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PREFACE 

All branches of engineering are confronted with vibration prob¬ 
lems. A large percentage of these may be avoided in design or 
ciued by a rational application of the elementary princi¬ 

ples. Others, however, call for the use of advanced mathematics 

combined/with an extensive experience in the field; in other winds, 
they require the services of specialists. 

This text has been prepared to train students, or enable engi¬ 

neers, to handle the usual problems which arise. It attempts to 

present in a concise and orderly manner the basic material required 

for their solution. It is felt that this may be done more successfully 

by sacrificing mathematical rigor and relying on a physical explana¬ 
tion of the phenomena in most cases. 

It must be realized that vibration problems are exceedingly 

complex and that the material given here serves only as an intro¬ 

duction to a more extensive study. Such subjects as self-excited 

vibrations, nonlinear systems, harmonic analysis, and damping in 

systems having more than one degree of freedom are felt to be 

beyond the scope of this text. Information on these and other 

advanced topics may be found in the current technical literature, 

or in more comprehensive books such as Mechanical Vibrations by 

J. P. Den Hartog or Practiced Solution of Torsional Vibration Prob¬ 

lems by W. K. Wilson. No attempt has been made to compile a 
complete bibliography of the literature, since it is very extensive, 

but where it has been necessary to draw rather heavily on some of 

the literature in the preparation of the manuscript, credit has been 
given. Since balancing is intimately related to vibration, it appears 

wise to include a chapter covering the baric principles of that 
subject. 

The book is based upon courses given at New York University 

to various groups, and acknowledgment is made here of the many 

suggestions received from students to improve the content. It is 

assumed that the reader has had the usual engineering courses in 
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mechanics and calculus. With this background, little difficulty 
should be experienced in understanding the subject matter. Exten¬ 
sive use of examples has been made to clarify the text, and at the 
end of each chapter problems (with answers) are given by which 
the reader may test his grasp of the material treated. 

Austin H. C'urmii 
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PARTIAL LIST OF SYMBOLS 

Symbol Explanation Units 

, 'll c, p Constants 

a Linear acceleration in. per sec2 

a Axial distance in. 

b Width in. 

c Distance from neutral axis to outer 

fiber in. 

c Lateral damping factor lb-sec per in. 

Ct Torsional damping factor in.-lb-sec per rad 

d, D Diameter in. 

e Base of natural logarithms = 

2.7183 dimensionless 

c Decent l icit y in. 
E Modulus of elasticity v.Xovu\£sn \W\ 

f Cyclic frequency V\YS VW V'\V£YV 

b l**urro lb 

[l (travitatiniial acceleration 3s«‘» m. per sec2 

a Shearing m*>duhis <»! elasticity p.M 

h I )epth <>r t hiekne^.-N in. 

i Rectangular moment of inertia in.1 

K Polar moment of inertia in.4 

j \'-l dimensionless 

J Mass moment of inertia i n.-lb-sec- 

k Lateral spring scale or rate lb {H'r in. 

kt Torsional spring scale or rate in.-lb per rad 

L Length in. 

m Mass - U'-V lb-sec2 per in. 

M Bending moment in.-lb 

ti Revolutions per unit time rpm or rps 

n Ratio of connecting rod length to 

crank length dimensionless 

r, K Radius in. 

r Radius of gyration in. 

r Ratio of f fn or of u to* dimensionless 

3 
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Symbol Explanation UniU 
* Stress psi 
t Time sec 
t Transmissibility dimensionless 
T Torque in.-lb 
V Velocity in. per sec 
V Shear lb 
w Weight lb 

y Lateral displacement in. 
X Axial distance in. 

Static deflection due to impressed 
force in. 

a Angular acceleration rad per sec1 
0, e Angular displacement rad 
y Specific weight lb per in.* 
a Logarithmic decrement dimensionless 

a., Static deflection due to weight in. 
0 Slope of beam or shaft rad 
0 Angular displacement rad 
p Coefficient of friction dimensionless 
M Mass ratio = mjm, or spring scale 

ratio = ka/k dimensionless 
Weight per unit length lb per in. 

r Period sec 
* Phase angle rad 

* Fixed angle between cranks rad or deg 
w Circular frequency or angular 

velocity rad per sec 

SUBSCRIPTS 

a Actual e Equivalent 
c Critical n Natural 
d Damped o Maximum 

l Torsional 



Chapter 1 

INTRODUCTION 

1.1 IMPORTANCE AND SCOPE 

The occurrence of vibrations is widespread. Consideration of 
the topics and problems in this text reveals some of the conditions 
under which vibrations are present. In some cases their presence 
is helpful, but generally the reverse is true and they are to be 

avoided. 
Vibrations have been used to relieve the internal cooling stresses 

set up in castings* and thus eliminate the long periods of time 
required for natural aging. They have been used in geologic seismic 
investigations;! to determine endurance limits of materials and 
machine members; to facilitate the handling of powdered materials 
apt to pack, such as flour and sand. 

On the other hand, the effect of most vibrations is bad in that 
resonance or near resonance creates high stresses and hastens the 
time when eventual failure may occur. Moreover, vibration has 
a bad psychological effect on people in the vicinity, is tiring, slows 
production, and creates a generally undesirable condition. Any 
vibration requires energy or power to produce it; hence, the effici¬ 
ency of the machine is reduced. The air-raid sirens installed in 
some of the large cities during the Second World War are fine 
examples of the power required to produce vibrations. The largest 
type of these sirens, which had a penetration of eight miles, required 
a 125-hp automobile engine for driving. 

♦ R. T. McGoldrick and H. E. Saunders, “Some Experiments in Stress 
Relieving Castings/' J, Am. Soc. Naml Engra., November, 1943, p. 589. 

t R. K. Bernhard, “Dynamic Tests by Means of Induced Vibrations/* 
Proc. A.S.T.M., 1937, pp. 634-644. J. B. Macelwane, “The Interior of 
the Earth,” Am. Sciential, April, 1946, pp. 177-197. 

5 
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1.2 DEFINITIONS AND TERMINOLOGY 

Vibrations occur in clastic systems that consist of one or more 
masses connected by springs. A vibration is the motion of a body 

or system which is repeated after a given interval of time known as 

the period. The number of cycles of motion per unit time is called 

the frequency. The maximum displacement of the body or some 

part of the system from the equilibrium position is the amplitude of 

the vibration. It should be remembered that the total travel is 

twice the amplitude. 

There are two general types of vibration, namely, lateral and 
torsional. In the former, the motion is rectilinear or one of trans¬ 

lation, and the amplitude is measured in inches; whereas in the 

latter, the motion is one of rotation or twisting, and the amplitude 

is measured in radians or degrees. The equations for the two tyjx's 

and their solutions are similar and hence, will be considered together 

throughout this text. 

If the body or system is given an initial displacement from tin* 

equilibrium position and released, it will vibrate with a definite 

frequency known as the natural fnqurncy. The vibration is said to 

be free, since no external forces act upon it after the first displace¬ 

ment. Generally the body vibrates with decreasing amplitude 

until it comes to rest due to damping in the form of friction or air 

resistance. For some applications, additional damping in the form 

of a dash pot or rubbing friction may l>e added to increase* this effect. 

If the amount of damping is very large, the body may not vibrate 

but merely creep back to the equilibrium position, and the motion is 

said to be aperuxtic. 

Under some conditions, as in the ease* of an unbalanced machine, 

the body or system may be subjected to a periodic external force. 

In such cases a forced vibration occurs. If the frequency of this 

external force is the mine as, or close to, the natural frequency, 

resonance takes place. The body or system then vibrates with large 

amplitudes, which result in high stresses and possible interference 

of parts and should be avoided. When resonance occurs in rotating 

shafts (because of unbalance), the speed of rotation is known as 

the critical speed. 

Vibrations may be classified as transient or steady state. A 
transient vibration is a temporary condition which disappears with 
time, such as a free vibration. A steady-state vibration is one in 



INTRODUCTION 7 

which the motion is repeated exactly in each cycle, as in a forced 

vibration. A transient vibration may be superimposed upon a 

steady-state vibration, as when an external load is suddenly applied 

to a system or body having a steady-state forced vibration. The 

resultant motion is the vector sum of the two motions considered 

independently. 

It may l>e observed that for lateral and torsional vibrations the 

equations are similar. Corresponding terms with their symbols 

and units are as follows: 

Term 

Lateral Torsional 

Svmbol 
1 ' 

Tnit* Svinbol 
! 

Unit.* 
s 

Mass or inertia 
! 
I w lb-sec5 per in. ./ in.-Ib-sec5 

Spring scale i k 
lb per in. k, in.-lb per rad 

Force or torque | F lb T in.-lb 
Damping '• ! lb-sec per in. C in.-lb-see per rad 

Displacement in. ! 0, e rad 

Velocity | * ; in. per set- 1 03 rad per sec 
Acceleration 1 n \ in. per sec5 ! a 

J_! 
! rad per sec2 
i 

Many bodies or systems are able to vibrate in more than one 

manner and have more than one natural frequency. Systems hav¬ 

ing many masses or a continuous mass, such as a string or a beam 

when weight is considered, will have many natural frequencies. 

Kach of them is accompanied by its own mode or form of vibration 

curve. For a lateral vibration, the lowest natural frequency will 

have no noilcs, or points, of zero amplitude; the next frequency, one 

node; and so on. For a torsional vibration, the lowest natural 

frequency will have one node; the next frequency, two nodes; and 
so on. 

If the motion of the body is constrained so that it can vibrate 

in only one manner, or mode, it is said to have a single degree of 

freedom; if in two modes, two degrees of freedom; and so on. The 

number of degrees of freedom is equal to the number of coordinates 

required to specify completely the position of the body or system at 

any time. A single rigid body, such as a block supported on springs, 

may have six degrees of freedom, as illustrated in Fig. 1.1. There 

are three directions of translation, or lateral vibration, and three of 

rotation, or torsion, about the principal axes as shown. The 
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natural frequency of each mode of vibration is independent of the 

frequency of the others. 
Thus, if a cantilever beam having a rectangular cross section is 

displaced downward and released, it will vibrate with a certain 

natural frequency. If the beam is displaced outward and released, 

it will vibrate with a different natural frequency. If, however, the 

beam is displaced both downward and outward before being 

\y 

Fig. I 1 

released, both vibrations will occur simultaneously without affect¬ 

ing each other in either frequency or amplitude. The absolute 

motion of the body will be the resultant of these independent 

motions (see first example of Sec. 2.2). 
The amplitudes of vibrations are usually very small and are 

commonly linked with the properties of materials; hence, it is con¬ 

venient to use the inch-pound-second system of units. For this 

system the acceleration due to gravity is taken as 386 in. per sec*, 

rather than the more common equivalent of 32.2 ft per sec*. 

Material 
Tensile modulus 

of elasticity, 
E, psi 

Shear modulus 
of elasticity, 

Gy psi 

Specific 
weight, 7, 
lb per in.1 

Steel. . .. 30(10‘) 12(10*) 0.283 

Cast iron.. 17(10*) 7(10*) 0.260 

Brass and bronze....... 15(10*) 
10(10*) 

6(10*) 0.315 

Aluminum. 4(10*) 0.100 
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The properties of materials vary widely with their chemical 

composition, method of manufacture, and other factors. The 

table on page 8 gives average values which may be used in solving 

problems. 

1.3 SIMPLE HARMONIC MOTION 

AH bodies vibrate with either simple harmonic motion or what 

may be considered to be a combination of simple harmonic motions 

of different frequencies and amplitudes. It is therefore desirable to 

review this topic in detail. 
If a point P' travels along the circumference of a circle with 

constant velocity, its projection P on a diameter of the circle will 

move with simple harmonic motion. This is illustrated in Fig. 1.2, 

where the radius of the circle, x„, is the amplitude of the motion, or 

length of the vector which is rotating alxmt the center O with a con¬ 

stant angular velocity a>. This angular velocity « is known as the 

circular frequency and is measured in radians per second. The 

angle turned through by the vector in time t is w/, and the corres¬ 

ponding displacement OP is x = x0 cos w/. The cyclic frequency of 

the motion is in cycles per second, since there are 2t rad in a 
£W 

complete circle. 
The velocity of point P can be found by differentiating the dis¬ 

placement with respect to time; thus, c = dx >dt — —XpU sin uL 
This relation can be shown vectorially, as in Fig. 1.3, where the 

constant velocity of the point P' equals Xcu and is represented by 
the vector P'Q. The component P'A of this velocity parallel to 

the reference diameter represents the velocity of point P along its 

path and is equal to sin ut, as can be seen from the figure. 
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The acceleration of the point P can be found by differentiating 

the equation for the velocity with respect to time; thus, 

- — 

~ Jt 
d^x 

dP 
— low* cos at. 

This relation can also be shown vectorially. Since point P' travels 

Fir;. 1.3 

with constant angular velocity to, the only acceleration is normal, 

that is, acts toward the center of rotation () and equals the constant 

value of XoO.’2. In Fig. 1.4. this acceleration of point is represented 

Fio. 1.4 

by the vector P'R, equal to xm1, and the component P'B parallel 

to the reference diameter is the acceleration of point P along its 

path. This acceleration is x^u1 cos «/, and it should be noted that 

it always acts toward the center point 0 or opposite to the direction 

of the displacement for any position of the vector. 
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To summarize, the equations for simple harmonic motion are 

Xo cos cot. (l.i) 

dx 
(1.2) di ~ ~ xmn 

dv d2 x „ 
(13) dt = dr- = ~x°“ C°8W<- 

Fir,. 1.5 

In some eases, time is measured from a horizontal reference line 

rather than a vertical (Fig. 1.5), and the equations then become 

x = x0 sin cat, 

v = cos uty 

a — —law2 sin cot. 

For either group of equations, the motion is harmonic, the inter¬ 

change of the sine and cosine terms merely indicating a displace¬ 

ment of IK) deg. 

Generally the term simple harmonic is applied to motion, but it 

may also be applied to a force. Thus, a centrifugal force acts 

radially, and it may have a component in one particular direction, 

which acts harmonically. This condition occurs in unbalanced 

machinery having one degree of freedom. Then the motion vector 

OP9 of Fig. 1.2 may be replaced by the centrifugal force; the com¬ 

ponent OP of this force parallel to the diameter is harmonic and is 

equivalent to the displacement x. 

Frequently, two motions, or forces, may be acting about the 
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same point either with the same or with different circular fre¬ 
quencies. The vectors will not coincide but will be separated by a 
phase angle 4>. If both vectors rotate at the same speed, the phase 
angle is constant; otherwise, it will vary. The resultant effect 
may be found by adding the vectors. An illustration of this is the 
beat phenomenon, where two vectors of about equal magnitude but 
of slightly different frequencies act together. At one instant of 
time these vectors will coincide and give large resultant amplitudes 
of motion; whereas at another instant, they are opposed, and the 
resultant motion is zero. The beat frequency is the difference in 
the frequencies of the component vectors. 



Chapter 2 

UNDAMPED FREE VIBRATIONS—SINGLE 

DEGREE OF FREEDOM 

2.1 INTRODUCTION 

AH actual free vibrations die out in time and thus have some 
damping. In many systems, however, the amount of damping is 
so small that it may be neglected. Hence, the natural frequency 
baaed upon an undamjXHl free vibration may be very close to the 
actual for many applications; and the principles discussed in this 
chapter may be used to determine natural frequencies of many 
systems having a single degree of freedom with sufficient accuracy 
for engineering purposes. This problem of the prediction and 
correction of a resonant condition in a machine or machine part is 
one of the most common in vibration work. 

The effect of larger amounts of damping on free vibrations will 
be considered in Chap. 4. 

2.2 EQUATION OF MOTION 

For lateral vibrations, the elastic system may be represented 
by Fig. 2.1, where A is the scale of the spring, or the force in pounds 
required to deflect the spring 1 in., ami W is the weight of the block 

in pounds. 
Due to the weight of the block, the spring will be deflected a 

distance W/k in., and this point constitutes the equilibrium position 
where the pull of the weight and the spring forces are balanced. 
Since this dead weight is constant in magnitude and direction, it 
may be neglected when considering the forces induced by the 

vibration. 
Assume that the block is displaced downward a distance x 

13 
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from this equilibrium position, and consider only the vibratory 

forces that act upon it. The extension of the spring produces an 

■upward force kx, and since the inertia force, or acceleration force, 

always acts opposite to the direction of the displacement, as shown 

in Fig. 1.4, or by Eqs. (1.1) and (1.3), it will act upward also and 
d'-x 

have a magnitude equal to m Considering the block as a free 

body, the equation of motion is 

m + kx = 0, (2.1) 

//////////////////, which may be written in the form 

d\r 
dr- 

k 
=-X. 

m 
(2.2) 

The solution of this equation requires a function 

of x in terms of t, which, when differentiated twice, 

will give the same function multiplied by the nega¬ 

tive constant —k'm. The most general solution is 

Fio. 2.1 
x = .1 sin - I l + li cos - j ^ t. 

\ hi \ hi 
(2.3) 

To show that Eq. (2.3) is a solution of Eq. (2.2) it may be 

differentiated twice; thus. 

dx _ 
,1 Jk- cos * 1 !ii - B J 

rk . Ik. 
- sin ~ - t, (2.4) 

dt \ Hi X tn X m \ m 

d'-x _ 
-A* 

1 
sin *! 

k 
t - B 

k Ik 
cos * / - t. (2.5) 

dr m \ m m X m 

It may be noted that the right side of Eq. (2.5) equals the right side 

of Eq. (2.3) multiplied by the constant —k/m; hence, Eq. (2.2) is 

satisfied. 

Generally, a free vibration is the result of displacing the block 

a distance x„ and releasing it. At the instant of release the velocity, 

or dx/dt, of the block is zero. If these conditions (x = x„ and 

dx/dl = 0 when t — 0) are inserted in Eqs. (2.3) and (2.4), the 

constants A and B may be evaluated. Remembering that cos 0 

deg * 1 and sin 0 deg = 0, Eq. (2.3) becomes 

*. = 11X0+5X1, 
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and B = x„. Similarly, Eq. (2.4) becomes 

and A - 0. Hence, the solution of Eq. (2.3) for this usual case is 

r - To cos ^ /— t. (2.6) 
\ m 

Much time and repetition may be saved by generalizing the 
above discussion for similar cases of free vibrations. If the dif¬ 
ferential equation of motion is 

d'z 

dt* 
-Cz, (2.7) 

the corresponding solution will In* 

z = z„ COS VC /, (2.8) 

where z is the function of the motion, and C is a constant. 
By comparing Kqs. (2.6) and (2.8) with Eq. (1.1), it is obvious 

that the motion is simple harmonic. A vector of length x0 or z„ 
rotates in a circle, and its projection on a diameter of the circle 
gives the displacement x or z at any time t. The angular frequency 
of the rotation [corresponding to u in Eq. (1.1)] is Vk/tn or VC. 
Since this frequency is the natural one by definition, it is designated 
as w„ and is measured in radians per second. The cyclic frequency 
is found by dividing by 2t; thus, 

and the time required for one cycle, or the period, is 

t - j- - 2t = 2t sec. (2.10) 

It should be noted that the frequency depends only on the mass 
of the block and the spring scale, and is therefore independent of xa, 

or the amplitude of the vibration. 
The equation for the natural frequency may be put in another 

form, based upon the spring deflection due to the static weight of 
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the block. This static deflection dgt ~ lVfk ~ nig/k. Hence, 

Arm = and Eq. (2.9) may be written 

Jn - 
\'ff /» 
2r \6,( 

3.13 187 5 
cps = „ cpm. 

\ \ 6,f 
(2.11) 

Example 1 

A weight of 25 lb is placed at the end of a steel cantilever that is 

5 in. long and has a rectangular cross section f in. wide and \ in. 

deep. Neglecting the mass of the beam, find the natural lateral 

frequencies in a horizontal and a vertical direction. Plot the path of 

the resulting motion of the weight, assuming that it is initially 

displaced downward 0.45 in. and to the right 0.05 in. before l>eing 

released. 
From Fig. 2.0, the static deflection of the weight IF is 

1 IV L* 
= 3 El 

The moment of inertia about a vertical axis is 

Ik — 

bVi 

12 
X ‘ = 0.00870 in.4 

The horizontal static deflection of the weight is 

5«(. — 
25 X 51 

0.003115 in. 
*'* 3 X 30(10*) X 0.00870 

The horizontal natural frequency, from Kq. (2.11). is 

r = = —187 0 . = 2,080 cpm = 40.7 cps. 
Vlu V0.00305 

The moment of inertia about a horizontal axis is 

/ = ~ = 3 X 
Ik 12 4 x (O’ x ~ = 0.00007*i in.4 

The vertical static deflection of the weight is 

25 X 5* 

3 X 30(10*) X 0.000976 
0.0366 in. 
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From Eq. (2.11) the vertical natural frequency is 

17 

187.5 = 187.5 

Vb7t. \/00356 
1)95 cpm = 1G.6 cps. 

The resultant motion of the weight will have a vertical ampli¬ 

tude of 0.45 in. and a horizontal amplitude of 0.05 in., each of which 

o o" 

Fig. 2.2 

is independent of the other. The frequency of the horizontal 

vibrations is three times as great as that of the vertical, and hence, 

the angle turned through by its vector for a given time interval is 

three times as large. With these facts in mind, the resultant motion 

of the weight may be plotted as shown in Fig. 2.2. As noted in 

Sec. 1.2, the resultant position of the weight at any instant is the 

vector sum of the horizontal and vertical displacements. The 
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numbers on the diagram indicate simultaneous positions of the weight 

in the two directions. The resultant curve, labeled with double 
prime, is a function of the amplitudes and the frequencies. In 

this case the curve retraces itself each half cycle. If the frequencies 

had been the same in both directions, an ellipse or circle would 

have been obtained. The curve of the resultant motion is known 

as a Lissajous fiffure. 

A more unusual but interesting ease of free vibrations occurs 

when the body has an initial velocity as well as displacement from 

the equilibrium position at the instant when the vibration starts. 

The equation of motion is again given by Eq. (2.3), but the arbitrary 

constants .4 and B will have different \ allies. The conditions are 

now 

x = x„ and = r when ( - 0. 
dt 

Equation (2.3) then becomes 

= A X 0 + B X 1. 

or B — x0 as before. But Eq. (2.4 > now Incomes 
> 

or A = v/\/k/m. The solution of Eq. (2.3) then is 

r . fk Ik 

\ k/m >Jm \ro 

Since the natural circular frequency oon is x'k/m, the above 

equation may be written 

x - — sin x[~ t + x0 cos xj~ t, (2.12) 
ton x m \ m 

and it may be observed that the resultant motion is made up of two 

vectors v/un and x„ which rotate with a circular frequency of «, or 
y/kfm. Since the trigonometric functions are sine and cosine, 
respectively, the vectors must be at right angles (see Fig. 2.3). 
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The resultant motion of the body 
is 'I1-' + fe)’ 

and this 

resultant vector lags the x„ vector by the phase angle <t>, where 

Xq 
tan <t> 

03 

Kx AMPLE 2 

A weight of 2(K) lb is suspended on a steel wire 0 135 in. in diam¬ 

eter an<l 3 ft long. It is moving upward with a constant velocity of 
1 fps when the upjM'r end is instantaneously 

stopin'd. Determine the frequency, the max¬ 
imum amplitude of the weight, and the max¬ 

imum stress in the wire. 

Since the velocity is constant, the initial 

stretch in the wire is the same as the static 

deflection 6st. 

Area of wire cross section is 

.1 
1 

TT(l2 = 
0.135 V 

~ 4 
0.01432 sq in. 

o.f 

Static deflection is 

117, 200 X 36 

A E 001432 X 30(10" ) 

The spring scale of the wire 

it = IT 
5., 

= 0.01675 in. 

200 
iTnir*" = 11-930 lb per in. 
O.Oltxo 

The natural circular frequency is 

= V 11,930 X fso' = 151.6 rad per sec. <*>« 

The natural cyclic frequency is 

w* 151.6 /. - 2ir 2t 
= 24.15 cps = 1,450 cpm. 

Since the weight was initially moving with constant velocity, it 
is in the equilibrium position, and x0 equals zero. Therefore, the 
amplitude of the weight equals the r/«« term only. 
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v 12 
The amplitude of the vibration is — =* —; = 0.0792 in. 

15 l.b 
The maximum deflection of the wire is the amplitude due to the 

vibration (0.0792 in.) plus the dead-load deflection MO.0US75 in.), 
which equals 0.09595 in. 

Maximum stress in the wire is 

0)1)9595 X 30(10*) 
3r. 80.000 psi. 

Since the amplitude of the vibration is greater than the static 
deflection, the wire will become slack on the upward displacement. 

Therefore, the motion of the weight is not simple harmonic. How¬ 

ever, the stress in the wire will not exceed 80,000 psi, since the total 

energy acting in the system is constant, and the stress is directly 
proportional to the energy in the system 

Example 3 

Repeat the previous example with the change that the block is 

moving with an upward acceleration of 40 fps5 rather than constant 
velocity at the instant when the upper end is stopped. 

The natural frequency will be 1,450 epm, as Ijefore. 

The acceleration force on the wire is 

200 
F = = ago 40 x 12 = 248 1b. 

The initial deflection of the block from the equilibrium position 
then is 

_ = FL . 248 x _ n nono . 
AE 0.01432 X 30(10*) 0 0208 ,n 

The amplitude due to the initial velocity is — = 0.0792 in as 
Um 

before. 

The resultant vibratory amplitude then is 

v/0.0208* + 0.0792* - 0.0819 in. 

The maximum stretch in the wire is the resultant amplitude due 
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to the vibration (0.0819 in.) plus the dead-load deflection 6,<(0.01675 

in.), which is 0.09805 in. 
The maximum stress in the wire is 

* = f - 0.09805X30(1^) = 82>200 . 
L db 

Again the amplitude of vibration is greater than the static or 

dead-load deflection, so the wire will be slack on the upward dis¬ 

placement, and the motion is not Mmple harmonic. 

2.3 ENERGY SOLUTION 

If it is assumed that the block of Fig. 2.1 vibrates with simple 

harmonic motion, the equation for the frequency found in the 

previous section may be determined by energy considerations. 

When the block has its maximum displacement xOJ it is at rest 

and all the energy contained in the system is potential. As the 

block moves toward the equilibrium position, this potential energy 

is transformed into kinetic. As the block passes through the 

equilibrium position, the potential energy is zero, and all the energy 

is then kinetic. Thus, an interchange of energy continually occurs 

as the system vibrates. 

Since the total energy remains constant (as there is no damping), 

the maximum potential and kinetic energies may be equated to 

determine the frequency. Then, the maximum kinetic energy is 

or, since tw = -r^. 

Ekm^ = Jrmjvoj2. 

The maximum potential energy is 

E~ f I maximal ~ 5f(A-Xtf)^To 

Equating these energies, 

bmxjc,)* = ike*2. 

Then 
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and the cyclic frequency is 

% m 

2.4 TORSIONAL VIBRATIONS 

For torsional vibrations, the system may Ik* represented by a 

disk shrunk onto a steel shaft, the other end of the shaft l>eing held 
fixed, as shown in Fig. 2.4. The spring seale of 
• J • •> . ■ . required to twist the 

shaft 1 nid. and the units are inch-pounds per 
radian. The mass moment of inertia of the disk is 

/if\ 
J with the units in.-Ib-sec*, and it equals f — J ?•, 

when* f is the radius of gyration in inches, and 

Fig. 2.4 
equals iff) for a solid circular disk having 

an outside diameter of 1) in. 

[f the disk is displaced through an hur(o # and released. the tf»f- 

fen^ntial equation of tin* motion, v»\n*-h t r> Mnitlar t<* tin* »j> - 

mmt mm in Mon 2 2 nr 22. it 

j ,H 4- k.o = n (2 131 

which mav be written 

<ne 
dt- 

f2H» 

From Eqs. (2.7) and (2.8). the equation of motion of the disk is 

6 = 0o cos 

and from Kq. (2.9), the natural frequency is 

, 1 [k, 60 Ik, 
f* x oZ\H CP® " oZ \h cPm (2.16) 

tion 0 

The angle of twist of a solid circular shaft is given by the equa- 
TL c. , T .. . . GIP Gird* 
gj- Since k, * —, it also equals or 

6 L 32 L 
for a solid 
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circular shaft. Hence, Kq. (2.16) may be written 

u 
60 [67 p 60 (Gird* 
2t \ JJ 2r\ mjC'PUV' 

Kx.v.mplk l 

Determine the natural torsional frequency of a solid steel disk 
10 in. in diameter and 3 in. thick, which is shrunk on a 1 in. diameter 
steel 3 f* T! .• • end <>f ♦he chaff i« fixed (see Fig. 
2.4). Neglect the mass oi the shall. 

Since steel weighs 0.283 lb per cu in., the weight of the disk is 

_/)2 , mi 
tr = W*L h X 0.283 = ^X3X 0 283 = 66.7 lb. 

4 4 

The radius of gyration squared is 

t* - DI 
8 

UP 

8 
\2 b in.1 

The mmi* moment oi inertia oi t\w* disk is 

~ 2. it) in.-lb-sec* 
H' ... _ 13.5 X lit; T 
(j ~ 386 

THfc opiiilg .xail 4>i lliC dliiill iO 

. 6 ~~ = = 32750 in.-lb per rad. 
‘ 32/, 32 X 3 X 12 ^ 

The natural frequency is 

A common situation involving torsional vibrations is two masses 
connected by a shaft, as shown in Fig. 2.5a. Examples of this 
application are a motor-generator set, a motor-driven pump, radial 
aircraft engine and propeller. The two masses will vibrate in 
opposite directions, and at some point between them there will be a 
node in the shaft. For purposes of analysis the shaft may be con¬ 
sidered to be broken at the node (Fig. 2.5c) and the lengths L, 
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and L» obtained. For the left portion, the natural frequency from 

Eq. (2.17) is _ 
. _ 00 /G/p 

fl ~ 2 

and for the right portion the frequency is 

oo igt; 
f i ~ 2r^JaL,' 

Since the two frequencies must be identical and the terms G and /p 

Fig. 2.5 

are the same for both portions, the expressions may be equated, with 

the result that 

Lj = h 
U j r 

that is, the node divides the total length L inversely with the inertias 

of the masses. As L — L\ + L2 = L\ 0 + £ )• the length 

L\ = -j—r, which locates the position of the node from mass 1. 
J i + J a 

The node location may be important in planning a nodal drive (see 

Sec. 7.3). The natural frequency is 

60 [GTp _ 60 IGTp (J, + J\) 
Jn Jl 2*\JXLX 2t\L JxJa 

60 lkl(Jl + Ja) 
-toyj—jJT- cpm- 

(2.18) 

It should be observed that the deflection curve of the shaft 
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between the masses is a straight line, as shown in Fig. 2.5b, since the 
torque is constant along the shaft. 

Example 2 

A motor-generator set consists essentially of two masses con¬ 

nected by a steel shaft. The motor mass has a J of 2,000 lb-in.-sec2, 
while the J of the generator is 1,000 lb-in.-sec2. The 4 in. diameter 

shaft connecting the masses is 32 in. long. Determine the natural 

frequency of the system and the location of the node from the motor 
end. 

The torsional spring scale of the shaft is 

k, < Ixd1 

327. 
I2ll0,)»4< 

32 X 32 
0.43 (106) in.-lb per rad. 

The natural frequency from Eq. (2.18) is 

, 00 7m./, + ./.) _ n .. .0 43( 10*)(2,0(X) + 1.000) 

2r\| “7,7, "°°\ 2,000 X 1,600 

= 984 cpm. 

The node position from the motor end is 

./1 -f- J • 

1.000 X 32 
2,000 + 1,000 

2.5 EQUIVALENT SYSTEMS 

Equivalent torsional systems are treated in detail in Chap. 8, 
but it is convenient to consider them here briefly. The effect of a 

distributed mass, types of lateral springs, and the like, are also 

taken up in this section. 

A. Spring Scale 

The lateral spring scale is the force required to deflect the 

spring l in., that is, k — F/y. For helical springs this scale is 

given by 

_ Gd* 
87>W' 

(2.19) 
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and the approximate maximum shear stress, neglecting Wahl’s 

factor, in the wire is given by 

s. 
8 FD 
*d3’ 

(2.20) 

where d = wire diameter in inches; 
D = mean coil diameter in inches; 

N = active number of coils; 
F = maximum load on the spring in pounds; 

G = shearing modulus of elasticity in pounds per square inch; «* 
= 12(106) for steel. 

Beams may be used as springs. Formulas for the bending 

(a) (b) (c) 

Fig. 2 7 

moment, deflection, and spring scale of various types of beams are 
given in Fig. 2.6. 

Frequently springs may be used in combination. The two 

combination types are series and parallel. The former is illustrated 

in Fig. 2.7a, where the two springs act in series. The total deflection 

of the weight equals the sum of the deflections of each spring as if 

it alone were present; thus, ylo, = tji + yt. The equivalent spring 
W W )V • 

scale may be found from jr- - jr + jr' Solving this for k, gives 
fCe k 1 A* 2 

_ k\kt 

k\ + kt 
(2.21) 

The spring arrangements shown in Figs. 2.7b and 2.7c represent 

parallel operation. In Fig. 2.7c the weight must be so placed that 

each spring will be deflected the same amount. The deflection of 
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the weight is ytot = 
W 

ki + A} 
The equivalent spring scale is 

and 

W = if 
A, k i + kt’ 

k€ = fci + A*. (2.22) 

B. Equivalent Shaft Length 

Generally shaft* of machines are stepped between the masses, 

hence do not have a constant diameter. Therefore, it is necessary 
to reduce such shafts to that of an equivalent shaft of one diameter 

before using the equations of Sec. 2.4 or determining the torsional 

spring scale. 

The torsional spring scale is A, 
Gird* 
32 /,' 

It is necessary to find 

the equivalent length of a constant-diameter shaft that will have 

the same spring scale as the stepped shaft. To keep A, the same, 

(Jr da* Grd* 
' 32/ „ 321/ 

and 4U
 

II 1
4

 

Hence, 

/ =("i J 4 “Ol 

C/a4 
(2.23) 

where the subscripts a and e represent the actual and equivalent 

values respectively. Frequently the diameter of the equivalent 

shaft is taken as 1 in. to simplify the calculations, since d,* is then 

unity. 

Example 

Determine the equivalent length of shafting 1 in. in diameter 

which will have the same torsional stiffness as the stepped shaft 

shown in Fig. 2.8. 
Applying Eq. (2.23), the equivalent length is 

/ = — 1 = Ijf — , i G(j 
10 X D , 10 X l4 5 

2< 
+ - + 160 = 160| in. 

o 
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Thus, the length of a shaft 1 in. in diameter which is equivalent to 

the left portion of the stepped shaft is only f in., and the length 
equivalent to the right portion is 160 in. long. A given torque 

on either the shaft shown in Fig. 2.8 or the 1 in. diameter shaft that 

is 160f in. long will produce the same angular deflection. 

C. Effect of Distributed Mass 

It may be observed in Fig. 2.1 that the part of the spring near 

the stationary support remains at rest during a vibration, while 

the portion of the spring near the vibrating block has the same 

amplitude as the block. Hence, for a more accurate determination 

of the natural frequency, a certain proportion of the spring mass 
should be added to that ni the block. It will be shown below that 
this portion should be one third. 

Fin. 2 8 

The kinetic energy of a vibrating mass is *mv2. The value of 

v of the spring is a maximum at the block and zero at the support. 

At a distance y from the support, the velocity is ~ if the total 

length of the spring is L. If the mass per unit length of the spring 

is m,/L, the kinetic energy of a differential length dy is l — dy 
Z Li 

(y V 
\L Vmaz) 7 ^be total kinetic energy of the entire spring is 

* - f ir*(f *-)‘ * " iBt*- 
1 m. 2 
2 3 Vmaz ■ 

One third of the mass of the spring should therefore be added to 
the mass of the block before applying the frequency formula Eq. 
(2.9), and so on. In a similar manner it can be shown that one 
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third of the mass moment of inertia of a shaft between the node 

and the disk should be added to the mass moment of inertia of the 

disk. 

This rule does not apply to systems in which the deflection curve 

is not a straight line, such as beams of various types. For a canti¬ 
lever beam with a weight at the end, approximately one quarter of 

the beam weight may be assumed to act with the weight.* If the 

mass of the spring is large compared with mass attached to it, the 
natural frequency may be appreciably changed, f 

2.6 GENERAL PROCEDURE FOR DETERMINING 
NATURAL FREQUENCIES 

It is occasionally necessary to determine the natural frequency 
of elastic systems where the solution is not obvious. There are two 

general methods of attacking such problems: namely, the force 

or torque method and the energy method. 

A. Force or Torque Method 

The general procedure in the force or torque method is to dis¬ 

place the body, or system, slightly and consider the forces, or tor¬ 

ques that act upon it as a free body. There will be an inertia force 

equal to its mass, or torque equal to its mass moment of inertia, 

times the second deiivative of the displacement with respect to 

time. This inertia force always acts toward the equilibrium posi¬ 

tion of the body, or system. The second force is the restoring force, 

or torque, due to the action of a spring or of giavity which also 

tends to return the body, or system, to its equilibrium position and 
equals the spring scale times the displacement. The sum of these 

two forces or torques, equals zero; hence, an equation similar to 

Eq. (2.7) may be set up, and the solution will be similar to that of 

Eq. (2.8) with a circular frequency of c*>« = \ C. 

Applications of this method to pendulums are used in the fol¬ 

lowing section. 

B. Energy Method 

The second method—the energy method—involves the equating 

of the maximum potential and kinetic energies in a manner similar 

* J. P. Den Hartog, Mechanical Vibrations, p. 192, McGraw-Hill, New 
York, 1947. 

fS. Timoshenko, Vibration Problems in Engineering, pp. 317-325, Van 

Nostrand, 1937. 
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to that followed in Sec. 2.3. This method is not as precise as the 

force method, since the type of motion (simple harmonic) must be 
assumed rather than having it in the solution, but it is frequently 

much shorter and easier to apply. 
The body is displaced an amount x0 or 0O} and expressions for 

the maximum potential and kinetic energies are set up. The maxi¬ 

mum kinetic energy equals %mv2 or The maximum velocity, 

assuming simple harmonic motion, is XoUn for lateral vibrations or 
do&n for torsionals; hence, the maximum kinetic energy will l>e 

^mxo20)n2 or jJ0o2un2. 
The maximum potential energy equals one half the maximum 

restoring force times the maximum displacement, or one half the 

spring scale times the maximum displacement squared (?kxa2 for 
lateral vibrations or ?kt0o2 for torsionals). 

These two maximum energies may be equated and the natural 

circular frequency a>n obtained. From this the natural cyclic 
frequency /„ is derived. 

Example 

A mass m is attached at the mid-point of a thin wire of length L. 
The wire has a high initial tension 7\ Determine the natural fre¬ 

quency of the mass for small oscillations in a vertical direction if 
the weight of the wire is neglected. 

Force Method. Since the tension T is large, it remains practi¬ 

cally constant for small displacements x. Hence, the restoring force 

per side which acts toward the equilibrium position is —~ 7\ or 
/v £ 

2 Tx 
(see Fig. 2.9). The total restoring force acting upon the mass i is 

double this, that is, 
4 Tx 

The inertia force of the mass is m 
d*x 
dlr 

Then, for equilibrium 



UNDAMPED FREE VIBRATIONS 33 

And from Eqs. (2.7) and (2.9) 

, 1 [4T 
>• -5VGicps' 

Energy Method. Assuming that the mass moves with simple 

harmonic motion of amplitude x0 and circular frequency wn, the 

maximum velocity is Xoun. 
The maximum kinetic energy is ^numazl = &nx02a>„2. 

Fig. 2.9 

The spring scale of the system is k = F/x, which from the pre¬ 

vious method is and the maximum potential energy is 

ikxt 
2 ° 2 L ° 

Equating the maximum energies, 

i . . I4T 

or 

and 

2 mxSuS = 2~rx°'’ 

4T 
Lm’ 

, 1 ITT 
/« = s- \ I ,— ops. 

2 T\Lm 

2.7 PENDULUMS 

A pendulum is an example of a vibrating system in which the 

restoring force is generally due to gravity rather than to spring 

action. There are four general types: namely, the simple, the 

compound, the torsional, and the oscillating wire, which will be 

discussed in the order named. An important application of pendu¬ 

lums is in the determination of the mass moment of inertia J of a 
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complicated body, such as a gear rotor, a flywheel, a turbine rotor 

with blades, and so on. 

A. Simple Pendulum 

In a simple pendulum the mass may be considered to be con¬ 

centrated at a point on the end of a weightless rod. The solution 

may be found on a torsional basis by applying the principles of the 
force or torque method of the preceding section, that is, by equat¬ 

ing the sum of the inertia and restoring torques to zero. 

In Fig. 2.10, the force F tending to restore the bob, or mass, to 

the equilibrium position equals W sin 0, and the corresponding 

torque is WR sin 0. If 0 is small (less than about 10 deg), the sine 

and the angle measured in radians are nearly the same; hence, the 

restoring torque may be taken as WRO. The inertia torque about 

the pivot point equals where JQ is the mass moment of inertia 

of the weight W about the pivot point 0 and equals (W/g)R2; 
and a is the angular acceleration of the weight about O and equals 

d20/dt2. Therefore, the inertia torque is 

E R2 €1. 
g dt- 

The equation of motion then becomes 

and 

W dr-e 
g dP 

+ WRO = 0. 

d-0 
dt2 

And from Eqs. (2.7) to (2.10) 

0 = d0 (*( 
,s yjfi1 rad' 

(2.24) 

f = JL 
Jn 2tt 1 Jfc CP5' 

(2.25) 

T = 2lT y 
IR 
— sec. 

M 9 
(2.26) 

It should be noted that the frequency of the pendulum is inde¬ 

pendent of the weight of the bob and depends only upon the length 

of the rod R and the acceleration of gravity. 
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B. Compound Pendulum 

A compound pendulum has the weight distributed along its 

length, as illustrated in Fig. 2.11, where the pivot point is 0. The 

weight W may be assumed to be concentrated at the center of 

gravity, which is at a distance R from the pivot. 

The procedure for finding the equation of motion and frequency 

is the same as in the previous case. The restoring torque is WR 

W 

Fig. 2.10 Fig. 2 11 

sin 6; or, for small values of 0, it equals H7?0, approximately. 
(j 20 

The inertia torque about the pivot is J0 a or J0 • Hence, the 

differential equation is 

+ wue = o, 

or 

d-6 wr n 
= * j: 6- 

And from Kqs. (2.7) to (2.10) 

6 - Oo cos t ra<i> (2.27) 

(2-28) 

,-2r^isec. (2.29) 

Equations (2.28) and (2.29) may be used to determine the mass 
moment of inertia J„ of a complicated body by observing the 
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period, or frequency, with which it oscillates when mounted as a 

compound pendulum. If it is desired to find the mass moment of 
inertia about the center of gravity, the following transfer formula of 

mechanics may be used: 

./„ = Ja + y R\ (2.30) 

where J 0 = mass moment of inertia about the pivot; 
Ja = mass moment of inertia about the center of gravity; 
R = distance between the pivot and center of gravity. 

i 
Fig. 2.12 

C. Torsional Pendulum 

A pendulum of this type (Fig. 2.4) and the derived equations 

were discussed in the first part of Sec. 2.4. 

D. Oscillating Pendulum 

The mass moment of inertia J of complicated bodies about their 
center of gravity may be found by suspending the body by wires 
placed equidistant from the center of gravity and allowing it to 
oscillate freely through small angles $. From the observed period, 
or frequency, the value of J may be determined. This principle is 
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illustrated in Fig. 2.12 for a disk that is suspended by two wires of 
length L, which are attached at a distance R from the center of 
gravity. As the disk is displaced through an angle 6, the wire will 
deflect through an angle <t> from the vertical. From the figure it 
may be observed that sin <f> — R6/L. For small angles of twist the 
restoring torque about the center of gravity equals RF or WR sin 4>; 
or for small values of 6 it equals RW(R6/L) or WR*d/L. The 
inertia torque about the center of gravity is Ja or./ d*d/dP. Then, 

d*e WR*e 
dP + L 

d-e 
dP 

WR' 
~ JL 6• 

And from Eqs. (2.7) to (2.10) 

„ . fWR* . 
6 - 6« COS ra^. (2.31) 

/ = JL 
2t\ 

IWR* 
\-JL cp8' 

(2.32) 

“4
 II to
 

* 

JL 
WR* S<>r (2.331 

Therefore, the mass moment of inertia about the center of gravity is 

./ WTfV 
A**L 

WR* 
4t *Lfn' 

in.-lb-sec2. (2.34) 

It may be observed that the above equations are independent 
of the number of wires used. Generally, three wires will give the 
greatest stability. 

PROBLEMS 

y 2.1. A weight of 30 lb is suspended on a spring having a scale k of 
120 lb per in. Determine the natural frequency and the period of 
vibration of the system. Ans. 6.26 cps; 0.16 sec. 

x-2.2. When a weight of 100 lb is placed at the mid-point of a 
simple beam, the beam has a maximum deflection of 0.360 in. 
Determine the natural frequency and the period of the vibration. 

Ans. 5.2 cps; 0.192 sec. 



38 ELEMENTARY MECHANICAL VIBRATIONS 

2.3. A weight W of 10 lb is supported on five springs, as shown in 

Fig. 2.13. Each spring has a scale of 50 lb per in. If the weight is 
displaced downward i in. and to the right yV in. and allowed to 
vibrate freely, determine the resultant motion of its center of 

gravity. A ns. See Fig. 2.13A. 
2.4. A weight of 75 lb is suspended on a steel helical spring having 

10 active coils of \V. & M. No. 2 wire (diameter 0.2625 in.). The 

mean diameter of the coils is 3 in. The system moves downward 

with a constant velocity of 1| fps when the upper end of the spring 

is instantaneously stopped. Determine the frequency of the 
vibration and the maximum stress in the spring, neglecting Wahl's 

factor. A ns. 111 cpm; 40,000 psi. 

Fig. 2.13 Fin 2.13A 

2.6. Repeat Prob. 2.4 with the change that the weight is being 
decelerated at the rate of 10 fps2, but moving with a velocity of 1| 

fps as before. A ns. 111 cpm; 51,500 psi. 
2.6. An elevator weighing 4 tons moves downward with a con¬ 

stant velocity of 300 fpm. At the instant when the rope length is 

50 ft, an accident occurs and causes the drum to stop rotating. If 

the modulus of elasticity of the steel wire rope is 12(10®) and the 

area of metal is 2 sq in., determine the frequency and the maximum 

stress in the rope due to the accident if the rope weight is neglected. 

Ans. 420 cpm; 31,240 psi. 

2.7. If a spring having a scale k of 1,500 lb per in. is placed 

between the end of the rope and the cage of the elevator in Prob. 2.6, 

determine the new frequency and maximum rope stress. 

Ans. 80 cpm; 9,200 psi. 



UNDAMPED FREE VIBRATIONS 39 

2*8. Repeat the first example of Sec. 2.4, but include the mass 

moment of inertia of the shaft. Ans. 1,173 cpm. 
- ^2,9. Determine the natural torsional frequency of the motor- 

' driven pump set shown in Fig. 2.14. Locate the position of the 
node from the motor end of the steel shaft. Ans. 446 cpm; 57.2 in. 

Fig. 2.14 

'•""2.10. Determine the natural torsional frequency of a radial air¬ 

plane engine and propeller system, given the following data: 

Jprop = 132 in.-lb-sec2; Jeng = 7 in.-lb-sec2; kt of shaft = 2.5(10®) 

in.-lb per rad. Ans. 5,860 cpm. 

2.11. ^Determine the natural frequency of the torsional pendulum 

shown in Fig. 2.15. Neglect the mass of 

the steel shaft. If the weight has an ampli¬ 

tude of 0.2 rad, find the angular velocity as 

the disk passes through the equilibrium 

position, 

Ans. 362 cpm; .’fcci) ntu per sec. 

2.12. In Fig. 2.7. let k\ — 40 lb per in.* 

kt = 45 lb per in., and IT = 25 lb. Find 

the natural lateral frequency for each of the 

three case's. If the amplitude of vibration 

in each case is 1 in., find the energy involved 

and the velocity of the weight as it passes 

through the equilibrium position. 
Ans. (a) 173 cpm, 10.6 in.-lb, 18.1 in. per sec; (b) and (c) 346 

epra, 42.5 in.-lb, 36.2 in. per see. 

2*13. Following the method outlined in Sec. 2.5C, show that 

one-third of the mass moment of inertia of the shaft of the torsional 

pendulum (Fig. 2.4) should be added to that of the disk in determin¬ 

ing the natural frequency. 

4.14. A weight of i lb is to be suspended by four identical 

springs, as shown in Fig. 2.16, so that it will have a natural lateral 

Fig. 2.15 
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frequency of 6 cps. What should be the scale of each of the four 
springs? Amt. 0.23 lb per in. 

2.15. Determine an expression for the natural frequency of 

Fio. 2.16 

the weight H" in each case of Fig. 2.17. Neglect the weights of the 
steel beams or springs. 

1 IZEILg ... 1 ImEIg 
2; V iiwcps; lb) t. \-mj- cpsi 

(c)l / MM 
1’ 2r\(3El + kL3)W 

cps; (d) 
1 / 4SEIkg 

2t\(48 El + AL»)IFcps 

2.16. (a) Set up the equation of motion and solve for the natural 
frequency of a column of water in a manometer U tube. Let the 

Fig. 2.17 

diameter of the tube be d in., and let the total length of the column 
be L in. (b) If mercury having a specific gravity of 13.6 is substi¬ 
tuted for the water, what will be the effect, if any? 

2g .. . 
-j- cps; (b) none. 

2.17. A wooden plank has a specific gravity « and the following 
dimensions: thickness h, length L, width b. The plank is placed 
in a tank of water and depressed slightly a distance x. (a) Set. up 
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the equation of the vibratory motion, and solve for the natural 
frequency, (b) If the plank is placed in a tank of mercury having a 
specific gravity of 13.6, what will be the effect, if any, on the above? 

Ani- w % $,cps; (b) i -\ftrcps- 

2.18. Determine the natural lateral frequency of the weight 

W 

Fin 2.18 

shown in Fig. 2.18 if the weight of the bar pivoted at P may be 

neglected. Ans. fn - 

2.19. Determine the natural lateral frequency of the weight 
shown in Fig. 2.19, assuming that the rod is weightless, perfectly 

J I f^Q 
rigid, and pivoted at P Ans. yj-^ cps. 

2.20. If the mechanism of Fig. 2.19 is rotated clockwise 90 

W 

Fig. 2.19 

deg, that is, so that the rod is vertical with the weight W at the 
bottom, what is the natural frequency? _ 

.4ns. fn = 2^ + 9^ cps- 

(Note that the first term under radical is the gravity or pendulum 
effect, while the second is the spring effect.) 

2.21. What length of simple pendulum should be used on a clock 
so that it will have a period of 1 sec? ^ sec? Ans. 9.76 in., 2.44 in. 
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2.22. The pendulum shown in Fig. 2.20 is pivoted at 0 and 
consists of two weights IF and w supported on a weightless rod. 
(a) For small displacements, derive an equation for the natural 
frequency, (b) If IF = 10 lb, w = 2 lb, R = 5 in., r = 2 in., find 
the natural frequency, (e) If the small weight w is removed, find 
the natural frequency for the conditions set forth in part (b). 

Ans. (a) /» = ^ Cpm’ ^ 79-1 Cpm; ^ 84 Cpm 

2.23. What will be the frequency of oscillation of a steel disk 30 
in. in diameter and 4 in. thick if it is pivoted 
about a point 10 in. from its center of gravity? 

A n$. 40.6 cpm. 
2.24. A second-reduction welded gear rotor 

weighing 25,000 lb is suspended on a knife-edge 
located 50 in. from its center of gravity. Small 
oscillations about the knife-edge occur with a 
frequency of 21 cpm. What is the mass moment 
of inertia J of the rotor about its center of 
gravity? 

.4 ns. 97,000 in.-lb-sec1. 
2.26. It is desired to obtain the mass moment of inertia J of a 

flywheel weighing 1,000 lb. It is suspended from the ceiling on 
three wires, each 4 ft long and attached to the wheel at a radial 
distance of 12 in. from its center. The time required for 100 com¬ 
plete oscillations is 145 sec. Determine the mass moment of inertia 
about the center of gravity. .4 ns. 159.5 in.-lb-sec1. 



Chapter 3 

.. - ..... 

UNDAMPED FORCED VIBRATIONS—SINGLE 

DEGREE OF FREEDOM 

3.1 IMPORTANCE AND APPLICATIONS 

As was pointed out in See. 2.1, the amount of damping that is 
present in many actual vibrating systems is extremely small. 
Hence, the principles developed in this chapter may be used to 
solve and explain many actual cases of systems having forced 

vibrations. 
The chief applications of these principles are the isolation of 

vibrating machinery forces from their surroundings (for example, 
isolation of automobile-engine vibrations from the body of the car, 
refrigerator-compressor vibrations from the house), and the design 
of isolators to prevent outside vibrations from reaching delicate 
instruments (for example, radios in airplanes, seismic apparatus). 
An explanation of the action that takes place in a single disk as the 
rotation passes through the critical speed is given. 

3.2 EQUATION OF MOTION 

The system for the case of undamped forced vibrations may be 
visualized by Fig. 3.1, in which a harmonic force F„ cos ut acts 
upon the mass m suspended on a spring having a scale k. 

Considering the mass as a free body that is displaced downward 
from the equilibrium position a distance x due to the impressed 
force Fa cos o>t and neglecting the static weight of the block, which is 
constant in magnitude and direction, the following dynamic forces 

are exerted: 
a. The spring force acts upward (always toward the equilibrium 

position) and equals kx. 
43 
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b. The inertia force also acts upward (always toward the equi- 

librium position) and equals m 

c. The impressed force acts downward to depress the mass and 
equals Fa cos cot. For equilibrium of the vertical vibratory forces, 
the equation is 

m ~ + kx = F0 cos cot. (3.1) 

A solution of this equation is that the block moves harmonically 
with the same frequency as the impressed force; thus, 

x = x„ cos cot. (3.2) 

Since the second derivative of Eq. (3.2) with respect to time is 

d2x 
jp = —Xoci2 cos at. 

Eq. (3.1) may be written 

— mu>-x0 cos ut + kx0 cos cot = F„ cos cot, 

or 
— »ta>sx„ 4- kx0 — F0. 

Dividing through by k and rearranging terms, 

In Sec. 2.2 it was seen the -j- — hence, this equation becomes 
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Two new notations may now be introduced. The first is that 
f F 

r — — = and the second that -p = x„. The term x* is the 
w„ /„ k 

deflection of the spring due to the impressed force F„ acting as a 
static load. It should not be confused with 5,( used previously, 
which is the spring deflection due to the static weight of the block. 
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With the above notations, the preceding equation may be written 

A plot of x0/xat against r or u>/«„ is shown in Fig. 3,2. When a 
particular impressed force Fa acts upon a given mass and spring 

system, the values of xst and u>n are fixed and constant. Thus, this 
curve shows the amplitude of the mass xQ for various frequencies <*> 

of the impressed force. 
The ordinates of the curve of Fig. 3.2 are known as the magnifica¬ 

tion factor, since they represent the ratio of the* actual deflection of 

the mass at a given frequency to the deflection that would be 
obtained if the impressed force were applied as a static load. 

If the force acts at a very low frequency (r or w near zero), the 

mass will be deflected through an amplitude of xst or Fafkt that is, 

x0/x$t is close to unity, and the motion of the mass will be in phase 

with the force. If the force is applied with a frequency close to 

the natural one of the system (r about unity), the force and motion 
of the block act together to produce large amplitudes. This 

condition results in tremendous stresses and rapid failure of the 

parts. If the force is applied at a very high frequency, the inertia 

of the mass prevents it from following the force, with the result 

that the block remains practically stationary in space, that is, x0 

approaches zero. It may also be noted that in this region the value 

of x0/xst is negative, indicating that x0 and xal (or F0/k) oppose each 

other. Therefore, they are out of phase, and as the force acts 
downward, the mass is displaced upward, and vice versa. 

Example 

An impressed force of 10 lb acts harmonically on a 20-lb block 

suspended on a spring having a scale of 40 lb per in. Determine the 

amplitude of the block if the frequency of the impressed force is 
(a) 10 cpm, (b) 250 cpm, and (c) 4,000 cpm. Assume that the block 

is constrained to a single lateral degree of freedom. 

The static deflection due to the weight of the block is 

6 
wr 20 
k: 40 V 0.5 in. 
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is 

The natural frequency of the system from Eq. (2.11) is 

. 187.5 187.5 
( = —= 2oo cpm. 

\/S,i VO.5 

The static deflect inn of the block due to the impressed force Fa 

F0 10 
r.i = y = 4Q = 0.2o in.. 

a. For an impressed frequency of 10 cpm, the ratio is 

/ 10 n 
Jr. 205 ’ 

and r2 = 0.001422. 
Hence, by Kq. (3.8). the amplitude of the block is 

•r., = x„ y~_-rt = 0 2o , _ (>001422 = 0 25+ in ’ 

which is practically the same as x9t. 
b. For an impressed frequency of 250 cpm, the ratio is 

9 VI 
r = ; ; = 0.9435, r2 = 0.89, 

2i >o 

and the block amplitude is 

0.25 
i 

1 - 0.89 
= 2.27 in., 

which is quite large and accompanied by high spring stresses, 

c. For an impressed frequency of 4,(KM) cpm, the ratio is 

*• T • '■ 

and the block amplitude is 

Xo — 0.25 
1 

1 - 228 
= -0.0011 in., 

which is practically stationary in space compared with x,t. 
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3.3 TRANSMISSIBILITY 

One of the common problems occurring in vibration work is 

the isolation of forces that are set up in the machine from being 

transmitted to the ground or surrounding structure. This isola¬ 

tion may be accomplished by mounting the machine on flexible 

supports, such as steel springs; or rubber, felt, or cork pads. Since 

the damping effect of steel springs is very small, only they will be 
considered in this chapter. The other types of isolators will be 

discussed in Chap. 5. 
The measure of the effectiveness of a support is the transmis- 

sibility, which is the ratio of the force transmitted to the founda¬ 

tion to the force developed in the machine. Any transmitted 
force is due to the change in the length of the supporting spring; 

hence, its maximum value is A\rt), whereas the maximum impressed 

force is F0. The ratio of these two, or the transmissibility, is 

This ratio is the same as X% since ~~ is ; so that Eq. (3.3) 
jv 0 «r $ t * o «r $t 
and Fig. 3.2 apply to this case, and the* transmissibility is 

The ideal condition would be to have no transmitted force, that 

is, a transmissibility of zero, which means that the scale of the 
springs would have to be zero. Obviously this is impossible. If 

the machine is mounted directly on the foundation or structure 
without springs, the equivalent spring scale is infinite, and all the 

impressed force is transmitted through the isolator. 

In Fig. 3.2, it may be observed that for a given system the trans¬ 

missibility is unity or 100 per cent if the impressed force acts very 

slowly (r near zero); that is, the springs deflect an amount x„ or 

F„/k, and thus all the force is transmitted. On the other hand, for 
high impressed frequencies (r large), the mass, owing to its inertia, 

is not able to follow the impressed force and hence, remains almost 

stationary in space. The accompanying small value of xa or spring 
deflection results in low transmitted forces and consequently low 

transmissibilities. 

It should be noted also that for values of r between zero and y/2, 

or 1.41, the value of xa/x,t, or transmissibility, is greater than one. 

In this region the inertia of the mass acts with the impressed force 
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to make the transmitted force greater than that impressed. There¬ 
fore, the use of springs under these conditions makes matters worse 

rather than better and so should be avoided. 

Isolators designed to give frequency ratios of r greater than \/2 
under operating conditions will reduce the impressed forces trans¬ 

mitted to the foundation; the higher the ratio, the lower the trans- 

missibility. From a practical standpoint the ratio r should be at 
least 2.5 or 3, which corresponds to transmissibilities of 18.9 or 

12.5 per cent. 
Care must be exercised in the use of signs. In the region where 

the transmissibility is effective, the displacement of the block and 

the impressed force are opposed, and the transmissibility, or x0/x9t, 
will have a negative sign. 

Example 

A printing press creates a disturbing force of 800 lb at a fre¬ 
quency of 1,450 cpm. The press weighs 2,500 lb. It is desired to 

reduce the force transmitted to the building to not more than 20 lb 
by supporting the press on six springs, each taking an equal share 

of the total load. Determine the scale of each spring, assuming that 

the press can move only in a vertical direction; that is, that it 
cannot “rock” or move horizontally. 

Transmissibility 
transmitted force _ x0 _ 20 _ 1 
impressed force xHt 800 40* 

and, since it is less than 1, should be considered as negative. 

Using Eq. (3.3), 

= _ i 1 
xtt 40 1 - r2* 

and 

r2 — 1 = 40 and r2 = 41 = 

1 450 
The impressed circular frequency is a> = 2ir 

per sec, and w2 = 23,000. 

151.8 rad 
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k co2 
Since wn2 = — and ---= = 41, the total spring scale is 

m w„2 

7 mur 2,500 v 23,000 n 
‘ - -,t - m x -4f - *■'*»,b • 

and the spring scale of each spring is —= 006 lh per in. 

3.4 RELATIVE MOTION OF BLOCK AND SUPPORT 

Another type of forced-vibration problem occurs when the sup¬ 

port of a spring-mass system vibrates with simple harmonic motion. 

The solution of this problem finds application in the design of 
vibrometers to measure amplitudes, in seismic apparatus, and 

similar instruments. 

In Fig. 3.3, let it be assumed that the support to which the spring 

is attached vibrates with simple harmonic motion described by 
the equation 

xt = x,a cos aA. (3.5) 

The action of this motion is to cause the block to vibrate har¬ 
monically at the same frequency with the motion 

xh ~ Xb9 cos w/. (3.0) 

The change in length of the spring then is xt> — xt, which creates an 

impressed force on the block through the spring of k(xb — x8). 

If we take the block as a free body and consider the forces acting 

upon it, the following equations result: 

171 ^ + k^Xb ~x= 
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or 

m 
d2Xb 

It2 + kxb = kx9. (3.7) 

If kxto is considered to be the impressed force acting on the block, 

Eq. (3.7) is similar to Eq. (3.1); that is, x9o corresponds to thex,* term 

of that equation. By a development similar to that given there, an 

equation similar to Eq. (3.3) results: 

(3.8) 

To measure amplitudes of vibration, a mechanics' dial gauge is 

placed between the support and block as shown by the dotted lines 

in Fig. 3.3. The hand of the gauge will vibrate at the impressed 

frequency and, since the motion at the end of the swing is relatively 

slow, can be read quite accurately. The motion of the hand is 

double the relative* amplitude of x^ — xSo, which is xro; hence, the 

total travel of the hand must be divided by 2 to get this value. 

Care must In* exercised to select an indicator with a small inertia 

in its moving parts so that the motion will be followed completely. 

Since jy, is the amplitude to be measured and xr0 the value read 

on the vibrometer gauges it is desirable to determine the relation¬ 

ship between them. This may be accomplished as follows: 

.o.„ = .I-,* y——V (3.8) 1 — r- v 

■ (rY) <!>•»> 
The values of xrJx,. are plotted against r in Fig. 3.4, and it may 

be noted that the curve shape is similar to that of Fig. 3.2, the only 

difference being that in the latter the ordinates are one point lower 
than in Fig. 3.2. When the frequency of the support is low (r 

near zero), the whole system moves as a unit, so that xr„ or the 

stretch of the spring, is practically zero. For high frequencies of 

the support (r large), the mass, because of its inertia, tends to remain 

stationary in space, and the stretch of the spring xT, is approximately 

equal to the motion of the support. 
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It should again be observed that for values of r greater than 1, 
the sign of x,Jx„ is negative and must be so used. It should also 
be observed that the gauge reading xr will be closer to the motion of 

w/w»—r 

Fig. 3.4 

the support x, as the ratio r is increased, that is, by the use of a 

large mass and/or weak springs. The mass size is sometimes 

limited by the size of the body whose amplitude is being measured. 
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In aircraft work the mass may be as small as 1 lb or less; whereas 
for heavy work, such as in building vibrations, weights of 25 lb 
or greater may be used, and for seismographs the weight may be 

tons. 

A similar device may be used to determine accelerations. The 
spring scale is made large in such cases for stiffness and strength 

purposes, and the resulting deflections are consequently small. 
Figure 3.5 illustrates an instrument that may be used to deter¬ 

mine the path of the resultant motion of a vibrating body. A low- 

power microscope is mounted in a heavy block suspended on weak 

springs. Through it may be observed the motion of a pinhole 

placed in an opaque sheet, such as tinfoil, attached to the vibrating 
lxxly and having a light source placed behind it. The pinpoint 

of light will appear as a closed curve, or Lissajous figure, describing 

the motion of the body being observed. By the proper design of 

the block and spring system, the microscope motion may be made 

negligible.* 
A similar device, known as a torsiograph* may be used to meas¬ 

ure the amplitude of torsional vibrations. A relatively heavy 

* T. C. Rathbone, “Turbine Vibration and Balancing,” Trans. A.S.M.E. 
1929, APM-51-23; S. Timoshenko, Vibration Problems in Engineering, 
Van Nostrand, New York, 1937, pp, 443-452; W. K. Wilson, Practical 
Solution of Torsional Vibration Problems, Chap. 8, Wiley, New York, 1940. 
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hollow cylindrical mass is separated from a shaft by means of a weak 
spiral spring, as shown schematically in Fig. 3.6. If no vibrations 
are present in the shaft, the torsiograph rotates as a unit with it; 
but when vibrations occur, there will be relative motion bet ween the 
shaft and the rotating mass, which continues to rotate with practi¬ 

cally constant angular velocity. These amplitudes may be recorded. 
The principle of operation and analysis of results follow the pro¬ 
cedure described above for lateral vibrations. 

Example 

Determine the scale of the springs for a vibrometer with a block 
weighing 20 lb, so that the difference in the reading on the dial 

indicator and that of the vibrating machine will not be greater than 
3 per cent when the machine vibrates with a frequency of 1,000 epm. 

If the machine amplitude is 0.003 in., determine the corresponding 
dynamic load on the springs of the vibrometer. Assume that the 
machine has a pure vertical motion. 

To satisfy the given conditions, the ratio of xr0 xs# must equal 
—1.03 (negative because the value of r is greater than 1). 

Substituting this value in Eq. (3.9), 

Then, 

—1.03. 

— 1.03 + 1.03r2 - r2, 
and 

r* = 34.35 = —, 
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The impressed frequency is 1.2* = L99P 2t 
1)0 2 60 2 

= 104.7 rad 

per sec. 

Since con2 

A* = 

A* wi, 

mw2 
r- 

20 104.7s ir . 1K 
X ■7i'i~rTr' = 10.5 lb per in. ms 34.35 

If .r,, = 0.003 in. and xTo xto = —1.03, the stretch of the spring 

is xTo = —1.03 X 0.003 = —0.00309 in. (the negative sign 
merely indicating the phase displacement), and the dynamic load 
on the springs is kxro = 16.5 X 0.00309 = 0.051 lb. 

and 
m(x + e)<A>2 — kx = 0, 

rnxoi2 — kx = —mew2. 

Dividing both sides by mwB3, 

mCOnV 

3.6 CRITICAL SPEED OF A SINGLE DISK ON A SHAFT 

An interesting application of forced vibrations with damping 
neglected is that of a single disk mounted on 

a vertical shaft to eliminate gravitational forces. 

In Fig. 3.7, let point 0 be the center of the 
disk through which the shaft centerline passes, 

and let G be its center of gravity. Because of 
slight variations in the disk density, these points 
will not usually coincide, but will be separated 

by a distance c, which is constant. Let x be the 

deflection of the shaft at the disk, which is due 
to centrifugal action, and let k be the spring scale 
of the shaft at the disk. 

When the shaft rotates at an angular velocity 
of co, an impressed or centrifugal force is set 

up, which may be considered to act at the 
center of gravity G, and deflects the shaft at the 

disk a distance x. Hence, the force equals 
m(x + c)<o2. This force is balanced by the 
restoring force of the shaft, which equals kx. 
For equilibrium, 

con‘ 
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But wn5 = k/m. Then, 

The form of Eq. (3.10) is the same as that of Eq. (3.9) and may be 

illustrated by Fig. 3.4 if x/c is substituted for xrJxt0. 
An analysis of the physical action that takes place as the speed 

of rotation is increased is interesting. At all times there are two 

forces acting radially on the disk: namely, the centrifugal force at 
the center of gravity and the spring, or restoring force, at the 

geometric center. 

For speeds below the critical, the center of gravity G is always 
outside the geometric center 0 of the disk. The relative motion 

between these two points is that G is rotating about 0. The 
geometric center of the disk is deflected a distance x from the bear¬ 
ing center line S so as to achieve equilibrium between the centrif¬ 

ugal force m(e + x)o?2 and the shaft restoring force kx. As the 

rotative speed, or speed ratio r, becomes higher, the amplitude x 
of the disk also increases. 

At the critical speed (r = 1), the amplitude x of the disk is 
infinite, as shown by Eq. (3.10), and the system is said to be in 
“indifferent equilibrium.” 

When the speed is above the critical, the amplitude x is negative 
by Eq. (3.10), and the center of gravity G lies inside the geometric 

center of the disk 0. For extremely high speeds the value of x c 

approaches —1, which means that x approaches — e and the disk 
tends to rotate about its center of gravity. Therefore, the disk has 

little or no centrifugal force acting upon it. 
The effect of damping on the action at the critical speed on a 

single disk will be considered in Sec. 5.3. 

Example 

A small high-speed steam turbine has a single disk weighing 

15 lb mounted at the mid-point of a | in. diameter steel shaft. The 

bearing span is 15 in. Owing to slight manufacturing inaccuracies, 
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the center of gravity of the disk is 0.001 in. from the center of rota¬ 
tion. If the turbine rotates 3,600 rpm, determine the amplitude 
of the steady-state forced vibration, the dynamic force transmitted 

to the bearings, and the stress in the shaft due to the dynamic load 

if the shaft weight is neglected. 
From Fig. 2.6, the static deflection of the disk is 

6 at 

WIJ 15 X (15)3 X 64 
Wei 48 x 30(io#) x t(|)4 

0.0362 in. 

The natural frequency, or critical speed, of the system, by 

Kq. (2.11), is 

= 1875 
V&7< 

187.5 

V070362 
987 cpm. 

The speed ratio is r = /.'/„ = 3,600- 987 = 3.65 and r- = 13.33./ 
Applying Eq. (3.10), in which e = 0.001 in., the shaft deflection 

becomes 

.t = e T-^rj = 0.001 j = -0.001081 in. 

(The negative sign indicates that the center of gravity has moved 

in toward the center of rotation.) 
The dynamic bearing load may be found on the basis of either the 

centrifugal force or the shaft-deflection force. 

The centrifugal force acting on the disk is 

m(x -I- eW = (-0.001081 + 0.001) = 0.449 lb. 

which is also the load transmitted to the bearings. 
The spring scale of the shaft is A- = W/h,t = 15/0.0362 = 4151b 

per in., and since the shaft deflection is x = 0.001081 in., the 

reaction at the bearings is kx = 0.001081 X 415 = 0.449 lb. 

From Fig. 2.6, the maximum moment on the shaft is M = FL/i, 
and the force F is the force due to centrifugal action, or 0.449 lb; 

hence, M = 0.449 X ¥ - 1.68 in.-lb. 
The shaft stress due to the vibration is 

= Me M32 

I rd* 
1.68 X 32 

*(!)* 
324 psi. 
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PROBLEMS 

In the following problems, unless otherwise specified, it should 
be assumed that the motion is one of a single degree of freedom and 

takes place in a vertical direction. 
3.1. The total weight of a 900-rpm generator is 2,500 lb. The 

armature weighs 800 lb, and its center of gravity is 0.015 in. from 

the axis of rotation. When the generator was mounted directly 
upon a heavy foundation, severe vibration forces were transmitted 

to the building. It is proposed to mount the generator on eight 

steel springs to reduce this transmitted force to one hundredth of 
the impressed force. Assume that the foundation is rigid, and 

calculate the required spring scale and the maximum dynamic load 
on each spring. Assume that the springs are so placed that each 
takes an equal share of the load. A ns. 71.16 lb per in.; 0.345 lb. 

3.2. A reciprocating pump weighing 1,000 lb runs at 300 rpm. 
The forces transmitted to the rigid foundation on which it is bolted 

are objectionable. It is desired to reduce these forces to one tenth 

of their present value by mounting the pump on steel springs at 
each of the four corners of the base plate. Assume that the weight 

is equally divided among the four springs, and determine the scale 
of each. Ans. *58 lb per in. 

3.3. What would be the percentage of the induced force trans¬ 
mitted to the foundation if the speed of the pump of Prob. 3.2 drops 
to 200 rpm and the springs designed in Prob. 3.2 are used? 

Ans. 25.6 per cent. 

3.4. A radio set weighing 100 lb is located in an airplane cabin 
which vibrates with an amplitude of 0.004 in. at an engine speed of 

2,000 rpm. Determine the scale of four steel springs required to 

reduce the amplitude of the set to 0.0002 in. Assume that each 
spring takes an equal share of the weight, and calculate the maxi¬ 

mum total load for which each spring must be designed. 
A ns. 135 lb per in.; 25.57 lb. 

3.6. If the speed of the engine in Prob. 3.4 drops to 1,700 rpm, 

but the cabin amplitude remains 0.004 in,, what would be the 
amplitude of the radio set and the maximum total load on each 

spring? Assume that the mount is the one designed in Prob. 3.4. 

A ns. 0.0006 in., 25.62 lb. 

3.6. Owing to local resonance, the floor of a building vibrates 

vertically with a frequency of 1,500 cpm and an amplitude of 0.002 

in. Except for damage to the instruments on an instrument board 
located at this spot, the condition is not too objectionable. It is 
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decided to isolate the board, which has a weight of 200 lb, with four 

steel springs that are to reduce this amplitude to 0.0002 in. What 
should be the scale of each spring, if the weight is divided equally 

among them? Ans. 290 lb per in. 

3.7. What are the amplitude, maximum velocity, and maximum 

acceleration of a vibrating structure if a vibrometer attached to it 

records a relative amplitude of 0.0018 in.? The static deflection 
of the vibrometer weight is f in., and the structure vibrates with a 
frequency of 110 epm. 

ns. 0.0052 in., 0.00 in. per sec, 0.69 in. per sec2, respectively. 
3.8. A motor weighing 50 lb runs at 1,750 rpm and has an 

unbalanced centrifugal force of 10 lb in the armature. The motor 
is mounted on isolators having little damping. The spring scale of 
the isolators in the vertical plane is 300 lb per in., and in the hori¬ 

zontal plane it is 2,500 lb per in. Determine the force transmitted 
to the foundation in each plane and the resultant motion of the 
center of gravity of the motor. 

.1 ns. Fr = 0.75 11), Fh = 13.5 lb; xUr = 0.0025 in., x0k = 
0.0054 in.; ellipse. 

3.9. It is desired to measure the maximum acceleration of a 
machine part which vibrates violently with a frequency of 700 cpm. 
An accelerometer (vibrometer with a stiff spring) is attached to it, 

and the total travel of the pointer on the dial indicator is found to 
l>e 0.326 in. If the accelerometer has a 1-lb block and a spring 
scale of 90 lb per in., what are the maximum amplitude and maxi¬ 

mum acceleration of the part? Ans. 0.896 in.; 4,800 in. per sec2. 
3.10. A torsiograph having a natural frequency of 200 cpm is 

placed on a 1 in. diameter steel shaft 3 ft long rotating at 2,000 rpm. 

The total relative twist between the shaft and mass of the torsio¬ 
graph is recorded as 1.42 deg (relative amplitude of 0.71 deg). 
What are the amplitude of the shaft vibration and the correspond¬ 

ing maximum shaft stress? ( Note that ss? (s 
Tc , . TL V 
j- and 6 = ~y- rad 
it Wo J 

Ans. 0.703 deg; 2,050 psi. 
3.11. Repeat the example of See. 3.5 for a rotational speed of 

1,000 rpm. Ans. 0.038 in., 15.8 lb, 11,400 psi. 
3.12. A motor weighing 125 lb is mounted on a simple beam that 

has a spring scale at that point of 200 lb per in. The motor arma¬ 

ture weighs 25 lb and has an eccentricity of 0.003 in. What will 

be the amplitude of vibration of the motor when it runs 1,760 rpm? 
Ans. 0.00061 in. 



Chapter 4 

DAMPED FREE VIBRATIONS—SINGLE 

DEGREE OF FREEDOM 

4.1 INTRODUCTION 

The cases considered in the two preceding chapters neglect 
damping, which, while it may be reasonably close to actual condi¬ 
tions for many applications, is not in true agreement with the laws 
of nature. Observation shows that any free vibration will die out 
in time; hence, the presence of a damping force should be recognized. 

The damping action may be due to (a) the rubbing of two sur¬ 
faces together, as in the case of poorly riveted joints or bearing 
friction; (b) resistance to the motion of the fluid in winch the 
system vibrates, such as air, oil, or w'ater; or (c) the internal fric¬ 
tion in the member being vibrated. 

The frictional resistance between dry surfaces is generally con¬ 
sidered to be independent of the rubbing speed, although the 
coefficient is much greater for static friction than for kinetic; it is 
more a function of the twTo materials and their surface roughness. 
This type of resistance is generally referred to as Coulomb, or con¬ 
stant, damping and will be considered in Sec. 4.6. 

The resistance between lubricated surfaces or bodies moving 
through a fluid at low velocity is directly proportional to the speed. 
This type of action occurs in perfectly lubricated bearings, dashpots, 
or bodies moving with relatively low velocity through air, oil, or 
water. The action is knowm as viscous damping and may be evalu¬ 
ated from the expression 

60 

(4.1) 
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where F = resisting force in pounds; 
dx 

= the velocity of the body in inches per second; 

c = the damping factor, or resistance in pounds, when the 
velocity is 1 in. per sec; the units thus are pound-seconds 
per inch. 

Bodies moving with high velocity through a fluid have a resistance 

generally considered to be proportional to the square of the velocity. 
When a meml>er is subjected to a rapid repeated load, the stress- 

strain or load-strain diagram will show a hysteresis loop, the area 

of which represents the amount of energy absorbed because of 
internal friction per cycle. This energy is transformed into heat 

and hence acts as a damping agent. 

Any of the types of damping mentioned above may be replaced 
by an equivalent viscous damping that has the $ame energy absorp¬ 

tion per cycle.* The solution of problems having viscous damping 
will therefore be considered in detail in this chapter. 

4.2 EQUATION OF MOTION WITH VISCOUS DAMPING 

Figure 4.1 represents a system subject to free vibrations with 
viscous damping, consisting of a mass m sus¬ 

pended on a spring having a scale k\ The dash- 
pot connecting the mass and the ground provides 
viscous damping with a factor r. This dashpot 

opposes the motion of the mass with a force 
dx . , 

r as given by Eq. (4.1). 

If the mass is considered to be a free body 
displaced downward a distance x from the equi¬ 

librium position and moving downward with a 

dx 
velocity the equation of motion based upon 

the dynamic forces acting on it becomes 

d2x dx 
m3r+e,n +(J' = 0' 

Fig. 4.1 

(4.2) 

A solution of this equation is 

x = c* (4.3) 

* L. S. Jacobsen, “Steady Forced Vibration as Influenced by Damping,” 
Trans. A./U/.B., 1930, APM-52-15. 
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where e = the base of the natural logarithms = 2.718, p = a con¬ 
stant, and t = time. 

Differentiating Eq. (4.3), 

dx 
Tt 

= pc*, d2x 

dt2 
p2ep*, 

and substituting these expressions in Eq. (4.2), 

and 
mp2c* + cpc* + kcpi — 0, 

ept(mp: + cp + k) = 0. 

Since cpt is always positive, Eq. (4.3) will be a solution of the 

differential equation if the expression in the parenthesis equals zero, 
that is, if 

mp2 + cp + k = 0. (4.4) 

As Eq. (4.4) is a quadratic expression in p, there are two values 
of p to be considered; 

Pl = “ In + \(i) “ (4 5) 
and 

f- - - im ~ \{'L) - S' (4'“' 

Hence, x = cPit and x = may both be solutions of Eq. (4.2). 
A general solution is found by combining the two; thus, 

x = AcPlt + RcpJf, (4.7) 

in which A and B are arbitrary constants. 

There are three conditions of pi and p2 that must be considered 

in connection with Eq. (4.7). The first is when G»«) is equal to 

k/m, which is known as the critical damping condition and is dis¬ 

cussed in Sec 4.3. The second is when fey is greater than 

k/m, which is the overdamped condition and considered in Sec. 4.4. 

The third and most common case is the underdamped condition 

k 
when teJ is less than 

m 
This is discussed in Sec. 4.5. 
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4.3 CRITICAL DAMPING 

The critical damping condition seldom occurs in practice; but 
it is of importance in that it forms a measure of the amount of 
damping in the system. The damping factor for this case carries 
the subscript c, and the ratio of the actual damping factor to the 
critical, or cJcc, is a measure of the relative amount of damping in 
a given system. 

/ c V k ^ 
With critical damping. f ^~ \ = — and the terms under the 

radical in Kqs. (4.5) and (4.0) equal zero, so that pi = po = — 
2m 

Hence, Kq. (4.7) may be written 

a* = CfP* = Ce~(c/2m)t. (4.8) 

In the usual case of a free vibration, the mass is displaced a 

distance x„ and at zero time is released; therefore, when / = 0, 
x ~ x0. This condition may be used to evaluate the constant C 

in Kq. (4.8); since then x0 = C X 1 or C — x0% and Eq. (4.8) 
becomes 

x = xacpt — x0e~(Cf/-m)t. (4.9) 

The resulting curve of the motion is shown in Fig. 4.2, in which 

the displacement x is plotted against time /. 

< (c< V A 

cc = 2m — 2 \fmk = 2= — * (4.10) 
\ m OJn 

4.4 OVERDAMPING 

Overdamping is associated with a relatively large damping fac¬ 

tor c and is specified by the condition that (c''2m)‘ is greater than 
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k/m, or that the ratio of c/cc is greater than 1. The mass moves 
slowly back to the equilibrium position rather than vibrating about 
it, and the motion is said to be aperiodic. 

Since (c 2m)2 is greater than k/m, the radical term is always 

less than c> 2m\ hence, the values of pi and p2 are always real but 
negative. 

Again considering the usual case of a free vibration where the 
mass is displaced a distance xa and released when time is zero with 
no initial velocity, the conditions used to evaluate the constants A 
and B are 

x — x0 and ^ = 0, when t = 0. 
at 

Differentiating Eq. (4.7). 

(= ApiCPlt 4* Bp*rPi', 

Substituting the conditions dx dt = 0 when / = 0, 

0 = Apx X 1 + Bp, X 1. (4.11) 

Substituting x — x„ when / = 0 in Eq. (4.7), 

x* = A X l + B X 1 or A = - R. 

Substituting this expression in Eq. (4.11), 

and 

0 = {xn - B)pi 4- Bp2 or B = ———x0, 
. V\ - P2 

B = -=£L .Xo. 
pi - Vi 

Equation (4.7) may now l>c written 

x — _—?J— XaCp'‘ 4- —Xl— x„ep,‘ 
Pi - Pi Pi — Pi 

= ——— ( — ptePl‘ + p lep*t), (4.12) 
Pi — Pi 

which is an expression of the displacement x with time t for the 

usual type of free vibration. 

The solid lines of Fig. 4.3 show the actual shapes of these curves 

for various damping ratios c/elt starting in each case with x„ = 1. 
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If the damping factor is infinite (c = <*), the mass is locked in 
place, and the curve is a horizontal line. As the amount of damping 
is reduced, the mass travels back to the equilibrium position faster; 
and in the limiting case of critical damping (c/ce = 1), the return is 
most rapid. 

4.5 UNDERDAMPING 

When the damping factor is small, that is, when (c/2m)2 is less 
than k m or the ratio c/cr is less than 1, the system is said to be 

underdamped. The mass vibrates with a decreasing amplitude 
until it finally comes to rest at the equilibrium position. w/ 

Since (c/2m)2 is less than k/m, the exponents pi and p2 are 
complex, and it becomes convenient to introduce the term j, which 
equals y/— 1. Then 

Pl= ~ (2m) ^ 'v/m — (^m) ’ 
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»--U V.-(=)'■ 
It will he seen shortly that a)nd} which is the 

damped natural circular frequency. liquation (4.7) may then he 

written 
x - A,'*•*' 4- 

Or. since 
e-it^b 4_ f ~<t b .. ( <*{jh r b)' 

v = t-, 2m f + Bv-"'*'\. (4. hi) 

It can he shown* that • •"* = cos <i -4- j sin a. and there! ore. hq. 

(4.13) may he w ritten 

j* — e~~{c ~m f[*i(cos + j sin cvnjf) 4" /i(cos — j sin u>,w/n) 

= e~u -m **[t-4 4- /?) cos av^/ 4* (jA — sin wn(4 (4.14) 

This e(piation is made up of two multiplying factors; the second 

is a vibratory simple harmonic motion and the first an exponential 
similar to that of the overdamped condition. I he resultant curve 
of the motion then is a sine or cosine curve in which the amplitude 

decreases according to the expression i ",r *m *. as shown in Fig. 4.4. 

* This proposition is hased on a Maclaurin s series expansion (see any 
calculus text, for example Granville. Smith, ami Langley, pp. 3o4-365): 

e,a = 1 + j<i 

( (i2 a* a° , \ , . / n5 ft' 

= y ~ 2! + 4! (5! + / + 3 V 3! + 5! 7! 

rt2 a3 c4 

2! ~~ 3 3! + 4! 

a4 a6 
4" r. - /M 4' 4! f>! 

But also bv Maclaurin, 

u“ ax a" , 
- -L. - - —• — 4” * * * 

2! 4! 6! 

a3 (i6 a1 
am a = a - - + ^ + 

eja = cos a 4* j sin a. 
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The dashed line represents the limiting value of the amplitude, 
and this boundary becomes flatter with smaller values of q. These 

bounding lines for the upper sides of the curves are shown dashed 
in Fig. 4.3 for various ratios of c/cc as labeled. They are put on 

the same figure as the overdamped curves for comparison. If 

there is no damping (if c/cc = 0), the vibration will not die out; 
hence, the bounding line is horizontal. As the ratio c/cc approaches 

unity (or as c approaches critical damping) as the limiting case, 
the vibrations die out most rapidly as shown there. 

Equation (4.14) can be simplified by considering the second term 

alone in the usual case of a free vibration starting with a displace¬ 

ment of Xpand zero velocity at zero time, that is, x = xa and dx dt — 

0 when t = 0. If these conditions are substituted in 

x = (A + B) cos + (jA — jB) sin Lon(it 

and in its derivative with respect to time f 

dx 
— — (A 4- B)oond sin ocnJ 4- (jA — jBcos a 

the constants are evaluated as 

.1 4- B = x0 and jA — jB ~ 0. 

Equation (4.14) then becomes 

x — x0e~{c/'2mit cos a)„dt- • (4.15) 

From Eq. (4.14) or (4.15), it is apparent that the damped circular 

frequency of the vibration is unA or 

circular frequency 
ls Wn yjm’ 

\jt (2m)- 
The undamped 

hence, it, may be seen that the 

damped frequency is less than the undamped. The ratio between 
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them in terms of the damping ratio c/ce may be found with the aid 

of Eq. (4.10), cc% = 4mk: 

This equation is plotted in Fig. 4.5, and it may be seen that damping 
has little effect on the frequency until the c cc ratio becomes fairly 

large (greater than about 0.5). 
It is desirable to investigate the manner in which the amplitude 

decreases in underdamped vibrations and provide some means of 

measuring the rate of reduction. These matters are a function of 

the bounding exponential term of Eqs. (4.14) and (4.15). 

Let tn be the time elapsed from the start of the free vibration to 

any peak of amplitude 2n, and let be the time elapsed from the 
•start of the free vibration to the succeeding peak of amplitude 
Xa+i. Since the time elapsed between the two peaks is equal to 
the period 

tn+1 = tn + ~ * 
Und 

From the exponential term of Eq. (4.15), 

2* :=z * 

Xn+l = 
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Taking the ratio of xn/x*+\, 

Xn _ 
Sf ,r fi—(c/2m)tH—(c/2m)(2r/und) 
*n+l 

— g— (e/2m)<*-Hc/2m>f»-Me/2m)(2*7«,uf) 

— pTe/mund (4.17) 

From this equation it is obvious that the amplitudes decrease 
in a constant geometric ratio, which is a function of c, m, and wnd. 

The term —— is called the logarithmic decrement and designated 
m<j)nd 

by the Greek letter 8. Hence, = c3; and 8 = log* 
fl 4- 1 A -4- 1 

The logarithmic decrement is a convenient method of measuring 
the rate of decay of a free vibration. It may be expressed in dimen¬ 

sionless form with the aid of Eq. (4.10), since ce2 = 4mk, and 

mk = cr-‘4. 

vC _ ire ire _ irC ' 

mo>»d ~ U- ~ ,-2 = \m-k chrf- ~ Ic7 _ 

m \ m 4 m2 \ m 4m2 \ 4 4 

(4.18) 

Equation (4.18) may be solved for e e, in terms of the logarithmic 

decrement, which gives the equation 

ct \/At- + 8:- 
(4.19) 

Example 

A body weighing 25 lb is suspended from a spring with a scale 

k — 10 lb per in. A dashpot is attached between the weight and 

the ground, which has a resistance of 0.1 lb at a velocity of 2 in. 
per sec. Determine (a) the natural frequency of the system; (b) 
the critical damping factor; (c) the ratio of successive amplitudes; 

(d) amplitude 10 cycles later if the mass is initially displaced f in. 

and released. 
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(a) The damping factor is c = F/v = 0.1/2 = 0.05 lb-sec per in. 
The damped natural circular frequency is 

jk ( c V _ /To X 380 /0.05~X~380\2 

Wnd \m \%m) \ 25 y 2 X 25 ) 

= 12.42 rad per sec. 

The damped cyclic frequency is 

f*ui = °2^ = ~ L98 cps = 118.8 cpm. 

(b) The critical damping factor is 

cc = 2 \'mk 
/25X 10 

386 
= 1.6)1 lb-sec per in. 

(c) The logarithmic decrement is 6 
7rc __ 7r0.05 X 386 

mu)nd 251< 12.42 

0.1955, and also equals logr —• 

Hence, 

= e* = c01955 = 1.216; 
r 1 

and 

xa. 

(d) The period is 

2t 

! = 1/1.216 = 0.822. 

2jt 
r = = , 0 = 0.506 sec. 

oj „</ \ZAZ 

The time required for 10 cycles is 10 X r = 10 X 0.506 = - 
5.06 sec. 

The amplitude reduction in 10 cycles is 

e-(c/2m)t — ?-[(0.05X3S6>/<2X25))5.0« = p-1.963 = 0 1417 

The amplitude at the end of 10 cycles is Xio = £ X 0.1417 = 
0.106 in. 

An alternate method of finding this is to raise the reduction ratio 

to the 10th power and multiply it by the original amplitude; thus, 

x,o = 1(0.822)'° = 0.106 in. ' 
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4.6 CONSTANT OR COULOMB DAMPING 

The second type of damping to be considered is one in which the 
resisting force is constant and independent of the velocity. This 
condition is approximated when dry surfaces are rubbing and may 

be represented by Fig. 4.6. The constant friction force F always 
acts opposite to the direction of motion and is given by 

F = mH'. (4.20) 

where g is the coefficient of friction. 

k 
-AAAAAAAA/VWVV- 1 w 

Fig. 4.6 

An analysis of the motion may be obtained from work and energy 
considerations. Assume the weight is initially displaced a distance 

.rG and released. It will travel through the mid-position and come 

to rest at a distance .n.. from the mid-position (see Fig. 4.7). As the 
resisting force F is constant during this half cycle of motion, the 

work done or energy absorbed is (x0 + Xu)F. The initial potential 

energy contained in the system is U jv; and the potential energy at 

the end of the half cycle is $kxi,2. From these facts the energy 

equation may be written. 

Simplifying, 

Then, 

.r(, 

— kkxx.r = F{x„ 4- xi,). 

— xkJ) — F(x„ + .ri.;). 

2 F , 2 F 
- — and Ji. = Xo-r 

Let X\ be the amplitude at the end of the first cycle, and by a 
similar process 

- £A\rr = F(xi4 + xx), 
and 

2F 
Xy = XH “ -T-* 

From the above it is apparent that the amplitude decreases at the 

constant rate of 2F fk per half cycle, or 4F/fr per full cycle ; the decay 
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curve is that shown in Fig. 4.7, where the boundary lines are 

straight. 
The resisting frictional force F always opposes the motion of the 

weight. When the weight is displaced to the left and is moving in 
that direction, the force equation, considering it to be a free body, is 

d-x 
m -J, + kx + F = 0, 

dr 

which may be written 

r 
Letting x + j = z and noting that 

(I'Z 

dP 
_ d*( ,F\ 

dP \x + k) 

<Px 

Eq. (4.21) may be written 

d, . 
mw + H 0, 

or 

ddz 

dP - -(£)* 

From Eqs. (2.7) and (2.9), it may be seen that this equation 

corresponds to a free vibration without damping, and / = ^ 

When the weight is displaced to the left and is moving to the 

right, the force equation becomes 

m~ + kx - F = 0, 
dr 
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which may be written 

lotting x “ F A- = z' and noting that 

<r-z' _ <r- ( _ f\ <Px 

dt2 - dt2 v k) dt2’ 

Equation (4.22) may be written 

d2z' _t_ / / n 

m -fiT + kZ = 

and 

d2z' ,, . . 
dr: = - (f /m)z . 

Again from Eqs. (2.7) and (2.9). it is seen that the natural fre- 

■*"™cy i*/. - l Vs' 

For any position or direction of motion of the weight, the 
equation of motion is given by either Eq. (4.21) or (4.22). There¬ 

fore, the frequency of the weight will always be the same as the 

undamped natural frequency, and / = ^- ^/— The motion of 

the body, however is not simple harmonic, and the shape of the dis¬ 

placement-time curve changes each half cycle. 
When a body vibrates with viscous damping, it theoretically 

never comes to rest, since the amplitude is reduced in a geometric 
recession rather than a fixed amount. When the velocity becomes 

quite low, the viscous action breaks down, and the type of damping 
changes from visepus to constant. Applications of pure Coulomb 
damping are rare, but the action that brings the body to rest at 

the end of a free vibration is generally of this type. 

Example 

A weight of 90 lb slides on a dry surface (Fig. 4.6). The coef¬ 

ficient of friction m between the weight and surface is 0.2. If the 

weight is initially released with zero velocity when the spring is 

stretched 3 in., and the spring scale is 32 lb per in., determine (a) 
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the amplitude of the weight at the end of the first cycle; (b) the 
position at which the weight will stop, measured from the unstressed 

spring position. 
(a) Friction force is F = ijl\V — 0.2 X 90 = 18 lb. The reduc¬ 

tion in amplitude during one cycle is 

JT-. - *r i = y= 4X32 = 2T in- 

Amplitude at end of first cycle is 

•r> = -r- - f = 3 - 2t = I in. 

(b) The position at which the weight will come to rest may be 
found by energy considerations. The initial potential energy is 

•U\r,4 = J X 32 X 3- = 144 in.-lb. 

The amplitude at the end of the first half cycle is 

2 F 
xi, = x0-y = 3 ~ U = 1^ in. 

The energy absorbed or work done during the first cycle is 

E = F(x0 + xi.j 4- Eixi.j + .rO 

= 18(3 4- 1-|) + 18(1^ -f f) 

= 87.75 + 47.25 

= 135 in.-lb. 

The energy remaining in the system at the end of the first cycle 

is equal to the initial energy minus the work done, that is, 144 — 

135 = 9 in.-lb. 
Let xs be the distance from the unstressed spring position that, 

the weight stops. The energy available at the end of the first cycle 
equals the potential energy left in the spring when the weight has 

come to rest plus the energy absorbed or work done in friction from 

the end of the cycle until the motion stops. Thus, 

E = ikzS + F(xl -z,)=iX 32x,2 + 18(1 - *•) = 9. 

Then, 

16a:,2 - 18x. + 4.5 = 0, 
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and 

- b ± y/W^lac _ 18 ± VW2 - 4 X 16 X 4.5 
* 2 a 32 

= 0.75 or 0.375 in. 

Obviously, the first answer is not the physically true one, since 

the spring force acting on the block then would be x*k — f X 32 = 
24 lb, which would be greater than the resisting frictional force of 
18 lb. The block, therefore, as a free body would not be in equilib¬ 

rium, and motion would have to take place. The second answer of 

| in. is the actual value. 

PROBLEMS 

4.L It is desired to find the properties of an isolator which 
operates with viscous damping. If a weight of 100 lb is attached 

to it, a static deflection of A in. occurs. The weight is then deflected 

downward \ in. and released. After three complete cycles, the 
amplitude is found to be 0.1 in. Determine (a) the logarithmic 

decrement ; (b) the damping factor ratio c, cv, (c) the damping fac¬ 

tor c; and (d) the frequency of the vibration. 
A ns. (a) 0.3055; (b) 0.0485; (c) 0.7; (d) 265 cpm. 

4.2. Repeat the example of Sec. 4.5 with the change that the 
resistance is 0.01 lb at a velocity of 2 in. per sec. The rest of the 

data remain unchanged. 

An*, (a) 118.9 cpm; (b) 1.61; (c) 0.981; (d) 5.1 sec, 0.617 in. 
4.3. A block weighing 75 lb is mounted on an isolator having 

viscous damping that deflects J in. under the weight. When the 
block is vibrating freely, it is observed that the amplitudes in inches 
at the end of successive cycles are 0.301, 0.232, and 0.179. Deter¬ 

mine (a) the logarithmic decrement; (b) the damping-factor ratio 

c Cc) (c) the damping factor c; (d) the frequency of the vibration. 
Ans. (a) 0.26; (b) 0.0412; (c) 0.628; (d) 376 cpm. 

4.4. The disk of a torsional pendulum has a*i inertia of 0.4 in.- 
lb-sec2 and is immersed in a viscous fluid. The brass shaft [G = 
6(106)] attached to it is { in. in diameter and 8 in. long. When 

the pendulum is vibrating freely, it is observed that the amplitudes 

in degrees at the ends of successive cycles are 3, 2.01, and 1.35. 
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Determine (a) the logarithmic decrement; (b) the damping factor 
c; (c) the frequency of the vibration. 

.Ins. (a) 0.4; (b) 1.36; (c) 256 cpm. 
4.6. A torsional pendulum has a disk having an inertia of 15 

in.-lb-sec2, and the spring scale of the shaft is 25 in.-lb per rad. 
The disk is immersed in a viscous fluid which gives a damping torque 

of 0.3 in.-lb-sec per rad. Determine (a) the natural frequency of 

the pendulum; (b) the critical damping factor cr; (c) the displace¬ 
ment after 2 sec if the disk is initially displaced 10 deg and released; 
(d) the logarithmic decrement. 

.Ins. (a) 12.3 cpm; (b) 38.8; (c) 8.3 dog; (d) 0.0486. 
4.6. Given the following values of logarithmic decrement for 

various materials, determine the corresponding c/cc factors: steel 

= 0.003; rubber = 0.23; wood = 0.04; concrete = 0.08. 
Ans. Steel = 0.00048; rubber = 0.0364; wood = 0.0004; con¬ 

crete = 0.0127. 

4.7. A weight of 35 lb slides back and forth on a dry surface due 
to the action of a spring having a scale of 100 lb per in. After 

making four complete cycles, its amplitude is 3 in. What is the 

average coefficient of friction between the two surfaces if the original 

amplitude was 5 in.? How much time has elapsed during the 

four cycles? Ans. 0.357; 0.755 sec. 
4.8. The apparatus shown in Fig. 4.8 consists of a hollow disk A 

pressed against plate B by spring C, which exerts a force of 200 lb. 

The mean radius of the disk A is 2 in., and the coefficient of friction 

between A and B is 0.2. An arm attached to A is connected to 

spring Data radius of 5 in. The scale of spring D is 200 lb per in. 
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If A is displaced 3 deg from the equilibrium position and released, 

determine (a) the angular amplitude at the end of the first half 

cycle; (b) the angular displacement at which disk A comes to rest 

measured from the position of zero stress in spring D. 
A ns. (a) 1.163 deg; (b) 0.670 deg. 

4.9. A 20-lb weight attached to a spring having a scale of 12 

lb per in. vibrates on a dry surface having a kinetic coefficient 

of friction of 0.25. If the weight is initially released with zero 

velocity when the spring is stretched 1 in., determine the position 

at which it will come to rest measured from the unstressed spring 

position. A ns. 0.167 in. 



Chapter 5 

DAMPED FORCED VIBRATIONS—SINGLE 

DEGREE OF FREEDOM 

5.1 INTRODUCTION 

The case of damped forced vibrations is of practical value (a) 
to determine the action taking place and transmissibility with iso¬ 
lators made of materials having a relatively high damping factor; 
(b) to understand completely the phenomenon of critical speeds, 
which is affected by damping; and (c) to interpret the performance 
of accelerometers that employ large amounts of damping. These 
topics are considered in this chapter together with a discussion of 
the various materials used in commercial isolators. 

6.2 EQUATION OF MOTION 

An elastic system subjected to an impressed force and retarded 
by viscous damping is represented by Fig. 5.1. The mass m is 
suspended on a spring of scale k and is acted on by the harmonic 
impressed force Fa cos wt. A dash pot is connected between the mass 
and the ground and provides a damping action whose factor is c. 

Assuming that the mass is displaced a distance x and is moving 
with a velocity dx/dt, the equation of motion may be obtained by 
considering the mass as a free body and securing equilibrium of the 
forces acting upon it as in the previous cases. This equation is 

% 

m + c ^ + kx = F0 cos wL (5.1) 
at1 at 

The mathematical solution of this equation is rather complex, 
and a clearer understanding of the action may be obtained by vec¬ 
tor diagrams. If it is assumed that the mass moves with simple 

78 
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harmonic motion, all the forces may be represented as rotating 
vectors. 

An examination of Eqs. (1.1) to (1.3) reveals the fact that it is 
possible to differentiate a vector producing simple harmonic motion 
by multiplying it by the circular frequency w and moving it forward 

90 deg. Each differentiation in these equations is a> times greater 
than the previous value, and the change in the trigonometric term 
from cosine to minus sine to minus cosine indicates a rotation of 

the vector in the direction of motion. 
In Fig. 5.2, let the displacement of the mass be represented by 

the dashed line xa downward. The spring force is kx. and it acts 

Fig. 5.1 Fig. 5.2 

in a direction opposite to the displacement, that is, upward. It 

may he represented as a vector of length kxa. The damping force 

(i X 
c r is the first derivative of the displacement and acts 90 deg ahead 

dt 

of the spring force. The length of this vector is cwx0- The inertia 

d-v 
force is the second derivative of the displacement and acts 

180 deg ahead of the spring force, or downward. Its length is 

wiw2.r„. The fourth vector of the diagram is the impressed force 

Fa cos ul, and it must be placed to secure equilibrium. To satisfy 

this requirement, the fourth vector must be placed <f> deg ahead of 

the displacement as shown in Fig. 5.2. The value of the angle 6 
may be obtained by summing up the vertical and horizontal forces 

as follows: 

= kx„ — m«2x„ — F„ cos <t> = 0, 
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cos* = *D(^^) (5.2) 

2Fh = ccox0 — Fa sin <t> = 0, 

Hence, 

C0)Xo 
Sin <f> = jr» • 

tan <t> — 
sin <t> 
cos <t> 

c u> 
A* — mo?2 

Since k = 7Ha>n2 and, by Eq. (4.10), rf = 2mo>„, 

tan <p 

(5.3) 

(5.4) 

(5.5) 

It is apparent from Eq. (5.5) that the phase angle <t> depends 

upon the amount of damping c/cc and the frequency of the impressed 
force oi/con, or r. This relation is shown graphically in Fig. 5.3. 
It may be observed that if there is no damping (c/cc = 0), the angle 

snaps from 0 to 180 deg instantaneously at the natural frequency 
(r = 1). As the amount of damping increases, the change becomes 

more uniform and gradual, as shown in the figure. 
An expression for the amplitude of the mass at a given impressed 

frequency can be found by substituting Eqs. (5.2) and (5.3) in the 

trigonometric relation sin2 <t> + cos2 0=1, which gives 

c2co2x02 xa2(k - 

F'1 + F02 

Collecting terms and solving for x0, 

Xo 
Fg 

V(cco)2 + (k — roar)2 
(5.6) 

This equation may be put in dimensionless form by introducing 
the terms xBl = F0/k; k = mun2; and cc = 2mwn. Then we obtain 
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Thus, the amplitude of the mass is also a function of the amount 
of damping (c/cc) and the frequency of the impressed force »/«„, or 

r. The relation is shown graphically in Fig. 5.4 for various damping 

ratios. It will be observed there that even small amounts of damp¬ 

ing reduce the amplitude of the mass greatly near the resonance 

point; and, as might be expected, the greater the damping, the lower 

the amplitude of the mass. 
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As pointed out in See. 3.2, the ratio of x„/x„ is known as the 
magnification factor, since it is the ratio of the amplitude of the mass 

u/o>n=r 

Fig. 5.4 

under the dynamic impressed load to that which would be obtained 
if the impressed force were static. 

When the impressed frequency is low, the velocity and accelera¬ 
tion of the mass are small; hence, the inertia and damping forces 



DAMPED FORCED VIBRATIONS 83 

are almost negligible. The result is that the impressed force 

approximately balances the spring force, and the phase angle is 
close to zero, as shown in Fig. 5.5a. The motion of the mass is 
then about equal to the static deflection, that is, x0/xgt « 1. 

As the impressed frequency is increased, the mass has a higher 
velocity and acceleration, and the inertia and damping forces there¬ 

fore increase. As the inertia force increases, the vertical component 
of the impressed force Fa is reduced; and owing to the increased 
damping force, the horizontal component of the impressed force 

F0 must increase to maintain equilibrium. The net effect is an 
increase in the phase angle <t>, as shown in Fig. 5.5b, and an increase 
in the amplitude of the mass xoy that is, x0/x9t. 

T 

(a) (b) (c) (d) 

Fig. 5 5 

At the natural frequency, the inertia and spring forces are in 
balance; hence, the impressed force Fa has no vertical component, 

that is, 4> = 90 deg. The entire impressed force acts to balance 
the damping force, as shown in Fig. 5.5c, and the amplitude of the 
mass is a maximum; that is, xa/xst is large. 

For frequencies above the natural, the inertia force is greater 
than the spring force, with the result that the vertical component 

of the impressed force must act upward to maintain equilibrium. 

The phase angle <f> is then greater than 90 deg, as shown in Fig. 5.5d. 

For extremely high impressed frequencies, this angle approaches 

180 deg. Since the impressed force acts with the spring force to 
balance the inertia force, the amplitude of the mass decreases, as 
shown in Fig. 5.4. 

The cases of forced vibrations with Coulomb and other types of 

damping are taken up in S. Timoshenko, Vibration Problems in 
Engineering, Van Nostrand, New' York, 1937, pp. 57-62; and in 
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J. P. Den Hartog, Mechanical Vibrations, McGraw-Hill, New York, 

1947, Chap. 8. 

6.3 CRITICAL SPEED OF A SINGLE DISK ON A SHAFT* 

The explanation of the action that takes place as a mass is sub¬ 

jected to forced vibrations with viscous damping may be clearer if 
it is applied to a single disk as it passes through the critical speed. 

This case is similar to that given in Sec. 3.5, except that now damp- 

ing is considered. 

Fig. 5 0 

Again let 0 be the geometric center of the disk through which the 

vertical shaft center line passes, and let G be the center of gravity 
(Fig. 3.7). These two points are separated by the distance e, owing 

to the nonhomogeneity of the material. Then let r0 be the deflec¬ 

tion of the disk measured to the geometric center, and let r0 be the 
deflection measured to the center of gravity. In both cases the 

distances are measured from the center line of the bearings, which is 
point S. The three parts of Fig. 5.6 show the location of these 
points and the forces acting upon them when the disk is rotating 

(a) below, (b) at, and (c) above the critical speed. 

* Kimball and Hull, “Vibration Phenomena of a Loaded Unbalanced 
Shaft/' Trans. A.S.M.E., 1925, p. 673. 
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When the disk rotates below the critical speed (Fig. 5.6a), there 
is a centrifugal force acting on the center of gravity, which equals 

mo>2ra. The shaft is deflected an amount r0 and, hence, exerts a 
restoring force tending to straighten the shaft, which equals krQ. 

There is also a damping force that is proportional to the velocity 
(row); it acts at the geometric center of the disk 0 and equals 
co)ra. In order to balance these forces, the center of gravity swings 

around through the angle <j>. The force /V, shown on the figure, 
represents the resultant of the spring and damping forces and is 
equal in magnitude to the centrifugal force and parallel to it. This 

force acts at the angle 0 with the line SO, which is the same angle 6 
at which the centrifugal force acts with the line SO. There is an 
imbalanced torque acting on the system, which is equal to the 

perpendicular distance between Fg and the centrifugal force, times 
the centrifugal force or Fg. It is also equal to the damping force 

cwr0 times the distance r0. This torque represents that required to 
rotate the disk, and if it is multiplied by the rotational speed in rpm 
and divided by 63,000, the horsepower required to drive the disk is 

obtained. 
The condition at the critical speed is represented by Fig. 5.6b. 

The phase angle <t> is now 90 deg, and the displacement rQ of the 
shaft is a maximum. The discussion in the preceding paragraph 
concerning force balance and driving torque applies in this case as 

well. 
Above the critical speed, the angle <t> increases further with 

increased speed, until finally the disk tends to rotate about its center 

of gravity; that is, points G and S tend to come together, and rG 
approaches zero. The shaft deflection then approaches the eccen¬ 
tricity e. 

Example 

A single disk weighing 20 lb is mounted between bearings that 
are 24 in. apart. The horizontal steel shaft is £ in. in diameter, 

and the center of gravity of the disk is i in. from its geometric 

center. If the damping constant of the steel shaft is c = 0.2 lb-sec 
per in., draw a rough diagram of the forces acting when the shaft 

rotates 700 rpm and label their magnitudes. Compare the dead¬ 

load stress in the shaft with the stress at the operating speed. 

What horsepower is required to drive the shaft at this speed? 
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From Fig. 2.6, the spring scale of the shaft at the disk is 

W-iW = 48 X 30OgM*I‘ _ 320 in 
* - y ~ /,* 243 X 04 

The natural circular frequency of the system is 

«■ - Vs - “78-«5 ,'“‘l per 

and the cyclic frequency is 

(x)n < S,()0 — 

fn = GO X = u0 X 2tt ~ = cpm- 

The impressed frequency is <(K) cpm, or a,' = /3.2o rad per sec. 

By Eq. (5.4) the phase angle 0 is 

0.2 X 73.25 
tan <t> = 

C CO 

(A’ — war) 320 — $^6 X (73.25)* 
= 0.349. 

<t> = 19° 10\ 

Since the impressed frequency is below the natural, or critical, 
frequency. Fig. 5.0a applies to this case. Since I4 </ makes the same 

angle 6 with the horizontal as the cent rifugal force, 

e<x'ru cu _ 0.2 X 73.25 

6 = Jr„ = "k = 320 

6 = 2°37'. 

0.0457. 

From Fig. 5.7, the distance V = e sin <p = 0.25 X 0.330 — 
V 0.0825 , ono . . 

0.0825 in.; the distance .1/ = .---a = = 1.802 in.; and 
tan 6 0.04n< 

.V = e cos <f> = 0.25 X 0.044 = 0.236 in. 

distance r„ — .1/ — .V = 1.802 — 0.236 = 1.566 in. 

distance r« = 
sin 

0.0825 
0.0456 

1.803 in. 

The various forces may now be found as follows: 

Centrifugal force: 

mubr, = t6&(73.25)21.803 = 501 lb. 

Spring force: 

hr, - 320 X 1.566 = 501 lb. 
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Damping force: 

ca>/\> = 0.2 X 73.25 X 1.566 = 23 lb. 

The distances and forces are labeled on Fig. 5.7, which is not 

drawn to scale. 
The stress in the shaft is 

c _ FL d 64 _ F X 24 i 64 

/ 4 2xd4 4 2 t 
488.5F. 

If the shaft weight is neglected, the dead-load stress for a force 
F = 20 lb is 488.5 X 20 = 0,770 psi. At the operating speed, the 
force on the shaft is kr0f that is, the spring force of 501 lb, to which 

must be added the dead load of 20 lb, making a total of 521 lb. 

The stress corresponding to this load is 488.5 X 521 = 254,500 psi. 

The size of this result demonstrates the tremendous stresses that 

_^ 601 lb 

, —7j 
^ ' ___- —' e=0.25,;/ 
_- ^0=2 2^' 601 lb 

I </> —19° 167 

V=0.0825" 

1 
^..r.. — i 0 jV*0.236" 
-_, f- , 23 ^ 11 J. ^ 

Fie. 5 7 

may be built up in a member operating close to resonance. It 
should be realized, of course, that these stresses will prevail only 
after the shaft has been run at this speed for some time and “steady- 

state” conditions have been established. If the shaft speed passes 
through this value rapidly, however, deflections do not have time 
to build up, and, consequently, the operation is safe. * 

The torque required to drive the shaft equals the damping force 
times the shaft deflection. Thus, T = cwr0 X rQ = 23 X 1.566 = 
36 in.-lb. The horsepower required is 

rp _ n,. y <00 _ Q J 

63,000 - ^ * 633)00 ~ 

5.4 RELATIVE MOTION OF BLOCK AND SUPPORT 

Another type of forced vibration occurs when the support of a 

spring-mass system vibrates with simple harmonic motion. The 
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following discussion is similar to that in Sec. 3.4, where damping 
is neglected. The arrangement shown in Fig. 5.8 includes a dashpot 
between the mass and support. 

The motion of the support is assumed to be harmonic and is 
x, = cos a;/, and that of the block is xb = xbo cos ooL The 
relative motion between the two, or the change in the length of 
the spring, is xT — xb — x4. 

The block has the following forces acting upon it: inertia, 
d2xb , . dxr 

m ~dt?’ dampmg’C ~di' 
and the spring, kxT. For equilibrium, the 

cos COt 

Fig. 5.8 

equation of motion is 

d2xb dxr , , 
" W + c di + *»' - (5 8) 

But since xb = xr + xtJ Eq. (5.8) may be written 

d2xr . dxr , , 
m dt* + c dt + kir m IF' (5‘9) 

As the motion of the support is assumed to be simple harmonic, 

x9 = x9# cos oot, 

= - X..O)1 COS at. 

Substituting this expression in Eq. (5.9), we obtain 

d2x dx 
m + c + kxT = mx,,a1 cos at, 

which is similar in form to Eq. (5.1) if mx,.a2 is taken to be the 
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impressed force (F0) and xr replaces x. The x,t term in the solution 
F 

of Eq. (5.1), as used in Eq. (5.7), is yj which is equivalent to 
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Hence, this equation may be written as 

*ro 

•rgo 
(5.10) 

Figure 5.9 shows a plot of .rr„ av, against the speed ratio r for 
various amounts of damping. 

Example 

An accelerometer is made by mounting a 10-lb block on rubber 
isolators that have a combined spring scale of 100 lb per in. and a 
viscous damping factor ratio c cc of 0.2 (Fig. 5.8). The amplitude 
read on the dial indicator of vibrations occurring at 200 cpm is 
0.004 in. What is the maximum acceleration of the member 
to which the accelerometer is attached? 

The undamped natural circular frequency of the system is 

fk /l00 X 880 
o?n = \ ■ = A -77;-= (>2.2 rad per sec. \ m \ 10 1 

2()0 
The impressed circular frequencv is a? — ~ - 2ir = 21. Hence. 

(hi 

the frequency ratio r = ~ - 0.337, and r- = 0.1137. 
(j* m o . w 

Applying Eq. (5.10), 

Xr,. 

X8. 

0.004 
■ ('* , 

0.1 137__ 

\ (1 - 0.I137)2 + (2X 0:2”x d.337)1’ 

Solving for the amplitude of the member, xs<t — 0.0345 in. The 
maximum acceleration is aK— xa„co2 = 0.0345 X 212 = 15.21 in. per 
sec.2 

6.5 TRANSMISSIBILITY 

All isolators have some damping; for those made of organic 
materials, such as cork, felt, and rubber, the amount is appreciable 
and should be considered. 
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The generated or impressed force is transmitted to the support¬ 

ing structure in two ways. The part that passes through the 

springs equals kx0, whereas the remainder of the transmitted 
force passes through the dashpot, or damping portion of the iso¬ 
lator, and equals c<vx0. Since these two forces act at right angles 
to each other, the resultant transmitted force to the foundation is 
Xo X^k2 4* (cw)2. The impressed force is F0\ hence, the trans- 

missibilitv /, which is the ratio of the transmitted force to that 

impressed, is 

, vfk~ + (rev)2 
t = Xo-p- 

Substituting the* value of x0 from Kq. (5.(>) in this equation gives 

_ __/«_y/FT77c^ 
\'(rev)2 + {k — war)2 ^ ° 

I __ k~ + (rev)2_ ,m . 

\ (rev)1 4" (k — Wad)2 

This equation may be put in dimensionless form by introducing 

the relations A* = mevn2;cc — 2wa;„;anda> evn = r;thus, 

Figure 5.10 shows a plot of transmissibility against the speed 

ratio r for various damping factor ratios c cc based upon Eq. (5.12). 

It may be observed from this figure that damping is helpful in 
isolating forces only when the ratio r, or ev <vn, is less than \/2, or 
1.414. For ratios greater than this, increased damping permits 

slightly more force to be transmitted to the foundation and, hence, 
is not beneficial. For speed ratios less than 1.414, however, the 

transmitted force is greatly reduced with increased damping.* 

6.6 COMMERCIAL ISOLATORS 

For effective vibration isolation, it is extremely important that 
the isolators be correctly designed and applied for if they are not, 

the forces and motion may be magnified rather than reduced. 

* S. Rosenzweig, “Theory of Elastic Engine Supports/’ Tram. A.S. 
M.E., January, 1939, pp. 31~3fi. 
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Two basic requirements of any isolator are that there be no solid 

connection between the unit and its supporting structure through 
which sound may be conducted, and that provision be made to 

Fio. 5.10 

hold the isolator together in the event that the damping material 

should fail. 
As given in a great many manufacturers’ bulletins, commercial 
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isolators are selected on the basis of their static deflection when 
the machine is mounted on them. Thus, from Fig. 5.10 for 

c/cc = 0 or from Fig. 3.2 it may be determined that for a desired 
transmissibility the value of fn should be, say, 750 cpm, which by 

Eq. (2.11) corresponds to a static deflection of r* in* The weight 
of the body to be isolated is divided by the number of supports to 
determine the dead load on each, and the manufacturers' bulletins 

are consulted to select an isolator that will have a static deflection 

of fa in. at that static load. This procedure assumes that the load 
always acts directly along the axis of the isolator, which is not 

generally the case. 
Any rigid body has six degrees of freedom as illustrated by Fig. 

1.1, and for vibrating machinery it is very unusual to have the entire 

motion take place in one direction of translation only. Usually 
dynamic couples (as outlined in Sec. 10.1) are present to produce 
rocking motions or horizontal vibrations as well as vertical 

displacements. 
To secure satisfactory isolation, isolators should be selected 

with static deflections that give safe values of the frequency ratio r 
for each of the six degrees of freedom. This involves the determina¬ 
tion of the mass moments of inertia of the machine about the three 

major axes of rotation.* 
The four common materials used for vibration isolators are steel 

springs, rubber, cork, and felt. The properties of these materials 

will be compared briefly. 

A. Steel Springs 

Steel springs have very little damping. There is more damping 
with leaf springs, because of the friction between the leaves, than 

there is with helical springs, but in either case it is commonly con¬ 
sidered to be negligible. They have a high sound transmissibility, 
although this may be reduced by mounting the springs on pads of 

felt, cork, or rubber. In addition, steel springs are not affected by 
the presence of oil or water or by extreme temperatures, and they 

are quite uniform in their properties. The organic materials are 
liable to vary with their processing and the conditions under which 

* A good discussion of the location of isolators may be found in J. N. 
Macduff, “Isolation of Vibration in Spring Mounted Apparatus/' Product 
Eng,} July, 1946, pp. 106, 159; August, 1946, p. 154. 
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they are used. The spring scale, however, can be designed with 

good accuracy for any desired value. 
An examination of Fig. 5.10 shows that spring scales are particu¬ 

larly satisfactory for speed ratios of r greater than 1.414, since 

c/Cc is close to zero. On the other hand, for speed ratios less than 
1.414, such as are met in marine applications, for example, where 
the impressed frequency o> or / is quite low, they are not suitable. 
For such applications one of the organic materials, which have 

higher damping factors, would be more satisfactory. 

B. Rubber 

Many commercial isolator* are made of rubber, which, like 

water, is very nearly incompressible and, hence, is generally used 
in shear rather than in compression to secure greater flexibility 
(lower spring scale). The stress in the rubber is generally kept 
between 40 and 70 psi. The properties vary widely* with the load, 

the temperature, the shape of the piece, and the impressed fre¬ 
quency. For higher temperatures, the stress must be reduced to 

avoid excessive creep and deterioration. Rubber is generally 
not considered satisfactory for temperatures above* 125 to 150 deg, 
and since oil and gasoline attack rubber, isolators made of it cannot 

be used in the presence of these substances. 
Rubber has a low sound transmissibility. It also has a low 

modulus of elasticity for low loads which increases with the load, 

making it particularly good for light loads and high-frequency 
vibrations. The stress-strain curve is not a straight line, so care 

must be exercised to get the correct modulus for a given loading. 
The stiffness varies widely with the frequency and the value when 
vibrating may be more than twice as great as static values. 

C. Cork 

Cork is generally used either in compression or in compression 

and shear. It is not perfectly elastic, being more flexible at high 

loads; and its properties change with the frequency. In this 

latter respect it is similar to rubber. Considerable pressure must 

* J. F. Downie, Smith, “ Rubber Mountings,” Trans. A.S.M.E., 
March, 1938, A-13; and “Rubber Springs on Shear Loading,” Trans. 
A.S.M.E., December, 1939, A-159. 
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be exerted on cork before the load-deflection rate, or modulus of 
elasticity, is reduced. Generally it is placed beneath a large con¬ 

crete block to obtain this result. The recommended pressures for 

satisfactory performance lie between 1,000 and 3,000 psi. 
Cork is filled with air cells; and when it is under load, this air is 

compressed. When the load is removed, the air expands and 

restores the cork body to its original shape. 

1). Felt 

Felt is used in the form of small compression pads, which are 
placed under concrete or steel bases, rather than a large single pad, or 

as compression disks under the legs or corners of machines. It has a 
high damping factor and thus is particularly satisfactory for low 

speed ratios r. Tests show the optimum thickness of the pads or 

disks to be 1 in. 
The American Felt Company* recommends a design procedure 

illustrated in Fig. 5.11. The curves shown there are based upon test 

* American Felt Co., “ Vibration Isolation with Felt,” Data Sheet No. 10. 
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results and give the natural frequency in cycles per second for vari¬ 
ous pressures placed on 1-in. thicknesses of various SAE grades of 
felt. The recommended portions of the curves are shown in solid 
lines, the remainder being dashed. 

If damping is neglected, the transmissibilitv t from Sec. 3.3 for 

speeds above resonance is 

where / is the impressed frequency and fn the natural frequency. 
Solving this equation for the natural frequency, 

/■ - (5.13) 

When a suitable transmissibilitv t has been selected (generally 
20 per cent or 0.2 is acceptable for this), and the load to be supported 
and the impressed frequency in cycles per second are known 

the natural frequency may be found from Eq. (5.13). By using 
the solid curves of Fig. 5.11 when possible, the SAE grade of 1-in.- 

thick felt and the pressure may be found. The area of the felt to 
be used is then found by dividing the load by the pressure. 

Example 

A machine operating at 3,600 rpm weighs 150 lb. It is desired 

to calculate the area of four felt disks to be placed under the legs to 
give a transmissibility of 20 per cent. What grade and area of 

l-in.-thick felt should be used, assuming the weight to be equally 
divided among the four legs? 

The impressed frequency / = = 60 cps. Then from Eq. 

(5.13), the natural frequency is 

fn = 4 i!L 
i +1 4 GO2 X 0.2 

1 + 0.2 
24.5 cps. 

From Fig. 5.11, the recommended grade of felt is found to be 
SAE F-ll (SAE F-6 could be used, but it is not in the recommended 
range), and the corresponding pressure p is 6 psi. 
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The area of l-in.-thick felt under each of the four legs is 

A W 150 £ gym 

A = T" = i~ 6.25 sq in. 4p 4 X 6 M 

PROBLEMS 

6.1. A weight of 200 lb is suspended on a spring having a scale 
of 100 lb per in. and is acted on by a harmonic force of 8 lb at the 
undamped natural frequency. The damping may be considered 
to be viscous with a factor c of 0.5 lb-sec per in. Determine (a) 

the undamped natural frequency; (b) the amplitude of the weight; 

(c) the phase angle <t>; (d) the force transmitted to the foundation; 
(,e) the damped natural frequency; (f) the force transmitted to 
the foundation if there w'ere no damping. 

Ans. (a) 133 cpm; (b) 1.152 in.; (c) 90 deg; (d) 115.7 lb; (e) 
132.5 cpm; (f) infinite. 

6.2. Repeat Prob. 5.1, assuming that the frequency of the im¬ 
pressed force is 500 cpm. The remainder of the data are unchanged. 
Compare the answers obtained for the two problems. 

Ans. (a) 133 cpm; (b) 0.00607 in.; (c) 178°52'; (d) 0.63 lb; (e) 
132.5cpm; (f) 0.61 lb. 

6.3. Repeat the example of Sec. 5.3 for a rotational speed of (a) 

752 rpm; (b) 800 rpm. Compare the results with those of the 
example. 

Ans. (a) <t> = 90 deg; rG = 5.10; r0 = 5.09; FQ = 1,630; 

F, = 1,626; Fd = 80; 4.85 hp; 800,000 psi. (b) <t> = 158°40'; 
re = 1.74; r0 = 2.00; FG = 631; F, = 630; Fd = 33.6; 0.825 hp; 

318,000 psi. 
6.4. What wrould be the maximum acceleration if the vibration 

occurred at 2,000 cpm in the example of Sec. 5.4? The remainder 

of the data given are unchanged. Ans. 162 in. per sec2. 
6.6. A delicate balance weighing 10 lb must be installed on a 

bench in a shop. The bench vibrates at 1,760 cpm with an ampli¬ 

tude of 0.001 in. It is proposed to use rubber isolators that have a 
damping-factor ratio c/cc of 0.01 and a combined spring scale under 
load of 40 lb per in. (a) What will be the amplitude of the balance? 
(b) If steel springs having the same spring scale but negligible 
damping were used, wrhat would be the amplitude? 

.4ns. (a) 0.000048; (b) 0.000047. 
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5.6. A radio set weighing 40 lb must be isolated from vibrations 

of 0.002 in. amplitude occurring at 500 cpm. The set is mounted 
on four isolators, each having a spring scale of 1G0 lb per in. and a 
damping factor of 2 lb-sec per in. (a) What is the amplitude of 
vibration of the radio? (b) What is the dynamic load on the iso¬ 

lators due to the vibration? 
Ans. (a) 0.00304 in.; (b) 0.1654 lb per isolator. 

6.7. A printing press weighs 1,000 lb per loading point and 

operates with a disturbing frequency of 1.450 cpm. It is proposed 
to use an isolator having a static deflection under the given load of 
j in. and a damping factor ratio c cc of 0.1. If the disturbing force 
is 500 lb, determine (a) the amplitude of motion of the press; (b) 
the phase angle of the motion; and (e) the force transmitted to the 
foundation. Ans. (a) 0.0096 in.; (b) 175.18 deg; (c) 88 lb. 

5.8. A machine having a total weight of 2,500 lb is mounted on 
isolators having a combined stiffness k of 9.500 lb per in. A piston 
weighing 60 lb moves up and down harmonically in the machine 
with a stroke of 18 in. and a speed of 500 cpm. The amplitude of 

motion of the unit is 0.403 in. (a) Assume that the damping is 
viscous, and find the value of the damping factor c. (b,. What force 
is transmitted to the foundation? (c) If there were no damping in 
the isolators (c = 0), what would be the amplitude of motion of 
the unit? What force would be transmitted to the foundation 

in part (c)? (e) If the piston is suddenly stopped, determine the 
frequency of the damped vibration of the unit, (f) What is the 
frequency of the machine before the piston is stopped? (g) What 

suggestions could you make to improve the effectiveness of the 
isolators for this installation ? Give reasons for your answers. 

Ans. (a) 90.6 lb-sec per in.; (b) 4,290 lb; (c) 0.465 in.; fd) 

4,420 lb; (e) 360 cpm; (f) 500 cpm. 
6.9. The disk of a torsional pendulum has a mass moment of 

inertia J of 2 in.-lb-sec2 and is connected to the foundation with a 
steel shaft 30 in. long and £ in. in diameter. When a harmonic 
torque of 50 in.-lb is applied to the disk with a frequency of 500 cpm, 

its amplitude of vibration is found to be 0.7 deg after steady-state 

conditions have been attained, (a) Assume that viscous damping is 
present, and find the value of the damping factor c. (b) What is 

the frequency of the disk in cycles per minute? (c) How much 

of the impressed torque is transmitted to the foundation? (d) If 
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the impressed torque is suddenly stopped, what would be the fre¬ 
quency of the disk in cycles per minute? 

Arts, (a) 53.2 in.-lb-sec per rad; (b) 500 cpm; (c) 0.9, or 
45 in.-lb; (d) 309 cpm. 

6.10. A machine weighing 520 lb has a disturbing force acting 
upon it at a frequency of 5,400 cpm. What grade and area of felt 
should be used to isolate 85 per cent of the impressed force? 

Ams. 40 sq in. of SAE F-2 felt. 



Chapter 6 

UNDAMPED VIBRATIONS—TWO DEGREES 

OF FREEDOM 

6.1 INTRODUCTION 

The vibration problems considered thus far have been confined 
to those with a single degree of freedom. Many systems are of the 
type of two degrees of freedom; hence, it is desirable to investigate 
cases of this nature. Units having the driver and driven machines 
separated by a gear are applications of this condition, for example, 
turbine-driven pumps, aircraft engine and propeller with gear 
reduction between them, lighting sets on ships, and the like. 

Dynamic vibration absorbers may be attached to systems with a 
single degree of freedom to eliminate or reduce the vibration there. 
These systems are then transformed into systems of two degrees of 
freedom with forced vibrations and, hence, will be considered in 
this chapter. 

Cases involving damping with two degrees of freedom are beyond 
the scope of this book because of their complexity. Information 
concerning them may be* found in J. P. Den Hartog, Mechanical 
Vibrations, McGrawr-Hill, New' York, 1947, or W. K. Wilson, Practical 
Solution of Torsional Vibration Problems, Wiley, Newr York, 1940. 

6.2 FREE LATERAL VIBRATIONS 

Figure 6.1 illustrates a system having two degrees of freedom 
in a vertical plane. The twro masses may vibrate in the same 
direction, or their motion may be in opposite directions. Each of 
these modes of vibration has its particular natural frequency, the 
former occurring at the lower frequency, and the latter at the higher 
frequency. 

100 
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Assume that the two masses in the figure vibrate with simple 

harmonic motion of different amplitudes x0l and x0i, but at the same 
frequency, and that at a given instant the masses are both dis¬ 
placed downward by amounts x\ and x2. If x2 is less than x\, 

the middle spring will be compressed a distance X\ — x2. The 
accelerations of the masses are d2Xi/dt2 and d2x2/dt2. 

Considering the upper mass as a free body, the inertia and spring 

forces acting on it must be in equilibrium. Thus, 

mi + kixi + k2(xi - x2) = 0, 

mi —jtx- “f" Xi(ki + k2) k2x2 0. 
dr 

(6.1) 

The forces acting upon the lower mass must 

also he in equilibrium. Thus. 

m2 4- k2x-< — k2(xi — x2) = 0, 

d2 j2 
dt2 

m2 jrv 4~ x2(k2 + k$) — k2xi — 0. (6.2) 

Xi = Jo, cos ocl. 

and 

d2n 
(it1 

= — x0,a2 cos at, 

J2 = Jo; COS C0t‘, 

d2 Xi 

zrnmmz 
:K 

Since the motion is assumed to be simple 
harmonic, the terms Ji and j2 are given by 

Fig. 6.1 

dt2 
= — x0,u2 cos at. 

Substituting these expressions in Eqs. (6.1) and (6.2), 

[ —miJ0,w2 + x„,(ki + k2) — fc2Jo,] cos at = 0, 

[ — yfliX0,a2 4- x0,(ki 4" ^'3) kiX0l} cos at 0. 

Since cos at will vary from zero to 1, the terms in the brackets 
must equal zero if these equations are to be valid at all instants of 
time. Hence, 

J<.,( —wiiw2 + ki + k2) — Xojc 2 = 0, (6.3) 

x, ,k2 + x 0,(mia2 — k2 — fcs) = 0. (6.4) 
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The ratio of the amplitudes from Eq. (6.3) is 

x0t A2 

and from Eq. (6.4) 

x0, — in tor + A*i + A'2 

Xt>l   A'2 4“ A'3 — Moor 
Xa, A* 2 

Equating Eqs. (6.5) and (6.6) gives 

A*2 _ A* 2 T* A* 3 — 77?2C02 

— ttl + A’! + A’2 A*2 

or 

A*2~ — (— /?? io?" -j- A*i 4~ A*2) (A*2 4“ A3 — ???2k>"h 

Expanding and eolleeting terms, 

^ t + (k'k-±hbJL.bkA = o 
\ ??? i 77? 2 / \ ??ij??i2 / 

which is a quadratic equation in or. Solving for or, 

_ A'i 4" A 2 . A 2 4~ A 3 
a" - ~2)~ + ” 2^2 x 

(6.5) 

(6.6) 

(6.7) 

//Aj + A > A'2 4" A3V ^ A, A* + A2A3 + A1 A3 
\\ 2777i ' 2 77? 2 / 77? 177? > 

To illustrate the action taking place in a system of this type, the 

following example is given. 

Example 

Determine the two natural frequencies of vertical vibration 

of a system similar to that shown in Fig. 6.1, given the following 
data: TFi = 2 lb, W2 = 1 lb; Aq = 20 lb per in.; A2 = 10 lb per in.; 
A3 = 20 lb per in. Also determine the ratio of the amplitudes of 

the motion of W1 to IF2 for the two modes of vibration. 

mi = — = of* = 0.00518, g 000 

Wo 1 
m, = - = ~ = 0.00259. 

g 000 
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fcl + kn , fco + kz 

2m i 2m* 

k \ + k 2 ^ ko + k 
\\ 2m 1 

!ll+*3V — - 2m2 J 
iko + k*k 3 + k\kz 

mim2 
(6.8) 

20+10 10 + 20 

“ 0.01030 + 0.00518 ~ 

If20 +10 10 + 20V 
\\ O.o 1030 + 0.00518 J 

10 X 20 + 10 X 20 + 20 X 20 

First mode 

0.00518 X 0.00259 

co,2 - 4,090 or 12,090. 

co, — 08.5 or 112.8 rad per sec. 

/, = 055 or 1,077 cpm. 

£*1 = _kt_ 

Jo. - /^\C0r.2 + k\ + fco 
(6.5) 

x., =_10_ 
j" — 0.(K)518 X 4,690 + 20 + 10 

= +1.75. 

Second mode: 

x0l __ 10 
x~ ” -0.00518 X 12+90 + 20 + 10 

= -0.28. 

6.3 FREE TORSIONAL VIBRATIONS 

As a disk vibrates torsionally, an inertia torque equal to Ja is 
developed. If the disk vibrates harmonically with an amplitude of 

j3, the maximum value of the acceleration a is j3or, where a? is the 
circular frequency of the vibration. Hence, the maximum inertia 
torque, which occurs when the displacement is a maximum, is 

T = Jfa2. 
The three-disk two-shaft system shown in Fig. 6.2 is an example 

of a system of two degrees of freedom, since there are two manners, 

or modes, in which the disks may vibrate; that is, one end disk may 
oscillate in a direction opposite to the other two, or the middle disk 
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may oscillate against the two end ones. Consequently, there will 

be two natural frequencies corresponding to the two modes of free 
vibration. Expressions for these frequencies will now be developed. 

As disk 1 oscillates with an amplitude di> the maximum torque 
developed is Ti = J ldior. This torque is taken by shaft 1 and 

T 
results in a relative twist between disks 1 and 2 of Ad 1-2 = r~ = 

Jr 2 

1---» The amplitude of disk 2 equals d*2 = 0i — Adi-2, and the 
Ktl 

corresponding torque T2 developed in the second disk is 7% = J 
The torque acting on shaft 2 is the algebraic sum of the torques 

— 

dl 

k,t 

J2 7, 3 

Fig. 6.2 

developed by disks 1 and 2; thus, 7Ys = 7\ + 7Y The relative 
T i T 4- r 

twist between disks 2 and 3 is = -.7^ = —l—r-and the 

amplitude of disk 3 is (3Z = d2 — A$2-3- The torque developed 
by disk 3 is Tz = JZ8Zor. 

Since the vibration is a free one, no external torque is added to 
the system; hence, the sum of the inertia torques must equal zero, 
that is, T\ + T% + Tz = 0. The exact magnitude of the various 

amplitudes is independent of the frequencies; therefore, the above 
discussion applies for any value of amplitude of disk 1, or di* 

The following expressions, in terms of du w2, and the known 

quantities in the system, follow the discussion given above; so they 
are listed without further explanation. 

7\ = J i£io>2. (b,9> 

Adi .5 
1\ 
K ' ktx 1 

($2 — Pi — Adi.2 — dl — 
J idlO^2 
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T2 = ./2$2<A>2 — J<2$( 1 

TVs = 7’, + — J ifiioi2 + 

(6.11) 

(' - £) 
= + J2 - 

0 o /*/1 + J 2 A*/ 

8) = @2 — Atfo.j = di ^1 ^ ?iw 

J ICO2 (./ 1 + »/-2jW” . J 1 -/ *>CU4 

= tfi[ ~ x ; ~ ~ ~~k 

(j 1 + J 2 _ J1J2<*>2\ 

V / 

T* = J z&w2 = J*u2B\ 1 — 
./1CJ2 (./i + J 2)w2 . J\J 2& \J 2CJ4 

(6.12) 

(6.13) 

Adding Eqs. (6.9), (0.11), and (6.13) gives the total torque for 

the system, which must equal zero. Thus, 

T i + Ti + T* — ./ i$i<*r + J2<^2^i ^1 ~ 

r o/3 Ti '/l^2 («/1 + */2)w2 , J\J 20)4 
11 -~t„-K— + W 

./ l J 3C02 J 2 J S<J>~ , •/ \J d * 1 

~~ki, A,. kjci, J 

Since £h and «2 must be real numbers, the expression in the 

bracket must equal zero to satisfy the equation; hence, 

W4 _ (Idi + 'hh + J£±+A£i\ u*. + (j, + ,/s + j,) = o. 
ktikt, \ K k‘r / 

(6.14) 
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This is a quadratic equation in terms of u-. Solving for w2, 

W2_I h> _L_ hll _L hli 4- 

2 J3‘ J, + Jt ^ 
kf}± 
J 1. 

\( J\J 2 + J V 

Vv K~ 
J 1/3 , «/1«/3 + j 2'J 3 

+ K 
VY Y 
/ \2./!./,./a/ 

(J 1 + ./> 4~ Js)ktxkt, 
./ !•/ 2./3 

(6.15) 

Two values of or are obtained from this equation. The lower 
value represents the natuial frequency for a single node, that is, 
one end disk oscillating against the other two disks; whereas the 
upper represents the natural frequency with two nodes, that is, the 
middle disk oscillating against the two end disks. 

It is frequently desirable to know the relative magnitude of 
amplitude of the disks and to locate the position of the nodes. 

For the middle disk, the ratio of d-j 0\ from Kq. (6.10) is 

whereas for disk 3. from Kq. Ok 12). 

(./ 1 -}“ ./ 2 )ow ./ ,./o 004 
(0.17) 

It may be simpler, however, to find the ratio of 0* £3, which is, 

02 _ 1 _ ./3W2 

* ~ k h 
(0.18; 

Since the torque along a given shaft length is constant, the 
deflection curve between any two disks is a straight line. If the 
amplitude of disk 1 is taken to be 1 rad, the amplitudes of the other 

disks in radians are given by Eqs. (6.16) to (0.18). Since the deflec¬ 
tion curves consist of a series of straight lines, the location of the 
nodes can be found by proportion. Thus, in Fig. 0.3, part (a) 

represents two possible deflection curves for the lower frequency, 
and part (b) shows the deflection curve for the higher frequency. 
It may be seen from these that 

Lz _ 0z j __ ftaLs 

L2 02 — 0z 3 02 ~~ 03 
(6.19) 
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La _ 

L\ 0\ — 02 
or 

T — 0lL\ 
01 - 02 

where L\ = distance between disks 1 and 2, 
Lo — distance between disks 2 and 3, 
Lz = distance from node to disk 3, 
Li = distance from node to disk 1. 
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(6.20) 

(6.21) 

Example 

The 250-kw lighting set used on some cargo ships may be 
reduced to a three-mass system having the following inertias 

(b) 

Fig. 6.3 

expressed in in.-lb-sec2 referred to the generator speed: turbine 

1,880, gears 404, generator 320. The equivalent shaft lengths cor¬ 
rected to the generator speed and a 10 in. diameter steel shaft are 

turbine to gears 685 in., gears to generator 700 in. (a) Determine 

the natural frequencies of the unit, (b) Assume the turbine ampli¬ 
tude to be 1 rad, and find the amplitudes of the other masses at 
each frequency, (c) Locate the positions of the nodes in the system 

at each frequency. 

Let Ji = 1,880, Jo = 404, J3 = 320. 
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The spring scale is kt = ; hence, 

ku = 1232°)<T685 ' = 17-2^106) in 'lb P61- rad- 

K = 12g^7r7QQ4) = 10.83(10*) in.-lb per rad. 

(a) The natural frequencies may be found from Eq. (6.14); thus, 

\J tJ 3 , J \J 2 + J 3 , J \’J 3 + J tJ 3 ... 
—5 U* — -i- -T    w -f- 

iA'i. L *<« J 
ft,./*/ 

1,880 X 404 X 320 4 
17.2 X 1G.83(1012) " 

(Ji -\r J2 J3) =0; 

1.880 X 404 + 1,880 X 320 
17.2(106> 

+ 

1,880 X 320 + 404 X 320 
10.83(10") 

co2 + (1,880 + 404 + 320) = 0; 

0.84(10”6)oH - 0.1227ar + 2004 = 0. 

From the above 
<o2 = 0.0259(H)6) or 0.12(H)6). 

a) = 101 or 340.5 rad per sec, 
and 

/„ = 1,540 or 3,315 cpm. 

(b) The amplitude at mass J» is 

ft = l - J-y~- 

For the single node frequency: 

ft 
. 1,880 X 0.0259(10") , __ , 
1-rs x- = —1.83 rad. 

17.2(10") 

For the double node frequency: 

* , 1,880 X 0.12(106) 1010 
ft = 1-Tn -- = -12.12 rad. 

17.2(10*) 

The amplitude at J 3 is 

a _ 1 J1W2 (Jl + Ji)u2 , JiJtfj)4 
P* * 7- I- I K kt.k, 

(0.10) 

fi'Wl 
(6.17) 
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For the single node frequency: 

a _ 1,880 X 0.0259(10*) (1,880 + 404)0.0259(10*) 
1 17.2(10*) 16.83(10*) + 

1,880 X 404[0.0259(10®)]2 

17.2 X 16.83(1012) 
= —3.6 rad. 

For the double node frequency: 

,, 1,880 X 0.12(10*) (1,880 + 404)0.12(10*) 
1 17.2(10*) ' 16.83(10*) + 

1.880 X 404[0.12(10*)]2 
17.2 X 16.83(1012) 

= +9.48 rad. 

The alternative method of finding the amplitude of mass 3 is 

$ - 1 - (6.18) 

For the single node frequency: 

320 X 0.0259(10*) 
16.83(10*) 

= 0.508, 

0.508 
= —3.6 rad. 

For the double node frequency: 

ds , 320 X 0.12(10*) _ 
da 16.83(10*) ’ 

12 12 
da = - = + 9'48 rad- 

(c) Node positions may then be found. 
For the single node frequency: 

r _ 0^1 _ 1 X 685 
4 di-d* 1 + 1.83 

For the double node frequency: 

242 in. 

, d^2 9.48 X 700 
L‘ “ " -12712"- 9(48 “ 307 ,n- 

diLi _ 1 X 685 

di - da 1 + 12.12 
= 52.2 in. 

(6.21) 

(6.19) 

(6.21) 
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6.4 DYNAMIC VIBRATION ABSORBER* 

Occasionally it may be found that a system having a single 
degree of freedom has imposed upon it a disturbing force whose 
frequency coincides with, or is close to, its natural frequency. In 
such cases the natural frequency of the system could be altered by 
changing its stiffness or its mass. If this is not convenient or desir¬ 
able, a dynamic vibration absorber may be attached to the mass. 

The absorber consists of a mass-and-spring combination that 
has the same natural frequency as that of the disturbing force or 

the natural frequency of the original single degree of freedom sys¬ 
tem. Its effect is to transform the original 
system into one having two degrees of free¬ 

dom, so that the new system will have two 
natural frequencies, one of which is above, 
and the other below, the original value. 

The amplitude of the original system at 
the impressed frequency will be zero if the 
design is properly carried out. 

Absorbers may be designed for either 
lateral or torsional systems. The theory 

will be developed here for the lateral sys¬ 

tem shown schematically in Fig. 6.4. The 
original single degree of freedom system 

consists of the spring having a scale k and mass m on which acts 
the impressed force F0 cos ut. To this are added the absorber mass 
ma and its spring, which has a scale ka. 

Following an analysis of the various forces acting on each of 
the masses, similar to that used in Sec. 6.2 for any impressed fre¬ 

quency oj, the following equations are obtained: 

d~x 
+ fra) — kafa — Fo COS U)t, (6.22) 

ma ka^Xa ~ ^ = °* (6.23) 

Assuming that the motion of the masses is simple harmonic gives 

X = X0 COS Oit, Xa = Xoa COS 0)t} 

* Ormondroyd and Den Hartog, “The Theory of the Dynamic Vibra¬ 
tion Absorber,” Trans. A.S.M.E., 1928, APM-50-7. 

Fig. 6.4 
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-XoV2 COS a)t} = — x0aco2 cos a)t. 

Substituting those values in Eqs. (6.22) and (6.23) gives 

[ — mo)2x0 + xQ(k + ka) — kax0a] cos cot — F0 cos cot, 

[-maoj2j0. + ka(x0a — x0)] cos cot = 0, 

which may be written 

r0(-mor + k + ka) — kax0a = F 0, 

- Xoka 4- x0a(A*a — maco2) = 0. 

(6.24) 

(6.25) 

As was stated previously, the natural frequency of the absorber is 

made equal to that of the main mass; hence, con2 = ~ . If the 
m ma 

ratio of the impressed frequency to the natural frequency of these 

parts of the entire system is designated as r, then r2 = —^ = or -j- = 
Wn' A* 

1TI F 
co2 Also let where xet is the deflection of mass m when 

• C tj A' 
the force Fa is applied to it as a static load. Then dividing Eq. 

(6.24) by k gives 

/ - mar A'a\ /A‘a\ F0 
j-.I T~ + 1 + r)-(T)^ = r 

/-I -r! + 1 + t IJV, = (6.26) 

Equation (6.25) may ho written as follows: 

(ka «*\ _ 
r° •r,,J \A„ A J J ■r„„(l — r1). 

Combining E<|s. (6.26) anil (6.27), 

Xo. (1 
. i A ,i \ A*o 

-'1 v • i-j - tJ 

(6.27) 

(6.28) 
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If the impressed frequency is the same as the natural frequency 
of the absorber or of the main system, r — 1, then the amplitude of 
the main mass becomes zero by Eq. (6.29). From Eq. (6.28), it 

I* _p 
may be observed that then x0„ = — xtt , that is, the force 

•$a A*o 

acting on the absorber spring equals F0. Hence, when the impressed 

frequency equals that of the main mass, the main mass does not move 
and the absorber spring must be designed to carry the impressed 
force. 

Since the natural frequency of the main mass and that of the 
k k TYl k 

absorber are identical, — = — • This mav be written as — = 
m ma ~ m k 

and this ratio designated as n. It should be realized that n is the 
ratio of the absorber mass or weight to that of the main mass or 
weight. 

It may be observed that the denominators on the right side of 

Eqs. (6.28) and (6.29) are identical. When they equal zero, the 
amplitudes x0 and x0. are infinite, that is, a resonant condition in 
the entire system is obtained. 

Inserting the n term in the expression for the denominator and 

equating it to zero gives 

(1 — r*)( 1 — r2 + n) — n = 0. (6.30) 
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This equation may be expanded to 

r4 — (2 -f- *)»•* +1=0, 

which is a quadratic equation in r-. Hence, 

r’ - 6 " (‘ + s) ± \l> + r <6-3‘) 
The impressed frequencies w found from Eq. (6.31) correspond 

to the two resonant frequencies of the entire system, whereas 

Fig. 6.6 

corresponds to the resonant condition of the main system without 
the absorber. This relation is illustrated in Fig. 6.5 where the ratio 

of x0/xtt is plotted against the ratio r, or «/«n. The dashed curve 
represents the relation between these two variables when the 

absorber is not used and is the same as Fig. 3L2, whereas the full-line 
curve shows the relation with the absorber in place. It will be 
noticed that in the latter case there are two peaks of resonant condi¬ 

tions rather than one and that x0/xtt or the amplitude of the main 

mass is zero at r = 1, which is the frequency of the impressed force. 
If the size of the absorber mass is quite small, it will havg rela¬ 

tively small effect and the two new resonant frequencies will be 
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quite close to the original one. Figure 6.6 shows a plot of the speed 
ratio r against the ratio of the mass sizes ma/m, or /x based upon 
Eq. (6.31). For the absorber to be effective, the new frequencies 
should be at least 20 per cent away from the impressed frequency. 

Hence, the speed ratio r should be at least 0.8 or 1.2. It should be 
observed that the curve is not symmetrical about a horizontal line 
or r = 1. When n = 0.2, the ratio r is close to 0.8 and 1.25. If 
the two frequencies are to be at least 20 per cent away from the 
impressed frequency, the lower value will control, and the mass or 
weight of the absorber must be 20 per cent of that of the main mass 

or weight. 

Example 

A foundry table weighs with the mold 800 lb. The sand is 
packed in vertically with a vibrator having a frequency of 400 cpm. 

Mold 
\ 

Under these conditions resonance occurs, and the table “walks” 
around. It is proposed to eliminate this condition by placing a 
simple beam 5 ft long made of 1 in. diameter steel shafting between 

the crosspieces (shown dashed in Fig. 6.7) and attaching a weight 
at its mid-point. What weight is required? What will be the 
natural frequencies of the table after the weight is installed? 

Assume that the crosspieces do not deflect. 
Spring scale of the beam is 

48£7 _ 48 X 30(106) xi4 
L3 603 64 

328 lb per in. 

The natural frequency of the absorber must be the same as that 

of the vibrator, namely, 400 cpm, which corresponds to o> = 41.85 

ka k 
rad per sec. Since o>02 = the absorber mass is m« = = 

0>a 
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4T852 ~ ^*^875 lb-sec2 per in., and the absorber weight is Wa = 

mag = 0.1875 X 380 = 72.5 lb. 

The mass ratio g = — = = 0.0906. 
m 800 

From Eq. (0.31), the frequency ratio squared is 

0 + i) ± yl" + i 
omou'j ± ^o.ooofi + (0.090(5)2 

4 
0.7413 or 1.3493. 

The value of r, or —> = 0.801 or 1.102, and the new natural 
Wn 

frequencies of the table are fn = 400(0.801 or 1.102) = 344 or 465 

<*pm. 

The same principles may be applied to torsional systems having a 
single degree of freedom, and the curves of Figs. 0.5 and 6.6 apply. 

I 

The necessary changes are that the ordinates of Fig. 6.5 are 0o/0#* 
rather than x0/xH, and n of Fig. 6.6 is JJJ rather than ma/m. 

The addition of a length of shafting with a mass may be too bulky 
to be practical; so, many devices have been used to replace it. Only 
two will be described here, but others may be found in the literature* 

of the subject. 

* W. K. Wilson, Practical Solution of Torsional Vibration Problems, 
Wiley, New York, 1940, Chaps. 10 and 11; Den Hartog and Ormondrovd, 
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The torsional absorber shown in Fig. 6.8a consists of a ring 
attached to one of the disks of the original system. A mass is 
connected to this ring by means of springs. If no vibration is 
present, the entire unit rotates at a constant speed. When oscil¬ 

lations occur in the system, the mass tends to continue to rotate at 
constant speed, so that the springs are deflected and it acts as an 

absorber. Thus the lateral springs replace the length of shafting. 
A pendulum-type absorber is shown schematically in Fig. 6.8b, 

in which pendulums are attached to one of the disks. In its action, 

this absorber is similar to the one just described, except that the 
restoring force acting on the masses is due to centrifugal force 
rather than springs. Thus it is possible to design the system to act 
at any rotational speed rather than at just one particular value. 

PROBLEMS 

6.1. Repeat the example in Sec. 6.2, assuming that the bottom 
spring is removed, so that k3 = 0, but the rest of the system is 
unchanged. 

Ans. fn = 420 cpm; ^ = +0.5; fn = 840; ^ = -1.0. 
•To. •To. 

6.2. Derive expressions for the natural circular frequencies of a 

symmetrical three-mass system in which k\ — A*3 = k; fc2 == k'\ 

and mi = m2 = m. Am. k ±Jk'. 
m 

6.3. Determine the two natural frequencies and the relative 
amplitudes of a symmetrical system similar to that shown in Fig. 

6.1. The sizes of the various parts are as follows: Wx = W2 = 
19.3 lb; ki = k3 = 100 lb per in.; k2 = 200 lb per in. 

Ans. 428 and 955 cpm. 

6.4. Two steel cantilever springs are 1 in. wide, xt in. thick, 
and 3 in. long. They are connected at their free ends by a weak 

coil spring having a scale of 1 lb per in. At the free ends of 
the cantilevers, weights of 2 lb each are attached. Neglecting the 
masses of the springs, determine the natural frequencies of the 

system. Ans. 1,095 and 1,110 cpm. 

“Torsional Vibration Dampers,” Trans. A.S.M.E., 1930, APM-52-13; 
W. A. Tuplin, Torsional Vibration, Wiley, New York, 1934, Chap. 13. 
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6.6. A three-mass system similar to that shown in Fig. 6.2 has 
inertias in in.-lb-sec2 of Jx = 2,073; J2 = 1,036; = 1,554. The 
equivalent lengths in inches referred to'a steel shaft of 3 in. diameter 
are Lei = 20; Z,,s = 30. Determine the natural frequencies, and 
locate the positions of the nodes for the two modes of vibration. 

A ns. 443 cpm, L3 = 28.54 in.; 947 cpm, L3 = 6.53 in., L4 = 
4.64 in. 

6.6. The inertia of a certain airplane propeller is Jx — 100, the 
equivalent inertia of the moving parts of-a radial engine is J2 = 15, 
and attached to the same shaft is a supercharger having a J% = 3. 
All inertia units are in in.-lb-sec2. The corresponding spring scales 
are ktl = 5.57(H)6) in.-lb per rad, and kh = 0.375(106) in.-lb per 
rad. Determine the two natural frequencies of the system. 

A ns. 3,300 and 6,480 cpm. 
6.7. In the example in Sec. 6.3, it is desired to place the node 

at the gears for the lower frequency by changing the equivalent 
length of shafting between the gears and the generator. There is 

to be no change in the mass moments of inertia. Determine (a) 
the value of ktt and Lez required; (b) the resulting frequencies; and 
(c) the corresponding node positions and amplitudes of the masses, 
assuming 0X = +1. 

A ns. (a) A*,.. - 2.925 (106), Let = 4,025 in.; (b) 915 and 2,320 
cpm; (c) 02 = —0.003 and —5.47, 0Z = —5.91, and +0.95; L3 = 
4,025 in. for the first mode; L3 = 597 in., L4 = 106 in. for the 
second mode. 

6.8. If, in the example in Sec. 6.4, it is desired to have the nearest 
resultant frequency of the table 20 per cent from the impressed 
frequency, what size weight should be placed on what diameter 
shaft? Ans. 160-lb weight on shaft of 1.22 in. diameter. 

J&.9. A jig used to size coal contains a screen that reciprocates 
with a frequency of 600 cpm. The body of the jig has a weight of 

500 lb, and its natural frequency is 600 cpm. A dynamic vibration 
absorber weighing 125 lb is mounted on the jig body. What should 
be the scale of the spring connecting the two members, and what are 
the resulting frequencies? 

Ans. 1,280 lb per in., fn — 470 and 765 cpm. 
6.10. In a chemical plant a double-acting single-cylinder recipro¬ 

cating pump discharges into a pipe line. When the pump speed is 
178 rpm, the fluid pulsations coincide with the natural frequency 
of a section of the line. A cantilever is clamped to the line and a 
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weight of 50 lb attached to act as a dynamic vibration absorber. 

With this arrangement, the resulting natural frequencies of the 

system were found to be 310 and *109 cpm. Because of plant 

conditions it is desirable to have these frequencies below 250 and 

above 500 epm. What size of weight should be used, and for what 

spring scale should the cantilever be designed? 

A ns. 340 lb, k = 1,222 lb per in. 

6.11. A marine engine having an inertia of 15 in.-lb-sec2 is con¬ 

nected to a three-bladed propeller having an inertia of 10 in.-lb- 

sec2 by means of a shaft having a scale of 200,000 in.-lb per rad. 

Since the natural frequency is close to the disturbing frequency, 

an absorber of the type shown in Fig. 0.8a is attached to the engine 

mass. The inertia of the swinging weight is 3 in.-lb-sec2. Each of 

the eight springs has a scale of 500 lb per in., and they act at an 

effective radius of 5 in. Calculate the equivalent spring scale of 

the absorber and determine the natural frequencies of the system. 

y Ans. 100.000 in.-lb per rad; 1,400 and 2,205 cpm. 

6.12. A torsional pendulum has an inertia./ of 10 in.-lb-sec2 and 

a spring scale k, of 2.000 in.-lb per rad. It is subjected to torque 

impulses of 150 cpm. If it is desired to keep the natural frequency 

at least 25 per cent from the impressed frequency, determine the 

inertia and spring scale required for the absorber. 

.4n*. .1 = 3.41 in.-lb-sec2, A(4 = 082 in.-lb per rad. 



Chapter 7 

MULTIMASS TORSIONAL SYSTEMS 

7.1 INTRODUCTION 

Most of the systems subjected to periodic torques are of the 
multimass type, especially if the inertia of the shafting is considered. 
In many cases, it is sufficiently accurate to group these masses to 
estimate natural frequencies; but in other cases, it is necessary to 
make a more accurate determination. The Holzer method, dis¬ 
cussed in the next section, describes the procedure for the latter 
case. 

There are two general types of multimass systems: the in-line 
and the branched, both of which can be handled by the Holzer 
method, as described in this chapter. 

7.2 THE HOLZER METHOD 

The Holzer* method of determining the natural frequencies 
of multimass systems is based on the principle stated in Sec. 6.3; 
namely, that the sum of the inertia torques developed in a system 
because of the vibration must equal zero if the vibration is free. 
Equations (6.14) and (6.15), which apply to a thiee-disk system, 
are rather complex. When more than three disks make up the 
system, it is more convenient to determine the natural frequencies 
with the aid of a table. 

The principal equations of Sec. 6.3 may be summarized in 
general terms for disk n in a system as follows: 

Torque Tn developed by disk n 

Tn » Jn0n o>2. (7.1) 

* H. Holzer, Die Berechnung der Drehschwingungen, Springer, 1921. 
119 
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Total torque ST„ acting on shaft n 

2T n 
n 

= (j) (7.2) 

Angle of twist A/3„,„_i in shaft n 

Amplitude of disk « 

i./co'-d 

d„ = dn-l - 4- 
^n-1 

(7.3) 

(7.4) 

A natural frequency /„ or of the system and an amplitude ot 
1 rad for the first disk are assumed. The amplitudes and inertia 
torques for each disk in turn are calculated with the aid of Eqs. 

(7.1) to (7.4), as shown in the following example. If the algebraic 
sum of the inertia torques equals zero, the correct frequency was 

assumed; if not, additional assumptions must be made until this 
condition is satisfied. The procedure for estimating proper fre¬ 

quency assumptions will be considered in the next section. 

Examplk 

A four-cylinder engine with a flywheel runs at 1,200 rpm and is 
connected to a generator by a flexible coupling. The mass moments 

of inertia in in.-lb-sec2 are as follows: cylinders, J\ — = J3 — 
Ji = 0.55; flywheel ./5 = 25.0; coupling hub J6 = 0.5; generator 
J7 = 8.75. The equivalent lengths referred to a 3 in. diameter 

steel shaft in inches are the following: cranks L„ = 5; Lt. - 5.5; 
Le, = Le] = 5; flexible coupling = 45.5; hub to generator 
Lt, = 41. Determine the lowest natural frequency with the aid 

of a Holzer table. 
Before setting up the table, it is desirable to convert equivalent 

lengths to spring scales. Since k, = 
Gird/ 

32L. 
and d, = 3 in., kt = 

12(JQ').^L4 = 95 ^!°_8L The values of the spring scales then are 

kh = kt, = klt = 19.12(10®); kt, = 17.37(10®); ktl = 2.1(10®); and 

kt, = 2.33(10*) in.-lb per rad. 
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Table 7.1 may now be set up by listing the numbers of the items 
in the first column (1, 2, 3, etc.) and in column 2 the values of inertia 
as given. In column 7, the values of spring scales just calculated 
are listed. A value of a>n2 = 0.165(106) will be assumed as the 
natural frequency; hence, the values of J in column 2 are multiplied 
by 0.1G5(106) to give the values of column 3. From here on the 
table must be worked in successive lines. 

The amplitude of the first disk (00 is always assumed to be 1 
rad (any assumption could be made, but 1 is usual), and this is 
put in the first line of column 4. Column 5 is obtained by multiply¬ 
ing the values of columns 3 and 4; for the first line this is 0.0908, 

Table 7.1 

(1) (2) (3) (4) (5) (6) | (7) (8) 

Item ./ Ju-(W) 3 Ju'-i3( 10s) 

( 

2Jo>2£(106) A-,(106) 
Z./a>J0 

k, 

l 0.55 0.090s 1.0000 0.090S 0.0908 19.12 0.0047 
2 0.55 | 0.090S 0.9953 0.0905 0.1813 17.37 0.0104 
3 0 55 I 0 0908 0.9849 0.0894 0.2707 19.12 0.0142 
4 0.55] ; o.ooos 0.9707 0.0881 0.3588 19.12 0.0188 
5 25 00; ! 4.2240 0.9519 4.0208 4.3796 2.10 1 2.0865 
6 0.50 0.0S25 -1.13461 1 -0.0937 | 4.2859 2.33 1.8394 
7 S. 75 1.443S -2.9740 

■ i 
-4.2939 1 -0.0080 

and the same value is placed on the first line of column 6. It repre¬ 

sents the total inertia torque acting on section 1 of the shaft. 
Dividing this by the kt of the shaft (column 7) gives the angle of 
twist 2 in this section by Eq. (7.3), or 0.0047 rad. From Eq. 

(7.4), = 3i — A3i2 — 1.000 — 0.0047 = 0.9953 rad, which is placed 
in the second line of column 4. The torque developed by the second 
disk, as given by Eq. (7.1), is T2 = or column 3 times column 

4, that is, 0.0908 X 0.9953 = 0.0905 rad. The total torque acting 
2 

on shaft 2, bv Eq. (7.2), is T2 = ur%J(3, that is, line 1 of column 6 
1 

plus line 2 of column 5, or 0.0908 + 0.0905 = 0.1813 in.-lb. The 
remainder of the table is carried out in a similar manner with due 

regard for algebraic signs. In this example, the torque remainder 

as given by line 7 of column 6 is —0.0080 in.-lb. If the correct 

frequency had been chosen, this remainder would be zero. 

The deflection curve may be plotted along the shaft by using the 
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values of in column 4 for the various disks, as shown in Fig. 7.1. 
It will be noted that there is only one node (located between disks 
5 and 6). Hence, the value of oj„2 = 0.165(106), and/n = 3,880 cpm 

is very close to the first natural frequency. For torsional vibra¬ 
tions, the mode of the vibration is the same as the number of nodes, 

which means that the first critical has one node, the second two, and 

so on. 

7.3 NOTES ON CALCULATION PROCEDURE 

One of the difficulties of the Holzer method is in estimating the 
frequency to assume. Generally, this is based upon judgment and 
experience, but a fair trial value can be obtained by grouping 

Fig. 7.1 

together the masses that have a short equivalent shaft length or 
large spring scale between them. Thus, the multimass system may 

be reduced to one having a single or double degree of freedom. The 

approximate frequency to be assumed may then be found from 
Eqs. (2.18) or (G.15). 

To illustrate, in the example in the previous section the coupling 
mass may be neglected, since it is small, and the system reduced to a 
two-mass, single degree of freedom system having // = Ji + J2 + 

J3 -f- J4 -f* J5 — 2/.8; J2* — J7 = 8.75; and Le — Le,t ^ 8b.0 

in., or kt = 1.105(106). By Eq. (2.18), 

' _ 60 fkt(J 1 + J2) 

Jn 27r\ JjJs 

60 /l.l05(106)(27.8 + 8.75) 

2ttV 27.8 X 8.75 
= 3,890 cpm. 

Then co2 = 166,000. This approximation is very close to the correct 

value as shown by the previous section. 

If a number of trial frequencies are assumed, it will be found 

that the torque remainder (corresponding to —0.0080 in the previ- 
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ous example) may be plotted against the assumed frequency / or 
03. It will also be found that the curve shape will always have the 

general characteristics shown in Fig. 7.2, that is, it is alw ays positive 
belowr the first frequency (labeled 1 in the diagram), and then 
alternates between minus and plus for the higher natural frequencies 

(labeled 2, 3, and so on, in the diagram), although the exact curve 
shape and the spacing between the criticals or points of zero torque 
remainder vary with each system. This information is useful in 
making closer assumptions. For the example, the remainder is 
slightly negative, and since the first natural frequency is desired, a 
closer assumption would be one slightly lowrer than o>2 = 165,000, 
and perhaps or = 164,950 should be tried. Plotting the torque- 

Fics. 7.2 

remainder curve* may also serve to locate* errors tor a given trial 

frequency, since the curve should be smooth. 
An impressed torque, which tends to build up large vibration 

amplitudes, may be due to the firing stroke of an internal-com¬ 

bustion engine, the torque variation as the propeller blades rotate in 
fluid of varying density, and many similar factors. To avoid 
resonance conditions, it is desirable that these impulses should not 

occur at the natural frequency or some whole multiple of it. The 
order of a vibration is the ratio of the natural frequency to that of 
the operating speed in revolutions per unit time. A major order 
number is one that coincides with the number of torque impulses 
per revolution or a multiple of it, and all other order numbers are 
minors. Generally wiiole-order numbers (1, 2, 3, and so on) are 

majors and must be avoided; but in the case of four-cycle internal- 

combustion engines, wThich fire every other revolution, the half- 
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order numbers (i, H, 2£, and so on) are also dangerous. When 

they occur, the natural frequency should be altered by changing 

the inertia of some of the masses, the stiffness of some of the sections 

of the shaft, or both. 
Nodal drives* are frequently planned in systems having gears. 

In a nodal drive the properties of the system are so selected and 
arranged that the nodes are placed at, or close to, the gears for the 

natural frequency nearest to the running frequency or some har¬ 
monic of it. This placement will eliminate the possibility of the 
gear teeth leaving contact, or at least it will reduce the sudden 
loads that act on the teeth and tend to increase wear and shorten 
their life. 

7.4 BRANCHED SYSTEMS 

The procedure and example considered in Sec. 7.2 were based 
on “in-line” systems, where all the masses were attached to one 

J i=30 

equivalent or actual shaft. A second type of system is the 

“branched,” where two or more shafts operating in “parallel” are 

connected to a third shaft by means of gears, as shown in Fig. 7.3. 

This application occurs in steam-turbine-driven marine units hav¬ 

ing more than one driver, for example, high- and low-pressure steam 

* J. H. Smith, “Nodal Arrangements of Geared Drives,” Engineering, 
vol. 113, pp. 438, 467, 1922. 
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turbines driving a common propeller, the rear wheels of automobiles 
driven by a common drive shaft, and so on. 

Problems of this type may be solved with the aid of a Holzer 
table, although the solution becomes more complex, since the tor¬ 
ques and amplitudes must be balanced among the shafts. 

The procedure may best be illustrated by a simple example 
which does not represent any actual machine, but merely illustrates 
the principles involved. 

Example 

Given the four-mass branched system shown in Fig. 7.3 with the 
inertias and spring scales shown there, determine the lowest natural 

frequency. 
It will be observed that the spring scales kt of the two branches 

are 10(1()6) and 5( H)6), which are large compared to that of the 
main shaft, which is l(106). For a preliminary estimate of the 
natural frequency, the actual system may be approximated by a 

two-mass system having .// = J4 = 12.5, J>' = JL + J* + «/3 = 
30 + 2 + 5 = 37, and the spring scale kt = 1(106). From Eq. 

(2.18), the lowest natural frequency may be estimated as follows: 

, __ b0 Jkt(J / + ’/V) 
Jn ■ V ‘ “7777 ~ 9.55 

1(106)(12.5 + 37) 

12.5 X 37 
3,120 cpm. 

Actually, the lowest natural frequency occurs at 3,020 cpm or at 
or = 0.1(H)6), and this value will be used in working the example. 

The general procedure is to assume that the end mass of one of 
the branches, say Ju has an amplitude of 1 rad and work along this 

branch to the common mass of the two branches (J3 in this example). 
Then the amplitude of the end mass of the other branch J2 is 
assumed to have an amplitude of 1 rad, and the Holzer table is 

worked along this branch to the common mass J3. It will be found 
with these assumptions that the common mass 73 is vibrating with 

two different amplitudes, which is obviously impossible. It is 

then necessary to repeat the calculation of one of the branches, say 
the lower, with an assumed amplitude of the end mass J2 such that 

the common mass 73 will have the same amplitude when calculated 

along either branch. This means that the amplitude of /2 must be 

changed in the ratio of the two amplitudes for the common mass, 
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that is, i3«ai,ur,,d. The revised inertia torques of all the masses 

on the branches plus that of the common mass are added to find the 
torque acting on the main shaft (in this example, 7\ + T2 + T3). 

Using the final values of the torque and amplitude of the common 
mass, the main shaft is calculated in the usual manner to see if the 
total torque of the whole system equals zero. If it does not, a 
new assumption of frequency must be made and the entire process 
repeated until that condition is satisfied. 

The procedure is illustrated in Table 7.2 for the numerical 

example.* 

Table 7.2 

1 
(C 1 (2) (3) 

. 
1 O) 
1 

(o) (6) (7) (8) 

Branch 
or shaft 1 

Item 
i 

ij 

: 11 o,;) 

Jus2 

I 
1 

d 

i _ . 

(H)6) 

J co2d 

00f') (10») 
k, 

ZJw-ti 
k: 

Upper 1 30 . 3.0 1 .000 3.0 3.0 10 0.30 
3 5 , 0 5 

0.700 ! : 

Lower 2 o 
i i 0 2 ; ; I.000 1 0.2 i 0.2 5 0.04 

3 
1 
, .) ; 0.5 ! 0.900 1 

Ma>s 3 cannot have the two amplitudes of 0.70 and 0.90 rad 
at the same time, so it is necessary to recalculate the lower 
branch assuming a reduced amplitude rf2. The new value of 2 

! must he reduced in the ratio of 0.70 0.90 from its former value of 
1, which will be 0.729 rad. 

Lower 9 2 0.2 I 0.729 : 0.1458 0.1458 5 0.029 
3 5 0.5 : 0.700 | 0.350 

! 

The value of $3 is now 0.70 rad when calculated along each 
I branch, and so it is satisfactory. The torque acting on shaft 3 
bet ween ./3 and ./ .} equals the sum of the inertia torques de- 
velojxal by masses 1, 2 (revised), and 3; or — 3.000 + 0.145S 
+ 0.350 = 3.495S in.-lb. For this last step the amplitude is 
taken from the previous steps, and the total torque of column 6 
is the value of 3.4958 just found. 

3 1 ! j 0.700 3.4958 1 3.4958 
4 |12.S 

i 
»j 1.25 j—2.7958 -3.4948 +0.0010 
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It will be observed from the last line of Table 7.2 that the total 
inertia torque developed in the system equals +0.0010 in.-lb; 
hence, the assumed frequency is nearly correct. The amplitudes 0 
as found in column 4 may be plotted as shown by dashed lines in 
Fig. 7.3 to locate the position of the node. Since this is the lowest 
natural frequency, there will be only one node; in this case it is 
located on the main shaft near the gears (mass 3). 

It would be instructive for the reader to work out the cases for 
the two higher natural frequencies and plot the deflection curves. 

The values of or to bo used are 1.445(10*) for the second natural 
frequency and 4.509(10*) for the third. Since there are four masses, 
there are only three natural frequencies (always one less frequency 
than the number of masses). 

PROBLEMS 

7.1. Determine the lowest natural frequency of the equivalent 
system shown in Fig. 8.4b (page 130). An*. 5,000 cpm. 

7.2. Solve Prob. 0.5, by means of a Holzer table for the lower 
frequency and check the position of the node by means of it. 

Propeller 

7 

Turning 
wheel L.P. Ecc. M.P. Ecc.H.P. 

6 5 13 2 

10.4 r 480 I 445 603 1 
37.700 

1 i i l 
500 4,160 234 S.162 

603 | 603 

! 457 2 :.890 J 

Fig. 7.4 

7.3. A three-cylinder marine engine designed to run at 100 rpm 
has the following inertias expressed in in.-lb-sec2: cylinders, Ji — 

= Jz = 2,300; wormwheel, JA = GOO; propeller (including allow¬ 
ance for entrained water), ,/5 = 33,200. The equivalent lengths 
referred to an 8 in. diameter steel shaft in inches are LCI — Lei = 
14.5; Le% = 11; and Lei = 400. Determine the two lowest natural 
frequencies of the system. A ns. 417 cpm and 3,442 cpm. 

7.4. The data shown in Fig. 7.4 are taken from the November, 
1943, Journal of the American Society of Naval Engineers, page 751, 

for a marine drive. The propeller inertia has been increased 25 

per cent to allow for the entrained water. The units are in.-lb-sec2 
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for the inertias J; and the values of kt have been divided by (10*) 
with the units of in.-lb per rad. Check the value of the lowest 
natural frequency, which was found to be 324 cpra. 

7.6. If the main shaft of the example in Sec. 7.4 has its spring 
scale changed from 1(10®) to 0.5(10*), but the rest of the system is 
unchanged, determine the three natural frequencies. 

Ans. = 51,800; 1.415(10*); and 4.52(10*). 

Low-pressure 
turbine 

7.6. The equivalent branched system referred to the propeller 
speed of a marine geared turbine drive is shown diagrammatically 
in Fig. 7.5. All values of J and kt have been divided by (10*). 
Determine the lowest natural frequency of this system. 

Ans. un2 = 432, or/„ = 199 cpm. 
7.7. As suggested in Sec. 7.4, determine the two higher natural 

frequencies of the branched system shown in Fig. 7.3. 
Ans. = 1.445(10®); «s2 = 4.569(10*). 



Chapter 8 

EQUIVALENT TORSIONAL SYSTEMS 

8.1 INTRODUCTION 

Before it is possible to analyze a system that is subject to tor¬ 
sional vibration, it is generally necessary to replace the actual parts 
by an equivalent system consisting of point mass moments of inertia 
connected by massless springs. This process is usually long and 
tedious, and for complicated systems it may require the exercise of a 
considerable amount of judgment based upon experience. 

The procedure for handling ordinary cases is given here; for 
more complicated or advanced problems the reader is referred to 
the following: W. A. Tuplin, Torsional Vibration, Wiley, New York, 
1934, Chap. 2; W. K. Wilson, Practical Solution of Torsional Vibra¬ 
tion Problems, Wiley, New York, 1940, Chap. 3. 

8.2 EQUIVALENT MASS MOMENTS OF INERTIA 

A. General 

The mass moment of inertia is defined as the product of the mass 
and the square of the radius of gyration about the axis of rotation; 

W 
that is, J = wr = — r2. Complex shapes may generally be broken 

Q 
down into simple elements, and the total value of the inertia is 
then the sum of the component parts. 

The transfer equation may be used to determine J for elements 
whose center of gravity does not lie on the axis of rotation. This 
relationship expressed mathematically is 

Jo = Jc + rnx2, (8.1) 

where J0 = mass moment of inertia about the axis of rotation; 
Je — mass moment of inertia about the center of gravity; 

129 
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m — mass of body or element; 
.r = distance between the axis of rotation and the center of 

gravity. 

Expressions for the mass m and the mass moment of inertia 

about the center of gravity ,/, for a few common-shaped elements 

C 

Jc=}^D'-d')L 

C 

Fig. 8.1 

are given in Fig. 8.1. Derivations of these expressions may be 

found in books on mechanics and are based upon the equation 
,/ = Jf2 dm. 
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The effective mass moment of inertia of shafting to be added to 
the inertia of the concentrated masses was considered in Sec. 2.5c. 
The inertia of complicated members may be checked experimentally 
by oscillating them as^endulums, as discussed in Secs. 2.7b and 

2.7d. 

B. Connecting Rods 

Since one end of the connecting rod rotates with the erankpin 
while the other end reciprocates with the wrist pin or crosshead, it is 

difficult to derive an exact equation for its equivalent mass in the 
system. It is customary to divide its total weight between the 
two ends in proportion to their distances from the center of gravity. 

In Fig. 8.2, let G be the center of gravity of the rod of length L, 
and let Lc and Ln be the distances from point G to the erankpin C 

and wrist pin /?, respectively. The portion of the rod weight TF 

to l)e placed at the erankpin C can be found by taking moments 

about point R\ thus, Wr = 
1 VLr 

L 
The portion at the wrist pin 

then is 

For estimating or checking purposes it is useful to know' that 
usually Wc is approximately f IF and IF/? is about ^IF. If the throw' 

of the crank is ;*, the mass moment of inertia of the portion of the 
connecting rod considered as acting at the erankpin IFc is 

g g L 
C. Reciprocating Parts 

The inertia of the reciprocating parts of the engine must have 

an effect on the mass moment of inertia of the crank. When the 

piston is at the end of its stroke, this effect is negligible. When the 

crank is perpendicular to the connecting rod, the full inertia effect 
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is transmitted. The general practice is to assume that one half of 
the inertia acts at the crankpin during the complete cycle. The 
equivalent mass moment of inertia of the reciprocating parts acting 
at the crankpin may then be taken as 

■I = Yg (IT* + Wp) 

where Wp is the weight of the piston, piston rod, wrist pin, or cross¬ 
head, and the other symbols have the meanings given above. 

D. Crankshafts 

Since crankshafts are made in a great variety of shapes and 
proportions, it is difficult to give any general equation for calculat¬ 

ing their mass moment of inertia. Generally, it is necessary to 
break them up into a number of elements and find the summation 
of the individual inertias. Thus, the journals are cylinders rotating 

about their center of gravity; the erankpins are cylinders rotating 
about an axis that is at a distance equal to the crank throw from 
their center of gravity; the side webs and balance weights are blocks 
rotating away from their center of gravity. The procedure for 
finding the summation of the individual inertias is illustrated in 
the example of Sec. 8.5. 

8.3 EQUIVALENT ELASTICITY 

A. Equivalent Shaft Lengths 

As outlined in Sec. 2.5b, the concept of equivalent shaft lengths 

is to find the length of a piece of solid shaft of fixed diameter which 
will have the same flexibility as a stepped shaft or other discon¬ 
tinuous member. To satisfy this condition, the spring scale kt of 

the actual and equivalent shafts must be the same. Thus, 

, __ Ga^rrfa4 __ Gcirde4 

1 ~ 3277 “ 327,7 

where the subscripts a and e refer to the actual and equivalent shafts, 
respectively. 

Solving for the equivalent length, 
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If the actual shaft is hollow, the equivalent length of the solid 
reference shaft is 

Le 
d,* Ge 

Da4 - da4 Ga 
La. (8.3) 

All shafting is usually made of steel, but occasionally a portion 
or fitting may be made of cast iron, brass, or some other metal, in 
which case the modulus-of-elasticity term must be used. 

B. Couplings 

It is difficult to predict the exact equivalent elasticity of cou¬ 
plings, since the sections have abrupt changes in size and the torque 

must be transmitted through the coupling bolts, whose deflection 
depends largely on the tolerances. 

If the coupling halves are forged integral with the shaft, it is cus¬ 
tomary to treat each flange as a shaft enlargement having a diameter 
equal to the bolt-circle diameter and a length equal to the flange 
thickness. 

If the coupling halves are keyed to the shaft, the torque is 
gradually transferred from the shaft to the hub and from the hub 
to the flanges. One assumption for this case is that the shaft is 
unaffected by the hub for a distance equal to one half the coupling 
length, and that the balance of the coupling length acts as a hollow 

stepped shaft with the inside diameter equal to that of the shaft 
and the outside diameter equal to the hub diameter or bolt-circle 
diameter. This assumption is illustrated in the example in Sec. 
8.5. 

The action of various types of flexible and hydraulic couplings is 

quite complex, and the reader should consult the references given 
in Sec. 8.1 concerning them, 

0. Crankshafts 

A crankshaft has many sudden changes in section, so that it is 
difficult to derive a satisfactory equation for the equivalent 

elasticity. In addition, the shape and proportions of various crank¬ 
shafts vary considerably. A basis for evolving a satisfactory equa¬ 
tion would be to consider the equivalent lengths of the various 

component parts, that is, journal, crankpin, and side webs. Their 

sum gives the equivalent length of the crank. 

Two generally accepted equations that are used to find the 
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equivalent lengths of commercial crankshafts are those due to 

Carter* and to Wilsonf. 
The Carter equation for solid journals and crankpins is 

L, = dp 
c + 0.8a 0.751) 1.5r 
“lV~ + DD + ac3 

(8.4) 

For hollow journals and crankpins tho equation is 

j _ ? 4 T c+O.Sa 0.75b_ 1.5r 
e “ e I 1)7 - d? ^ Dr1 - dr* OC* 

(8.5) 

The equation developed by Wilson for hollow journals and 
crankpins is 

_ , 4 C + 0.4/+ 5 + 0.4/^r /* 0.2{Dj + Dr) 
Djx — dp Dr* — dr* ' ur3 

For solid crankpins and journals this equation becomes 

T _ ; 4 e + 0Al)j 1 b + 0.4Z+ A r ~ 0.2(/+ + /+•)! 
Le - + [—7JT- + J’ 

(8.0) 

(8.7) 

The symbols have the meanings shown in Fig. 8.3. The sym¬ 

bol e represents the journal length, and for end cranks this value 

may have to be assumed. The first term of the equation gives the 
elasticity of the journal; the second, the elasticity of the crankpin; 

and the third, the elasticity of the crank webs. 

*B. C. Carter, “An Empirical Formula for Crankshaft Stiffness in 
Torsion,” Engineering, July 13, 1928, p. 36. 

f W. K. Wilson, Practical Solution of Torsional Vibration Problems, 
Wiley, New York, 1940, p. 192. 
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8.4 GEARED SYSTEMS 

Many machine drives employ gears for speed reduction or 
increase. In those cases the actual system must be corrected for 
the differences in speed of the component parts; that is, the inertias 
and spring constants are referred to one speed of rotation n€. The 
basis for these transformations is that the potential and kinetic 

energies of the equivalent system should be the same as those of the 

actual. 
The expression for the kinetic energy of a body vibrating 

torsionally is Ek = u'2, where u is the circular frequency of the 

vibration. If the kinetic energy of the actual and equivalent sys¬ 
tems is the same, = i-Lur, where the subscripts a and e 
refer to the actual and equivalent systems, respectively. Hence, 

) • For geared svstems, the speed or gear ratio of the 
Ja V"*/ 
shafts tia'iie is the same as u?n 'av, and the mass moments of inertia 

are inversely proportional to the speed ratio squared. 
The potential energy developed in a vibrating shaft at any 

instant equals one half the spring scale of the shaft times the angular 

displacement squared, that is, The angular displacement is 
proportional to the speed or gear ratio of the shafts na/ne; hence, 

Ep = hktJ,r = 

a - C:) 
and the spring scales are inversely proportional to the speed ratio 

squared. It was shown in the previous section that the equivalent 
length of the shaft is inversely proportional to the spring scale. 

It follows, therefore, that ~ * 
La \na) 

The above transformations may be summarized by the following 

relationships: 

«/ (- A i La (ti { \ 

8.6 AN EXAMPLE OF EQUIVALENT TORSIONAL SYSTEMS 

To illustrate the principles developed in this chapter, a problem 

of converting an actual machine to an equivalent system will be 

worked out in detail. 



/o
w

l 
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A six-cylinder 11 X 12 Diesel engine running at 750 rpm drives 

a centrifugal pump at 1,500 rpm through a pair of speed-up gears, 

as shown in Fig. 8.4a. Given the following data, sketch the equiva¬ 
lent system referred to the engine speed and an 8i in. diameter 

steel shaft. 
The dimensions are given on the sketch (Fig. 8.4a). All six 

cranks are identical. Each connecting rod weighs 78.6 lb and is 

25 in. long. The center of gravity of each rod is 7.84 in. from the 
crankpin. The weight of each piston assembly is 45.3 lb. The 
steel gears may be considered as solid cylinders with the outside 
diameter equal to the given pitch diameters. The flange coupling 
is made of cast iron and keyed to the two shafts. The pump 
impeller, including its journals, has an inertia J of 410 in.-lb-sec2 
about its axis. 

A. Mass Moments of Inertia 

Crank. As outlined in Sec. 8.2d, the inertia of each crank will be 
found by adding the inertias of the component elements as found 

with the aid of Fig. 8.1 and Eq. (8.1). The component parts of 
the crank are the crankpin, journal, and side webs. The value of J 
is first found about the center of gravity and then transferred to 

the center of rotation. 

Crankpin, 

Jr = 
~ 4 D*L 0 32 

0.283 ^ 
386 32 

= 1.833 in.-lb-sec2. 

== 0.2157 lb-sec2 per in. 

The transfer distance x is the crank throw , which is 6 in. 

Jo - Jc + mz2 = 1.833 + 0.2157(6)2 
= 9.603 in.-lb-sec2. 

Journal. 

= 2.16 in.-lb-sec2. 
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The journal rotates about its center of gravity, and therefore, 

no x correction need be made. 

Side Webs. From Figs. 8.1 and 8.4, a = 14f b = 101, d = 31. 

Then, 

= 9.7 in.-lb-see-. 

0.2S3 

380 
x 10-3 X 3|) 

-y 0 2S3 
m = - aM = , X 14-$ X 101 X 31 g 389 

= 0.30 lb-sec- per in. 

The transfer distance .r is the distance from the center of gravity of 

the web to the center of rotation, or 3 in. Then, 

J0 = 4- mx1 = 9.7 + 0.30 X 3- = 12.91 in.-lb-sec-. 

Since then* are two webs per crank, this value is doubled, or 25.88 

in.-lb-sec-. 

Connecting Hods and Recipiorating Ports. The total weight of 

the connecting rod must be divided between the piston and crank- 

pin, as outlined in Sec. 8.2b. The distance L< is given as 7.84 in., 

and the rod weight IF is 78.0 lb. The portion of the rod acting at 

the piston then is 

\yK = ]1LS = 78.(1 x = 24.0 lb; 
1J 

and that at the erankpin is 

ir, = ir - ir* = 7s.o - 24.0 = 54 ib. 

The mass moment of inertia due to Wr acting at the erankpin radius 

is 

ir,r; = 54 X (r 

g • 380 
5.04 in.-lb-sec-. 

The total reciprocating weight is the weight of the piston 

assembly plus the portion of the connecting rod acting at the wrist 

pin; that is, 

WP + Wr = 45.3 + 24.6 = 69.9 lb. 

As developed in Sec. 8.2c, it may be assumed that one half of 
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this is effective in producing inertia at the crankpin radius. Then, 

r _ (1U/2 -f~ If p)r2 _ 09.9 X 62 
2g ” 2 X 3 86 

— 3.257 in. Ih-sec2. 

The total inertia that may be considered to act at the center of 

each crank is the sum of the inertias calculated. Thus, 

./ =:: 9.003 -T 2.10 -f- 25.88 4- 5.04 -f- 3.25< 

— 45.94 in.-lb-sec2. 

Flywheel and (rears. The flywheel and the two gears are close 

together and may be considered to act as a single mass. 

The inertia of the stool flywheel may be found by subtracting 

the inertia of the cutout portion from the inertia of a solid disk of 

30 in. outside diameter and 10 in. width and then adding to this 

result the inertia of the shaft extension on each side. Thus, 

./ = 
0.283 7T 

380 32 
[301 X 10 - (244 - 144)* -f- (8i)4 ((> — ^ X of -f -g-)] 

= 430.5 in.-lb-sec2. 

The gear may be considered as a solid cylinder having a diameter 

equal to its pitch diameter, so that 

7 tt 

y 32 
1)4L 

0.283 7T 

380 32 
020 )4 6 

= 09.12 in.-lb-sec2. 

The pinion may also be considered as a solid cylinder and should 

have one half the shaft inertia between it and the coupling added 

to its inertia. Since the speed of the pinion is twice that of the 

engine to which the equivalent system is referred, it must be multi¬ 

plied by the speed ratio squared, as given by Eq. (8.8). Thus, 

0.283 7r 

386 32 
[104 X 6 + (Of,)4 X 3] 

= 19.1 in.-lb-sec2. 

The total inertia of this mass combination is the sum of the three 

parts. 
,/ = 436.5 + 69.12 + 19.1 = 524.72 in.-lb-sec2. 
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Flange Coupling. The coupling, made of cast iron, may be 
broken into two hollow cylinders if the guard lip is neglected. The 
steel-shaft inertia must be added to this, including one half of the 
inertia between the coupling and pinion. Since the pump-impeller 
inertia includes the journals, this portion of the shaft will not be 
considered. Again the speed-correction factor of (1,500/750)2 
must be applied. Cast iron has a specific weight of 0.260 lb per 
cu in. Thus, we obtain 

(0.260 jr_ 
\ 386 32 [(12* - |6f)4)(16 - 3) + (18i4 - Of4)3] + 

= 167 in.-lb-sec2. 

386 32 + 3)] 

Pump Impeller. The mass moment of inertia of the pump 
impeller, including its journals, is given as 410 in.-lb-sec2; hence, 
it is necessary only to apply the speed correction of (1,500 750)2 to 
this amount. Therefore, J = 1,640 in.-lb-sec2. 

The calculated inertias are placed on the equivalent system 
shown in Fig. 8.4b beneath the corresponding points on the actual 
system. 

B. Equivalent Lengths 

The equivalent lengths of the various parts of the shafting will 
be referred to the engine speed and a solid steel shaft of 8* in. 
diameter; that is, dr — 8£. 

Crank. From Figs. 8.3 and 8.4 we find the following values: 

a = 3i; b = 5f; c = 10f; e = 5f; 

Dj = 8*; Dc = 8i. 

Then by Carter’s formula (Eq. 8.4), 

4" 0.8a 
~d7~ 

+^+ 
+ Dc4 + 

1.5r] 
acz ’ 
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and substituting the values given above, 

j __ ,oiw [51 + 0.8 X 31 0.75 X5i 1.5 X 6 
' ” w [ my ^ (8\y ^ 3i(ioi)3 

— 20.2 in. 

By Wilson’s formula (Eq. 8.7), 

. 4 e + OADj b + 0.4Dc . r ~~ 0.2(Dj + Dc) 
Lr - etc —j)/' + ~~ZV ac3 

and again substituting the given values, 

/ (qiu f"Sf + 0.4 X 81 54 + 0.4 X 81 0 — 0.2(81 + 81)1 
~ L — (81)4 (81)4 + 3K101)3 J 
— 23 in. 

The average of these two values, which is 24.6 in., will be used for 
the cranks. 

Crank (j to Flywhevl. Between the center line of the last crank 
(No. 0) and the flywheel, the equivalent length is composed of 
one half an equivalent crank length (12.3 in.) plus the distance 
between the center of the journal and the flyw heel (6 — 1 X 5f = 31 

in.), a total of 15.43 in. 
Pinion to Coupling Center Line. The method of calculating the 

equivalent length of a keyed coupling follows that given in Sec. 
8.3b. The operation is performed in three parts for the example 
that we are considering from Fig. 8.4. The first part deals with 

the steel shaft between the pinion and coupling end plus one 
half-length of the coupling; the second part considers the coupling 
as a hollow' cast-iron shaft having an outside diameter equal to 

that of the hub and an inside diameter equal to that of the shaft; 
and the third part considers the coupling as a hollow’ cast-iron shaft 

with an outside diameter equal to the bolt-circle diameter, an 
inside diameter equal to the shaft diameter, and a length equal to the 
flange thickness. A correction for material must be made to the last 
two parts, according to Eq. (8.2), since cast iron has a shearing 

modulus of elasticity of 7(106), wiiereas steel has one of 12(10)6. 

Moreover, since the coupling rotates at a speed greater than the 

equivalent engine speed, a speed-correction factor of (750/l,500)2 



142 ELEMENTARY MECHANICAL VIBRATIONS 

must be applied to the entire'coupling, according to Eq. (8.8). 
Then, substituting the values found in Fig. 8.4, we have 

L. ^ + 
L(» 

(8C> 

\2* - (6fl 
(b - li) 

12(106) , 

7(10of + 

6.67 in. 

8.V __ 12(10B) 

(Hii' - (Gf)« 2 7(106) 

Coupling Center Line to Pump Impeller. An examination of 

the coupling center line to pump impeller in Fig. 8.4a shows that 
the dimensions of this section are the same as those between the 

pinion and coupling center line. Hence, the equivalent length of 
this section is the same, namely, 6.07 in. 

The equivalent lengths just found are shown on Fig. 8.4b 
beneath the corresponding sections on the actual system of Fig. 

8.4a. 

PROBLEMS 

8.1. Set up the equivalent torsional system at the speed of mass 

i and for a 1 in. diameter steed shaft for the geared drive shown in 

__ 30"_v 
> dia 

10 f l^dia - ft 1 ft 
<-20->k—10-> 

i 

J^dia 
i 1 1 i f 

—..;ym ..1 , 
2 dia }-• dia 

Fig. 8.5 

Fig. 8.5. Neglect the mass moment of inertia of the gears and 

shafts. The shafts are steel. What is the natural frequency of 
the system? 

Arts. J\ — 10; J2' = 2.22; kt — 795 in.-lb per rad; fn — 200 

cpm. 
8.2. Repeat Prob. 8.1, but assume that the shaft attached to 

mass 2 is made of cast iron. The rest of the system is made of 

steel. 

Ans. Ji = 10; J2 = 2.22; kt = 469 in.-lb per rad; fn = 

153 cpm. 
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8.3, A single-cylinder steam engine is direct-connected to a 

generator by means of a cast-iron flange coupling, as shown in 
Fig. 8.6. From this sketch and the following data determine (a) 
J of the connecting rod and reciprocating parts; (b) J of the crank; 
(e) ./ of the generator armature; (d) the equivalent length of the 

crank based upon Uarter’s equation; (e) the equivalent length of 
the shaft and coupling; (f) the equivalent system, neglecting the J 

of the coupling, but considering its elasticity; (g) the natural fre¬ 

quency of the system in cycles per minute. 
Data: The J of the generator armature with its shaft is found by 

suspending it on three wires that are 14 in. long and located 3 in. 

from the axis of rotation. The time required for 50 complete 

oscillations is 100 sec. 
The weight of the generator armature is 20 lb; the connecting- 

rod length is 20 in.; the distance of the center of gravity of the con¬ 

necting rod from the crankpin is 8 in.; the connecting-rod weight 
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is 25 lb; the weight of the piston, piston rod, and crosshead is 50 lb. 

Arts, (a) 1.865; (b) 0.0807; (c) 1.303; (d) 2.36 in. of 1 in. 
diameter; (e) 0.0106 in. of 1 in. diameter; (f) Jx = 1.945, J2 = 
1.303, Le = 19.37 in. of 1 in. diameter; (g) 2,675.epm. 

8.4. Figure 8.7 illustrates a double-reduction marine drive with a 
hollow-quill shaft between the turbine and gears to obtain greater 

flexibility. The units of J given on the sketch are in.-lb-sec2, (a) 
Draw an equivalent three-mass system referred to the propeller 
speed and show on it the corrected ./ values and equivalent lengths 

referred to a 1 in. diameter steel shaft. Consider all the gears 
together as the middle mass, and neglect the J of the shafts, (b) 
Determine the natural frequencies of the system. 

Arts, (a) Jxf = 252,000; J2f = 237,000; ,/3' = 85,000; kx = 

40,800(106); k2 = 40.7(106); (b) 213.5 and 5,520 cpm. 

8.6. Determine the value of J and Lr for one cylinder of a four- 
cylinder 4.4 in. by 5.5 in. Diesel engine, one crank of which is shown 

in Fig. 8.8. Use Wilson’s equation for the equivalent length of 

the crank based on a 4£ in. diameter shaft. The width of the web 
is 4£ in. Each connecting rod weighs 10.8 lb (1.7 lb at the wrist 
pin and 9.1 lb at the crankpin). Each piston assembly weighs 
6.33 lb. Arts. J = 0.775 in.-lb-sec2; Le = 14.5 in. 



Chapter 9 

MULTIMASS LATERAL SYSTEMS 

ITr ‘War --"r"S' ■ ■■■■ ■ -T' 1 . aif.:. : 

9.1 INTRODUCTION 

Although many actual systems may be approximated for engi¬ 
neering purposes by simpler systems having one or two degrees of 
freedom, a more accurate frequency determination requires that 
they be treated as multimass systems. 

There are also a large number of cases that generally cannot be 
reduced satisfactorily. Problems of this type include (a) stepped 
machinery shafts, such as those used in centrifugal machines 
(pumps, blowers, turbines, motors, and the like); (b) structures, 
such as foundation steel work, buildings, and bridges; (c) tapered 
cantilevers, such as steam-turbine blades, airplane propellers 
and wings; (d) disks and plates; and many other applications. 

Approximations must be used in setting up idealized systems of 
such types as those listed above. The solution of the natural fre¬ 
quencies is based upon a trial-and-error method in which the natural 
frequency, or some function of it, is assumed and a check made to 
see if this assumption satisfies the basic requirements of the solu¬ 
tion. This checking of the trial assumption may be carried out 
either graphically or mathematically, as developed in this chapter. 

There are three principal methods of solving problems of this 
nature which will be described, namely, (a) the Rayleigh, (b) the 
Stodola, and (c) the general. The first two methods are generally 
simpler and quicker to use if only the lowrest natural frequency is 
desired. It is just as easy to find higher natural frequencies by 
the last method as it is to find the lowest; but it is necessary to use 
many mathematical steps, so that the possibility of errors is rela¬ 

tively great. 
145 
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9.2 THE RAYLEIGH METHOD 

The first method to be developed for finding natural frequen¬ 
cies is that due to Lord Rayleigh. Raleigh ascertained that all 
points in the system vibrated with simple harmonic motion and 
reached the position of maximum deflection simultaneously. His 

method is based upon equating the maximum kinetic and potential 
energies, as outlined in Sec. 2.3, to determine the natural frequency. 
In the case in Sec. 2.3 there was only one mass and, hence, one 
deflection. In multimass systems there are many masses and, 
hence, many possible deflection curves. Each possible deflection 

curve will have a corresponding frequency based upon equating 
the energies. Rayleigh found that the system always vibrates in a 
manner that will make the* frequency a minimum. Any other 
assumed deflection curve will give a frequency that is higher than 
the natural. If many deflection curves are assumed for the sys¬ 
tem, the values of W and y for each may be used to find a frequency, 
and the lowest value of these will approximate the true natural 

frequency. 
A more orderly procedure based upon the Ray high method, 

may be summarized as follows: 
(a) Assume a deflection curve1 of the system which is “reason¬ 

able.” This is generally taken as the deflection curve of the system, 

considering the masses to act as dead or static loads. 
(b) Equate the summations of the maximum potential and 

kinetic energies of the masses deflected as assumed in (a) to find 

the circular frequency. 

maximum potential energy = + sir2?/2 + * ■ * , 

.. 1 Wi « 0,1 o o , 
maximum kinetic energy = = — yrwr + ?> — ~r * * * 

* (I £ Q 

Equating the maximum potential and kinetic energies and solv¬ 

ing for wf gives 

wr = 
i R 2y-i + 

lWj 
2 g 

2 1 o , 
y* + 2 t vr + 

t/yjj/ 
^ ii'y-' 

(9.1) 

(c) The frequency found by part (b) will be somewhat high as 

the actual deflection curve is due to the inertia forces rather than 

to the dead or static load. However, the frequency will generally 

be within 3 per cent of the correct value, which is close enough for 
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engineering purposes. A considerable change in the loadings is 

required to change the curve shape or natural frequency appreciably, 
as will be shown in the example in Sec. 9.4. 

If greater accuracy is desired, the loads should be taken as 
the inertia forces, that is, F — my an2, where an is the frequency 
based upon the previous or static-load assumption, and y is the 

corresponding deflection. The frequency is then found from the 

following equation: 

jFiyi' + + - ■ • = y 
?miyi- + \m2y2'- + * * * ZWi/2’ 

(9.2) 

where yr is the deflection due to the inertia load F. The poten¬ 
tial energy is a function of the inertia force F, whereas the kinetic 
energy is based upon the mass, or )V g. 

Successive approximations may be made by applying Eq. (9.2) 

until the derived deflection curve agrees with the assumed curve. 
The process is rapidly convergent for the lowest natural frequency, 
but the first approximation is generally sufficiently accurate for 
engineering purposes. The procedure is illustrated in Sec. 9.4. 

If there is a case where the process does not converge, or where 

the deflection curve is difficult to predict, a modification of the 
Rayleigh method developed by Ritz* may be employed. In this 
modification the deflection curve may be expressed in terms of a 

distance along an axis, for example, y — xr\ y = (x — xQ)n and so 
on. The values of or or /. obtained from deflection curves based 
upon assumed values of the exponent n may be plotted against those 
values of n to determine the minimum frequency, which approxi¬ 
mates the true value. This method is used by Stodola in deter¬ 

mining frequencies of steam-turbine disks. 
In using Eqs. (9.1) and (9.2), the sign of the deflection is ahvays 

taken to be positive, regardless of the direction of the deflection, 
since these equations involve energies rather than deflections and 

energy is not a function of the direction of the displacement. If 
the deflection curve crosses the bearing centerline, as in the case 

where the end of the shaft is overhung from the bearings, the static 
deflections for the first assumption should be taken to act in opposite 
directions. This condition is illustrated in Sec. 9.5 and Fig. 9.2. 

If the member is rotating, the natural frequency is raised because 

* S. Timoshenko, Vibration Problems in Engineering, Van Nostrand, 
New York, 1937, pp. 370-376. 
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of the action of the centrifugal force, which replaces the gravita¬ 
tional, or g, term in the equations and generally exceeds it. This 
effect is pronounced in airplane propellers and steam-turbine blades 

rotating at high speeds. 

9.3 THE STODOLA METHOD 

The Stodola method is similar to the Rayleigh method, but it is 
slightly simpler to use. The procedure is as follows: 

(a) Assume a deflection curve of the system that is “ reason¬ 
able. ’’ Generally this is the static deflection curve as in the Ray¬ 

leigh method. 
(b) If the deflection of the masses is y, the inertia loadings will 

be myar, or ~ yu2. If the circular frequency squared, which cor¬ 

responds to the curve of part (a), is assumed to be 386, that is, if 
co2 = 386, then or g = 1, and the term Wy is the inertia loading of 
the mass. Note that if or = 386, the cyclic frequency is / = 

187.5 cpm. 
(c) Assume that the system is loaded with the inertia loads of 

Wy from part (b), and find the corresponding new deflections y'. 
(d) If the assumed deflections y and the derived deflections // 

have a constant ratio along the system, the shape of the assumed 
curve was correct. All that is then needed to make the two curves 
coincide is to increase the frequency of the assumed curve. There¬ 

fore, 

(e) If the ratio of y/y' is not constant throughout the system, 

the derived curve y' may be used as the next assumption and the 
above steps repeated. As pointed out before, the first assumption is 
generally sufficiently close. This procedure is illustrated in the 

next section. 

9.4 NOTES ON THE RAYLEIGH AND STODOLA METHODS 

Before comparing the Rayleigh and Stodola methods of deter¬ 
mining natural frequencies, it is desirable to illustrate their use by 
means of an example. 
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Example 

The deflections of a constant-section, weightless cantilever beam 
with a single concentrated load as taken from beam tables are given 
in parts (a) and (l>) of Fig. 9.1. 

(a) If a cantilever is loaded as shown in part (c) of Fig. 9.1, 
derive expressions for the deflections yx and y2 in terms of F\ and F2. 

The following data apply: E = 30(106) psi, L = 10 in., a = 6 in., 
I — \ in.4. 

(b) If a weight TFi of 100 lb is placed at Fx and a weight W2 

of 200 lb is placed at F2, determine the natural frequency of the 

% / ; -4—X—+ | F %' 
__JA > 

U— 1 <—a—> Eo ^ 

;<• y/ * - L - — h - i » 4 <-L-> -L -—H F—Lf—^ -L 

uH Va^0j (3E-a) (c) 

y,=£r\tL-x) va=i£ 
(a) (b) 

Fig. 9.1 

system by the Rayleigh method, using the static deflection for 
the first assumption. 

(c) Repeat part (b), using the Stodola method. 
(a) The total deflection at any point on the beam is the sum of 

the deflections at that point due to each load acting independently. 
Bv combining the equations of Fig. 9.1, 

_ F\1J F2a2 v 
!h 3A7 + 0A7 (3L a)’ 

/*V/3 . F\(i~ oy N 

■h ~ 3A7 + C.A7 [AL ~ a)- 

Substituting the values A’ = 30(106), A = 10, a = 6, and I = 

1 gives 
//, = 1 l.l l(10~6)Fi + 4.8(10~6)F«, (9.4) 

yt = 4.8(10-6)Ai + 2.4(10-6)AV (9.5) 

(b) Raylciqh method. For the static deflection let Fi = 117 = 
100 and F» = Wt = 200 in Eqs. (9.4) and (9.5). Then, 

»/, = 11.11(10-6) X 100 + 4.8(10~6) X 200 

= 0.00207 in. 
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y2 = 4.8(10-6) X 100 + 2.4(10-6) X 200 

= 0.00090 in. 

Applying the deflections just found to Eq. (9.1) gives 

, = ffXU'y = 380(100 X 0.00207 + 200 X 0.00090) 
W1‘ I'll-y- 100 X 0.00207- + 200 X (O)O(HkF- 

= 251,300, 

an = 501.3 rad per sec. 

Therefore,/i = 4,788 cpm. 

For the second assumption, the inertia loads F = myu>r should 
be used, where y is the static deflection and on is the static circular 
frequency. Then. 

Fi = iJS X 0.00207 X 251,300 = 134.7 lb, 

Fi = KS X 0.00000 X 251,300 - 125.0 lb. 

Substituting these value's of F in Kqs. (9.4 ) and (9.5) to obtain 
the corresponding deflections. 

Ui = 11.1 1 (10-r ) X 134.7 4- 1.8(10 r4 X 125 

- 0.002097 in., 

yo = 4.8(10 '*•) X 131.7 + 2.4(10 f‘) X 125 

- 0.000940 in. 

Since this approximation is the second in which the inertia 
loading is used, the circular frequency is given by Eq. (9.2) as 
follows: 

2 _ gZFy' _ 380(131.7 X 0.002097 + 125 X 0.000940) 
2" t\Vy'- 100 X 0.002097- + 200 X 0.0009462 

= 250,000, 

c02 = 500 rad per sec. 

Therefore, f2 — 4,775 cpm. 
It is interesting to note that, even though the loading on the 

beam changes considerably with the two assumptions, there is very 
little difference in the derived frequencies. Since the second 
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approximation is closer to the true conditions, the frequency is 
lower, which is in accord with Rayleigh’s principle. 

For the third approximation, the inertia loads are found by using 
the second derived deflections and its frequency, that is, F' = 
my'u) 22. Thus, 

Fi = VA X 0.002097 X 250,000 

- 135.8 lb, 

FY = 122 X 0.000940 X 250,000 

= 122.7 lb. 
Since these* forces are very close to those used in the second 

approximation, the corresponding deflections will be little different, 
and the effect on the frequency is negligible. There is little point 

in continuing with this calculation, and the frequency of the system 
therefore is -1,775 cpm, or very slightly below that figure. 

(c) Stodola method. The static deflection curve will be used 
for the first approximation of the deflection of the beam. From 
part (b) the static deflections at the two masses are yi = 0.00207,. 
in. and y» = 0.00090 in. 

If it is assumed that or = 380 or / = 187.5 cpm, the product 
Wy is the inertia loading on the beam. Hence, 

Fi = W\yi = 100 X 0.00207 = 0.207 lb, 

F» = Ur,/y2 = 200 X 0.00090 =0.192 lb. 

The deflections y caused by these loads are found in Eqs. (9.4) 
and (9.5). Substituting in these equations, we obtain 

yxf = 11.11(10-*) X 0.207 + 4.8(10~6) X 0.192 

= 3.221(10-*) in., 

y«' = 4.8(10-6) X 0.207 + 2.4(10-6) X 0.192 

= 1.454(10“*) in. 

It is now necessary to see if the ratio of the assumed and derived 
deflections is constant along the system or beam: 

y± 0.00207 
= 643, 

Vi ~ 3.221(10-6) 

Ml 0.00096 
= 660. 

3/2' “ 1.454(10~6) 
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Since these two figures differ, it is desirable to use the. derived 
deflections y' as the basis for calculating the inertia loads for an 
additional trial, assuming again that the circular frequency squared 

is or = 386 and f = 187.5 cpm. Thus, 

Fi = WaS = 100 X 3.221(H)-6) = 322.1(10-*) lb, 

Fi' = ir2y2' = 200 X 1.454(H)-6) = 290.8(l()-«) lb. 

The deflections y" caused by these loads are found in Eqs. 
(9.4) and (9.5) as follows: 

= 11.11(10-6) X 322.1(H)-6) + 4.8(H)-6) X 290.8(H) *) 

= 4,974(10-'-) in.. 

(/•_>" = 4.8(10-6) X 322.1(10-“) + 2.4(10“*) X 290.8(H)-6) 

= 2,247(10-'-) in. 

Checking the ratio of the assumed and derived deflections 

y' y" gives 

yi 
Vi" 

3.221(10-*) 
4.974(10-'-) 

t)47.6, 

: • f, 
yj_ 1.454(H)-6) 
y2" 2,244(10-'*) 

647.9. 

These two ratios are sufficiently close together to obviate the 
necessity of an additional trial. The average value of this ratio is 

647.8, which will be used to determine the natural frequency with 
the aid of Eq. (9.3). Thus, 

/„ = 187.5 = 187.5 \/647.8 = 4,772 cpm, 

which very closely approximates the value of 4,775 cpm found by 

the Rayleigh method. 

If the example illustrating the use of the Ra3rleigh method is 
examined carefully, it will be found that for the second and later 
approximations the frequency used to obtain the inertia loadings 

is unimportant, since it will cancel out when Eq. (9.2) is applied. 

(It would be instructive for the reader to check this statement by 

using a value of a>2 of say 1,000 for the second approximation.) 
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Therefore, for assumptions after the first, or static, deflection, the 
two methods amount to the same procedure. 

For complicated systems, such as many masses distributed along 
a stepped shaft, it is more convenient to use a graphical method for 
finding the deflections, as will be outlined in Sec. 9.5, or an approxi¬ 
mate method involving tabular integration,* rather than the 
mathematical method just used. 

While it is possible to use a generalized form of the Stodola 
method to determine higher natural frequencies,! usually the 
general method that will be discussed in Sec. 9.7 will be found to be 
more practical and direct. 

9.6 GRAPHICAL DETERMINATION OF DEFLECTIONS% 

The deflection curves of multimass systems may be determined 

graphically by the principles of graphic statics, and for many cases 
this is the simplest procedure. The basic principles are covered in 
books on strength of materials and mechanics. 

The method is illustrated in Fig. 9.2, in which it is required to 
determine the lowest critical speed of a two-bearing stepped shaft 
based upon the static deflection. The various parts of Fig. 9.2 
are designated by capital letters in parentheses, and these will 
be referred to throughout the remainder of this section. The 
scales to which the figure is drawn apply to the original drawing, 

which was necessarily reduced in printing. 
Part (A) shows an overhung stepped shaft, fully dimensioned, 

drawn to a space scale of 1 in. = S in. It has two impellers, one 

weighing 50 11) and the other 10 lb, located on it. The left bearing is 
located at the left end of the shaft, and the right bearing is 10 in. in 
from the right end. The impeller weights are listed under the loads 

in line (B). The shaft weight is found by dividing the shaft into a 
number of lengths, calculating the weight of each, and assuming that 

these loads act at the mid-point of each length. These loads are 
listed in line (C). The shaft weights are added to the impeller 
weights to give the total loads in line (D). The loads between the 

* A. H. Church, “Difference Calculus Simplifies Computation of Shaft 
Deflections/’ Product Eng., January, 1942, pp. 13-15; May, 1942, p. 295. 

t N. A. Boukidis and R. J. Ruggiero, “An Iterative Method for Deter¬ 
mining Dynamic Deflections and Frequencies,” J. Aeronaut. Sci., vol. 11, 
no. 4, pp. 319-32S, October, 1944. 

X Reprinted in revised form by permission of the publisher from A. H. 
Church, Centrifugal Pumps and Blowers, Wiley, New York, 1944. 
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bearings act downward, whereas those to the right of the right bear¬ 
ing act upward. Owing to the shaft deflection while whirling at the 
critical speed, the centrifugal forces will act outward, and the static 

loading must be taken accordingly. 

These total forces of line (D) are represented vectorially in Hne 
(E) and labeled according to Bow’s notation. The forces are laid 

off successively to a scale of 1 in. = 30 lb on the vertical line of 

part (F) (the distance nb represents force ah, etc.), and they are 
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laid off in the direction in which they act. A pole p is located 1J in. 
from the vertical line, and the radial lines from p to a, 6, and so on, 
are drawn. The pole distance is made li in. so that the moment 
scale is an even value and the moments may be read off directly 
with the aid of an engineer’s decimal scale. The vertical location 
of the pole p does not matter, but a neater diagram generally results 
if it is placed opposite the mid-point of the vertical line. 

The moment diagram (G) is now drawn, starting at the left 
bearing with line a parallel to line pa of part (F), line b parallel to 
pb% and so on. The lines in part (G) are located directly below the 
correspondingly labeled spaces of part (E); thus, the d line is located 

in the d space between the loads cd and dc, and the h line in the h 

space between the1 loads <jh and hk. and so on. The polygon is 

closed by drawing in the k line between the bearings. A line drawn 
parallel to this k line on part (F) gives the bearing reactions graphi¬ 
cally by the lengths hk and ka. The moment at any point on the 

shaft is given by the vertical distance between lines k or h and the 
other lines, to a scale1 of 1 in. = space scale X force scale X pole 
distance*, so that 1 in. — 8 X 30 X 1|- = 300 in.-lb. The values 
of the moment .1/ as scaled from part (G) are listed on line (H). 

The moments of inertia / of the various sections are calculated 
and shown on line (I). The values of M I are calculated, listed on 
line* (J), and plotted to form an M I diagram (I\). The value of 
M I change's instantaneemsly with a change in shaft diameter. 

A eemjugate beam is assumed to be loaded with the area under 
the M I diagram. Those areas are e*alculated and listed on line 
(M) and represented by the vectors on line (X). For example, for 
vector b'c\ 

area 

These imaginary loads will ae*t at the center of gravity of the areas, 
which may be approximateel with sufficient accuracy. They are 
laid off successively on the vertical line of part (Q) to a scale of 1 
in. = 20,000. A pole p' is assumed 1.45 in. to the right of the 

vertical line, and the radial lines p'a\ p'band so on, are drawn. 
The pole distance is again selected such that the deflection scale is an 
even value to facilitate reading off deflections with an engineer's 

decimal scale. The vertical location of the pole p' is again 

immaterial. 



156 ELEMENTARY MECHANICAL VIBRATIONS 

The deflection curve (R) is drawn similarly to the moment 
diagram, that is, line a' is parallel to p'a' in the a' space, b' is parallel 
to p'b' in the 6' space, and so on. As it is assumed that the bearings 
do not deflect, the closing line crosses the deflection curve at the 
bearings. The deflection scale is given by multiplying the space 

scale by the pole distance of part (Q) bv the area scale and dividing 

by the modulus of elasticity E; thus, 

8 X 1.45 X 20,000 
y scale 1 in. 

29,000.000 
- 0.008 in. 

The vertical distance between the closing line and the curve at any 
point represents the deflection. The deflections under the loads 

are listed on the deflection diagram. 
The critical speed is then found from Eq. (9.1). 

ir y i u~ ! "'</ ! uy 

0.9 ! 0.0015 ; 2.25(10-') ! 0 0013 i 2.03(H)-6) 
1.7 ! 0.0047 1 22 09(10“6) | 0 0080 37.55(10-*) 

51.1 | 0.0059 ; 34.Mi 10“*) '* 0.3015 ! 1,778.80(10-®) 
2.1 0.0039 15.21(10-*) 0.0082 31.04(l(r6) 
1.1 0 0 0 0 
i.l i 0 0038 14.44'10~ft) 0.0042 15.SS(10~(’) 

10.7 j 0.0078 60.84(10-f,i 0 0835 051.00(10-“) 

i 1 i 0 4067 1 2.517.20(H)-6) 

nc = 187.5 
. I OAOlu 

\2,517.2(10-6) 
2,380 rpm. 

The running speed of the shaft should be at least 20 per cent 
away from the critical, that is, it should not operate between speeds 
of 1,900 and 2,860 rpm. 

It is not necessary to construct the M/I diagram (K). It was 

done in Fig. 9.2 to clarify the procedure, but the MU values are all 

that are required to get the deflection curve. 

9.6 FACTORS INFLUENCING THE CRITICAL SPEEDS 

OF SHAFTS* 

The critical speed of a shaft is a special case of the natural fre¬ 
quency of a multimass system. There are many factors tending 

* Reprinted in revised form by permission of the publisher from A. H. 
Church, Centrifugal Pumps and Blowers, Wiley, New York, 1944. 
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to alter its value that operate only in this application. Frequently, 
the magnitude of the effect of these factors cannot be predicted 
accurately. When special cases arise in which these factors become 
important or in which it is necessary to account for discrepancies 
between test results and calculated values, the references given 
below in footnotes may be consulted for further details. 

A. Bearing Length 

It is usually assumed that the shaft is simply supported, and 
this assumption is justified if the bearings are free to oscillate and 
adjust themselves to the shaft deflections. Often the bearings 
are fixed and, if long, compared to their diameter, they may tend 
to create the effect of a fixed support. This condition decreases 
the shaft deflection and raises the critical speed. 

As the shaft deflects, the center of pressure of the oil film is no 
longer at the bearing center line but tends to move in toward the 
main mass. A general rule is to move the assumed bearing center 
“in’* toward the main mass about one sixth of the bearing length 
when fixed bearings are used.* 

B. Gyroscopic Effect of the Impellers 

If the impellers are heavy and have a large diameter, they create 
a gyroscopic action and resist any change in the direction of their 
axis. When the shaft begins to whirl, the impeller resists the motion 
and tends to keep it straight, thus reducing the deflection and raising 
the critical speed. This effect is greater for impellers nearer to 
the bearings where the slope of the shaft is greater.! 

(\ Bearing Elasticity 

The usual assumption made in calculating the deflection curve 
is that the bearings are rigid and do not deflect. Actually every 
bearing will deflect somewhat because of the load on it. This 
deflection will tend to lower the critical speed, since the deflection is 

greater than calculated, and may be as much as 25 to 50 per cent. 
The bearings may deflect more in one direction than another (as is 

* See Stodola-Loevvenstein, Steam and- Gas Turbines, McGraw-Hill, 
New York, p. 430. 

t See Stodola-Loewenstein, Steam and Gas Turbines, ibid, pp. 430-437; 
S. Timoshenko, Vibration Problems in Engineering, Van Nostrand, New* 
York, 1937, p. 290. 
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true of the pedestal type which is not so rigid horizontally as it is 
vertically), resulting in two distinct critical speeds for the same 
shaft. It is very difficult to predict the bearing deflection in 
advance, but it may be measured in a unit already manufactured 
to account for discrepancies.* 

D. Shrink Fits of Impeller Hubs 

If the hubs are quite heavy and shrunk tightly on the shaft, 

they tend to stiffen it and raise the critical speed. It is difficult to 

predict the amount of the stiffening because of manufacturing uncer¬ 
tainties in the tolerances, but the effect may be appreciable. 

The critical speed of a shaft may be placed either above or below 
the operating speed. If the unit is to operate at high speeds that 
do not vary widely, the critical speed may be below the operating 

speed, and the shaft is then said to be flexible. In bringing the 
shaft up to the operating speed, the critical speed must be passed 
through; but if this is done rapidly, resonance conditions do not 

have a chance to build up and no difficulty is experienced. If the 
operating speed is low or must vary through wide ranges, the critical 
speed is placed above it and the shaft is said to be “rigid” or “stiff.” 

In the preliminary design of a machine it may be found that the 
critical speed is quite close to ihe operating speed, so that trouble 
may be expected. In such cases it is necessary to alter the dimen¬ 
sions to keep the critical speed at least 20 per cent away from the 
operating speed. It is then convenient to know approximately 

what the effect of design changes will be on the critical speed. 
This may be found by considering the shaft as one having a single 
degree of freedom, in which case the critical speed is inversely 
proportional to the square root of the static deflection. For beams 

WL* 
or shafts the static deflection is proportional to so ^le cr*t'cal 

speed is proportional to - ] -> > \/A’, \/7, or d’. These relations 
y/\V j i 

are quite useful in estimating the changes that may be made in a 

shaft to bring the critical speed to a safe value. 

9.7 GENERAL METHOD 

As mentioned previously, the Rayleigh and Stodola methods 
are not generally suitable to obtain higher natural frequencies. 

* See A. L. Kimball, Vibration Prevention in Engineering, Wiley, New 
York, 1932, p. 72. 
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Equations and methods have been developed to solve special cases. 
Recently a general method has been developed by which any 

natural frequency may be found relatively simply. This method 

was presented by N. 0. Myklestad,* of California Institute of 
Technology, and M. A. Prohl,f of the General Electric Co., inde¬ 
pendently within the same year. Both methods are essentially the 
same; the procedure described here is that due to Prohl. 

The method is based upon assuming a frequency and, after 
working across the shaft or beam, determining a residual function, 
such as bending moment. If this function is zero, the assumed 
frequency is a natural one. A remainder curve for the function 
may be plotted similar to the torque remainder curve of the Holzer 
method. It is more complicated than the Holzer method since 
four integrations are involved rather than two, and additional 
complications arise in dealing with the boundary conditions. 

The differential equation at the natural frequency is 

dx'1 

where m is the mass per unit length. 
From the elementary beam theory. 

M. 

(9.6) 

(9.7) 

Hence, Eq. (9.6) becomes 

d\M 

IF = ^y- (9.8) 

Since Eq. (9.6) is of the fourth order, four boundary conditions 
must be satisfied. Any frequency co that satisfies these four bound¬ 
ary conditions is a natural one. Equations (9.7) and (9.8) may be 
transformed to permit tabular integration and thus form the basis 
for constructing the M and y diagrams. Then, 

4 (s) = (§) <9-9) 
* N. 0. Myklestad, “A New Method of Calculating Natural Modes of 

Uncoupled Bending Vibration of Airplane Wings and Other Types of 
Beams,” J. Aeronaut. Sci., April, 1944, pp. 153-162; also Vibration Analy¬ 
sis, McGraw-Hill, New York, 1944, pp. 184-214. 

t M. A. Prohl, “A General Method for Calculating Critical Speeds of 
Flexible Rotors,” Trans. A.S.M.E. September, 1945, A-142. 
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and 

(mw- A x)yavf, (9.10) 

where Ax is the length of a given section and Mave and yaee are the 
average values of bending moment and deflection for that section. 

Equation (9.9) states that the change in slope of the deflection 

curve at a given section equals — X Mate. Equation (9.10) 

states that the change in slope of the moment curve at a given 

section equals fiu2 Aj X yar<- 

For any assumed frequency to the M and y diagrams can be 
constructed to satisfy three of the four boundary conditions. Rv 
plotting the fourth boundary condition against o>, the natural fre¬ 

quency oj„ will occur when this remainder equals zero. 
The actual calculation method is based upon the following series 

of equations. 
The shaft or beam is transformed into a number of point masses 

connected by weightless springs. The moment diagram has a 

constant slope in each section, since 

~ = r. (9.m 
ax 

The change in shear at a mass is 

AT — myo)- (9.12) 

The deflection curve is smooth, since the body is continuous. 
Assume that Va% M0o, and ?/.> are known and refer to Fig. 

9.3; then, 

Vx = V.t + m0y#>\ (9.13) 

Mi = Mo + r,(A*h, (9.14) 

M = M. + (9.15) 
(-A-T J 1 

8 = vA- M dx + C> <9'16) (nljiJ o 

where C is a constant of integration. When the distance x is zero, 

the slope 6 becomes 6n; hence, the constant C = 6». 
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Substituting Eq. (9.15) in Eq. (9.16) and integrating, 

6 = JjSTfi + (A*)i ° 2"] + 6o’ (9'17J 

y = fJedx + C', (9.18) 

where C' is another constant of integration. When the distance 
x is zero the deflection y becomes yQ\ hence, the constant C = y0. 

ma /3j ml 02 m2t 

Fig. 9.3 

Substituting Eq. (9.17) in Eq. (9.18) and integrating, 

y = -j- Mo -2- + (Ax)l -0 ] + e°x + Vo- (9.19) 

It is only necessary to know 6 and y at the end of the section 

(that is, at point 1). Substituting (Ax)x for x, and #i for 

in Eqs. (9.17) and (9.19), gives 

0i = /3i ^~cjr + -?r^ + 0o, (9.20) (9.20) 

yi = /3i (-|-0 + (Ax)i + e„(Ax)i + y0, (9.21) 

V2 = Fi + viiyiu2, 

Mt = M, -f- U2(Aa:)2. 

(9.22) 

(9.23) 
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By repeating the above steps across the body, the 
and deflection diagrams can be calculated and drawn. 

Generalizing the preceding equations, we find that 

moment 

1 n ~ 1 n_i + (9.24) 

Af« — 3/n_i + 1 n(Ax)n. (9.25) 

6n = $n ^ 1 + —+ 0n-\- (9.26) 

yn = dn (Ax)„ + 0„-i(Ax)„ + (9.27) 

w here 0. - (§f)_ 

Let 

i f t d/ n—1 . d/ n 

n = -o ' “r “77“ > (9.28) 

M ft __ d/fi—1 , 
lU n — ^ ' 3 (9.29) 

Then, 

Vf / I If "   d/n_ i d/n , M n— I - A/» AI n—i 
Mn + Mn - 3 + 0 + 0~ +_3 2 + 

M,. 

2 ' 

0„ = A (0nM+ i3nM„") + 0O. 
n rn 1 

(9.30) 

2/n = [M/»' + ’ (0.J/,' + + 0<,(Ax)„ + 
n = 1 

(9.31) 

(AF)„ = m„w2y„. (9.32) 

(Ai)/)„ = F„(Ax)„. (9.33) 

(Ay')n = + V (0nM+ /3„3/„")](Ax)„. 
n = 1 

(9.34) 

(Ay"),. = 0o(Ax)n. (9.35) 

(Ay)» = (Ay')n + (Ay")n = Vn ~ J/n-1. (9.36) 

It can be demonstrated that V, M, 6, and y at any point in the 

span are linear functions of the four assumed quantites at the start- 
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ing end (that is, point 0). Hence, y, for example, at point n may 
be expressed as 

yn = AnV0 + BnM0 + CJ0 + Dny0, (9.37) 

where A nj Bnj Cn, and Dn represent numerical coefficients taken 
from the table. Since two boundary conditions must be known at 
point 0, only two need be evaluated. This is done in two parts 
on a table. 

The boundary conditions for the usual cases are as follow's: 
Fixed end: 

yn = o. e0 = o. 

Simple supported end: 

//„ - 0, Mn = 0. 
Free end: 

\\ = 0, Ma = 0. 

At common point on adjacent spans: 6 and y same for both. 
Where the values to be placed in the various columns of the 

table are not obvious from the headings, the following list may be 
consulted: 

Col u m n 

1 AT — myixr 

2 1 n = 1 rt~l i Al 

3 Width of step or section 

4 

5 

8 

1M = V(lx) 

A In — M n-1 “f“ Ai/ 

MJ = + -v'1; Mn" 
J/»-1 , Mn 

6 + 3 

9 

11 

12 

13 

*■ - (n). 
^ = &..Mn + "ij 08.J/.' + M//') 

Width of step or section 
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14 Ay" - d<,(Ax)„ 

15 yn = (Ay')n + 6o(Ax)n + j/n_ i 

17 6n = 2 + P„Mn") + 9. 
n «= 1 

The paper also presents a method of including the gyroscopic 
effect of large-diameter disks rotating on shafts, which will he 
omitted here. 

The procedure will be illustrated by two simple examples. 
Actual cases generally have more masses and, hence, are longer, but 
they follow the method that applies to these simple cases. To 
obtain satisfactory results, it is generally necessary to use a calculat¬ 
ing machine which will carry five or six significant figures. 

Example 1 

This problem is the same as the example of Sec. 9.4, as shown in 
Fig. 9.4, where the points 0, 1, and 2 listed in Table 9.1 are located 
on the beam. 

2 
> 

1=1 

_z_ 
W.=2001b } 1 W2= 

V 0 
u 

-6 - 

* 2* 

-A 4“_V 

100 lb 

Kir;. 9.4 

The value of the mass is — and of 3 is —■ 
g hi 

100 

Then, mi = 
200 
38(> 

0.518; m2 = 0.259 ; 3 

= 0.1333(10-6>. 

0 
30(106) X 1 

= 0.2(10-*); d. 

30(10*) X 1 

From the previous example it was found that the lowest natural 
frequency is 4,775 cpm; hence, a trial value of w2 = 0.25(10*) will 
be assumed. 

Table 9.1 shows the complete calculation, which is started at 
the fixed end of the beam for each part. Of the four boundary 

conditions, the two that are known at the fixed end are y0 = 0 

and 90 - 0; whereas the bending moment M„ and the shear V„ 
there are unknowm. For the first part of the calculation one of the 
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unknowns V0 is made unity, and the other factors are set equal to 
zero. For the second part, the other unknown M0 is taken as unity 
and the other conditions set equal to zero. In this way, equations 
for the shear F3 and bending moment at the free end may be 
evaluated in terms of the unknowns at the fixed end. 

It is known that the shear and bending moment at the free 
end are both equal to zero, so that one may be expressed in terms 
of the other to find a remainder. It does not matter whether the 
shear is expressed in terms of moment to get a shear remainder or the 
moment expressed in terms of shear to obtain a moment remainder. 
If this remainder equals zero, a correct assumption of frequency has 
been made. If it does not, a remainder curve may be plotted as in 
the Holzer method to aid in selecting a new assumption of frequency. 

The table is set up by listing the length of the steps Ax in col¬ 
umns 3 and 12 and the values of d in column 9. The values of 
mw2 are found by multiplying the assumed or of 0.25(106) by the 
masses m and are listed in column 16. The terms in the parenthe¬ 
ses in the following explanation refer to the position of the item in 
Table 9.1. 

A shear of unity is assumed at the fixed end 0 and so listed (line 
1, column 2). Since the deflection y0 at the fixed end is assumed to 
be zero (line 2, column 15), the inertia force m0y,>or (line 2, column 
16) is also zero, and there is no change in the shear at this point 
(line 2, column 1). Hence, the shear is unity in the first step (line 
3, column 2). The change in bending moment over this step equals 
AM = V(Ax), or 1X6 = 6 (line 3, column 4). The bending 
moment at point 1 is Ma + AM =0 + 6 = 6 (line 4, column 5). 

By Eq. (9.28) the value of .1/,,,' = = 0 + 1 = 1 

M M 
(upper part of line 3, column 8); and M0” — -q- + -g- = 0 + 2 = 

2 (lower part of line 3, column 8). The value of Ay'/Ax (line 3, 
column 11) equals by Eq. (9.34), which is 0.2(10-*). Since 
the slope at the fixed end is assumed to be zero, that is, 0o = 0 
(line 2, column 17), Ay0l" — 0 (line 3, column 14). The deflection 
at point 1, by the equation for column 15 as given on page 164, 
equals 1.2(10-*) +0+0 = 1.2(10-*) (line 4, column 15). The 
change in the shear at point 1 equals Wij/iw2 by Eq. (9.32), which 
is 1.2(10-*) X 0.1295(10*) = 0.1554 (line 4, column 1). 

The remainder of the table is worked out in a similar manner 
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and may be followed by reference to the original equations or the 
summation given just before this example. 

After both parts of the table are completed, the expressions for 
the shear and bending moment at the free end may be set up in 
terms of the shear and bending moment at the fixed end by using the 
bottom values in columns 2 and 5 for each part. In this example 
the moment at the free end is expressed in terms of the moment at 

the fixed end, that is, Af3 = — 0.0012Afo; hence, the remainder is 
—0.0012. The shear at the free end could also be expressed in 
terms of the shear at the fixed end if desired. 

The moment remainder curve is plotted in Fig. 9.5, and it may 
be seen that —0.0012 is quite small compared with the values for 

other assumed frequencies, and that 4,775 cpm or a value slightly 
less than this represents the first natural frequency. The second 

(and only other, since there are only two masses) natural frequency 
occurs at 27,350 cpm, or at or = 8.2(106). It would be instructive 
for the reader to check this value by a similar calculation. 

Example 2 

A three-bearing shaft with its dimensions and impeller weights 
is shown in Fig, 9.6. Determine its natural frequency neglecting 

the shaft weight. The position of the various points along the shaft 
that are used in Table 9.2 are shown in the figure. 

The single wnight of 125 lb is divided into two weights of 62.5 
lb each located at points 4 and 5 to simplify the calculation. The 

masses and spring constants are found as in the previous example. 



168 ELEMENTARY MECHANICAL VIBRATIONS 

These are mi = = 0.044; m4 = ra5 = 0.162; /3i = 03 =•= 
2.155(10“7); 0* = 0.719(10~7); 04 = 06 = 1.436(10"7); 05 - 
0.346(10~7). Also (Ax)i = (Ax)3 = 12; (Ax)2 = 4; (Ax)4 = (Ax)6 

= 8; (Ax)5 = 4. 
These values are listed in the appropriate parts of Table 9.2, 

as in the previous example. A frequency of 11,600 cpm, which 
corresponds to or = 1.475(106), will be assumed for the lowest 

natural frequency or critical speed. 
This problem is more complex than the previous one in that the 

system has two spans. Each span must be worked separately as 
in the previous example; hence, the calculation is twice as long. 

Starting at the left end of the left span, it is known that the 

moment M0 = 0 and the deflection y0 =0; but the shear Va and 
the slope 60 there are unknown. The general procedure is to solve 

Bearing Bearing Bearing 

Fig. 9.6 

each span in two parts, letting the unknowns in turn equal unity and 
the known terms equal zero. Thus, for the first part, assume 

V0 — 1, M0 = 60 = y0 = 0; and for the second part, assume 60 = 
1, Vo = M0 = 2/0=0. The method of working the table follows 

that used in the preceding example. 
After completing the two parts of the table for this span, it is 

possible to wTite the expressions for the moment d/3, slope 03, and 
deflection yz in terms of the unknowns V0 and d0. These equations 

are given on the left-span table. 
It is known that the deflection at the middle support is zero, 

that is, 2/3 — which gives a relation between V<> and B0. (V0 = 
-*581,OOO0o.) Substituting this relation in the other tw'o expres¬ 

sions gives 03 and Mz in terms of 0O (03 = — O.9960o and M% = 

+76,6OO0o). 
If we consider the right span, the only known condition at the 

left end is 2/3 = 0; but the moment M3 and the slope 03 are the same 

as at the right end of the left span and are known in terms of the 

dope at the left end of the beam 60. At the natural frequency the 
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beam is in an indifferent state of equilibrium, and 60 may have any 
value. It is convenient to consider it unity, in which case Mz — 
+ 76,000 and 03 = -0.996. 

For the first part of the tabulation for this span, let V3 = 1 
and Mz = 03 = yz = 0; and for the second part, let Vz = yz = 0 
and Mz = +76,600 and 03 = -0.996. 

After completing the two parts of the table for this span, expres¬ 
sions for the moment d/6 and the deflection ?/6 in terms of Vz and 

/(103) cpm 

Fig. 9.7 

0O (which is taken as unity) are obtained and given on the tabula¬ 
tion. It is known that the deflection y$ equals zero; hence, this 
expression may be solved to find the shear at the middle bearing. 
Then, U3 = 1,398.000. This value may then be used to find the 
moment M6 at the right end of the system; thus, 3/6 = +471,000. 

If this moment had equaled zero, the assumed frequency would 

have been a natural one. Since it does not, a new frequency 
assumption must be made and the calculation repeated. The 
moment M 6 may be plotted against assumed frequencies to obtain a 

remainder curve. The points where this curve (shown in Fig. 9.7) 

crosses the zero axis represent the natural frequencies. For this 
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example they are at 12,050 cpm and 16,850 cpm for the two lowest 

modes of vibration. 

PROBLEMS 

9.1. For a simple beam made of steel and having the dimensions 
and loads shown in Fig. 9.8, the deflections at the loads are 

yi = 117.9(10~6)F1 + 179.2(10-6)F2, 

y2 = 179.2(10-6)jF\ + 301.8(10-6)F2. 

Determine the lowest natural frequency of the system (a) by the 
Rayleigh method and (b) by the Stodola method. A ns. 818 cpm. 

Wr 
u_ 

=200 T72=ioo 
*_e'/ J 

i-'dia 
6 4_ 

-30- 
f 3 

Fig. 9.8 

9.2.* Determine the first lateral critical speed of the shaft 
shown in Fig. 9.9, neglecting the weight of the shaft itself. Use 
the following scales: space 1 in. = 10 in.; force 1 in. = 100 lb; 

200 lb 60 1b 

-15- -10- -5'M<-10"- 

JL 

Bearing 2 dia Bearing 
1H dia 

Fig. 9.9 

pole distance p = 2 in.; area scale 1 in. = 20,000; pole distance 
p: = 1.45 in. Divide the M/I diagram into 10-in. lengths and 

work the problem on a sheet of 8£ by 11-in. paper held vertically. 
Use E — 29(106). Ans. 2,000 rpm. 

9.3.* A constant-diameter shaft has an impeller located approxi¬ 
mately midway between two bearings. What would be the approxi¬ 
mate effect in per cent on the lateral critical speed of (a) increasing 

* Reprinted by permission of the publisher from A. H. Church, Centrif¬ 
ugal Pumps and Blowers} Wiley, New York, 1944. 
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the shaft diameter 20 per cent; (b) increasing the impeller weight 
5 per cent; (c) decreasing the bearing span 10 per cent? 

Arts, (a) Increase 44 per cent; (b) decrease 2.4 per cent; (c) 
increase 17 per cent. 

Weight 20 lb 20 lb 200 lb 

y 0.0004" 0.0004 " 0.0006" 

Fig. 9.10 

9.4. Solve Prob. 9.2 by the general method to obtain the two 
natural frequencies. Ans. 1,960 cpm and 4,740 cpm. 

9.6. The static deflection curve of a three-bearing shaft is shown 
in Fig. 9.10. If the weights and deflections are as shown there, 
find the critical speed based on this static deflection and the Ray¬ 
leigh method. Ans. 8,500 cpm. 



Chapter 10 

BALANCING 

10.1 IMPORTANCE AND DEFINITIONS 

No forces will occur to cause vibration if it is possible to balance 
a machine completely. If unbalance is present, the machine will 
be vibrated, which may cause rubbing and excessive wear; more¬ 
over, forces are transmitted to the foundation and the ground, with 
the added result that energy or power is consumed with a con¬ 
sequent loss of efficiency. These effects are obviously undesirable 
and are to be avoided. 

There are two general types of balancing problems that must be 
considered. One of these is the unbalance that occurs in the design 
of the machine, as, for example, in a multicylinder engine, a cam¬ 
shaft, and the like. If the member has pure rotation, it is possible 
to incorporate in the design one or more balance weights properly 
positioned to eliminate this unbalance, as will be described in the 
next section. The other type of problem is caused by manu¬ 
facturing difficulties. The design of the machine may be such as 
to eliminate any predictable unbalance, but owing to necessary 
tolerance specifications, nonhomogeneity of the material in the form 
of gas inclusions, heavy spots, and other such factors, the member 
may be unbalanced. Relatively small weights not on the axis of 
rotation may set up large centrifugal forces when the machine runs 
at operating speed. For example, an unbalance of 1 in.-oz creates a 
centrifugal force of 23 lb at 3,000 rpm. This condition is remedied 
with balancing machines, which determine the amount and position 
of the unbalance that may be corrected by adding or removing 
weight at the proper points, as will be discussed in Sec. 10.3. 

Machines may be divided into two general classes from the balanc¬ 
ing standpoint, namely rotating and reciprocating. Examples of 

174 ' 
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rotating machines are turbines, motors, and centrifugal machines in 
general, while reciprocating machines include gas and steam engines, 
reciprocating pumps, and the like. In general, the problem is more 
complex in the latter class, since the motion of the piston is recipro¬ 
cating whereas that of the crank is rotating. Therefore, a centrif¬ 
ugal rotational force is set up by the crank, and the piston 
acceleration produces reciprocating inertia forces. One end of the 
connecting rod is attached to the piston, and the other end rotates 
with the crank. As developed in Sec. 8.2, it is customary to con¬ 
sider a portion of the connecting-rod weight to be concentrated at 
the erankpin and the remainder at the wrist pin or crosshead. It 
is not possible to balance out all the induced forces in a single¬ 
cylinder engine, but for some multicylinder engines, the unbalanced 
forces may be made to annul each other, and thus complete balance 
may be attained, as will be outlined in Sec. 10.5. 

JF 
o 

1—X * 

\F 
(a) (b) 

Fig. 10.1 

The two types of balance are static and dynamic. Static balance 
occurs when the center of gravity of the member coincides with the 
axis of rotation. If the member does not move when placed on 
horizontal parallel guides, it is said to be in static balance. It is 
possible that a member will be in balance when it is static or not 
rotating, yet will not be in dynamic or rotating balance. Thus, 

in each case of Fig. 10.1, the center of gravity may lie on the axis of 
rotation so that the members are in static balance; but when a 
member is rotating, the equal centrifugal forces F that are developed 
will create a couple tending to roll the member “end over end,’’ 

causing dynamic unbalance. In case (a), the magnitude of the 
unbalance may be known and corrected for by an opposing couple, 
as will be described in the next section. In case (b), where the axis 
of the cylinder does not coincide with the axis of rotation, the unbal¬ 
anced farces may have to be determined with the aid of a balancing 
machine, as will be described in Sec. 10.3, before the size and position 

of the balance weights can be predicted. 
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More complete information concerning balancing may be found 
in E. W. Dalby, Balancing of Engines, Arnold & Co., London, 1929. 

10.2 ROTATIONAL BALANCE 

If a single weight IL has its center of gravity r in. from the axis 

of rotation, as shown in Fig. 10.2, it may be put in static balance by 
placing another weight W at radius r\ as shown dotted in the figure. 

O W ^ ) w' 

Fir,. 10 2 

so that Wr = 1FV. This will place the center of gravity at the 

center of rotation. 
The centrifugal force developed by the weight W alone is 

rcj2' and of the balance weight IF' is rV2. Equat- 

ing these two forces, ll> = IFV. Hence, the same correction gives 
both static and dynamic balance for this case. 

If several masses are attached to a shaft in a single plane of rota¬ 
tion, they may be balanced by a single weight placed in that plane. 
The vectors representing the Wr values of each weight, acting in 

directions parallel to the forces, are added. The vector required to 
close the polygon represents the direction and magnitude of the Wr 
value of the balance weight that is required to give both static and 
dynamic equilibrium. 

To illustrate, two views of a system of weights are shown in Fig. 
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10.3a, while part (b) of this figure shows the vector addition of the 
Wr values. The closing line scales 43.7 lb-in. If the balance 

weight is to act at a radius of 10 in., the size of the weight should be 
4.37 lb. It acts at an angle of 14 deg with the horizontal and i,s 

shown dotted in part (a) of the figure. 
Two weights acting in the same axial plane, as shown in Fig. 10.4, 

may have equal Wr values and thus be in static balance. When 
the shaft rotates, the centrifugal forces developed create a couple 
equal to Wra, thereby causing dynamic unbalance. To overcome 
this condition without destroying the static balance, it is necessary 
to introduce another equal couple in the same plane but acting in 
the opposite direction. The new couple should have a magnitude 
of W'r'b equal to 117a. Any values of IT', r', or b may be selected as 

long as the condition just mentioned is satisfied. The balancing 
couple is shown dotted in the figure. 

W A 

r 

Y - 
O' 

1 r' < a > 
A r'u h i;T~x JLr a 

w'( } r 

%W 

Fig. 10.4 

The most usual and general case occurs when there are a num¬ 
ber of weights placed at various points and angles along the shaft 
as shown in Fig. 10.5a. Generally there are two planes perpendicu¬ 
lar to the axis of rotation in which it is convenient to place balancing 
weights. These will be designated as plane 0 and the reference 
plane It. For this example they will be located as shown in the fig¬ 
ure. The axial distances of the weights from the reference plane R 
are designated by the letter a with appropriate subscripts. 

The solution is based upon the principles developed for the 
previous cases and consists of first balancing the moments of Wr 
forces about the reference plane R by drawing a vector polygon of 
the Wra values. The closing line is the force to be placed in plane O 
and will equal TF0roa0. Knowing a0, the value and direction of 
TF0r0 can be found. Placing this weight in the specified position 
will give dynamic balance of the member about the reference plane, 
but the member will still not be in static balance. To obtain static 

balance, an additional weight is placed in the reference plane; 
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and since the moment arm of this weight about the reference plane 
is zero, the dynamic balance already obtained will not be destroyed. 
The size and position of this weight is found by drawing a vector 
polygon of 1 Yr forces, including that in plane 0. The dosing line 
gives the magnitude and direction of the Wr to be placed in the 

reference plane. 

Example 

In Fig. 10.5, given the data in the first five columns of the follow¬ 
ing table, determine the size and position of the balance weights to 
be placed in planes 0 and Ii at a radius of 5 in. to obtain complete 

balance. Note that plus values of a are measured to the right from 
the reference plane, and negative values to the left. The angles 8 
are measured counterclockwise from a reference line OA. 

Plane 
Weight, 

W, lb 
Radius, 

r, in. 
Angle, 
6, deg 

Distance, 
u, in. 

u>, 
lb-in. 

Wra, 
lb-in.2 

1 6 3 0 + 15 IS +270 
2 3 2 300 + 5 6 + 30 
3 5 6 135 + 10 30 + 300 
4 4 4 90 — 5 10 - SO 
0 5 i +20 ! 

R 5 1 
; ! 

0 ! 
i ! ! 

The values of Wr and Wra listed in the last two columns of the 
table are calculated, and the Wra vector polygon is drawn as shown 
in Fig. 10.5b. Successive Wra vectors are laid off at the 6 angles 
given above. Note that the vector of the No. 4 moment is negative 

and is therefore laid off opposite to the usual direction. The closing 

line representing IFV(/io (shown dashed) scales 129 lb-in.2. Since 
a0 is 20 in., IF0r0 = V/ = 0.45 lb-in. As the weight is to be 
placed at a 5-in. radius, TF0 = 6.45/5 = 1.29 lb. The angle 60 as 
scaled from the polygon is 235 deg. The weight thus added gives 
dynamic balance of the member about a point in the reference 

plane. 
The value for W0r0 of 6.45 lb-in. and for 0O of 235 deg just found 

may be added to the above table and the Wr polygon drawn, includ¬ 

ing WoTo, as shown in Fig. 10.5c. The closing line (shown dashed), 

representing TFj?r*, scales 26.9 lb-in. As the weight is to be placed 
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at a 6-in. radius, Wr = 26.9/5 = 5.38 lb. The angle Or as measured 
on the diagram is 278 deg. As noted previously, this added weight 
does not destroy the dynamic balance about the reference plane, 
as the moment arm an is zero; but it does give the member static 
balance. With the two weights added, the member is in com¬ 
plete balance. 

The above work may be done mathematically in tabular form by 
adding the horizontal and vertical components of the Wra and Wr 

vectors to find the components of HVoflo and UV** and the values 
of do and Or. * 

It should be observed that if a rotor is placed in balance for one 
speed, it will be in balance for any other speed, since the co2 term is 
common to all the masses. An exception to this rule would occur 

when the speeds are high enough to cause some distortion in the 
rotor shape. This distortion may be either permanent or within 
the limit of elastic action. 

* C. W. Ham and E. J. Crane, Mechanics of Machinery, McGraw-Hill, 
New York, 1938, pp. 370-373. 
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Furthermore, if the member is in balance at constant speed, it 
will be in balance during periods of acceleration and deceleration. 
During those periods, tangential forces of magnitude ra act on the 
weights. Since these forces are uniformly perpendicular to the 
centrifugal forces, they will automatically be in balance, that is, 
the directions are merely turned through IX) deg. 

10.3 CORRECTIVE BALANCING AND 
BALANCING MACHINES 

It was shown in the previous section that complete balance can 
be obtained for any weight distribution by placing weights in’two 
convenient planes of a rotor. In that section, the magnitude and 
position of the unbalance were known. The problem to be con¬ 
sidered here is to determine the size and position of the balance 
weights to be placed in the two planes that will counteract the effect 
of unknown unbalance in a rotor, which may be due to such factors 
as small eccentricities, nonhomogeneity of the material, and the like. 

The early procedure, and one that is still used in some cases for 
balancing rotors in the field, is first to give the rotor a static balance 
if possible. The rotor is then mounted in bearings and run at a 
high speed in one direction, and the high spot of the rotor is marked 
with a scriber. The rotor then runs in the opposite direction at 
the same speed and the high spot marked again. If the critical 

speed of the rotor has not been exceeded, the correction weight 
should be placed opposite the mid-point between the two high spots 
thus found. This method is not too reliable, and the size of the 

balance weight must be found by trial. 
In this method it is necessary to run the rotor in both directions 

and take the mid-point of the high spots, since the high spot will 
not coincide with the position of the unbalance. Reference to Sec. 
5.2 and Fig. 5.3 shows that the high spot lags the center of gravity 
or unbalance by an amount that depends upon the speed of rotation, 
amount of damping, and the like. At the critical speed the amount 
of lag is 90 deg, and in that vicinity it changes rapidly as shown by 

the illustration. 
Small rotors may be balanced more rapidly and accurately in a 

machine. There are a great variety of these on the market,* many 

* J. P. Den Hartog, Mechanical Vibraiions} McGraw-Hill, New York, 
1947, pp. 292-309. 
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of which are designed for production balancing of particular types 

of rotors. The fundamental principle on which they are based 
will be outlined here. 

The rotor is placed in a light frame that may be pivoted at the 
balance planes and is supported on relatively weak springs at the 
bearings. Some means of measuring the amplitude of vibration of 
the frame is provided: it may be done electrically, by means of 
mechanics* dial guages, or other instruments. In Fig. 10.6 the rotor 

is shown in place, the frame being pivoted at balance plane A A. 
The rotor is brought up to a speed greater than the natural fre¬ 
quency of the rotor-frame-spring combination, and the speed is 
then slowly decreased. The maximum amplitude recorded as the 
rotor passes through this natural frequency is a measure of the 

unbalance about plane A A. By trial, the magnitude and position 
of the correct balance weight to be placed in plane BB can be 
obtained. Then, by releasing the pivot in plane A A and pivoting 

the frame at BB, the above process may be repeated to find the size 

and position of the balance weight to be placed in plane A A to 
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give balance about plane BB. The rotor will then be in complete 
balance. 

In determining the correct balance weight to be used, a weight 
of convenient size is moved at a constant radius to various angular 
positions, and a curve of angle from some reference line on the rotor 
to the weight position is plotted against the maximum amplitude 
of vibration, as shown in Fig. 10.7a. The correct position of the 

balance weight corresponds to the lowest point on this curve (120 
deg in the figure). Since the maximum amplitude never reaches 
zero, it is obvious that the size of the weight is not correct. By 
plotting a curve of maximum amplitude against the size of the 
correction weight placed at the 120-deg position, as shown in Fig. 
10.7b, and noting where it is zero, the correct magnitude (in this 
case 6.8 oz) is obtained. 

(a) (b) 

Fig. 10.7 

The procedure just outlined is slow and cumbersome. It may 
be shortened, however, to taking four runs for each balance plane 
and using the graphical method developed by Den Hartog* and 
illustrated in Fig. 10.8. 

The four runs are made with the following conditions: (a) no 
balance weight used; (b) a balance weight of known size placed at a 
convenient radius from the axis of rotation; (c) the same weight 

placed at the same radius, but diametrically opposite to the position 
of run (b); (d) the same weight placed at the same radius at any 
position between the positions of runs (b) and (c). The maximum 
amplitude of vibration of the frame is recorded for each run. The 
procedure can best be explained with the aid of an example. 

. * J. P. Den Hartog, Mechanical Vibrations, McGraw-Hill, New York, 
1947, pp. 296-297. 
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Example 

The maximum amplitudes recorded for the four runs mentioned 
above are 

(a) 0.030 in. for the rotor without a balance weight. 

(b) 0.040 in. for a 3-oz weight in the 0-deg position. 
(c) 0.025 in. for a 3-oz weight in the 180-deg position. 
(d) 0.032 in. for a 3-oz weight in the 150-deg position. 

Determine the size and position of the correct balance weight 
to be used. 

With the data given, two possible diagrams may be drawn, as 
shown in Fig. 10.8, and each will give the same result. The dia¬ 
gram on the right is labeled with primed letters corresponding to 
the unprimed letters of the diagram on the left. 

The following procedure applies equally well to either diagram: 

(1) Lay off line OA = AD = 30 units [run (a)]. 
(2) Draw arcs of radius DC = OB = 40 units [run (b)]. 

(3) Draw arcs of radius OC = DB = 25 units [run (c)]. 

(4) Locate points B and C at intersection of arcs. 
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(5) Draw a circle with center at A and radius of AC or AB 
(which are the same). 

(6) Draw arc of radius OE = 32 units for run (d) to intersect the 
circle of step 5. 

(7) The angle BAE should equal the angular position of the 
balance weight for run (d) from run (b). 

(8) The magnitude of the correct balance weight is given by the 

line AO drawn to the same scale as that by which AB or AC repre¬ 
sents the size of the balance weight used, and it should be placed 
at the angle BAO with the position of the weight for run (b). 

The explanation of the diagram is as follows: The line OA repre¬ 
sents the unknown unbalance in the rotor. For run (b), the forces 

acting on the rotor are the initial unbalance OA and the effect of 
the added balance weight AB, giving the resultant amplitude OB 
of 0.040 in. For run (c) the forces acting are the initial unbalance 

OA and the effect of the added balance weight AC. The force AB 
acts directly opposite to that of AC, since the two positions of the 
balance weight are diametrically opposite on the rotor. The fourth 
run (d) is made to establish the direction in which angles are to be 
measured, that is, clockwise or counterclockwise. The added 
unbalance AE equals AB or AC and acts at the known angle of 
BAE, or 150 deg. 

The distance AB, AC, or AE scales as 15 units on the figure; 
hence, the initial balance or size of the correction weight to be 
placed at the fixed radius is AO/AB times the size of the trial weight. 
Thus, X 3 = 6 oz. The correction weight should be placed at 
236^ deg with the weight position for run (b). 

Rotors that have their mass essentially in one plane, as for 
example, airplane propellers, require only a static balance, since 
the moment arms producing dynamic unbalance are negligible. 
This balancing is accomplished by mounting the member on parallel 
horizontal guide rails and adding weight until the member remains 
in any position in which it may be placed. 

10.4 SINGLE-CYLINDER ENGINE 

A. Piston Displacement, Velocity, and Acceleration 

Before considering the forces acting on the engine, it is desirable 

to derive an expression for the acceleration of the piston in terms of 
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the crank angle and angular velocity of rotation. In Fig. 10.9, 
let r be the length of the crank, nr the length of the connecting rod, 

and x the distance from the center of the crankshaft A to the cross¬ 
head B for any position of the mechanism. The stroke of the piston 
is DE and equals 2r. When the piston is at midstroke M, the dis¬ 
tance x equals nr. Hence, the piston displacement s from the mid- 
position equals x — nr. 

C 

If the angle between the crank and piston motion is 0 and that 
between the connecting rod and piston motion is </>, the displace¬ 

ment 5 is given by 

s — x — nr = r cos 0 + nr cos <£ — nr: 

xt . , CF A . CF , . sin 0 «. 
Now, sin <f> = — and sm 0 = —; hence, sin <t> =-since 

nr r n 

COS' 
, . o L sin2 0 . 

<t> — 1 — sin- <t>, then cos <f> = 1-^7—-; and 

s = r cos 0 + nr 
In- — sin2 0 

r I-—- nr 

— r(cos 0 + v n~ — sin2 6 — n). (10.1) 

If the crank rotates with a constant angular velocity to, then 
6 = ut and dO/dt = w. Differentiating Eq. (10.1) with respect to 

time t to find the velocity of the piston v, 

v = = r — sin 8 + |(n2 ~ si1*2 8)~^( —2 sin 0 cos 0) 

sin 28 "| 

i2 — sin2 0J 
sir = — ra> sin 0 + 

2 V^2 
(10.2) 
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The minus sign specifies the direction of the velocity and may be 
neglected. If the sin2 6 term in the radical is neglected, the error is 
small, since its maximum value is 1. Equation (10.2) may then be 

written in the form 

v = rw 
/ . n . sin 2d\ (s,n, + -2-r J (10.3) 

If Eq. (10.3) is differentiated with respect to time t, an expression 

for the acceleration of the piston a results; thus, 

dv o / /j | cos 20\ /in At a = —- = ror ( cos 6 H-)♦ (10.4) 
at \ n / 

When n equals 4, the maximum error in the acceleration result¬ 

ing from the use of the approximate equation is only about 0.6 per 

cent. 

B. Force Analysis 

If the connecting-rod mass is divided between the crankpin and 
piston as outlined in Sec. 8.2, the forces acting on the moving parts 

of the engine are 

(1) Centrifugal force Fc due to the crank weight. 
(2) Fluid pressure Fj due to the expanding gas or steam in the 

cylinder. 
(3) Inertia force Fi causing the acceleration or deceleration of 

the piston. 

These forces as they act on the moving parts of the engine are 
shown in Fig. 10.10. Their magnitude and the manner in which 
they act on the frame of the engine wall now be considered. 

(1) Centrifugal Force Fc. The centrifugal action of the weight of 

the crank, crankpin, and portion of the connecting rod acts radially 
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away from the center of rotation. Its magnitude equals 

where Wc is the weight of the rotating parts considered to be con¬ 
centrated at the crank radius r. The action of this force on the 
frame is a pull in the same direction at the crankshaft bearings as 
shown on Fig. 10.10 by the force Fc'. 

It may be equalized by a balance weight placed opposite to 
the crank. The product of its weight and the radius of its center of 
gravity should equal that of the unbalance; that is, = Wcr. 
The balance weight is shown in dotted lines on Fig. 10.10. 

(2) Fluid Force F/. The force due to the expanding steam or gas 
acts on the piston, as shown in the figure. Its magnitude equals 

dp2p/f where dp is the diameter of the piston and p/ the pressure 

exerted by the fluid at any moment. This force is transmitted to 
the crosshead or wrist pin, where it is broken up into two com¬ 
ponents Fcr and Fv. The force transmitted along the connecting 

Ff 
rod then is Fcr = —— and hence is greater than F/. The other 

cos <f> 
component Fv represents the push of the crosshead on its guide; thus, 
Fv = Fcr sin 4> = F/ tan <f>. 

The connecting-rod component Fcr is transmitted along the con¬ 
necting rod and down the crank. It acts on the crankshaft bearings 
in an amount and direction equal and parallel to the component at 
thb wrist pin or crosshead and is shown on the sketch as force 
Fer. The horizontal component of this action F/ equals Ff and 
acts in the same direction, while the vertical component Fvf equals 
FV} but acts upward. Hence, the forces Fv and Fv' acting at a dis¬ 
tance x apart form a couple that is equal to the torque developed 
by the engine. As long as the engine delivers power or torque, 
this couple must necessarily be present. The horizontal component 
F/ is balanced in the engine frame by an equal and opposite force 
exerted by the expanding fluid acting on the cylinder head. 

As the magnitude of the fluid force continually varies with the 
pressure in the cylinder, the torque on the engine produced by the 
Fv components will be vibratory. This vibration cannot be elimi¬ 

nated in a single-cylinder engine. 
(3) Inertia Force F,. The force F* is induced by the acceleration 

or deceleration of the piston as given by the fundamental equation 
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F< = where av is the acceleration of the piston as given by 

Eq. (10.4) and Wp is the weight of the reciprocating parts including 
a portion of the connecting rod weight. Hence, 

F% 
Wp J 
—- rar I cos 0 + 

0 \ 
cos 20\ 

* ) 
(10.5) 

It may be noted that if the connecting rod is infinitely long, this 

equation reduces to Ft = ru}2 cos an(^ ^e force is harmonic. 

Equation (10.5) may be written 

Fi = ^ rcj2 cos 0 + (2o>)2 cos 20. 
Q Q *n 

(10.6) 

In this form it may be observed that the inertia force is made up 
of two terms; the first is known as the primary inertia force, and the 
other as the secondary inertia force. The secondary inertia force 
acts at twice the frequency of the primary, is smaller in magnitude, 
and is due to the angularity of the connecting rod, or the variation 
in the angle <t> which prevents the piston from moving with simple 

harmonic motion. 
When the piston is accelerating, the force acts on it in the direc¬ 

tion of motion; and when the piston is decelerating, the force acts 

opposite to the direction of motion. The action of this force on 
the frame of the machine is similar to that of the fluid force F/y 
except that the horizontal component at the crankshaft bearings is 
not balanced out by an equal force on the cylinder head; hence, 
its effect on the frame is relatively large. 

The vertical component of the inertia force acts to increase or 
decrease the turning couple exerted by the fluid force and is usually 
neglected in balancing. 

The horizontal inertia force at the bearings Ft can be balanced to 
some extent. By increasing the magnitude of the balance weight by 
an amount WY, some or all of the primary inertia force may be 

balanced out, since the horizontal component of the balance-wveight 
force and the primary inertia force are both functions of cos 0. The 
difficulty with this procedure is that a new vertical unbalance of 

ro>2 sin 0 is introduced, which creates an additional torque on 
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the engine. This matter will be discussed at greater length in the 
following example. Since the frequency of the secondary inertia 
force is twice that of the engine, it is difficult to reduce its unbalance. 

To summarize, it is impossible to balance completely a single¬ 
cylinder engine. 

Example 

To illustrate the preceding discussion, consider a single-cylinder 
steam engine, given the following information: 

Engine speed, 225 rpm. 
Crank length, 10 in. 
Connecting-rod length, 40 in. 
Connecting-rod weight, 245 lb. 
Weight of reciprocating parts (piston, rod, crosshead), 230 lb. 
Equivalent crank weight at 10 in. radius, 151 lb. 
Distance of center of gravity of connecting rod from crankpin 

center, 13.3 in. 

The fluid force will be neglected in this example and also the 

vertical components of the inertia forces. Then: 
225 

Angular velocity of crank = o> = 2t = 23.55 rad per sec. 

40 
Ratio of connecting-rod length to crank length = n■ = ^ = 4. 

(13 3\ 
) X 245 

= 81.5 lb. 

Weight of connecting rod acting at crankpin = 245 — 81.5 

= 163.5 lb. 

Total reciprocating wveight = Wp = 230 + 81.5 

= 311.51b. 

Total rotating weight = Wc = 151 + 163.5 

= 314.5 lb. 

Centrifugal force at crank 

4,520 lb. 
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/ jj' \ 
Primary inertia force = ( —5 ) rar cos 0 

\ (J / 

= (3gg,‘.-) 10(23.55)2 cos 6 

= 4,470 cos 0 lb. 

Secondary inertia force = ^ (^An) cos ^ 

~ (w)(rsri)(2 x 23 5)1 cos 29 

= 1,120 cos 20 lb. 

Total inertia force = 4,470 cos 0+1,120 cos 20. 

To summarize the forces acting on the crankshaft bearings as 
calculated above, it is convenient to plot them on a polar diagram. 

as shown in Fig. 10.11. The inertia forces for various values of 6 
may be calculated in table form. Positive and negative values 
resulting from the sign of the cosine function indicate the direction 
of action (right and left). 

A circle with a radius of 4,520 units representing the centrifugal 
force of the crank Fc is first drawn about pole 0. Then, for various 
values of 6 the inertia force is laid off horizontally from the corre¬ 
sponding point on this circle. For example, when 0 = 60 deg, 
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Fi = 2,235 — 560 = 1,675 lb. Where the 60-deg radial line inter¬ 
sects the Fc circle (at A) a horizontal line 1,675 units long is laid off 
to the right to locate point B. The resultant load on the bearings 
for this position is then OB, or approximately 5,550 lb. By a simi¬ 
lar procedure, other points are obtained to draw the curve through 
B and J3', which represent the unbalanced centrifugal and inertia 
forces. The maximum horizontal unbalance force = 4,520 + 

4,470 + 1,120 = 10,110 lb. " 
Assume now that a balance weight is placed opposite the crank 

(shown dotted on Fig. 10.10). By varying the size and/or the 
radius to its center of gravity, any desired balance force can be 
obtained. For any engine the balance force should balance the 
centrifugal force completely and part of the primary inertia force 
so as to make the resultant load on the bearings, and hence founda¬ 
tion, a minimum. The effect of the balance force on the diagram of 
Fig. 10.11 is to produce a force acting at the angle 6 with the hori¬ 
zontal, starting from the previously found point (B in the sample 

construction). 
If the balance weight is to counteract the centrifugal force and 

all the maximum primary inertia force, its magnitude Fb must be 
4,520 + 4,470 = 8,990 lb. On a line drawn at a 60-deg angle with 
the horizontal from B, the distance of 8,990 units is laid off to obtain 
point C. Through similar points the curve through C and C may 
be drawn. It retraces itself and, hence, appears as a line rather 
than as a closed curve, giving a smaller resultant force than when 
there is with no balance weight. As mentioned previously, the force 
in a horizontal direction is very small, but it is fairly large in the 

vertical direction. 
The optimum condition will occur when the maximum horizontal 

and vertical forces are approximately equal and a minimum. For 
the conditions of this example, the optimum condition is found to 
occur vThen the balance weight overcomes the centrifugal force and 

from 0.6 to 0.7 of the maximum primary inertia force. The solid 
curve through D and Df is the curve of the resultant force wiien the 
balance weight annuls Fc and 0.7 of the maximum primary inertia 
force; wrhereas the dotted curve through E and E' is for a balance 
weight annulling Fc and 0.6 of a maximum primary inertia force. 
Both have approximately the same maximum and nearly equal 
horizontal and vertical maximums. Generally, the balance-weight 

size is taken so as to care for the centrifugal force and two thirds of 

the maximum primary inertia force for steam engines. 
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10.6 MULTICYLINDER ENGINES 

In some cases it is possible to cancel some or all of the unbalanced 
forces in multicylinder engines by the proper positioning of the 
cranks of the various cylinders. In addition to balancing the forces, 
the couples created by these forces along the crankshaft must be 
considered and, if possible, made equal to zero. 

For a given crankshaft the angles between the various cranks is 
fixed and constant, although their angle 0 with a fixed radial refer¬ 
ence line continually varies as the shaft rotates. Thus, in Fig. 
10.12, which represents a four-cylinder engine, the angles which 

12 3 4 

Fig. 10.12 

the various cranks make with the No. 1 crank, is constant, but the 
angles 0, which they make with the radial reference line OA, varies 
as the crank rotates. The position of any crank 0 is determined by 

the addition of the angles ^ and 01. 
The distances from the center line of the No. 1 cylinder to the 

center line of the other cylinders is dimension a with the appropriate 

subscript, as shown in the figure. 
The primary inertia force, as given by the first term of Eq. (10.6), 

W 
is rco2 cos 0. Considering all the cranks of the engine, 

W W 
Fp = —- riw2 cos 81 H-- r^2 cos 02 + • • • . 

9 9 

Since 0i = 0i + (note that = 0), 02 = 0i + ^2, * * * , 

Fv TiG)2 COS (0i + ^1) + () TV*)2 COS (01 + ^2) + * * * . 
9 \ 9 / 
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But 
cos (0i + f) = cos 0i cos f — sin 0i sin f; 

hence, 

FP = — cos 0\{WPir\ cos + 11%,r2 cos ft + ■ ■ ■ ) — 

O)^ 

~ sin 01(11%,r, sin + 11%,r2 sin fa + • • • ). 

It may be observed that the cosine and sine terms of this equation 
represent, respectively, the horizontal and vertical components of 
the primary force; so that the equation may be broken into the two 
equations that follow: 

Fph — ~ cos ^i2irpr cos ^% (10.7) 

2 
FPV = — sin 6iZWpr sin \f/. 

9 
(10.8) 

If the moments of these primary forces are taken about the No. 1 
cylinder, the primary couple is 

\y jp 
CP = rw2a\ cos 6\ H—~ roo)2a$ cos do + 

Following through steps similar to those above, 
and vertical components of this couple are 

the horizontal 

CPH — — cos 6iZWpra cos iZ% 
9 

(10.9) 

O)2 
CPv — — sin diZWpra sin \1/. 

9 
(10.10) 

The secondary inertia force, as given by the second term of Eq. 
W r 

(10.6), may be written as — or eos 26. Considering all the 

cranks, 

F, = ~ to2 cos 20i + — w2 cos 202 + • • • . 
g n i g n« 

Since 0i = 0i + (again fx = 0), 02 = 0i + ^2i and so on. Then, 

F‘ = %T ? "2 cos (2e‘ + 2*i) + — — w2cos (20! + 2fc) + ‘ » 9 n i g no v r } 1 
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and 

F, = — cos 20, ( irpi - cos 2\p\ + TJV — cos 2** + • • • 
<7 \ «1 >?2 

— sin 20i ( 11 pi — sin 2\p\ + Wv.x —- sin 2\p2 + * * 
g y /? i ti o 

This equation may be separated into horizontal and vertical 
components as for the primary forces; thus, 

F SH — cos 20i 2d";, - cos 2\p 
g n 

— — cos 20iwir;i - (cos2 \f/ — sin2 ^), (10,11) 
g » 

Fsv = — sin 26i2\Vp - sin 2^ 
g n 

— — 2 sin 201wir/, - sin i/' cos \p. (10.12) 
g » 

Taking moments of the secondary forces about the Xo. 1 cylinder 
as before, we obtain 

CSH — — cos 20iw]r;> - a cos 2i£ 

= cos 20iwirp a (cos2 V' — sin2 ^), (10.13) 

C«r = — cos 20iZWp - a sin 2^ 
g n 

2 

= — 2 sin 20i2 M’p - a sin ^ cos (10.14) 
g n 

If the eight equations (10.7) to (10.14) equal zero, the engine is 
in balance. If they do not, the amount of unbalance in terms of 
0i may be found from them. 

Example 

Determine the balance conditions in a four-cylinder engine for 

which the following data are available. The angular position of 



BALANCING 195 

the cranks is 0 deg, 180 deg, 180 deg, 0 deg. The weight of the 
reciprocating parts (including portion of connecting-rod weight) 
is 2 lb. The engine speed is 2,000 rpm. The connecting-rod length 
is 11 in. The crank radius is 2\ in. The spacing of the cylinder 
center lines is 3i in., 4 in., in. 

It may be noted that for this example the values of WP1 r, and n 
are the same for all the cranks, and may be neglected except when the 
amount of unbalance is being calculated. The balance may be 
investigated by a tabulation as shown below: 

i Crank 
1 

Crank 
2 

Crank 
3 

Crank 
4 

i 

Summa¬ 
tion 

Refer¬ 
ence 

equation 

0 iso ISO 0 
COS \p +1 -1 -1 + 1 0 (10.7) 
sin \p 0 0 0 0 0 (10.8) 
a.. 0 3-J 11 
a cos \p 0 -V, + 11 0 | (10.9) 
a sin \p 0 \ 0 0 0 o ! (10.10) 
cos'- \p 1 i i 1 1 
sin2 \p 0 0 | 0 0 i 
cos2 \p — sin2 \p 1 i : 1 1 4 1 (10.11) 
sin ip cos \p. 0 0 0 0 0 (10.12) 
a (cos2 \p — sin2 \p) 0 a.1. 7* i 11 22 (10.13) 
a sin \p cos \p 

i 
0 0 0 i 0 

0 
i 

(10.14) 

from this tabulation it is apparent that the engine is in balance 
for all forces and couples except the secondary horizontal force 
and the secondary horizontal couple. 

Applying Eq. (10.11), the magnitude of the secondary horizontal 
inertia force in terms of 01 is 

F 8H — — cos 20iir„ - 2 (cos2 \p — sin2 \p) 
g n r/ 

-ers >1 (cos 200(4) 
386 11/24- 

417.5 cos 20i. 

Applying Eq. (10.13), the magnitude of the secondary hori¬ 
zontal inertia couple in terms of 0i is 

C ~g n COS ^^1“a(cos2 ~ sin2 
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Ctu 

2,300 cos 20!. 

PROBLEMS 

10.1. Given the following data for two weights on a shaft, find 
the balance weights to be placed in the 0 and R planes. All 
distances are measured from the reference plane R. 

Plane w d 1 r i a 

1 3 0 1 + 5 
2 4 90 4 -10 
0 i 2 + 15 
R 2 0 

Ans. Wo = 0.83 lb, 6o = 127 deg; Wr = 1.95 j?
 

Qs
 

CO II 8
 

CC
 

deg. 
10.2. The conditions are the same as in Prob. 10.1, except that 

the data are as follows: 

Plane ! ir 
i 

0 
! 

r i a 

1 
1 

32.2 45 2 + 10 
2 64.4 180 1 — 5 
O 1 3 + 15 
R 1 3 ; o i 

Ans. Wo = 20 lb, 0O = 210 deg; WR = 24.2 lb, 0* = 348 deg. 
10.3. The conditions are the same as in Prob. 10.1, except that 

the data are : as follows: 

Plane W 6 r i a 

1 50 0 2 + 10 
2 25 90 4 i -10 
O 3 1 -20 
R 3 i ° 

Am. Wo = -23.57 lb, 0O = 135 deg; WR = 53 lb, 0* = 198 

deg. 
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10.4. The conditions are the same as in Prob. 10.1, except that 
three weights are on the shaft and the data are as follows: 

Plane | W 6 r a 

i 
» | 10 30 1 

2 + 10 
2 : 20 270 2 +20 
3 : 30 150 1 
0 3 | +30 
R 3 

0 

Ans. Wo = 9.65 lb, 60 = 101.5 deg; WR = 9.35 lb, 0* = 348 

deg. 
10.6. A rotor being balanced about a pivot in a machine has 

the following maximum amplitudes of vibration at the natural 
frequency. Find the size and position of the correcting balance 
weight to be used. 

(a) 0.020 in. for a rotor without additional weight 
(b) 0.020 in. for a 4-oz weight in the 0-deg position 
(c) 0.025 in. for a 4-oz weight in the 180-deg position 
(d) 0.029 in. for a 4-oz weight in the 135-deg position 

.4/is. 7.62 oz at 285 deg. 
10.6. Given the following data on a single-cylinder steam engine, 

determine (a) the unbalanced centrifugal force at the crankpin; (b) 
the piston inertia force in terms of 6; (c) the maximum horizontal 
unbalanced force at the bearings; (d) the size of the balance force 
to overcome all the crank centrifugal force and two thirds of the 
maximum horizontal primary inertia force: Engine speed, 250 rpm; 
stroke, 18 in.; connecting-rod length, 45 in.; connecting-rod weight, 
222 lb.; weight of piston and crosshead, 200 lb; equivalent ©ranks 
weight at 9 in. radius, 143 lb; distance of center of gravity of con¬ 
necting rod from crankpin, in. 

A7is. (a) 4,825 lb; (b) 4,190 cos 6 + 835 cos 20; (c) 9,825 lb; 
(d) 7,610 lb. 

10.7. A single-cylinder horizontal steam engine rotates at 180 

rpm with a stroke of 9 in. The equivalent weight of the rotating 
parts concentrated at the crankpin is 100 lb, and that of the recipro¬ 
cating parts concentrated at the crosshead is 150 lb. The connect¬ 
ing-rod length is 27 in. Determine (a) the maximum value of the 

unbalanced inertia and centrifugal forces; (b) the horizontal and 
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vertical forces acting on the crankshaft bearings when the crank 
angle 0 is 90 deg and no counterbalancing is used. 

Arts, (a) 1,142 lb; (b) Fv = 432 lb, Fn = 104 lb. 

10.8. Check the condition of balance in an eight-cylinder in-line 
engine having \p angles of 0-180-180-0-90-270-270-90 deg. All 

cylinders are equally spaced on 3-in. centers. The weight of the 
reciprocating parts (including a portion of the connecting rod) is 1^ 

lb. The engine speed is 2,100 rpm. The connecting-rod lengths are 
10 in., and the crank radii are 2 in. If any imbalance is present, 
state its magnitude in terms of 01. 

Ans. CS[J = 3,600 cos 203; rest in balance. 
10.9. The conditions are the same as Prob. 10.8, except that the 

\p angles are 90-270-180-0-0-180-270-90 deg. Ans. In balance. 

10.10. The conditions are the same as in Prob. 10.8, except that 
it is a six-cylinder engine having \p angles of 0-120-240-240-120-0 

deg. Ans. In balance. 
10.11. The conditions are the same as in Prob. 10.8, except that 

it is a four-cylinder engine having yp angles of 0-180-90-270 deg. 

Ans. CpH = 1,126 cos B\\ CPy = 1,126 sin B\\ CSft = 751 cos 20!; 

rest in balance. 



INDEX 

Absorber, dynamic, 110 
lateral, 110 
torsional, 115 

Acceleration, simple harmonic, 10 
of piston, 186 
units, 7 

Accelerometer, damped, 87 
undamped, 50 

Amplitude, 6, 9 
Aperiodic motion, 6, 64 

Balancing, corrective. 180 
importance, 174 
multicylinder engines, 192 
rotational, 176 
single-cylinder engines, 184 

Balancing machines, 180 
Beam formulas. 26 
Bearings, effect on critical speed, 157 
Beats, 12 
Branched torsional systems, 124 

Commercial isolators. 91 
Compound pendulum, 35 
Connecting rod, effect on balance, 174, 

187 
equivalent inertia of, 131 

Cork isolators, 94 
Coulomb damping, 60, 71 
Coupling, equivalent length of, 133 
Crankshaft, equivalent inertia of, 132 

equivalent length of, 133 
Critical damping, 63 
Critical speed, damped, 84 

definition, 6 
effect of, on bearings, 157 
factors influencing, 156 
graphical determination of, 153 
undamped, 55 

Damping, Coulomb, 71 
critical, 63 
definition, 6 
overdamping, 63 
underdamping, 65 
units, 7 
viscous, 61 

Decrement, logarithmic, 69 
Deflection formulas for beams, 26 
Degrees of freedom, 7 
Displacement, of piston, 185 

simple harmonic, 9 
units, 7 

Distributed mass, effect of, 30 
Dynamic absorber, 110 
Dynamic balancing, 175 

Elasticity, equivalent, 132 
Elastic system, 6 
Energy method, 21, 31 
Equi\alent geared system, 135 
Equivalent inertia, 129 
Equivalent shaft length, 29, 132 
Equivalent spring scale, 28 

Felt isolators, 95 
Fits, effect on critical speed, 158 
Forced vibration, 6 
Force method, 31 
Freedom, degrees of, 7 
Free vibration, 6 
Frequency, 6 

beat, 12 
circular, 9 
cyclic, 9 
natural, 6 

Friction, 60, 71 

Geared system, 135 
General method, 158 
Graphical determination of critical 

speed, 153 
Gyroscopic effect of disk, 157, 164 

Harmonic motion, 9 
Holzer method, 119 
Hysteresis, 61 

Inertia, equivalent, 129, 135 
Isolation, damped, 91 

undamped, 48 
Isolators, commercial, 91 

199 
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Isolators, cork, 94 
design, 93 
felt, 95 
requirements of, 92 
rubber, 94 
steel spring, 93 

Lateral vibration, 6 
units, 7 

Length, equivalent shaft, 29, 132 
Lissajous figure, 18, 53 
Logarithmic decrement, 69 

Magnification factor, 46, 82 
Major order vibration, 123 
Mass, effect of distributed, 30 
Mass moment of inertia, of common 

shapes, 130 
units, 7 

Minor order vibration, 123 
Mode, 7 
Modulus of elasticity, effect on equiv¬ 

alent length, 132 
table of, 8 

Multicylinder engine balance, 192 

Natural frequency, 6 
Nodal drive, 24, 124 
Node, 7 

Order, major, 123 
minor, 123 

Oscillating pendulum, 36 
Overdamping, 63 

Pendulum, compound, 35 
oscillating, 36 
simple, 34 
torsional, 36 

Pendulum absorber, 115 
Period, 6 
Phase angle, 12 
Prohl method, 158 
Properties of materials, 8 

Rayleigh method, 146 
Reactions of beams, 26 
Relative motion, damped. 87 

undamped, 50 
Remainder, moment or shear, 159 

torque, 121, 123 
Resonance, 6 

Ring absorber, 116 
Ritz method, 147 
Rotational balance, 176 
Rubber isolators, 94 

Seismic instruments, 50, 87 
Shaft length, distributed inertia, 30 

equivalent, 29, 132 
Simple harmonic motion, 9 
Simple pendulum, 34 
Single-cylinder engine, balance, 184 

equivalent elasticities, 133 
equivalent inertias, 131 

Spring, effect of distributed mass, 30 
in combination. 28 

Spring scale, of beams, 26 
equivalent, 26, 132 
helical springs, 25 
units, 7 

Static balance, 174 
Steady state, 6 
Steel spring isolators, 93 
Stodola method, 148 

Tabulation method, general lateral. 
158 

Holzer torsional, 119 
Three-wire pendulum, 36 
Torque method, 31 
Torsiograph, 53 
Torsional pendulum, 22, 36 
Torsional vibration, 6 

units, 7 
Transfer formula, 36, 129 
Transient vibration, 6 
Transmissibility, damped, 90 

undamped, 48 

Underdamping, 65 
Units, table of, 7 

Velocity, harmonic, 9 
of piston, 185 
units, 7 

Vibration, definition of, 6 
Vibrometer, damped, 87 

undamped, 50 
Viscous damping, 60 

Weight, table of specific, 8 
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