy at any point in 

the stream tube is V^/2g per unit of w^eightand, since this quantity 

is the velocity head, it will be represented by h. The different^e 

in the kinetic energy of the fluid at the points 1 and 2 is then 

h2 — hi = 
29 2g 

There is also a change in the intrinsic energy of the gas which may 

be written as 

Jih - h) 

h and 12 being expressed in units of heat energy. The loss in 

energy due to resistance is Ef while the change in potential energy 

is 02 Zi. In all cases the energy is computed for a unit weight 

of the gas. A comparison of the total amounts of energy at the 

two sections of the stream tube shows that the energy expended 



Art. 192] THERMODYNAMICS OF COMPRESSIBLE FLUIDS 395 

in moving a unit weight of the fluid from section 1 to section 2 is 

E hi — h\ J{I~ IZ2 ~ zi Ef (5) 

The value of E may also be determined by considering the 

external forces that act on the fluid during the motion. In the 

first place Q units of heat may have been added from an outside 

source which, in units of work, is QJ. The work against resistance 

is converted into heat which is added to the gas so that the work 

equivalent of the total heat added is QJ + Ef for each pound of 

gas. Now in a time dt the particles composing the lower face of 

the stream tube of Fig. 247 travel a distance Vi dt^ and the pres¬ 

sure force acting on it, piA^y does work equal to piAiV\ di. In 

a similar way the work dom^ by the pressure force P2A2 acting in 

the opposite direction on area A^ is 'p^A 2F2 dty so that the net work 

done on the gas between sections 1 and 2 in the time di is 

p^AiVx dt — p^A^V^idt 

But from Eq. (4) AiVi = V\W and A2V2 — v^W so that this net 

work is 

{pxVi - P2V2)W dt 

During time dt the w(4ght W dt has entered the tube through 

section 1 and an equal amount has left the tube through section 2. 

The last (‘xpression may therefore be considered as the amount 

of work done on a weight of gas equal to W dt, so that for a unit 

weight the work done is 

plVi - P2V2 

The total amount of energy expended on a unit weight of fluid 

is thus equal to 

E = piVi — P2V2 + QJ + Ef (6) 

When this value of E is equated to that given by Eq. (5), the 

term representing the work done against resistance disappears 

and the equation may be solved for Q with the result 

- hi + J{12 - h) + Z2 - + P2V2 - PiVi (7) 

If the portion of the stream tube between sections 1 and 2 is 

of infinitesimal length, then the heat added externally is dQ 
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and the various differences on the right side of Eq. (7) may be 

replaced by their corresponding differentials so that 

dQ 
\ 
J 

dh + J dl + dz + (8) 

If the values of dQ obtained from E(}s. (8) and (8) are equated, 

the expression 

dh -f- dz -f" V dp “f“ dKf — 0 (9) 

is obtained, the differential d(pv) having bc^en put equal to 

p dv + V dp. Now n'calling tliat h = V-/2g^ the velo(dty he^ad, 

Eq. (9) may be written as 

diV'^) 
— — -j- V dp -f- dEf — 0 (19) 

which is exactly the same as Bernoulli\s theorem given by Eq. (1). 

It thus appears that tln^ thermodynamic nn^thod of attacking 

the flow of gases and the mec^hanical method employed in the 

probhnns previously discussed are essentially the same because 

they lead to the sajne fundamental equation. This might have 

been anticipated sin(*e the equations obtained in each case are 

simply statements of the principle of conservation of energy. 

In studying the flow' of gases there are certain types of problems, 

particularly those* in which the loss is considered, in which the 

us(? of the thermodynamic method has some advantage. In 

such problems Bernoulli^s theorem in the form of Eq. (10) will 

be employed along with the thermodynamic relationship given 

by Eq. (3). 

Problem 371. Determine the external work done by a unit weight of gas 

in expanding from a pressure /n to a pressure p-i if the expansion takes plaee 

isothermally. Express the r(^sults in terms of the initial and final pressures 

and the initial specific volume v^. 
372. Determine the external work done 1)3^ a unit weight, of gas in expand¬ 

ing adiabatically from a pressure pi to a pressure P‘i if the corresponding 

change in specific volume is from Vi to v^. 
373. A cylinder contains 3.5 lb. of air at a pressure of 100 lb. per sq. in. 

abs. and at a temperature of 95°F. The air is allowed to expand isothermally 

until the volume is twice its original value. Determine the final pressure 

and the external work done by the gas. 

374. Solve Prob. 373 when the expansion is adiabatic. 

376. A compressor does 450,000 ft.lb. of work on 1 lb. of a gas in 

compressing it adiabatically from a pressure of 15 lb, per sq. in. abs. The 
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density is initially 0.(X)14 slugs per eu. ft. and k — 1.32. Find the pressure 
and density after compression. 

193. The Intrinsic Energy of Gases.—In tho first pari of Art. 

192 it was shown that tho oxtornal work done hy a gas is oqnal to 

p dv for a unit of weight. It is now necessary to find a similar 

expression for that portion of tht^ heat addtnl to a gas whicli 

is taken up in increasing its intrinsit^ (uiergy. For tlu' moment no 

distinction will be mad(‘ between lu^at added to the gas from an 

external source and that g('nerat('d in overcoming resistance, so 

Eq. (2) may be us(^d. This expression, when applied to a finite 

volume of gas, becomes, after integration, 

Q = A -/i+ 7 (11) 

where the subscripts 1 and 2 denot(‘ the initial and final states, 

respectively. If heat is added to the gas and the volume is 

maintained constant, tlum obviously the external work is equal 

to zero and all the heat added will be utilized in raising the 

temperature*. Und('r such conditions l^Jq. (11) becomes 

Q = r„(7b - T.) = - /i 

in which Cp is the specific h(*at of the gas at constant volume and 

Ti and Ta are the initial and final absolute temperatures. In 

this case tlu^ change in intrinsic; (‘iiergy of the gas is measured 

directly by the change in tcanperature. This is true whether 

the heat is addt*d at constant volume or otherwise. That is, 

h- Ii = Ti) (12a) 

or, in differential form, 

dl - c„ dT (126) 

The change in intrinsic energy is always directly proportional 

to the change in temperature. 

When heat is added and the prcvssure is kept constant, Eq. (11), 

after integrating and substituting ~ h from Eq. (12a), 

becomes 

- T,) = c,{T, - T,) + (13) 
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Cp being the specific heat at constant pressure. But the equa¬ 

tion of condition for a perfect gas [Eq. (12), page 6] is pv = RT^ 
so that 

p(v, - V,) = R{T^ - T,) (14) 

After substituting p{v2 — t^i) from Eq. (14) and dividing out the 

term — Ti, Eq. (13) becomes 

Cp - r„ ’= J (15) 

Now the change in intrinsic eiuu-gy in any typo of expansion, 

found from Eq. (12a) by introducing the values of Ti and from 

the equation of condition, is 

h - h = ^{P2V2 “ Pl^^l) = J ^{P2V2 - PlVl) 

After substituting the value of J/R from Eq. (15), this expression 

becomes 

h-h = = J(r- 
(16a) 

where k == Cp/cv is the ratio of spcK^ific heats at constant pressure 

and constant volume. This equation may also be written in the 

differential form 

dl 
d{pv) 

J{k - 1) 
(165) 

By means of Eq. (16a) or (165) the intrinsic energy change 

involved may be expressed in terms of the changes in pressure 

and specific volume. With these preliminary developments 

completed, special problems in the flow of gases may now be 

discussed. 

Problem 376. What is the change in intrinsic energy of a gas if its 

temperature is increased from 60 to 220T. ? jR is 55.0 ft. per °F. and k = 1.40. 

377. Air at a pressure of 14.7 lb. per sq. in. abs. and a temperature of 

60°F. absorbs 25 B.t.u. of heat per pound, during which process the 

temperature rises to 130°F. Determine the change in intrinsic energy and 

the external work per pound of air. 

378. What is the change in intrinsic energy of 1 lb. of air if it expands 

adiabatically from a pressure of 210 lb. per sq. in. abs. and a temperature 

of 110°F. to a pressure of 15 lb. per sq. in. abs.? What is the amount of 

external work done by the gas during this expansion? 
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194. Low-velocity Flow in Pipes at Constant Temperature.— 
The motion of gases in tubes of variable cross-sectional area is 

too complex to be considered here, but the flow through pipes 

of constant cross section presents a problem that is relatively 

simple in its treatment. Lc^t it be assumed that a pipe line is 

so located that th(‘ temperature of thf‘ gas nmiains esscuitially 

constant and that the v(*locities of flow are so small that th(‘ 

kinetic energy may be negle(*ted. Bernoulli\s theorem as 

represented by Eq. (10) then Ix'comes 

(Iz + V dp -f tlEf — 0 (17) 

Now the loss due to resistance for a length of pipe dl, correspond¬ 

ing to the change in elevation dz^ as given by Eq. (20), page 202, is 

where / in general is a function of the Reynolds^ number. The 

symbol D is used hen' for the diametc'r in order to avoid confusion 

with the differential symbol d. As long as the temperature is 

constant it may be shown that the Reynolds^ number and there¬ 

fore the value of/ nunain unchanged. At constant temperature 

the coefficient of viscosity is constant and the Reynolds^ number 

will be affected only by change's in the' velocity and density. 

The relation between these last two quantities may be found 

from th(' equation of continuity 

V 

AV 
or 

The density is p 11gv and substituting the above value of v 
gives p = WJAVg, The Reynolds' number is then equal to 

pVD WD 
Nr = -- = -j- 

fjL Agp 

This equation shows that, for a given weight discharge, pipe 

diameter and temperature. Nr is constant. Hence the friction 

factor/is also constant. 

The heat relationship for this problem, as given by Eq. (3), is 

dEf p dv 
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dl being equal to zero when the temperature is constant. The 

right-hand member of this expression may be written as 

p dv _ {p dv V dp — V dp) __ d(pv) _ v dp 

But from Eq. (166), = {k — \)dl = 0 since in this case 

dl = 0. Then pdv/J = —vdpjJ, Substituting this in Eq. 

(18), it becomes 

iQ + (19) 

A comparison of Eqs. (17) and (19) shows that dQ is equal to 

dzjJ^ that is, the energy added in the form of heat from an 

external sources must be exactly equal to th(^ change in potential 

emn-gy due to tlu^ rise in tlie pipe liiu^ If the pipe line w('re 

horizontal, tlu^n dz = 0 and no heat would Ix' added. In the.se 

cases the heat generatcnl internally in overcoming the resistance 

to flow is completely utilized in doing ext(‘rnal work on the gas 

and produces changes in pres.sure and deuisiiy in th(' pipe line. 

In order to determine the \ ahu^ of tlu^ velocity or pressure at 

any point in the pipe, it is neces.sary to introduce the equation of 

condition of the gas for the isothermal state, that is, 

pv = piv, = p<zV2 ~ RT (20) 

It will be assunu'd that the pip(‘ line is straight and slopes upward 

at an angle a with the horizontal so that the relation between 

elevation and length is 

z = I sin a or dz = dl sin a (21) 

It is now desired to evaluate the term v dp in Eq. (17). From 

the equation of continuity the specific volume v — AVfW, 
The pressure at any point, as given by Eq. (20), is then 

PlVi 
W 

AV 

the subscript 1 being used to indicate conditions at the entrance 

to the pipe where I and z are taken as equal to zero. The differ¬ 

ential of the pressure obtained from this last expression is 

WdV 
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and finally thp dnsirod t.('rni is 

, (AV\(-p,ihW dV\ dV 
vdp = 

The introduction of this oxi)ression into Eq. (17), along with dz 
from Eq. (21) and the value of dEf, gives a differential equation 

in t(^rms of the variables I and V in the form 

77 • dV^.dlV^^ . dl sin O' - p,th-y + /- — = 0 (22, 

This (Kjuation is rc^adily })ut into the form 

dl plVi \dV 

which can be integrated, and for the limits 0 and Z, where the 

velo(*ities are Vi and F2, respectively, it becomes 

ViV\ 

2 sin a h)gr 
/ vv 

\ D 2g + sin a, 

(23) 

This result may also be givem in te^rms of the initial and final 

pressures by means of a simple' transformation. From the 

equation of continuity 

W = = ^2^2 

Vl V2 

and since Ai = A2 the velocity at the outlet is F2 = V1V2/V1. 
But fremi Eq. (20) V2/V1 = P1/P2 and therefore 72 = ViV 1!])%. 
Also from the equatie)n of continuity 7i = Wvi/A so that 

72 = WvipilAp2- The substitution of these values in Eq. (23) 

gives the following equation for the length of pipe between the 

points where the pressures are pi and p2* 

P\V\ 

2 sin r 
log. 

sin a: + - 
fWHi^p^ 

\ 

sin a + 

2gDA^ 
JWWpi 
■ 2gDA^^f 

(24) 
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For the special case of a pipe with its axis vertical and the gas 

flowing upward, a = 90 deg. and Eqs. (23) and (24) become 

and 

PiVi 
/ Fr 

V2^D 2g 
+ V 

/ IV 

D 2g 

(25) 

+ 1 

PlVi 
log. 

'pi^ + 
fWWpi 

2gDA'^ 

2 _L 
(26) 

,P2^ + 2gDA‘^ 

These formulas might be considered as applicable to the calcula¬ 

tions of gas or air flow in chimneys and mine shafts. 

The case of a horizontal pipe (a = 0) leads to an indeterminate 

expression of the form 0/0 for h]qs. (23) and (24); while the 

limiting values Jiiay be found, it is simpler to return to Eq. (22) 

which now becomes 

-pi^i 
dV 
V e 2.(7 

(27) 

Dividing through by piViV^, this expression becomes 

dV ^ fdl 
F-’ 2gDp,v, 

and, after integration and substitution of tlie proper limits and 

noting that piVi is constant, 

1 fl 
gDpiVi 

= 0 

Making use of the relations between pressures and velocities, 

as was done in transforming Eq. (23) to Eq, (24), the result 

obtained is 

Pi^ - pi^ ^ flVi^ 

Pi- gDpiVi 
(28) 

The pressure at point 2 is 

Pi flViWY 
gDApJ 

(29) 
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These special cases of the horizontal and vertical pipes have 

been worked out by Kemler^ but his solutions are presented in a 

slightly different form. When the velocities of flow are such 

that the kinetic energy cannot be neglected, the differential 

equation to be solved becomes somewhat more complicated and 

the solution of this problem will not be discusst^d here.^ 

Problem 379. Air flows through a smooth 4-m. horizontal pipe 1000 ft. 

long, the inlet conditions being as follows: pressure pi = 125 lb. per sq. in. 

abs., temperature h = 80'^F., velocity Vi — 120 ft. per sec. Determine 

the pressure drop for every 260 ft. of pipe length when (a) the fluid is assumed 

incompressible, (b) the fluid is compressible and the temperature is constant. 

380. Show by expansion in a series that for small values of flViW/gDAp^ 
the pressure drop in a horizontal pipe line with isothermal flow is approxi¬ 

mately the same as that given by the Darcy formula based on the assump¬ 

tion of an incompressible fluid. 

381. A gas enters a smooth 3-in. horizontal pipe at 175 lb. per sq. in. gage, 

a velocity of 95 ft. per sec. and a density of 0.040 slugs per cu. ft. The pipe 

discharges into the open atmosphere. What is the maximum allowable 

length of the pipe? R - 35.1 ft. per °F. and fx - 4.53 X 10”^ slugs per 

ft. vsec. 

382. Gas enters the base of a 3-ft. stack at 175°P^., the rate of delivery 

being 9 lb. per sec. The pressure at the upper end is atmospheric (14.70 lb. 

per sq. in. abs.) while at the entrance it is 14.72 lb. per sq. in. abs. Deter¬ 

mine the maximum allowable length of vstack and the inlet and exit velocities 

with this length. R — 40.0 ft. per °F. and / = 0.0227. 

196. Flow of Gas in Insulated Pipes.—When gas flows through 

a perfectly insulated pipe no heat can be added or withdrawn 

from the gas through the pipe walls. Thus the thermodynamic 

process involved is an adiabatic one. The heat generated in 

overcoming the resistance to the flow is, however, absorbed by 

the gas and (•onsequently the relation between pressure and 

specific volume is not of the form — constant. The general 

case of an ineJined pipe in which the kinetic energy of the flow 

is taken into account involves the solution of a rather com¬ 

plicated differential equation'^ and only the case of a horizontal 

pipe will be discussed here. In this problem the change in the 

intrinsic energy of the gas is not equal to zero but has the value 

' Kbmler, E., a Study of the Data on the Flow of Fluids in Pipes, Trans. 
A.S.M.E., Hydraulics Div.y 1933. 

» Stodola, a., “Steam and Gas Turbines,vol. I, p. 60; vol. II, p. 1025, 

McGraw-Hill Book Company, Inc., New York, 1927. 

* Grashof, F., “Theoretische Maschinenlehre,’* vol. I, p. 594, Leopold 

Voss, Leipzig, 1875. 
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given by Eq. (166). Noting that dQ = 0, the fundamental 

lieat-energy relation of Eq. (3) becomes 

_ (kp d,v + V dp) 

For a horizontal pipe Bernoulli’s theorem from Eq. (10) is 

_j_ ^ =z 0 (30) 

and, with the introduction into Eq. (30) of the above value of dJ?/, 

this expression beeom(‘s 

c/(F2) kd(pv) _ 

2g k - 1 

or 

d(V^) = --j^idipv) 

The integration of this equation between th(‘ limits (*orrcsponding 

to the inlet of the pipe and to any other point gives the result 

- pv) (31) 

The frictional-loss term is now assumcid to have the same form 

as in the constant-temperature problem of th(' preceding article; 

in other words, the friction factor / is still regarded as a constant. 

Under this assumption Eq. (30) becomes 

d{V^) 
+ V dp +f 

dlV^ 
D 2g 

= 0 

or, after adding and subtracting p dv, 

— + dipv)-pdv+f^^^^0 

The value of pv as obtained from Eq. (31) is 

(k - 1), 

(32) 

pv = piVi — 
2kg 

-(F=“ - Fi') (33) 
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It has already been mentioned that the pressure-volume 

relationship for this flow is not of the type — constant. The 

actual form of the equation of state may be obtained from Eq. 

(33) and is 

, {k - 1)F^ , (k - 1)1/,2 

+ 2kg = + W 

or 

pv 

Now the quantity 

1 + 
(/c - i)y^ 

2kgpv 
= constant 

kgpv — ^ = c- 
p 

(34) 

c being the acoustics velocity corresponding to the pressun^ p. 
Thus the equation of condition becomes 

= constant (35) 

in which Nis Machos number. If Nm is small, the relation 

between specific* volume and pressure is approximately of the 

form 

pv = constant 

and, on comparison with the* gcmeral gas law 

pv = HT 

it a])pears that this would be a case of constant temperature. 

In many case's the term involving Mach\s number is not negligible* 

and the pressure-volume relation is correctly given by either 

Eq. (34) or Eq. (35). 

As an example, the pressure-volume diagram for the case of 

methane is shown in Fig. 248, the values of k and R being taken 

as 1.32 and 96.31, respectively. The initial conditions are 

assumed to be as follows: pi = 150 lb. per sq. in., ti = 100°F., 

Fi/ci = Am, = 0.075. The pipe diameter is 6 in. From the 

equation 

PiVi = HTi 

in which Ti is the absolute initial temperature, the initial specific 

volume is found to be 
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Vi = = 2.495 eu. ft./lb. 
Pi 

For the necessary computations Eq. (34) may be used but it is 

first advantageous to introduce the weight discharge in place 

of the velocities. From the equation of (continuity V = WvjAj 
so that the initial velocity is Fi = Wvi/A. The substitution of 

these values in Eq. (34) gives 

, (k - 1)WV 
”• + ■ ~-W,F- P\V\ + 

{k - 
'2kgA‘^~ 

(36) 

In order to determine W it is necessary to find the value of Vi 
from the given value of Nm^. The acoustic velocity at the 

entrance to the pipe is 

Cl - ^kgpiVi = 1512 ft./sec. 

so that 

Vi = NAf.ci = 0.075 X 1512 = 113.5 ft./sec. 

For a 6-in. pipe the cross-sectional area is 0.196 sq. ft. and the 

weight discharge is 

W = 
Vi 

0.196 X 113.5 

2.495 
8.90 lb./sec. 

The curves for ivsothermal and adiabatic expauwsion represented 

by the equations pv = constant and pv^ = constant, respec¬ 

tively, are also shown in Fig. 248 for the same initial conditions 

as giv(m above. These curves show that, except for relatively 

low pressures, the gas follows the isothermal curve very closely 

so that the assumption of a ccmstant friction factor / is probably 

not far frcOT the truth. The third curve representing the 

adiabatic expansion falls considerably below the otluT two and 

cannot be considered a good approximation of tliat given by the 

exact equation. 

196. Limiting Conditions for Gas Flow in Insulated Pipes.— 
It will be noted on examination of the pressure-volume curves 

of Fig. 248 that the curve representing the exact condition of the 

gas as it flows through the pipe intersects the volume axis at a 

finite value of v when the pressure drops to zero. The numerical 

value of this abscissa may readily be found by putting p equal to 

zero in Eq. (36). For the example illustrated in Fig. 248 the 
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specific volume is 83.3 cu. ft. per lb. when the pressure has 

attained the absolute zero value. Such a condition, of course, 

cannot exist, for as the pressure approaches zero the specific, 

volume must become infinitely large, as is the case for the 

isothermal and adiabatic expansions. The equation of condition 

V, cu. ft . per lb. 

Fig. 248.—Pressure-volume diagram for gas flow in an insulated pipe. 

for gas flowing through a pipe, as developed in the preceding 

article, is therefore incorrect in the neighborhood of zero pressure. 

This problem of gas flow in an insulated pipe has been classified 

as adiabatic because no heat is added or withdrawn externally 

from the system. However, the absorption by the gas of the 

heat generated by friction makes the pressure-volume relation of 
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Eq. (36) different in character from the usual adiabatic expansion 

represented by the equation 

pv^ = B = constant (37) 

If there were no heat generated by friction, then Eq. (37) would 

cjorrectly represent the ndation between the pressure and specific 

volume at various points along the pipe'. 

The relation given by Eq. (36) is not valid at zero pressure and, 

as will be shown presently, cannot be valid beyond a certain 

limiting pressure. In order to determine this limiting value, the 

expansion represented by the '^actuar^ curve shown in Fig. 248 

40 

0 20 40 60 80 100 

u,cu,ff. per lb. 

Fia. 249.—Determination of limiting conditions in an insulated pipe. 

and by Eq. (36) may again be considered. For convenience 

the lower portion of this curve is drawn again in Fig. 249. Let it 

be supposed that point A on this curve at which the pressure is 

po and the specific volume is vo represents a condition at which the 

friction loss has become zero. Since there can be no gain in 

energy due to friction, the expansion, if it is to continue to still 

lower pressures, must follow the limiting adiabatic law of Eq. 

(37), the constant B now being determined by conditions at A. 

The nature of the expansion in the pipe between the inlet and 

the point at which the pressure is po is then determined by Eq. 

(36) while beyond this point it is given by Eq. (37). The curve 

represented by Eq. (37) is also shown in Fig. 249. 
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The changes in pressure and specific volume which occur in the 

gas as it flows through the pipe are normally continuous in 

character. Therefore the slopes of the two expansion curves 

must be the same at the point A, which they have in common. 

Furthermore, it is obvious that the friction loss in a pipe can 

never be completely reduced to zero except at the exit end of the 

pipe where the pip(^ wall (Uids. Thc^ I)ressun‘ po and the specific 

volume ?;o must therefore correspond to conditions at the dis¬ 

charge end of the pip(‘, represented by j)oint A of Fig. 249. 

The value of the limiting pressure and the corresponding 

specific, volume may be found by equating the slopes of the two 

curves represent(Hl by Eqs. (36) and (37). In the equation of 

the actual flow, the (constant coefficient 
{k-l)W^ 

2kg A 2 
is put equal 

to 6 for simplicity so that Eq. (36) becomes 

from which 

pv = piV] + bvi^ — bv‘^ 

V 

(38n) 

(38fc) 

The derivative of p with respeid. to v is then 

dp ^ {piVi + bvr) _ , 

(iv 
(39) 

For the iiiniting adiabatic expansion the pressure as obtained 

from Eq. (37) is 

B 
P = -* 

SO that 

dp _ _Bk __ 
dv V 

(40) 

The limiting values of the pressure and specific volume, po 

and Vo, respectively, are now obtained by equating the expressions 

for dp/dv as given by Eqs. (39) and (40) and at the same time 

putting p = Po and v = Vo. The result is 

kpo ^ piVi + bvi^ 

Vo Vo^ 
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or 

PiVi + hvi^ , bvo^ 
Povo = -^ (41) 

This value of pot^o niay be equated to that obtained from Eq. 

(38a), from which an expression for the ratio of the final and 

initial values of the specific volume is obtained in the form 

fe) -(l+OO+fe) 
The original value of h is now introduced in this expression and 

at the same time the ratio W/A is replaced by its equivalent 
V, 
Vi 

so that b = 
2kg 

and the value of the specific volume 

ratio becomes 

Vi - {(m) 1 + 
2kgpiVi 

{k - 1)F J}’ 
The numerator of the second term in the brackets will be recog¬ 

nized at once as being equal to twice the square of the acoustic 

velocity at the entrance to the pipe; on writing Ci for this acoustic 

velocity and letting the ratio Fi/ct = the initial value of 

Machos number, the final result is 

Vi {k - }’* (42) 

The value of the ratio of the final and initial pressures is 

'bund in a similar manner by solving Eq. (41) for po/pi, that is, 

£o ^ , hvo\ 
Pi k\Vo piVo ^ Pi) 

or 

Pi kl\ Pi/V(,~^ Pi vij 

As in the preceding calculations the value of b is now substituted 

in this equation and the initial acoustic velocity ci = -y/kgp^Vi is 

also introduced, the result being 

p? = i/ri + (fc - 

Pi ML 2c,* jvo^ 2ci* vj 
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Putting Fi/ci = NMy, this may also be written in the form 

Po /r. . , {h - DNmA 
p, 2 i\v j ^ 2 / 

The last step in these calculations is to substitute the value of 
Vq/vi as given by Eq. (42). After clearing of fractions and 
simplifying, the above expression becomes 

Pi 
Afi 2 1 + 

2 
(fc - l)NMy^ 

(43) 

The ratio between the values of the velocity and specific 
volume of the gas at any point in the pipe is a constant, as may 
be shown by writing the equation of continuity in the form 

= Z = Ij = Zi! 
A V Vi Vo 

both the weight and the area being constants. Thus 

Fi 

so that the ratio between the final and initial velocities is also 
given by Eq. (42). Now the acoustic velocity at the exit of the 
pipe is 

Co = Vkgpovo = 

When the specific volume and pressure ratios, as given by Eqs. 
(42) and (43), are substituted in the above equation, the expres¬ 
sion for the acoustic velocity at the exit becomes 

Co = Fi 1 + 2 
{k - 1)N 

But this is exactly the same as the limiting velocity obtained from 
Eq. (42). It thus appears that when a compressible gas flows 
through a pipe the pressure decreases until the velocity of the 
gas and the acoustic velocity at that pressure and corresponding 
specific volume are equal. A further decrease in the back pres¬ 
sure on the exit of the pipe would not modify the flow in any 
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way for the gas is moving at a higher velocity than the rate at 

which this decrease of pressure can be carried back into the pipe. 

It will be noted that the expressions obtained for the ratios of 

the initial and final values of the specific volume, velocity and 

pressure are functions only of Nthe initial value of Machos 

number, and A:, the ratio of specific heats. Values of these 

ratios for the case where k = 1.32, applicable to th(^ study of the 

flow of such gases as carbon dioxide, ammonia and methane, and 

Fig. 250.—Limiting values of velocity, pressure and specific volume ratios for 
an insulated pipe as functions of Mach’s number. 

approximately to acetylene {k = 1.28), are shown by the curves 

in Fig. 250 for values of Nrunning from zero to unity. 

For the pipe flow previously discussed, the pressure-volume 

curve for which is shown in Fig. 248, N= 0.075. The limiting 

values of the specific volume, velocity and pressure ratios as 

determined from Fig. 250 are v^/vi = Fo/Fi = 12.39 and 

po/pi = 0.0695, and the conditions at the inlet and exit ends of 

the pipe are then as follows: 

Inlet end Exit end 

Pressure. 150 lb. per sq. in. 

113.5 ft. per sec. 

1512 ft. per sec. 

2.495 cu. ft. per lb. 

10.42 lb. per sq. in. 
1404 ft. per sec. 

1404 ft. per sec. 

30.90 cu. ft. per lb. 

Velocity. 

Acoustic velocity, , 

Specific volume.... 
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197. Conditions in the Interior of an Insulated Pipe.—The 
discussion of the previous article was entirely concerned with 

the determination of the conditions existing in a gas at the exit 

end of an insulated pipe through which the gas is flowing. It 

is now i)r()posed to deteriniiu^ the length of pipe necessary to 

satisfy these conditions and also to investigate the variation in 

pressure, specific volume and velocity at points within the pipe. 

Tliis may be accomplished by returning to a consideration of 

Eq. (33), which for convenien(*e is n^written here. It is 

From this expression the two terms d{pv) and p dv which appear 

in Eq. (32) may be d(‘termined. The first of these terms is 

simply the differential of Eq. (44), that is. 

d{'pv) = 
{k-l)V dV 

kg 
(45) 

The value of the second term is dc'tennined by calculating 

the specifics volume from the equation of continuity, that is, 

V = AV/W. The differential of this oxprcission is 

so that 

dv = A dV/W = V dV/V, 

, dV 
p dv = pv -y- 

or, using expression (44) for pv, 

{k - 1) p dv P\V\ 2kg 
{V^ - Fi=) 

dV 
V 

(46) 

The substitution of expressions (45) and (46) in Eq. (32) gives 

VdV _ {k - l)VdV 
g kg 

2kgpiVi — (k — 1)(F^ 

2kg 
- FF)ldF 

J V 

^ D 2g 

After dividing through by V^/g and collecting terms, this equa¬ 

tion becomes 

fdl 
2D 

{k + l)dV l' 
2k V ^ k 

kgpxVi -1- 

{k 
’2 

1) dV 
F* 
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which may be integrated directly between the points 0 and I 
at which the velocities are respectively V i and V. The result is 

11 
D 

(fc + 1) 

k Ci^ + 
(k - 1) 

2 

in which the combination kgpiVi has b(!en put equal to Ci‘. This 

may also be written in the form 

£> 

(k + 1) 

2k log, zi + Y— (47) 

whore NMi = Vi/ci. 
From Eq. (47) it is now possible to calculate the values of the 

quantity fl/D for a given value of Nand for a series of values of 

VjVif this latter ratio being equal to v/vi. If the friction factor 

/ is known, it is a simple matter to determine the length of a 

given pipe corresponding to any particular velocity. The value 

of the length of pipe from the inlet to the exit for a given set of 

inlet conditions may be found by introducing the limiting value 

of Vo/Vi from Eq. (42). 

The ratio of the pressure at any point in the pipe to the initial 

^alue may be found by returning to the equation of state in the 

form of Eq. (386). On dividing by the initial pressure pi, this 

becomes 

p _ hv\^ bv 

Pi piv pi 

The introduction of the value of 6 and the initial values of the 

acoustic velocity and Machos number and the substitution of 

V/Vi for v/vi make it possible to write this expression in the form 

Pi V 1 + 
(k-l)NM^V y2\i 

2 V 
(48) 

The complete solution to the problem of the flow of gas through 

a pipe is now contained in Eqs. (42), (43), (47) and (48). A 

convenient procedure for using these equations is to make up a 

set of graphs from which the desired values can be readily 

determined for any given set of initial conditions. Figure 251 

shows a series of curves representing v/vi == V/Vi plotted as a 

function of fl/D for several values of Nui, these curves being 
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obtained by substituting values of V/Vi in Eq. (47). The 
limiting value of V/Vi is obtained from Eq. (42), being equal to 
vo/vi. The dotted curve in Fig. 251 represents these limiting 
values of the velocity ratio plotted against the corresponding 
values of fl/D. As in the case of the data shown in Fig. 250, 
the constant k has been taken as 1.32. 

A similar set of curves showing the variation of the pressure 
ratio p/pi with fl/D for several value's of Nm, is plotted in 

Fig. 251.-““Variation of spooific volume or velocity ratio with Mach’s number and 
////> for an insulated pipe. 

Fig. 252, the calculations being based on Eqs. (47) and (48). 
The limiting values of the pressure ratio as obtained from Eq. 
(43) are indicated by the dotted curve. It will be noted that in 
both Figs. 251 and 252 the slopes of the curves tend to become 
infinite as the limiting condition is approached. 

The use of these curves is illustrated by the example that 
follows. Suppose that the gas in question is methane and that 
the initial conditions are those of the example shown in Fig. 
248, that is, pi == 150 lb. per sq. in., Vi = 2.495 cu. ft. per lb., 
ti == 100°F., Nm^ = 0.075, Cl = 1512 ft. per sec., Vi = 113.5 ft. 
per sec. and W == 8.90 lb. per sec. The pipe is made of smooth 
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steel and has a diameter of 6 in. The final conditions have 
already been determined from Fig. 250 and arc given on page 412. 
The limiting values of the pressure, specific volume and velocity 
are, respectively, po = 10.42 lb. per .sq. in., = 30.90 cu. ft per 
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The values of the coefficient of viscosity corresponding to the 
initial and final teini)eratures are then ah = 115.3 X 10“® and 
/no = 98.9 X 10"^ poises, or in English units 2.40 X 10~^ and 
2.06 X 10“’' slugs per ft. sec., respectively. The initial and final 
values of the Reynolds’ number are therefore 

pVid ^ y_id 

AO gt^ivi 
113.5 X 0.5 

32.2 X 2.40 X'10-'X 2.495 
= 2.95 X 10« 

and 

\\d 

gpovo 

1404 X 0.5 
3^2 X 2.06 X 10-’ X 36T90 

= 3.41 X 10" 

Then for this pipe an average value of the friction factor 
would be about 0.017 (s(!e Fig. 140, page 205). The curves 

Fid. 253.- -Conditiona in the interior of an inaulated pipe. 

of Figs. 251 aiul 252 for Nm^ = 0.075 are now used to determine 
the variation of pressure, spetafic volume and velocity, the 
results being shown graphically in Fig. 253. The limiting value 
of fl/D is 129.6 so that the length of the pipe becomes 3810 ft. 
The values of the acoustic velocity as determined by the formula 
c — \/^kgpv are also plotted in this figure and it appears that the 
velocity of the gas increases with the distance from the inlet, 
while the acoustic velocity decreases slightly, both velocities 
being the same at the outlet. From the values of pressure and 
specific volume along the pipe the corresponding temperatures 
may be determined. The coe^fficients of viscosity and the Rey¬ 
nolds^ numbers for these points are tlnm easily found and a 
curve showing the variation of Nr with distance down the pipe is 
also included in Fig. 253. This curve shows that the assumption 
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of a constant Reynolds^ number and friction factor is not far 
from the truth in this particular problem. 

If the back pressure on the exit of the pipe were made less 
than the limiting value of 10.42 lb. per sq. in., there would be no 
increase in the rate of discharge. When the back pressure is 
increased, the length of pipe must be decreased if the initial 
conditions, pipe diameter, friction factor and discharge are to 
remain unchanged. An increase in the length of the pipe beyond 
the limiting value of 3810 ft. would require a change in the value 
of Nand therefore in the weight W flowing per second. 

198. Comparison of Compressible and Incompressible Fluid 
Flow Theories.—It is of considerable interest to compare the 
results obtained for the flow of gases in insulat(Kl pipes with those 
given in Chap. IX bas(‘d on the assumption of an incompressible 
fluid. The equation for the loss in pressure in a pipe of length I 
under the latter conditions is 

L h flV'^ (49) 

and in the case of an incompressible fluid in steady motion the 
specific volume v and the velocity V are both constants. If 
Eq. (49) is divided through by pi, it may be solved for the ratio 
p/pi, which is found to be 

z = 1 -.JIYL 
Pi 2Dgpiv 

(50) 

Since the fluid is assumed to be incompressible, the velocity of 
sound in it should theoretically be infinitely large, but the 
combination \/kgpiV may still be considered as numerically 
equal to the acoustic velocity Ci, which the fluid would have if it 
were compressible. Equation (50) may therefore be written in 
the form 

so that, as in the case of gas flow, the pressure drop depends on 
the ratio of the inlet velocity to the velocity of sound and the 
product of the friction factor by the length-diameter ratio. For 
a given value of Nm^ it appears that the pressure ratio is a linear 
function of the quantity fl/D, The curves showing this ratio 
^ a function of fl/D for different values of are drawn in Fig. 
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252 with dashed lines and it appears that they are tangent to the 
exact curves at the point where/Z/D equals zero. As the distance 
down the pipe or as the value of fl/D is increased, the difference 
between the results of the two methods becomes more and more 
pronounced. Thus, for example, in the case where Nm^ ~ 0.075, 
the error in the pressure ratio made by assuming an incompres¬ 
sible fluid is 10 per cent when fl/D = 75. The limiting value of 
fl/D in this (*,ase is 129.4 so that the error is less than 10 per cent 
only for about the first (juarter of the ])ipe. The theory of 
incompressible fluids giv(‘s no information about the existence 
of limiting pressures and values of fl/D and, even for low values 
of Machos number, the assumption of incompressibility is 
satisfactory only for a limitc^d length near th(^ inlet. Therefore, 
as in the discussion of the Venturi met(?r in Art. 184, it is recom¬ 
mended in connection with the flow of gas(?s in pipes that com- 
prcvssibility should b(^ taken into account unless d(?finite figures 

are available whi(4i show that the assumption of an incompres¬ 
sible fluid does not involve any serious errors. 

The theory discussed in the precc^ding articles has many 
important applic^ations such as in the design of long natural-gas 
lines, municipal gas-supply systems, air ducats for heating and 
ventilating systems and various industrial installations where 
gases are piped from one point to another. The theory is 
applicable^ to steam insofar as it may be regarded as a gas that 
obeys the laws stated above. Charts similar to those of Figs. 
250, 251, and 252 for air {k — 1.406) will be found in the technical 
literature, along with further advanced thermodynamic treat¬ 
ments of these problems.^ 

Problem 383. At the entrance to a long insulated pipe line carrying 

methane, the pressure is 120 lb. per sq. in. abs., the temperature is 107.6°F. 

and the velocity is 95 ft. per sec. The pipe is smooth steel and has a diam¬ 

eter of 4 in. {a) Determine the limiting values of the pressure, flow velocity 

and acoustic velocity at the exit. (6) Wliat is the length of the pipe? (c) 

Determine the variation in pressure, velocity, acoustic velocity and specific 

volume with distance from the pipe ink^t. Plot the results in graphical form. 

^ SchOle, W., “Technical Thermodynamics,” pp. 274-316, Sir Isaac 

Pitman <fe Sons, London, 1933. 

Stodola, op. dt. 



CHAPTER XV 

DYNAMIC SIMILARITY 

199. Experiments in Fluid Mechanics.—In discussing the 
problems of fluid mecdianics in the preceding chapters an effort 
has been made to develop a rational theory for the flow involved 
in each case. Such a theory, if complete and entirely correct, 
would express both qualitatively and quantitatively the relations 
between all the factors that affect flow in each case. A survey 
of the problems discussed will bring out the fact that in most 
(^ases such theories as have Ixhui developed do not yield com¬ 
pletely quantitative solutions and it has frequently been neces¬ 
sary to turn to experimental research for workable r(‘sults. 
Such research may have been that required to furnish constants 
to serve as coeflScients and exponents with whi(*li to modify the 
theory developed, or it may have been research work which 
gives knowledge of the effect of one or more of the various factors 
involved in the flow. Even where quantitative theories have been 
worked out, it is essential that tiny be verific'd experimentally 
because such theories are usually based on certain simplifying 
assumptions that are not entirely satisfi(‘d by real fluids. 

Much of the ('xperimental information given in this text was 
obtained by full-scale work. This is largely true, for example, 
of the work on pipes, weirs, orifices and channels. However, a 
large part of the advance in fluid me(^hanics, and in engineering 
work related to it, is due to the practice of making observations 
and tests on small-scale models. The resistance and behavior 
of an airplane are determined by experiments in air with a model 
geometrically similar to the actual airplane but having a linear 
scale which may be as small as one-twentieth of the prototype. 
Likewise the power requirements of a boat are predicted from 
towing tests on models only a few feet long. Hydraulic develop¬ 
ments, river improvements and harbor works are studied in 
detail on small-scale models, and the performances of pro¬ 
pellers, turbines and pumps are predicted on the basis of tests on 
small homologous machines. 

420 
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Because of the broad field of application of model experimenta¬ 
tion in fluid mechanics, no discussion of that suVjject can be 
regarded as complete without some study of the fundamental 
principles on which such tests are based. When a test is made on 
a geometrically similar model of a certain device or arrangement, 
the first question that naturally arises is concerned with tlu^ 
relation between the fences that act on the model and the cor¬ 
responding OIK'S invoIv('d in the fluid motion connected witli 
the full-scale prototype. Such a question immediately intro¬ 
duces th(^ subject of dynamic, similarity or similitude which has 
been touched on to sonn^ extent in the prec(‘ding chapters. 

200. Dynamic Similitude.—In general it may be said that two 
fluid motions are dynamically similar when, first, the boundaries 
of the flows are geometrically similar, and, second, when the 
corresponding stn'ainlines are likewise similar in shape. This 
latter condition requires that the various forces acting on cor¬ 
responding fluid (‘lements of the two systems must have the same 
ratio to one another for both flows. 

The first step in determining the analytical (condition for 
dynamic similarity of a given fluid flow with that of its prototype 
is to determine what fon^es are involved in these motions. If 
all the properties possessed by real fluids, su(*h as viscosity, 
inertia and compressibility, are considered simultaneously, the 
results obtained are usually so complicated in form that it is 
difficult to bring out (clearly tlu' significance of the most important 
factors. Therefore the usual procedure is to introduce certain 
simplifying assumptions so that the influence of the different 
items involved can be studied separately. In the most general 
type of fluid motion conceivable there might be as many as 
five different kinds of forces acting on the elements of the fluid. 
These forces are as follows: 

1. Pressure forces. 
2. Inertia forces. 
3. External forces such as those due to the attraction of 

gravity. 
4. Viscous forces. 
5. Elastic forces. 
In some cases there are also forces due to the presence of a 

surface film but such forces are considered to be negligible here. 
However, they may be very important in some problems, for 
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example, in dealing with capillary waves, flow with a free surface 
at low velocity or the behavior of small jets at low heads. 

In any fluid flow the pressure forces acting may be considered 
as being of two kinds: first, those produced by hydrostatic 
action; second, those which result directly from the motion of 
the fluid. This study of similitude is concerned only with the 
latter variety of pressure force. 

In addition to giving information as to the nature of each 
of these individual forces, an analytical study of the fluid motion 
usually yields an equation of equilibrium relating them with one 
another. By means of this equation it is possible to express 
one of the five forces listed above in terms of the other four and 
thereby reduce the number that must be taken into consideration 
in establishing the condition of dynamics similarity. The 
majority of the problems in fluid meclianics involve only three 
of the above forces and divide th(uns('lves into three class(‘s shown 
in the table below. Each class involves both inert,ia and pressure 

Force Combination 

1. Viscous, inertia, pn'ssure forc(is 

2. Gravity, inertia, pressun^ forces 

3. Elastic, inertia, pressure forces. 

Significant 
Ratio 

Inertia force 
Viscous force 

liujrtia force 

Gravity force 

Inertia fonse 
Elastic force 

force along with either viscous, gravity or elastic force. The 
pressure force in each case is provided for by the equilibrium 
equation and the quotient of the other two becomes the significant 
ratio, which must remain constant if dynamic similarity is to 
be realized. In the following pages separate articles will be 
devoted to each of the tabulated force combinations and each 
significant ratio will be evaluated. Other combinations will also 
be considered. 

In most cases the derivation of the differential equation 
involving the pressure force is beyond the scope of the present 
work. However, if the kinds of forces to be considered are 
known, the correct result can usually be obtained. Unless the 
proper differential equation is derived or the methods of dimen¬ 
sional analysis previously employed are used on the problem, 
there is no indication from the result obtained that it is the only 
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combination of the fundamental quantities involv(^d which must 
be constant to indicate similarity of flow. 

201. Dynamic Similarity of Viscous-fluid Motions.^—The 
condition for dynamic similarity of two fluid flows for which the 
effects of viscosity, pressure and in(‘rtia are considered may be 
determined by making use of the fact that the ratio between 
the inertia force and viscous forces for the two motions must be 
the same at corresponding points. Pressure for(^es are also 
present but it is not necessary to consider these separately since 
they will be automatically taken care of by application of the 
condition of equilibrium to the entire force system. 

Now the inertia force acting on an element of fluid is equal 
to the mass of the element multiplied by its ac*(‘(‘leration. The 
mass is equal to the mass density p times the volume, which may 
be regarded as proi)ortional to the cube of some charac^teristic 
length 1. The mass is then proportional to pZ^. Th(‘ accederation 
is the time rate of change of velocity and may therefore be 
expressed as proportional to the velocity divided by some 
convenient period of time, that is, F//. The time may also be 
written as proportional to the characteristic length I divided 
by the velocity so that finally the acceleration is proportional to 
F^/Z. Then the inertia force is proportional to pPV'^/l or pZ-F^ 

The viscous for(;e is the prodiud- of shear stress and an area. 
It is known that the shear stress due to viscosity is r = p{dV/dy)y 
which is proportional to p F/Z. Then the viscous force is proper- 

pF 
tioiial to -j-r^ or to pFZ. 

It now appears that the ratio of inertia force to viscous force is 
proportional to the quantity pFZ/p because 

Inertia force ^ pZ^F^ ^ pFZ . . 
Viscous force pFZ p ^ 

This expression will be recognized at once as the quantity that 
has heretofore been known as the Reynolds^ number Nr. The 
important result of the above analysis is that the Reynolds^ 
number is a nondimensional quantity which is proportional 
to the ratio betw-een the inertia forces and viscous forces involved 
in the motion of the fluid. The condition for dynamic similarity 
of two flows past geometrically similar boundaries requires 
that the ratio of inertia and viscous forces at corresponding 
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points shall bo a constant. It has been shown that this force 
ratio is proportional to the Reynolds’ niiml)or so that the condi¬ 
tion for dynamic similarity is satisfied when the Reynolds’ 
numbers of the two flows, based on corresponding characteristic 
lengths and velocities, have the same value. Examples of 
types of flow to which this treatment is applicable are the 
turbulent pipe flows of Chap. IX and tlu^ flows past submerged 
bodi(\s, studied in Chap. XII. 

It was mentioned at the beginning of this discussion that the 
ratios involving the pressure force would be automati(;ally taken 
care of by means of the equation of equilibrium. This statement 
may be readily verified without actually setting up that equation. 
Let two fluid motions for which dynamic similarity is desired be 
distinguished by the subscripts 1 and 2, and let it be assunu'd 
that the following relationships (‘xist between the quantities 
that characterize these flows: 

Density: pi = ap2 

Velocity: Vi = 6F2 

Length: h = ch 
Viscosity: yui = 
Pressure: pi = ep^ 

The terms a, by c, d and e are constants for two points which are 
in geometrically similar loc^ations but they may be different 
for each pair of such points. The pressures considered here, 
as ])ointed out previously, are only those due to the motion of the 
fluids. 

If the Re^ynolds’ number for these flows are equal, then 

PiVih _ P2F2I2 

Ml M2 

and, on substituting the above relations in the left-hand expres¬ 
sion, it follows that 

(2) 

The pressure force, which has not been considered previously, 
is equal to the pressure multiplied by an area and is therefore 
proportional to pP. Hence the ratio bejtween the inertia and 
pressure force for flow 1 is proportional to piViHpfpilp or 



Art. 201] DYNAMIC SIMILARITY 425 

piFr/pi* terms of the eorresponding quantities for flow 2, 

this ratio is --- BiYa., jf ratio pV^/j) is to be the same at 

corresponding points, that is, if 

PiVi^ ^ P^ 

Pi Pi 

then 

ah'^ 

e 
- 1 (3) 

The ratio between the viscous and pressure force is proportional 
to piVih/pili^ or piVi/pih for flow 1. This may also be written 

in the form ” Equality of this force ratio for flows 1 and 
cc P2I2 

2 requires that 

piV 1 ___ P2y 2 

Plh ~ ^2^2 

or that 

ce (4) 

The problem is now^ to show that, if the Reynolds^ numbers ol 
the two flows arc equal and P]q. (2) is satisfied, then Eqs. (3) 
and (4) are also correct and the ratios involving the pressure 
force are equal at corresponding points. If the value of e from 
Eq. (3) is substituted in Eq. (4), the result is 

hd _ d 
cah- abc 

which is exactly the reciprocal of the value given in Eq. (2). 
Thus if Eqs. (2) and (3) are true it follows that Eq. (4) is correct. 
The correctness of the first equation was part of the original 
hypothesis, that is, that the Reynolds^ numbers were made equal. 
Equation (3) may be satisfied by a proper choice of the reference 
pressures with respect to which pi and p2 are measured, since 
neither flow will be modified by the addition of a constant pres¬ 
sure acting throughout the entire mass of fluid. This arbitrary 
choice of the pressure ratio is further justified by the fact that, 
if the differential equation of equilibrium for a flow were set up 
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and integrated, the pressure would be determined except for a 
constant of integration, which may be given any convenient 
value. 

It has now been shown that, if the Reynolds^ numbers of the 
two flows are equal, then the ratio of inertia and viscous forces 
is a constant, that is. 

Inertia force 
Viscous force (5) 

Furthermore, by proper choice of the arbitrary reference pres¬ 
sures, the ratios of inertia and pressure forces may be made 
equal so that 

Inertia force _ ^ 
Pressure force ^ ^ 

The combination of Eqs. (5) and (6) shows at once that the third 
signifi(5ant ratio is 

Viscous force _ K2 

Pressure force iNi 

which is also a constant. The (condition of dynamic similarity 
is then completely satisfied by making the Reynolds^ numbers 
equal at corresponding points. 

202. Application of Reynolds’ Number.—An interesting insight 
into the significance of the Reynolds’ number in problems of 
fluid resistance may be obtained by considering two limiting 
cases, the viscous forces predominating in one and the inertia 
forces in the other. Such conditions would correspond to flows 
in which the Reynolds’ number becomes either vanishingly small 
or approaches infinity. In the case of a submerged body moving 
through a fluid where the viscous forces are so great that inertia 
effects may be neglected, the resistance or drag is proportional 
to the viscous fon^e and the drag may be written in the form 

D — kinVl (7a) 

or, after multiplying and dividing by pFZ, 

O . 
Putting pVl/fx = NRf replacing kiP- by ki Aj in which A is an 
area, and finally putting ki = C/>y2, this becomes 
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D - A ^n) 

which is the same form of expression as Stokes^ law for the 
resistance of spheres (page 306). This is to be expected because 
this law was derived by Stokes on the assumption that inertia 
forces are negligible. 

When tlie viscous forces are negligible, that is, when the 
Reynolds^ number becom(\s very large, the drag of a submerged 
body is proportional to the inertia force and may be written in the 
form 

D = (8a) 

which is Newton^s law for the resistance of an object, derived 
previously from considerations of changes in the momentum 
of the fluid [see Eq. (6), page 302]. 

It appears from the foregoing that problems in fluid resistance 
may be (dassified a(‘cording to the magnitude of the Reynolds^ 
number. It was shown in the earlier chapters that Reynolds’ 
number is a criterion for resistance^ to flow of a fluid or motion 
through a fluid when both vise^ous and inertia forces are involved. 
In dealing with flow around immersed bodies, small values of 
this quantity reprc'seait flows in which the drag is proportional 
to the first power of the velocity, independent of the density, 
and is expressed in the same form as Stokes’ law, while with 
large values of Nr the drag formula follows Newton’s law and 
the force is proportional to the square of the velocity and is 
independent of the viscosity. Likewise in dealing with flow in 
pipes it was seen that with values of Nr less than critical the 
flow is viscous and the pressure drop is proportional to the veloc¬ 
ity, and that for very large values of the loss is proportional 
to because inertia forces predominate and the curve in the 
Stanton diagram b('comes nearly horizontal. For intermediate 
values oi Nr both types of forces influence the flow and the loss 
varies with some power of V less than F^, as indicated by the 
variable /. 

203. Dynamic Similarity of Flow with Gravity Forces Acting.— 
The flow to be considered next in this discussion of similitude is 
that in which the forces present are those of pressure, inertia 
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and the external forces due to the attraction of gravity. The 
motion is of this type when a free surface is present or when 
two fluids that do not mix are involved. Examples are the 
flow in open channels affected by waves and the wave motion 
caused by the movement of a ship. 

The condition for dynamic similarity of flow in tluvse problems 
may be satisfied by maintaining a constant ratio of inertia and 
gravity forces at corresponding points. As in tlie treatment of 
viscous fluids, the pressure forces will be automatically taken 
(^an^ of by means of the equation of equilibrium. The inertia 
force, as shown in Art. 201, is proportional to the product pPV^y 
where p is the mass density of the fluid, I is a (diarac^teristic length 
and V is the v(do(‘ity. The gravity force is proportional to the 
density p, to the volume of the fluid (dement, which in turn is 
proportional to l''\ and to the acc(deration of gravity so that 
finally this force is proportional to pUg. The ratio of these two 
forces is therefore proportional to the expression V^/lg because^ 

Inertia foiTe ^ plW'^ ^ YZ 
Gravity force pl^g ^ Ig ^ 

In practice it is more convenient to Uvse Vthe scpiare root 
of this ratio. This is permissible because, if this latter value is a 
constant, then V^jlg is lik(‘wise a constant. A comparison with 
the study of Art. 176, which was also based on diimmsional 
analysis, shows that the ratio Yjy/Tg is precisely the quantity 
known as Froude^s number Ny. Similitude^ between flows in 
whi(?h inertia and gravity forces are involved is therefore obtained 
by requiring that the values of the Froude^s number for the 
different motions, based on corresimnding velocities and lengths, 
shall all be the same. The boundaries for the flows must, of 
course, be geometrically similar. 

The gravity force is significant in any probkun involving a 
wave motion at a free surface. For example, Froudets number, 
as pointed out in Art. 177, is a significant parameter in formulas 
for the resistance of ships due to the formation of surface waves. 
It may also appear in dealing with orific(^s, weirs and cavitation. 

204. Dynamic Similarity for Flow of Elastic Fluids.—Of the 
three force combinations mentioned in Art. 200 there now remains 
to be (considered only the case in which elastic forces due to the 
compressibility of the fluid are acting with the pressure and 
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inertia forces. The ratio on which dynamic similarity depends 

in a flow of this kind is now the quotient of the inertia force' 

divided by the elastic force. The (dastic force is proportional to 

the bulk modulus of elasticity, JS7, which is a stress, and to the 

area on which the force acts, and is therefore proportional to 

FjV^. Hence the ratio of inertia to elastic foreu^ is proportional 

to the quantity pV'^IE because 

Inertia force pF- , . 

Ela^c force EP "F ^ ^ 

If the fluids under consideration are gases, then as shown in 

Art. 180 the bulk modulus E is equal to pdp/dp. Furthermore, 

if the gases follow the adiabatic law, p/p^ = constant, it is 

necessary that the exponent k be the same for the gasc's in order 

that complete similitude may be obtained. That this is the 

case may be shown by a little more detailed study of the problem. 

Let the flows of two elastic fluids which are under consideration 

be characterized by the subscripts 1 and 2 and let the following 

relationships exist between the various significant quantities: 

Density: Pi = ap2 

Velocity: Fi = hV. 
Length: h = ck 
Bulk modulus: Ex = dE^ 
Pressure: px = ep^ 

As in the discussion of similarity for viscous fluids, the pressures 

(‘onsidered here are only those caused by the motions of the 

fluids. 

If the ratio of inertia to elastic forces is the same for the two 

flows, then from Eq. (10) 

PiF,2 _ P2F22 

Ex £2" 

If pi, Fi and Ex are expressed in terms of the corresponding 

quantities for flow 2, it follows that 

(11) 

The ratio of inertia to pressure force is the same for the two 

flows if, as shown by Eq. (3), 
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e 

The ratio of prr^ssure force to elastic force is 

Pressure force pP p 

and for similitude p\/Ei = p2fE2y from which 

(12) 

(13) 

Equation (12) may be satisfied by proper choice of the constant 

e, this being permitted because of the fact that the base pressures 

to which Pi and p^ are referred may ))e (‘hanged without modifica¬ 

tion of the flows. If Eq. (11) is satisfied, it follows at once by 

division of Eq. (11) by Eq. (12) that Eq. (13) is also true. It is 

necessary to point out, however, that, under the assumption of 

adiabatic behavior of the gasc^s, the bulk moduli and the pressures 

are interrelated. If the adiabatic laws for the two cases are 

and 

= Cl' 

then, as shown in Art. 180, the corresponding values of the bulk 

moduli are 

and 

E, = = hp. 
It has already been stated in obtaining Eq. (13) that, for simili¬ 

tude, the ratio of pressure force to elastic force must be constant. 

Hence 

'El 
El E2 
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On introducing the above values of Ei and £^2, it follows at once 

that 

ki = (14) 

In the cases of gases which behave adiabatically and also 

satisfy Eq. (14), the expression given earlier in this article as 

proportional to the ratio of inertia and elastic forces, Eq. (10), 

may be put in a simpler form. It was shown in Art. 180, Eq. (8), 

that the velocity of sound in a gas is c = \/£7p. The ratio of 

inertia and elastic forces is therefore 

Inertia force ^ ^ V‘^ 
Elastic force E (15) 

Thus for geometrically similar boundaries dynamic similarity 

of two gas flows will be obtained when F^/c- is a constant for 

corresponding points in the two flow fields. This condition may 

be replaced by the simph'r one that F/c must be a constant, and 

it will be recalh^d from the discussions of Chaps. XIII and XIV 

that this latter ratio is Mach\s number, Nwhich has been 

shown to be of great significance in connection with the flow of 

compressible fluids. It should be kept in mind that in general 

c repr(‘sents tlu' local value of the acoustic velocity corresponding 

to the values of the pressure^ and density existing at the point 

where F is measured. 

206. The Pi Theorem. Dimensional Considerations of Orifice 
Flow.—In the three force combinations outlined in Art. 200 and 

the discussion of them in the following articles there appears only 

one significant ratio in each case. These are Nr, Nr and Nm. 
In many cases more than one of these ratios may appear and 

other dimensionless ratios may also be introduced. 

Suppose that a given flow involves n quantities, the relation of 

which can be expressed by an exponential equation, and that the 

number of fundamental units, M, L and T contained in all these 

quantities is p. It can then be shown that the equation giving 

the relation between the quantities will contain n — p dimen¬ 

sionless ratios such sls Nr, Ny, Nm or others. This statement is 

known as the Pi theorem. 
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The orifice will be used as a demonstration but not as a proof 

of the Pi theorem.^ Suppose that Q, the discharge of an orifice, 

depends on the viscosity >Lt, the density p, the linear dimension I 
of the orifice, the head h and gravity g. Assume that Q can be 

expressed exponentially as 

Q = (16) 

In fundamental units tliis becomes 

from which the following equations are obtained: 

0 = a + h 
3 == —Cl — 36 T e T" d "T ^ 

— 1 = —a — 2e 

\^alues of 6, c and e from these equations in terms of a and d are 

Inserting these values in Eq. (16) gives 

By rearranging terms this can be written 

In this equation the three quantities in parentheses are dimen¬ 

sionless ratios. This number was to be expected from the Pi 

theorem because' Eq. (16) contains six variables and P]q. (17) 

contains three fundamental units so that n — p = 6 — 3 = 3. 

More light may be tlirown on the orifice theory by writing Eq. 

(19) in the form 
a 

(l) PWh (20) 

^ F^or inon' complete discussion see E. Buckingham, Model Experiments 

and the Forms of Empirical Equations, Trans. A.S.M.E., vol. 37, p. 263,1915, 

or A. C. Chick, ^‘Dimensional Analysis” in “Hydraulic Laboratory Prac¬ 

tice,” edited by John R. Freeman, p. 787, A.S.M.E., 1929. 
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The atea of the orifieo opening is proportional to I- and this 

proportionality constant can be included in a new constant K' 
along with l/\/2 and the original K. Then, after inserting some 

characteristic velocity V in both parts within the first paren¬ 

theses, the equation for discharge becomes 

Q = K' 

' V I 

Vlg 
'plV 

Vi 

A\/2gh (21) 

The numerator and denominator of the first ratio as now writ.t(‘n 

are Froiide^s number and Reynolds^ number, respe(‘tively, and 

the ratio may be written Nf/Nr. If the discharge equation 

for the orifice is now written as 

Q = CA\^2gh 

and is then compared with Kq. (21), it follows that the coefficient 

of discharge is 

The condition for dynamic* similarity in orifices is that the 

dimensionless terms of Eq. (19) must be constant. If the term 

M 1 . ^ F 
is interpreted as it follows that neither Nf rmr Nr 

need be constant but their ratio must meet tliat requirement. 

The requirement that h/l be constant is simply that geometric 

similarity must exist. This applies not only to the ratio of I 
and h but to ratios involving every dimension of the tank. 

Values of a and d must be determined by experiment. It was 

showm in Art. 154 that the velocity of a jet from an orificie is 

independent oi ix ii V \/h. If this is strictly true and the 

contraction is also unaffected by then Nr cannot be a significant 

ratio and the value of a is zero. The discharge is then also 

independent of p and Nf because they appear in a term affected 

by the same exponent a. 
It is true that C^ and C for sharp-edged orifices are nearly 

independent oi Nr; when they are plotted against Nr, the result 

is a nearly straight horizontal line. When the orifice is rounded 

the line is slightly curved and for a tube the curvature becomes 
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greater. As the side walls of the opening are increased in length 

and area, the effect of viscosity continues to increase and the 

curvature of the Nr curve becomes more marked.^ 

206. Application of Dimensional Analysis to Resistance of 
Floating Bodies.—The resistance of floating bodies was discussed 

in Art. 177 of Chap. XII. In that article it was pointed out 

that the drag of a ship hull may be divided into three component 

parts as follows: 

1. Wave-making resistance. 

2. Eddy-making nisistance. 

3. Skin-friction resistance. 

The first two of tliese items are usually combined to form the 

residuary resistance. 

The method for studying ship-hull resistance originated by 

William Fronde is based on the assumption that the expression 

for the total resistance may be written in the form given by 

Eq. (60), page 355, that is, 

CfA U{Nn) + (22) 

in which D is the total resistance of the sliip hull, p is the density 

of the fluid, V is the velocity of the hull, A is the wetted surface 

of the hull, A is the volume of displacement of the hull, C/ is the 

coefficient of skin friction based on the wetted surface, Cr is the 

coefficient of residuary resistance based on Ji{Nr) is a func> 

tion of Reynolds^ number which determines the relation between 

the skin-friction drag and Nr and/2(AF) is a function of Froude^s 

number which determines the relation between the residuary 

resistance and Nf. 
A rational basis for Eq. (22) is provided by dimensional 

analysis. Let it be assumed that the resistance of a ship hull is 

dependent on p, F, A, g and p. Then 

I) = 

or 
D == (23) 

in which if is a nondimensional constant. Inserting the funda- 

^Typical curves are given by H. Addison, “Applied Hydraulics,” p. 62, 

John Wiley & Sons, Inc., New York, 1934. 
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mental units M, L and T for the various quantities in Eq. (23), 

the following relation is obtained: 

On equating separately the exi)onents of mass, length and time 

on the two sides of this equation, three simultaneous equations 

are obtained which are 

1 = (i e 1 

1 = —3(i + h + 3c + (i — e] (24) 

-2 = -5 - 2d - e ) 

It will be noted that Eq. (23) contains in all six variables and 

on applying the Pi theorem, it appears that the result should 

contain six minus three, or three, nondimensional ratios. Five 

of the quantities in Eq. (23) are affected by unknown exponents 

and, since the dimensional method gives only three equations 

for the determination of these exponents, it is possible to find 

values of only three of them; these will in general be expressed 

in terms of the remaining two. 

The choice of the exponents to be considered as unknown is 

completely arbitrary. If d and e are considered as the unknowns, 

then the solution of Eqs. (24) for a, b and c gives 

0 = 1-e, b = 2 - 2d - e, + l 

The expression for the drag of the hull now becomes 

D = Sjgd^e 

On arranging in separate groups the terms affected by the 

exponents d and e, the result is 

D - (35) 

The factor A in the parentheses may be replaced by a constant 

times the cube of any convenient linear dimension of the hull, 

such as its length I The right side of Eq. (25) may also be 
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nuiltiplied and divided by 2 and, with the proper change in the 
coefficient, Eq. (25) becomes 

(26) 

Reference to the earlier articles of this chapter shows that th(‘ 
quantity VI\/Tg is Froude^s number while pYljix is Reynolds’ 
number Nr. Previous studies of resistance have shown that 
when viscosity is an important factor, as in the case of pure 
skin friction, the drag is a function of Reynolds’ number. When 
gravity forces are involved in the flow, as in the case of wave¬ 
making resistance, it was found that the drag was dep(*ndent on 
Froude’s number. It might then be expected that, when both 
kinds of forces are present as in this problem, the resistance 
should be a function of both Reynolds’ and Froude’s numb(Ts. 
This supposition is justified by the result given by Eq. (26). 

The three dimensionless ratios which, according to the Pi 
theorem, are involved in this problem are then Nf, Nr and 

' The denominator of the last ratio (consists ot a pressure 

pF^/2 multiplied by the two-thirds power of a volume which is 
an area. This product then has the dimension of a force so 

that is nondirnensional. 

The methods of dimensional analysis as applied to the ship- 
hull resistance problem do not lead directly to the result given by 
Eq. (22). This requires the introduction of Froude’s assump¬ 
tion that the resistance may be divided into two parts, residuary 
and skin-friction drags, and that the first of these may be con¬ 
sidered as a function of Nf alone while the second is a function of 
Nr alone. Equation (26) is then written in the form 

D C/fr (Nn) + CrMN^} 

or, putting C/A^ = C/A, where A is the wetted surface, 
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D = '—^CfAMNn) + (27) 

which is identical with Eq. (22). 

Although Eqs. (26) and (27) are different in form, there is a 

good deal of similarity between them. Both contain Reynolds^ 

and Froude's numbers. The use of Eq. (26) requires that the 

values of the exponents d and e be known, the former being 

asso(;iated with Nf and the latter with Nr, When Eq. (27) is 

employed, the functions /i and must be determined, these 

being associated with Nr and Nf, respectively. 

The experimental determination of ship-hull resistance is 

usually accomplished by towing a small-scale geometrically 

similar model of the hull in a long channel filled with water. 

Such a channel is known as a naval tank. In order to have 

dynamic similarity betwc^en the flow around the rnodc'l and that 

around the full-scale hull, it is necessary that the? Reynolds^ 

and Froud(‘^s number’s should have the same values in the two 

cases. If ])rimed quantities are used to represent the model 

conditions, then Nr = Nr! and Nf = Nf . It is not difficult 

to satisfy the condition of (iquality of Froude^s numbers. If 

the ratio of model and full-scale hull lengths is V/I = 1/X, then 

the condition that 

F _ F' 

VTg VTg 
is satisfied if 

=■'Vi- - ^ 

Since X is generally larger than unity, the proper towing speed 

of the model is considerably smaller than the speed of the full- 

scale ship. 

If Eq. (28) is satisfied, it is impossible to make the Reynolds' 

numbers equal. Equality of Reynolds' numbers would require 

that 

pFJ ^ p'V'V 
M m' 

If, as IS usually the case, the fluid in the model tank is water, then 

p = f' and p == p' so that 
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VI = V'V 

The speed of the model must then be 

= Fx (29) 

It is obviously impossible to satisfy Eqs. (28) and (29) 

simultaneously. 

In practice, tank tests are made under conditions that give 

tiquality of the Fronde’s number. The skin-friction drag of the 

model hull is then computed on the assumption that it is equal 

to the resistance of a parallel flat plate of th(‘ same length and 

wetted surface and having the same Reynolds’ number Nr as 

the model. The difference between total and skin-friction 

drags is the residuary resistance and, with its value known, the 

expression Crf^{Np) in Eq. (27) may be computed. The residu¬ 

ary resistance for the full-scale hull is then determined by using 

this value in the equation 

The skin-friction drag of the full-size^ hull is then computed 

on the same basis as for the model and the sum of this valu(‘ 

and the above expression for residuary drag gives the total 

drag of the full-scale hull. 

207. Dimensional Considerations of Resistance of Submerged 
Bodies.—The resistance of a body submerged in a mass of fluid 

and in motion relative to the fluid presents another type of 

problem to which dimensional analysis may be applied with 

considerable success. In Chap. XII, Art. 158, it was shown 

that, if the principal forces acting on the fluid elements are 

pressure, inertia and viscosity, then the resistance may b(^ 

expressed in the form 

D = Cv^A fiNn) (30) 

in which A is an area of the body, usually that projected in a 

plane normal to the direction of motion, while the remaining 

quantities have the same significance as in Art. 206. Equation 

(30) is applicable to bodies moving through a liquid or a gas, 

provided in the latter case the velocity is not too great. 
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The determination of the reHistance of an airplane presents 

some interesting problems, particularly in connection with tlie 

use of models. According to the principles of dynamic similitude 

the model of the airplane should he geometrically similar to its 

full-scale prototype and the Reynolds^ numbers should he the 

same in both cases. Most aerodynamic experiments of this 

kind are conducted in the wind tunnel, a device for producing a 

current of air relative to the model. The wind tunnel usually 

consists of a long tube constructed somewhat in the form of a 

Experimental 

Vertical Section 
Fig. 254. -Closed-throat type of wind tunnel with n‘tiirn duct -Guggenheim 

Aeronautics Laboratory of the California Institute of Technology. 

Venturi tube. A fan is placed at one end for the purpose of 

producing motion of the air past the model, which is sus[)(‘nded 

in the throat in such a way that the forces acting on it can be 

measured. In Fig. 254 is shown a longitudinal section of the 

wind tunnel at the California Institute of Technology^ and in 

Fig. 255 is found a photograph of the experimental chamber and 

model setup) in the University of Michigan tunnel. These instal¬ 

lations are representative of modern equipment of this kind. 

The maximum size of a wind-tunnel model is determined by 

the dimensions of the throat section at which the model is 

placed. With the exception of a few extremely large tunnels, 

1 Millikan, C. B., and A. L. Klein, The Effect of Turbulence, Aircraft 
Eng.j vol. 5, pp. 169-174, 1933. 
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most laboratories can test models whose linear dimensions range 

from one-thirtieth to one-tenth of the dimensions of the full- 

scale airplaiKis they represent. 

If I and V denote a certain length on the air])lan(^ and its 

model, respectively, then the scale ratio of the model is V/I = 1/X. 

Fig. 255.—Experimental chamber and model setup in the University of Michigan 
wind tunnel. 

Equality of Reynolds^ numbers reipiires that 

(3P 
MM 

or, since the densities and viscosities art* usually the same, 

F7' = VI 

The proper wind speed for a model test is then 

r = V~ = FX (32) 

As an example, consider the case of an airplane designed to 

fly at 200 m.p.h., the model of which has a scale factor X = 10. 

According to Eq. (32) the speed in the wind tunnel should then be 

r == 200 X 10 - 2000 m.p.h. 

This tremendously high velocity is far beyond the capacity of 

existing wind tunnels. Not only would an enormous amount 
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of power be required to operate the fan, but it should also be 

noted that this speed is considerably in excess of that of sound. 

Thus the flow around the model would be in the range where 

compressibility effects are important. The Machos numbers 

in the two cases would be Nm' = ^^^^62 = 2.63 for the model 

and = 0.263 for the full-size airplane so that, 

while similarity of the viscous and inertia forces would have 

been obtained, the effects of compressibility on the model test 

results would be so pronounced as to render them practically 

worthless. 

In practice, wind tunnels are usually operated at speeds of the 

order of 40 to 250 rn.p.h. so that on small-scale models equality of 

Reynolds’ numbers cannot be expected. This does not render 

the tests worthl(\ss because it is possible to extrapolate the results 

thus obtained to the higher Reynolds’ number of the full-scale 

unit. The basis for such an extrapolation depends on having 

available exp(U*imental or theoretical laws giving the relationship 

betw(‘en the forces and the Reynolds’ numbers for the complete 

rang(‘ between the value obtained in the model test and that 

corresponding to actual flight. At the present time such informa¬ 

tion is being obtaiiu'd from laboratories operating full-scale wind 

tunnels, by conq)arison of model tests with measurements of 

speed and powcu* in flight and by the use of theoretical develop¬ 

ments sindi as th(‘ skin-friction drag formulas for flat plates 

parallel to the airstr(*am. 

Another satisfactory method for obtaining the high values of 

the Reynolds’ numbers corresponding to the flight of an actual 

airplane is the use of a completely closed tunnel employing a gas 

having a lower kinematic, viscosity than that of atmospheric air. 

An inspection of Eq. (31) shows that, if the value of = ^/p is 

decreased, then the Reynolds’ number for the model test will be 

increased provided the ratios of velocities and characteristic 

lengths have already been established. The only application 

that has been made of this principle up to the present time is to 

use compressed air as the gas in the tunnel, this idea first being 

proposed by Munk.^ The entire tunnel is placed inside a sealed 

^ Monk, M. M., and E. W. Miller, The VariablcMieiisity Wind Tunnel 

of the National Advisory Committee for Aeronautics, NACA Tech. Hept. 227. 

See also Jacobs, E. N., and I. H. Abbott, The NACA Variable-density 

Wind Tunnel, NACA Tech. Rept 416. 
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shell and the pressure is increased to several atmospheres. Since 

this change occurs at approximately constant temperature, the 

absolute viscosity ju is unchanged and there is only an increase 

in the density which is proportional to the increase in pressure. 

For this reason tunnels of this type are known as variable-density 

tunnels. This type of tunnel has an advantage over the atmos¬ 

pheric tunnel in that high Reynolds^ numbers may be obtained 

without excessively high speeds. The acoustic velocity in a 

variable-density tunnel is c = -x/kp/p and, since p and p are 

varied in the same proportions, c remains constant so that 

undesirable compressibility effects may be avoided. Thus in 

the case of the model discussed on page 440 a pressure of 10 

atmospheres and a tunnel velocity of 200 m.p.h. would give a 

model Reynolds' number equal to tlie full-scale value, while 

the Mach's numbers would be identical. If d(‘sired, the pressure 

might be increased to say 20 atmospheres and a velocity of 

only 100 m.p.h. employed. Equality of Mach's numbers would 

no longer be maintained but, since both the model and full- 

scale values of Nm would be well below unity, no serious difficul¬ 

ties would result. 

In 1936 there were only two such tunnels in operation, one at 

the National Physical Laboratory in England and the other at 

the Langley Field laboratories of the National Advisory Com¬ 

mittee for Aeronautics in the United States. The latter employs 

pressures up to 20 atmospheres while in the English tunnel pres¬ 

sures as high as 25 atmospheres can b(^ obtained. The sizes of 

models and maximum air speeds are such that in the English 

tunnel Reynolds' numbers as high as 6.83 X 10® can be obtained, 

while in the American tunnel the maximum value is about 

3.4 X 10®. Thcvse values are for airfoil models and are based on 

the wing chord. 

Although the Reynolds' numbers obtained in the variable- 

density tunnels are not so large as those corresponding to the 

flight of the fastest and largest airplanes, it is found that the 

variation of the drag force with Reynolds' number is much more 

uniform than in the lower ranges where the ordinary atmospheric 

tunnel operates. Thus the prediction of full-scale force values 

from such test results should be considerably more accurate than 

calculations based on the relatively low Reynolds' number of 

the atmospheric tunnel. 
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General Problems 

384. A Hpherical particle is dropped into a tank of castor oil and a similar 

particle is dropped into water. Both liquids are at a temperature of 50®F. 

What must be the ratio of the diameters of the particles if the flows are 

dynamically similar at the same velocity? 

386. The skin-friction drag coefficient of a flat plate parallel to a stream 

of fluid varies with {Nr) when the boundary layer is turbulent. How 

does the drag vary with velocity? Referring to the data on flat plates 

given in Chap. XII, determine whether or not n can be greater than 2 in 

the relation D « F”. 

386. The wind resistance of a tall building is assumed to be dependent 

on the density and viscosity of the air, the wind velocity and the wddth and 
height of the building. Develop an expression for the resistance of the 

building in terms of these quantities and find the nondimensional ratios 

involved in the problem. 

387. Develop an expression for the resistance of a bridge pier placed in 

a stream of water of depth d if it is assumed that the viscosity may be 

neglected. The principal dimensions of the cross section of the pier are a 

in the direction of motion and h at right angles to it. 

388. A 4-in. circular orifice in a smooth 12-in. water pipe has pressures 

of 40 lb. per sq. in. abs. and 24 lb. per sq. in. abs. on the upstream and down¬ 

stream sides, respectively. The flow of water through an orifice in a 6-in. 

line is required to be dynamically similar. Find (a) the ratios of the dis¬ 

charges in the two cases and (6) the ratio of the pressure drops. Are the 
ratios of the upstream and downstream pressures ne(*essarily the same? 

389. Water flows in a rectangular channel 6 ft. deep and 12 ft. wide with 

a velocity of 4 ft. per sec. What is the flow in a geometrically similar chan¬ 

nel of the same material and 1 ft. deep to produce the same shear stress at 

the walls? 

390. Using the Manning formula for velocity in an open channel of 

rectangular cross section, determine the relation between the slope s’ in a 

model and the slope « in the full-scale channel (a) to make the Reynolds’ 

numbers equal, (6) to make the Froude’s numbers equal. Assume both 

channels to be constructed of the same material. The geometric scale ratio 

is V/I = 1/X. 
391. A pipe 6 in. in diameter is rolled from corrugated sheet. Another 

pipe 12 in. in diameter is rolled from the same sheet. Can the flow of water 

through these two pipes be made to satisfy the condition of dynamic simi¬ 

larity? Why? 
392. In order to make experiments on the flow through a river bed, it is 

proposed to employ a distorted model having a horizontal scale of of 

the actual river bed and a vertical scale of Is it possible to obtain 

dynamic similarity with the full-scale flow under such conditions? Why? 

393. The average height of the projections which form the roughness of a 

pipe wall is €. Develop an expression for the head lost in such a pipe line, 

considering viscosity but neglecting compressibility. Express the result 

in a form comparable with the Darcy formula. 
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394. A ship is to operate at. 25 in.p.h., the length of the hull being 175 ft. 

Tests are being made on a geometrieallv similar model 10 ft. long. At what, 

speed should the model be towa'd? 

396. A ship-hull model is eonstrueted on a If 2 Hcalc. The full-size 

ship is 150 ft. long; it has a wetted surface of 24(K) scp ft. and a volume of 

displaeernent of 7350 eu. ft. The total resistanee of the model at a Fronde's 

number of 0.25 is 2.2 lb. What is the eorresponding speed of the ship and 

what is its total resistance? 

396. Show that the cpiantity of water flowing over a weir is in general a 

function of both Reynolds' and Fronde's numbers. For w’hat types of 

w'drs is Reynolds' number important? 

397. An airplane having a mean wing chord of 12 ft. is designed to fly 

at 250 m.p.h. It is dc'sired to determim* it.s resistance by tests on a Vf 2 scale 

model in an atmospheric wind tunnel. What should be the wind velocity 

in the t\innel? What are the corresponding values of Mach’s numbers? 

398. What conditions would be napiin'd in a variable-density wind tunnel 

for the test of Prob. 397 if the Reynolds' and Mach’s mimbers for the model 

are to be the same as their full-s(aile values? 

399. An airship 475 ft. long is designed to cruivse at 90 m.p.h. A model 

having a scale of 3120 i^^ available and it is proposed to make resistam^e tests 

in water at flO^F. What velocity of the stream would be recpiiretl? If the 

water were heated to 120®F., what would be the nuiuired velocity? 

400. Show that tlie thrust of a propeller moving through a gas is depend¬ 

ent on Reynolds' and Mach's numbers and on the advance-diameter ratio. 

401. Th(? quantity of water passing through a turbine or centrifugal 

pump is dependent on the following quantities: w is the angular velocity of 

the wheel, E is the head, D is the diameter of the wheel, p is the density of 

the fluid, p is the viscosity of the fluid and g is the ac(*eleration of gravity. 

Develop an expression for Q and show that Reynolds' and Fronde's numbers 

based on peripheral velocity of the wheel enter into the problem. What 

other dimensionless ratios are involved? 



CHAPTER XVr 

SPECIAL PROBLEMS IN FLUID MECHANICS 

208. The Measurement of Viscosity.—In any study of tho 

flow of viscous fluids (*01111)1010 solutions to i)ro])loins may be 

obtained only when the viscosity of the fluid is known. The 

methods employed in scientific and industrial work for th(' defter- 

mination of this quantity arc* therefon* worthy of att(‘ntion. 

The subject of the measurement of viscosity is known as vis- 

cornetry and tlic^ instrum(*nts employed for this purpose^ are called 

viscometers or viscosini<*t(‘rs. 

The operation of a visconu*ter usually involves a flow of the 

fluid of which th(‘ viscosity is to be determined. The use of such 

an instrunKUit then depends on either a theoretical or an empirical 

knowledge' of a quantitative relationship betwec'ii tlu* viscosity 

and certain measurabh' characteristics of the flow. An ideal 

type of viscometer would be one in whicli the nature of the flow 

involved is conipk'tely detc'rniined by the viscosity of the fluid. 

By means (jf an analytical n'lation betw(^('n the viscosity and the 

quantities characterizing this flow it would then be possible to 

compute th(' numerical valiK* of either the absolute* or the 

kinematic vis(a)sity co('fl[icient. In the* viscometers in actual 

use this ideal is never completely attained and it is always 

necessary to introduce certain correedion factors or to calibrate 

the instruments with fluids of known viscosity. However, if 

the required corrections or (*,alibrations are properly made, it is 

usually possible to obtain a value of the viscosity (expressed in the 

appropriate fundamental units of mass, length and time. 

In some types of viscometers, particidarly those used in 

industrial work, the flow may be only sliglitly affected by the 

viscosity, other considerations being much more important. 

In such cases the correction factors are \isually quite large and it 

is often difficult to find a simj)le, direct relationship between 

the fundamental coefficient of viscosity and the quantities 

measured. For this reason the viscosity measurements are 

445 
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frequently expressed in units that are peculiar to the viscometer 

used. Such values may in some cases be suitable for compara¬ 

tive work but they cannot be employed in the problems of the 

preceding chapters without transformation to the fundamental 

units of mass, length and time. 

209. Transpiration Methods of Viscometry.—Among those 

methods for the determination of viscosity which rest on a 

sound scientific basis, the most widely used is undoubtedly the 

so-called transpiration method. In this method observation is 

Fig. 250. Apparatus for measuring viscosity of liquids. 

made of the time required for a given amount of fluid to flow 

through a capillary tube of known diameter and length under a 

known prevssure difference. By selecting a tube of such a size 

and length that the flow is laminar, the Hagen-Poiseuille law is 

applicable. This law is expressed by Eq. (16), page 173, whicli 

when solved for jjl gives 
_ 7r(pi - p2)d^ 

^ 12SQI 

Obviously the method is more suitable for liquids than for gases 

but special arrangements for timing the flow have been devised 

so that the viscosity of gases may also be determined by this 
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method. A simple arrangement of this kind for use with liquids 

is shown in Fig. 256. This apparatus consists of a capillary 

tube of known length and diameter connected by rubber tubing 

to two tanks in which overflow tubes are placed so that the 

surface level in each of the tanks may be maintained constant. 

Manometers are provided for measuring the difference in level or 

head, which, assuming no loss in the relatively large connecting 

tubes, is all consumed in causing flow through the capillary tube. 

A thermometer suspended in one of tlie tanks indicates the 

temperaturci of the liquid. The liquid is fed continuously into 

the higher tank at such a rate that some 

runs out of the overflow tube. The 

balance passes through the capillary, out 

of the overflow tube of the lower tank and '^j 
into a receptacle placed beiu'ath it. By 

measuring the quantity accumulated in 

this receptacle in a given time, it is a 

simple matter to compute the viscosity 

of the liquid. 

A modification of the transpiration 

method is employed in the Ostwald vis- 

(jometer shown in Fig. 257, in which, as 

before, a known quantity of liquid is 

timed as it flows through a capillary tube. 

In this instrument, which is mounted 

vertically, the flow is caused by hydro¬ 

static pressure of the fluid itself. Thus a 

known quantity of liquid is placed in the Fig. 257.—The Ostwiiid 

upper bulb A and the time interval re- viscometer, 

quired for the meniscus to pass the two marks mi and m2 is 

noted. Because of the construction of the instrument it is 

difficult to determine the dimensions of the capillary and con¬ 

sequently this viscometer must be calibrated with some fluid of 

known viscosity. 

Problem 402. A capillary-tube viscometer such as that shown in Fig. 256 

is to be used for the determination of the viscosity of water at 59°F. The 

capillary has a diameter of 0.075 in. and a length of 10 in. What is the 

transpiration time for 15 cu. in. of water if the difference in head is 5 in. of 

water? 

403. What is the maximum head that can be used on the viscometer of 

Prob. 402 when determining the viscosity of water at 69®F.? 
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404. What is the absolute viscosity of an oil if it requires 320 sec. for 

8 cu. ill. to flow through a capillary-tube viscometer having a diameter of 

0.055 in. and a length of 12 in.? The pressure difference is 7.5 in. of water. 

210. Other Scientific Viscometry Methods.—The transpira¬ 

tion method is not suitable for very viscous fluids because of 

the extremely long time recpiired for the flow to tak(‘ place. 

For such substances a more satisfactory method is to measure' 

tlie time of fall through the fluid of a small solid sphere of known 

weight. The viscosity may then be computed by the application 

of Stokes’ law. 

Other scientific methods involve the measure'inent of the time' 

of damping of the oscillations of a horizontal disk suspende^d by 

a wire fastened to its ce'iiter, or the dete'rmination of similar data 

for a spherical petidulum swinging in lh(‘ fluid. In still another 

method the fluid is placed in a cyliiuh'r of annular cross section 

and a coaxial cylindrical shell (‘xteiuls into the fluid. The 

annular cylinder is rotated at constant sp(‘('d and a nn'asurement 

of the torque acting on the shell makes it possible to calculate the 

viscosity. In all these dc'vices the relation Ix'lween tlu' quantity 

measured and the viscosity must be d(‘t('rmined eitlu'r by 

theoretical means or by calibration with fluids of known viscosity. 

Mor(' (complete information in regard to the thc'ory and operation 

of these and other types of viscometers will be found in the 

literature.^ 

211. Industrial Viscometers.—In technical or industrial work 

there is a considerable lack of uniformity in the apparatus and 

methods used in viscometry. A further difficulty lies in the fact 

that the results of observations with ttu'st' instruments are usually 

expressed in units ])eculiar to the instrument its('lf rather than 

in the fundamental units of mass, length and time. In Germany 

the Englers viscometer is commonly usc'd; in England, the Red¬ 

wood; the Barbey Ixometre in France; and the Saybolt in the 

United Statens. In most of these devices the principle of opera¬ 

tion involves the measurement of the time for a certain quantity 

of the fluid to flow through an opening, which more often resem¬ 

bles an orifice rather than a capillary tube, or at least is so short 

1 Bingham, E. C., “Fluidity and Plasticity,” Chaps. TV and V, McGraw- 

Hill Book Company, Inc., New York, 1922. 

Herschel, W. H., Determination of Absolute Viscosity by Short-tube 

Viscosimeters, Bur. Standards Tech. Papers 100. 
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that the Hagen-Poiseuillc law does not strictly apply. Thus 

the true viscosities of different liquids measured in fundamental 

units are in many cases not directly proportional to the tim€^s of 

transpiration. It is, however, possible to compute the true vis¬ 

cosity by means of empirical relationships, an example of which 

is given in the next article. 

212. The Saybolt Viscometer.—As mentioned in Art. 211 the 

Saybolt viscometer is commonly used in the United State's, this 

Fici. 258.—OiJ tu^K* f<jr Saybolt Universal and P^urol viseometers. 

instrument being the standard prescribed by the American 

Society for Testing Materials^ for use in the determination of the 

viscosity of petroleum products and lubricating oils. There are 

two Saybolt viscometers employed in this field, both of the same 

general design but of different dimensions. The Saybolt Uni¬ 

versal viscometer is primarily suited for use with lubricating 

oils, while the Saybolt Furol viscometer is designed for deter¬ 

mining the viscosity of heavy fuel oils and liquid asphalt mate¬ 

rials such as are employed in road building. In both of these 

1 American Society for Testing Materials, “Standards on Petroleun* 

Products and Lubricants,” pp. 304-309, 1935. 
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instruments the viscosity is measured by the time in seconds 

required for 60 cc. of the liquid to flow vertically through a 

capillary tube. If, for example, this quantity of a certain liquid 

is discharged in 75 seconds, the Say bolt viscosity is said to be 

75 seconds. This tube is immersed in a constant-temperature 

bath and the instrument is provided with heating units so that 

the viscosity may be determined over a range of temperature. 

The nature of the tube through which the liquid must flow is 

shown in Fig. 258. The material to be tested is poured into the 

large reservoir and is allowed to flow through the outlet tube by 

removing the cork beneath it. The liquid runs into a glass flask 

Table XII.—Dimensions of Saybolt Oil Tubes^ 

Saybolt Universal Saybolt Furol 
viscometer viscometer 

Dimensions 
"o Mini- Nor- Ma.xi- Mini- Nor- Maxi- 

g mum, mal, mum, mum, mal, mum, 

CQ 
cm. cm. cni. cm. cm. (;m. 

Inside diameter of outlet 

tube. a 0.1750 0.1765 0.1780 0.313 0 315 0.317 
Outside diameter of out- 

let tube at lower end. . h 0.28 0.30 0.32 0.40 0.43 0.46 
Length of outlet tube*. . 

lieight of overflow rim 

c 1 .215 1.225 1 .235 1 215 1.225 1.235 

above bottom of out¬ 

let tube*. d 12.40 12.50 12.60 12.40 12.50 12 60 
Outside diameter of 

overflow rim, at the 
ton *-1. e t 

2.955 
3.30 t 

2.955 
3.30 

Diameter of container*.. 

Depth of cylindrical part 
} 2.975 2.99.5 2.975j 2.995 

of container*. g 8.8 i 8.8 

Diameter of container 

between bottom of 

cylindrical part of con¬ 

tainer and top of out¬ 

let tube * . h 0.9 0.9 

* This dimension is identical in the Saybolt Universal and the Saybolt Furol instruments, 
t The minimum value shall preferably not be less than 3.2 cm. 
X The section of overflow rim shall be bounded by straight lines except that a fillet is 

permissible at the junction with the bottom of the gallery. 

1 American Society for Testing Materials, op, cit., pp. 304-309. 
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having a graduation mark indicating a volume of 60 cc. The 

dimensions of the standard Universal and Furol oil tubes are 

given in Table XII. 

While it is desirable that the viscosity of an oil in Saybolt 

seconds should be proportional to its viscosity in poises, this is 

approximately true only for values of the former quantity above 

200 sec. The relationship between the kinematic viscosity of an 

oil measured in centistokes and its transpiration time, in Saybolt 

seconds may be expressed analyti(*.ally by the following empirical 

formulas: 

V = 0.226< - (1) 
L 

for t less than 100 sec. and 

V = 0.220^ - (2) 

for t greater than 100 sec. Either equation is valid when t — 100. 

The Saybolt Universal viscometer may be used satisfactorily for 

temperatures up to 210°F. provided the oil is not in the 

neighborhood of either its solid or its flash point. For higher 

temperatures the Ostwald viscometer immersed in a constant- 

temperature bath is often employed. 

213. Theory of Transpiration-type Viscometers.—In actual 

use the transpiration method for the determination of viscosity 

frequently requires the introduction of certain corrections to the 

basic Hagen-Poiseuille law. This is true in general of all vis¬ 

cometers of this type whether they are used for industrial or for 

scientific purposes. If the capillary tube of the viscometer is 

regarded as a circular pipe in which the flow is laminar, then 

the volume of fluid passing through it in a time t, as was shown in 

Art. 85, is 

Qt — ^(Pi — P2)dH 

128m? 
(3) 

Potential energy exists by reason of a pressure difference at the 

ends of the tube. In the actual flow, however, a certain portion 

of this energy is. transformed into kinetic energy. It is known 

that the velocity at any point at a distance y from the axis of the 

pipe, when the laminar flow with its paraboloidal velocity distri¬ 

bution is fully developed, is 
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u (4) 

where V is the average velocity. By a method paralleling that 

used in Art. 101, the kinetic energy of the flow is found to be 

d 

T = 

If the value of u from Ecp (4) is substituted in this expression and 

the integration is carried out, the result is 

T = 4 (5) 

This energy contained in the flowing fluid represents a loss in 

pressure pr, th(' magnitude of which may be determined by 

ecpiating the work done by that pressuiu^ in unit time to the 

kinetic energy T. Thus 

pv V ^ T ^ 
irpV^d'^ 

so that Pt = Putting 

Pr 

- 4iQt/7r(Pt, the result is 

16pQ/^ 

"ttW 
(6) 

The pressure difference on the ends of the pipe, effective in 

overcoming viscous resistance to flow, is therefon^ 

Pi — Pi — Pt 

If the pressure difference in Eq. (3) is repla(*ed by this effective 

pressure difference, then 

^ TrdH , . 7r(pi - p^dH 

■ Tiss'"' - - —y&iT- 
fQ,’ 
St/jlU 

When this last expression is solved for the absolute coefficient of 

viscosity, the result obtained is 

_ Hpt - pQt 

^ 128iQ, 8irU 

The kinematic viscosity of the fluid is now obtained by dividing 

Eq. (7) by the density so that 
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„ = ’tCpi - Pi)dH _ Qj_ 
l2%plQt Srlt 

In an actual test measurement will usually be made of the dif¬ 

ference in head on the ends of the flow tube rather than the 

pressure difference. The pressure difference is 

Pi - p2 = w{hi - Ih) = pg(hi ~ Jhz) 

where w and p are, respectively, the spe(*ific weight and density. 

Thus the kinematic, viscosity may l)e expressed in th(^ form 

_ T{hi ~ h2)gdH Qt 
" 12SlQi ' SwU 

If the viscometer is designed so that the diff(‘rence in head is 

tlie same for all fluids tested in it, then an expression for kinematic 

viscosity may be written in the form 

v = At-j (9) 

in which A and B are constants depending on the dimensions and 

(characteristics of the viscometer employed. A comparison of 

Eqs. (1) and (2) with Eq. (9) shows that thccy an' identical in 

form. In viscometers of the Saybolt type, the constants A and 

B also include a correction for the varying head. 

Other corrections are required in the use of viscometers of 

the transpiration type, such as the correction for loss at th(‘ 

inlet of the tube. However, most of them an^ of the same type 

as the kinetic energy correction and may be included in the 

instrument constants. Thus, if the values of A and B are 

determined by calibration, all the major errors are taken into 

account. 

The constants A and B of Eq. (9) always have positive values 

so that, for small values of v will have negative values. In this 

range the correction is more complicated in form and Eq. (9) is 

incorrect. This difficulty is avoided by the standards set up by 

the American Society for Testing Materials for the operation of 

Saybolt viscometers. The Saybolt Universal viscometer is not 

to be used for times less than 32 sec., whih; the Enrol instrument 

may not be employed for times less than 25 sec. 
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Space is not available for a longer treatment of the subject 

but excellent books are available for the reader who wishes to 

investigate these problems more fully.' 

Problem 405. The viscometer shown in Fig. 256 has a capillary tube 

0.2 cm. in diameter and discharges 75 cc. of fluid under a head of 15 cm. 

Determine the constants A and B in Eq. (9) when the tube is (a) 1.5 cm. long, 

(h) 12.5 cm. long. 
406. The viscosity of a lubricating oil is 175 Say bolt sec. What is its 

kinematic viscosity? 

407. A certain viscometer discharges its standard (quantity of castor oil 

at 15°C. in 300 sec. and at 40°C. in 50 sec. Determine the constants in 

Eq. (9). 
408. The absolute viscosity of an oil having a specific gravity of 0.81 is 

1.25 X lO”"® slug per ft.sec. What is its transpiration time when tested in 

a Say bolt Universal viscometer? 

214. Mechanics of Thin Films.—The theory and operation of 

viscometers as discussed in the preceding articles have for the 

most part been based on the relations developed for the laminar 

flow of a viscous fluid in a circular conduit. In the discussion 

of the resistance experienced by bodies moving through a fluid, 

as presented in Chap. XII, some attention has been given to the 

theory of the boundary layer. 

There is still another group of problems which is concerned 

with the behavior of a thin film of viscous fluid in motion between 

two solid boundaries, and there are a number of applications of 

this type which are of considerable interest. The basic assump¬ 

tions on which problems of this group are usually solved are 

similar to those used in developing the Hagen-Poiseuille law for 

laminar pipe flow. The thickness of the film is assumed to be 

very small and the viscosity of the fluid very large; as a conse¬ 

quence of the first assumption, the velocity gradients normal 

to the bounding surfaces may be of considerable magnitude. 

Because of these conditions it is concluded that the nature of 

the flow will be determined primarily by the viscous forces and 

that the inertia forces may be neglected. Reference to Art. 202 

indicates that such problems would therefore correspond to 

cases where the Reynolds' number of the flow is extremely small. 

216. Laminar Flow between Parallel Stationary Plates.—The 

case of fluid moving between two parallel plane surfaces, both 

^ Cf. footnote, p. 448. 
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of which are at rest, forms one of the simplest examples of the 

motion of thin films. This arrangement is shown in Fig. 259, 

which represents a cross section of the flow taken in the direction 

of motion. The plates are assumed to be sufficiently large so 

that the motion may be regarded as two-dimensional. The 

agency producing the flow may be a pressure difTerence on the 

ends of the channel formed by the two surfaces. The origin of a 

rectangular coordinate system is located at any convenient point 

half way between the two plates, the x-axis being chosen parallel 

to the planes of the plates and the y-axis at right angles to them. 

The distance between the plates is represented by h. Consider 

a fluid particle in the form of a small rectangular parallelepiped 

Fi(j. 259.—Laminar flow between parallel stationary plates. 

of unit thickness, with sides parallel to the coordinate axes having 

lengths equal to dx and dy. If the flow is from left to right, then 

there will be a shear stress on the lower surface equal to r, which 

will act in the negative x-direction. A similar stress on the 

upper surface acts in the opposite direction and is equal to 

r — dr. The figure is drawn as though there were a positive 

velocity gradient in the neighborhood of the particle so that it 

is moving slightly faster than the one just below it and slower 

than the one above. This, however, does not affect the gen¬ 

erality of the development. The pressures on the left- and right- 

hand ends of the element may be represented by p and p — dp, 
respectively. The motion is assumed to be steady and inde¬ 

pendent of X so that no inertia forces are involved and the 

velocity gradient is a function of y alone. The condition for 

equilibrium of the element then becomes 

[p ~ (p — dp)]dy — fr — (r — dT)\dx == 0 

/’ 
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or 

dp dy — dT dx ^ 0 

The differential equation for determining the variation of velocity 

with y its then 

or, letting 

dp _ dr 
dx dy 

du 
T = lii-j-y 

dy 
_ d^u 

dx ^dy- 
(10) 

The solution is obtained by intc'grating twice with respect to //, 

the result being 

u (11) 

The constants of integration, Ai and arc now determined 

from the conditions that the velocities are equal to zero at 

the surfaces of the bounding plates, that is, u = Ofory = ±|- 

The final result is 

u = (12) 

As in the case of laminar flow in a pipe, the maximum velocity 

occurs midway between the bounding surfaces. Here its value is 

1 dp 
2/x dx 4 (13) 

while the velocity distribution is parabolic in form. The value 

of the average velocity at any section is two-thirds of the maxi¬ 

mum, that is, 

1 dp 
Syu dx 4 

(14) 

The pressure decreases linearly in the direction of motion so 

that the pressure gradient is 

= (Pl - Pi) 
dx I 
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where I is the distance between points 1 and 2 at whicli the 

pressures are pi and p2. The velocity at any point is then 

The quantity of fluid passing through a section of unit thickness 

in the direction normal to the x^-plan(‘ is thus equal to 

b 

Q = 2 dy = ' (16) 

The two plates of this problem might ))e considered as the 

vertical walls of an extremely deep channel of which Fig. 259 

represents a horizontal section. If the channel is sufficiently 

deep so that the free surface at the top and the solid boundary 

at the bottom do not appnnuably affect the flow, then for a 

depth d the discharge under a pressure difference pi — p2 is 

« - 07) 

or for a given discharge the loss in head due to viscosity is 

h — h == ~ 

^ ^ to wh'H ghhl 
(18) 

216. Hele-Shaw’s Method for Visualization of Two-dimen¬ 
sional Nonviscous Fluid Motions.—If a solid obstacle in the 

form of a right cylinder is placed between the two bounding 

plates with its generators perpendicular to these plates, the 

problem of Art. 215 bec^omes considcTably more complicated. 

The presence of the cylinder distorts the flow so that the velocity 

in any plane parallel to the plates is variable in both magnitude 

and direction, as shown in Fig. 260. It then Ix^comes necessary 

to consider velocity components parallel to the x and the z 
coordinate axes. Both of these velocity components, u and iv, 
are now functions of x and z as well as y. Suppose that the 

distance between the plates is small in comparison with the 

dimensions of the body placed between them and that the fluid 

is so viscous that the inertia forces are negligible in comparison 

with the shearing forces. It was first pointed out by Sir George 
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Stokes^ that under these conditions the streamlines representing 

the average flow approximate those for the two-dimensional flow 

of a nonviscous incompressible fluid past an infinitely long 

cylinder having a cross section identical in size and shape with 

the obstacle. 

This theory has been very successfully applied by Hele-Shaw 

and others in studying the two-dimensional motion of perfect 

fluid around various types of cylinders. Hele-Shaw made a 

Fig. 260.—Viscous flow past an obstacle between parallel plates. 

thin film of glycerin flow between glass plates which were large 

in comparison with the size of the obstacle placed between them. 

In his apparatus the sides AB oi Fig. 260 are closed and the fluid 

enters at AA and leaves at BB. The streamlines of the flow are 

rendered visible by the injection of jets of dye at the upstream 

opening and the resulting flow pattern may then be studied or 

photographed through the glass plate. 

The results of a recent application of this method developed 

at the University of Liverpool are shown in Fig. 261. The 

photograph in Fig. 261a shows the laminar or streamline flow 

around a cylinder whose cross section is the water line of a 

typical ship form. Hele-Shaw also demonstrated that turbulent 

flow pictures could be obtained with the same device by using 

^ Stokes, G. G., Mathematical Proof of the Identity of the Streamlines 

Obtained by Means of a Viscous Film with Those of a Perfect Fluid Moving 

in Two Dimensions, Math. Phys. Papers, vol. 5, p. 278. 

* Abell, T. B., Contribution to the Photographic Study of the Mechanism 

of the Wake, Proc. Inst. Naval Architects, vol. 75, pp. 145-149, 1933. 
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a larger gap between the plates. A photograph of turbulent 

flow for the ship hull is shown in Fig. 2616. 

This method is well adapted to the demonstration and study of 

two-dimensional nonviscous fluid motions where the boundary 

conditions as determined by the shape of the obstacle are so 

complicated as to rend(ir mathematical treatment of the problem 

extremely difficult. 

(6) Turbulent flow. 
Fig. 261.—Hele-Shaw pictures of flow past a ship-hull section. {Courtesy of 

Prof. T. B. Abell.) 

217. The Theory of Lubrication.—Another extremely impor¬ 

tant application of the hydrodynamic theory of thin films of 

viscous fluids is found in the study of the lubrication of various 

types of bearings. While such theory does not completely 

explain all the phenomena associated with bearing operation, it 

does serve the function of forming a part of the foundation 

for a satisfactory theory. The mathematical details of the 

hydrodynamics of lubrication are in many respects rather com¬ 

plicated and it is proposed to consider here only a relatively 

simple problem which will serve as an introduction to the more 

advanced work in this field. 
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The simplest form of bearing in which the applied load is 

sustained by a film of viscous fluid is illustrated by the case of a 

slipper or slide block moving over a plane surfac^e. The problem 

will first be studied with the assumptions that tlie surfaces are 

plane and parallel, that the plate over which tlie slipper moves is 

infinite in extent and that the slipper is infinitely long in the 

horizontal direction normal to its motion. The arrangement is 

illustrated in Fig. 262. In order to simplify the analysis the 

principle of relative motion is employed and the slipper is assumed 

to be stationary in space while the plate moves past it with a 

velocity equal and opposite to that originally possessed by the 

slipper. Because the slipper and plate are assumed to be infi- 

Fkj. 2()2.“ -Bearing curisisting of i>arallel slipper and plate. 

iiitely long, the problem becomes a two-dimensional one. Figure 

262 represents a cross section normal to the bearing plate and 

parallel to the direction of motion. The a:-axis of a rectangular 

coordinate system has been chosen in the latter direction and the 

2/-axis normal to it, the origin being locatt‘d at the l(dt-hand end 

of the slipper and in the plane of the plate. The width of the 

slipper is represented by I and the thickness of the film of lubri¬ 

cant, which separates the slipper and plate, by h. Considera¬ 

tion of the forces acting on an element of the viscous film shows 

that the equation of equilibrium has exactly the same form as 

that developed in Art. 215 for flow between two stationary 

plates. It is, of course, necessary that the film be sufficiently 

thin and viscous so that inertia forces are negligible in com¬ 

parison with the viscous forces. The basic equations for the 

solution of this problem are, therefore, the same as Eqs. (10) and 

(11) on page 456; these are, 

dp _ dr _ d^u 
dx dy ^dy^ (19) 
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and its integral 

In these expressions p is the pressure, r the shearing stress and 
u the velocity at any point, while n is tlie absolute viscosity and 
A] and are constants of integration. The determination 
of the A^alues of these constants depends on the conditions to be 
satisfi('d at the boundaries. If the plate is assumed to be moving 
to th(^ right with a velocity F, then, for y — 0, u = V, while 
at the surface of tlu' slipper y = h and u ~ 0. The determina¬ 
tion of the valu(‘s of and A2 and their substitution in Eq. (20) 
give for the velocity at any point in the film the expression 

From the condition of continuity the quantity of fluid passing 
any cross section of the interspace in unit time is 

12m rfx 2 
(22) 

From Eq. (22) the pressun^ gradient in the a>direction is 

f='-m -«) <-> 
Under the assumptions stated all the terms on the right-hand 
side of this equation are constants. The pressure at any point 
in the film is therefore 

” - T■'‘(T -«)>• + « 

where i? is a constant of integration. The value of B may be 
determined by the fact that, at the left-hand end of the slipper 
where a: = 0, the pressure is atmospheric, tliat is, p ~ pa. Thus 
B = Pa and Eq. (24) becomes 

P = + Po (25) 

But at the other end of the slipper where x = I the pressure is 
also p = Pa and this condition can be satisfied only by putting 
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“2-Q = 0. It thus appears that the pressure at every point 

in the interspace is equal to the atmospheric pressure and, 

since this pn^ssure acts uniformly on the outer surfaces of the 

slipper as well as on the exposed portion of the film, the bearing 

would not be capable of supporting any load and therefore 

would be useless in any practical machine. 

218. The Inclined-slipper Bearing.—It has been shown in the 

preceding article that a bearing consisting of a parallel slipper 

and plate is incapable of supporting any load. Some further 

insight into the physic^al aspects of the problem may be obtained 

by considering the velocity distribution across the oil film. In a 

bearing which is sustaining a load the pressure must increase 

from atmospheric pressure at the left-hand end of the slipper and 

return to this value at the right-hand end. Consequently the 

pressure must reach a maximum value somewhere between these 

two points as shown in Fig. 263a. It is obvious from Eq. (23) 

that p can vary with x in this manner only when h is a suitable 

function of x. 
The velocity distribution across any section of the oil film is 

given by Eq. (21), which may be written in the form 

where 

and 

U = Wl + 1/2 

1 /I. 
y) 

u. = j{h - y) 

The expression for ui represents a parabolic velocity distribution 

with the vertex of the parabola at the point y == h/2 and with 

the parabola opening to the right or to the left, depending on 

whether dp/dx is positive or negative. Distributions of this 

type are shown in Fig, 2636. 

If dp/dx is zero, the velocity is merely W2, which represents a 

linear distribution with zero velocity at the slipper surface and 

a maximum velocity V at the plate. This distribution is shown 

in Fig. 263c. 

It is now possible to determine the character of the velocity 

distribution curves which must accompany the pressure dis- 
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tribution of the type shown in Fig. 263a. At any point the 

velocity is the combination of the linear arrangement given by 

U2 with the parabolic distribution represented by Ui. If p is 

increasing and dp/dx is positive as between points A and B on 

the slipper, then the parabola must be subtracted from the 

straight line and the resulting curve is concave to the right. 

When dp/dx is negative, the opposite is true and the resultant 

curve is concave to the left. At the point where p is a maximum, 

(a)-Pressure and Velocity Distributions 

(b)-Distribution of Uj (c)-Distribution of 

Ftu. 203. -Pressure and velocity distribution in an oil film. 

dp/dx is zero and the velocity distribution is linear. Curves 

of these types are shown below the prcvssure-distribution diagram 

of Fig. 263a. From continuity the area under each of these 

curves must be the same. 

The simplest form of a bearing in which A is a function of x 
would be one in which the two surfaces are planes but with the 

bottom of the slipper inclined to the bearing plate, as shown in 

Fig. 264. The plane of the undersurface of the slipper is assumed 

to interse(^t that of the bearing plate at a distance a from the 

origin and to make an angle 5 with that surface. The slipper is 

moving to the left or, in relative motion, the bearing plate is 
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traveling to the right. If, as is generally the case, the angle 5 

is small, then the thickness of the film at any point x is 

h — (a — x) tan 8 ^ (a — x)8 (26) 

and, when this expression is introduced in Eq. (23), the result is 

= 12 r ^_ 
dx ^_28^^{a-xy - x)\ 

The integration of this equation and the fulfillment of the condi¬ 

tions of atmospheric pressure at the ends of the slipper are 

y 

straightforward calculations but, be(;aiise of their length, the 

details have been omitted here. The result is obtained by 

calculating th(' value of the constant of integration whicli appears 

and also by determining the value of Q, the quantity of fluid 

passing through the interspace. This final result is 

%^iVx{l — x) 
V - Va + ^■(2^Triy(aTr^)2 (27) 

Now the mean thickness of the viscous film is found at a; = 1/2 

and is equal to 

h = |(2« - 1) (28) 

If this value is substituted in Eq. (27), then the difference 

between the pressure at a point in the film and the atmospheric 

pressure outside it may be expressed as 

S^Vx(l — x) 
V - Vi 

8h{a — xY 
(29) 
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It is now proposed to study the effect of variations in the 

inclination of the slipper for a bearing having constant values 

of At, V and h. For this purpose Eq. (29) may be put in the 

more convenient non dimensional form 

(30) 

Before proceeding to the actual computations it is worth while to 

determine the location of the point of maximum pressure and 

the value of this pressure. This may be done by differentiating 

the expn'ssion for p — paj as given by Eq. (29), with respect to x 

and putting the result equal to zero. The value of x thus 

obtained is 

a 

(31) 

When this value is put into Eq. (30) the result obtained is 

!! 
(p - P..)m ^ 

(32) 

In making numerical calculations it is convenient to assume a 

value of the mean film thickness h and the slipper length Z. 

As an example, coiLsider a case where h = 0.0001 ft. and 

Z = 1.0 ft. The inclination d of the slipper can then be deter¬ 

mined from Eq. (28), after which it is a simple matter to compute 

the values of and --from Elqs. (31) and (32). The 

results of such calculations, giving the variation of these last two 

quantities as well as 5 with Z/a, are shown in Fig. 265. It 

appears that, as Z/a approaches unity, the point of maximum 

pressure moves toward the rear or right-hand edge of the slipper 

while at the same time the maximum pressure tends to become 

infinite. It can be seen from Fig. 264 that the condition 

Z/a = 1 corresponds to the case where the slide block is inclined 



466 FLUID MECHANICS (Chap. XVI 

SO that its rear edge just touches the bearing plate. In such a 

case there could, of course, be no flow through the interspace, 

so that this limiting case is of no physical significance. The 

Fiq. 265.—Variation of maxirnnm j^ressure, its Icx'ution and slipper inclination 
with I a. 

other extreme case where l/a = 0 corresponds to the parallel 

slipper and plate and the results given here agree with those 

previously obtained. 
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The variation of pressure along the length of the slide block 

for different inclinations or values of l/a is indicated by the 

results shown in Fig. 266, these curves having been obtained by 

introducing into Eq. (30) the numerical values for h and I shown 

in Fig. 265. 

In order to complete this study of the bearing, it is of interest 

to determine the value of the resultant of the pressures acting 

on the block. This may be done by setting up the integral 

P = foip - pa)dx 

and the result after integrating and simplifying may be put in 

the form 

The position of the center of pressure or point of application 

of this resultant force may be found by computing the moment 

of the distributed load over the slipper about some convenient 

point and dividing by the resultant force. If the point x = 0 

is selected for the reference point, then 

Xp 
1 r 
p I (P ~ Pa)r dx 

and, after carrying out the integration and introducing the value 

of P from Eq. (33), it appears that' 

The values of these quantities. 
P 

3m 
and -j, for the particular 

' In making numerical calculations with Eqs. (33) and (34), it is essential 
that at least seven-place logarithms be employed because of the fact that in 
each case the two groups of terms forming these expressions differ by very 
small amounts, particularly for small values of l/a. 
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case previously considered are plotted in Fig. 267 as functions of 

l/a. If desire^d, these values could, of course, be plotted directly 

as functions of 5. 

As a final step in this study the tangential force or resultant 

of the shearing stresses on the slipper may be evaluated. The 

shearing stress at any point in the film is 

the value of bujdy having been (H)mputed from Eq. (21). The 

value of T acting on the fluid at a point on the slipper is found by 

putting ?/ = /i so that 

The total tractive force acting on the slipper is opposite in 

direction to that on the fluid and is equal to 

In order to evaluate this integral it is necessary to introduce 

the value of dp/dx obtained by differentiating Eq. (27). The 

final result after simplification is 
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T . 
The value of considered as a functioa of l/a is also sliown 

fxV/h 
ill the graph of Fig. 267. This force appears to have positive 

values with the exception of a small range near l/a = 1.0. As 

l/a approaches unity the velocities in the film lu^ar th(^ right-hand 

end of the slijiper tend to become infinite. This would require^ 

large ac(^(*l(‘rations and inertia could no longer b(? negl(‘cted. 

Normally the tra(div(i forces would act from left to right so 

that, if tlu; slipper were moving over the stationary plate, there 

would be a forces in the opposite direction equal to T which would 

b(^ nec(‘ssary to maintain the motion of the slipper. d"he normal 

force P also has a component equal to Pb which oppose's the 

motion so that the net force lu'cessary to move the slipper is 

II ^ T + Pb (36) 

The theory of the inclined-slipper liearing as presented here is 

by no means complete. In practice the situation usually is 

that the total load to be supported by the bearing, the viscosity 

of the lubricant and the velocity of the slipper may })e known, and 

it is then a question of determining the best proportions for the 

interspace in which the flow of the lubricant takes place. 

219. Practical Aspects of Lubrication.—The theory of lubrica¬ 

tion as applied to the problem of Art. 218 is essentially that 

developed by Osborn(‘ Reynolds.^ It has been elaborated on by 

many other workers in tins field, particularly Sommerfeld, 

Michell and Kingsbury.- Spacx' is not available? for more detailed 

discussions of this work, and the mathematics of such problems 

as the cylindrical journal bearing and shaft are too advanced for 

consideration hen'. The analysis of the inclined-slipper bearing 

' Reynolds, O., On the Theory of Lubrication, Scientific Papers, vol. 2, 

pp. 228-310, (^aniV)ridf?e Univ(;rsity Press, 1901. 

^ For discussions of some of this work and more complete'- bibliographies, 

the reader is n'O^red to the following: 

Stanton, T. E., “Friction,'^ Chaps. Ill and TV. Longmans, Green & 

('ompany, London, 1923. 

Michell, A. G. M., “Viscosity and Lubrication,“ CUiap. Ill of “The 

Mechanical Properties of Fluids,’' Blackie & Son, Ltd., London, 1923. 

Kaufmann, W., “Angewandie Hydromechanik,” vol. II, pp. 177-193, 

Julius Springer, Berlin, 1934. 

Hersey, M. D., “Theory of Lubrication,” John Wiley & Sons, l!\c. 

1936. 
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has been idealized in a number of respects. In practice the 

slipper would be of finite length so that there would be some 

leakage of the lubricant along the sides of the bearing with the 

result that the pressures in the film would be considerably 

diminished. The case of a slide block of finite dimensions has 

been treated by Michell and details will be found in the references 

given here. 

Another factor which appreciably modifies the theoretical 

results for bearing performance is that no account has been given 

of the transformation of the kinetic energy of the fluid into heat. 

Some of this heat is absorbed by the lubricant with a resulting 

rise in temperature and a decrease in viscosity. This phase of 

the problem is closely related to questions of the transfer of 

heat between solid surfaces and fluids. In many cases the 

determining factor in bearing design is the necessity for supply¬ 

ing a sufficient amount of lubricant to serve as a cooling agent and 

to carry away the heat generated rather than to act merely as a 

means of sustaining the applied load. If, because of excessively 

high pressures or breaking down of the lubri(;ant at high tempera¬ 

tures, there should cease to be a film between the solid surfaces 

of the bearing, there is always the danger of seizure and severe 

damage to the bearing. When metal surfacjes are in contact, the 

problem belongs in the field of solid friction and not in the 

mechanics of fluids. 

The explanation of the ability of a bearing to withstand large 

loads on the basis of the theory of the flow of viscous fluids is 

only one phase of the general problem of lubrication. This 

theory, for instance, does not explain why in many cases bearing 

troubles may be solved by replacing a mineral oil by a vegetable 

oil, even though the two fluids have approximately the same 

viscosity. In order to answer this question it is necessary to 

enter into the field of physical chemistry and to consider, among 

other things, the adhesive quality of the oils when in contact 

with metal surfaces. The explanation of the different charac¬ 

teristics of various oils in this respect involves a consideration 

of the behavior of the surface molecules of both the oil and the 

metal. 
While the discussion of lubrication which has been presented 

here covers only a portion of one of the simpler problems in that 

field, it may serve as an introduction to further study and should 
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give some idea of the methods that may be used. The value of 

this theory is well illustrated by the development of the Miehell 

and Kingsbury bearings. When used as thrust bearings in 

marine-engine installations, these consist of slipper blocks such 

as that previously discussed except that they are hinged freely 

about a point some distance back of their centers. Such an 

arrangement will automatically adjust itself to the load applied 

and is very stable. It has b(Hm said that the application of 

liydrodynamic theory to bearings of this kind has made it pos¬ 

sible to increase bearing pressures from approximately 60 lb. per 

sq. in. to 3000 lb. per sq. in. 





ANSWERS TO PROBLEMS 

1. p = 0.00102 gin. wt. == 1 wt./cin.^ 

2. IP = 50.7 lb. p('T‘ f’l. ft., p = 1.70 slugs pnr cu. ft., 

V = 0.0170 cu. ft. per lb. 

Z. p ~ 500 lb. per sip in., pi = 0.422 slugs per cu. ft., 

p = 0.844 slugs per ou. ft. 

4. ac = 0.00300, ar = 0.00218 

6. 17.34 cu. ft. 

6. 0.007 ft. Vi^-^ C.. 
7. 728 ft. per d(‘g. F. 

8. 0.0507 11). per cu. ft. 

9. At 100 lb. i)er sq. in. abs. (a) 2.40 cu. ft. per lb., (5) 3.92 cu. ft. per lb. 

11. 2740 lb. per sq. ft. abs. 

12. 3988 lb. per sq. ft. abs. 

13. 14.095 and 14.17 

14. 0.800, zero, —1.30, —1.30 lb. persq. in. gage 

16. 33.9 and 07.8 ft. 

16. (a) 23.1, (b) 20.4 

17. (a) 110.8, (5) 10.7 
18. 14.4‘’F., 0.0005rC. per in. 

19. 5000 ft. 

20. 9.04 lb. per sq. in. abs. 

21. 8.28, 1.08, 3.40 lb. per s(p in. abs. 

22. 0.0015, 0.000359, 0.00073 slugs p(‘r cu. ft. 
23. 4.02 ft. 

24. 13.55 ft. below B 
26. 40.2 ft. 

26. 3.58 ft., -2.35 ft. 

27. 0.849 ft., 1.025 ft. above B 
28. (a) 0.770 ft., (6) 0.093 ft. 

29. 0.3 

30. 0.971 in. 

31. 1.42 per cent 
32. 30.4 ft. 

33. 14.52 lb. per sq. in. abs. 

34. (a) 3920 lb., (5) 1080 lb., (c) 3890 lb., (d) 4990 lb. 

36. (a) 0.82 ft., (5) 7.52 ft., (c) 7.43 ft. 

36. 9.00 ft. 

38. (a) 3.40 ft., (5) 7.01 ft. from water surface 

39. 11.55 1b. 

40. 2090 lb. 

41. 190 1b. 

473 
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42. (a) 14,840 lb., (6) 15,160 lb., (c) 19,180 lb. 

43. (o) 4.91 lb. per sq. in. gage, (6) 4.26 lb. per sq. in. gage, (c) 20.2 

id) 20.58 in. 

44. pn — Pm = 3.85 lb. per sq. in. 

45. 24 in. 

46. 5.19 in. 

47. (a) 6740 lb., (fe) 13,480 lb., (c) 4.24 ft., {d) 4.67 ft. 

48. 1181 lb. 

49. {a) Up — 4.50 ft., Xp = 1.50 ft. from vertical edge; 

(b) Vv — 7.29 ft., Xp — 1.43 ft. from vertical edge 
60. (a) P — 12,480 lb., ijp — 6.67 ft. from hinge; 

(5) P = 24,960 lb., xfp = 5.83 ft. from hinge; 

(c) 10,400 1b. 

61. 12,480 lb. 

62. (a) 2496 lb., (5) 2,80 ft. from top, (r) 3.17 ft. from top of box 

63. P = 26,960 lb., yp = 7.0 ft. 

64. yp = 3.75 ft., y = 9.0 ft. 

56. 1774 lb. 

66. P, = 187.2 11),, 7% = 196.0 1b., 7\ - 187.2 1b. 

67. 29.9 ft. 

68. 2650 lb. per H(p in. abs. 

69. 5 lb. per in. 

60. (a) Zero, (5) P, = 17,470 lb., /\ - 20,320 lb., (c) 26,800 lb. 

61. 4.38 ft., 4,38 ft. 

62. 499 lb. 

63. 130.7 11). 

64. 1028 1b. 

66. 1045 lb., 30,200 lb. 

66. 28.2 lb. 

67. 4450 lb. 

68. 72.9 cu. ft. 

69. MG = 0.606 in., T = 34,2 in. lb. 

70. (a) 0.1015, (5) -0.0835, (c) 0.0195 

71. 4 ft., 11 ft. 

72. 3.04 ft, 

73. H 
74. (a) 7.04 ft., (5) 34.4 lb. vertically upward 

76. 1.225 

76. - 1.60 ft., = 90.4 ft. 

77. (a) 1.093 ft. from bottom, (5) 1.284 ft. from DE^ 
(c) 1.377 ft. from 77£: 

78. 0.917 ft. from DE, 2250 lb. 

79. 23 plates 

80. 104.6 ft. tons 

81. T - 247 ft. lb., 17°37' from vertical 

82. 177.6 1b. 

88. 1 ft. ’ 

84. Ay ** 1140 lb. down, A* * 45201b. to left, B* « 5780 lb. to left 
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86. 3200 1b. 

86. 3.17 ft., 1.19 ft. 

87. 13.4 ft. 

88. 699 1b. 

89. Sp. gr. — 0.567, more stable 

90. 43.3 lb. per cu. ft., 89.1 lb. 

91. 2570 1b. 

92. 12 m., 46.8 1b. 

93. 23.4 lb. per sq. ft. gage. 

94. 153.1 r.p.in., 249.6 Ib. per sq. ft. gage, 108.3 r.p.m., I ft. 

96. 177.2 r.p.m., 1.57 eu. ft. 

96. 13.5 in., pn = 6.63, pa — 5.89, po = 5.15 lb. per sq. in. gage 

97. pB = 5.89, pa = —3.26 lb. per sq. in. gage. 

98. 8.02, 14.98 rad. per sec. 

99. 5.67 rad. per sec., pa = 2.95, pn — 11.8 lb. per sq. in. gage 

100. 8.02 rad. per sec. 

101. (a) 2.32 rad. per sec., {h) (>.75 rad. per sec., (c) 8.18 rad. per sec. 

102. 8°18' from horizon oal, 230 lb. per sq. ft. gage 

103. pB — 0.43, pA — 2.16 11). per sq. in. gage 

104. 11.34 rad. per sec., 1.62 lb. per sq. in. gage 

106. 8.02 rad. per sec., 0.325 lb. per sq. in gage at midpoint of BC 
106. 8.02 rad. per sec. 
107. 17.4 ft. per sec.2 

108. At inlet V = 0.164. At outlet V — 1.47 ft. per sec. 

109. At base V = 618 ft. per min., Q — 1,213,000 cu. ft. per min. 

At 50 ft. level, V — 688 ft. per min., Q — 1,046,000 cu. ft. per min. 

110. 130, 104, 86.6 ft. per sec. 

111. 22,13 ft. or 1383 lb. per sq. ft. 
112. H — 10.24 ft. for all points 

113. E — 2117 lb. i)er sq. ft. for both points 

114. 14.32 lb. per sq. in. 

116. 13.3 lb. per sq. in. 

116. 4.45 lb. per sq. ft. gage 

117. 24.06 ft. per sec., 4.72 c.f.s., 8.20 lb, per sq. in. abs. 

118. 24.06 ft. per sec., 1.18 c.f.s., 11.87 lb. per sq. in. abs. 

119. 7.85 c.f.s., ps — zero abs., h — 24.91 ft. 

120. 24.06 ft. per sec., 1.18 c.f.s., 12,57 lb. per sq. in. abs. 

121. 6.22 ft., 16.22 ft. gage 

122. 114.6 ft. per sec. 

123. 171 m.p.h. 

124. 94.7 ft. per sec. 

126. 5 ft. gage, 8.50 ft. gage 

126. 185.2 m.p.h. 

127. 22.6 lb. per sq. in. gage 

128. 3.18 ft. per sec., 5.62 c.f.s. 

129. 0.0403 in. 

130. 24.2 lb. per sq. in. 

131. 4.13 ft. 
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132. 2.41 ft. per sec. 
133. 0.52 lb. per sq. iti. abs. 
134. (a) 12.53 ft. per sec., (h) 235 ft. per sec. 
136. 18.7, 24.3 ft. per sec. 
136. 42.0 lb. per sq. in. p;age, loss ^11.8 ft. 
137. (n) 10.04 ft. per sec. 
138. (a) 20.14, (5) 21.33, (c) 18.92 ft. per sec. 
139. 9.78 ft. 
140. 3.83 ft. 
141. (a) 0.09 c.f.s., pc = 8.20, p/) = 0.02 lb. p(‘r s(|. in. abs., (5) 2.79 ft. 
142. 2.30 c.f.s. 
143. C = 1.023 
144. 302 ft. per sec., 450 sec. 
146. 183 ft. per sec., 73 ft. per sec. 
146. 2.79 lb. per sq. in., 0.093 lb. per sep in. 
147. 8.19, 10.88 lb. per sq. in. abs., Q = 3.50 c.f.s. 
148. 1.72 c.f.s. 
149. 24.1 hj). 
160. 26.67 ft. per sec., 133 ft. lb. 
161. 65.2 ft. lb., 32.6 lb. sec. 
162. 1.55 1b. 
163. 4.84 lb. 
164. 38.0 lb. 
166. 358 lb. 
166. = 38.7 lb., Py = 144.2 lb. 
167. 1\ = 100.0 1b., = 111.0 11). 
168. 134.3 1b. 
169. 80 g.p.m., 13.8 lb. 
160. 87.2 ft. per sec., 37.2 ft. lb. per lb., 36°35' 
161. 1\ - 403 lb., Py = 192 lb., 42.1 hp. 
162. 3690 lb., 1007 hp. 
163. = V73 

164. 1130 1b., 2120 1b. 
166. 153 1b. 
166. Hr = 2459 lb., Hy = 1065 lb. 
167. 155 1b. 
168. 93.0 lb. 
169. 93 lb., 3.98 ft. 
170. V' = 52.9 ft. per sec., 77 = 523 lb., Py = 304 lb., 111.8 ft. lb. per lb., 

38.1 hp. 
171. 43.2 lb., 14.9 lb., 0.94 hp. 
172. P — 562 lb., work pe^r sec. = 12,360 ft. lb., K.K. per sec. = 8150 ft. lb., 

eff. = 60.3 per cent. 
173. 2.20 hp., V' — 67.4 ft. per sec. 
174. a - 143°06', 16,100 ft. lb., eff. = 55.4 per cent, Ry = 48.6 lb. 
176. (a) 565 lb., 2262 lb., (b) 1090 lb., 2509 lb. 
176. /3i = 60°, ui - Vi — 17.32 ft. per sec., w = 11.55 rad. per sec., 

W2 = 8.66 ft. per sec., 14.44 ft. per sec., p2 = 14.2 lb. per sq. in., 
T = 3160 ft. lb., 66.2 hp. 
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177. (a) L - 74.7 Ih., L) - (>.54 ll>., (//) L 72.4 If)., D - 19.2 lb. 

178. 6 = ±30° and ±150°, {p - pu)u^>^l.. = pVat $ ~ i) and 180°, 
ip — Po)nnn. = -3pV±V2 ilt (1 = ± 90‘^ 

179. 60 ft. per sec. 

180. e = sin“>(-r/47rar«), Vj,/Vo = 2 
181. 0.465 and 0.055 Ih. pe^r .s(|. in. 

182. L = 6.90 11)., Cl - 2.16 

183. "5.25 when 0 = 30° 

184. Cl = 2.06, 251 r.p.in. 

186. 0.559 

186. L = 16.1 lb., Cl = 0.986 
187. L = 107 11)., Cl - 2.22, - 20°43' 

188. Cl = 0.548 when a[^ is 5° 
189. -0.97 deg. 
190. 2160 1b. 

191. 0.829 
192. (rt) 5°35', 621 ft. per sec., {b) T — 75.2 lb., fg = 33.9 lb. 

193. a = 5°33', W./nD = 0.431 

194. d = ]5°59' at 0.75r 

195. 2.73 ft. per sec., 30.70 ft. {xn* sec. 

196. Ct = 0.155, rj = 0.87, - 0.759, E - 404 hp. 
197. L = 400 lb., 82.8 lb. 

198. r = 16.2 ft.^ per sec., L = 0.771 lb. 
199. (a) 1.39, (6) 225 sq. ft. 

200. 16,700 11). 

201. 3.13 lb. 

202. r = 25.0 lb., Fq = 9.51 lb., a = 2° 
203. oi — 10°52' at 2000 r.p.rn., max. N ~ 2180 r.p.in. 

204. Ct - 0.329, Cpj - 0.413, ideal rj ~ 83.5 per cent, actual ?? = 75 per 
cent 

206. 7.68 lb. per s(p ft. 
206. V — 1.11 stokes, = 1,12 cm. sec. per g. 
207. p = 0.01147 stokes or 1.232 X 10~* ft.* per sec., p = 2.388 X 10'^ 

slugs per ft. sec. 
208. p = 0.028 slugs per ft. sec. or 13.43 poises, p ~ 15.8 stokes 

209. 461 lb. per sq. ft., 1.5 ft. per sec. 
210. At 3 cm. from axis, ii ~ 64 cm. per sei^, r = 60 dynes per sq. c,m. 

211. 0.197 ft. per sec., 5.06 ft. per sec. 

212. 1.08 ft. per sec., 0.177 ft. per sec. 

213. 1,400,000 

214. 39,200 

216. 0.00385 ft. per sec., 0.0030, 1.16 X 10^ ft. 

216. r •= 0.1038 lb. per scj. ft., 0.0543 in. lb. 

217. 0.158 poises. 
218. (a) 0.988 ft. per sec., {b) 1.6 ft. per sec. 

219. 18.9 ft. 
220. 764 11). per sq. in. 

221. 30.7 lb. per sq. in., 61 lb. per sq. in. 

222. 5.02 c.f.s. 
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223. (a) 26 ft., (6) 22 ft. 
224. (a) 317 ft., (6) 75.1 ft. 
225. 3.9 c.f.B. 
226. 2.24, 2.47 ft. per sec. 
227. 0.50 ft. drop, 0.80 ft. rise 
228. 0.40 ft. drop, 1.69 ft. drop 
229. 6.29 c.f.s., 1,05 ft. 
230. H = 12.2 ft. 
231. (a) 4.2 c.f.s., (b) 4.3 c.f.s. 
233. Q — 8.25 c.f.s., pc = 117 lb. per sq. in. ai)s 
234. 0.57 ft. 
236. 50 ft. 
236. 11.5 c.f.s. 
237. 195 ft. 
238. 0.016. 
239. 11.3 lb. per sq. in., 0.00402 ft. lb. per lb 
240. 67 lb, per sq. in. gage 
241. (a) 1.18 ft., (6) 0.76 ft. 
242. 0.048 ft. 
243. 9.75 c.f.s. 
244. 63.3 ft. 
246. (a) 1.20 c.f.s., (5) 0.42 c.f.s. 
246. 0.0273 ft. 
247. 0.0101 c.f.s. 
248. 110 ft. 
249. 7.9 c.f.s. 
260. 6.5 c.f.s. 
261. Old, Q = 6.56 c.f.s. 
262. 173 ft. 
263. 1.19 ft. 
264. 0.000164. 
266. 0,000448. 
266. Q - 108 c.f.s., r == 0.20 lb. per sq. ft. 
267. 0.000606. 
268. 94.3 c.f.s. 
269. 4.39 ft., more 
260. Q = 907 c.f.s., .s - 0.00208 
261. 0.775 ft., 4.383 ft. 
262. 4.36 ft. 
263. dy/dx 0.00896, deeper 
264. 98.5 c.f.s., 98.2 c.f.s., 95.8 c.f.s. 
266. 45.85 c.f.s. 
266. 2.73 ft. 
267. 443 ft. 
268. 2.40 ft., 3.72 ft- 
269. 1.10 ft, 
270. C * 3.60, H * 3.36 ft. 
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271. (a) 68.8 c.f.s., (6) 59.3 c.f.s. 
272. 1.05 ft. below channel 
273. 3.29 ft. below pond siirface 
274. 0.000608, 0.000467 
275. 257^^28', 0.813d. 
276. Flume 0.46 ft. above channel 
277. yc — 1.55 ft., Vc == 4,99 ft. per sec. 
278. ch = 2.53 ft., N = 0.01123 
279. d, - 0.498 ft., hi - 5.37 ft. 
280. 4.19 ft. 
281. 73 weirs, H ~ 0.482 ft. 
282. L = 14.4 ft., Hy = 1.82 ft.. Hr = 0.302 ft. 
283. Q - 493 c.f.s., .s- = 0.00175 
284. 34.7 sq. ft., 36.6 sq. ft. 
286. 2.90 ft. 
286. 7.21 ft. at 200, 6.41 ft. at 400 
287. dc = 3.11 ft., g = 33.6 c.f.s. per ft. 
288. .sv - 0.00301, d2 = 0.883 ft., F, - 1.25 ft., E> = 0.96 ft., in - 0.29 ft. 
289. d = hy d — 1.266 
2^0. (a) 38.0 ft. per sec., (b) 43.3 ft. per sec. 
291. V — 19.6 ft. per sec., //] = 12.9 ft. 
292. d = 1.57 in., V ~ 25.0 ft. i)er sec., Q 0.336 c.f.s. 
293. - 0.973, C, = 0.617 
294. Vi — 2.55 ft. per sec., V — 16.0 ft. per sec., H — 4.14 ft. 
295. 4.79 c.f.s., 5.08 c.f.s. 
296. 8.87 lb. per sq. in. 
297. 1.10 ft., 0.937. 
298. 16.0 ft. per sec., 0.234 ft., 0.973. 
299. (a) Q = 0.573 c.f.s., in = 5.2 ft., (6) Q = 0.42^ c.i.s., m - 0.5 ft., 

Qmax. = 0.924 c.f.s. 
300. 11.15 lb. per sq. in. abs. 
301. (a) 1.40 c.f.s., (6) 15.7 ft., (c) 10.9 ft. 
302. Qi = 0.840 c.f.s., hi = 2.56 ft.; = 0.764 c.f.s., in - 0.236 ft. 
303. 230 sec. 
304. 728 sec. 
306. 0.969, 0.650 
306. 0.625 
307. 1.58 in., 6.26 lb. per sq. in., 0.57 ft. 
308. 985 sec. 
309. (a) 0.872 c.f.s., (6) 0.721 c.f.s. 
310. d„,ax. = 7.86 ft., d„.in. = 6.48 ft., Q,..ax. = 2.28 c.f.s., = 2 c.f.s. 
311. 9.79 c.f.s., 245 hp. 
312. Loss in pipe = 4.87 ft., loss in nozzle — 17.5 ft., hp. delivered = 217, 

hp. lost = 7.43 per cent 
313. (a) 4.00 ft., 0.248 c.f.s., (6) 3.58 ft., 0.162 c.f.s., (c) 4.50 ft., 0.304 c.f.s.. 

(d) 4.08 ft., 0.215 c.f.s. 
314. 276 sec. 
316. 11.5 lb. per sq. in. gage 
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316. 132 sec. 
317. 22.G ft. per sec., 0.304 c.f.s. 
318. (a) 0.501 c.f.s., (6) 0.501 c.f.s. 
319. 1.138 in., 18.9 lb. per sq. in. 
320. (a) 125 c.f.s., {h) 177 c.f.s., (c) IGl c.f.s. 
321. (a) 9380 lb., (6) 11.5 lb. 
322. IzD = 0.54, Cr> = 1.08 
323. (a.) 35.45 ni.p.h., {h) 35.30 m.p.h. 
324. 149 lb. at GO in p.li. 
326. 3,520,000 for jiir, 44,GOO,000 for water 
326. Cn = G4, D = 0.0000224 lb. 
327. 12.3 ft. per sec. 
328. At y = 1.0 in., ui = 7.50, Ut = 9.05 ft. per sec. 
329. At ?/ = 0.505, m = 18.7, Ut == 22.G ft. per sec. 
330. At y = 1.5 in., r = 0.001375 lb. per sq. ft. 
331. At d - 50°, p — “4.00 lb. per sip ft., V ~ 7G.G ft. per sec., K.K. = 

G.97 ft. lb. per cu. ft., total energy = 2119.4 ft. lb. per cu. ft. 
332. At X - 27 in., 8i = 0.252 in., 5^ = 0.792 in. 
333. At c(‘iiler, ti - 0.0379 lb, per sq. ft., t/ — 0.213 lb. ])er sq. ft., C/^ ~ 

0.000789, Cf^ - 0.00379 

334. For laminar !flow, C/ = 0.002G5, (a) C/ = 0.00188, (b) Cj - 0.(M)188, 
(c) Cf = 0.00375. For turbulent flow, Cj = O.OOGIG, (a) Cf = 
0.0053G, (6) Cf - 0.0053G, (c) Cf = 0.00708 

336. (a) 0.00495, (5) 0.002G8 
336. (6) 0.00297 for Nc - 500,000, 0.00379 for Nc = 250,000 
337. (a) 6 = 0.08GG ft. at x/l - 0.25 

5 = 0.1500 ft. at x/l = 0.75 
(b) 5 = 0.0274 ft. at x/l = 0.25 

5 = 0.1890 ft. at x/l = 0.75 
(c) 5 = 0.0494 ft. at x/l = 0.25 

5 = 0.1189 ft. at x/l = 0.75 
338. For Nr = 10^, Cf = 0.00294 by ;l7-power law, C/ — 0.00300 by 

Schlicting’s formula, 2 per cent at Nr = 10^, 25.5 per cent at Nr = 10® 
339. (a) 575 lb., (5) 5G7 lb. 
340. 27.G ft. per sec. 
341. 22.4 ft. 
342. D — 13.3 lb. per ft. at 5 ft. per sec., D = G2.2 lb. per ft. at 20 ft. per sec. 
343. D — 54.0 lb., V — 5G4 ft. per sec. 
344. 0.408 lb. for sphere, 0.106 lb. for ellipsoid 
346. 214,700 1b. 
346. V = 7.84 ft. per sec., Cv = 60, D - 0.0000154 lb. 
347. 4890 lb., 1170 hp. 
348. L = 175 lb. per ft., D = 9.69 lb. per ft., L,aax. = 389 lb. per ft. 
349. Di = 244 lb., Cjj, = 0.0254 
360. For 72 = 8, Cd^ = 0.0718, Cd^ = 0.0407, Cu = 0.1125 
361. (a) 0.359, (6) 4.81 m.p.h. 
362. Df = 3070 lb., D. = 2930 lb., Cf = 0.00182, Cr = 0.00174 
363. (a) D - 281 lb., Cd = 0.535, (b) 43.2 hp. at 80 m.p.h. 
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364. 0.0062. 
366. Ih/Di == 0.38 
366. (a) 515 lb., (5) 0.0313 
367. D-p - 220 lb., Di = 75 lb., D = 295 lb. 
368. A?; = 0.0000467 cii. ft., p — 1067 lb. per sq. in. al)s. 
369. El ~ 6480 lb. per sq. ft., E^ = 2880 lb. per sq. ft., vi = 4.77 eu. ft. 

per lb., V2 = 10.73 eii. ft. per lb. 
360. El — 9110 11^. per scp ft., E‘> — 2812 lb. per sq. ft., Vi = 4.77 cu. ft. 

per lb., V2 = 8.48 eu. ft. per lb. 
361. For isothermal air, E = 2116.4 lb. per sq. ft. 

For adijibatie air, E = 2975 lb. per s(j. ft. 
362. 4720, 1455 ft. per see. 
363. At 100°F., c = 1165 ft. per seer. 
364. 1.252 
366. 797, 796 ft. per sec. 
366. 12.9 lb. per sq. in. abs. 
367. Nm^ == 0.286, = 0.410 
368. 23.2 lb. per sq. in. abs. 
369. 131 ft. per sec., 18.6 lb. per sec. 
370. (a) Incompressible, V — 133.8 ft. per sec.; (impressible, V = 127.7 

ft. per s(‘(;. (6) Incompressible, V — 216.0 ft. ])er sec.; compressible, 
V — 194 ft. per sec. 

371. pivi log. (pi/P'i) 
372. (piVi - p2i^2)/\k - 1) 
373. 50 lb. per sq. in. abs., 71,690 ft. lb. 
374. 37.8 lb. per sq. in. abs., 62,450 ft. lb. 
376. 264.4 lb. p('r sq. in. abs., 0.01226 slugs per cu. ft. 
376. 28.3 B.t.u. 
377. I2 — I\ =11.8 B.t.u. per lb., external work = 10,260 ft. lb. per lb. 
378. 7i - I2 = 67.8 B.t.u., external work = 52,750 ft. lb. 
379. For 500 ft. to 750 ft., (a) Ap = 7.7 lb. per sq. in., 

(6) Ap = 9.3 lb. per sq. in. 
381. 1795 ft. 
382. I = 33.6 ft., Vi = 15.24 ft. per sec., 1% = 15.26 ft. per sec. 
383. (a) pu = 6.94 lb. per sq. in. abs., Fo = c,, = 1416 ft. per sec., 

(h) I = 3720 ft., (c) At V/Vi = 5, Z = 3620 ft., p = 23.63 lb. per sq. 
in. abs., V — 475 ft. per sec., c = 1513 ft. per sec., v = 15.80 cu. ft 
per lb. 

384. 1890 
386. D oc n > 2 in transition range 

386. -JfxvJ J whf^re h = height, h ~ width 
}x 0 

'■" - —(':)■©' - (-cL)' 
388. (o) 0.177, (l>) 0,5, no 

389. 5.94c.f.s. 

390. (a) .s' = (h) s' = sX*''-* 
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393. h = 
Nn\d) \d) 2g 

394, 5.98 m.p.h. 
396. 17.4 ft. per sec., 2770 lb. 

396. Q = m 

397. V' = 3000 ni.p.li., Nm = 0.328, N^f' = 3.93 
398. V' - 250 ni.p.b,, p' — 12^ 
399. At 00°F., V' = 850 m.p.h.; at 120°F., V' = 429 m.p.h. (Y\ 2-«-/ 

id) 
/Il\ -f-e+f 

401. Q = ~ j Nir^NF-^-f 

402. 177 sec. 
403. 1.20 ft. 
404. 2.911 X 10 ® slugs per ft. sec. 
406, (a) A - 0.(K)513, B = 1.99, (b) A = 0.000615, b - 0.239 
406. 0.384 stokes 
407. A - 5.25, B = 917 
408. 330 sec. 
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A 

Abbott, 1. H., 441 
Abell, T. B., 458 
Absolute pressure, 14 
Absolute temperature, 5 
Accelerated liquids in relative ecpii- 

librium, 62-72 
Accelerometer, hydrostatic, o6 
Ackeret, J., 134, 381 
Acoustic velocity, 366-367 

in air, 366 
efT(H*t of temperature on, 366-367 

Addison, H., 434 
Adiabatic expansion or ct)mpression, 

7 
{See aho Compn^ssible fluids) 

Air, standard, 16 
viscosity of, 176-177 

Air-speed indicator, 93--94 
Airfoils, alible of attack of, 136, 142- 

143 
inducanl, 348-350 

aspect ratio of, 349-350 
burbling or stalling of, 145, 348 
chord of, 136 
circulation around, 139-142 
drag of, 138-140, 347-350 
lift of, 136-146, 347 
lift and drag of, in compressible 

fluids, 385-390 
zero-lift axis of, 142-143 
{See also Lifting vanes) 

Altitude, effect on atmosphere, 18- 
21 

Angle of attack of lifting vane, 136, 
142-143 

Angle of zero lift, 142-145 
Annular spaces, laminar flow in, 

228-229 
Archer, W. H., 214 

Archimedes^ principle, 47 
Aspect ratio of lilting vanes, 349-350 
Atmosphere, temperature gradk^nt 

in, 16 
effect of altitinhi on, 18-21 

Atmosphere, unit of pressure, 14 
Atmospheric pressure, 14 

B 

Bakhmeteff, B. A., 251 
lialloon, static lift of, 57 
Barometers, 30 
Barr, J., 262 
Bazin, H., 235, 258, 266 
B^jnard, II., 334 
Benson, M. H., 271 
Bernoulli's (constant, 80-81 
Bernoulli's theorem, for compres¬ 

sible nonviscous fluids, 367-369 
for compressible viscous fluids, 

391-392, 396 
development of, 80-84 
limitations of, 81-82 
for rotating channel, 125 

Bierman, D., 344 
Biles, J. H., 353 
Bilton, H. J. L, 281 
Bingham, E. C., 10, 448 
Blade-element theory of propellers, 

148-152 
Blade screws, 147-159 
Blasius, H., 202, 206, 310, 322, 323, 

327, 328 
Borda, J. C., 214, 290-292 
Borda mouthpiece, 290-292 
Boundary layer, laminar and turbu¬ 

lent, 30^331 
momentum theory of, 318-327 
relation to pipe flow, 312, 322-323 
separation of, 312-318 

483 
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Boundary layer, shearing stress in, 
320-^324 

theory of, 308-331 

thickness of, 310, 322-325 

transition from laminar to turbu¬ 

lent flow, 316-318, 325-331 

transverse velocity distribution in, 

310-312 

Boyle’s law, 3-4 

British thermal unit, 393 

Buckingham, E., 375, 432 

Buoyancy, center of, 47 

Buoyant force, 47-58 

in rotating liquids, 68-70 

in two fluids, 48 

Burbling of flow, due to compn^ssi- 

bility, 388^390 

on lifting vanes, 145, 348 

C 

Cavitation, 67-68, 100-106 

corrosion due to, 105 

oscillation tests of, 105 

in Venturi tubes, 101-104 

Center of buoyanc^j^ definition of. 47 

Center of pressure, on slip{)er bear¬ 

ings, 467-468 

on subni(?rged surfaces, 36-38 

Channels (.sec Open channels) 

Charles’ law, 4 

Chezy, A„ 202, 235-236 

Chici, A. C., 432 

Circular disk, resistance of, 333-334 

Circulation, definition of, 133 

around lifting vane, 139-142 

development of, 140-142 

Circulatory flow around rotating 

cylinder, 130 

Combined gas law, 6-7 

Compressible fluids, adiabatic con¬ 

ditions in, 361, 366-367 

Bernoulli’s theonan for, 367-369 

bulk modulus of, 360-361 

dynamics of, 360- 3tK) 

flow in pipes, 227 

isothermal conditions in, 361, 

365-366 

Compressible fluids, lift and drag of 

airfoils in, 385-390 

Mach’s number for, 370 

resistance in, 377-390 

stagnation-point pressure in, 369- 

371 

st ream tubes in, 372-373 

subsonic and supersonic velocity 

in, 378-384 

velocity of sound in, 362-367 

Compressible viscous fluids, Ber¬ 

noulli’s theorem for, 391-392, 

396 

comparison with incompressible 

fluids, 418-419 

flow in pipes, 399-419 

thermodynamics of, 392-398 

Compressibility, 2-3 

{See also Compn^ssible fluids) 

Compressibility burble, 388-390 

Continuity (upiation, 73 

applications of, 76 

Contraction, in Borda mouthpiece, 
291-292 

incompl(4e, 2813-284 

coefficients for, 215, 283 

of jets, 279-289 

coeffici(‘nts of, 280 

in pipes, 214-215 

in short tubes, 288-290 

of weir nappe, 254-256 

at ends, 259-260 

Critical depth, 241-245 

on broad-crested weirs, 263 

at. change of slope, 252-253 

at entrance, 252 

at free discharge, 253-254 

nature of flow at, 247-248 

relation to hydraulic jump, 250 

Critical-depth meter, 266-268 

Critical velocity, for open channels, 

243-244 

for pipes, 195-196 

Cylinders, circular, flow around, 

127-132, 313-318 

Magnus effect on, 127-132 

])ressure distribution on, 128 

132, 315-316 
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Cylinders, circular, rotating, 127- 

130 
resistance of, 342-346 

D 

D’Alembert’s paradox, 140, 303, 331 

D’Alembert’s principle, G2-()3 

Dalton’s law, 9 

Darcy, H., 201-203, 23r>-236 
Density, of air, 15-20 

of (aistor oil, 178 

of fluids, 2 

of water, 177 

Diehl, W. S., 343- 344 

Dimensional analysis, application of, 

to orificM^ flow, 296-297, 431 

434 

to pipe flow, 180-182 

to resistance in compressible 

fluids, 377-378 

to resistance of floating bodies, 

353-358, 434-438 

to resistance of subm(Tg(‘d 

bodies, 304-308, 42(V-427, 

438-442 

Dimensional homogeneity, 179-180 

Dimensions, fundamental, 2 
Directionometer, 91-92 

Discharge, equation of, 76 

of gat(\s, 297-298 

of orifices, 276-279, 282-286 

of pipes, 173, 196-197 

of weirs, 257-266 

Discontinuity, suifaces of, 186-188, 

190-191, 313, 332 

Displacement, 47 

of ship hulls, 353-357 

Diverging tubes, 292-294 

Draft tube, 294 

Drag, coefficients of, 301-304 

in compressible fluids, 385-390 

definition of , 127 
eddy-making, 316-318, 331-336, 

'352-358 

induced, 140, 348r-350 

of lifting vanes, 138-140, 347-350, 

385-390 

Drag, in perfect fluid, 140, 303 

profile, 349 
of ship hulls, 352-358 

coefficients for, 354-358 

residuary, 355-358 

skin-friction, 353-358 

skin-friction, 318-331 

coefficients of, 322-331 

Drew, T. B., 204, 206 

Dry den, H. L., 340 

Drzewiecki, 8., 152 

Durand, W. F., 152, 158, 380 

Dynamic lift, 127 

of lifting vane, 136-145 

of rotating cylinder, 127-13.5 

Dynamic similarity, 420-442 

ai)plicaiion of, to experiments, 

420-421 

to orifice flow, 431-434 

to resistance of airplanes, 438- 

442 

to resistance of floating bodies, 

434- 438 

to r(‘sistance of submerged 

bodi(‘s, 43^442 

of flow of ('lastic fluids, 428-431 

of flow with gravity forces, 427- 

428 

Fronde’s number, 428 

Mach’s number, 431 

Pi theorem, 431-438 

principles of, 421-423 

Reynolds’ number, 423-426 

typ€‘s of forces involved, 421-423 

of viscous fluid flow, 423-427 

Dynamic similitude {see Dynamic 

similarity) 

E 

pjddy, formation of, due to separa¬ 

tion, 312-318 

on lifting vane, 141-142 

starting, 141-142 

{See also Vortex) 

Eddy-making resistance, 316-318, 

331-336 

Effective propeller pitch, 150 
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Efflux, velocity of, 84-85, 275-277 
Eiffel, G., 345 
Eisner, F., 334, 338, 343 
Energy, of fluids in motion, 78-80 

Bernoulli’s constant for, 80-81, 
367-369, 391-392 

conservation of, 80 
dimensions of, 79-81 
kinetic, 78 
potential, 78-79 
pressiire, 79 

Energy grade line, for open channels, 
241, 245-248 

for pipes, 193-194 
with nominiform flow, 217-221 

Energy losses (see Losses) 
Experimental propeller pitch, 150 
Eytelwein, 202 

F 

Falling head, 294r-295 

Falling liquids, example of, 67-68 

Fan, 147, 159 

Fanning, J. T., 202 

Fineness ratio, definition of, 340 

effect on resistance, 341-344 

Floating bodies, 47-61, 352-358, 

434-438 

equilibrium of, 49-50 
immersed, 56 
resistance of (see Resistance of 

floating bodies) 
in rotating liquids, 68 
stability of, 49, 54-48 
in two fluids, 48 

Floating vessel containing liquid, 54 
Fluid, bulk modulus of elasticity of, 

360-361 
compn'ssibility of, 2-3 

(tSee also Compressible fluids) 
definition of, 1 
density of, 2 
elastic properties of, 360-362 
ideal, 1 
incompressible, 1 
nonviscous, 1 
perfect, 1 

Fluid, specific volume of, 2 
specific weight of, 2 
static, definition of, 11 

Fluid motion, continuity of, 74 
energy of (see Energy) 
forces in, 73, 421-423 
steady and unsteady, 73 

Fluid resistance (see Resistance) 
Fluid substance, nature of, 1 
Fluidity, definition of, 167 
Force in relation to momentum, 

109, 111 
Forces in fluid motion, 73 
Foster, D. E., 216 
Francis, J. B., 258, 259 
Freeman, John R., 432 
Free surface, flow with, 233-274, 

352-358, 434-438 
position of, 12 

Frese, F., 260 
Froude, R. E., 153 
Froude, Wm., 354, 356, 434 
Fronde’s number, 352-358 

definition of, 354 
as a force ratio, 428 
relation to orifice flow, 433-434 
relation to ship-hull resistam'.e, 

352-358, 434-438 
Fundamental units, 2 

G 

Gage pressure, 14 
Ganguillet, E., 236 
Gas, bulk modulus of, 361 

coefficient of expansion of, 4-5 
at constant temperature, 3 
definition of, 1 
equation of state of, 6 
flow of, 96-98 

(See also Compressible fluids; 
Compressible viscous fluids) 

Gas constant, 6 
for air, 6 
for methane, 405 
relation to specific heats, 398 

Gas laws, Boyle’s, 3-4, 7 
Charles’, 4-6 
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Gas laws, combined, 6-7 

Gay-Lussiic’s, 4~5 

limitations of, 7 

Gat(^s, discharge of, 297-298 

Gay-Lussac’s law, 4-5 

Gei)ers, F., 327-328, 356 

Gibson, A. H., 178, 239 

Glauert, II., 152 

Grashof, 403 
Grove, F. W., 261-262 

Grindlcy, J. H., 178 

H 

Hagen, G., 171 
Hagcn-Poiseuille law, 171-175 

application to viscoinetry, 446, 

451-454 

limitations of, 185 

relation to friction coefficient, 

204-205 

Hailer, R., 269 

Ilatschek, E., 10 
Head, centrifugal, 125 

loss of {see Open channels; Ori¬ 

fices; Pipes, etc.) 

pressure, 15, 79 

velocity, 79 

Hele-Shaw, H., 457-459 
Hele-Shaw method of flow visualiza¬ 

tion, 457-459 

Helmholtz, H., 177, 190, 332 

Herrnstein, W. J. Jr., 344 

Herschel, Clemens, 95 

Herschel, W. H., 448 

Horsey, M. D., 469 

Hinds, J., 270 

Horton, R. E., 264 

Hunsaker, J. C., 102, 106 

Hydraulic grade line, for pipes, 193- 

194, 217-223 

with nonuniform flow , 217-221 

Hydraulic jump, 249-251 

effect on submerged weir, 266 

momentum function for, 251 

Hydraulic radius, for channels, 235 

for noncircular pipes, 227-229 

Hydraulic slope of channels, 234- 

235 

Hydrostatic accelerometer, 66 

Hydrostatic devices, 32-34 

for measuring force, 33-34 

for vertical measurement, 32-33 

Hunt, F. R. W., 384-385 

I 

Immersed bodies, flotation of, 56 

pressure distribution on, 88 

resistance of (see Resistam^e of 
immcrs(‘d bodies) 

Impulse, definition of, 108-109 

Impulse wheel, 118-119 

Induced drag, 140, 348-350 

Intrinsic energy, 394-398 

J 

Jacobs, E. N., 441 

Jets, fon^es exerted by, 111-120 

{See also Orifices) 

Joukowski, N., 133-140 
Judd, H., 281 

Jump, hydraulic (see Hydraulic 

jump) 

K 

von Kdrmdn, Th., 211, 311, 319, 329, 

335, 351 

Kauffman, W., 258, 260, 469 

Render, E., 403 

Kempf, G., 327-328 

Keutner, C., 265-266 

Kinetic energy, of flow in channels, 

240-244 

of fluid flow, 78-80 

of pipe flow, 199-204 

King, H. W., 236, 258 

King, R. S., 281 

Kingsbuiy, A., 469 

King-Seeley Telegage, 32 

Kirchhoff, b., 332 

Klein, A. L., 439 

Koo, E. C., 204, 206 
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Kuetli<?, A. M., 340 

Kutta, W. M., 133, 140 

Kutta-Joukowski theorem. 133, 140 

Kutter, W., 236 

L 

Lamb, H., 177, 228 

Laminar flow, in iK)uri(lary layt'rs, 

309 310 

on cylinders, 316-318, 343 

effect on separation, 316-318 

on flat plates, 322-331 
on spheres, 338-340 

velocity distribution in, 310-312 

in circular pipes, 171-175, 194-197 

kinetic energy of, 199-202 

nature of, 162-164 

in open channels, 238-239 

between parallel plates in relative 

motion, 165-167 

between parallel stationary plates, 

454-459 

Reynolds’ criterion for, 183-186 

in thin films {see Thin films) 

Laminar sublayer, on flat plates, 325 

in pipes, 198 

Landolt-Bornsteii), 179 

Le(;s, C. IL, 202 
Lift, of airfoils, 136-145, 347 

effect of compressibility on, 

385-390 
definition of, 127 

dynamic, 127 

of rotating cylinder, 127-136 

static, 47-48 

theory of, 127 

Lift (ioeffjcient, definition of, 133-134 

of lifting vane, 142-145, 347 

eff(;(d. of compressibility on, 

385-390 

of rotating cylinder, 134-135 

Lifting vanes, 136-146 

angle of attack of, 136, 142-143 

burbling or stalling of, 145, 348 

chord of, 136 

circiulation around, 139-142 

drag of, 138-140, 347-348 

Lifting vanes, effect of compressi¬ 

bility on, 385-390 

induced aright of attack of, 348- 

350 

induced drag of, 348-350 

lift of, 136-136, 347 

resistance of, 347-350 

zero-lift axis of, 142 143 

(See (ilso Airfoils) 

Li(iuid, definition of, 1 

Ivosses in ('uergy, in Bernoulli’s 

tfKH)rem, 99 

{See also Open channels; Orifices; 

Pipes, etc.) 

Lul.u*icat.ion, practical aspects of, 

469-471 

of slipi)er bearing. 466-469 

theory of, 459-469 

M 

McAdams, W. IL, 204, 206 

Mma'oll, J. W., 380 

Mach, 370 

Mach’s angle, 379 

Mach’s munber, definition of, 370 

as a force ratio, 431 

relation of, to lift, 385-390 

to pipe flow, 403-419 

to resistamre, 378-390 

to stagnation-point pressure, 

376-371 

to stream tubes, 373 

Magnus effect, 127 

Manning, R., 236 

Manometer liquids, specific gravity 

of, 24 

Manometers, 21-29 

differential, 24-28 

inclined-t ube, 27-28 

Maxwell, C., 166-167 

Metacentric Inught, 56-55 

computation of, 51-54 

definition of, 56-51 

effect of shifting load, 54-55 

Methane, gas constant for, 405 

value of k for, 405 

viscosity of, 416 
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Michell, A. Ci. N., 469 

Micromanoinotors, 25 28 

Miller, E. W., 441 

Millikan, C. H., 489 

Minchin, 8. M., 70 

Modnlus of elasticity, of water, 3 

of gases, 360-361 

Moiueutuiu, angular, 124 

conservation of, 109-111 

definition of, 1 OS-109 

moment of, 124 

ndation to for(a\ 109, 11 1 

of a stream ,111 

Momentum theory, of lift, 136-140 

of propellers, 152-159 

of resistance, 300--301 

of skin friction, 31S-322 

Moody, L. F., 104 

Muller, W., 134, 341 

Munk, M. M., 441 

N 

Naval tank, model tests in, 437 

Navier, 309 

Newton, 1., 104—165, 300, 365 

Newton’s law, of resistance, 300-301 

for shearing stress, 165 

Nikiiradse, J., 208 

Nominal propelk^r pitch, 150 

Nonstatic pressure, 271-272 

Nozzle, forces on, 123 

O 

O’Brien, M. P., 254 

Open channels, Chezy formula for, 

23^>-236 

critical depth in, 241-245 

critical velocity in, 243-244 

effect of bends in, 240 

energy gradient for, 241, 245-248 

flow in, 233-274 

hydraulic jump in, 249-251 

hydraulic slope of, 234-235 

kinetic energy in, 240-241 

Rutter’s n for, 236 
laminar flow in, 238r-239 

Open channels, Manning’s formula 

for, 236 

nonuniforra flow in, 233, 24h 248 
r(*sistance to flow in, 236 237 

shooting flow in, 244 

specific energy, 241-245 

thalweg in, 239 

traiujuil flow in, 244 

transitions in, 269-271 

uniform flow in, 233 

velocity in, 235-236 

vehxuty distribution in, 239-241 

Orifice, coefiicients of discharge 

through, 282-283 
numerical values of, 281 

coefficients of velocity through, 

282-283 

numerical values of, 281 
conv(irging, 287-288 

diaphragm, 283 286 

discharge from, 276-279, 282-286 

effect of viscosity on, 296-297, 
431-434 

under falling h(‘ad, 294-295 

relation to Fronde’s number, 

433-434 

relation to Reynolds’ number, 
433-434 

effect of velocity of approach on, 

28^1-286 

off(‘Ctive head on, 276-279, 297 

flow through, 275-288 

effect of viscosity on, 432-434 

relation to Froude’s mirnber, 

433-434 

relation to Reynolds’ number, 

433-434 

inversion of jets from, 295-296 

jet contraction in, 279-289 

coefficients for, 280 

large opening, 277-279 

loss of head in, 287 

in pipe lines, 283-286 

time of discharge from, 294-295 

velocity of efflux from, 275-276 

effect of viscosity on, 296-297 

vena contracta, 279 
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Orifice meter, 284-286 

Ower, E., 92 

P 

PascaFs law, 12 

Perfect gas, 7 

Peters, H., 105 

Piezometer tiiljes, 21-22 

Pipe bends, forces on, 120-123 

Pipes, annular, 228-229 

coefficients for, 202-209 

numerical values of, 203-207 

divided flow in, 223-226 

eiKirgy grade line for, 193-194, 

217-221 

ecpiivalent, 226 

flow in, 171-175, 192-232, 399- 

419 

through bends, 229-230 

of compressible fluids, 227 
of compressible auscous fluids, 

399-419 

in insulated pipes, 403-419 

at low v(docity and cxmstant 

temperature, 399-403 

hydraulic grade line for, 193-194, 

217-223 

hydraulic radius, 227-229 

laminar flow in, 162-164, 171-175 

loss of head in, 174—175 

Blashis formula for, 206 

Darcy formula for, 201-203 

Drew, Koo, McAdams formula 

for, 206 

due to bends, tees, valves, 215- 

216 

effect of roughness on, 207-209 

at entrance, 215-216 

friction coefficients for, 202-209 

in laminar flow, 201-202 

minor losses neglected, 220-221 

numerical values of, 203-207 

at sudden contraction, 214r-215 

at sudden enlargement, 212-214 

Archer’s formula for, 214 

Borda’s formula for, 213-214 

in turbulent flow, 202-207 

Pipes, loss of head in, Weisbac^h’s 
coefficients for, 215 

non circular, 227-229 

resistance to flow in, 194-195, 

209-211 

Reynolds’ criterion for, 195-196 

Reynolds’ number for, 195-196 

turbulent flow in, 162-164 
velocity distribution in, 173-174, 

196-202 

seventh-root law for, 211-212 

Pi theorem, 431-438 

application of, to orifice flow, 431- 

434 

to rcisistance of floating bodies, 

434-438 
Pitot tube, 92 

Pitot-stalic tube, 92-95 

calibration coefficient, 94 -95 

(comparison with Venturi meter, 

97 

in (compressible fluids, 37(1-371 

errors in, 93 

Plasticity, 9 

Plates, normal, flow past, 331-332 

resistance of, 331-336 

coefficients for, 333-334 

parallel, skin-friction drag of, 318- 

331 

coefficients for, 322-331 

Pohlhausen, K., 319 

Poise, 168-171 

Poiseuille, J. L. M., 168, 171 

Poiseuille’s law {see Hag(cn-Poi- 

seuille law) 

Poisson, 8. D., 309 

Prandtl, L., 140, 144, 187-188, 206, 

211, 271,308, 309, 319, 325-332, 

335, 339, 381 

Pressure, absolute, 14 

atmospheric, 14 

center of, 36-38 

on cylinder, 129 

relation to separation, 314-316 

definition of, 3 

dimensions of, 3 

effect of curvature on, 272 

in fluids, 3, 11-13 
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Pressure, gage, 14 

measurement of, 86-9() 

nonstatic, 271-272 

relation of elevation to, 13 

in atmosphere, 17- 21 

at a stagnation point, 87 

in a compressible fluid, 369-371 

on a ste(^p slope, 272 

units of, 14 

Pressure distribution, on circular 

cylinders, 129 

actual, 316 
relal.ion to separation, 314, 316 

theored iC/Ul, 129, 315 

measurement of, <S8 

in sli])per bearings, 461-466 

on subnuirgtul surfa,(H\s, 39-40 

Pressure-ehivatioTi r(4ation, in gast\s 

with temperature gradient, 18- 

21 
in isothm’inal gases, 17-18 

Pressure fences, on curve.d surface's, 

41 43 
on plane surfac('.s, 34-36 

Pressure gages, 31 

Pressure head, 15 

in flowing fluid, 79 

Pressure scah^s, 14 

Pressure volume, 39-40 

Pressure waves, 362-367 
at subsonic and sup(nsoni(r veloc¬ 

ity, 378-380 
velocity of propagation of, 362- 

367 

I’rofile drag, 349 
Propeller, advance per turn of, 150 

advance-diameter ratio, 150 

airplane, 148 
blade-element theory of, 148-159 

efficiency of, 156-159 

momentum theory of, 152-159 

pitch, 150 
power absorbed by, 157 

power coefficient, 157-159 

slipstream of, 153-157 

thrust of, 154-159 

thrust coeflicient of, 157-159 

water turbine, 148 

R 

Ramsey, A. S., 280 

Rankine, W. J. M., 152 

Rankine-Froude theory of propel¬ 

lers, 153 

Ratio of specific heats of a gas, 7 

relation to gas constant, 398 

relation to velocity of sound, 366 

Rayleigh, Lord, 370 

Reducers, forces on, 122 123 

Reichardt, II., 31 

Reichardt pressure gage, 31 
Relative (Hpiilibriiiin, of accelerated 

li(|uids, 62-72 

of rotating fluids, 63 

Residuary resistaiuie of ship hulls, 

356-358 

Resistance, of airfoils, 138-140, 

347 350 

of airsliip hulls, 341 

of ;irtillery projectiles, 381-384 

of bodi(‘s of revolution, 337-342 

boundary-layer theory of, 308-331 

of circular cylinders, 342-346 

of circular disks, 333-334 

in compressible fluids, 377-390 

relation to Mach’s number, 378 

eddy-making, 316-318, 331-336 

effect of fineness ratio on, 341-344 

effect of viscosity on, 304-308 

of floating bodies, co(4hcients for, 
354-358 

edd.y-making, 352-358 

mod(4 tests for, 437-438 

relation to Fronde’s number, 

354-358, 434-438 

relation to Reynolds’ number, 

354-358 

residuary, 355-358 

ship hulls, 352-358, 434-438 

skin-friction, 352-358 

wave-making, 352-358 

to flow, in open channels, 236-237 

in pipes, 194-195 

of immersed bodies, 300-352 

{See also Resistance, of sub¬ 

merged bodies) 
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Resistance, of lifting vanes, 138-140, 

347-350 

{See also Airfoils) 

riiomentum theory of, 300-301 

Newton's theory of, 300-301 

of normal plates, 331-336 

skin-friction, 318-331 

of sphtires, 337-342 

Stokes' law for, 175-176, 306- 

307 

of submerged bodies, 300-352 

ai)plication of dimensional anal¬ 

ysis to, 304-308, 426-427, 
43^442 

induced, 347-350 

of thin parallel plates, 318-331 

drag coefficients for, 322-331 

V-squared law of, 301, 427 

(See also Drag) 

Reynolds, O., 161, 469 

Reynolds' criterion for pipes, 183- 

^ 186, 195-196 

Reynolds’ experiment, 161-164 

Reynolds' number, applications of, 

^ 426-427 

critical value of, for flat plates, 

325-327 

for pipes, 183-186, 19r)-196 

for spheres, 340 

as a force ratio, 306-307, 423-426 

for pipes, 182-185, 19.5-196 

for spheres, 183 

relation to orifice flow, 433- 434 

relation to resistam^e, 30^5-358 

of airplanes, 438-442 

of floating bodies, 353-355, 434- 

438 

of ship hulls, 353-358, 438-442 

of submerged bodies, 304—307, 

438-442 

Roughness, effect on boundary-layer 

transition, 339 

effect on flat-plate resistance, 329 

{^ff(H!t on flow past a sphere, 339- 

340 

(•ffect on pipe flow, 207-209 

hydraulic, 208 

relative, 208 

Rotating channel, 123-125 

Rotating cylinder, 127-136 

circulatory flow around, 130 

flow past, 130-131 

lift and drag of, 131-132 

Magnus effect on, 127-135 

pressure on, 129 

stagnation points on, 132 

ill uniform stream, 130-132 

velo(dty on, 128, 130-131 

Rotating fluids, 613-66 

flotation in, 68-70 

Russell, G. E., 293 

S 

Sadler, 11. C., 357 

Schiller, L., 183 

Schlicting, 329 

Scliluren method, 381-383 
Schoenherr, K. 13, 329 

Sell tile, W., 419 

Separation of boundary layer, 312- 

318 

S(u*’s disk, 90-92 

Shearing stnjss, in boundary layer, 

320-324 

at channel walls, 236-237 

at pipe walls, 209-211 

relation to viscosity, 164-168 

Ship hulls, form of, 356 

resistance of {see Resistance, of 

floating bodies) 

Shock waves, 380-383 

Short tubes, 288-294 

contraction of jet from, 291-292 

limitations of, 289-290 

re-entrant, 290-292 

standard, 288 

Skin-friction resistance, 318-331 

coefficients of, 322-331 

Schlicting's formula for, 329 

Schoenherr's formula for, 329 

Sinuous flow {see Turbulent flow) 

Siphon, 85 

Smith, D., 280-282 

Sorenson, A. E., 104 
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Sound, as pressure wave, 362 

velocity of, 362-367 
{^See also Acoustic velocity) 

Specific energy in open (ihannels, 

241-245 

Specific heats of gases, 7 

ratio of, 7-8 
relation to adiabatic expansion, 

7 
relation to velocity of sound, 

366 

relation to gas fjonstant, 398 

Specific volume of fluids, 2 

Specific weight of fluids, 2 

of water, 2 

Spheres, resistance of, 171-175, 337- 

342 

Reynolds’ number for, 183 

Stokes’ law for resistaiK^e of, 171- 

175, 338 

application to viscometry, 448 

Stack, J., 389-390 

Stagnation point, (h*fmition of, 87 

pressure at, 87 
effect of Mach’s number on, 

370-371 

in compressible fluids, 369-371 

on rotating cylinders, 132 

Stalling of flow on lifting vanes, 145, 

348 

Standard air, 16 

Stanton, T. K., 204-206, 469 

Static fluid, definition of, 11 

Static lift, 47-48 

of balloons, 57 
in two fluids, 48 

Static pressure, measurement of, 90 

Static-pressure tube, 91-92 

Steady motion, 73 

Stodola, A., 403, 419 

Stoke, definition of, 168-171 

Stokes, G. G., 171, 306-307, 309, 

457-458 
Stokes’ law, 175-176, 306-307, 334, 

429-427 

Stratosphere, 16 

pressure in, 20 

density in, 20 

Stream tubes, 74 

in a compressible fluid, 372-373 
Streamline flow (see Laminar flow) 

Streamlined body, definition of, 316 

resistance of, 337-342 

Streamlines, around airfoil, 77 
around cylinder, 128-130, 131 

definition of, 73 

Streeter, V. L., 206 

Stresses in fluids, 11 

shearing, 164—168 

Submerged bodies, flotation of, 56 

r(!sistanc(i of (see Rc‘sistance, of 

submerged bodies) 

Subsonic velocity, 378-384 

Supersonic velocity, 378-384 

Swiss Soci(?ty of Architects and 
tmgineers, 260 

T 

Taylor, G. 1, 380 

T(‘mperatur(^ scale, absolute zero of, 

5 

Thalweg in open channels, 239 
Thermodynamics of gas flow, 392- 

398 

external work, 392-396 

intrinsic energy, 39^1—398 
in pipes, 399-419 

Thin films, application to lubrica¬ 

tion, 459-471 

Hele-Shaw method of visualiza 

tion, 457-459 

mechanics of, 454-471 

between parallel plates, 454—457 

Thoma, D., 269 

Thomas, W. A., 216 

Thompson, M. J., 344 

Thomson’s theorem, 141 

Tideman. B. J., 356 

Tietjeiis, O. G., 206, 309, 325, 332- 

335, 339 

Topler’s schlieren method, 381 

Torricelli’s theorem, 84, 276 

Transition, in boundary-layer flow, 

316-318, 325-331 

on circular cylinders, 343 
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Transition, in boundary-layer flow, 

on flat plates, 

on spheres, 338-340 

in pipe flow, 102, 183-185, 195 - 

199, 204-207 

Transitions in channels, 209-271 
Troller, T., 33 

Troposphere, 10 

Turbulent flow, 102-104 

in boundary layers, 309-312 
in pipes, 194-199, 202-212 

kinetic energy of, 202-204 

Reynolds’ criterion for, 183-180 

IT 

Unsteady motion, 73 

relation to turbulence, 101 

Upson, R. H., 344 

V 

Vacuum, 14-15 

Vanes, fixed, forces on, 111-114 

lifting (sec Airfoils; Lifting vanes) 

moving, forces on, 115-120 

power developed by, 117-120 

Vapor pressure, 8 

effect on cavitation, 101-104 

of water, 8 

Vapor tension, 8 

Velocity, acoustic (see Acoustic 

velocity) 

on cylinders, 128, 130-131 

of efflux, 84-85 

from orifices, 275-270 

of viscosity on, 290-297 

measurement of, 80 

Velocity distribution, in boundary 

layers, 310-312 

in open channels, 239-241 

between parallel plates, 455-457 

in pipes, 190-202 

effect of temperature gradient 

on, 199 

seventh-root law for, 211-212 

in slipper bearings, 462-463 

on submerged bodies, 88-90 

on circular cylinder. 129 

Vena contracta, 279 

Venturi, 95 
Venturi met('r, 95-99 

calibration coefficients, 96 

coinj)aris(>n with Pitot-static tube, 

97 
for compressible fluids, 373-377 

for gases, 96-98 

for licjuids, 95-96 

Veiduri tube, cavitation in, 101-104 

efficiency of, 104 

Vis(a)inet<‘r, Ostwald, 447 

Say bolt, 448-451 
transpiration type, 446-454 

theory of, 451-454 

Viscometry, 445-454 

industrial met hods, 448-451 

scientific methods, 445-448 

transpiration methods, 440-454 

Viscosity, absolute, 165-167 

basic hypotheses, 164-105 

conversion of units, 108-171 

definition of, 165-108 

dimensions of, 168-171 

eff(‘ct on flow, 161 

effect of pressure on, 178-179 

effect on resistaiujc, 304-308 

effect of temperatun^ on, 177-178 

effect on velocity of efflux, 296- 

297 

of gases, 9 

kinematic, 167 

of liquids, 9 

Maxwell’s definition, 166-107 

measurement of {see Viscometry) 

nature of, 9-10 

Newton’s law for, 164-165 

numerical values of, 176-179 

relation to shearing stress, 164- 

168 

specific, 168 

units of, 168-171 

Viscous flow {see Laminar flow) 

Vortex, formation of, 186-188 

on lifting vane, 141-142 

properties of, 188-191 

starting, 141-142 
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Vortex motion, Helmholtz' laws of, 

190 

Vortex system, behind eyUnder, 335- 

336, 350-351 

behind lifting vane, 348 

Vortex trail, as a cause of vibration, 

336 

behind circular cylinders, 335-336 

W 

Wake', effect of boundary layer on, 

316 318, 338-340 

formation of, 313 

Helndioltz and KircJdiotf (luiory 

of, 332 

relation to eddy-making resist¬ 

ance, 331-336 

Walker, W. J., 280-282 

Water, bulk modulus of, 361 

density of, 177 

modulus of elasticity of, 3 

spcicific weight of, fresh, 2 

vapor pnissure of, 8 

viscosity of, 17()-]78 

Watson, W., 365 

Wave patterns, 353 

Waves, effect on ship resistance, 

352-358 

pressure, 362-367 

shock, 380-383 

types of, 352 

Webb, A. R., 268 

Weick, F. E., 152 

Weirs, 254-269 

bibliography on, 261 

broad-crested, 263-264 

definition of terms, 254—255 

notched, 260-263 

Barr’s formula for, 262 

King’s formula for, 262 

parabolic, 262-263 

Grove’s formula for, 262 

precautions in use of, 268-269 

sharp-(;rested rectangular, 25f>- 

260 

Bazin’s formula for, 258 

end contractions, 259-260 

Francis’ formula for, 258 

King’s formula for, 258 

submerged, 265-268 

Bazin’s formula for, 266 

with shooting flow, 266-267 

types of flow over, 265 

suppressed, 260 

types of, 254r-255 

Weisbach, J., 202, 215, 283 

Wieselsberger, C., 327-329, 339 

Williams, G. k, 93-94 

Wind tunnel, atmospheric, 439-444 

model tests in, 439-449 

variable density, 441-442 

Windmill, 147, 159 

Woodburn, J. S., 264, 268 
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Zahm, A. F., 371 






