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PREFACE TO SECOND EDITION

The method of analysis used in the first edition of this

book has been retained in the revised edition, although

several other methods applying to rigid-frame bridges have
been brought forward in the past few years. All were given

fair trial in the office of the Westchester County Park Com-
mission when the author was in charge of the design division,

and the consensus of opinion of the designers was that the

process explained in this book is simpler, more flexible, and,

for the type of structure under consideration, at least as

rapid as any other, particularly if the suggestions made at

the end of Chapter IV are followed. Furthermore, the

process is just as susceptible of abbreviation by a designer

who has had experience with it and developed good judgment
as is any other.

The moment-distribution method, incomparable for the

analysis of frames composed of many members, each of

constant moment of inertia, is applicable to the structures

illustrated in this book only with the aid of diagrams from

which fixed-end moments for members of various shapes

must be obtained preliminary to analysis. If independent

calculation of the fixed-end moments for members of variable

section not covered by the diagrams is necessary, more work
is involved by the moment-distribution method.

A convention of algebraic signs is more clearly explained

in the new edition than in the old.

Calculations for the double-span frame bridge have been

shortened by selecting a different “transformed system” to

begin with. At the end of Chapter IX, recommendations are

made with respect to the design of rigid-frame bridges

restrained at the footings.



viii PREFACE TO SECOND EDITION

A simpler and apparently a more logical method for pro-

portioning the steel reinforcement in a skewed arch or frame

bridge is explained and used in the new edition.

Recommendations are made in Chapter X relative to the

design of rigid-frame bridges of small skew.

A procedure is outlined in Chapter X for designing

double-span skew arch or frame bridges.

Secondary effects, such as shrinkage, plastic yield, and

side-sway, as elements of design, are discussed in Chap-

ter XI.

Some important tests and research work relating directly

to rigid-frame bridges have recently been carried out. Pro-

fessor Harold E. Wessman, formerly of the University of

Illinois, now of New York University, has re-edited the

Chapter on research to cover recent developments.

It was not deemed necessary to change the tabulated

calculations that were carried over from the first edition so

as to conform to the current specifications of the American

Association of State Highway Officials. The specifications

followed in the book are given in the Appendix, but the

designer of a new bridge should follow current practice.

For this purpose a diagram for proportioning steel reinforce-

ment, based upon a value of n = io, is given in this book,

although the calculations for reinforcement shown in the

book are based upon the diagram for n = 15.

A number of errors made in the calculations shown in the

old edition have been corrected in the new.

Arthur G. Hayden
Juney 1940



INTRODUCTION TO FIRST EDITION

This book treats of the application of rigid-frame con-

struction to short-span reinforced-concrete and structural

steel bridges. The building of the magnificent system of

parkways in Westchester County, leading from New York
City, demanded the construction of many short-span

bridges up to 120 ft., over and under intersecting highways

and over numerous streams. The rigid-frame type of

bridge has been developed to a high degree of perfection

to meet the conditions imposed by restricted headroom
between intersecting roads, and its economy and extreme

adaptability to architectural expression as compared with

ordinary types of construction have been completely demon-
strated.

The theory of design of this type of indeterminate

structure is fully explained in this volume, although it

involves principles that are not new. The method of pres-

entation of these principles is, however, so simplified and

illustrated by examples that designers in Mr. Hayden’s

office have been able to grasp their meaning and apply

them without having had previous training in higher

structural analysis. Higher mathematics and the calculus

have been excluded from the argument. Few authors

seem to recognize the fact that, in the mathematical line,

a knowledge of simple arithmetic, proportion and the solu-

tion of algebraic equations is all that is necessary for a com-

prehension of indeterminate structural analysis. Mr. Hay-
den has also included in this volume the results of his six

years’ experience in the design of rigid-frame bridges in

order to meet the demand of many engineers and state

highway officials -for more complete information.



X INTRODUCTION TO FIRST EDITION

The rigid-frame bridge is not an offshoot. It has its

proper place in the scheme of structural engineering prac-

tice and is in the direct line of modern structural develop-

ment; hence the timeliness of the present volume. In this

respect an editorial in Engineering News-Record, April 29,

1926, says in part:

In recent years structural engineering practice has turned unmistak-

ably toward fuller use of the continuous form of structure. . . . One
phase of this departure from precedent is represented in the adaptation

of continuous construction to concrete bridges in Westchester County,

with results so impressive in increased efficiency and esthetic range as

to forecast an important influence on future short-span practice. . . .

The planning of these bridges is an important contribution to the

present stage of development and directs attention to the fact that

many structures are inherently integral from footing to hand rail, and

that no great gain is realized from dissecting it into the elements of

abutment and span. The gain in economy, simplicity, and freedom

from many common bridge troubles that can be realized by planning

the structure as an integral unit,* is brought clearly into view. . . . No
less stimulating are the esthetic phases of the subject; for the con-

tinuity of the structure necessarily demands also a representation of

this continuity in the external aspect and involves abandoning the simple

form of arch, girder, abutment and wing wall. In this particular it is

evident that extensive possibilities lie before us. . . . The proven pos-

sibilities and advantages of the continuous type are sufficiently impor-

tant to claim its consideration for the many structures that will have to

be built in the years immediately ahead.

The advantages of rigid-frame construction are, how-

ever, not limited to bridges. The beauty of structural

form that has been realized in these structures can be

extended to many other applications. Large areas for

industrial buildings, hangars, etc., can be roofed with

economy by the use of indeterminate portals of reinforced

concrete or steel as the main structural element; the

omission of trusses adding beauty to the structure, improv-

ing lighting, and eliminating waste space. Great oppor-

tunities lie ahead in this direction and undoubtedly this

volume will facilitate such development, q Hool
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THE RIGID-FRAME BRIDGE

CHAPTER I

PRINCIPLE OF THE RIGID-FRAME BRIDGE

Figures i and 2 illustrate the mechanical principle of
this type of structure. These figures are photographs of

toy structures loaded with an iron weight; Fig. i repre-

senting the action of a beam or girder bridge merely sup-

ported upon its abutments, and Fig. 2 representing the

action of a rigid-frame bridge of one span. The same
members were used in both toy structures, but in Fig. 2

Fig i. Fig. 2.

they were rigidly connected so that they were continuous

from footing to footing.

The difference in action between the two structures is

at once apparent. In Fig. i there is no .flexure in the sup-

porting members ab and cd; they serve no useful purpose

other than to carry the working element be and provide the

necessary clearance underneath. In Fig. i the flexure in

members ab and cd is distinctly noticeable, showing that

they are performing useful work in supporting the load.



2 PRINCIPLE OF THE RIGID-FRAME BRIDGE

Another obvious difference is in the deflection A under the

load in the two cases. The measured deflection in Fig. 2

is only about 0.4 that in Fig. 1.

Inherent Economy.—It is an engineering principle that the

work done by a structure in supporting a load is measured

by half the product of the load and the distance through

which it moves after being placed upon the structure.

Thus we see that in Fig. 2 all three members acting together

have to perform much less work than the single member
be in Fig. 1.

In an actual rigid-frame bridge the members are not all

of uniform width as in the toy structure, but the material is

more efficiently disposed. Figure 28 shows the typical

longitudinal section of a reinforced-concrete frame bridge

requiring only about 60 per cent of the material which would

be required for a constant-section frame; that is, one having

members of uniform section. As a matter of fact, a con-

stant section frame would ’be impractical for a bridge of

much less span than this.

Incidental Economies.—The intrinsic economy of the

rigid-frame construction is evident from the foregoing dis-

cussion. Figures 3 and 4 illustrate the saving in the

{.
6SfA*

5*wMr /frtmt Mrtlfe /

/

Rwd frame show* m fat/ /met.
deem. S/e/ end //e/me*ft s/etr*

t* Pet/ l/aes .

Fig. 3.

approaches permitted by reason of the slender proportions

of the structure. In Fig. 3 a reinforced-concrete frame

bridge and reinforced-concrete T-beam bridge are shown
superimposed and the effect on the approaches of the road

over, is illustrated. Figure 4 shows a like comparison for a
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frame bridge and a fixed arch. The fixed arch requires a

certain minimum rise in the arch rib proper in order to

meet temperature stress requirements, whereas the top of

the frame bridge may be flat if desired. The fixed arch also

requires massive abutments to realize the condition of

fixity of the arch rib as assumed in design. The frame

bridge thus has the advantage of saving of material in

approaches, saving of concrete for the abutments and saving

of excavation lor the abutments. These economies are

not theoretical, but have been demonstrated by a number

'Lattraf Earth Pressure performs
in part the function of nn Abutment

•J

Ataid frame shornn in futt Unas,
fiat Arch and Abutments shorn*
m Pash Lines .

Fig. 4.

of comparative designs and estimates for actual bridges.

The highway departments of several states and county

commissions who have been aided by the Westchester

County Park Commission in the design of this type for

their bridges report the same results.

Economic Limits.—Experience with this type of con-

struction has not been sufficient to determine definitely its

economic limits. It seems that below 30-ft. span, the

reinforced-concrete T-beam floor supported on plain con-

crete abutments has the advantage in economy. Many
concrete rigid-frame bridges have beefy built in West-

chester County, New York, from 35 to 80 ft. in span and
steel-frame bridges from 80 to 120 ft. in span. Within

these limits the economy of the type has be^n demonstrated

as compared with the concrete arch or T-beam bridge and

the steel girder bridge supported on concrete gravity
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abutments. The width of bridge, established under-clear-

ances, effect of floor depth upon approaches and other

factors enter into the question of economic limits, and their

relative effects cannot be determined without considerable

study and a critical comparison of the results of experience.



CHAPTER II

INDETERMINACY

Degrees of Indeterminacy.—It is assumed that readers

of this book have a working knowledge of the theory of

structures and of the principles distinguishing structures

which are statically determinate from those which are

statically indeterminate. A brief exposition, by means of

concrete examples, of what is meant by degrees of inde-

termination in regard to the external forces is, however,

given here as an introduction to the demonstration of the

theory of the indeterminate types treated in this book.

The curved beam in Fig. 5, simply supported and fixed

in location but free to rotate at a, and resting on rollers

at b
,
carries the inclined load P = 5. The load may be

resolved into horizontal and vertical components say

h.c. = 3 and v.c. = 4. Since end b rests on rollers, the

reaction at this point can be only vertical and the h.c. of

the load must therefore be taken off at a. Since 1.H *= o,

the horizontal component of the left reaction Hl — 3.

Taking moments about a
, since 2M = o, we have

4X7 — 3X3 — ioFr = o. From which Vs = 1.9.

Also since 'LV — o, we have Vl — 4 — 1.9 = 2.1. Observe

that the structure was so supported that the two reactions

could have not more than three components, Hl and Vl
of the left reaction and VB of the right reaction, due to the

application of the load P. These three quantities are

calculable as illustrated above, by means of the three static

equations, 2H = o, 2M = o and 2^ = o. If the load

P — 5 were applied vertically, that is, having no horizontal

component, Hl would be equal to o, since — o. Also
s
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since 2M = o, we have by taking moments about
e x 7VR = — ; and since XV = o, we have VL = 5 — 3.5 = 1.5.

Under the load P the above beam would deform and the

end b being on rollers would move slightly to the right.

Assume now that the above curved beam were supported

as shown in Fig. 6, both ends being fixed in location but

not in direction; that is free to rotate at a and b. The
absence of rollers at b now permits the development of a

horizontal component of the right reaction, as well as the

left, due to the application of a load. Thus there will be

four components of the two reactions. Since the ends are

hinged, there will be no bending moments at these points

and Vl and VR may be determined by means of the two

static equations 2M = o and XV — o as before, because

the moments of Hi and Hr about either a or b are equal to o

and thus do not affect the values of VL and VB. The h.c.

(3) of the load will be divided between the two components

Hi and Hr of the reactions and, since XH — o the alge-

braic sum Hi + Hr = 3. But none of the three static

equations tells us how the horizontal component of the

load is divided between Hi and Hr. The vertical com-

ponent also develops horizontal thrust. If the applied

load is vertical, Hi and Hr must be equal and opposite

since XH = o; but the amount of these equal thrusts is

still indeterminate. In any case we h^ve four components

of the two reactions and three static equations to solve them.

One other equation must be furnished by the theory of
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flexure, and the structure, as regards the external fqrces, is

said to be statically indeterminate to the first degree.

If the beam is further restrained by being fixed in direc-

tion as well as in location at a, and remains fixed in location

but not in direction at b (that is, free to rotate at b)
y there

will be five components of reactions developed by the

application of a load as shown in Fig. 7. That is, the left

reaction is capable of developing a restraining moment Ml
as well as direct components Hh and VL . There being

only three static equations, two other equations must be

furnished by the theory of flexure in order to solve com-
pletely for the five reaction components. That is the

structure is statically “indeterminate” to the second degree.

VL and VR cannot now be calculated independently as

before, by taking moments about a and b (through which

points the moments ofHL and Hr = o) because the unknown
moment Ml must be taken into account in equating

moments about either a or b. The five necessary equations

must be established and solved simultaneously for the

unknowns.

In Fig. 8, both ends being restrained so as to be capable

of developing restraining moments under load, six com-

ponents of the two reactions will be developed by the

application of a load—four direct cofrnponents and two

restraining moments as shown. Three equations must
now be furnished by the theory of flexure, in addition to

the three static equations, and the structure is said to be

“statically indeterminate” to the third degree. The struc-

ture shown in Fig. 9 is indeterminate to the third degree.
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The structure shown in Fig. io is indeterminate to the

sixth degree.

Fundamentals Underlying Indeterminate Analysis.—The
equations additional to the three static equations neces-

sary for the solution of indeterminate structures of the type

treated of in this book are established by certain relation-

ships depending upon the character of internal deformation

in the structure. This deformation (as in beams, arches,

etc.) is caused by the bending moments, shears and direct

stresses acting in the structure.

Measurements in such actual structures as well as

mathematical calculation show that the bending moments
contribute most largely to the deformation. Shear deforma-

Fig. 9. Fig. io.

tion is small in amount and may usually be neglected

entirely as is done in the following work. Deformation

due to direct forces (compression or tension) are more

important than shear deformation, but are usually counter-

active, tending to relieve resultant stresses. In the develop-

ment of equations it is simpler to consider only the deforma-

tions due to bending moments, and if desired to make a

final correction, for the direct stress deformations. In

arch analysis this correction is made as “rib-shortening”

and is analogous to the calculation of stress due to tempera-

ture fall, as will be illustrated.

Involved in the calculations of stress deformation are

quantities which are a measure of the elastic properties of

the structure, all containing values for moment of inertia.

In such cases the moments of inertia of the entire cross-.
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section are used although the unit stresses are finally cal-

culated on the occasional “cracked section,” neglecting

tension in the concrete. This is for the reason that deflec-

tion measurements on structures show that the deflections

are controlled more by the intact sections where tension

in the concrete exists than by the sections of infinitesimal

length where, in proportioning the reinforcement, tension

in the concrete is assumed to be entirely destroyed up to

the neutral axis.



CHAPTER III

THEORY OP INDETERMINATE ANALYSIS

The methods of design for the arch-like structures

treated in this book depend upon a few fundamental laws

of flexure which are illustrated in the pages immediately

following by a few simple examples in beam deflection;

the homogeneous steel beam being assumed in this part

of the demonstration for the sake of simplicity. A value

of modulus of elasticity (E

)

equal to 30,000,000 is used in

such calculations.

In the figures illustrating deflections due to the elastic

deformation of a very small interval (s) of the axis of the

beam, arch rib, etc., the effects are necessarily very much
exaggerated. In the actual structure, such deformations

and the deflections due to them are very small relative to

the dimensions of the structure. Such quantities as y will

then be practically the same whether measured from the

axis of the structure in its stressed or in its unstressed

position. Likewise the circular functions, arc, sine and

tangent, of the very small angles (0) under consideration,

are all practically the same, although there is an apparent

small difference in the exaggerated figures.

Assume a very small length j of a beam originally

straight as indicated in Fig. 11. After strain due to flexure

alone, the change in length of a fiber distant c from the

neutral axis will be (in circular measure) : s + cA$ — s — cAd,

A9 being the measure of the change in direction of the

tangents at the two ends of s. The strain (change in

• Mcs
length) of this fiber may also be expressed as -gj- in which

10
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Me .

-j~ is the stress on the fiber, due to the moment M of all

external forces acting on the beam, as determined by the

well-known beam formula. Comparing the two equations

above, A6 = The change in direction of the tangent

between any two points will be the sum of the small changes

for all the small lengths s between the points considered, or

2- El'
Assume next a small length s of the neutral axis of a

beam originally curved and subtending an angle 6 before

flexure and 0
f

after flexure (Fig. 12). The change in length

of a fiber distant c from the neutral axis (due to flexure

alone) will then be (s + cO') — (s + cd) = cA6. The strain

(change in length) of this fiber may also be expressed as

f(

S

*4-

Z.
—- in which/ is the unit stress on this fiber due to the

JtL

external moment M on the sectio'n. We then have

cAd = — — from which / = If a * the cross-

sectional area of this fiber, the moment of its stress about

the neutral axis = fac * Summing over the entire
•f T". Cu
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cross-section

M =
from which

Vac = Zac^EAd = IEA6
s + cd s + cd

M M(s -(- cd)

El

For the curvature occurring in ordinary arches, s + cd

may be assumed equal to s. Hence

Ad = Ms
EP

approximately. Summing over any given length of the

axis the change in direction of the tangents at the ends of

such length

Figure 13 represents a straight cantilever beam under

flexure. Assume origin of. coordinates as shown, that is,

at the point a whose displacements are to be determined.

The change in angle between the tangents at the ends of

any small division s of the axis due to flexure is Ad =

in which M is the bending moment, on the particular divi-

sion considered, due to the external loads. The total

angular change between any two points is the sum of effects

of all the small divisions between the points considered that

jzj. If the points considered are a and b> the sum-

mations will be for the divisions between these points;

that is, 9 « 2^, £/* Tta vertical displacement at a con-
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tributed by the flexure in s is, in circular measure,

xMs
xA6 = -rTT' The total displacement of a from a line per-

EI

pendicular to the support at b = 2^ xA6 — 2^ ~pj > t^le

summations being for the divisions between a and b.

Note that the quantity x is an expression for moment on

any division s, due to unit load at a, that is, at the point

whose displacements are desired, the unit load acting in

the direction of the desired displacement. The expression

for the displacement 8„ may therefore be written ^—^aS

If the origin of coordinates had been taken at the support b

instead of at a
,
the expression for the vertical displacement

\'M{d — x)s
,
in which d is distance between8a would be

a and b. In this case, too, (d — #) would be an expression

for moment on s due to unit load at a, and we would have

“ beforc
, _v.MMj

This equation is an expression of Maxwell-Mohr’s Theorem.

In the numerical example following, the total deflection

of point a, from a line perpendicular to the support at b, is

calculated.

The beam is assumed to be homogeneous, that is E
(modulus of elasticity) is the same for all divisions, s.

JM[s s
Consequently quantities for -j- and —j— may be tabulated

for the several divisions s and the summations multiplied

by instead of finding the summation of the several quan-

tities and ^=rr; for the reason that
El El *

+ E* +l
E \ {fl + b • • •)•
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That is, if E is constant,

2Ms I sr^Ms , \r^MxS I s^Mxs
-m

=
E 2*t and 2*-et

=
e 2,—

In this example the divisions s were also arbitrarily assumed

constant, that is, all 12 in. long, and this quantity might

have been treated as was the quantity E. It was retained

X /S MEASURED FROM THE RO/NT AT
WH/CH O/JPLACEMEMTS AR£ 70 BE
FfCURED, 70 7HE CENTERS OF O/V/S/OSVS.

Fio. 14.

in the tabulation, however, to illustrate the process when

it is convenient to vary the length of divisions.

Illustrative Example i.—Find the deflection at a of the cantilever

beam shown in Fig. 14 under the loads indicated.

Point
M Inch-

Pounds
s Inches / x Inches

Ms
I

Mxs

IT
M
El

1 456,000 12 200 66 27,400 1,810,000 0 0000760

2 408,000 12 190 54 25,800 1
>393 )

00° 0 0000715

3 360,000 12 180 42 24,000 1,008,000 0 0000660

4 312,000 12 170 30 22,000 660,000 0 000061

1

5 264,000 (2 160 18 I9, 0oo 357>ooo 0 0000550

6 216,000 12 150 6 i7>3°o 104,000 0 0000480

X 136,300 5,332,000

For a steel beam E (modulus of elasticity) = 30,000,000.

Approximate angular change from support to point a

1^ sr^Ms _ 136,300

I 30,000,000
0.0045 radian.
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Approximate deflection at a

-2Mxs

~EI

1 Mxs 5,332,000=
E “

30,000,000
0.18 inch.

The smaller the divisions the closer will be the approximation.

In this problem the results are accurate to a small fraction of 1 per cent.

M
Figure 15 shows the quantities — plotted to scale. The process fol-

LI

lowed in the above problem shows that the angular change between

M
any two points will be the area of the— diagram, between such points,

plotted to scale; that is ^
LI

EI

Likewise the deflection will be the

M
moment of the portion of the — diagram between the points con-

sidered, about the point of displacement.

The Curved Cantilever Beam (Fig. 16).—The angular

change contributed by the flexure of any division s of the

axis of a member may be measured by the change in angle
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between the tangents at the ends of the division or between

the radii or between any lines, straight or broken, attached

to the ends of the divisions. Making use of this geometric

principle, the deflection of a point in any desired direction

may be readily calculated as shown. Assume, as before,

origin of coordinates at the point a whose calculated dis-

placements are desired. From the figure it is seen that

the vertical displacement of point a contributed by the

Mxs
flexure in s is xAd = -gj- and the horizontal displacement is

Mys . . ...
jyA0 = —jjji in which M is the bending moment on division

s due to the loads acting on the beam. Summing the

effects of all points on the axis (from support to a) the total

.
'r~*^ j^^ixs . .

vertical displacement = 7 and total horizontal dis-

placement is

'S
prj?j'~ Likewise the total angular change

(from support to a) is Note that in the expressions

Mxs •

-gj-> above (for straight or curved cantilever beams) x is

the moment on the several divisions s due to vertical unit

load placed at the point where vertical displacements are to be

measured. Whence the expression for vertical deflection

may be written ^~£j~i which M* is the secondary

moment on the several divisions s due to unit vertical load

at a. Likewise for horizontal deflection at a in the curved

beam, maY be written in which Mh is

the secondary moment on the several divisions s due to

unit horizontal load at a. In general the secondary

moments are calculated in the several divisions due to a

unit load acting at the point and in the direction for which
the desired deflections are to be calculated.
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If the coordinate system had been selected with origin

at b
,
x and y then being measured from b, the expressions

for total vertical and horizontal deflections would then be

respectively an(j
y)s

. Here again

(/ — a;) and (h — y) would be expressions for moments due

respectively to unit vertical load and unit horizontal load

acting at a\ and we have, as before, total vertical deflec-

tion at a — 'sr^MMvi
an(j t0tai horizontal deflection^ El

-2MMhs

El ’
with the same definitions forMv and Mh .

The last forms of the equations for deflection are the

general forms for deflection whatever the coordinate system

may be.

Simple Span Beam (Fig. 17).—For simplicity of demon-

stration the flexure contributed by a small length s only is

shown to exaggerated scale in the figure. It will be con-

venient in what follows to find the constants for a load

unity (say 1 lb.). Let 8ab indicate deflection at a due to

unit load at b and A8„b indicate the increment of deflection

contributed by s. By geometry A 5ab = ——. From what

has preceded A$ — in which Mb — moment on s

fed s *

due to unit load at b. Then A 5„6 = Summing the
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effects of flexure on all elements s
,
we have

. . s xd
SA5a»

= &ab =

For load P greater than unity we have of course

P5ab =

xd

.

Note now that the expression -j is the same as for moment

on s due to unit load at a = Ma . The equation for deflec-

tion may then be expressed as

Pbui = P^MbM„s
El ’

It is obvious from the form of this equation that

P 8ab = P'Z.MMh-^j = Pha.

This is Maxwell’s Theorem of Reciprocal Displacements.

If the origin of the coordinate system had been taken

as in the other examples, through the point for which the

calculated deflection is desired, as shown in Fig. 18 , the

expression for Abai would be

d(l - x - d)Ad
dV~ x ~

7 /

and total deflection

'2
dil — x — d)Mm

l
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d{i — x *—
• d\

Again note that the expression —
j

is the moment

on division s due to unit load at a; whence

P hab = PZMoMa-^J

as before. The last form of the equation is a general form

of equation for deflection, whatever the coordinate system

may be.

Illustrative Example 2.—Assume a simple span beam loaded as

shown in Fig. 19. Find deflection at a. Moments of inertia at centers

p»zpooo

>
(SI

O
!!

o
<0

ID

o
X

o 0
co

/ <P J 4 5 f 7 8 5 /o '

//
j

L J
/EFT. /O FT. 1

MOMENTS
OF /NERT/A

Fig. 19.

of 2-ft. divisions are indicated. In the table below, columns 1 to j

inclusive only are involved in this calculation. Constants are first

found for unit load at which are then multiplied by P — 20,000.

S =* 24 in.

Point
Inch Pounds j

7
MaMbJ MaMaJMa Mh

1 5-4 2-7 0.1042 1 -5 3 0
2 16.4 8.2 0.0632 8.5 17.0

3 27-3 136 0.0461 17.

1

34 3

4 38.2 19.

1

0.0369 26.9 53-8

5 49 * 24 .

5

0.0333 40.1 8O .4

6 60.0 30.0 0.0324 583 Il 6.6

7 $8.9 35-5 0.0333 69.6 II 5.5

8 4J .8 40 9 0.0369 69.2 77-4

9 34 -7 46.4 0.0461 70.0 49-3

10 19.6 i7 .8 0.0632 * 34-4 243
11 «-J 9 3 0.1042 63 4-4

2
i

401.9 j76 .o

^ / 20,000 ^ . ,

P&ab » -SMaMfe- ?* X 402 » a27 mch
. £ * 30,000,000



20 THEORY OF INDETERMINATE ANALYSIS

Illustrative Example 3.—For the same beam, find deflection at a

for upward load R at a as shown in Fig. 20.

R s

R8aa = ~2MaA/a-*
E I

IhMaMa is calculated in column 6 of table above. Substituting values,

Fig. 20. Fig * 21 •

Illustrative Example 4 Find reaction R for continuous beam

over two spans of 12 ft. and 10 ft. loaded as shown in Fig. 21 and having

the same moments of inertia as in preceding example. The deflection

at point d of the simple span beam was calculated above separately

for the 20,000-lb. load at b and for the upward load R at point a . For

the continuous beam of this example the deflections at point d due to

the 20,000-lb. load and that due to the reaction R must be equal and

opposite. That is,

20,000fla6 — Rhaa = O,

or

R
0.27 o

52,000

From which
R = + 14,000;

the + sign indicating that R acts as assumed in the figure.

The value of R may be found more directly, without calculating

actual deflections in terms of load and reaction. Since

Rdab"""* R$a<* ® O

or

|sMMj - - o
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from which

pzmmA
R =

2M„M„'

20,000 X 402

576
14,000 lb. T

Having found the redundant reaction R, the other reactions may be

found by the simple rules of statics 2M = o and 2V = o, as follows:

By moments ao,ooo X 5
— 14,000 X 10 — iiRi = o

from which

Rx

By addition

20,000 X 5 — 14,000 X 10

22
— 1800 lb. J.

Ri = 20,000 + 1 800 — 14,000 = 7800 lb. T

SYMMETRICAL TWO-HINGED ARCH

Refer to Fig. 22. Assume a curved beam resting on

rollers at one end a and simply supported at the other.

Flexure in any small division s of the beam will cause a

horizontal displacement at the free end, yAB — -gj-> in

which M is the bending moment on the division s due to

the external loads neglecting the horizontal thrust H.

The total displacement due to flexure in all the divisions

•sr-vMyj
S IS^ El

Now assume a horizontal thrust applied to the end of

the beam sufficient to counteract the horizontal displace-

ment. New moments Hy are intro4uced» acting on the

individual divisions; and we have:

Total horizontal displacement due to thrust

SHy
2s

El
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The horizontal displacement due to external loads and that

due to the thrust being equal and opposite, we have

\r^Hy2s

2* El 2*El
= o

from which

If £ is constant,

H =

H =

2Mys
TT
y

El

Mys

'Ze,

2_,
a V 2s

T

(i)

(2)

In the equations above, y is also an expression for

moment in the several divisions s due to horizontal load

unity acting like H
;
that is,, at the point and in the direction

for which the deflection of the unrestrained beam was cal-

culated. Whence the expression for H may be written

'ZMMaj
H -
VMMq

in which Ma is the moment on the several divisions s due
to such unit load.

Thrust Due to Change of Span Length.—In equation (i)

for H, is an expression for horizontal deflection at a

(change of span length) due to the loads on the structure

before application of the replacement force H. This change

of span length is SjyAfl, or say Al. The general formula for

H may then be written

EA/

£*4 /
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in which Al is the deflection (change of span length) due to

any cause whatsoever.

If the supports move in a distance A/ they impose upon
the structure a positive thrust (that is, acting as shown in

Fig. 22) which causes negative moments Hy. If they

spread, the effect is opposite and H is negative, acting in

the opposite direction to that shown in Fig. 22 and causing

positive moments.

Thrust Due to Temperature Change.

—

Let c — coefficient of thermal expansion = 0.0000065;

t = rise or fall of temperature in degrees Fahr.;

/ = span length;

A/ = ctl.

Ectl

Temperature rise tends to increase the span length.

This tendency is resisted at the footings which develops a
positive H (acting in the direction assumed in Fig. 22)
producing negative moments. Temperature fall produces
the opposite effect. *

Rib Shortening.—/„ = average direct compression in the
concrete of any division, s, of the arch - normal thrust N
divided by area of section (Ac + 1$AS): Shortening of any

division s caused by direct compression =
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If Ax = horizontal projection of s, the change of span length

Hence

H —

•

Ef
Rib shortening has the same effect as fall in temper-

ature.

The axis divisions may often be assumed constant, with

convenience to the calculator. The quantity s may then

be placed outside the sign of summation and will cancel

out of numerator and denominator of the equations for

loads but not for change of span length due to temperature,

etc. For constant s the convenient form of the denomi-

nators of the equations for H due to change of span length

for temperature, etc., in case summations have

y*
been made for > f

j- in dealing with load calculations.

SYMMETRICAL SINGLE-SPAN RIGID-FRAME BRIDGE

Fixed-End Conditions

The structure is indeterminate to the third degree as

is the fixed arch shown in Fig. 8.

Refer to the demonstration for the curved cantilever

beam and observe that the angular change and horizontal

and vertical movements of any point on the beam are

geometrical quantities resulting from the flexure in the

structure. The deflections may be calculated for any

point on the beam or for any point off the beam connected

by a real or imaginary rigid arm. In this example, Fig. 23,

a symmetrical frame is cut into two equal cantilever sec-
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tions, and the unknown reactions due to a load P are

assumed to be applied a certain distance z below the crown,

as shown in the figure. The reason for this will be clear

as we proceed. The origin of the coordinate system is at

the assumed point of application of the unknown reactions.

The problem is to find the values of the reactions which

are alike for the two cantilever sections and which must be

such that they will cause the ends of the two cantilevers to

coincide as in the joined structure.

The total angular change at point 0 must be equal for

the two cantilever halves, but opposite in direction relative

to the two cantilevers; the total horizontal deflection at

point 0 niust be equal for the two cantilevers but of opposite

sign because one cantilever span is lengthened and the other

shortened by the amount of such deflection; the total

vertical deflection of point 0 must be equal and of the same

sign, because either upward or downward for the two halves.

Mo is a bending moment. Moments due to Ho are Hoy
and moments due to F0 are Vox. In the figure an external

load P is shown on the left cantilever only, but equations

will be derived for loads on both spans, due to which the

bending moment on any particular ’division s of the left

half may be expressed as ML and that on any division s of

the right half may be expressed as Mr. In tabulating such

moments for substitution in the formulas, the rules for

algebraic signs which are explained later on must be

observed, in order to arrive at correct results.
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Applying the principles already deduced and noting

that Fo produces bending moments of opposite sign in the

two cantilever halves, we have:

Equating angular changes:

- - [5>i?

+

m"2iz

+

~ (o

Equating horizontal deflections:

+ *2$ + *2®
" - +M°2iz

+ Ho^ei
~ r°2 £/] (2)

Equating vertical deflections:

+ + (3)

The XX axis of reference is so taken that ~ °-

This will be so when z , the process of

2?

determining the value of z being analogous to the process

of finding the distance z from the crown to the center of

gravity of all the quantities j. This expedient, by eliminat-

ing certain terms in the final working equations, shortens

the labor of calculation.
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Making all cancellations in equations (i), (2) and (3), and

making (but not equal to zero, we have

Xm'%i +El
ys_

EI

(4)

(5)

£/ El u^£/ (6)

If £ is constant it may be placed outside the sign of

summation and will cancel out of both sides of the above

equations. In the numerical example following, s is also

made constant and will cancel out. Hence (calling

Mr + Ml — M) the final equations become:
'ST''M

or Mo » —

st^MrX st^MlX

- ^>4

^My
H0
=-

2f

or

(7)

(8)

T0 =

Sy
(9)

I v A s
In the above process of derivation note that 2^-gj,

and Si? ^or for constant E and s> 2y S/
and were summations for the half arch.
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Reactions Due to Change of Span Length Al.—The left-hand

members of equations (i), (2) and (3) above are expressions

for, respectively, angular change, horizontal deflection and

vertical deflection caused by loads on the structure.

In a symmetrical structure, there will be no resultant

angular change at O due to straight stretching or com-

pressing of the arch. Hence o = — or M0 — o.

Likewise there will be no shear at 0,
that is Vo = o.

In equation (5) substitute, for the left-hand member,
the general expression for horizontal deflection: + A/ for

increase of span length (stretching the arch) due to any
cause whatsoever, and —A/ for decrease of span length

(compressing the arch) due to any cause whatsoever.

Thus

M = - #»=- EM

and

Ho = +

for stretching (10)

EM
s^y2s

for compressing (11)

If in the calculations for external loads with constant s,

summations are made for ^ j- the convenient form for

the above equations will be

Ho -=F
EM

(12)

If the footings spread, H0 will be negative and act

opposite to the direction shown in Fig. 23.

If the footings move in, Ho will be positive and act as

shown in Fig. 23. In the above equations is the

summation for the half arch.
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Reactions Due to Temperature Change.—Given

c = coefficient of thermal expansion = 0.0000065;

/ = temperature rise or fall in degrees Fahrenheit;

/ = span length.

Then
A/ = ctl

The restraint of the footings resists change of span

length due to temperature change; hence for a rise in

temperature there will be a compressing effect and

or for constant s,

H0 = + Ectl

Ho = +
Ectl

(13)

(H)

For a fall in temperature there will be a stretching effect

and

or for constant s,

H0
=- Ectl

X~r

H0
= - Ectl

is
y2

XJ
7

(15)

(16)

The summation is for the half arch.

Rib Shortening.—/. = direct compression due to normal

thrust (pounds per square inch on any division s of the

arch). Shortening of any division s due to direct com-

pression * ^r. If Ax = horizontal projection of s, the

change of span length * A/ *=
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Rib shortening results in a stretching effect.

Hence

or for constant j.

(17)

(18)

The summation is for the half arch.

(Rib shortening is neglected in the numerical example.)

In all the formulas forH0 and V0 note that for the system

of coordinates used (origin at point where deflections are

measured for the two cantilever halves) x is an expression

for moment M, on any division s due to unit load acting

like Vo, and y is an expression for moment Mh due to unit

load acting like H0 . The various equations derived above

might therefore be expressed as follows:

For external loads

Mo -

Ho m

Vo »

(19)

(20)

(21 )
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In the equations for Ho due to change of span length,

temperature change and rib shortening, the denominators

may be expressed as 2

Likewise the fundamental equations for deflection (1),

(2) and (3) may be expressed as follows:

s^M,MhS
,

\^Mhs
, u \^M2

hs
, „ ^MMhS

2i-W~+Mo^~El+Ho2*~Er+Vo^~ET
>. -aMrMhs „ , sr^MkS tt sr^Mk

2s r , -s~\MhMvs

,

,=
~2*~et

—Mo2*^T-H°2*-Er- r°2*-ET~(23)

2*—Er+Mo^Ei+Ho^-^r+F°2*-Er
\^MrMvs

, m \^Mvs jj MvMhs J7 s^Mv
2s , x= 2,-£r-+M»2,£/+w»2^^E7

—

v^~eT (24)

If a different coordinate system had been selected, the

form of all equations would change, including the funda-

mental equations as expressed in (1), (2) and (3), but except-

ing the fundamental equations as expressed in (22), (23)

and (24). In (1), (2) and (3) x and jy would be replaced by
other terms containing x and y but these would still be

expressions for moments due to unit loads acting like the

reaction components whose value it is desired to find, thus

resulting in equations expressed as in (22), (23) and (24).

UNSYMMETRICAL SINGLE-SPAN RIGID FRAME

Designed for Hinged Conditions at the Base

If the frame is unsymmetrical, as shown in Fig. 24,

calculate the simple span moments ^ Px(l — x)
on the
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several divisions s as for the symmetrical structure.

Wy
I
Moments due to the thrust H —

sy\Mys
\

\yy2s^ I

will be Hy;

y being measured from the centers of divisions, perpen-

dicular to the axis XX. In this case, however, all sum-

mations must extend over the full span.

An alternative system of calculation is as follows

(Fig. 25) : Measure y vertically to the XX axis.

I

will act horizontally and the moment on any division s due

"A
Fig. 25.

to it will be Hy. In the numerical example in Chapter VII,
' the first system is followed.



CHAPTER IV

CALCULATIONS

Convention of Algebraic Signs.—In order to obtain correct

results in calculation, it is necessary to adopt a convention of

algebraic signs. Bending moments on any division of the

arch or frame which cause tension on the inside or soffit face

and compression on the outside face are considered positive,

and contrary moments are considered negative. The char-

acter of the bending moment determines, of course, the

direction of the contribution of the division to the potential

deflection at the reaction point. The resultant of all incre-

ments of deflection determines the reaction which opposes it.

In illustrative example 4, Chapter III, the direction of

the redundant reaction R of the continuous beam, under the

downward vertical load, is obvious at the outstart; and the

terms for load and reaction can be equated numerically

without consideration of the algebraic sign of the summation
quantities into which bending moments are entered. Like-

wise the horizontal thrust reactions of the single-span two-

hinged arch will obviously act inward for downward vertical

loads and outward for upward vertical loads; while for earth

pressure on one side the redundant horizontal reactions will

evidently act in the direction shown in the numerical exam-

ple for the symmetrical single-span frame with hinged-end

conditions. Calculations for earth pressure on the steel

frame bridge, Chapter VIII, and for. the unsymmetrical

concrete frame bridge, Chapter VII, are made for horizontal

pressures acting inward, at both ends simultaneously, and

the horizontal thrust reactions will obviously act outward.

In all these cases, equations for the redundant reaction,

H, the direction.of action of which is known, may be formed
33
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numerically without attention to the algebraic sign of the

summation quantity. The value of H having been deter-

mined, however, the bending moments due to it must be

given their correct algebraic signs, as determined by inspec-

tion, so that they may be combined properly with the other

bending moments having their correct algebraic signs.

For multiple-span arches or frames, however, it may not

always be obvious in which direction the redundant reac-

tions will act; but the observance of an additional conven-

tion of algebraic signs will make it unnecessary to prede-

termine the right direction. Any redundant reaction may be

assumed in the beginning to act in either direction along its

line of action. Instead of equating, numerically, the deflec-

tions at the reaction point due to load and the opposite

deflection due to the reaction itself, all deflections at the

same point are equated algebraically to zero; and the ordi-

nates x or y are given algebraic signs in agreement with the

character of the bending moments produced by the redun-

dant reactions as assumed in direction. If the solution of

the equations results in a positive value for a reaction, the

assumed direction is correct; if negative, the opposite direc-

tion is correct. Applying this system to the two-hinged arch,

the form of the equation for H due to loads would be

J
~ °> or as explained in Chapter III,

= o, in which Ma is a substitute

expression for y and is the moment on any division due to

unit load acting likeH which may tentatively be assumed to

act in one direction or the other. Values ofy orMa are now
to be substituted into the tabulations with an algebraic sign:

positive if the redundant reaction as assumed in direction

would produce positive moment and negative if it would

produce negative moment. Thus in the tabulations in

Chapter V, y would be entered as negative, in agreement

with the assumed direction of H, instead of positive.
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would be negative and of course, positive.

Substituting the numerical values of these quantities with

their proper algebraic signs into the equation ofH as written

above, a positive value for H would result, indicating that

the direction as assumed in Fig. 28 is correct, that is, acting

inward for downward vertical loads. IfH had been assumed

in the beginning as acting outward, values for y (or Ma)

would be entered into the tabulations as positive, since the

assumed direction ofH would cause positive moments on the

several divisions, and a negative value for H in the resulting

solution would show that the correct direction for H is

opposite to that assumed.

If some vertical reactions act upward and some down-

ward, moments due to them will, of course, be entered into

the calculations with their proper algebraic signs. Never-

theless, the correct direction of the redundant reaction for

the combined loading may not be obvious at the outstart, if

direct calculation is made instead of following the influence-

line method. Under such circumstances it may be advisable

to follow the full convention of algebraic signs to be explained

later on.

Calculation for the double-span frame, Chapter IX, and

for the skew frame bridge, Chapter X, are carried out in

accordance with the complete convention of signs.

In the analysis of the fixed-end frame (Fig. 34) it is

impossible to equate the algebraic sum of the calculated

deflections at the crown to zero, since actual movement does

occur. The deflections at the crown of the left half are

therefore equated to the deflections of the right half, the

algebraic signs being governed by the effects of the deflection

on each half. This is explained in Chapter III. Influence

tables are derived for downward vertical load on the left

half, Values for y (moment due to unit value of Ho) are

negative for points 7L to 11L (also 7R to 11R) because Ho
applied as shown would cause negative moments at these
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points. Values for y are positive for the remaining points

because Ho would cause positive moments at such points.

Values for x (moments due to unit values of Vo) are positive

for points on the left half with load on the left half because

Vo acting as shown would produce positive moments. Values

of x are negative for the right half because V0 as assumed

would produce negative moments to the right. Substitution

of negative >
negative and negative

in formulas (7), (8) and (9) results in positive values for

M0, H0> and V0 respectively, on account of the double nega-

tive, indicating that, for load on the left half, the assumed

directions of these reactions are correct, as is almost obvious.

If the wrong direction had been assumed for any of them,

but algebraic signs for x, y, and unit value of Mo had been

entered into the tabulations consistent with the assumed

directions, a negative value would have indicated the error.

All this will become clearer as the calculations are developed.

Denomination of Units of Calculation.—In all deflection cal-

culations particular care must be taken to use units of single

denomination—either all inch units or all foot units. In the

preceding numerical examples all units were in inches (bend-

ing moments in inch-pounds, moments of inertia and modu-
lus of elasticity in inch units, axis divisions s in inches, etc.),

and the resulting calculated deflections were in inches. In

the calculations for rigid-frame structures which follow later

on, foot units are used. Bending moments, moments of

inertia, all coordinates, etc., are expressed in foot units. In

the final equations for reactions, E (modulus of elasticity)

cancels out, but it appears in the final equation for horizontal

thrust due to thermal expansion, as seen above. The
familiar value of a,000,000 for modulus of elasticity of

concrete (E

)

which is in inch units must therefore be con-

verted into foot units. That is, in this equation E —

144 X a,ooo,ooo = 288,000,000. Likewise, in the equa-
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tion for rib shortening (if used), /„ = pounds per square

foot and / is in feet.

Free End Conditions.—Before proceeding with the design

calculations of typical rigid-frame bridges an explanation

will be given of the assumptions and short cuts used.

Referring to Fig. 33, p. 59, it will be observed that the

structure rests on a rather wide base, the width being deter-

mined by the supporting value of the soil upon which the

base rests. This figure shows the type used for a bridge rest-

ing “free” upon the soil. In Fig. 33* is shown the type used

when the structure rests “free” upon rock foundation

—

that is, not anchored down to the rock so as to be capable

of developing tension over part of the area, and therefore a

moment couple. In either case it is obvious that the reac-

tion cannot go beyond the edge of the base if the base is

not anchored down. In Fig. 33 the reaction point cannot

come very near the edge because this would presume impos-

sible conditions of soil pressure at the edge. If it could

suddenly come very close to the edge, causing extremely

high local pressure, slight yielding of the soil would auto-

matically throw it in again. There is therefore a reasonable

range on the base within which the reaction must come.

That is, an imaginary hinge may be assumed traveling

within a limited range, and calculations made accordingly.

In the first rigid-frame bridges designed by the author,

calculations were made for imaginary hinges in extreme

positions and critical stresses determined for all sections.

This proved to be an unnecessary refinement, and calcula-

tions are now made as for hinges in one position only—near

the center of the base. The detail shown for a footing on

rock has proved adequate. The vertical reinforcement near

the bottom of the vertical legs is hooped as for a column, and

no spalling of the concrete due to undue concentration of the

reaction at the edge has been observed.

The assuming of hinged condition at the base permits

the design of the single-span rigid-frame structure to be
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made as for the two-hinged arch for which the equations

for horizontal thrust have been derived in the preceding

text. The designer should be able to follow the numerical

example through without further discussion.

Derivation of the equations for a fixed-end single-span

rigid-frame bridge structure is given, and influence lines

are calculated in an illustrative example.

Restraint at Footings.—If pile foundations are needed,

some restraint due to the grip of the concrete on the piles is

introduced. This is unknown in amount, but if the struc-

ture is analyzed for both fixed and hinged conditions, the

stresses will lie somewhere between those calculated and the

structure will be conservatively designed. Figure 38, p. 74,

shows the moment curves as calculated for both conditions

in a single-span frame bridge. It has been found that

but little extra steel is required to meet both conditions.

Whether the positive moment at the crown will be slightly

increased or slightly decreased by restraint at the footing

depends upon the ratio of span length to height.

Effects of Earth Pressure.—In addition to active earth

pressure from the approach fill acting at the ends of the

frame, passive earth pressure may be developed due to

flexure under live loads, or due to dead load if the earth fill is

placed before striking the falsework. In one of the frame

bridges built by the Bronx Parkway Commission an attempt

was made to measure this by means of pressure gages

installed before the earth fill was placed and false-work

struck. The tests indicated that but little passive earth

pressure was developed. This is due to the very small

deflection in the vertical legs against the earth. An exami-

nation of the summaries of stresses in the design calculations

following shows that earth pressures (acting on both ends)

usually assist, and that heavy passive pressure might be

developed without harm. In multiple-span frames where

earth pressure may be a determining factor for some points

of the frame, the calculated active earth pressure may, if
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desired, be multiplied by a factor up to say 2 to allow for

uncertainties.

The frame may be called upon to carry its dead load

without the assistance of earth pressure, as when the false-

work is struck before the approach fill is placed. Under
some particular circumstances it may also be expedient to

permit the contractor to fill in the approaches beginning

at one end of the bridge so that trucks may go over the span

and fill the other approach from above. This has been true

for some of the Westchester bridges. Such conditions should

be investigated by supplementary calculation to be sure that

safe stresses are not exceeded, although stresses higher than

the usual working stresses may be permitted. In most of the

calculations shown in this book, stresses due to earth pres-

sure acting on each end are tabulated separately, to permit

such supplementary calculation of unit stresses. The cal-

culation of unit stresses for these examples has not, however,

been carried through.

Special Notes

Selection of Coordinate Systems.

—

It will be noted that

a different coordinate system is used for the symmetrical

Fio. 26.

*

K

Fig. 27.

single-span frame when fixed-end conditions are assumed

from that when hinged-end conditions are assumed. In the

fixed frame three components of reactions exist at each

footing as well as at the crown of the half frame (Fig. 26).

Advantage is therefore taken of symmetry, and the YY axis
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is taken through the crown. In the hinged frame, one

indeterminate component (H) of the reactions exists at

the hinge point and two (H and M) at the crown (Fig. 27).

Calculations are therefore shortened by making one of the

assumed hinge points the origin of the coordinate system.

Moments of Inertia.—Moments of inertia of a section

with unbalanced reinforcement (that is, more reinforcement

in one face of the section than in the other) are calculated

as though the neutral axis were at the center of the section

and the total reinforcement were equally divided, top and

bottom. Error negligible.

Division of Axis.—In the following numerical examples

the axis is divided into equal divisions s, and in such manner

that a center-of-division point occurs at the point of maxi-

mum negative moment at the bend of the knee. This

usually results in divisions of odd length at the bottoms of

the vertical legs. Examination of the tabulations will show
that, in the hinged structure, the quantities for these odd
divisions have very little effect on the final summations.

Correction for the odd lengths is therefore neglected. In

the fixed structure, the quantities in the tabulations are

largest for the divisions near the footings, and correction for

the variation of s of these end divisions is made (as noted

in the calculations) by multiplying the quantities pertaining

thereto by the ratio of length of end division to length of

regular divisions.

In the single- and double-span concrete frames selected

for analysis, the inclination of the axis of the vertical legs

is slight, and the imaginary hinged points at the bottoms of

the bases of the hinged structure are assumed at such points

near the centers of the bases that the vertical load moments
for points in the vertical legs are negligible and about coun-

terbalance, positive and negative. As a consequence, the

quantities M and for such points (which would be very

small anyway) are entered as zero in the tabulations, and the
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calculations are to that extent shortened. Where the inclina-

tion of the axis of the vertical legs is considerable, the nega-

tive moments of such points may have to be dealt with. For

the fixed-end frame the exact coordinates of points on the

vertical-leg axis are used in calculating the cantilever mo-
ments in the half-frame.

The slight curvature of the axis in the top of the single-

span and double-span concrete frames selected for analysis

permits the assumption that the horizontal projections of

the equal axis divisions are equal to the lengths of the

divisions (4 ft. in the single-span structure and 5 ft. in the

double-span structure). As a consequence of this slight

approximation, observe that in Chapters V and VII the

quantities in the several columns of the tabulation headed

“Moment” are in exact arithmetical progression (reading

vertically) both above and below the heavy zigzag line.

The progressions above, however, are different from those

below. Likewise reading horizontally from column to

column headed “Moment,” the quantities are in exact arith-

metical progression up to the heavy zigzag line, but are in

different progression to the right from what they are to the

left. Also reading horizontally from column to column

headed
My
~T the quantities are in exact arithmetical progres-

sion up to the zigzag line, but in different progression to the

right and to the left. These observations assist in rapid

calculation. Like results obtain in the calculations for the

double-span frame. Where the curvature of the axis in the

top of the frame is considerable, one of two procedures may
be followed. All the axis divisions may be made equal, and

exact horizontal distances between the centers-of-division

points (used also as influence-load points) may be used in

the calculations. Or the arithmetical progression of vertical

load moments may be retained by making the unequal axis

divisions correspond to their equal horizontal projections.

Then s will be variable and must be carried through the
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calculations; that is, -j- ,
etc., instead of etc., must be

calculated and tabulated for each point.

Influence Load.—In deriving the quantities for influence

lines, an influence load different from unity is used in the

calculations, that is, one of such magnitude that fractions

will be avoided in the influence-load moments. In the

analysis of the single-span frame, for example, note that the

span is divided into 13 equal parts of 4 ft. each. If an

influence load of is used, the smallest moment dealt with

(that at point 6L with influence load at 6R) will be

A x x 4 = 1.

Beginning with this, the arithmetical progressions referred

to above are very simple, as shown in the example. In

plotting the influence line diagrams for load unity, the

ordinates are plotted to scale of those calculated for the

influence load of The same expedient is used in the

calculations for the double-span frame, as will be observed.

The influence-line diagram shows influence lines for all

points of the half span as the influence load travels over the

full span, whereas the tables, for convenience in calculation,

have been derived for all points of the full span as the

load travels over the half span. Referring to Fig. 29,

observe, however, that the moment for point 8R, for exam-

ple, when the load is at 10L, is the same as the moment for

point 8L when the load is at point 10R. Thus the tables

give all the necessary information.

For an unsymmetrical frame, moments at all points of

thefull span must be calculated for all positions of the load.

Proportioning Steel Reinforcement.—In proportioning the

steel reinforcement of the various sections for final stresses,

the required amount of tensile steel is calculated, neglecting

the effect of any small amount of compressive steel that

may be added as a result of carrying the tensile of steel ad-

jacent sections past the points of contraflexure, or by reason
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of providing shrinkage reinforcement, etc. This approxima-

tion is on the safe side.

Sometimes it will be advantageous to reinforce the crown

section for compression rather than to increase the depth

of section or to over-reinforce the tension side to reduce

compressive stress in the concrete. In the calculation of

steel reinforcement for the unsymmetrical single-span con-

crete frame bridge, for example, compression steel is used

at points 12 and 13 near the crown. Calculations are shown
below the table. The reader is referred to Hool and Kinne’s

“Concrete Engineer’s Handbook,” or other standard trea-

tises, for explanation of the theory of proportioning sections

reinforced for tension and compression and subjected to

combined bending and direct stress. Another method of

proportioning sections for such conditions is given in Section

11 of the Fifth Revised Edition of the “American Civil Engi-

neers’ Handbook,” Merriman-Wiggin.

Adjustment of Calculations.—The depths of sections, rein-

forcing steel ratio, and consequently the moments of inertia

assumed for analysis need agree only fairly well with the

final results.

It is evident from the form of the equations for load

reactions that, if all the assumed moments of inertia for the

various sections involve the same percentage error, the

calculated reactions will be exactly correct, and no adjust-

ment of the detail calculations will be necessary. The
formulas for temperature, etc., however, contain quantities

for the reciprocal of moments of inertia in the denominator

only. Therefore a correction for temperature reactions will

be required, and it will be in direct ratio of actual to assumed

moments of inertia.

If the errors in the assumed moments of inertia are irregu-

lar and serious in amount, correction of the detailed cal-

culations may be necessary. Even then it has sometimes

been found that as much as 10 to 20 per cent error for a few

sections will affect the final results but little. A study of the
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tabulations for a particular structure, and supplementary-

calculation of the effect of particular sections upon the sum-

mation quantities, will often avoid a complete recalculation.

In some of the designs contained in this book a few sections

were slightly increased in depth to meet stress conditions,

but the tabulated moments of inertia assumed for analysis

were not corrected.

The structures selected for analysis are of comparatively

short span so that the methods may be illustrated the more
briefly. Single-span concrete frame bridges have been built

by the Westchester County Park Commission up to about

8o-ft. span, and steel frame bridges up to about 1 20-ft. span.
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Moments for unit load

Fig. 29.

A of moments calculated in tables.
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DEAD LOAD MOMENTS

Moment factors (MF) are scaled from the influence line diagram. The product of load
and moment factor will give the actual dead load moment M.

Load
Point

Load

Point 2 Point 3 Point 4 Point 5 Point 6

MF M MF M MF M MF M MF M
6L 2-7 -0.4 — 1 .

1

—0.8 — 2.2 — 1 -3
-3.5 -1.7 - 4.6 + 1-9 +5 .i

7L 2.2 —0.

8

-i -7 -1.7 ~ 3-7 -2.6 - 5-7 -3-4 - 7-5 —0.2 -0.4
8L 1.8 — 1.2 — 2 2 — 2.6 ~ 4-7 -3-8 -6.8 — 5 - 1 - 9.2 -2.3 -4*2

9l 1.6 — 1.6 -2.6BE - 5-3 -5 0 HABIBS! -6.5 — 10.4 -4.2 -6.7
10L 1 -5 -1.9 -2.8 -3 9 “5 9

—
S- 8 -8 7

- 7-7 — 11 .6 - 5-6 -8.4
11L 1-4 — 2.1 -2 9 -4.2 - 5-9 -6.3 -8.8 -8.4 -11.

8

-6.7 -9.4
11R 1-4 —2.1 -2.9 -4.2 ~ 5-9 -6 3 -8.8 -8.4 -11.

8

-7.0 -9.8
10R l

'l
-19 -2.8 -39 -5 9 -5.8 -8.7 - 7-7 — 11 .6 —6.6 -9 9

9R 1.6 — 1.6 — 2.6 -3 3
- 5-3 - 5.0 -8.0 -6.S — 10.4 - 5.7 -9.1

8R 1.8 — 1.2 —2.2 —2.6 -4-7 -3-8 -6.8 -5 I - 9.2 -4-4 -7.9

g 2.2 -0.8 -i -7 -i -7 -3-7 — 2.6 -57 -3 4 - 7-5 -3-0 —6.6
6R 2.7 -0.4 — 1 .

1

—0.8 — 2.2 — 1 -3 -3-5 -i -7 - 4.6 - 1.5 -41

Totals -26.6 “ 55-4 -83.0 — no.

2

-
7 i *4

Point 7 Point 8 Point 9 Point 10 Point 11

Load
Load

Point

MF M MF M MF M MF M MF M
6L 2-7 +I-S +43 +1.1 +3 -o +0.8 +2.2 +0.5 + 1-4 +0.2 +0-5

7L 2.2 +30 +6.6 +2-3 +<1 +1.7 +38 + 1.0 +2.2 +0.4 +0.9
8L 1.8 +0.7 +i -3 +3-6 +6 .? +2.6 +4-7 + 1.6 +2.9 +0.7 “hi .

3

9L 1.6 -1.5 -2.4 + I.I +J.8 +3.8 +6.1 +2.4 +3-8 + 1.2 + 1*9
10L 1.5 “3-4 -

5 -i — 1.2 -1.8 +1.2 + 1.8 +36 +5*4 +2.1 +3-3
11L 1 *4 -4.8 -6-7 -2.8 -3 9 —0.8 — 1 .1 + 1.2 + 1*7 +3-3 +4*6
11R 1-4 “ 5-4 -7.6 -3-8 - 5-3 —2.0 -2.8 -0.3 -0.4 + 1.5 +2.1

10R 1 *5 “5-3 — 8.0 -3-9 -5
?

-2.5 -3 - 8 — 1 .0 -15 +0.4 +0.6
9R 1 .6 -4.6 - 7*4 -3-5 -5.6 -2.4 -3-9 — 1.2 -1.9 —0.0 —0.0
8R 1.8 -36 -6.5 -2.8 -5.0 —2.0 -3-6 — 1 .1 — 2.0 —0.2 -0.4
7R 2.2 -2.5 - 5.5 — 2.0 -4.4 - 1-4 “3 • 2 -0.8 -1.8 —0.2 -0.4
6R 2-7 -*3 -35 — 1 .0 -2.7 -0.7 -I.9 -0.4 — 1.

1

—0.1 -0.3

Totals -40.5 -18.2 — 1.7 +8.7 +H.1
Note.—

L

oads at points i to 5 inclusive produce very small moments in the structure

which are neglected. They cause direct stresses, however, which are calculated as normal
thrusts. <

Dead Load Thrusts: see Fig. 28 for Dead Loads on Structure.

Point 1 . iV* V* 22.8.

Point 2. iV-22.8— 1.7-21.1.

Point 3, iV* 21. 1 — 1.7-19.4.
Point 4. AT— 19.4—1.9*17.5.
Point 5. Ar«componentsat45°of*f

andtf. (17.5— 2.3) X0.71-h7.0X0.71- 15.8.

Points 6 to n. N**H as calculated from individual dead loads andH factors obtained
from influence line for0 as follows:

(2.7X0.11+2.2X0.22+1.8X0.32+1.6X0.41+1.5 Xo.48+i.4Xo.53)X2«7.o.
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Live Load Moments and Normal Thrusts

This bridge carries a 40-ft. roadway and is designed for

H20 loading. (Refer to Appendix.) Allowing for reduc-

tion of traffic intensity for the 22-ft. width in excess of 18,

we have from the rear axle of a 20-ton truck:

38 g°-a (1.00 — 0.2a) = 2800 lb. per foot width of bridge;

and from the front axle:

(1.00 — 0.22) = 700 lb. per foot width of bridge.

Adding impact allowance, — = ^7— = 25 per

cent, we have concentrations of 3500 and 900 at 14-ft.

centers, from the one 20-ton truck. Loads from the pre-

ceding and following 15-ton trucks of the train spaced

according to the specification will not affect this structure.

Normal Thrusts.—Normal thrusts N for points 1 to 4
are reactions V\ loads are in the same position as when
calculating the corresponding moments.

Normal thrusts for points 6 to u are horizontal thrust

H\ loads are in the same position as when calculating the

corresponding moments.

Normal thrust for point 5 is the resultant at 45
0
of V

and H, with loads in same position as when calculating the

corresponding moments.

For 3. 5 load /’’factor = 0.71 X 0.54 = 0.38

H factor = 0.71 X 0.53 — 0.38

N factor =0.76

For 0.9 load V factor = 0.71 X 0.27 =* o. 19

//factor =» 0.71 X 0.37 = 0.26

N factor 0.45
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Uniform Live Load Stresses

ioo lb. per sq. ft.

Area of moment curve for point 5 = 263 units.

Moment = 263 X 100 = 26,300 ft.-lb. = 26.3 kip.-ft.

Concentrated live load moment is greater, 34.7 kip.-ft.

It is obvious that concentrations will therefore give

greater moments than uniform live load for all points.

The structure will carry a uniform live load of

X 100 = 132 lb. per sq. ft.

without over-stressing the critical section at Point 5.

Temperature Stresses

c = coefficient of thermal expansion = 0.0000065;

t = temperature change in degrees Fahrenheit

— + 35° or -45°;

/ = span length in feet = 52;

E = modulus of elasticity of concrete

= 144 X 2,000,000 = 288,000,000 lb. per sq. ft.

s — length of axis divisions = 4 ft.;

Note .—

s

is placed outside summation sign

because assumed constant in calculations.

rr _ . 288,000,000 X O.OOOOO65 X 35 X 52+ 4X7950
= + 107 lb. =* 0.107 kip;

j-f * — — X 107 * — 138 lb. = — 0.138 kip.



TEMPERATURE STRESSES S3

Point y Hy Hy Point y Hy Hy

2 4 0 -0 4 -fo 6 7 17 3 ~i 9 +a 4

3 8 0 -0 9 + 1 1 8 17 7 -I 9 + 2 4

4 12 0 -1 3 + 1 7 9 17 9 1 9 + 2 5

5 15 9 -1 7 + 2 2 10 18 1 ~l 9 + 2 5

6 16 9 ~i 8 +2 3 1

1

18 2 i 9 +2 5

PositiveH causes negative moments; negative H causes positive moments. See p. 33.

Earth Pressure

Figure 30 shows the reactions for the free structure, with

the horizontal reaction for earth pressure right at the right

footing. Bending moments in the frame for the earth-

pressure loads shown in Fig. 28 and for the reactions shown

in Fig. 30 are calculated in the first ten columns of the

following table by moment increments—a method that is

partly self-checking. From the succeeding calculations in

the table a value of 1.1 kips for the redundant horizontal

thrust is derived. The final horizontal reactions will then

be i.x kips at the left footing and 6.0 — 1.1 = 4.9 kips at

the right footing.
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summary OF MAXIMUM MOMENTS (KIP -FT.) AND NORMAL
THRUSTS (KIPS)

Loading

Point 2 Point 3 Point 4 Point 5

M N M N M N M N

Dead -26.6 21 .

1

- 55-4 19.4 -83.0 17.5 — no.

2

ij.8

Earth P. Right - 4 . 4 0.8 - 8.9 0.8 -13 3 0.3 - 17.6 14
Earth P. Left 4-15.1 - 0.8 +22.4 - 0.8 4-24.0 — 0.8 4- 21.9 0.2

Sub Total - 15-9 21 .

1

-41.9 19.4 -7a
-

3

17.5 -105.9 V 17.4

Live — - 8 6 2.1 - 17-3 2.1 — 26.0 2.1 - 34-7 31
Temperature r.

.

+ 06 0 4- 1.

1

0 4- 1.7 0 4" 2.2 — 0.1

Temperature - 0.4 0 - 0 9 0 - 13 0 - I.7 4- 0.1

Maximum Total -24.9 23 2 —60.1 21.5 -99.6 19.6 -I423 20.6

Point 6 Point 7 Point 8 Point 9
Loading

M N M N M N U N

Dead ~
7 I -4 7.0 -40.5 7.0 -18.2 7 -o - 1-7 7 0

Earth P. Right - 15.7 1 .

1

-i3 -i 1 .

1

-10.5 1 .

1

- 7-7 1 .

1

Earth P. Left +179 1 .

1

f144 1 .

1

4-10.9 1 .

1

4- 7.6 1 .

1

Sub Total —69.2 9.2 -39.2 9.2 -.7.8 9 2 - 1.8 9.2

Live -f“ + 12.6 I . I 4-13.7 1
.

5

Live — -27.8 2.2 -21.7 2.1 - 15.4 2.0 - 98 1.8

Temperature + 2-3 — 0.

1

+ 2-4 — O.I 4- 2.4 — O.I + *-5 — 0.1

Temperature - 1.8 + 0.1 “ 1.9 + O.I - 1.9 4- 0.1 - 1.9 4- 0.1

Maximum Total -98.8 11 .

5

— 62.8 11.

4

-351 II .

3

- 13-5 11.

1

Maximum Total

—

4144 10.6

Point 10 Point 11 Point Point
T i;

i^oaamg

M N M N M N M N

Dead + 8.7 7 .o +14.0 7 .0

Earth P. Right - 4-8 1.

1

- 19 1 .1

Earth P. Left + 4-3 1 .1 4- 1.

a

1.

1

Sub Total + 8.2 9.2 +133 9.2

Live + +132 1.8 *+•12.

1

2.2

Live — - 4.4 i .5

Temperature + — O.I + a.

5

— O.I

Temperature - 1.9 4~ 0.1 - 1.9 + O.I

Maximum Total. , .

.

'+*3-9 10.9 4 *7-9 II .

3
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Design of Sections

The following table gives the calculation of required

tensile reinforcement neglecting effect of steel in compres-

sion face, excepting at a few critical points as will be

noted. The required amount of tensile steel per foot

width of structure is obtained from a diagram in Hool

and Johnson’s “Concrete Engineer’s Handbook,” repro-

duced in the Appendix, by permission of the authors and the

rvjr
o.

I I'

-

DEVELOPED PATTERN OF EXTRADOS STEEL. ALL RODS fB

U3|1
—

1

v
ILn \3^T~

Unri

a b 7 l 9 1 1r

•t Q /» ole i

~T
\» 1 VI it \

DIAGRAM SHOWING fr
1-

REQUIRED LENGTHS —1^-
OF REINFORCING RODS

PATTERN OF INTRADOS STEEL
RODS a r SQ.

RODS b & C ij SQ.

Fic. 31.

publisher, McGraw-Hill Book Company. Having cal-

Ne'
culated K —

, enter the diagram at the left and at the

bottom. Follow vertically upward to the intersection of

the line for /„ = 800 or /, .= 18,000, whichever governs.

From this intersection follow horizontally to the right to

e
>

the proper line for , thence vertically downward to the
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bottom of the diagram, and read off the required percentage

of tensile steel reinforcement. The required cross-sectional

area of steel (A.) = pbd> which is tabulated for each point

in the last column of the table to the right.

Note that the thicknesses t finally used in the table for

proportioning the steel reinforcement are less than the thick-

nesses assumed for analysis. The early bridges on the

Bronx River Parkway and Westchester County Parkways
were “over-designed.” Later experience showed that more
slender proportions could be used. The tables in Chapters V
and VI for proportioning the sections and steel reinforcement

have therefore been revised in this new edition to indicate

the proper proportions for a bridge of about 49-ft. span

carrying a separate roadway surface and designed for H20
loading, despite the fact that the analysis is based upon
thicker sections.
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CHAPTER VI

CALCULATIONS FOR SYMMETRICAL SINGLE-SPAN
CONCRETE FRAME BRIDGE; FIXED-END CONDITIONS

In the tabulations, the following rules as to algebraic

signs are observed. Moments causing tension on the inside

fibers of the frame are considered positive and moments
causing compression on the inside fibers are considered

negative. Thus, referring to Fig. 34, p. 62, and assuming

the reactions in the directions indicated, moments on the left

cantilever due to P are all negative; those due to M0 and

Vo are all positive; and those due to Ho are negative for

all points above the XX axis and positive for all points

below the XX axis. Moments on the right cantilever due

to Mo are all positive; those due to Ho are negative for all

points above the XX axis and positive for all points below

the XX axis; those due to Vo are all negative.

In calculating the table for Influence Load Moments,
]\d[x

the summations of -y,
—
j-, and —j- are found first. These

values are then used in the calculation of Reactions Mo, Ho
and V0 ,

following the Influence Load Calculations, after

which Mo, Hoy and V0x may be entered in the Influence

Load tables. Total Moments for influence load at the

various points = M +M0 + H0y + V0x.

Observe that calculated reinforcement (vertical rods 1

sq. in. area per foot width of structure}, is required at the

inside face of the vertical legs of the frame, due to positive

moment at points 1, 2 and 3.

For free-end conditions, nominal reinforcement only is

used (Fig. 33); vertical rods being placed at the inside face

of the vertical legs at wider intervals, overlapping the dowels

projecting from the footings.
6l
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Compare steel areas required for free-end conditions and

for fixed-end conditions.

r
Points on /he hff
or nqht canit/artr
ho/res are efMw-
qwsheetm the tobfes
by Utters lan*ft
i/L. ftP. etc..

Cl. APPROX. MAX /A/Cl /NAT/ON OP /ACACTION
INCLUDING TEMPERATURE THRUST

b. APPROX. MAX. /HCUNAT/ON OF REACT/OH
WITHOUT TEMPERATURE THRUST.

Fig. 34.

TABLE /. FRAME CONSTANT

3

NOTE FOP THICKNESSES OF SECTIONS AMO CALCULA7/OH OF MOMENTS OF
/HERT/A SEE CALCULATIONS FOR FRAME W/TH FREE ENOS.

1BBOD /

7
z*ynD y

1 a ¥ EO
IB z 0.0 gjlgl 0.0ID -*70 9.5 6.9 S9O € O.f ezzipa M -346 TEEL 4 0 teo
ElTEL 0.3 EZH -/*do wm/n hb mrrmDTELHEQBULL!EHgrn N -o-7 -ont> Kill o.s warnnElBEDcmBEOEd * -*3 -O'/b 33 0 -/ wnj^m0EHEDE2Z9mym « fa/ ±o>oz_EH 0.0 WTWTMDrnnE21W&FMmEEZ3 <• f /./ ~+048 T*"'M 0. 2

“
warn

WA E33 ED3gaazji • ±£t° +04333 44~WBEEMOunEi

a

EXOEZl +9.o~ +141 «./ S*4 W3EMOranER£231Ea • T/3 .0
’

+74S EEfl 98Z TEEOLmnsmamE3EHIKEIgga »» T7i<o' +0.44mammamwmUzMiuza2ZEE! H33tan cmm£MrrmFUTM
NOTE : LENGTH OF O/V/S/ON WHOSE CENTER PO/NT /S J iS M FT, OR ONE - MALE
IENOTH OF REGULAR OtVISIONS. QUANTITIES PERTAINING TO THIS OtVtS/ON
ARE THEREFORE OSTEN HALF WESONT /N THE 7ABUIATSONS. BY DOUBLING THE
VALUE OF X m THE DENOMINATOR OFALL QUANTtT/ES, AND 3 S3 EL/MSNATED
SH THE SUMMATtON PROCESS
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Calculation of Reactions M0 H0 and Vo

Note that summations for "Frame Constants ore for the half arch.

For full arch, multiply by 2.

Mo Ho Vo

U^lalCr^, -gfe , 4 25 -gfa .0 ,2 ^ «»

^oddmiL 2#5Sr - «' Mh-™ Mss-™

Ms' L" Mz‘ aa -Ms-™
^*>0- Ms'™ Mz‘ 0S4 Ms'™
Load otl^L Y~^ m 0.56

Load at 6^L \ifSs
m 030 682

ZxM&C 0.23
ZOj
2x1633

0.06

Via. 3S.
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Fig. 36.
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Live Load Normal Thrusts

The tabulated normoI thrusts for points Cl) to (4) are the re-

actions V with the concentrations in the some position 05 for calcu-

lating maximum moments. N- factors fN.F.) for these points are ob-

tained from influence tine for V. Otpoint(5) the normal thrust N is

the resultant at 45°of V ondH with 3.5 kip load atpoint $JL and
0.9 kip load at

9,J R. Calculation os follows:

For 3.5 load. V foctor * onlx 0.71 - 0.50
H foctor - on1 xom * ojo
N foctor * /. 00

For 0.9 had V foctor • om x 0.99 * 0.20

H factor * om x om « aso
N fochr * 0.lo

Temperature Stresses

C • coefficient of thermal expansion - 0.0000065.
t - 35° rise or 450

foil.

I * 5/ feet.

E * 144 x 2000000 » 288000000 lbs. per sg. ft.

U x * Jctl , Z880000QQ x 0.0000065 Xj&JilL m ±28k" 4X2X148.6
tZBK

or H » - 3.6k

Temperature rise causes

positive thrush acting

os shown in Fig. 34.

Temperature fall couses

negative thrusts acting

in the opposite direction.

1

Paint wm
II -1.2 sn*4.3mm-U wm *3.9

? P».VEEFM
$ WSMgu*2.5

7 DPT*nsEM *tJ

6 muwmwzm
3 amamwarn
4 ehHESS

a

3 armrimEH
2 anai133man

IPmwZLEtiBU



70 SYMMETRICAL CONCRETE FRAME BRIDGE

c*

O

>

*
m *o
CM Q a *Emg Z «o <o

cvi ci a t

t

a $8 *0 a s: a <o?5

a§91m I aHa 5

i ugl
VO

azmu a991 a
CM <r»

<o o'
•*• *

5

2

a
°o *
CM cs a z <T» M*

CM O a a
V» CM
cm 6

«o
cvi

a «0 a$$ s a
> <oN CM

aBa H
z

£ aBa 1
Z s ^$ ci

* ...’fc

$
JS?

apmHEB —a
S9HHESm aHSia

CM

a99a1
z «o *o

CM q a z V
CM ci

«o
CM

a
go
Ci j8aS3 2 a S 2

aggia9aBa 1 a
QE999mmma

aB iaB a
r- cm

CM

i

a
o

a
f*: vs
CM C>

CT)

«S a
CM ^
cvi ci

«n
CM

aasO o Vj a R 5| «> a 3S

a S
•»

S

l a a I aB O
§

a
CM

«i> «< a99a aB
***

\

aBa z *\ v*m ci a a
r-' «n
CM ci m

a
ss $ .

<S O' *v a 88< Ci a F- ft)

a
<*> QQ a ! aHHa i a99m
* ^
«c* cvi a 5?» • aB

s
3

1 i

§
45

*o
•i Ci

I

|

lf> ®v

«i <$

i



FIXED-END CONDITIONS 71



AXIMUM

MOMENTS

<KIP

FT.)

AND

NORMAL

THRUSTS

IKJ



Calculation

for

Reinforcement

for

n*t5.

Note

that

the

thicknesses

t
of

Sections

finoffu

used

Ore

less

than

oriqinathj

assumed

for

ana/us/s.

The

error

involved

will

be

nea/ioible.

The

reduction

rn

section

was

mode

to

develop

the

area

of

steel

reinforcement

selected.
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Fig. 38,

Several comparisons like that shown above have been made for single- and double-span

rigid-frame bridges from which certain conclusions may be drawn as

explained in Chapter XI.



CHAPTER VII

CALCULATIONS FOR UNSYMMETRICAL SINGLE-SPAN
CONCRETE FRAME BRIDGE; FREE-END CONDITIONS

The calculation for earth pressure acting on the ends of

the frame, it will be noticed, is made for a single load 2.5

kips (2500 lb.). This structure was designed to span a

stream in which the water level is constant and can be relied

upon to counteract or partly counteract the earth pressure

below a certain elevation. The single earth pressure load

indicated in Fig. 39 was therefore assumed as an approxi-

mation of the actual conditions and water pressure was
neglected in the calculation.

The footings of this structure were in rock and a detail

like that shown in Fig. 33*? was designed.

In the Table of Frame Constants the steel areas A,
at the various points are not entered. This is for the reason

that the approximate effect of the reinforcing steel upon the

moments of inertia of the concrete sections had been deter-

mined in another like structure.

Influence load moments are calculated in Table 2 for

the influence load at alternate points (17, 15, 13, etc.). The
uncalculated peaks of the influence lines in Fig. 40, at

16, 14, 12, etc., may be accurately located by observing

that all peaks are located on a smooth curve.

In Fig. 42 are plotted required steel areas, and actual

steel areas determined from bar areas and spacings. From
this plot, the cut-off points of bars may be found and the

steel patterns of extrados rods and intrados rods may be

arranged.
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PROPERTIES OF SECTIONS i FT. WIDE IN FOOT UNITS

' “ 4.J ft.
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i on Span and Corresponding Curves Identified by Peaks at Points

7 8 9 10 II 12 13 14 15 16 17 18 19

Moment Influence Lines for Unit Load Traveling over Span

Fro. 40.
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DEAD LOAD MOMENTS
Moment factors (MF) are scaled from the influence line diagram. The product of load

and moment factor will give the actual dead load moment M.

Point 3 Point 5 Point 7 Point 9 Point 11 Point 12

Point Load

MF M MF M MF M AfF M MF M MF M
6 3-65 — 1.2 -4.4 -2.4 -8.8 + 1.4 + 5 -i +0.8 +2.9 +0.2 +0.7 0 0

7 2.98 -2.4 -7.2 ~ 4-7 — 14.0 +2.9 + 8.6 +1.7 +M +0.5 + I.S +0.1 +0.3
8 2.43 ~3-4 -8.3 -6.9 — 16.8 +0.1 +0.2 +2.7 +6.6 + 1.0 +2.4 +0.2 +0.5
9 2.03 -4.4 -8.9 -8.8 -17.9 -2.5 -

5 -i +3-9 + 7-9 + 1.6 +3.2 +0.5 + 1.0

10 1-73 -5.2 -9.0 — 10.4 — 18.0 -4.9 -8.J +0.9 +1.6 + 2.5 +4.3 + 1.2 +2.1
11 i -55 -5.8 -9.0 -11.4 - 17-7 -6.7 — IO.4 - 1.4 — 2.2 +4*o +4.6 +2.5 +3-9
12 1.49 —6.0 -8.9 -11.7 -1 7-4

-
7-7 -II .5

- 3*0 ~4.5 + 1.8 +2.7+4*4 +6.6
13 i -55

-
5-7 -8.8 -H -3

- 17.5 -7.8 — 12,1 ~3-7 “
5-7 +0.3 +0.5 +2.6 +4*o

14 1-73 -5.2 -9.0 -10.3 -17.8 -7.2 -12.4 “ 3-9 “ 6.7 -0.4 -0.7 + 1.5 +2.6
2.03 “

4-3 -8.7 -8.6 “ 17*5 —6.2 — 12.6 - 3.5 -7.1 -0.7 -1.4 +0.9 + 1.8

16 2.43 -
3-3 -8.0 -6.5 -15.8 -4.9 -II.9 -2.8 -6.8 -0.7 -1.7 +0.4 + 1.0

17 2.98 -2.3 -6.9 4*4 -i3-i -3-3 -9.8 — 2.0 —6.0 —0.6 -1.8 +0.2 +0.6
18 3-65 — 1.

1

-4.0 — 2.2 — 8.0 -i -7 — 6.2 — 1.0 - 3.6 -0.3 — 1.

1

0 0

i~ 15.12

Totals — IOI.I -86.6 -18.5 +13-2 +24.4

Point 13 Point 1

5

Point 17 Point 19 Point 21

Point Load

MF M MF M MF M MF M MF M
6 3.65 -0.3 — 1.

1

gfl — 2.6 — 1.

1

-4.0 - 1.5 “
5-5 “°*3 — 1.

1

7 2.98 -0.5 -1.5 Bn - 4-2 — 2.2 —6.6 -2.9 -8.6 —0.6 -1.8
8 2.43 -0.6 - 1.5 —2.0 -4.9 - 3.1 -

7.5
-4*2 — 10.2 -0.9 — 2.2

9 2.03 -0.5 — 1.0 -2.4 -4.9 -4.1 -8.3 -f -4 — 1 1.0 — 1.

1

— 2.2

10 1.73 —0.1 —0.2 -2.5 -4.3 -4.6 — 8.0 -6.4 — 11.

1

- 1.3 — 2.2

II 1-55 +0.8 +1.2 —2.2 - 3-4 -4.8 -
7-4 -7.1 — 1 1.0 “ 1.5 “ 2-3

12 1.49 +2.4 +3-6 —1.

1

— 1.6 -
4-3 -6.4 -

7-3 — 10.9 “ 1-5 —2.2
13 1-55 +4.8 + 7*4 +0.6 +0.9 -3-4 -

5.3
-
7.° — 10.8 -1.4 —2.2

14 i -73 +3.3 + 5-7 +2.8 +4.8 -1.9 -
3-3 -6.4 — 11.

1

“ 1.3 —2.2

15 2.03 +2.3 +4-7 +S-5 + 11.2 0 0 - 5.4 — 1 1.0 -1.

1

—2.2
16 2.43 + 1-5 +3.6 +4-0 + 9-7 +2.1 + 5 * 1

“4-2 — 10.2 -0.0 —2.2
17 2.98 +0.9 +2.7 + 2.6 +7-7 +4.3 + 12.8 -2.9 -8.6 —0.6 -1.8
18 3.65 +6.4 + 1-5 +1.3 +4*7 +2.1 + 7.7

“ 1-4 “5-1 “O.4 “1.5

i* 15.12

Totals +2J.I + I 3 -I “ 31.2 — 125.1 —26.1
i

Dead Load Thrusts:

Vl (loads) 28.49
V.C. ofH 1.24

Point i: 29.73
0.84

Point 2: 28.89
1.86

Point 3: 27.03

2.34

Point 4: 24.69
2.79

21*90

Vr (loads) 25.33
V.C. ofH 1.24

Point 21: 24.09

1-79

Point 20: 22.30

2.65

19.65

Points 5 and 19: components @ 4J° of V and H.
Point 5: iVas21.9X0.71-hu.19X0.71 *=23.5.

Point 19: iV* 19.65X0.71+1 1.19X0.71*21.9.
Points 6 to 18: iV* approximately H, as calculated

from individual dead loads and
H factors, obtained from influ-

ence line for H.

3.65X0.13+2.98 X0.26+2.43X0.38
+ 2.03X 0.48+ 1 .73X0.57+ 1

.55
X 0.63+1 .49X 0.64+ 1 .55X0.60
+ 1.73X0.55+2.03 Xo.47+2.43
X 0.36+2.98 Xo.25+3.65 X0.13
*11.19.
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LIVE LOAD 20-TON TRUCKS

Axle loads 32,000 and 8000 lb. on 9-ft. lane. Reduc-
tion (up to 25 per cent) 1 per cent per foot width of road-

way in excess of 1 8 ft. Roadway on this bridge 30 ft. Re-

duction 12 per cent. Impact allowance 25 per cent. Con-

centrations, on 14-ft. wheel base, per foot width of bridge

a&jpji 0> 88 1.25 = 3,9 kips;

X 0.88 X 1.25 = 1.0 kip.

Normal thrusts N for points 1, 2, 3, 4, 20, 21 are vertical

reactions V, calculated from influence lines for V, with loads

in same position as when calculating corresponding moments,

corrected for the vertical component of H.

Normal thrusts for points 5 and 19 are resultants at 45°

of V and H with loads in same position as when calculating

corresponding moments.

Points 3 and 5. Rear axle at point 1 1^; front axle at 145.

Point 3

Vl = 0.53 X 3.9 + 0.31 = 2.38.

H = 0.64 X 3.9 + 0.50 = 3.00.

N = 2.38 + { X 3.00 = 2.71.

Point 5

N = 0.71 (2.71 + 3.00) = 4.05

Points 19 and 21. Rear axle at point I2§; front axle

at 9^. Factors same as for points 3 and 5.

Point 21. N = 2.38 — i X 3 *= 2.05.

Point 19. N = 0.71(2.05 + 3.0) = 3.58.
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84 UNSYMMETRICAL CONCRETE FRAME BRIDGE

Temperature Stresses

H = Ectl
t =+35° or -450

.

For + 35°, H =

144 X 2,000,000 X 0.0000065 X 3$ X 63 _
, kiD

4.5 X 4870

For — 45
0

,
H = — 0.24 kip. Moment = Hy for each point.

Positive thrusts cause negative moments, and vice versa.

Point 5. N = 0.71 (0.19 + £ X 0.19) - 1.5 for 35
0

rise.

— 0.71 (0.24 + ^ X 0.24) = — 1.9 for 45° fall.

Point 19. N — 0.71 (0.19 — i X 0.19) = 1.2 for 35° rise.

- 0.71 (0.24 - i X 0.24) = - 1.5 for 45° fall.

Diagram Showing Required and Actual Areas
of Steel Reinforcement
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SUMMARY OF MAXIMUM MOMENTS (KIP-FT.) AND NORMAL
THRUSTS (KIPS)

Loading

Point 3 Point 5 Point 7 Point 9

N M M N M N

Dead
Earth Pressure

— 101 . 1

+ 8.5

27.0
— 0.

1

-200.3
4 6 5

23-5
1 . 1

- 86.6

+ 3.8

11 .2

1.6
-18.5
+ 1-4

11.2
1.6

Subtotal
Live 4

~ 92.6 26.9 -193.8 24.6 - 82.8 12.8 - 17 . I

4 l4 - 8
- 17-5
4 4-5
- 3 5

12.8

19
2.6

— 0.2

4 0.2

Live —
Temperature
Temperature

- 28.1
4- 2.2
- 1 8

2-7
“ 0.3
4-0 2

“ 54-9
4 4-4
- 3-5

4.1
- 1.9

4 1.5

-
36 -2

4 4-5
- 3-6

2.9
— 0.2

4 0.2

Maximum total. .

.

BMaximum total — 122.5 29.8 — 251.2 30.2 — 122.6 15.9

Loading

Point 11 Point 12 Point 13 Point 15

M N M N M N M AT

Dead
Earth pressure ....

EBBBE
II .2

1.6
4 25.1
- 13

11 .2

1 .6

+13-

1

- 1-3

11.

2

1.6

Subtotal
Live 4
Live —

4 12.9

4 16.9

12.8

2.9
+ 23.6

+ 18.0
12.8

30
+ 23.8

+ 20.?
12.8
2.8

4H .8

422.6
— II .

2

4 38-30

12.8
i *9

2.6
- 0.2
4 0.2

Temperature
Temperature

4 4-4
~ 3-4

— 0.2

4 0.2
4 4-2
- 3 3

— 0.2

4 0.2
4 4-1
- 3.2

— 0.2
4 0.2

Maximum total 4 34-2 + 15-5 + 4J .8 156 4 48. i + IS -4 438.2 14-5

Loading

Point 17 Point 19 Point 21

M N M D
Dead
Earth Pressure

BBSBE
11 .

2

1.6

— 125.1

4 0.1m 3
Subtotal
Live.

Temperature
Temperature

1+

1

1

b\u>

'Ll

b 12.8

2.9
— 0.2
4- 0.2

— 125.0
— 34-2
4 2.7
— 2.1

23.1

36
~ i «5

4 1,2

— 24.0

- *0.4

24.1
2.1

— 0.2
4 0.3

Maximum total - 56.3 15-9 -161.3 27.9 - 31-5 26,5
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CHAPTER VIII

CALCULATIONS FOR SYMMETRICAL SINGLE-SPAN
STEEL GIRDER FRAME BRIDGE

In the following pages only those portions of the design

which are peculiar to the rigid-frame type of construction

are given. Design calculations are not given for the floor

slab; the girder bases; the footings; the cross-frames

which provide lateral support to the girder flanges and
also act as floor-beams; the end walls retaining the approach
fill and reinforced as vertical slabs spanning between the

vertical legs of the frame girders; the connection between
the component parts of the structure. This part of the

design involves nothing new. When the maximum
moments, thrusts and shears have been calculated for

various points along the girders, the design of stiffeners,

splices and determination of rivet spacing may be carried

forward as for ordinary girders subjected to combined
bending and direct stress.

In these calculations the effect of the concrete protec-

tive encasement of the vertical legs of the girders has been

neglected both in calculating the moments of inertia and in

proportioning the sections. Also the effect of non-parallel-

ism of the girder flanges, which tends to increase slightly

the flange stresses and decrease slightly the shears, has

been neglected.

The curved portion of the girder at the knee or bend

demands special consideration. In this region there is a

strong tendency for web buckling and also tendency of the

outstanding portions of both flanges to curl inward on

account of the change in direction of flange stress. Closely

spaced radial stiffeners faced to bear on the outstanding legs

of both flanges are therefore used as shown in the details.

8?



88 SYMMETRICAL STEEL GIRDER FRAME BRIDGE

In addition, the curvature of the girder in this region

affects the position of the neutral axis, throwing it inward

from the center of gravity of the section toward the concave

flange—in this case the compression flange. This tends to

increase the stress in the compression flange and decrease

that in the tension flange as calculated for the neutral axis

at the center of gravity of the section. The formulas for

the position of the neutral axis of a curved beam in which

the curves of the outer and inner flanges or faces are con-

centric are given in Fuller and Johnston’s Applied Mechan-
ics, Volume II, and other standard textbooks on Mechanics.

These formulas do not apply in this case, however, as the

flange curves are not concentric. The derivation of formu-

las for such a case would be a complicated process if not

impossible and a summation process of calculation remains

to be developed. Until this is done, only approximations

can be made based on the formulas for concentric curvature

of both flanges and making allowance for the factors that

tend to increase or decrease the calculated flange stresses.

Such a calculation is not given here as the process of approx-

imation will vary with each particular case. As a result of

the approximation used in the design of this bridge, one

cover plate was added to the section assumed for calculation

of reactions as shown in Fig. 46.

The design of only a few girder sections is given in the

following calculations. The procedure is the same for

points 2, 4, 6 and 8 as for points 1, 3, 5, 7 and 9. The
allowable unit stress in the compression flange at points

4, 5, 6 and 7 is calculated for an unsupported length of

1 1.5 ft. between cross-frames or floor-beams. The com-

pression flange at points 1, 2 and 3 is embedded in the rein-

forced-concrete back-wall retaining the approach fill, and

higher unit stresses are permissible. The compression

flange at point 9 is supported laterally by the floor slab,

and higher unit stresses are permissible.

A calculation for stresses at point 3 is given based on
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the assumption that the neutral axis is at the center of

gravity of the section.

It will be observed that axis divisions of considerable

length (7.67 ft.) are used in this calculation. This was

done for the purpose of illustrating the method of design

without an undue quantity of figures. In the original

calculation for this bridge, the axis was divided into 30
divisions whereas in this calculation 17 divisions are shown.

An interesting result of this recalculation was the com-

parison of results which showed almost precise agreement.

In other words, the use of the longer divisions resulted in

no appreciable error.

The girder depths shown in Fig. 46 do not agree with

those assumed at the beginning of calculation. After the

bridge had been designed advantage was taken of a slight

increase in headroom available and the depths of the

girders were increased throughout. This increase amounted

to 1 in. at the crown and 12 in. at point 3. Experience has

shown that the calculated reactions will be disturbed a

negligible amount and if anything, on the safe side.

Effects of Skew.—In a skewed bridge of this type certain

effects of skew exist, though they may usually be neglected

in proportioning. These effects are indicated in Fig. 43.

The earth pressure E against the back-walls may be con-

sidered as being resisted by the reactions G, from the

girders or the floor slab or both, and the components W
acting along the back-walls. The components W are

finally taken off at the footing, being counteracted by

resistance of the back-wall against sliding. The over-

turning effect of the couple We is counteracted by the

variation of pressure longitudinally along the footings.

Torsional effects in the girders are negligible.

Expansion Joints.—A complete separation of the struc-

ture proper from the wing-walls retaining the sides of the

approach fill should be made by means of expansion joints

near the main structure.
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PROPERTIES OF SECTIONS

Point

Make up of

Section

i-inch Web
4ll 6X 6XH
Cov. Pis. 14X8

Depth

bb li,

Inches

Total

Area of

Sections,

Sq. In.

Moment
Inertia

of Section

(In.) 4

Moment
Inertia

of Section

(Ft.)4

y Ft.

y
/

Foot

Units

1 Web/li /i cov. 30 63.4 10,600 0.51 5 -i 5 i

2 Web/li /2 cov. 50-5 91.

1

45,7=0 2.20 12 8 74

3 Web/li/2 cov. 64.5 98.1 77,600 3.74 20.5 112

4 Web/li /a cov. 54 91.

1

48,700 2-35 21.7 200

5 Web/ li /2 cov. 39 85.4 *6,300 1.27 22.3 390

6 Web/li /i cov. 29.5 63.1 10,400 0.491 22.8 1060

7 Web/li/ 1 cov. 22 59 4 5,480 0.254 23.2 2120

8 Web/li /i cov. 18.5 57.6 3,560 0.172 23-

4

3190

9 Web/li/ 1 cov. 18.0 57-4 3,340 0. 161 *3-5 *1710

2(for half arch) 8,907

S (for full arch) 17,814

Not*, j foe Foist 9 h for half an axis division on the half-arch, since the division of which 9 is the

center-point is divided between the two half-spans.
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17,814
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CONCENTRATED LIVE LOAD MOMENTS AND CORRESPONDING THRUSTS
AND SHEARS

Point 9 (Crown)

Load, Kips MF M HF H VF V

30 at Point 9 +6.40 + 192.0 0.71 Bf 0.50 15.0

7.5 at Point 7 + 1.40 + 10.5 0.59 m 0-33 2-5

Total + 202.5 257 * 7-5

Point 7R (Positive Moment)

Load, Kips MF M HF H VF V

30 at Point 7R

7.5 at Point 5R
+6.80
+3.00

+204.0

+ 22.5

0.59

0.32

17-7

2-4

0-33

0.17

10.

0

13

Total , 226.5 20.1 1

1

3

Point 7R (Negative Moment)

Load, Kips MF M HF H VF m
30 at Point 7L

7.5 at Point 5L

-3-70
—2.30

— hi .0

~ 17-2

0.59

0.32

17-7

2.4

+0.67
-0.17

+20.1
- 1.3

Total — 128.2 20.1 18.8

Note.—Since it is evident that the greater the distance from crown the less likelihood

there is of concentrated live load moments exceeding those for uniform live load, the

remaining points are not investigated for concentrated loading.
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SUMMARY OF MAXIMUM MOMENTS (KIP-FT.) AND CORRESPONDING
NORMAL THRUSTS (KIPS)

Loading

Point i Point 3 Point 5 Point 7 Point 9

M N M N M N M
i

N M N

Dead
Earth P.

—41 1.

2

+260.0
hi .0

0

— 1704.0

4- 105.0

13!-°

32.2

— 617.6

4- 24.0
J

82.2

45.6

+ 54-4
— I4.O

82.2

45.6

+288.0
- 30.0

82.2

45.6

Sub Total

Unif. Live +..

.

— 151 .2 hi .0 -1599.0 163.3 - 593 6

+ 99 °

- 485-0

127.8

9-4

41.9

4- 4^-4

4*180.0

— 146.0

4-226.5

— 128.2

127.8

22.1

29.2

20.

1

20.

1

+258 0

+ 180.0

+202.5

127.8

5 1 -4

25-7

Unif. Live —

.

Concentrated+
Concentrated —
Temperature. .

.

-257.0 64.4 — 1065.0 82.0

Negligi ble

—

see sheet No.

Max. Total -f .

.

+266.9
— 105.6

147-9

i 57 -o

+460.5 •S3 5

Max. Total — .

.

—408.2 175-5 — 2664 .

0

245-3 — IO78.6 169 7

SUMMARY OF MAXIMUM SHEARS

Loading

Point 1 Point 3 Point 5 Point 7 Point 9

Shear Shear Shear Shear Shear

Dead 82.2
-31.9

131.0

32.2

71 .0

0

40.0

0

8.0

0Earth P

Sub Total 50.3

51-4

1633
82.0

71.0

45.0

40.0

300
8.0

17-5Unif. Live+ . .

.

Unif. Live — ..

.

Concentrated+
Concentrated —
Temperature. .

.

11 3

18.8

17-5

Negligi ble

Max. Total + .

.

70.0

58.8

25.5

Max. Total — .

.

101.7 245.2 Il6.0
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Stresses Due to Temperature Change

For a change of 50° F. above or below normal,

ij _ Ectl_ _ 144 X 30,000,000 X 0.0000065 X 50 X 92

~
ocf*

~ 7,67 x 17,814

= dbI.O kip.

Max. Mom. at Crown = 23.5 X 1.0 = 23.5 kip-ft.

Rib-shortening effects (calculations not shown here)

will be equivalent to about 25 per cent of the effects due to

a drop of temperature of 50° F.

According to usual specifications, temperature and

rib-shortening effects may be neglected if they do not

exceed 25 per cent of other stresses combined.

Design of Sections

See Table of Properties of Sections for Areas and

Moments of Inertia of Sections in Inch Units.

Unit Stress - % ±^A 1

Point !./.==
175-5 T 4°8 • 2 X 12 X 15.6

63.4 10,600

2.8 T 7.2 = — 10.0 kips

10,000 lb. per sq. in. Comp.

Point 3. Calculation based on neutral axis at C. G. of

section. *

/ - 245.3 2664X12X33-5
J ‘

98.1 77 j6oo

— — 2.5 T 13.8 = — 16.3 kips

• 16,300 lb. per sq. in. Comp.
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Point j. /. = _ 1^1 =p
IQ78-6 XnX.o.8

3 J
85.4 26,300

= — 2.0 T n .2 = — 13.2 kips

13,200 lb. per sq. in. Comp.

Point 7./. iiltS T
‘6-

.
-9

.
X it X ...6

' J
59-4 5280

= — 2.5T 7.1=— 9.6 kips

9,600 lb. per sq. in. Comp.

Point 9 . /. = - m-A T 460.5 x it X 9.6

57-4 3340

== — 2.7 =F 15.9 = — 18.6 kips

Depth at crown, finally increased from 18 in. to 20 in.

as previously mentioned.

Allowable unit stress for compression flange not sup-

ported laterally by the floor slab or by the vertical

cut-off walls supporting the approach fill is calculated as

follows:

/ 11 . < X 12
7 = = = 10
b 14

Allowable compression

18,000 18,000* j- = — = 17,000 lb. per sq. in.

j -L j -L

2000b2 2000
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Recent Developments in Design

The first steel rigid-frame bridge built by the West-

chester County Park Commission was originally detailed

with a rectangular knee section instead of with curved

flanges around the bend at Section 3 as shown in Figs. 44
and 46. It was realized that there was no satisfactory basis

for predicting the paths of stress in the rectangular section,

and, to satisfy other parties interested in the construction of

the bridge, the detail was changed and curved flanges were

used. Although some approximation is involved in the

design of the curved flanges at the knee, the stresses can be

calculated with some degree of accuracy. This type of con-

struction does, however, involve expensive fabrication,

which militated against steel construction of rigid-frame

bridges.

Recent research shows that the simpler knee detail is

safe. Several important bridges with straight flanges have

been built and are giving satisfactory service. The cost of

fabrication was materially reduced. The reader is referred

to Chapter XIV for further information.
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Construction

View

of

a

Steel

Rigid-Frame

Bridge.



Erection of a Steel Frame Girder Bridge.

Steel Rigid-Frame Bridge carrying Palmer Avene over Central Park Avenue, Yonkers,

N. Y. Built by Westchester County Engineer. Span 115 ft. between vertical legs of

girders.



CHAPTER IX

THEORY AND DESIGN OF DOUBLE-SPAN FRAME
BRIDGE. HINGED CONDITIONS AT FOOTINGS

Assume a structure as indicated in Fig. 47 hinged at (2),

resting upon rollers at (1), and without support at (3). This

structure is statically determinate, and its reactions and the

deflections at any point may be easily calculated. A system

of loads, P, C, D, and F, is indicated on the structure, the

reactions being VLi VR , and H. Displacements at the reac-

tion points are designated as follows; the total horizontal

displacement at (1) is SC) being that occurring along the line

of action of C. The portion of this displacement due to

load P is designated as Pdcp, Sep being the deflection along

the line of C due to unit load acting like P and being used

as a coefficient of P. The portion due to load C is designated

as Cfi„, that due to D as and that due to Fa.s Fief. The
total horizontal displacement at (3) is being that along

the line of action of F, and the several partial displacements
107,
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are P5/w C8/„, Dhfd, and Fd/f . Likewise the several vertical

displacements at (3) are: total 8d ;
partial, Psdp, CSdC) D5m,

Fidf. This way of expressing displacements makes use of the

calculated displacements due to unit load as coefficients of

the known or unknown bads. The increments of the total,

or any one of the partial displacements contributed by
flexure in a single small division s of the structure, is desig-

nated by the symbol A, for example, A5d/,
A5/p, etc.

Let us now assume that, for a known load P, a set of

values may be selected for C, D, and F such that the alge-

braic sum of all the partial deflections is equal to zero; that is,

= P&cp + Cdcc + DScd + FhCf = o. ( 1 )

dd — PSdp -f- C8dc "b DSdd FSaf
— O. (2)

5/ — Pbfp + CS/c + DS/d + Fdff = o. (3)

Then C, D,
and F

,

whose values are unknown at first, will

be the true reactions in a double-span frame supported on

hinges at (1), (2), and (3) which are fixed in location. The
problem then is to find numerical values for the coefficients

of C, D, and F
;

substitute these values in equations (1),

(2), and (3); and solve the three simultaneous equations for

C, D, and F.

The directions of C, D, and F along their lines of action

need not be known at the outstart. They may be assumed

to act in either direction, and, if algebraic signs, consistent

with the assumed directions, are given to their coefficients,

the correctness or incorrectness of the assumed directions

will be indicated by the algebraic signs of the numerical

results. If positive, the assumed direction was correct; if

negative, the correct direction is opposite to that assumed.

See Chapter IV.

The increments Afi c, A5d, and AS/ of the displacements

$«, 8d, and S/ contributed by flexure in typical divisions s

of the structure are indicated in Fig. 48. These increments

are grossly exaggerated, but in reality they are so small

compared with the dimensions of the structure that the evi-

dent approximations made in the geometric demonstrations
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are negligible. (See discussion in Chapter III.) In Fig. 48a

we have, by geometry, the external angle Ad equal to the

sum of the internal angles Aa and A/3. Hence A5C = yAa

-j- yA(3 = yAd = My^p in which M is the bending mo-

ment on division s. If the calculated moment is due to unit
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these equations and summing the effect of flexure in all

divisions s contributing to the deflection S„, we have for

these unit loads:

Sc, =

Sec = YMM*w
scd = YMM‘W
Sc/ =

Equations A.

By the same reasoning we have

«/, =

s/c - YMMrm'
s^ - Y^MM4rr
iff = Y,M^MrTr

Equations B.

In Fig. 48a we have by geometry

d*. -

In Fig. 48^,

A5d = A0(A -f* /a
— x)

- M-^(A +/2 - *)

Note that in each case the quantities
j
x and (A + A — a:)

are expressions for bending moment in the division s under
consideration, due to unit load along the line of action of

D = Mi. Hence ASd = MaM-gj-

The partial moments due to unit loads acting like P or C
or D or F are Mn MC) Md, and Mfi and the corresponding

partial deflections are ASip} ASde, AS#, and AS#. Hence,
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summing the effects of flexure in all divisions s contributing

to the several partial deflections, we have

s4, =

i.. = Y^MM4i'

- YLMMth'
= YM‘M4rr

Equations C.

The substitution of Equations A, B, and C in equations

(i), (2), and (3) will give the final equations. For a homo-

geneous structure, E is constant; and if the arch axis is

divided into equal divisions s, both these quantities may be

placed outside the sign of summation and will cancel from

both sides of the equations. Then the final forms of the

working equations are:

= pY'MM’ + + dYMMc \McMi +

_ 0.

bd —

5/ -

p-yyMfM,

= o.

— o.

Figures 48*, 48^, 48c, and 48^ show that flexure in mem-
ber 1-4 contributes only to fi0 ; 4-5 contributes to 6, and Si

5-

2 contributes to 5, and 5/; 5-6 contributes to Si and Sf ;

6-

3 contributes to 5/ only. The expedient of expressing y
and the functions of x as moments due to unit loads at the

reaction points of the transformed structure facilitates the

mental process of fixing the proper limits of summation for
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the various terms in the equations which are the partial

deflections contributed by flexure in the various members.

The figure preceding Table II will assist in observing the

proper limits. Numerical values for Mp,MC) Md> orMf are

entered in this table as positive or negative according to

whether the assumed directions of C, D, and F would

produce positive or negative moment in the division s under

consideration, as already explained. C, D, and F having

been determined for any loading, the final reactions VLi Vr,

and H may be found by the simple laws of statics. In the

following example of design, the two spans are equal; that

is, h — l.3.

The solution of the double-span frame may be

approached by assuming the redundant? differently. In-
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Fig. 49, for example, the transformed structure is assumed

to be supported upon rollers at (i) and (3) and is without

vertical support at (2). Member (2) is, however, held

laterally at (2) as by vertical rollers, so that the structure

will be stable under horizontal loads. The statically deter-

minate reactions VL ,
VB) and H, and the redundants C, D,

and F, are as shown. As before, the redundants are con-

sidered loads of unknown magnitude, and numerical values

Fig. 49.

are derived that will satisfy the condition that hd, and 8f

shall equal zero.

A number of other arrangements for the transformed

structure are possible, some being shown in Fig. 50. The
form of the equations will be alike for all systems. The
system shown in Fig. 47 was selected because the numerical

work involved in the solution is less than for most of the

other systems.

In the following numerical example an influence load = 8

is assumed in deriving influence tables so the smallest

moment M„ will equal unity and decimals will be avoided.

The influence diagram is constructed for unit load by plot-

ting $ the values for total moment as calculated in the

tables.
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Diagrams Showing Complete Reactions
for Unit Load
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Moments in Kip-Ff.

Moments in Kip*Ft.

INFLUENCE LINES FOR REACTIONS
Sm Oioflrom*
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Application of Double-Span Rigid-Frame Bridges

The illustration at the end of this chapter shows the

adaptation of the double-span bridge to dual highways.

The modern tendency to separate opposing traffic, wherever

possible, by means of a separation strip, is bringing the

construction of double-span bridges to the fore.

See Chapter XI for discussion in regard to rigid-frame

bridges restrained at the footings.

14th Street grade separation on the Mount Vernon Memorial Highway in Virginia.

Courtesy of U. S. Bureau of Public Roads.



CHAPTER X

THE THEORY AND DESIGN OF SKEWED
ARCH OR FRAME BRIDGE

General Discussion.— The design of skewed bridges is

constantly assuming more importance as the needs of mod-
ern traffic are better appreciated. It is little short of

criminal nowadays to permit crooked alignment of a

through highway, approaching a bridge, in order to avoid

skew in the structure; and many existing structures will

have to be replaced in the near future in order to eliminate

blind curves, originally introduced to permit the construc-

tion of a square bridge. A particular reason for avoiding

skewed bridges of the solid barrel-arch type has been the

fact that several failures convinced conservative engineers

that the skew introduced certain forces that were not gen-

erally recognized. Some engineer mathematicians realized

that the skew arch demanded special consideration, and

for many years various attempts were made to solve the

problem but without success.

The difficulty lay in the fact that they were dealing

with forces in space whereas the edifice of structural analysis

has been reared upon uni-planar mechanics. The practical

engineer who risked a skewed arch design was accustomed

to analyze a unit strip parallel to the main axis as he would

a square arch element and assume that the skew arch was a

composition of a number of such strips or elements. The
error of such an assumption may be made apparent by a

homely illustration. Cut from a piece of cardboard a skew

slab abed as indicated in Fig. 57, and support it upon two

triangular scales or like supports along lines c-f and g-h so

that the ends cantilever beyond the supports. Apply a load
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in the middle. The acute corners will rise off the supports,

showing that the load tends to travel the shortest distance to

the supports and the slab deforms so that the elements of

curvature are visibly perpendicular to the unsupported

edges. Now, with the load still applied, press down on the

cantilevered ends of the cardboard

until the slab is horizontal along

the supports. The slab is so con--

strained that the elements of curv-

ature are visibly parallel to the

supported edges of the slab and

the load is obviously traveling in the skew direction to the

supports instead of in the shortest direction. The restraint

introduced in the second case is an element of design which

should be considered. Skew arch action is analogous.

If the fixed skew arch ring proper is adequately secured

to abutments of sufficient n\ass to resist the skew effects,

the loads will travel parallel to the skew; if not, incipient

failure will cause the loads to travel a shorter distance to the

abutments and complete failure may result. In the two-

hinged skew arch the skew forces must be resisted at the

hinges. In the skew rigid frame, the legs act as abutments

for the top of the frame and are of sufficient mass so that

usually little transverse reinforcement is required. In

heavily skewed bridges of long span relative to width, the

tendency of the acute corners to rise must be examined.

The general proposition may thus be stated as follows:

The skew arch is a structure containing forces which can-

not generally be made parallel to a single plane; they must
therefore be analyzed in three dimensions instead of two

as for the right arch. The skew of the structure introduces

forces and moments which either do not exist at all in the'

right arch or are present in a small degree.

Before proceeding with the discussion, a system of

reference axes for working in three planes will be adopted.

As in a right arch, the horizontal axis perpendicular to the

Fic. 57.



DESIGN OF SKEWED ARCH BRIDGE 139

abutments is called the X axis, and the vertical axis, the

Y axis. The axis parallel to the abutment (not used for

the right arch) is called the Z axis. Each axis is per-

pendicular to the other two and each of the three planes

formed by the axes is perpendicular to the other two.

The XZ plane which is the horizontal plane in which both

the X and Z axes lie is perpendicular to the YZ plane and

to the XY plane; the latter is the vertical plane perpen-

dicular to the abutments, and the plane in which all forces

and reactions in a right arch are assumed to lie. A
moment couple about any particular axis lies in a plane

parallel to the plane in which the other two axes lie.

In Fig. 58 is represented a two-hinge# skew arch with

its reactions due to any load. The general directions of

the X, Y and Z axes are shown, but the most convenient

points of origin will be indicated later on. The total ver-

tical reactions R* are the same as for a simple beam of the

same span, and of a width equal to the skew width of arch.

The total horizontal reactions R, are equal to each other
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and depend upon the elastic and geometric properties of the

arch. If the analysis of this arch is to be general, the

assumption must be made that reactions Ry and Rr are not

uniform along the abutments but in general as shown in

Fig. 58; that is, variable and unsymmetrical about the

center line of the abutment. This condition as to reaction

Rx may be represented by placing reaction Rx at the center

of the abutment and introducing a moment or couple My

equal to Rxe about the Y axis. Likewise the condition as to

reaction Ry may be represented by placing reaction Ry at the

middle of the abutment and introducing a moment or couple

Mx equal to Rye' about theX axis. It is also seen that the two

horizontal reactionsRx form a couple which tends to rotate the

structure as a whole. To resist this tendency, the two cross

shears R, are called into play and form a couple which bal-

ances in part the moment produced by the two reactions Rx .

The moment Mx was illustrated by the cardboard skew

slab experiment, in which the tendency of the acute corners

to rise off the supports was shown. A moment reaction like

Mx in Fig. 58 was required to resist this tendency.

In general terms the five reactions in a skew two-hinged

arch are set up by the tendency of the unrestrained struc-

ture to deflect and rotate in all directions and in all planes

when subjected to load. The abutments are free to rotate at

the real or assumed hinges; therefore no resisting moments
are set up to compensate. The tendency of the abutments

to deflect along the X axis is resisted by reactions Rx

(horizontal thrust as in the right arch) and the tendency

to deflect along the Z axis is resisted by reactions R,. The
tendency of the abutments to rotate about the X axis is

resisted by momentMx and the tendency to rotate about the

Y axis is resisted by momentsMy . The tendency of the abut-

ments to deflect along the Y axis is resisted by reactions Ry.

Fixing the footings affects the skew arch in the same
manner as it does the right arch; the tendency to rotate

about the Z axis is resisted by a counter moment, and there
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are therefore six reaction components instead of five as in

the hinged structure.

The magnitude of the reactions for any given condition

of loading is found by deflection calculations, applying the

principles heretofore demonstrated, as will be shown in a

numerical example.

Once the reactions are determined, the stresses existing

at any section may be calculated from considerations of

equilibrium. Reactions Rv and Rx produce moments, shears

and thrusts in the vertical planes perpendicular to the Z
axis—the stresses met with in the right arch. Reactions R

,

produce shear parallel to the Z axis. Reaction moments
Mv and Mx produce torsion in the vertical and horizontal

portions of the arch, respectively. Reactions Ry with

moment arms along Z axis and reactions R * with moment
arms along the Y axis produce torsion in the horizontal

sections of the arch. Reactions Rx with moment arms

along the Z axis produce torsion in the vertical sections of

the arch. Torsion in the inclined sections of the arch is

produced by combinations of all the torsion moments. The
torsion moments in turn produce vertical shears in the YZ
plane, which are small and may be neglected. They also

produce horizontal shears parallel to the Z axis which must

be combined with the shears due to reaction Rt. A moment
about the Y axis is also developed by all the reactions and

reaction moments parallel to the XZ plane. This moment,

though large numerically, is resisted by the entire arch act-

ing as a horizontal beam between reaction supports; the

width of the arch is the depth of the beam, therefore the

stresses produced are very small. This horizontal moment
about the Y axis may then be neglected as far as the hori-

zontal portion of the arch is concerned. In all cases, as in

the analysis of any other structure, the external forces have

their effect on the numerical values of the stresses outlined

above.

The first complete solution for the reactions in a skew
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fixed arch appeared as a paper by J. Charles Rathbun
(then of the University of Washington) in the Transactions,

1924, of the American Society of Civil Engineers. His

pioneer mathematical work was afterward verified by the

classical three-dimensional deformeter analysis of Professor

George E. Beggs of Princeton University. Subsequently

Professor Rathbun extended his method of analysis to the

two-hinged arch or frame bridge for the Westchester

County Park Commission. Based upon this theory, several

skew arch and frame bridges have been designed and built,

up to 50 degrees skew. The following exposition of Professor

Rathbun’s theory is by Richard M. Hodges, designer for

the Westchester County Park Commission.

Derivation of Equations.—It has been shown in the

foregoing discussion that a skewed hinged arch or frame

structure under load develops five reaction components at

each abutment. As in the case of the double-span square-

frame bridge, the supports are assumed to be so altered by

the removal of redundant reactions that the structure

becomes a simple span beam, as indicated in Fig. 59. In

this case the redundant reactions are RX) R,y Mx and My,

all at the right support, Rv being the simple span reaction.

Because this transformed structure is statically determinate,

the stresses in all parts of the structure due to any given

loading may be found by the laws of static equilibrium.

Likewise, the linear and angular deflections at the right

support may be calculated. The redundant reactions are

now assumed to be applied in such manner that the linear

and angular deflections due to them are equal and opposite

to the deflections in the transformed structure. In other

words, the total resultant deflection in any direction at the

right support with all forces acting is equal to zero. The
fundamental general equations used in this derivation are

mathematical expressions of the above statement.

This is the same general principle followed in finding the

reactions for the double-span frame. Attention is called
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to the general discussion of algebraic sign conventions in

Chapter IV. The same convention of signs is used here as

applied in the design of the fixed-end frame and the double-

span frame.

In accordance with the convention of signs used in the

foregoing work, all moments causing tension along the

intrados are considered positive. In the case of the skewed

frame, all moments about the 2 axis, corresponding to the

moments occurring in rectangular structures, are governed

by the same convention; but it is necessary to consider, in

addition, moments about the v axis (the torsional moments)

which also enter into the equations for the unknown reac-

tions. The positive direction of moments about the v axis,

and also the positive directions of all other forces and

moments acting at P, are in the directions shown in Fig. 59.

All redundant reactions at the right support are assumed to

be directed as shown in the figure. Unit thrusts and couples

are in each case assumed to act in the directions of the

corresponding reactions.

All substitutions in the general deflection equations, to

obtain the final equations, are made with due regard to the

signs of the moments caused at P by the reactions acting as

assumed, and by the direction of the external loading under

consideration. In making numerical substitutions in the

final equations, it is only necessary to take care of the

proper signs of terms containing trigonometrical functions

of the angle <t>. After solution of the equations, the true

directions of the reactions are established in each case by

their signs. If positive they are in the directions originally

assumed, and, if negative, they are in the opposite directions.

The internal stresses at any section (such as P, Fig. 59)

may be represented for the sake of simplicity by a system

of external forces and moments exerted by the portion of

the arch to the left of the cut section on the portion of the

arch to the right of the cut section. These forces and

reactions must be' such as to keep the portion of the arch
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to the right of the cut section in equilibrium under the

applied loading and the reactions at right support. The
forces and moments representing the internal stresses at P
are T„, Tv, T,, Mu, Mv and M,, acting along the three axes

P/AGRAM
SHOW/NS FORCES ACT/N6 AMO QUANT/T/ES

USED /V OER/VAT/ON
NOTE : FORCES AA>0 MOMENTS SHOWN ACT/NG AT Ct/T
SECT/ON (POINT F), ANO AT RiOHT SUPPORT; ARE COH-
S/OEREO POS/TT/E /N THE D/PECT/ONS SHOWN.

Fig. 59 .

«, v and 2 perpendicular to each other and intersecting at P.

As will be seen by referring to the figures, the axis v is tan-

gential to the neutral surface atP and in plane perpendicular

to the abutments; the axis u is perpendicular to the neutral
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surface at P
;
and the axis z is horizontal and parallel to

the abutments. Axes u and v (while always remaining in a

vertical plane) change in direction according to the location

of P. Axis z is in the same direction for any location of P,

and for the special case when P is at the right support,

axis z becomes the line of action of reaction Rt.

The best way to avoid difficulty in skew arch analysis is

to obtain, in the beginning, a clear idea of the various axes

and the moments and forces acting. This can be done only

by a close study of the figure.

The moment Mu and the thrust Tu are shown dotted,

indicating that they exist, although they have been neglected

in the computations.

bt3 .

The quantity F = -— used in the calculations, is the
3 > 5 °

factor of torsion; an empirical quantity which is analogous to

the polar moment of inertia. For further information, the

reader is referred to Bulletin 3, Faculty of Applied Science

and Engineering, School of Engineering Research, Univer-

sity of Toronto. All other symbols and quantities used in

the analysis and in the computations are defined in Fig. 59
and Table I.

The slide rule is sufficiently precise for all the numerical

work in the following tables, excepting the solution of the

simultaneous equations in Table II. Here it is advisable

to use the calculating machine.

REACTIONS FOR TWO-HINGED SKEWED ARCH

By inspection of the diagram, general expressions may
be written for M,, Mu, Mt, Tv, Tu and T,, respectively, in

terms of the loading and the unknown reaction components.

Since Mu and Tu may be neglected—see text—expressions

for these quantities have been omitted.
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For Vertical Loading as Indicated on Diagram

M, =RyX — W{x — x') — Rzy
— Mo — Rxy;

M, — Rx sin <!>tx — R,u + Mx cos <f>
— My sin <t>

+R„ cos «l>tx — W cos <f>t(x — x’)\

— Rx sin 4>ex — R,u + Mx cos 0 — My sin <j>

+ Mo cos

Tv — — Ry sin </> + W sin <f> + Rx cos ^ = Vo sin £
+ Rx COS </>;

T. = £..

In whichM0 = moment for simple beam of right span /;

In which Vo — shear for simple beam of right span /.

The above equations for vertical loading can be made
to apply to the horizontal earth pressure loading shown on

diagram (30 lb./sq. ft./ft. depth) without rewriting by mak-
ing the following substitutions:

For simple span moment Mo in expression for M,:

substitute RyX — $h3

For Mo cos 0 in expression for M.:

substitute RyX cos <f>
— i$h? sin — x*)

For Vo sin </> in expression for T,:

substitute—Ry sin ^ — 1

5

h? cos <f>

Note.—All terms underlined above are to be dropped in considering any point to

the right of location of applied loading.

Derivation of Equations for Redundant Reactions

Consider the deflections at right support due to moments
M, and M, at any section such as P in diagram. (Deflec-

tions due to M« and to the thrusts T„ and T, are com-
paratively small and may be neglected.)
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Let M, = moment at P about z axis due to all forces

acting;

M, = moment at P about v axis due to all forces

acting;

m,w = moment at P about v axis due to unit thrust

at right reaction along Rx ;

mm = moment at P about v axis due to unit thrust

at right reaction along R,;

mHox) — moment at P about v axis due to unit couple

at right reaction along Mx \

mtm — moment at P about v axis due to unit couple

at right reaction along Mt ;

mt{x) — moment at P about z axis due to unit thrust

at right reaction along Rx ;

mm = moment at P about z axis due to unit thrust

at right reaction along R„;

ml(ox) = moment at P about z axis due to unit couple

at right reaction along Mx ;

mtm = moment at P about z axis due to unit couple

at right reaction along Mv \

G = shearing modulus of elasticity;

e — tangent of the skew angle;

s — a division of the arch axis;

k — ratio of modulus of elasticity for direct
* Et

stress to modulus for shear =

The total deflections at right support along the lines of

action of each of the unknown reaction components, due

to all forces acting, are equal, respectively, to zero.
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That is:

I.

II.

III.

IV.

G

£
G

E
2

Mmv(x)

F
Mm

Mm2(X)

F

£y MmG^~
s vaMm

Hz)
|

Hox)

I

Mm

= o

2(g)

+

H°v)
_j_

E^> I

s •sr'Mm.

E
s

z(ox)

V "AAfz Wlz{oy)

Z* I
= o

Referring to Fig. 59 and to page 146:

M„ (for vertical loading) = Rx sin <t>ex — R x:t

+ Mx cos <£ — Mv sin + Mo cos <f>e

Mt (for vertical loading) = — Rxy + Mo

Mv (for horizontal loading) = Rx sin <f>ex — R zu

+ Mx cos <£ — Mv sjn <£

+ [RyX cos
<t>
— 1 5A2 sin <£(* — x')]e

Mt (for horizontal loading) = — Rxy + RyX — 5A3
.

mt(X)
— sin 0 ex; mV(X)

— — u; m^„x) — cos <t>; mHoy) = — sin 4>;

m,U)
= — jy; m*u) = 0; =0; mtm = o.

Substituting above values in equations I, II, III and

IV, simplifying cancelling and collecting terms, the final

equations are obtained as follows:

i- 4*«2^ + 2?)
- *-2*^ *

\x sin <t> cos <f> , , -srA* sin2 <t>+ MxtK ]/F
= - *2

\ux sin <f> „ x-'W2

2 '

M0 sin 4 cos <f>x

F
\ u cos <j>

Mpy
+ X^f

TT T> S^UX Sin <p r, 'ST'U
, nrV WC°S

11 . £,*2*— - r ’2*f + M*z*—p
. , sin <j> yrsMoU cos ^- m*2*~f 2—

f

—
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ttt r> xr' 1
*’ sin cos <t> r, cos <t> , „

,

hi . Rxt2^—j R’2*—j +
« cos <f>

.-v COS2
<f>

^sin <t> cos <£-"• 2: F

IV.
S”L* - + M.%

Mo cos2
<t>

„ , V^sin2
4> v- jw.2, j— - -

«Z,

F

sin <£ cos <£__ _
A/o sin </> cos ^

Note that left-hand members of above equations apply

to any loading. Right-hand members of equations as above

given apply particularly to vertical loading, for which

Mo — simple span moment. For horizontal earth pressure

use substitutions given on page 148. For temperature

reactions substitute for right-hand members of equations

I, II, III and IV, respectively, the terms:

Eectl

ks
o; and o. (/° rise)

(c = coefficient of expansion)

Equations as given are in final form for numerical

substitution. All summations are to be carried through

entire arch. Summations in left-hand members of equa-

tions are constant summations; once made they will apply

for all loadings. Summations in right-hand members are

variable summations and must be made separately for each

loading and each position of influence loads. All symbols

and quantities are as shown in Fig. 59 and explained in text.

Design of Sections.—The method for designing sections

explained in the following text is substantially that pro-

posed originally by Professor Rathbun in 1926 and later

explained in detail in his paper in Proceedings
, American

Society of Civil Engineers for April, 1931. The procedure

can be readily understood by following through the tabu-

lated calculations*. Figure 65 shows the forces acting on any
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cut section as found from the preceding analysis, and the

transformation of these forces into directions parallel to the

assumed directions of the two systems of reinforcement.

The transformed forces having been determined, the

final step is to design the two reinforcement systems inde-

pendently, using for each system the two forces acting in the

direction considered. The forces used for the longitudinal

system are the direct moment Mt and the direct thrust Tt .

The forces used for the transverse system are the torsion

moment M, and the shear T,. The longitudinal system is

designed for flexure and compression in the same way as for

a rectangular arch and needs no explanation. The transverse

system is designed for a combination of torsional and direct

shear in accordance with the method proposed by Professor

Rathbun, which will be found clearly illustrated and

explained in the tabulations. The general method may be

briefly summarized as follows:

The direct transverse shear, at the location considered,

is distributed parabolically across the width of the arch, and
in the same way as vertical shear is distributed along the

depth of a simple beam. The maximum intensity, three

halves of the average unit shear, is at the center line of the

arch and is constant throughout the depth.

The maximum torsional shear is found by Merriman’s

formula, v = 9Mt ibt2 for elongated rectangular shafts,

which is used in this connection in preference to St. Ven-

ant’s formula simply because it is more severe. The max-
imum torsional shears exist at the top and the bottom

across the center line of the arch, and in opposite directions;

the vertical distribution being triangular, as shown in dia-

gram accompanying Table XIX. The direct shear and

torsional shear acting across the center line of arch at the

section considered are combined, and the capacity of the

plain concrete {30 lb. per sq. in.) is deducted. Transverse

reinforcement is then designed to take the remainder by a

method analogous to that followed for designing vertical



DESIGN OF SKEWED ARCH BRIDGE 151

stirrups for an ordinary concrete beam whose depth is the

width of bridge and whose width is the depth of arch.

Figure 59 indicates the positive directions ofMv and T,

at any section. Whenever Mv and T, are of the same sign

they work together to cause shearing stress at the extrados

and against each other in causing shearing stress at the

intrados; and conversely, when they are of different sign

they combine to cause shearing stress at intrados and oppose

each other in causing shearing stress at the extrados. After

making the transformation the same effects hold true for

Mt and Tt .

This leads to the following rule, which is based on the

positive directions ofMv and T, as previously assumed:

(1) When v t and v, are of the same sign, add to obtain

resultant shear at extrados and subtract to obtain resultant

shear at intrados.

(2) When v t and v, are of different sign, add to obtain

resultant shear at intrados and subtract to obtain resultant

shear at extrados.

The algebraic sign of the resultant shear is not significant

in view of the type of reinforcement used. Therefore in

Table XVIII the signs are dropped as soon as they have

served their purpose of determining the resultant shears top

and bottom.
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Rs,

Rs,

Ms,
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I.
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substitutions,

see
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VI
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VII.

For
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load

substitutions,

see

Tables

III,

IV

&
V.

For

temperature

substitutions,

see

Table

VIII.



TABLE

III.—

VERTICAL

INFLUENCE

LOAD

AT

6R

DESIGN OF SKEWED ARCH BRIDGE

Portion

of

table

to

right

of

double

line

was

computed

after

the

solution

of

equations.



TABLE

IV.—

VERTICAL

INFLUENCE

LOAD

AT

8R

DESIGN OF SKEWED ARCH BRIDGE
157

+

+

I

II

I

£
II

a
7?
it
•i'

a
.

n •

•S^>
g B -

!|s.e
•rj Em u

l*3jc/3 g gH

0 SOD

0 «IS

0 UIR

*x Jf

puoq jjufl jo|

°/r

#/e

90 SOD 0^

0UIS

0 SOD */Y

»*y

*»0 ujs

0 JSOD 0^

0 sod

/

*®jr

d
0 SOD 0 UJS Ojy

0 SOD 0 UJS

99 c »t
f»vO V/9 Co oQ Tv© n & o « n f<5 tocDO t'^i/9i/5T<*5«,5f*5/*5T'TTTTT«'5»*5f*5

66666666666666666666

O O O M O O O
dodo dodo o’ 6 6 6 6 6

? v§11'§ STH §£§ § §

M£ I'S 3 S 5 S&2 S'SMM
oddddddddddddddddddd
I I I I I I I I I I

-

C 69
- Oa

z ’ii—6’SS
io hO in sQ 7n i/jv© O' TOO « OtN «\0 m tfi
>© «*5 OO 0’TnOfiHW9i 1/5 \© l>* 1^0 O' «5 lO
M i*i TO Tmh Tmm0wmi»5T 'OO T i*5 m
I I I I I I ++++ I I I I I I I I II

5 m v© M T OO i/o O OC Op O 1/50 O T in O m «5
> <*5 OO O fOOOO OOOOoOOTO O O TO
< 1*5 TO SININ r-oo 00 CO OO 1-^ t'- r>-o T i*5 M

OOIfl«OON<tNOll'9iNO O' O' O U5 M OO m OO <*5

0 0 0 O N i^uo m 0 O r>-0 i/srpiNw®®®®

lOwiiflai/is^NW t-- f*5 io rp 1/5O O T O O O
O O O do T TO 00 O O 1*5 I* m OO «N O 00 00 00

0 O O «ilOH ONnddHfi«^4«M MM
+++ I I I +-+-H- I I I I I I I +++

NI/5©MWC*M*hmOO(
IN TO O'00 I'-O loijioi »

t'- f- f- O 1*5 O Oj
19 19 19 -t M M (

O O O O 0 0 < 5 8 8 8
* O <50

S s ? VP IP i?o o o o o o
oooooooooooooooooooo
I I I I I I I I I I

-

OOOQ'oOmmOioOOOO
„
f-"Si © 0^1 O S 8l o'8'‘o O O l-

,

I I II II I I I I I I I I

I 95 &(9 8 00 O O O
(*5 T T T T i/> trj 190OO />. r*. «*5 T T T

H O (DO o.(ONHiS Mwow ooo oioooooo0000 ddddddddHHd^Hooo
I I I I I I-

M " "

vo (*>' i-c'

8
m © O i— m ooo i*5 m m00««5H5n5M(>0000000
ddddddddddod
oS,88£M88£&2

O O O O mT «AO 00 TOO I5WOO (DO 0 OOO
o o h «5 W5 t^.o 46666
OO OOOOOOmmOTw

0 0 0 0 HtNlOM T T H «5NH
(

o w 1/5 1*5 h o Cl H50 MOOH N «4 N H

?S> ^'2SS {2'S^S>8^
00008800008008800000

ddddddddddod
I II I I I ++++++
OOn*/5T«MTf*5«OC

O dddddddddodd''
I I II I I ++++++

1
d

•S 2

!
8

1

fa s

Si 3
3b I

2£ *3

v e *-*

II I
•38 2
g g Jl
.2.2 S
tJ ts 5
c2l £

I. fa

r
>5

o 0
0 o
1 I

p*°i *>j °/r

" W Pjl 9
393939



TABLE

V.

—

VERTICAL

INFLUENCE

LOAD

AT

10R

158 DESIGN OF SKEWED ARCH BRIDGE

M N n'f 1P>V© N00 Oh O O O'00 p-O w>>Tt1N M

*
4

*
I

n

(<

Io
*

II

H w

5a»

+ 8
?!

i+
.s

•r!
H JSj

ST

0 SOD

0 U1S (I)

0 uts *2f

pvo'j i;un joj

°n

•N

* 0 SOD

0 UIS

0 SOD

*»0 uis *y

*9£’0

00 00 00 t W M >*'0 NOO N N
O' IO POOC H W

>0 to >0 P-v© I/) ifl tf) ^ O *0

NN N00 »OOM $• «
« 't'O P- O NHpH6«
to to to >o »oVO 't tf

tos8 O O O § 8 8 I 2 S Oc8 w.
0 0 0 fO’tt'tTj-^-^toio'tt'^'T^^t'fOO 0 0

o’ o' o' o' o' o' o' o o’ o’ o’ o’ o’ o’

'§’§5 ?“%«”!>OOOMMHNt>..
OOOOOOOOmmm

00 00 o0 H SO Q O 0«'*'t^00 O'© f 00 oO 00
<0 *0 <000 N a* 5)55 H rt t^iaO O <N 00 000tototoroMOOOOOOOOOMMtotototo
66666*66666666666666
I I I I I I I II I

8fSo=
OSS

8’ S« — 6* SS

10 O wo tfNO (10 O 0 p»v© © <00 O to o toM to 't'O 00 O O © N "? "? ©SO HHfi + Om
in oo« 't")0 m w)h o n «to

»

noo « 4«
1 I I 1 1 I I I +++ I I I I I I I I I

to O *0 0 to 0 *o 'O 0 to 0 lo 0 >o
tH fO -to m o Ohm «t to 10 tj- N ©vO MVO
«* 4 1© oo©d>d'dddddd©d' d>oo «

m o -too M OOI
O tttflON O O N H o H OtfW+H H H
'Mill +4-4-

I I I I I I 444
lOtONOt^lNONNW to M

OOOO *4^ O M OX OnhhO o to J q q q
h 4 to O' 0 O' r-vd 4 4

^S‘S'? 8 cS>s
,

^'S 3 TPS 5&&TWWWS^tJ'tfOH^COOOOOOCOiHOtt^tf
66666666666666666666
I I I I I I I I I I 4444444444

t'O O'©'© 1- P- IN. P-© VO © to *f

I I I I I I I I I I M I I

« O' Pn 1000 IN 0 IN 00 O Pt

, ^ o IN -t3 M it 0 <N S' to »o o o T *! T0.
*1

o to oc 00 «t«t^t

4d vd © vd p- p~ P'00 00 o> o o 00 o o d
• M H IN <N Pt

mo 8 p? 8> 8 Nto
too NMfl« *000 vOtONfP*to0 00

> ddddddddww 44 to«ddw « « et

Mill 14444444444

dodddddddddd

i

!
.s

•I
•2

1
i 1

1

l
3
3

.g~ *

o <U a
2-fi jj

Sb
“

*a •8

'o

1 8.

?§
8J

fi

5

!

IT
0 ,80D Ojpy

0 SOD wO/fl"

O 0 O o'? S ?o8 tI-'m ^ m 2
^

O O H NO M 0 O K)H o o

I oooo^^^Vi" :r:oooo0h ^S?^8^ h0

0 SOD 0 UJS 0^-jf

H PhOO IN«WJ 0

00008880000008880000
dddddddodddo
I I I I I 1444444

0soD0nis**jr

tfl W W pH© O' 0

0000 dddddddoddd6 0060
II 11 I 1444444

5 q-

5 ?

* %

o
4

*® f“W“ P*®!"!** o e e o -J8S STS*?? 2* ® 0 e

o

»«|0J

tW 5??



•19

*<



Fig.

62.



DESIGN OF SKEWED ARCH BRIDGE 161

Fig.

63.



r/vsf

7f

/&rd//fb//7>



TABLE

VI.—

EARTH

PRESSURE

ON

LEFT

Quantities

for

Substitution

in

Equations

(See

Table

II)

DESIGN OF SKEWED ARCH BRIDGE 163

ridth

of

bridge)

before

substituting

in

equations.



TABLE

VII.—

EARTH

PRESSURE

ON

LEFT

Final

Moments

and

Thrusts

164 DESIGN OF SKEWED ARCH BRIDGE

m m o vo so r^- 00 a\ o o os 00 ^ t n o *«

Zll = *l

VO VO ^ x vo o n r*5 m r-. »< m h oovovo^o

00 OO H M 00 rf f'-

o O 0 OO us N» 00 O os Os os 00 OO vooo O O O

3[qi3i]S3jsJ

h rl vo 'O ri os r*. o so so so

I I I I I I I I I I + + + + + + + + + +
M -t SO 30 0^0 O O O O O O Q vo Q M i- VO 00
0 O O O M >-1 so O r^c< m » 00 n M Os N O H
so M so »t>-ioo rf h I"- ro -< ^ o vO »-i so M co Os Os1 h« m M »-i >-i •* -iHHcScSforocs*-'

1 1 1 1 1 1 1 1 1 1 + + + + + + + + + 4-

8 J'SS&iPS a 2 a<8 £'s2
,8'8 J 8

VO MOO ^ vo VO r- 00 OS OS OS Os 00 r- VO ws rf 00 M vOhmMMMMMMMMMMMMMM»hi-i

vo vo vo r*“) >h w 1^0 Ov^Ov^^OstfH vo vo »o
co oo 00 VO VO r^»M r^»-i O Os vo Os -rf CS ro VO vo vo vo
'T'+'tOSTfM o so M Tj-r-M vo OS ro VO VO so

+ + +

1

T 7 T 1 1 1 + + + + + + + 1 1 1

OOOO’.Osr’jmcoOQOOOOOQOOO
ro vO 1-1 vo Os vo Os M us |s oo 00
COVO 0 ro VO 0 f'Or-O VO Os «-

m m him mm n n n n n

vo VO vo M) ro o cs
oo 00 00 -r hh os r-t t t n h h ro t t

w sfMf^o t vo vo ^f-or^M

000
.8 R 8> ,gS. tgR§ 8. 8. 8888 RRR
ro 00 OS OS O M M f V) fs ^ N cooo M M Mmwm^MMMMMMM mj M) VO so SO SO

0000 J'K?J?S^S'5 Sa? 2 8 8 8mmMMm « ^*v5 Ov^fOH N M

I I I I I I +++++++++$

<S SI £**.8 &SS ** * >id il<* •d/i’jW d

Note.

—

V

alues

of

Mo

and

M'q

were

obtained

from

Table

VI

and

multiplied

by

skew

width

of

bridge



DESIGN OF SKEWED ARCH BRIDGE 165

TABLE VIII.—TEMPERATURE STRESSES ± jo° F.

Values for substitution in equations (see Table II):

+Ectl _ 288,000 X 0.0000065 X 50 X 55.9

4-3

= 4* 1215 kips/square ft.

= 121 5
= — 356 kips/square feet

My = ~ I478

Jlf, •+ 1466

“ + 69.3

S=+ 20.0

Point

M„
— Rx sin fax — Rzu 4- Mx cos <t> — Afy sin </>

1

£ 11 1& Tv Tx

sin 4>ex Rsu Mx cos My sin 0 Mv —Rxy Rx cos <f> Rz

iR 0 0 0 +1478 -1478 - 86 0

2R 0 0 0 +1478 -1478 -172 0

3R Q 0 0 4h78 -1478 -258 0

4R O 838 1036 41044 - 846 -344 14

5R - 16 ”55 1425 4- 344 - 90 -366 J 9

6R - 25 1190 I436 + 275 - 54 -384 20

7R - 3° 1225 1448 4 219 — 26 -398 20

8R - 29 1266 1455 4 161 — I —408 20

9R — 21 1343 1462 4 9° 4- 8 —416 20 co

10R — 11 1397 1466 + 38 4 20 —420 20 viT
_L

10L + I 2 J 5°3 1466 - 38 + 13 —420 20

9l + 33 1572 1462 - 90 + 13 —416 20 N
0$

8L 4 66 1690 *455 — 161 - 8 -408 20

7L 4-100 1800 1448 — 219 ~ 33 -398 20

6L +>37 1910 1436 - 275 - 62 -384 20

iL +188 2050 1425 - 344 “ 93 -366 19

4L +617 3570 1036 — 1044 - 873 -344 H
3L +872 3870 0 -1478 — 1520 -25s 0

iL +872 3870 0 -1478 — 1520 -172 0

iL +872 3870 0 -1478 0C4T - 86 0
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*
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TABLE

XIV—

SUMMARY

OF

MAXIMUM

MOMENTS

(KIP-FT.)

AND

NORMAL

THRUSTS

(KIPS)

Moments

M
z

and

Thrusts

Tv

-M
m

is

the

controlling

design

moment;

hence

the

bridge

was

loaded

to

produce

a

maximum

M
g

moment

and

the

corresponding

M».

Tv
,

and

T,

values

were

then

nreiy

instance.

Note

that,

for

temperature,

the

M
v

moments

control

at

points

i,

2,

and

3.
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TABLE XV.—FUNCTIONS OF ANGLE V

Point cos 4>
tan V =
e COS <f>

Angle V sin V cos V sec V sec*r Point

1 0 O 0 0 1 .000 1 .000 1. 000 1

2 0 O 0 0 1 .000 1 .000 1. 000 2

3 0 O 0 0 1 .000 1 .000 1 .000 3

4 0.707 0.551 28 ° 55
'

0.483 0.87s 1305 4

5 0 972 Q -759 37 ° 15
'

0.796 1.256 1-577 5

6 0.982 37 ° 30' 0 . 609 0-793 1.260 1.589 6

7 0.989 37 ° 40' 0.611 0.791 1.264 1-597 7

8 0.994 0.777 0.790 1.266 1.603 8

9 0.998 O.78O 37° 55
'

0.615 0.788 1.268 9

10 1. 000 0.782 OO
0

0.616 0.788 1 . 269 1 .610 10

<f> (see Fig. 59). V = The projection of the skew angle on a plane tangent to the
neutral surface at the point considered. ,

Angle a < Angle V
Transverse Reinforcement Parallel to Abutments.

Fig. fit^-Transformation of Forces Acting on Cut Section as Calculated, to Forces
Acting in Directions Desired for Design of Reinforcement.

Equations

Ti ~TV sec V Mt = Mt sec V
Tt - Tv tan V - Tt Mt = Mt tan V - Mv

The transformations of Tv and Tg only are indicated on the figures. Mv and Mt
correspond vectorially to Tg and TVf respectively; therefore their equations may be written
down directly as shown.

Note that V is not the bridge skew angle, but its projection onto a plane tangent to
the neutral surface at the point under consideration.
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TRANSFORMATION

OF

MOMENTS
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FORCES.
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STEEL

PARALLEL

TO

ABUTMENTS
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at
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sq.
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Design of Transverse Reinforcement

The shear distribution diagrams shown in the sketches

accompanying Table XIX are drawn to scale for the points

at the crown and near the footing and are typical of the

diagrams for the remaining points. The direct shear is

always small in comparison with the torsional shear, and it

rarely occurs, as in the diagram for point i, that the direct

shear is greater than the amount of shear assumed to be

taken by the concrete alone.

For practical purposes, the design throughout the width

of this structure is based on the maximum shears which

occur along the center line,,and the steel is made the same
top and bottom, being calculated for the moment about the

neutral axis of the larger of the shear triangles.

Opinions differ as to the correct theory for the design of

transverse reinforcement, but there seems to be little disa-

greement in the final results reached by the several methods

proposed. A more rigorous analysis than that given here is

unnecessary. The reader is referred to the paper by Pro-

fessor Rathbun, and the discussions following, which appear

in Volume 98 (1933) of the Transactions of the American

Society of Civil Engineers: “An Analysis of Multiple Skew
Arches on Elastic Piers.”
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Distribution at Point 1 Distribution at Point 10

TABLE XIX.—DESIGN OF TRANSVERSE REINFORCEMENT—RODS
PARALLEL TO ABUTMENTS

t\ and t% are scaled from diagram for each point.

A% « required transverse steel area in square inches per foot, width of bridge*

18,000 A\ {di - 3.5)
1 / \

3000 Vi — 3.5/
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Permissible Approximations

A study was begun by the Westchester County Park
Commission under the direction of Richard M. Hodges to

determine what approximations could be made to the exact

analysis ofskewed arch or frame bridges to reduce the amount
of mathematical work; but the study was suspended before

the procedure for proportioning the transverse reinforcement

was completed. This appeared to be the only unsolved

element of the problem. The author, however, feels war-

ranted in making recommendations with respect to the design

of concrete rigid-frame bridges up to about 25
0
skew. Within

this limit the skew frame bridge may be designed as one

without skew, having a span length equal to the skew span

of the actual structure. Nominal transverse reinforcement,

such as is used to position the longitudinal reinforcement

and knit the structure together laterally, will be adequate

to resist the relatively small torsional effects.

METHOD OF DESIGN OF SYMMETRICAL DOUBLE-SPAN
SKEW FRAME BRIDGE

By PROFESSOR J. CHARLES RATHBUN
College of the City of New York

Let Fig. 68a represent a double-span skew structure

symmetrical about a vertical axis. This can be analyzed for

any system of loads provided that one is able to analyze the

right span of this structure after certain changes are made in

the central post.

First Step. Let us assume that for every load on the right

span there is an equal load symmetrically located relative to

the central vertical axis. From the nature of this arch every

stress and every strain in one arch has its corresponding

equal stress and strain in the other. In the central leg these

either cancel each- other or combine to double their value.
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We can therefore obtain a complete solution by considering

arch ABCD of Fig. 68<£, in which the loads, dimensions, and
material are the same as in the right part of Fig. 68a with

the exception of the leg AB.
As the vertical thrust and moment about the vertical

(Y) axis from the two spans combine in the middle leg, the

leg should be considered as having half its actual rigidity

for such forces.

The two horizontal force components Rx and R, of one
span are canceled by those from the other, and the same is

true for the moments about each of the horizontal axes.

Therefore the middle leg should be assumed as infinitely

rigid for the forces along, and moments about the X axis

and Z axis.

With these changes in the properties of the section AB
the arch ABCD may be analyzed by the methods and formu-
las previously given in this.chapter.

Second Step. Let us assume that the loading on the
right span is the same but that the loads symmetrically
opposite are negative or upward. The solution of this

problem will give the same stresses in each arch except that

those opposite each other are of opposite sign. This can
easily be shown by revolving the structure a half revolution

about its vertical axis of symmetry. This gives a complete
reversal of stress. The solution indicated is the only one
that will give this result.

At B and in the leg AB the vertical force and the moment
about the vertical axis will be zero, owing to the fact that

forces in one arch are opposite those in the other. However,
the horizontal force and the moment about a horizontal axis

(each represented by two components) mutually aid each
other. This as before can be allowed for in the single arch
ABCD by making the section AB infinitely rigid to the first

moment and force and of half the actual rigidity to the other
two moments and two forces.

With these changes in the properties of AB, the arch,
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ABCD can again be solved. The resulting stresses in the

left arch will be the same except for change in sign.

Third Step. By combining the solutions of these two

steps we have the analysis of the symmetrical two-span

frame under an unsymmetrical load.

Fourth Step. In an actual bridge structure some loads

(such as dead loads) are symmetrically placed and some are

not. For the symmetrically placed loads, the procedure

outlined as the “First Step” is to be followed. For the

unsymmetrically placed loads the procedure outlined as

the “First Step” is to be followed using a loading of one

half the sum of the loading on the left and right spans.

Then the procedure outlined under “Second Step” is to be

followed using a loading of one half the difference of the

loading on the left and right spans. One need solve for

the forces and moments at D only. Adding the two results

gives the reactions at the right abutment; while subtracting

them gives those at the left. The stress analysis and design

from this stage on is the same as previously explained in

this chapter for the single-span structure.

It is to be noted that the signs of the reactions at the

abutment of the left arch are taken when it is rotated into

the position of ABCD.
The above solution may be followed for those special

cases where the designer feels that the assumption of hinged

abutments is unwarranted, by using the formulas and

methods of paper 1542 of the 1924 Transactions of the

American Society of Civil Engineers for the design of the

sections ABCD of Fig. 6%b.

The more general solution of this problem may be found

in paper 1827 of the 1933 Transactions' of the American

Society of Civil Engineers. Here the unsymmetrical struc-

ture of two or more spans is analyzed by an entirely different

method.





CHAPTER XI

PRACTICAL POINTS ON DESIGN
AND CONSTRUCTION

DESIGN OF BRIDGES HAVING RESTRAINT AT THE FOOTINGS

Chapter IV as written for the first edition of this book

contains some observations relating to the design of rigid-

frame bridges without physical hinges at the footings. The
results of recent experience, studies, and laboratory tests

provide the basis for more definite recommendations for the

design of this type of structure. The topic is therefore dis-

cussed at more length here as applying at least to both

single-span and double-span structures, of the size that

would be used for grade separation projects.

Concrete Frame Bridges

In Fig. 38, Chapter VI, a comparison was shown of total

maximum moments for fixed-end conditions and for hinged-

end conditions in a single-span concrete rigid-frame bridge.

Excepting for the positive moment in the vertical leg the

agreement is very close. It will also be noticed from the

calculations for reinforcement that the only practical differ-

ence in the final result is that reinforcement is required at

the inside face of the vertical legs for assumed fixed-end

conditions. If the influence lines for both conditions are

superimposed one upon the other it will be seen that, point

for point, there is considerable divergence. Nevertheless the

total effect of dead load, live load, earth pressure, and.

temperature change has been found to be nearly the same
1*3
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for fixed-end and hinged-end conditions for bridges of 40-ft.

to 60-ft. span.

A few comparisons for assumed fixed-end conditions and

hinged-end conditions in double-span concrete frame bridges

have also been made which show close agreement except for

the positive moments requiring reinforcement on the inside

faces of the vertical legs. Figure 69 shows the results of

one comparison for the critical moments.

In an actual bridge structure, the condition of complete

fixity at the footings is rarely realized. For assumed hinge

points at the middle of the base some calculated restraint

may be introduced by an actual eccentricity of the reaction

due to the bearing width of the footing on soil foundation or

rock foundation; but this is of negligible amount as was

explained in Chapter IV. With pile foundations it is possi-

ble that considerable restraint may be introduced by reason

of the grip of the footings upon the piles which will necessi-

tate reinforcement at the inside faces of the vertical legs. It

is the opinion of the writer that even then it is unnecessary

to design for the two extremes of hinged-end conditions and

fixed-end conditions or to use physical hinges, which are

expensive expedients and entirely superfluous except under

extraordinary circumstances.

In laboratory tests made at the University of Illinois
*

on single-span concrete rigid frames with bases rigidly fixed

by mechanical means, there was a discrepancy between the

experimental results and the calculated fixed-end moment at

the bases. No cracks were visible above the footings, but it

was finally discovered that microscopic cracks had devel-

oped just above the footings—such cracks as would be no

more damaging to the structure than those occurring in any

flexural member at ordinary working stresses. Nevertheless

this was sufficient materially to reduce the calculated end

See
44
Tests on Rigid Frame Bridges'* by Wilbur M. Wilson, Ralph W. Kluge in the

American Concrete Institute Journal, MayJune, 1938, and Bulletin 308 of the University

pf Illinois Engineering Experiment Station,
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INFLUENCE LINES

Fig. 69,
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moments. It thus appears that in an actual structure very

small angular changes at the footings due to the elasticity of

the soil or to very small yield of piles will be sufficient to

minimize restraint at the footings so that it will act like a

structure with hinge points near the middle of the base.

For concrete rigid-frame bridges of the size usually required

for highway grade separation, a calculation for assumed

hinged-end conditions only will be adequate, and a good

guess can be made of the amount of reinforcement on the

inside faces of the vertical legs that will provide for all

probable contingencies. The analysis made in Chapter VI
for a single-span bridge will be a good guide.

Steel Rigid-frame Bridges.—Steel rigid-frame bridges have

been treated in different ways.

i. When very good soil conditions were encountered so

that the footings were comparatively narrow (in the longi-

tudinal direction of the bridge), the bases of the girders

were anchored to the concrete footings and hinge points

were assumed at the bottom of the footing near its center

line.

1 . When soil conditions required comparatively wide

footings and the vertical legs of the girders were embedded in

concrete, with the cut-off walls for retaining the approach fill

placed in front of the vertical legs of the girders, the bases of

the girders were set upon lead plates in pockets formed by
angles securely anchored to the concrete footing. Hinge

points were assumed, for design purposes, to be at the middle

of the girder bases. After the girders were set all interstices

in the pockets were filled with bituminous material and

added insurance against collection of water was provided by
weep holes from the pockets. This arrangement is prefera-

ble to the use of pin bearings, which would not be open to

inspection after construction.

3 . When soil conditions required comparatively wide

footings and the vertical legs of the girders were to be per-

manently exposed, with the cut-off walls for retaining the



PRACTICAL POINTS ON DESIGN AND CONSTRUCTION 187

approach fill placed back of the vertical legs of the girders,

physical hinges (usually of the pin variety) were placed at

the bases of the girders.

4. Steel frame bridges have been designed and con-

structed for fixed-end conditions when for particular reasons

massive footings had to be built, the anchorages at the bases

of the girders being designed for the calculated fixed-end

moment.
The choice of any one of these expedients will depend

upon the foundation conditions, the relative cost of fixed-end

anchorage or pin bearings for any particular bridge, and the

preferences of the designer.

Secondary Effects in Design.— Recommendations are

sometimes made to allow, in the design of concrete struc-

tures like those illustrated in this book, for such secondary

effects as shrinkage and restraint of “side-sway.” Plastic

yield is also a secondary effect as certain as that of shrinkage

but not usually recognized as an element of design. The
combined effect of shrinkage, plastic yield, and restraint of

side-sway in the structures we are considering is uncertain

and not of great importance. In the opinion of the writer

all these secondary effects may be neglected unless the

designer is governed by specifications to the contrary. The
neglect of them is less serious than the neglect of other

factors that we are not accustomed to worry about, such as

the position of the live load laterally that would give maxi-

mum calculated stresses in an arch-like structure. This

point is discussed further on. Design calculations are

necessarily more or less of a convention for arriving at rea-

sonable proportions for a bridge, which is not a laboratory

specimen, so that it will carry expected loads at safe unit

stresses and give good service. The simpler these calcula-

tions are, the better. Monumental structures may require

more accuracy in design than small ones because certain

secondary effects may be more pronounced -relative to the

principal effects. Secondary effects are discussed here so
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that the reader may understand their implications and not

be disturbed by differences in practice.

Shrinkage.—As the concrete in a structure ages, shrinkage

will occur. Its effect will be equivalent to that due to a

drop in temperature, but it will be less in a heavily reinforced

structure than in one with light reinforcement. A shrink-

age coefficient of 0.0002 is sometimes used, which will have a

calculated effect equivalent to a drop in temperature of

about 30°. The effect of shrinkage, however, will be

modified by plastic yield. The two effects are concomitant,

and one cannot properly be considered as an element of

design without the other. In like manner the effect of sea-

sonal change in temperature will be modified by plastic

yield. It is true that over a period of several years plastic

yield diminishes until it practically disappears and its

relieving effects decrease; but during this period the struc-

tural quality of the concrete is improving. Working
stresses are based upon the qualities of concrete at an age

of 30 days when plastic yield is fully effective.

Finally all calculated stresses are derived by neglecting

the considerable amount of tension in the concrete that

remains over part of the section of flexural members at the

stage of working stresses. This is as it should be, the point

to this discussion being that there is a range of uncertainty

of structural action so that minor differences in practice are

of little significance.

Plastic Yield or Flow.—Under sustained loads, such as

the dead loads, the concrete in a structure will be subject

to continued deformation up to a certain limit. This struc-

tural change of the concrete will result in a lowering of the

neutral axis of a flexural member and a readjustment of

the internal stresses on a cross-section. Although the

modulus of elasticity of the concrete itself may stay prac-

tically constant after the curing process is complete, the

effect df plastic flow upon the deformations of the structure

and upon the redistribution of stress on a cross-section is
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as though the modulus of elasticity of the concrete had
decreased. For this reason the structures in this book
were designed for a modular ratio n = E. Ec = 15,

although the tests on the field control cylinders of concrete

showed a value of E, = 3,000,000 or more. The current

specifications of the American Association of State Highway
Officials specify a design value of n = E, -h Ee = 10,

and it is recommended that this be observed in the design of

new structures for the sake of uniformity in practice. A
considerable difference in the assumed value of the modular
ratio will make little difference in the final design of the

structure, so that the effect of plastic flow as an element of

design may ordinarily be neglected. For further discussion

of this topic the reader is referred to a paper by F. E.

Richart, R. L. Brown, and T. G. Taylor in the Journal of

the American Concrete Institute, January-February, 1934,

“Effect of Plastic Flow in Rigid Frames of Reinforced

Concrete.”

“Side-Sway.”— If the live loads upon a symmetrical

structure like that shown in Fig. 28, Chapter V, are sym-
metrically placed each side of the crown, it is obvious that

the bending and deflections of the members will also be

symmetrical about the crown and that the top of the frame

will not move longitudinally relative to the footings. If

the live loads are unsymmetrically placed, as for example

a single line of loads across the bridge at point 8R of Fig. 28,

the bending and deflections will be unsymmetrical about

the center of the span; and the top of the frame, unless

restrained by other forces, will move longitudinally with

respect to the footings; in other words, it will have a

horizontal deflection.

If this deflection is restrained by external forces, addi-

tional stresses will be set up in the structure. It is doubtful

whether any considerable restraint to side-sway in an

actual bridge structure will be provided by the development

of passive earth pressure at the ends of the frame. Tests on
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one of the bridges built by the Bronx River Parkway Com-
mission indicated that the elasticity of ordinary soil was
sufficient to prevent any appreciable amount of piling up
of passive earth pressure, due to flexure in the structure.

Expansion joints in the roadway pavement at the ends of

the bridge should be adequate to prevent restraint that

might otherwise be developed. If a portion only of the

width of the bridge is loaded, the unloaded portion will

restrain side-sway in the loaded portion; but the load itself

will be distributed laterally and the stresses in the longi-

tudinal strip under the load will be less than if the strip is

calculated as an independent unit.

Even if side-sway were fully restrained the results would

be of little consequence, partly because live-load stresses

are a small part of the total and partly for the following

reasons. For the condition of live loading causing maximum
stresses at the critical sections (the knee and the crown) the

tendency to sway is very slight; and at other points where

eccentric live loading for the maximum stresses does cause

appreciable tendency to sway, the concrete sections have

excess capacity. Any calculation for restraint of side-sway

is therefore of little practical value. As a matter of aca-

demic interest, however, the method of calculation is

explained.

Calculation of Restraint of Side-Sway.—The influence

table following Fig. 28 in Chapter V shows “total moments’'

for an influence load of 13/4 at any particular point.

The horizontal deflection at the crown will be -4
E
in which y' is measured from the point at which the deflection

is being calculated; that is, y' = 18.2 — y in Fig. 28.

If “side-sway ” is prevented by a force H' acting horizontally

at one end of the frame the calculated horizontal deflection

at the crown due to it must be equal and opposite to that

due to the vertical load at 8R. To find its coefficient,

assume tentatively H' — 1. Horizontal components of

EMy'
I ’
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the reactions for H' — 1 may be calculated in the same
manner as were the horizontal components for earth pres-

sure at one end of the frame. Vertical components of the

reactions are due to the overturning effect of H' — 1.

Total moments M' may then be calculated for all divisions,

and the crown deflection will be £/‘~j~ - From the two

equations for deflection there is derived

H> =

y-vMy'

It is to be noted that analysis by the moment-distribu-

tion method infers that side-sway does not occur, and a

correction is necessary to determine stresses under the

condition that the structure is free to sway. Despite the

apparent inconsistency involved, it is the writer’s opinion

that, if analysis is made by the method explained in this

book, correction for restraint may be neglected; and if

analysis is made by the moment-distribution method,

correctional stresses resulting from freedom to sway may
also be neglected. Restraint is probably partial, and the

effect of either restraint or sway in bridges is negligible, for

reasons explained heretofore; except perhaps in unsym-

metrical structures having legs of quite different length.

Placement of Live Load.—The accepted convention for

calculating live-load stresses in a slab or arch-like structure

which is continuous for its full width is to assume that the

maximum stress that is produced on any portion carrying a

traffic lane will be that produced by the* direct loads upon

the lane. As a matter of fact, the eccentric application of

live loads to one side only of the roadway will increase the

stresses at the edge of the bridge due to the direct applica-

tion of the load, the principle being analogous to that of

the eccentrically’loaded column. In general, the maximum
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stresses at the edge of the bridge will occur when the outer

two-thirds of the roadway is loaded; and, if considered in

design, this would result in a progressive strengthening of

the sections from the center line of the bridge to the outer

edges. This is a point that appears to have escaped the

attention of bridge engineers, but there is good reason

against revising our conventions of design with respect to

the use of live load to agree with theory.

We have a clear case of expediency to consider: whether

to design the structure for extreme but occasionally probable

conditions of loading within conventional limits of stress,

or to design for ordinarily expected conditions and permit

the conventional working stresses to be exceeded for the

extreme conditions. The usual conventions of design as to

loading and working stresses do result in structures that

perform good service; therefore we may conclude that they

represent the usual wear apd tear upon the structures very

well and that it is unnecessary to assume conditions that

would result in abnormalities of proportion.

If any specific recommendation may be made, the writer

would suggest that, in designing bridges of the barrel type,

the provision of the specification permitting reduction of

intensity of live load for the wider bridges be ignored. This

provision is intended to allow for the effect of supposed

dispersion of traffic upon wider roadways. Ignoring this

reduction will automatically provide in some degree for the

effect of eccentricity of the reduced loading. This recom-

mendation has not been followed in the design calculations

contained in this book, but the specification for loading

has been followed literally.

Intrados Curves.—The rigid-frame bridges illustrated in

this book were built without fillets at the inside corner of the

knee. Bridges have been built with fillets, but the com-

pounding of the fillet curve and the circular segment curve

of the top present a less pleasing appearance. Compound
intrados curves are usually unsatisfactory.
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By referring to the tests on knee specimens and rigid-

frame-bridge models described in Chapter XIV, it will be

seen that very high stress concentrations exist, under load, at

the sharp corners of the unfilleted specimens. When these

specimens were tested to destruction, however, failure did

not occur on the sections at the corner but on sections some
distance from the corner where the stress condition was

more like that existing in a beam. The only exception was
for knees having abnormally high percentages of steel rein-

forcement. Failure at the point of high stress concentration

had to be induced deliberately. The Columbia University

tests described in the first edition of this book and the

University of Illinois tests described in Chapter XIV of

this edition demonstrated beyond all reasonable doubt that

the unfilleted knee is safe in the construction of structures

like rigid-frame bridges.

The significance of localized high concentration of com-

pressive stress such as exists at the sharp corner of a knee

specimen is not yet known. The reason why such specimens

do not fail at the corner may be that the compression at

the corner is a confined stress. Compressive forces come
in from all directions—along each leg and radially toward the

corner from the curved band of reinforcing rods.

In a so-called compression test of a concrete cube the

specimen really fails by shearing along inclined planes,

indicating a comparatively low apparent compressive value.

A flat plate, however, would show much higher compressive

resistance. Another analogy is afforded by calculated shear.

Higher working stresses are allowed for punching shear

.than for shear used as a measure of diagonal tension in a

concrete beam. The designer should not impair the appear-

ance of his structure in order to minimize the stress concen-

tration at the knee.

Proportions for Analysis.—Experience with this type of

structure has been too limited to establish general rules for

proportioning, preliminary to analysis. A rough guide for a
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single-span concrete solid section frame bridge carrying a

separate roadway pavement and designed for H20 loading

is as follows:

£
Make the thickness at the knee (

t

in inches) = 4 H
14.5

S . ,

and the crown thickness = 4 + —, in which S = the
53

clear span length in inches. The depth at the knee may be

decreased at the expense of an increase in thickness at the

crown, and vice versa; but no general rule can be given.

For a double-span concrete solid section frame bridge

S
the thickness at the knee may be assumed as 4 H and

the thickness at the face of the vertical leg may be assumed
o

as 15 4- — . The crown thickness will be about the same

as for the single-span structure. The final design need not

agree exactly with these approximate proportions assumed

for analysis. Observe the sample calculations.

Construction Joints.—In construction it is convenient

to pour the footings as the first operation. The cantilever

portions of the footing are reinforced by means of bent

rods shown in typical plan Fig. 33, which are crossed in the

footing and carried above the footing about 3 or 4 ft. as a

splice to the main rods in the vertical legs which are set

up as a second operation after completion of the footings.

Effective keyways should be provided in the tops of the

footings to bond the vertical legs thereto.

The third operation is the casting of the vertical legs.

It is convenient in pouring to make construction joints

at the tops of the vertical legs, stepped and keyed, as

shown in the typical plan (Fig. 33). The top of the frame

may be poured monolithic or in two or more longitudinal

sections.

It is of the utmost importance that all construction

joints be thoroughly cleaned, picked and broomed to
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remove all laitance and expose clean aggregate before mak-
ing the succeeding pour.

Expansion Joints.—In structures not faced with arch

ring stones it has been the practice of the Westchester

County Park Commission to provide expansion joints

between the approach retaining walls and the structure

proper, so that the frame is free of all other construction.

In structures faced with stone arches, provision is prefer-

ably made for carrying the large thrust of the stone arch

directly into the approach walls and in such cases expan-

sion joints between the frame and approach walls are

avoided, or placed back of the point where the thrust may
be considered as reaching the ground. The superincum-

bent masonry of the walls and parapets will bring the

thrust quickly to the foundations, and back of this point

expansion joints may be provided in the walls if desired.

It is realized that inter-action between the frame proper

and the stone arch will disturb the calculated stresses in

both, but if both units are designed to be separately self-

supporting no concern need be felt over this condition of

affairs.

Anchoring of Stone Arch Facing.—It has been the prac-

tice of the Commission to securely anchor each individual

arch ring stone of stone-faced bridges to the concrete frame

by means of two steel anchors embedded in the joints, and

hooked into drill holes in the bed face of the stones. These

anchors project into the concrete frame which is poured

after setting up the stone arch on falsework.

Secondary Reinforcement.—“Distributing” rods, tie-

rods and stirrups are used in addition to the calculated

main reinforcement. “Distributing” rods are used in the

stone-faced structures only, when expansion joints between

the approach retaining walls and structure proper are

omitted immediately back of the frame. This is to pre-

vent the formation of cracks in the corners of the frame

where it abuts against the approach walls. The distribut-
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ing rods are about five or six in number, about 1 sq. in. in

section, hooked at each end and are placed in the extrados

at the knee. Transverse tie-rods about f in. in diameter and

about 3 ft. on centers top and bottom serve to hold the

main reinforcement in place and to tie the structure together,

preventing any formation of cracks due to possible uneven

supporting action of the soil. Stirrups hooked over the

top and bottom mainrods or transverse tie-rods, as shown

on the typical plan Fig. 33 serve to hold the top and bottom

systems of reinforcement securely in place. They are not

required as calculated shear reinforcement.

Footings.—In designing pile foundations, in particular,

in which piles are driven through soft material offering little

lateral resistance, the direction of the reactions should be

determined for all probable cases; dead load with active

earth pressure; dead and live load with active earth pressure;

and possibly dead load wifh excess earth pressure equal to

twice ordinary active pressure; dead and live load with

excess earth pressure. If the direction of the reactions

depart far from the vertical, battered piles should be used

so that they will properly carry the inclined loads coming

upon them.



CHAPTER XII

GENERAL NOTES ON RIGID-FRAME BRIDGES

Rigid-frame bridge construction in the United States

was first applied to some of the grade separations between
the parkways of Westchester County, New York, and inter-

secting streets and highways. The rigid-frame type was
evolved to overcome the difficulties encountered where the

distance between the two roadway grades was restricted

and where street excavation for the abutments of an arch

bridge would have been expensive. The type was so well

adapted to its purpose that, in addition to about ninety built

in Westchester County from 1922 to 1933, about four

hundred were built elsewhere in the United States up to

1939. Rigid-frame bridge construction is advancing rapidly

abroad so that nearly every country in the world now has

its examples. Many have been built to carry heavy railroad

traffic.

The rigid-frame bridge has its varieties. The sample

calculations given in this book for concrete bridges are

for the solid or barrel type, because it is predominant for

grade separation structures. In Westchester County a few

concrete bridges of ribbed construction have been built,

but the best example is that shown in this chapter. The
outstanding example of cellular construction is in Seattle,

Washington. In this chapter several varieties are illustrated.

Figure 70 shows a solid-section or barrel-type concrete

frame bridge with an elliptical intrados, of which several

were built in Westchester County. The elimination of

massive abutments necessary for a fixed arch proved to be an

economy, and the elliptical opening, permitted by the

conditions controlling the grades of the intersecting road-
197
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ways, was a pleasing variation among the other frame bridges

on the parkways.

Figure 71 illustrates ribbed construction. This con-

Fig. 71 a.

Krape Park Bridge, Freeport, Illinois

struction in mid-span reduces the dead-load bending

moments throughout the structure, and for long spans the

saving in materials may offset the increased cost of form-

work and the fabrication and placement of steel reinforce-
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ment. The bridge itself, designed by Mogens Ipsen, is a

beautiful example of modernistic treatment which at the

same time avoids the bizarre.

Figure 72 illustrates cellular construction. The bridge is

Cross Sedhoo ofthe Box Girders of the cento ofthe ns-o"Span

Fig. 72b.

Schmitz Park Bridge, Seattle, Washington. 175-ft. span

Courtesy of the City of Seattle.

in Schmitz Park, Seattle, Washington, and was designed in

the office of the city engineer. A full description appears in

the Engineering News-Record for June 24, 1937.

Figure 73 shows the type of construction of a through .
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Fig. 74,—The Herval Bridge, Brazil. Built by the firm of Emilio Baumgart; Rolf Schjodt

in charge of design. Middle span 224 ft. End spans 88 ft.
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girder bridge, consisting of two concrete rigid-frame girders

carrying a floor system of transverse floor-beams and a deck

slab. The bridge carries the Bronx River Parkway over the

New York Central Railroad tracks at Valhalla, N. Y., and

it is a good example of what should not be done along the

lines of bridge architecture. Contrasted with this is the

Herval Bridge at Ste. Catharina, Brazil, shown in Fig. 74,

which is also through girder construction with cross-beams

between the girders to carry the floor slab. Its slender

proportions and simplicity of line and detail produce a

beautiful effect. The middle span is 224 ft. and end spans

about 88 ft. A full description of the bridge and its con-

struction appears in the Engineering News-Record of August

6, 1931.

Figures 75 and 76 illustrate the advantage of the arch-

like structure over the through girder or truss type in pro-

viding an unobstructed roadway over the structure. Both

bridges are modern and were built to carry a highway over a

railroad right-of-way, the total width of roadway being the

same for both. The width of roadway was such that a

middle truss was necessary for the through bridge. This

constitutes an obstruction in a highway that is not divided

by a continuous separation strip, as on a dual highway.

A few good examples of rigid-frame bridges finished in

concrete are shown as a conclusion to this chapter. They are

expressions of certain fundamental principles of architec-

tural design, which are clearly and concisely explained in a

booklet by the Portland Cement Association, “Architec-

tural Design of Concrete Bridges.” These principles alone

cannot be applied by a novice to produce a beautiful bridge.

A good architect has something to contribute in addition to

the application of certain rules of thumb. Nevertheless the

structural designer should know what principles of archi-

tectural design cannot be violated without resulting in a

structure that is a positive offense to the eye.

The rigid-ffame bridge has now become a recognized
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type, better adapted than any other for a particular set of

conditions. It solves the problem, for example, when the

distance between the roadways above and below is restricted,

or when the length of approaches is an item of importance.

In some instances the rigid-frame type has been selected

when another type (such as the “rainbow” arch, in which

the thrust closely follows the axis) would have been a

better solution. The engineer should base his selection upon
sound engineering principles.

The selection of barrel, ribbed, or cellular construction

will depend upon the size of the structure and the relative

cost of materials, fabrication and placement of reinforce-

ment, and formwork. No general rules can be given.

Findlay-Delphos Road Bridge, Putnam County, Ohio. 50-ft. span

Courtesy of the Portland Cement Association



Courtesy

of

the

Portland

Cement

Association



CHAPTER XIII

DEFORMETER ANALYSIS

For Rigid Frame Bridges of High Indeterminacy

By PROFESSOR GEORGE E. BEGGS
Princeton University

FOREWORD BY THE AUTHOR

The mathematical methods explained in this book have
been found to be rapid and easily applied in the designing

room, for structures which are indeterminate to the third

or fourth degree. The analysis of the skew arch or frame

is more complicated but this is a problem by itself. The
Westchester County Park Commission has not had occa-

sion to build more than one double-span frame bridge for

fixed-end conditions and only two triple-span frame bridges

for free-end conditions. Mathematical methods have there-

fore not been systematized for such highly indeterminate

structures. In such cases a different method of attack

is used, namely the deformeter method of Professor George
E. Beggs of Princeton University, who will discuss the

method in this Chapter.

DISCUSSION BT PROFESSOR BEGGS

Figure 77 illustrates the principle underlying the deter-

mination of the reactions for a statically indeterminate

structure fixed at the footings by measuring relative dis-

placements in a flat model of the structure. It is desired

to find the reaction at B, say, due to an assumed load P
acting as shown. The model is fixed at A> C and D. Move
point B vertically a known amount d% without permitting

rotation. Measure carefully the corresponding deflection.

206
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““ ~1

' A, C and D may be de-

uismt aomtoh ttntccuntm'ri termined for a given
Flo ‘ ?8

' load P. Proceed in like

manner for assumed load at other points in order to deter-

Fio. 77.

Moment plugs or &rrt*em ammeters product rum
rtlatme aotat/on aetwten 'mum 'n

Fio. 78.
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mine the influence lines for the structure by means of which

reactions for any system of loading may be found.

The arbitrarily imposed displacements at reaction

points of the model are accomplished by means of deforme-

ter gages capable of producing very small deflections with

an accuracy to 1-40,000 of an inch, and the corresponding

small displacements at the points of application of the

assumed loads are measured by means of filar micrometer

microscopes. The principle of the deformeter gages is

illustrated in Fig. 78. Bar m is fastened to the board on

which the model is mounted and the reaction point of the

model is fastened to the movable bar n which is held against

p the gage plugs by means

MOVABLE \ of a spring connection
CROSS W/RE \\ between m and n. In

the unstrained position

of the model, normal
plugs are in place.

These may be removed
-HELD OR by spreading the barsm MXOKcn m and „ by mMns of

small wooden wedges.

To produce a known
vertical displacement

of the reaction point

Fl0 ?9
the normal plugs are re-

moved and smaller diam-

eter plugs of like size are inserted. A reading on a reference

point on the model at the point of application of the

assumed load is then taken by means of the micrometer in

the field of the measuring microscope (Fig. 79). The
small plugs are then removed from the deformeter gages

and the larger diameter plugs are inserted, the difference in

diameter of the small and large plugs being the known
vertical displacement. A second reading is then taken on

the reference point at the point of application of the assumed

f-W£0ff£

momble bar
Fig. 79.
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load by means of the micrometer microscope and the

difference of the two readings gives the displacement at

the load.

Horizontal displacements at the reaction points are

produced by means of rectangular plugs as indicated in the

middle line of Fig. 78. Rotation of the reaction point is

produced by interchanging a small-size plug and a large-

size plug in the sockets of the deformeter gages as indi-

cated in the lower line of Fig. 78.

Fig. 80

Figure 80 shows the set-up of the deformeter apparatus

over a model of one of Mr. Hayden’s rigid-frame bridges

designed for the Westchester County Park Commission.

The models used in the investigations may be of cellu-



210 DEFORMETER ANALYSIS

loid or pasteboard so cut that the width at any section is

proportional to the cube root of the gross moment of iner-

tia of the corresponding section of the structure. Three-

dimensional structures such as ribbed frames having

T-shaped sections may thus be analyzed by means of two-

dimensional models, the only restriction being that the

forces analyzed must be uniplanar.

In order that the displacements in the celluloid or paste-

board models may be unaffected by frictional resistance, the

models rest on small steel ball-bearings supported on plate

glass. Small steel weights (shown in Fig. 80) hold the

models against the ball-bearings and prevent warping of

the models.

Fig. 8i.

It is to be noted that no actual loads are applied to the

model, the process being only the measurement of related

displacements, the ratio of which is the ratio of load to

reaction component. Models cut from homogeneous mater
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rials may be relied upon to give results that are substan-

tially correct as applied to structures of such composite

materials even as reinforced concrete. The approxima-

tion involved is no greater than is involved by the applica-

tion of mathematical methods of analysis, in which the

elastic properties are calculated for gross moments of inertia

of the uncracked sections thus assuming practical homo-

geneity. The reliability of theory based on such assump-

tions has been verified by numerous tests such as those

of Abe (University of Illinois Bulletin 107) and the govern-

ment tests of Slater ( Proceedings ,
American Concrete

Institute, 1919) on constant-section frames. Stresses are,

of course, calculated on the cracked section.

A comparison of analysis by deformeter and by mathe-

matical methods for a small rigid-frame structure is shown

in Fig. 81. The agreement is seen to be very close.



CHAPTER XIV

RESEARCH IN RIGID-FRAME BRIDGES

By HAROLD E. WESSMAN
Professor of Structural Engineering, New York University

The increasing use of steel and reinforced-concrete rigid-

frame bridges in recent years has been accompanied by a

series of investigations which have enhanced knowledge of

this type of structure. Most of the research has focused

attention on the knees, points where the usual beam analysis

fails to provide a satisfactory picture of stress conditions.

Other studies, however, such as those at the University of

Illinois on full-size reinforced-concrete ribs have given insight

into the validity of the elastic theory of analysis for the

structure as a whole.

The practicability of the design of the first structure

built by the Bronx Parkway Commission in 192a was ques-

tioned, chiefly because of unknown stress conditions at the

knee. In a curved beam, the unit stress is greater at the

concave surface than it is on the convex side at the same
section. The neutral axis does not coincide with the gravity

axis but approaches the inner surface as the curvature

increases. In a structural member such as a rigid-frame

bent, with a sharp re-entrant angle at the knee, a high

stress concentration tends to develop at the inside corner.

Research to date indicates that this is not serious enough to

endanger the safety of the structure.

It is important before discussing any tests to sound a

note of warning. The treatment in this chapter must
necessarily be brief,and readers are advised to scrutinize care-

fully the references for detailed information about test data.

It should be kept in mind that what is so often referred to
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in reports as “measured stress” is actually “measured strain.”

Measured strains below the yield point in steel members
or steel reinforcing may be converted quite accurately into

corresponding stresses, barring errors in gage readings. But
measured strains in concrete give little clue to the corres-

ponding stresses because of plastic flow and the variation

of modulus with load and with time.

Some of the earliest tests on knee details were made at

Columbia University in 1922 by A. H. Beyer and W. T.

Krefeld. These tests are fully described in the Engineering

News-Record for January 18, 1923. Six reinforced-concrete

L-shaped or knee models iof in. thick, 18 in. wide, and 7 ft.

high were tested. As the load increased, tension cracks

developed in the concrete, beginning at the outside surface

and reaching almost to the re-entrant corner. The apparent

neutral ^xis moved inward close to the corner, indicating a

high compressive unit stress in that region. There was no

compression failure, however, and the tests demonstrated

the safety of the sharp-cornered detail. The effect of filleted

corners was also studied, and it was found that fillets tend to

reduce the local stress concentration.

Photoelastic tests were also made at this time in the

Physics Laboratory of the Massachusetts Institute of Tech-

nology by T. H. Frost and D. B. Sayre. Two celluloid

models, one with square corners and one with a filleted knee,

were tested in polarized light. The shift of the neutral axis

and the effect of the fillet in reducing the stress concentration

at the inside corner were again demonstrated.

Field tests were also made by the Bronx Parkway Com-
mission on two reinforced-concrete model frames 3 ft. wide

with a clear span of 10 ft. and a height of 4 ft. The rib

depth at the crown was 3$ in., and the depth at the knee

10$ in. Each model supported a concentrated load of 13

tons at the center of the span, with calculated unit stresses

of 79,000 lb. per sq. in. in the steel reinforcement and 4,900 lb.

per sq. in. in the concrete. These stresses were calculated
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on the assumption that the flexure formula was valid for

these high stresses.

University of Illinois Tests.—The first tests on reinforced-

concrete rigid frames at the University of Illinois were made
by Mikishi Abe during the World War. The purpose was,

primarily, to study the cross-frames of concrete ships.

These tests are reported in Bulletin 107 of the Engineering

Experiment Station and will not be discussed here.

A rather extensive investigation relating particularly to

rigid-frame bridges has been made in recent years, however,

under the sponsorship of the Portland Cement Association.

Part I of this investigation, published in 1938 in Bulletin 307
of the University of Illinois Engineering Experiment Sta-

tion, is entitled “Tests of Reinforced Concrete Knee Frames
and Bakelite Models,” by F. E. Richart, T. J. Dolan, and

T. A. Olson. Part II, also published in 1938, is entitled

“Laboratory Tests of Remforced Concrete Rigid Frame
Bridges,” by W. M. Wilson, R. W. Kluge and J. V. Coombe.

The tests of knee frames reported in Part I were planned
“ to determine the moment-resisting capacity and the elastic

properties of the corner portion of a rigid frame, using vari-

ous types of fillets and arrangements of reinforcement.”

Twenty-four frames, twelve different types with two of each

type, were tested to failure at 28 days. Eight other frames,

representing four different types, were held under a sus-

tained load of 12,400 lb. for 1 year and 5 months in order to

observe the effect of plastic flow on strains, rotations, and

deflections. The load was then removed to observe the

elastic recovery before the frames were tested to failure.

Figure 82 illustrates the type of specimen and the

manner of loading for both the rapid and sustained tests.

Each leg of die knee frame is 6 ft long. The depth of the

leg on die unfilleted specimens at the sections adjacent to

the re-entrant corner is 16 in. All frames were 12 in. wide,

and all frames, except one pair, had 1 per cent of steel

tensile reinforcement, an amount which required a calcu-
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Fxo. 8a»—Test Frames Under Rapid and Sustained Loading

Courtesy of University of Illinois Engineering Experiment Station
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lated load of 1 2,400 lb. in order to develop working stresses.

Three per cent of tensile reinforcing was used in one pair of

frames in order to insure a compression failure at the knee.

Variety in the types tested was obtained by using compres-

sion reinforcing in some frames and by having two sizes of

45° fillets and two sizes of circular fillets.

In the rapid loading tests “cracking began in all of the

frames at a load of about 10,000 lb., and most of the frames

failed initially by exceeding the yield point of the tensile

reinforcement.” A secondary crushing occurred in some of

the frames, but the only well-defined compression failure

occurred in the two frames having the high percentage of

tensile steel. This failure occurred near the re-entrant cor-

ner, but at relatively high loads, loads which were more than

four times as much as the load giving normal computed

working stresses.

Specimens with fillets ..showed a marked increase in

strength over those with sharp corners. Even though it is

recognized that fillets tend to reduce local stress concentra-

tions, the increase in strength was probably due to the fact

that the fillets reduced the moment-arm of the applied load

and also increased the depth of the section where failure

occurred.

As noted previously, only one pair of frames had enough

tensile reinforcing to develop a definite compression failure;

consequently, it is not possible to determine from these tests

any definite relations between ultimate strength, local stress

concentrations at the re-entrant corner, and fillets. It must

also be kept in mind that the knee frames in these tests

behave somewhat differently from a rigid-frame bridge.

Adding a fillet to the knee frame causes a decrease in

moment at the comer section due to a given applied load.

Adding a fillet to a rigid-frame bridge may cause an increase

in the moment at the corner section due to a given load.

There is a change in the distribution of positive and negative

moments. Nevertheless, there is no question but that
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fillets reduce local stress concentrations. This has been

beautifully demonstrated by photoelastic tests.

The eight frames which were kept under sustained load-

ing for 1 year and 5 months showed very definite time

yield effects. Deflections, rotations, and concrete strains

increased greatly over those measured when the load was

first applied. But, when the frames were finally tested

to destruction, they showed little variation in ultimate

strengths from those of the corresponding frames tested at

28 days. Of most significance in these tests was the effect of

compressive reinforcing in reducing plastic yielding to

practically one-half of that occurring in corresponding frames

with no compression steel.

Photoelastic tests on Bakelite scale models of the knee

frames are also reported in Part I of the University of Illinois

investigation. Figure 83 shows the fringe photographs for

seven models. Each fringe or black band represents a locus

of points having the same difference of principal stresses, or,

in other words, the same intensity of maximum shearing

stress. In the frames with sharp inside corners, a large

number of fringes converge at the corner, indicating high

stress concentrations in this region. Fringe photographs of

frames with fillets indicate a reduction in localized stress

intensities.

Part II of the University of Illinois Investigation is

significant by virtue of the size of specimens tested. Figure

84 presents the details of Specimen 1. It is practically a

full-size slice i£ ft. wide from a highway bridge with a span

of 48 ft. One other specimen was also tested. It differed

from Specimen 1 only by the addition of shear reinforcement,

consisting of f-in. round looped stirrups spaced on 12-in.

centers in the deck and legs.

Specimen 1 was tested, both with bases fixed and bases

hinged, to determine whether the actual behavior of the

structure conformed to the action anticipated from calcula-

tions based on the elastic theory. Specimen 2 was built
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F»o. 83,—Fringe Photograpiu of Bokelite Knee Frame Model*

Courtesy of University of IlHnais Engineeiing Experiment Station
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primarily for use in the study of time yield effects in con-

crete upon a rigid-frame bridge. It was also tested, however,

for certain elastic constants, such as the reaction com-
ponents, M

y
H and V, at each base due to a horizontal

displacement of 0.10 in., without any settlement or rotation.

Components were also determined for a settlement of

0.10 in. and then for a rotation- of 0.001 radian. These

Fig. 84.—Details of Rigid-Frame Bridge

Courtesy of University of Illinois Engineering Experiment Station

tests were made because similar tests for Specimen 1

produced values having considerable variation, particularly

in the moment at the base in the fixed structure. In both

specimens, however, experimental valyes of M, H and V
due to arbitrary displacements or rotations differed mate-

rially from values calculated by the elastic theory. A small

microscopic crack near the base was subsequently detected

near the base of one leg of Specimen a. Further tests and

studies indicated that cracks, too small to be detected with

the naked eye, will affect the elastic behavior of reinforced-
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concrete structures such as these when subjected tofoundation

displacements. On the other hand
,final moments due to loads

at sections governing the design of the structure were not

appreciably affected by cracks.

Influence lines for crown moment calculated by the

elastic theory agreed quite closely with those obtained

experimentally, both with the structure free to sway and

with sway prevented. There was also good agreement at

the knee when the structure was free to sway. With sway

prevented, however, maximum influence ordinates deter-

mined experimentally for moment at the knee are approxi-

mately 50 per cent greater than when sway is allowed.

In a symmetrical structure this would not change dead-load

moments but might increase live-load moments appreciably.

However, it takes only a very small sway, 0.01 to 0.02 in., to

reduce the moment to that corresponding to the free con-

dition.

Design loads corresponding to the axle loads, including

impact, of a 20-ton truck distributed over a 9-ft. width of

roadway were subsequently placed on Specimen 1. The
larger load was applied at the center of the span and the

smaller one 14 ft. from the center. The moment at the

crown obtained with the bases hinged was 1 5 per cent less

than that calculated by the elastic theory. When the bases

were fixed, the actual value was 14 per cent less than the

theoretical value. These differences, though not very large,

may seem somewhat puzzling, in view of the fairly good

agreement obtained for the influence lines. It must be

kept in mind, however, that the reactions due to a 20-ton

truck load acting upon a statically indeterminate, reinforced-

concrete structure may not be exact multiples of the

reactions caused by unit loads acting upon the structure in

the same positions. The influence lines were computed, of

course, from the effects of unit loads. Moreover, the final

crown moment is obtained by getting a difference of values.

A small error in one of the values consequently results in a.
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much larger error in the final answer. For the hinged bent,

the following equation expresses the crown moment:

Mc = M. — Hy c,

where Mc is the final moment at the crown, M, is the

“simple-span” moment at the same point, H is the horizon-

tal thrust, and y e is the ordinate to the crown. An error of

i per cent in H may result in an error of 15 per cent, or

even more, in the value forMr , depending upon the relative

magnitude of the two terms on the right-hand side of the

equation.

At the knee, with bases hinged, the design loads gave a

moment 3 per cent greater than that from the elastic theory.

When the bases were fixed the values coincided.

Finally, Specimen 1 was loaded to destruction, by adding

increments of load corresponding to design live loads. Five

live loads and a fraction had been placed when the structure

failed abruptly in shear near the quarter point at a section

where the moment was very small. There was no evidence

of impending failure at the sharp re-entrant corner at the

knee, even though tension cracks beginning at the outside

surface extended to within 3.5 in. of the inside face.

Specimen 2 was also finally tested to destruction, but

not until it had been subjected to time yield tests. The
effect of temperature was studied over a period of 462 days.

The tests indicated that time yield or plastic flow in the

concrete reduces temperature stresses somewhat during the

first two or three years, but that the amount of reduction

gradually decreases as the structure becomes older. The
effect of gradual spreading of the bases was also studied.

The span subject to the design live load was increased by

increments of | in. with 7-day intervals between increments

until a total spread of 4 in. was recorded. Again, it was

noted that time yield appreciably reduced the stresses

caused immediately after each displacement of the bases.

The span length was then maintained at a value 4 in.
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greater than normal, while the structure was tested to

failure. In spite of the severe initial punishment, the frame

carried a maximum of five live loads. Failure, when it

occurred, was due to steel at the knees being stressed beyond

the yield point. The resulting yielding enhanced the

deflection at the crown where the steel had also passed the

yield point. The failure was not abrupt like that of Speci-

men i, thus demonstrating the value of the shear reinforce-

ment in giving a tougher structure.

Of interest are the recommendations relative to design

appearing at the end of Bulletin 308, Part II, of the Univer-

sity of Illinois Investigation. They are quoted here in full.

(1) An analysis of a reinforced concrete rigid frame bridge by the

elastic theory gives values for the moment, thrust, and shear on any

section which are accurate enough for purposes of design if the analysis

is based on the following assumptions:

(a) The stress-strain relation for the concrete has the same value

at all sections and at all stresses.

(b) The moment of inertia is for an uncracbed section.

(a) The variations in the modulus of elasticity of the concrete that

may be expected in a field structure will not have an appreciable effect

upon the stresses due to loads.

(3) Restraining the deck of a rigid frame bridge so as to prevent

longitudinal sway due to eccentric loads on the deck does not increase

the maximum live-load moment at the crown, but does increase the live-

load moment at the knee somewhat. But, since the dead load causes

no sway and. the dead-load moment at the knee is greater than the live-

load moment, the resultant moment is not greatly affected. Provision

should be made to prevent the structure from being subjected to an active

longitudinal horizontal force at the end of the deck due to an expanding

road slab or other similar cause.

(4) For a rigid frame bridge of the type tested, a flexural failure at

the knee will cause the structure to collapse; a flexural failure at the

crown may injure the roadway, but so long as the deck retains its ability

to resist shear and thrust, the structure will not collapse nor will the

moment be greatly affected at other sections; a flexural failure at the

base will not appreciably affect the moment due to load at other sections,

nor wiU it cause the structure to collapse if the base retains its capacity

to resist shear and thrust; a small increase in thickness at die knee will
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result in a considerable increase in the flexural strength of the knee.

For these reasons an approximate determination of the moments at the

crown and bases is satisfactory for purposes of design, but it is highly

desirable to make ample provisions to resist the shear at these points.

Because the moment at the knee is affected by the restraint against sway
and is therefore somewhat uncertain, because extra flexural strength of

the knee can be obtained with so little cost, and because a flexural

failure of the knee is so serious, it is good engineering sense to design the

knee for a moment somewhat greater than the moment computed by

the elastic theory for structures free to sway.

(5) Variation in the angular restraint of the bases does not appre-

ciably affect the resultant moments (resultant of the dead-load, live-

load, temperature, and shrinkage moments) at the knee and crown. But

because, for, a structure of a given height, the moments at the bases due

to shrinkage and temperature changes increase with the span and

become excessive foi long spans, hinged bases are definitely advantageous

for long spans and are not disadvantageous, except possibly for cost, for

short spans,

(6) Shear reinforcement added to the tenacity of the reinforced

concrete rigid frame bridges tested, thereby increasing the deformation

to which they could be subjected without failure.

(7) Deformation stresses of considerable magnitude have no great

effect upon the load-carrying capacity of a concrete member properly

reinforced for longitudinal and shearing stresses.

Photoelastic Analysis of Stress States.—The photoelastic

method of stress analysis is now definitely recognized as a

useful aid in securing valuable information about stress

states at sections of a structure not susceptible of pure

mathematical analysis. Briefly, the method consists of

passing polarized light through loaded transparent models of

structural units, and then scanning or taking pictures of the

resulting image in order to evaluate the bands or fringes in

terms of definite stress intensities. If a^white light source is

used, the fringes are colored red, green, yellow, etc. If a

monochromatic light source is used, the fringes will be

alternately black and white. Each fringe is proportional

to the difference of principal stresses. The optical phenome-

non of double refraction constitutes the fundamental basis

for the procedure.
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The method may be explained briefly by referring to

Fig. 85, which illustrates the optical train in the Photoelastic

Laboratory of the College of Engineering of New York
University.

Unit 1 is the light source, here a mercury lamp. The
light is passed through a filter making it monochromatic.

The light, after being passed through lenses which are incor-

Fig. 85.—Photoelastic Laboratory at New York University

porated in unit 1 to make the emerging rays parallel, strikes

the polarizing lens, unit 2 in the train. Before striking the

lens, the rays are vibrating in all planes. After passing

through the polarizer, however, they vibrate only in one

plane, corresponding to the principal axis of the lens. The
path of vibration or displacement is commonly portrayed

as a sine curve. The plane-polarized beams of light then

encounter the loaded, transparent model which is set up in

the loading frame, unit 3. The model is usually made from
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polished Bakelite and has the outline of the particular

structural unit to be analyzed. In Fig. 85, a model of a

rigid-frame bridge may be discerned. Loading frames of

various types are used. This particular frame is a universal

frame adaptable to a variety of loading conditions.

When a polarized beam of light strikes a point of the

model under stress, the beam is resolved into two com-
ponents vibrating in planes perpendicular to one another

and coinciding with the directions of the two principal

stresses existing at the point. The rays are retarded in

passing through the model, and the relative retardation is

expressed by the equation:

R — k(P — Q),

where k is an optical constant depending upon the thickness

and kind of material used for the model, and P and Q are

the principal stresses at the point. When P and Q have

different values, the two rays emerge out of phase. The
rays then pass through the analyzer, unit 4 in the optical

train, whose principal axis is set at 90° to that of the polar-

izer. Components of the two rays parallel to this axis are

passed, and they emerge, vibrating in one plane, but still

out of phase. This phase difference causes an interference

which manifests itself in bands of different colors, or in

alternate light and dark bands, which are directly propor-

tional to P — Q. Continuous dark bands or areas connect

points of equal values of P — Q.

Unit 5 is a projection lens assembly for focusing the

image on the ground-glass plate of unit 6, a camera without a

lens. Unit 6 may be replaced by a screen upon which a

large image may be projected for demonstration or lecture

purposes.

A single continuous fringe, see Fig. 86, connects points

which have the same value for the difference of principal

stresses. The fringe is consequently called an “isochro-

matic.” Since,' in a two-dimensional stress system, the
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maximum shearing stress is equal to one-half the difference

of principal stresses, isochromatics are also loci of maximum
shearing-stress intensities.

When a model is loaded gradually, a succession of fringes

will be formed or will pass through a particular point or

region under observation. The fringes, or dark bands, are

counted in order of occurrence and are termed first order,

second order, third order, etc. Each order corresponds to a

definite value of the difference, P — Q such as 350 lb. per

sq. in. Hence, if five fringes or orders have passed a certain

point, the value of P — Q for that point is 1750 lb. per

Fio. 86.—Fringe photographs of Rigid-Frame Bridge Models. Half of model with sharp

corner shown on the teft; half of model with filleted corner shown on the right

sq. in. If the point is located on a free boundary, the actual

stress is 1750 lb. per sq. in., because then Q or one of the

principal stresses is o.

In many engineering problems, only the edge or bound-

ary stresses are wanted. These may be quickly determined,

since usually one principal stress is zero or has a relatively

small value. Interior stresses are more difficult to obtain,

inasmuch as the photoelastic method gives P — Q, the

difference of principal stresses. In order to obtain separate

values for P and Q, it is necessary to find P + Q and then

solve the two equations simultaneously. Although a num-
ber of methods are available for getting P + Q, they will

not be described here. Suffice it to say, none of them is
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absolutely satisfactory. They require the exercise of

extreme care in order to achieve accurate results.

The preceding discussion has brought out the significance

of fringes or “ isochromatics.” It may be noted that the

dark bands are formed by the complete extinguishing of

light at a series of points. This occurs when the relative

retardation is an integral number of wave lengths of the

light used. But other black bands will also appear which are

not isochromatics. They are due to the fact that the

directions of the principal stresses at some points coincide

with the directions of the principal axes of the polarizer lens

and the analyzer lens. The light is extinguished then,

because the analyzer cannot pass components of a beam
which meets it in a plane at 90° to its axis. These dark

spots are called “isoclinics” because all points covered by
these dark areas have the same directions for principal

stresses.

In order to avoid confusion in distinguishing between

“isochromatics” and “isoclinics,” two quarter wave plates

are added to the optical train. One of these may be seen in

Fig. 8 5 attached to the polarizer unit. The other is mounted
on the analyzer unit. The picture shows them swung out of

line. When placed in line, they remove the isoclinics or

directional effects completely. A thorough analysis of a

stress state requires the evaluation of isochromatics for a

definite loading; the determination of directions of principal

stresses at all points by plotting isoclinics for different orien-

tations of the axes of the polarizer and analyzer, keeping

them, however, always at 90° to one another; and then the

determination of the value of P + Q at all points by one

of several possible methods. The separate values of the

principal stresses may then be calculated.

Figure 86 shows fringe photographs of two rigid-frame

bridge models made in the Photoelastic Laboratory at New
York University with the aid of Geo. B. Stevens, graduate

assistant in civil engineering. One has a sharp, re-entrant
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corner at the knee, and the other has a filleted inner corner.

Two concentrated loads, symmetrical about the center line,

were applied to the models. Stresses along the inner and

outer surfaces of each model are plotted in Fig. 87. The
maximum compressive stress in model 1 is at least 3180 lb.

per sq. in. at the re-entrant corner. The fringes were so

close together that it was impossible to count them accu-

rately. The maximum stress in model 2 is 1 850 lb. per sq. in.

This tends to illustrate the effect of the fillet. It must be

kept in mind, however, that practical considerations make
the square corner preferable in an actual reinforced-concrete

or steel bridge.

National Bureau of Standards Tests.—In cooperation with

the American Institute of Steel Construction, a number
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of tests on steel knee frames were made by the National

Bureau of Standards at the Washington Laboratory. The
tests were made primarily to determine stress states in

the flanges and web at the knee for working loads. Subse-

quently, the frames were loaded to destruction in order to

determine failure characteristics and give more information

on comparative behavior of different types of rigid knees.

Detailed discussions of the tests may be found in Research

Papers RP1130, RP 1161, and RP 1224, National Bureau of

Standards.

Three full-size specimens were tested. Specimen 1 is

pictured in Fig. 88. It is a fabricated girder with a sharp

re-entrant corner at the knee. Each flange consists of 2

angles 6 in. by 6 in. by f in. The web plate is f in. thick.

The depth at the section adjacent to the knee is 3 ft. 4^ in.

There were stiffeners at the knee in line with the flange

angles, but no diagonal stiffeners were used. Reinforcing

plates were bolted to the outside corner, and tests were made
with and without the plates.

Specimen 2 was also a fabricated girder, but instead of a

sharp inside corner a curved flange of large radius was used.

Flanges consisted of 2 angles 4 in. by 4 in. by \ in. The web
plate was also f in. thick. Crimped, bolted, radial stiffeners

at the corner were used at first and then removed in a

subsequent test. The outside corner was initially reinforced

with a bent plate and clip angles, which were also removed in

a subsequent test.

Specimen 3 was a welded girder frame with a sharp,

re-entrant comer at the knee. Figure 89 illustrates both the

manner of testing and the details of the frame. The flanges

are 10 in. wide and f in. thick. The web is f in. thick,

except at the ends of the legs under the loading shoes, where

it was made f in. thick. A diagonal stiffener was welded across

the comer. The legs ofspecimen 3 were approximately 1 1 ft.

long, those of specimen 2 approximately 10 ft., and those of

specimen 1 about 12 ft. in length. Depths at the knee also
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Fig. 88.—Riveted Knee Frame in Testing Square with Line

Courtesy of F. H„ Frankland, Chief Engineer, American Institute of

Steel Construction
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differed in each specimen; hence, they are not directly

comparable.

Fig. 8^.—Welded Knee Frame under Test

Courtesy of F. H, Frankland, Chief Engineer, American Institute of

Steel Construction

Numerous strain gage readings were taken on each

specimen. Rosette patterns, each consisting of four inter-

secting gage lines 2 in. long, inclined at 45° to each other,

were spotted at many points on the web at the knee and at
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sections near the knee. See Fig. 88. Strain readings were

also taken at different points on the flanges. Principal

stresses and their directions were then computed from the

measured strains. In every specimen, diagonal compres-

sion stresses in the web at the knee were relatively low.

Maximum compression stresses in the flange at the

re-entrant corner in specimen i were not excessive, in gen-

eral being less than computed values. For the test load

of 75 kips, which was 10 per cent higher than the design

load calculated to produce a maximum compressive stress

of 1 8,ooo lb. per sq. in., the data indicate an actual stress

slightly more than 18,000 lb. per sq. in. in the inner flange at

the knee. Stresses in the compression flange of specimen 2,

the filleted specimen, also seemed to be lower than computed

values. In the welded specimen, compression stresses at

the re-entrant corner seemed to be slightly greater than the

computed values. In every specimen, stresses at the outside

corner of the knee were quite small.

The three specimens were finally loaded to failure. The
design loads corresponding to a calculated compression

stress of 18,000 lb. per sq. in. and the ultimate loads are

shown in the following table:

TABLE I

Specimen Design Load, lb. Maximum Load, lb.

1 67,900 168,000

2 j6,8oo 72,000

3 73 .800 153.600

Failure occurred in every specimen by sidewise deflection

of the inside corner accompanied by buckling of the com-
pression flange at the knee. There was also some buckling

of the web in specimen 3. Table I indicates that the filleted

specimen was the weakest. Relative performance, however,

cannot be based on the data in Table I. It must be remem-.
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bered that the width of flange for specimen 1 was 12$ in.,

and that for specimen 3 was 10 in., whereas for specimen 2,

the filleted specimen, it was only 8§ in. The specimens were

not designed to have the same buckling resistance.

The tests indicate that knee details, like that of speci-

men 1, which are preferable from a fabricating standpoint,

are also satisfactory from a structural viewpoint. A rec-

tangular knee section, stiffened along the sides, did not

develop any weakness. Moreover, it was shown that

diagonal or radial stiffeners were not necessary. It is not

good engineering, however, to generalize on the basis of

these few tests. It must be kept in mind that the knee

sections tested were not deep sections. Small strain readings

do not always indicate absence of danger. In buckling

failure, a slight increase of load may cause large deforma-

tions. Long-span girders with deep sections may need

intermediate stiffeners in addition to stiffeners along the

sides of the rectangular area at the knee. On the other

hand, the behavior' of specimen 1 gives confidence in the

use of that type for girders not having radically different

proportions.

Lehigh University Tests.—Two riveted-steel rigid frames

were tested in 1938 at Lehigh University by Inge Lyse and

W. E. Black in cooperation with the American Institute of

Steel Construction. One of the frames was fabricated with

knee sections approximately square and with sharp re-

entrant angles at the inside corners; the second was con-

structed with curved inner fillets and straight outside

flanges. Both frames were tested as two-hinged structures,

chiefly to determine whether the stress states in the corners

were similar to those obtained in the knee frames tested at

the Bureau of Standards in Washington. Slippage of

foundations and accuracy of the conventional theory of

analysis and design were also investigated.

The frames were considered to be one-quarter-size models

of imaginary prototypes with 72-ft. spans. Frame 1 had a
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span of 1 8 ft. 8£ in., center to center of pins, and a rise of

6 ft. £ in. to the center of the crown section. Frame 2 had a

span of 1 8 ft. 7\ in. and a rise of 6 ft. The top member of

frame 1 was constructed with a depth which varied from

6 in. at the crown to 155 in. at the knee. The legs varied in

width from 8£ in. at the base to 15J in. at the knee. The top

member of frame 2 had a constant depth of 6 in. from the

crown to the knee section. The legs had a width of 7I in.

The depth at the knee section was variable, owing to the

inner flange being curved to a radius of 2 ft. 3 in. In both

frames, a web plate 5/32 in. thick was used. Each flange of

frame 1 consisted of two angles 2 in. by 2 in. by 3/16 in.,

whereas in frame 2, each flange had two angles 2 in. by 2 in.

by \ in. No special reinforcing, such as stiffeners or a thick-

ened web plate, was provided at the knees in either frame.

Each frame was loaded at 2 points, 5 ft. 4 in. apart, and

symmetrical with respect to the center of the span. Mea-
surements were taken with an initial total load of 1000 lb.

and with a final load of 13,000 lb. The differences conse-

quently gave values corresponding to a total working load of

12,000 lb. Strains at a number of points on the web plate at

the knee were measured with Huggenberger tensometers

having i-in. gauge lengths. Three-line strain rosettes were

used. Strains on the surface of the flange angles, both at the

heel and at the toe of each angle, were also observed. Most
of the measurements were taken in the region at the knee,

but flange strains at mid-span and various other points were

also observed in order to permit a complete study of the

behavior of the models. Stress states were then calculated,

plotted and compared with computed stresses. Theoretical

values in the web plate at the square knee were determined

by the method of analysis developed at the Bureau of

Standards.’1'

* “Strength of a Riveted Steel Rigid Frame Having Straight Flanges/* by A. H.
Stang, Martin Greenspan, and W. R. Osgood. Journal of Research of the National Bureau

of Standards, VoL 31, September 1938, p. 294,
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Values determined experimentally were in general agree-

ment with theoretical values. The maximum shear in the

web of the square knee did not exceed 10,000 lb. per sq. in.,

for loads which gave a maximum compression stress of

24.000 lb. per sq. in. in the flange of the girder adjacent to

the re-entrant corner. The compression stress in the flange

of the column adjacent to the inner corner was 17,000 lb. per

sq. in. The diagonal compression in the center of the web
at the knee was also less than 10,000 lb. per sq. in. At the

re-entrant corner, diagonal compression stresses were about

14.000 lb. per sq. in., but this was in a region of lateral

support.

Stresses in the web plate of the frame having a curved

fillet were also low. The maximum diagonal compression

stress was approximately 10,000 lb. per sq. in. On the other

hand, the-compression stress in the flange angles at the knee

was high, amounting to 27,000 lb. per sq. in. at a section

near the beginning of the corner fillet. It is interesting to

note that there was considerable difference between the

stresses at the toe and at the heel of the angles. The pre-

ceding value of 27,000 lb. per sq. in. occurred at the heel of

the angle. The corresponding stress in the toe at the same

section was slightly more than 16,000 lb. per sq. in., thus

indicating a decided variation in stress over the cross-section

of the flange. There was a tendency for the outstanding legs

of the curved flange angles to deflect inward, as the result of

the radial component of compression caused by the curva-

ture. This local yielding undoubtedly contributed to the

stress concentration at the heel. Radial stiffeners milled

to bear on the flange, or cover plates on the curved flange,

might cause a different stress distribution. This matter

was not investigated, however, in these tests.

The stress concentrations which developed at the sharp

re-entrant angle of the square knee were, in the opinion of

the investigators, due principally to imperfect bearing at

the intersection' of the compression flanges. It was found
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that tight bearing did not exist in the frames as fabricated.

There were small gaps at the ends of the flange angles, which

were filled with shims tack-welded in place. This produced

tight bearing only along the outstanding legs of the girder

flange angles.

One interesting recommendation of the investigators

relative to design of square knee-frames is as follows: “The
horizontal and vertical sections through the inside corner of

the knee are critical sections with respect to normal stresses.

Apply the usual formula for flexure and direct stress to the

horizontal section. On the vertical section, assume that the

flange angles carry all the moment and thrust in the girder.”

The last sentence of this recommendation reflects the

type of fabrication of the test specimen. The vertical

section was the one along which the splice was made between

the top girder and the column leg. No definite web splice

was provided at this section. If a definite web splice is

provided in actual design, the web will undoubtedly assist

the flange angles in carrying part of the moment and thrust.

The investigators also recommended that the web at the

knee be designed to take a total horizontal shear equal to the

tension in the top flange of the girder. In other words, the

horizontal area along the top of the web at the knee, and

likewise the number of rivets connecting the web to the

flange, must be sufficient to develop the tensile strength of

the flange where it intersects a vertical section through

the inside corner of the knee.

In the curved knee, the investigators recommended that

a square piece of the web above the neutral axis of the corner

be investigated. Two sides of this square would coincide

with the outside flange angles. The inside corner of the

square would be defined by a point located one-quarter of

the distance from the inside flange along the radial diagonal

through the external corner of the knee. It was recom-

mended that the square piece be investigated for the

boundary forces introduced by the outside tension flanges
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and by the bending and shearing forces along the inside

edges.

It was found, as might be expected, that normal stresses

upon radial sections of the curved knee did not exhibit a

linear relationship. The neutral axis did not coincide with

the centroidal axis, but was close to the curved compression

flange. In the specimen tested, it was about one-fourth of

the distance from the compression flange to the exterior

corner along a radial diagonal section. Experimental values

for compressive stresses in the curved flange were generally

higher than computed values. The investigators recommend
a method of reducing section moduli and moments of inertia

within the curved knee in order to produce better agreement.

The method is not included here because, on the basis of

this one test, its general applicability is questionable.

Designers of rigid frames have wanted to know more

about the uncertain stress states at the knees. They have

also been interested, however, in the validity of the conven-

tional methods of analysis for determining redundant reac-

tions. In the two specimens tested, it was found that good

agreement existed between horizontal reactions computed

by conventional methods of analysis and those determined

experimentally for both the square and the curved knee

frame.

The preliminary report of the Lehigh University tests

was kindly furnished to the writer by Mr. F. H. Frankland,

Chief Engineer of the American Institute of Steel Con-

struction.



CHAPTER XV

THE ARCHITECTURE OF SHORT-SPAN BRIDGES

By GILMORE D. CLARKE

Fellow, American Society of Landscape Architects

Landscape Architect, Westchester County Park Commission

The development of bridge construction constitutes an

important element in the extension of communication and

transportation and has been, from its earliest inception,

one of the most important factors in human progress and

the spread of civilization. Among the earlier civilizations,

the Chinese evolved arch .forms embodying a distinctively

picturesque architectural treatment, but with no thought

of adaptability for wheeled traffic. Later, and doubtless

after the lapse of centuries, the Romans effectively devel-

oped the arch principle and extended its application to

multiple arches supporting roadways and aqueducts, some
of which still stand as monuments of skillful architectural

and engineering design. The Greeks contributed prac-

tically nothing to the art of bridge building because their

largest unit of construction was the stone or timber lintel

with inherent limitations of span. The bridges built in

Europe during the Middle Ages, particularly by peoples

having old established governments and cultures, were

characterized by distinctive architectural treatment.

Bridge building in America, on the other hand, has just

as naturally reflected the pioneer conditions of life in the

youngest of the great nations, engrossed, during its first

century of growth, in conquering the wilderness and employ-

ing strictly utilitarian necessities for developing lines of

communication and natural resources. With the progress
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that has now been made in such development and the

resulting accumulation of wealth, there is developing the

trend, characteristic of the growth of all civilized nations,

toward a higher culture and more wholesome artistic stand-

ard for public works. The time has arrived when serious

attention must be given to bridges as one of the most essen-

tial and important classifications of such works.

The problem before us today is to be able to build

bridges which will endure, employing modern methods and

materials, and at the same time giving them charm and
beauty. This does not mean that we should attempt

merely to imitate the designs of old bridges; we should

rather build structures having individual architectural

beauty, appropriate to their environment and to the mate-

rials used, instead of types that are purely utilitarian.

Bridges designed with beauty of line and mass and having

simplicity and refinement of detail will endure longer than

structures lacking artistic conception.

“ If you get simple beauty, and naught else,

You get about the best thing God invents.”

Robert Browning.

In all architectural study, we must go back to the

beginning and study the art of the past, that we may, by
seeing what has been done, profit by both good and bad

examples. After all, ancient masonry bridges from a

structural standpoint are not radically different from mod-
ern bridges of the same type. The only difference between

the modern arch of reinforced concrete and the ancient arch

of stone is that the modern structure may be constructed

more economically, is less limited by restrictions, and may
reach much longer spans than stone arches. The test of

time will doubtless prove that concrete is no better than

stone, in fact it may not be as long-lived, but we are forced

to use it for the sake of economy in construction.

Bridges have played an important part in history and
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have often been the center in battles, at one time defended,

at another destroyed to prevent the advance of the enemy.
As a result, many of the old structures have been either

entirely destroyed or remain standing in part, serving no
purpose save as reminders of the grim events of the past.

Probably the most famous of these old bridges is the Pont
St. Benezet over the River Rhone at Avignon, built by St.

Benezet between the years 1177 and 1x85. This magnifi-

cent old structure occupies the site of an old Roman bridge

and some of the stone used may have been part of the

older structure. The Pont St. Benezet no longer reaches

across the Rhone since all but four arches and the tomb
of the friar architect, St. Benezet, have been destroyed.

The chapel has withstood the ravages of flood and battle,

although a number of the arches were destroyed, rebuilt,

and destroyed a second time. The bridge originally con-

sisted of 21 arches, not built straight across the river, but

pointed “V ” shape up stream to resist floods and to serve

as a more favorable means of protection against attacks

of enemy infantry and cavalry.

Bridges are not only a measure of the historical devel-

opment of peoples, but of their artistic development as

well. They are among the oldest existing structures built

by man and many remain as monuments to the engineering

and artistic development of departed races. The ancient

aqueduct, the Pont du Gard, which crosses the valley of the

Gard near Remoulins, France, built by the Romans about

19 a.d. stands today the most famous and handsome of

Roman monuments, a stirring tribute to the engineering

and artistic genius of a race of builders. The fortified

Pont Valentre over the River Lot at Cafiors, a twelfth cen-

tury French masterpiece, is one of the most interesting of

the older bridges; the Puente de Alcantara at Toledo, Spain,

is notable among fortified bridges. Originally Roman, it

was rebuilt in the thirteenth and again in the seventeenth

centuries. Bridges and rivers were inseparable and were
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dominating influences upon towns and cities. When we
think of Rome and the Tiber we remember the venerable old

bridges which span that historic stream; Venice brings to

mind the “Canale” and the Rialto; Florence gives us the

Arno and the Ponte Vecchio; and so on.

Let us consider Paris, a city divided by the river Seine,

where there exists today an almost complete historical and

technical exhibit of the gradual development of bridge con-

struction. The Seine is not a wide stream and there was

every inducement to build many structures to provide for

communication between the two parts of the city. There

probably does not exist in any city of the world a group

of bridges having the combined artistic merit of the 32

bridges which make the 24 crossings of the Seine within

the city of Paris. It is doubtful if an ugly bridge would

have stood the test of time; as a matter of fact it is

believed that at least two*multiple-span suspension bridges,

so common in France, were erected over the Seine and later

replaced by arched bridges, torn down doubtless because

they did not possess the artistic merit indicative of the

French capital. It is of peculiar interest to note that

“until the end of the 18th century all masonry bridges in

Paris were built with semi-circular arches; from 1787 to

1852 all had segmented arches, and after that time, begin-

ning with the new Pont Notre Dame, all had elliptical

arches.” *

In old bridges, little importance was given to the clear-

ance under the structure, or “free-way” as it was called.

The Romans built as many piers as were necessary to

provide for semi-circular arches without consideration of

the use of the waterway, often giving little thought to

flood requirements. Restriction of the free-way in many
old bridges resulted in washing away piers or in the under-

mining of abutments. To provide more free-way the

“Corne de Vache” and openings in the abutments and
* “ Bridges of Peris,” Cert L Rimmele, “ The Military Engineer."
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piers were resorted to. Later the flatter arch, both ellip-

tical and segmental, were developed, the most daring design

being the series of long flat segmental arches in Perronet’s

Pont de la Concord in Paris. Commerce demanded still

more river-way and the next development in bridge design

was the use of iron. The iron bridge was adaptable for use

on longer spans than was possible with the stone arch and
with the rapid expansion of civilization steel bridges were
fabricated by the thousands without regard for appearance.

The result is what we find throughout the length and

breadth of the United States today, thousands of ugly

beam, truss, and cantilever bridges over rivers, highways

and railroads, which in time must be replaced, not entirely

because of the effects of deterioration, but because people

require something to satisfy their growing sense of the

artistic. For a time it was thought that iron would replace

stone even for short-span bridges, but now I feel sure that

stone in modern bridges is destined to continue, because

of the possibilities of its use in conjunction with reinforced

concrete and with steel and iron.

Engineers have often pointed out that many, in fact

most, of the old bridges were designed and built by engi-

neers without the aid of architects. The designers, how-

ever, were both engineer and architect in one. When the

old bridges were built, the science of engineering had not

developed to the extent that it has today. “The balancing

of the arch and the founding of its abutments were long

practiced before they were reduced to something approach-

ing scientific exactness. A good example of the haphazard

method of building was a bridge built at Pont-y-pridd, in

South Wales, by William Edwards less than 200 years ago.

It was first built as a three-span arch, but soon after its

completion was washed away by a flood. The builder then

thought it would be better as a single span of 140 ft.,

although this was a larger span than had been attempted

anywhere since the days of the Romans. The shape of
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the arch was determined solely by tne sweep of a pair of

compasses, with the result that in its turn it fell down.

The builder could see as it fell that the crown was pushed

upwards by the great weight over the haunches. In

rebuilding it, he introduced relieving openings to reduce this

weight, and on the third occasion the bridge was success-

fully built. It remains to this day. It was a case where

the first bridge failed by lack of knowledge of foundations,

and the second bridge by lack of knowledge of the theory

of balancing an arch, which is entirely a matter of its shape

in relation to the load placed upon it. Finally both errors

were corrected by experience gained in their observation,

and not by deduction from elements as is the scientific

practice of today.”*

The Pont Neuf or New Bridge, the oldest in Paris,

begun in 1578 and completed in 1604, was more fortunate

in that it was in continuous use until 1848 before the first

repairs were made.

“ The piers rested on timber platforms, which, although laid directly

upon the sand, were, when the bridge was constructed, about three

inches below the river bed. In 1885 one of the piers settled to such

an extent that longitudinal fissures over a half meter wide appeared

in the roadway. Investigation showed that the upstream half of the

pier had been undermined, and that, since the construction of the

bridge, the bed of the river had been lowered more than three meters

so that in some cases it was below the pier footings. The repairs

included the rebuilding of half the pier and half the adjoining arches.” t

It appears, therefore, that the bridge builders prior to

the beginning of the nineteenth century might have better

been called “architects” than “engineers,” since too little

attention was paid to the purely structural requirements,

although they doubtless utilized all of the available

information of their day. In the case of the Pont Neuf,

•“Bridge*,** by Sir E. Owen Williams, K. B. E., B. S. G, M. Inst. G E. Journal

of die Royal Institute of British Architects.

t
“
Bridges of Paris/* Carl L. Rimmele, “ The Military Engineer.**
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the builders can probably not be held responsible in the

same manner as the builder of the bridge at Pont-y-pridd,

since the former structure stood for almost 250 years before

repairs became necessary.

How are we moderns to design bridges which approach

models of perfection in every respect? Scientific research

in engineering has taught the use of steel, and of steel and

concrete in combination, probably the most economical

types of construction for bridges. The exacting methods

necessary to design the modern bridge structure require

that the engineer devote his entire professional activity to

master the science of structural design. The mind of

the engineer is trained and disciplined to the working out

of difficult computations and formulas. It is not reason-

able to expect a mind, trained to the exactness of the

engineer’s, to possess at the same time a full knowledge and

appreciation of those esthetic principles necessary to obtain

a pleasing mass, a harmonizing of materials of construc-

tion, a continuity or flow of outline, rhythm in expressing

several units in a larger mass, and with all, unity and

simplicity to express the use for which a structure is

intended.

In designing a bridge the best results are doubtless

obtained when engineer and architect, each appreciating

the limitations of the other, combine efforts to produce a

bridge, structurally sound and esthetically pleasing. Few
bridges have been constructed within recent years by engi-

neers alone which would not have been more attractive,

and not necessarily more expensive, had an architect been

consulted as the design progressed. It is neither desirable

nor sufficient for an engineer to design a bridge and then

pass it on to the architect, who may apply decoration to

either cover up structural members, which are neither

pleasing nor artistic to the eye, or add decoration which

only serves to distract from the structural honesty of the

structure. Neither should the reverse order be practiced;
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the architect may design a bridge pleasing in every way but

not adaptable for good structural design. The ideal way
is for engineer and architect to collaborate from the start;

the result is more likely to possess those principles of good

design which the representatives of both professions are

able to contribute together toward a resultant work unified

in structural soundness and artistic worth.

There has never been a time when collaboration has

been more vital to the development of the works of man.

Centuries ago the varied fields of endeavor in the arts and

engineering were often accomplished by single practitioners.

Michelangelo was an architect, engineer, painter and

sculptor. Now each profession is in itself so complex that

it is in turn divided into special branches, so that there are

engineers who specialize in the design of bridges, or roads,

or sewers; architects who specialize in school, or church, or

apartment house design; .and landscape architects who
specialize in estate, or park design, or city planning. This

specialization has been brought about by reason of the fact

that our lives are short and modern civilization has devel-

oped to the extent that one individual must specialize upon
one single phase, rather than attempt to master a whole

profession, in order to be proficient in a limited but highly

specialized field. The result is that we must be more pro-

ficient collaborators. This does not mean that one art or

one scientific pursuit must be subservient to another, for

an architect would never for one moment admit, for exam-
ple, that the engineer should dominate in the field of house

planning. On the other hand, there are collaborative

problems in engineering which are unquestionably domi-
nant, and here the architect must willingly recognize that

fac$. We must all learn to weigh the importance of our

contributions, ofour competence to contribute to the solution

of any given problem. The leadership in a collaborative

problem is not an easy one. That question is very often, usu-

ally, in fact* settled by the client. He may decide wisely
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and he may not. Nevertheless, each collaborator can

make as valuable and as generous a contribution whether

assuming the dominant position in the scheme or not. Col-

laboration is dependent upon the collaborators being tact-

ful, reasonable, and respectors of each other’s opinions.

Three rules may be given for the guidance of collabora-

tors. These I believe are essential to the success of any

enterprise where representatives of more than one profes-

sion are involved and if satisfactory results are to be

obtained. First, the collaborators must keep each other

informed as to the development of each one’s plans, since

what one does or plans to do may affect the work of the

other. Second, each collaborator must keep posted upon,

what the others are doing or plan to do and must personally

assume the entire responsibility for suggestions for the

improvement of the plans of the others, merely, however,

in the capacity of consultant, whenever this is possible.

This is especially true when the work of others relates

closely to his own. Third, when one or the other of the col-

laborators is concerned about any particular phase of the

problem which vitally concerns the resultant design, if

after discussion and careful consideration they cannot

agree, then the difference should be clearly set forth to the

client, who will make the final decision.

The vast expansion of our systems of railroads and high-

ways has called for the construction of many bridges, and
since the development of structural steel, the large majority

are purely utilitarian with no thought given to the esthetic

principles of design. The reason for this was the speed and

economy which appeared to be necessary and the more or

less temporary nature of many of the structures. Prac-

tical pioneers in railroading and in highway development

were not interested in the appearance of structures so long

as they were structurally sound. There were exceptions,

of course, but the exceptions were few. As a people, we
were satisfied with the many ugly structures on highway
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and railroad; but gradually we became sensitive to things

out of harmony with nature, things which irritate those

who have benefited by contact with the fine arts. The
pioneering days of opening up vast new and unexplored

regions are over and we are taking time for consideration

of the beautiful in our surroundings.

In spite of this new artistic consciousness on the part

of the people, many railroad and highway engineers con-

Fio. 1.—Bronx River Parkway Bridge—Westchester County Park System

(Concrete “T” beam construction, timber faced)

tinue to perpetrate upon a tolerant public, monstrosities

which offend even the uncultured layman. One notable

exception is the Pennsylvania Railroad, which has built

many beautiful bridges, probably because artistic struc-

tures have become an asset to the railroad business. When
wood and stone were the only materials for construction,

bridges were, on the whole, most satisfactory in appear-

ance. With the advent of structural steel and reinforced

concrete, many ugly utilitarian structures were designed

by engineers, principally because it was possible to build
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Fio. 2.—Plate Girder Bridge. (Compare with Fig i)

Fio. 3.—Reinforced Concrete Slat Bridge. (Compare with Fig. 1)
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bridges quickly and cheaply. Only recently has the pos-

sibility for the extended use of these materials been worked

out with a view toward learning how they may be used

artistically. Concrete, steel beam, or girder used without

the application of imagination as to their latent possibili-

ties resulted in commonplace, ugly structures. Add the

imaginative ideas of the engineer seeking for something

better to replace the stereotype designs of the last fifty

years and immediately it becomes possible to develop

structures having a wide range of possibilties from the

standpoint of architectural as well as engineering design

without increasing the cost, and in many cases even reduc-

ing the cost over the commonplace design. The “rigid-

frame” design in both steel and reinforced concrete made
possible the development of interesting and beautiful

bridges in places where normally the ordinary flat beam or

girder bridges would have "been used.

It is not intended to leave the impression that steel or

reinforced-concrete beam or girder bridges are not subject

to satisfactory artistic treatment. On the contrary, it is

possible to treat them most satisfactorily and to make them
artistic and pleasing, more particularly for relatively short

spans and for the smaller structures where, in addition, the

wood beam will be continued in use.

Let us now consider a few of the more important prin-

ciples which should guide designers of bridges:

Fitness and beauty of design must be developed together.

For a structure to be fit it must appear strong enough to

fulfill the purposes for which it is built and at the same time

be simple and honestly portray the materials which go to

make it up. We should strive for honesty in design and

construction. By that is meant to allow a structure to

appear what it is intended to be. For example, concrete

looks better, when, in the finished structure, it shows that

it was poured. Our so-called “modern ” architecture lends

itself particularly well to the use of concrete since there are
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no wide overhanging mouldings or cornices and the finished

product appears as though it came out of a mould. Wood
or steel forms are necessary, in most cases, to hold the con-

crete in the shape it is to have finally. Why not, therefore,

permit the marks of these forms to be exposed since they

tell the story of the mode of construction? More often

these markings look better than a treated surface if the

construction of the forms is the subject of careful planning.

Many of the bridges illustrated in this volume are of rigid-

frame reinforced-concrete construction with stone facing.

The stone facing does not take away from the frankness of

Fig. 4.—Boston Post Road Bridge over Cross County Parkway, Rye—Westchester

County Park System

the design since the stone serves to protect the exposed

faces of the bridge from the elements and at the same time

aids in bringing the structure into closer harmony with its

surroundings. This is more particularly true in a terrain

where natural rock outcrops abound; in sections where

there is no native rock, exposed concrete may be more

economical and may be designed to be in keeping with the

surroundings, for example, along the parts of the seashore

where sand is the only natural building material.

Recently, we have listened to a controversy between the

advocates of this demand for structural honesty in the case

of the great new suspension bridge across the Hudson River

between Manhattan Island, New York City, and New
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Jersey, to date the longest single suspension span ever built.

The tall structural steel piers stand as huge monuments to

engineering genius. In their fabrication the architect had no

concern but they are nevertheless impressive in their simple

design reaching skyward to hold the suspension cables

which reach across the waters of the Hudson River. The
plans call for encasing these steel towers with stone, so

that when the bridge is completed the cables will, in effect,

be supported by immense piles of granite. The advocates

of the naked steel piers are strong in denouncing the policy

of the designers to cover up the steel with stone. On the

other hand, the designers defend the adopted policy and

state that the granite protects the steel and gives the piers

a finer proportion. In a notable book on the general sub-

ject of bridges (“Bridges,” by Charles S. Whitney) the

author says, “A stone covering for steel or concrete may
sometimes be proper to protect it from the elements or to

provide a harmonious architectural treatment. Obviously,

its use could be abused if stone work were constructed only

as a sham serving no structural purpose. It is no more
necessary for us to see the material inside of a bridge than

it is to look through the bark of a tree.” We cannot settle

this difference of opinion here; the example has served to

bring an important matter to the attention of all those

interested in bridge design. Let us hope that the contro-

versy will bring engineers and architects closer together

rather than widening the gap between the two profes-

sions.

Beauty is only a relative attribute. A bridge may be

beautiful to some, ugly to others. Again a bridge may be

beautiful by night, ugly by day; this may be caused by
overdone decoration, which is lost to view at night, leaving

only the outline silhouetted against the sky; still another

argument for simplicity in design. A simple structure

graceful in outline, expressing at the same time unity in

design, will usually be pleasing and therefore beautiful.
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Unity in design is a most important factor. In design-

ing a particular bridge having five steel arch spans, with

one of the end spans a single lift bascule, the architect felt

that it was important to have the structure possess unity

and to that end decided that it was necessary to plan

the bascule differently than is customary. The bridge

between Glen Island Park (Westchester County Park Sys-

tem, N. Y.) and the mainland, illustrated here, shows five

similar steel arches, the highest and longest the bascule span,

the others gradually decreasing in width and in height above

the water as they approach the last span. The five spans

of the bridge give the whole structure a feeling of unity

since the similar arches carry a certain definite rhythm

over the spanned space. Ordinarily, the bascule span

would have been a flat girder, quite possibly curved at the

hinged end; if thus planned the unity of the structure would

have been lost.

A structure must be suitable
, it must fit well into its

surroundings. Bridges in the environment of cities may
be formal in design with a refined use of materials and of

course planned in harmony with the surrounding struc-

tures. Bridges in the country and in parks may take on

a more rustic aspect and naturally there are degrees of this

fashioned treatment. The more rugged the scenery and
surroundings, the more rustic may the bridge be. It

should never be so dominant a part of a picture that it

does not leave one with the impression that it is a part of

the earth it is built upon. A bridge, more than any other

structure built by man, should harmonize with its sur-

roundings and become a suitable part of a large composi-

tion. To bring a structure, no matter what it may be,

(a house, a bridge, a church, or a monument) into a close

relation with the surroundings, is as important as the

design itself. The greatest works of architecture, the

Parthenon, St. Peter’s in Rome, the great cathedrals of

Europe, are not in themselves alone, beautiful. These
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Fig. 7.—Bronx River Parkway Bridge—Westchester County Park System

C. W. Stoughton, Architect. (Concrete “T" beam construction with stone arches)
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great monuments are parts of a landscape, part of larger

artistic compositions from which they cannot be dissociated.

To bring structures, and bridges more particularly, into

close harmony and relation with their surroundings is, in

the broader sense, the contribution which the artist makes
to the field of design. It requires skill in the arrangement

of architectural forms, and of the landscape as they relate

to the big broad and unified compositions of nature and

the works of man.

Fig 8 —Highway Bridge, Constructed m 1929

(Compare with Fig 7, a “T” beam bridge of about same span)

The bridge has most simple requirements, but a single

purpose, namely, to carry traffic. It should reflect those

simple requirements in its design by being simple in plan

and elevation, expressing conditions of the site as concerns

the type of surroundings and the condition of the soil. It

makes a difference whether the bridge is designed for

mountain gorge or meadow stream, urban street or wood-

land road, rockbound shore or sandy beach. The prob-

lem for the designers is to find that one single structure,

which will most admirably fit all the conditions of the

site so that it satisfies the requirements of traffic, of water-

way, of flood, and other conditions peculiar to each par-

ticular structure.
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The- illustrations in this volume of bridges in which the

engineer and architect collaborated from the beginning

should prove the value of collaborative effort.

In closing this brief chapter, I want to pay tribute to

Mr. Arthur G. Hayden, author of the other chapters in this

volume, an engineer who has always fully appreciated the

value of the architect in collaboration. To him must go

the credit for the engineering design of nearly all of the

bridges illustrated in this volume, some of rigid frame,

some of other types of design. In each case the architect

imposed restrictions or limitations and each time he has

solved the particular special problem so as to retain the

spirit of the original design as the architect intended. If

this chapter merely serves to emphasize the importance of

collaborative effort in this age of specialization, it will have

served well.
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1

The Ftmmy—Boston Metropolitan Park System. Olmsted Bros., Landscape Architects
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Mill Road Bridge, Hutchinson River Parkway—Westchester County Park System

Bridge Over Hutchinson River Parkway for N. Y., N. H« & H. Railroad

Westchester County Park System
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Colonial Heights Bridge—Bronx River Parkway—Westchester County Park System
Bowdin & Webster, Architects

Wilmot Road Bridge over Hutchinson River Parkway. (Rigid Frame)
Westchester County Park System
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Railroad Bridge Constructed in 1929

(Compare with rigid frame bridge of similar span on page 265)

A Rigid-Frame Bridge Would Have Been More Economical

(Compare with rigid-frame bridge on page 265)
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Bridge at Scarsdale—Bronx River Parkway—Westchester County Park System

C. W. Stoughton, Architect

North Avenue Grade Separation, Lincoln Park, Chicago
(Concrete beam construction. Compare with rigid-frame designs on page 269)
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Gtftb Woodsy Bronx Hirer Pathway*—Westchester County Pads System

C. £. Wheeler, Architectural Designer

Double-span reiriforced concrete “T” beam bridge. Abutments are faced with native

•tone. Concrete beam is faced with large timbers which have been adaed and treated with

n wreathed gray stem*
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LIVE LOADS AND UNIT STRESSES

The live loadings now being used in the design of these bridges by

the Westchester County (New York) Park Commission which first

built them are as specified for steel highway bridges by the American

Railway Engineering Association and the American Association of

State Highway Officials.

Highway Concentrated Loads.—Motor trucks of various weights,

all with 14 ft. wheel base and 6 ft. gage, eight-tenths of the total weight

being on the rear axle and two-tenths on the front axle. Trucks in

train are assumed to be a distance apart of 30 ft. from rear axle of

preceding truck to front axle of following truck. Truck train loads

consist of one heavier truck, the \onnage of which designates the load

class, preceded and followed by any number of lighter trucks, each being

three-quarters the weight of the heavier truck.

H 20 train load includes one 20-ton truck and any number of

15-ton trucks.

H 15 train load includes one 15-ton truck and any number of

1 1 1-ton trucks.

H 10 train load includes one 10-ton truck and any number of

7$-ton trucks.

Traffic lanes are assumed 9 ft. wide and bridges having widths not

in even multiples of 9 ft. are assumed to be loaded over their entire

width with a load per foot of width equal to one-ninth of the load of one

traffic lane. Trains of trucks over the width of the bridge are all

assumed to be headed in the same direction. The wheel concentra-

tions of these trains will have a lateral distribution and in the solid

barrel arch-like type of structure under consideration it is assumed that

the weight of each row of wheels across is uniformly distributed on a

line over the width of bridge so that the load per foot of width will be

one-ninth of an axle load. For example, each longitudinal strip one

foot wide of a solid barrel arch is assumed to be loaded with a con-

centration of—-— — say 3600 lb. from the rear axle of a 20-eon truck.

28a
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and = say 900 lb. from the front axle. No longitudinal dis-
9

tribution of wheel loads is assumed.

Reduction of Traffic Intensity for Wide Bridges.— For bridges over

18 ft. wide, the above loads are reduced 1 per cent for each foot of

width in excess of 18 ft. up to a maximum reduction of 25 per cent for

bridges 43 ft. width and over.

CLA SS

Fig. 88.

Equivalent Uniform Loading.— The following uniform loadings

equivalent to the above concentrated loadings are specified by the

A. R. E. A. and A. A. S. H. O. to be used for loaded lengths of 60 ft.

or over. The figures given are for a uniform load per linear foot of

traffic lane (9 ft. wide) and the concentrated excesses to be used in

addition to the uniform load are to be considered as uniformly dis-

tributed on a line across the lane and are to be placed on the span

so as to produce maximum stress at the point under consideration.

H 20 Unif. 640 lb. per lin. ft. f 18,000 lb. for moment

Excess concentration \ 26,000 lb. for shear

H 15 Unif. 480 lb. per lin. ft.
,

l3 >5°° ôr moment

Excess concentration 19,500 lb. for shear
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H 10 Unif. 320 lb. per lin. ft. f 9,000 lb. for moment
Excess concentration

[
13,000 lb. for shear

Correction for widths of roadway not in even multiples of 9 ft. and

allowance for reduction of traffic intensity in the case of wide bridges

are as for the concentrated train loads.

(Only the concentrated train loads will be used in this work since

the influence line method is used throughout and there would not be

the same saving of labor by the use of the equivalent uniform loading

that there is in the stress calculation for truss members.)

Electric Railway Loadings.—The standard electric car loadings

shown in Fig. 88 are recommended by the A. R, E. A. and A. A. S. H. O.

unless otherwise specified by the interested electric railroad company.

The loading consists of two cars on each track preceded and followed

by a uniform load (without concentrated excess) corresponding to the

class of highway loading specified in the preceding paragraph. Electric

railway traffic lanes are assumed to be 10 ft. wide. Highway bridges

carrying electric railway traffic should be designed for either of the

following conditions whichever governs, (a) The highway loading of

the appropriate class specified on ^ny portion of the roadway including

the electric car lanes, (b) The electric railway loadings on the car

tracks and the highway loading on the remaining traffic lanes.

Sidewalk Loads.—Sidewalk loads, as recommended by the A.R.E. A.

and A. A. S. H. O., for steel highway bridges, varying in intensity

according to the width of sidewalk and the loaded length producing the

maximum stress in the member under consideration, will not be used

here. In the solid barrel type of structure treated in this book, it is

more practical to carry the reinforcement calculated for the roadway

section across the entire width of bridge including sidewalks, than

to design the sidewalk sections separately. For the steel rigid-frame

girder structure it is preferable, in designing the fascia girders, to use

a flat load of say 80 lb. per square foot of sidewalk than to vary the

intensity according to the critical loaded lengths of the various points.

Impact.—The specifications of the A. R. E. A. and A. A. S. H. O.

for steel highway bridges provide for an allowance due to impact,

vibration, etc., from the live loads, excepting the sidewalk loads. This

allowance is a fraction of the live load stress calculated as I = —

r

~

—

L+ 150

in which L is the critical loaded length for the member under considera-

tion. For the type of structure treated of in this book, varying the

impact factor according to the critical loaded length of the point under

consideration is an unnecessary refinement. L will therefore be defined
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here as the clear span of the structure and a single impact factor used

for all points for which stress is calculated. For the sake of brevity,

the live-load concentrations will be increased by the amount of impact

allowance before applying them in design.

Allowance for Temperature Change.—Stresses induced in indeter-

minate reinforced-concrete structures by seasonal change in temperature

are less in proportion than for steel structures, on account of gradual

relief of temperature stresses due to the phenomenon known as “ time

yield” in the concrete. This fact accounts for the difference in tempera-

ture range specified for steel and for concrete structures.

Metal Structures:

Moderate climate, from o° to + 120° F.

Cold climate, from — 30° to + 120° F.

The rise and fall in temperature is to be figured from an assumed

mean temperature.

Concrete Structures:

Moderate climate

Cold climate

Temperature

Rise

30° F.

35° F.

Temperature

Fall

40° F.

45° F.

Unit Stresses for Concrete Structures.—The Joint Code is followed

and allowable working stresses are given for a grade of concrete that

will show a compressive strength of 2000 lb. per sq. in. in standard

cylinder tests when the concrete is 28 days old. For other grades of

concrete the allowable stresses would be in proportion to the indicated

compressive strength.

Extreme fiber stress in compression (due to bend-

ing or combined bending and direct stress) .... 800 lb. per sq. in.

Shear 60 lb. per sq. in.

Bond: for plain bars 80 lb. per sq. in.

for deformed bars 100 lb. per sq. in.

Tension in steel reinforcement 18,000 lb. per sq. in.

Standard specifications usually permit an increase of 25 per cent in

unit stresses for arch ribs when temperature and rib-shortening effects

are included, if such effects amount to more than 25 per cent of the total

tresses without them.

Note.—Since publication of this book, the impact factor and allowance for temperature

change, specified by the American Association of State Highway Officials, have been

revised.






