

THE RIGID-FRAME BRIDGE

THE RIGID-FRAME BRIDGE

BY
ARTHUR G. HAYDEN, M.Am.Soc.C.E.
Consulting Civil Engineer
Formerly Designing Engineer, Westchester County Park Commission

SECOND EDITION

NEW YORK
JOHN WILEY \& SONS, INc. London: CHAPMAN \& HALL, Limited

1940

Copyrighi, 1931, 1940

BY

Arihur G Hayden

All Rights Reserved
This bqofí or any part thereof must not be reproduced in any form wihout the written permission of the publisher.

PRINTED IN U. B, A.

PRESE OF
BRAUNWORTH \& CO. INC.
BUILDERE OF SOOKB
EmIDGEPORT CONN.

THIS BOOK IS DEDICATED TO
CHARLES M. SPOFFORD
HAYWARD PROFESSOR OF CIVJL ENGINEERING MASSACHUSETTS INSTITUTE OF TECHNOLOGY MY INSTRUCTOR AND FRIEND

PREFACE TO SECOND EDITION

The method of analysis used in the first edition of this book has been retained in the revised edition, although several other methods applying to rigid-frame bridges have been brought forward in the past few years. All were given fair trial in the office of the Westchester County Park Commission when the author was in charge of the design division, and the consensus of opinion of the designers was that the process explained in this book is simpler, more flexible, and, for the type of structure under consideration, at least as rapid as any other, particularly if the suggestions made at the end of Chapter IV are followed. Furthermore, the process is just as susceptible of abbreviation by a designer who has had experience with it and developed good judgment as is any other.

The moment-distribution method, incomparable for the analysis of frames composed of many members, each of constant moment of inertia, is applicable to the structures illustrated in this book only with the aid of diagrams from which fixed-end moments for members of various shapes must be obtained preliminary to analysis. If independent calculation of the fixed-end moments for members of variable section not covered by the diagrams is necessary, more work is involved by the moment-distribution method.

A convention of algebraic signs is more clearly explained in the new edition than in the old.

Calculations for the double-span frame bridge have been shortened by selecting a different "transformed system" to begin with. At the end of Chapter IX, recommendations are made with respect to the design of rigid-frame bridges restrained at the footings.

A simpler and apparently a more logical method for proportioning the steel reinforcement in a skewed arch or frame bridge is explained and used in the new edition.

Recommendations are made in Chapter \mathbf{X} relative to the design of rigid-frame bridges of small skew.

A procedure is outlined in Chapter X for designing double-span skew arch or frame bridges.

Secondary effects, such as shrinkage, plastic yield, and side-sway, as elements of design, are discussed in Chapter XI.

Some important tests and research work relating directly to rigid-frame bridges have recently been carried out. Professor Harold E. Wessman, formerly of the University of Illinois, now of New York University, has re-edited the Chapter on research to cover recent developments.

It was not deemed necessary to change the tabulated calculations that were carried over from the first edition so as to conform to the current specifications of the American Association of State Highway Officials. The specifications followed in the book are given in the Appendix, but the designer of a new bridge should follow current practice. For this purpose a diagram for proportioning steel reinforcement, based upon a value of $n=10$, is given in this book, although the calculations for reinforcement shown in the book are based upon the diagram for $n=15$.

A number of errors made in the calculations shown in the old edition have been corrected in the new.

Arthur G. Hayden

June, 1940

INTRODUCTION TO FIRST EDITION

This book treats of the application of rigid-frame construction to short-span reinforced-concrete and structural steel bridges. The building of the magnificent system of parkways in Westchester County, leading from New York City, demanded the construction of many short-span bridges up to 120 ft ., over and under intersecting highways and over numerous streams. The rigid-frame type of bridge has been developed to a high degree of perfection to meet the conditions imposed by restricted headroom between intersecting roads, and its economy and extreme adaptability to architectural expression as compared with ordinary types of construction have been completely demonstrated.

The theory of design of this type of indeterminate structure is fully explained in this volume, although it involves principles that are not new. The method of presentation of these principles is, however, so simplified and illustrated by examples that designers in Mr. Hayden's office have been able to grasp their meaning and apply them without having had previous training in higher structural analysis. Higher mathematics and the calculus have been excluded from the argument. Few authors seem to recognize the fact that, in the mathematical line, a knowledge of simple arithmetic, proportion and the solution of algebraic equations is all that is nocessary for a comprehension of indeterminate structural analysis. Mr. Hayden has also included in this volume the results of his six years' experience in the design of rigid-frame bridges in order to meet the demand of many engineers and state highway officials for more complete information.

The rigid-frame bridge is not an offshoot. It has its proper place in the scheme of structural engineering practice and is in the direct line of modern structural development; hence the timeliness of the present volume. In this respect an editorial in Engineering News-Record, April 29, 1926, says in part:

In recent years structural engineering practice has turned unmistakably toward fuller use of the continuous form of structure. . . . One phase of this departure from precedent is represented in the adaptation of continuous construction to concrete bridges in Westchester County, with results so impressive in increased efficiency and esthetic range as to forecast an important influence on future short-span practice.... The planning of these bridges is an important contribution to the present stage of development and directs attention to the fact that many structures are inherently integral from footing to hand rail, and that no great gain is realized from dissecting it into the elements of abutment and span. The gain in economy, simplicity, and freedom from many common bridge troubles that can be realized by planning the structure as an integral unit; is brought clearly into view. . . . No less stimulating are the esthetic phases of the subject; for the continuity of the structure necessarily demands also a representation of this continuity in the external aspect and involves abandoning the simple form of arch, girder, abutment and wing wall. In this particular it is evident that extensive possibilities lie before us. . . The proven possibilities and advantages of the continuous type are sufficiently important to claim its consideration for the many structures that will have to be built in the years immediately ahead.

The advantages of rigid-frame construction are, however, not limited to bridges. The beauty of structural form that has been realized in these structures can be extended to many other applications. Large areas for industrial buildings, hangars, etc., can be roofed with economy by the use of indeterminate portals of reinforced concrete or steel as the main structural element; the omission of trusses adding beauty to the structure, improving lighting, and eliminating waste space. Great opportunities lie ahead in this direction and undoubtedly this volume will facilitate such development.

G. A. Hool

CONTENTS

CHAPTER PAGE
I. Principle of the Rigid-Frame Bridge I
Inherent Economy-Incidental Economies-Economic Limits.
II. Indeterminacy 5
Degrees of Indeterminacy-Fundamentals of Indetermi- nate Analysis.
III. Theory of Indeterminate Analysis 10
Symmetrical Two-Hinged Arch-Symmetrical Single- Span Frame Bridge, Fixed Ends-Unsymmetrical Single- Span Frame Bridge, Free Ends.
IV. Calculations 33
Convention of Algebraic Signs-Denomination of Units of Calculation-Free-End Conditions-Restraint at Foot- ings-Effects of Earth Pressure-Selection of Coordinate System-Moments of Inertia-Division of Axis-Influ- ence Load-Proportioning Steel Reinforcement-Adjust- ment of Calculations.
V. Calculations for Symmetrical Single-Span Concrete Frame Bridge-Free-End Conditions 45
VI. Calculations for Symmetrical Single-Span Concrete Frame Bridge-Fixed-End Conditions 6I
ViI. Calculations for Unsymmetrical Single-Span Con- crete-Frame Bridge-Free-End Conditions. 75
VIII. Calculations for Symmetrical Single-Span Steel Girderf Frame Bridge 87
chapter PAGE
IX. Theory and Design of Double-Span Frame Bridge 107
X. The Theory and Design of Concrete Skew-Frame Bridge-Free-End Conditions 137
XI. Practical Points on Design and Construction 183
Design of Rigid-Frame Bridges Restrained at the Foot- ings-Secondary Effects in Design-Proportions for Analysis-Construction Joints-Expansion Joints-An- choring of Stone Arch Facing-Secondary Reinforcement.
XII. General Notes on Rigid-Frame Bridges 197
XIII. Deformeter Analysis for Frame Bridges of High Inde- terminacy 206
XIV. Research in Connection with Development of Design 212
XV. Architecture of Short-Span Bridges 238
Appendix. Live Loads* and Unit Stresses 279

THE RIGID-FRAME BRIDGE

CHAPTER I

PRINCIPLE OF THE RIGID-FRAME BRIDGE

Figures 1 and 2 illustrate the mechanical principle of this type of structure. These figures are photographs of toy structures loaded with an iron weight; Fig. I representing the action of a beam or girder bridge merely supported upon its abutments, and Fig. 2 representing the action of a rigid-frame bridge of one span. The same members were used in both toy structures, but in Fig. 2

Fig I .

Fic. 2.
they were rigidly connected so that they were continuous from footing to footing.

The difference in action between the two structures is at once apparent. In Fig. I there is no flexure in the supporting members $a b$ and $c d$; they serve no useful purpose other than to carry the working element $b c$ and provide the necessary clearance underneath. In Fig. 2 the flexure in members $a b$ and $c d$ is distinctly noticeable, showing that they are performing useful work in supporting the load.

Another obvious difference is in the deflection Δ under the load in the two cases. The measured deflection in Fig. 2 is only about 0.4 that in Fig. I.

Inherent Economy.-It is an engineering principle that the work done by a structure in supporting a load is measured by half the product of the load and the distance through which it moves after being placed upon the structure. Thus we see that in Fig. 2 all three members acting together have to perform much less work than the single member $b c$ in Fig. I.

In an actual rigid-frame bridge the members are not all of uniform width as in the toy structure, but the material is more efficiently disposed. Figure 28 shows the typical longitudinal section of a reinforced-concrete frame bridge requiring only about 60 per cent of the material which would be required for a constant-section frame; that is, one having members of uniform section. As a matter of fact, a constant section frame would be impractical for a bridge of much less span than this.

Incidental Economies.-The intrinsic economy of the rigid-frame construction is evident from the foregoing discussion. Figures 3 and 4 illustrate the saving in the

Rigid frame shown in fyll Lines. beem. Siab end dobutments shown m Dash Lines.

Fic. 3.
approaches permitted by reason of the slender proportions of the structure. In Fig. 3 a reinforced-concrete frame bridge and reinforced-concrete T-beam bridge are shown superimposed and the effect on the approaches of the road over, is illustrated. Figure 4 shows a like comparison for a
frame bridge and a fixed arch. The fixed arch requires a certain minimum rise in the arch rib proper in order to meet temperature stress requirements, whereas the top of the frame bridge may be flat if desired. The fixed arch also requires massive abutments to realize the condition of fixity of the arch rib as assumed in design. The frame bridge thus has the advantage of saving of material in approaches, saving of concrete for the abutments and saving of excavation tor the abutments. These economies are not theoretical, but have been demonstrated by a number

Fig. 4.
of comparative designs and estimates for actual bridges. The highway departments of several states and county commissions who have been aided by the Westchester County Park Commission in the design of this type for their bridges report the same results.

Economic Limits.-Experience with this type of construction has not been sufficient to determine definitely its economic limits. It seems that below $30-\mathrm{ft}$. span, the reinforced-concrete T-beam floor supported on plain concrete abutments has the advantage in economy. Many concrete rigid-frame bridges have been built in Westchester County, New York, from 35 to 80 ft . in span and steel-frame bridges from 80 to 120 ft . in span. Within these limits the economy of the type has been demonstrated as compared with the concrete arch or T-beam bridge and the steel girder bridge supported on concrete gravity

4 PRINCIPLE OF THE RIGID-FRAME BRIDGE

abutments. The width of bridge, established under-clearances, effect of floor depth upon approaches and other factors enter into the question of economic limits, and their relative effects cannot be determined without considerable study and a critical comparison of the results of experience.

CHAPTER II

INDETERMINACY

Degrees of Indeterminacy.-It is assumed that readers of this book have a working knowledge of the theory of structures and of the principles distinguishing structures which are statically determinate from those which are statically indeterminate. A brief exposition, by means of concrete examples, of what is meant by degrees of indetermination in regard to the external forces is, however, given here as an introduction to the demonstration of the theory of the indeterminate types treated in this book.

The curved beam in Fig. 5, simply supported and fixed in location but free to rotate at a, and resting on rollers at b, carries the inclined load $P=5$. The load may be resolved into horizontal and vertical components say h.c. $=3$ and v.c. $=4$. Since end b rests on rollers, the reaction at this point can be only vertical and the h.c. of the load must therefore be taken off at a. Since $\Sigma H=0$, the horizontal component of the left reaction $H_{L}=3$. Taking moments about a, since $\Sigma M=0$, we have $4 \times 7-3 \times 3-10 V_{R}=0$. From which $\quad V_{R}=1.9$. Also since $\Sigma V=0$, we have $V_{L}=4-1.9=2$.I. Observe that the structure was so supported that the two reactions could have not more than three components, H_{L} and V_{L} of the left reaction and V_{n} of the right reaction, due to the application of the load P. These three quantities are calculable as illustrated above, by means of the three static equations, $\Sigma H=0, \Sigma M=0$ and $\Sigma V=0$. If the load $P=5$ were applied vertically, that is, having no horizontal component, H_{L} would be equal to 0 , since $\Sigma H=0$. Also
since $\Sigma M=0$, we have by taking moments about a, $V_{R}=\frac{5 \times 7}{10}$; and since $\Sigma V=0$, we have $V_{L}=5-3.5=1.5$.

Under the load P the above beam would deform and the end b being on rollers would move slightly to the right. Assume now that the above curved beam were supported as shown in Fig. 6, both ends being fixed in location but not in direction; that is free to rotate at a and b. The absence of rollers at b now permits the development of a horizontal component of the right reaction, as well as the left, due to the application of a load. Thus there will be four components of the two reactions. Since the ends are

Fig. 5.

Fic. 6.
hinged, there will be no bending moments at these points and V_{L} and V_{R} may be determined by means of the two static equations $\Sigma M=0$ and $\Sigma V=0$ as before, because the moments of H_{L} and H_{R} about either a or b are equal to \circ and thus do not affect the values of V_{L} and V_{R}. The h.c. (3) of the load will be divided between the two components H_{L} and H_{B} of the reactions and, since $\Sigma H=0$ the algebraic sum $H_{L}+H_{R}=3$. But none of the three static equations tells us how the horizontal component of the load is divided between H_{L} and H_{R}. The vertical component also develops horizontal thrust. If the applied load is vertical, H_{L} and H_{R} must be equal and opposite since $\Sigma H=0$; but the amount of these equal thrusts is still indeterminate. In any case we have four components of the two reactions and three static equations to solve them. One other equation must be furnished by the theory of
flexure, and the structure, as regards the external forces, is said to be statically indeterminate to the first degree.

If the beam is further restrained by being fixed in direction as well as in location at a, and remains fixed in location but not in direction at b (that is, free to rotate at b), there will be five components of reactions developed by the application of a load as shown in Fig. 7. That is, the left reaction is capable of developing a restraining moment M_{L} as well as direct components H_{L} and V_{L}. There being only three static equations, two other equations must be furnished by the theory of flexure in order to solve completely for the five reaction components. That is the structure is statically "indeterminate" to the second degree. V_{L} and V_{R} cannot now be calculated independently as

Fig. 7.

Fig. 8.
before, by taking moments about a and b (through which points the moments of H_{L} and $H_{R}=0$) because the unknown moment M_{L} must be taken into account in equating moments about either a or b. The five necessary equations must be established and solved simultaneously for the unknowns.

In Fig. 8, both ends being restrained so as to be capable of developing restraining moments under load, six components of the two reactions will be developed by the application of a load-four direct colmponents and two restraining moments as shown. Three equations must now be furnished by the theory of flexure, in addition to the three static equations, and the structure is said to be "statically indeterminate" to the third degree. The structure shown in Fig. 9 is indeterminate to the third degree.

The structure shown in Fig. io is indeterminate to the sixth degree.

Fundamentals Underlying Indeterminate Analysis.-The equations additional to the three static equations necessary for the solution of indeterminate structures of the type treated of in this book are established by certain relationships depending upon the character of internal deformation in the structure. This deformation (as in beams, arches, etc.) is caused by the bending moments, shears and direct stresses acting in the structure.

Measurements in such actual structures as well as mathematical calculation show that the bending moments contribute most largely to the deformation. Shear deforma-

Fig. 9.
tion is small in amount and may usually be neglected entirely as is done in the following work. Deformation due to direct forces (compression or tension) are more important than shear deformation, but are usually counteractive, tending to relieve resultant stresses. In the development of equations it is simpler to consider only the deformations due to bending moments, and if desired to make a final correction, for the direct stress deformations. In arch analysis this correction is made as "rib-shortening" and is analogous to the calculation of stress due to temperature fall, as will be illustrated.

Involved in the calculations of stress deformation are quantities which are a measure of the elastic properties of the structure, all containing values for moment of inertia. In such cases the moments of inertia of the entire cross-.
section are used although the unit stresses are finally calculated on the occasional "cracked section," neglecting tension in the concrete. This is for the reason that deflection measurements on structures show that the deflections are controlled more by the intact sections where tension in the concrete exists than by the sections of infinitesimal length where, in proportioning the reinforcement, tension in the concrete is assumed to be entirely destroyed up to the neutral axis.

CHAPTER III

THEORY OF INDETERMINATE ANALYSIS

The methods of design for the arch-like structures treated in this book depend upon a few fundamental laws of flexure which are illustrated in the pages immediately following by a few simple examples in beam deflection; the homogeneous steel beam being assumed in this part of the demonstration for the sake of simplicity. A value of modulus of elasticity (E) equal to $30,000,000$ is used in such calculations.

In the figures illustrating deflections due to the elastic deformation of a very small interval (s) of the axis of the beam, arch rib, etc., the effects are necessarily very much exaggerated. In the actual structure, such deformations and the deflections due to them are very small relative to the dimensions of the structure. Such quantities as y will then be practically the same whether measured from the axis of the structure in its stressed or in its unstressed position. Likewise the circular functions, arc, sine and tangent, of the very small angles (θ) under consideration, are all practically the same, although there is an apparent small difference in the exaggerated figures.

Assume a very small length s of a beam originally straight as indicated in Fig. iI. After strain due to flexure alone, the change in length of a fiber distant c from the neutral axis will be (in circular measure): $s+c \Delta \theta-s=c \Delta \theta$, $\Delta \theta$ being the measure of the change in direction of the tangents at the two ends of s. The strain (change in length) of this fiber may also be expressed as $\frac{M c s}{E I}$ in which
$\frac{M c}{I}$ is the stress on the fiber, due to the moment M of all external forces acting on the beam, as determined by the well-known beam formula. Comparing the two equations above, $\Delta \theta=\frac{M s}{E I}$. The change in direction of the tangent between any two points will be the sum of the small changes for all the small lengths s between the points considered, or $\sum \frac{M s}{E I}$.

Assume next a small length s of the neutral axis of a beam originally curved and subtending an angle θ before flexure and θ^{\prime} after flexure (Fig. 12). The change in length

Fig. II.

Fig. 12.
of a fiber distant c from the neutral axis (due to flexure alone) will then be $\left(s+c 0^{\prime}\right)-(s+c \theta)=c \Delta \theta$. The strain (change in length) of this fiber may also be expressed as $\frac{f(s+c \theta)}{E}$ in which f is the unit stress on this fiber due to the external moment M on the section. We then have $c \Delta \theta=\frac{f(s+c \theta)}{E}$ from which $f=\frac{c \Delta \theta E}{s+c \theta^{\circ}}$. If $a=$ the crosssectional area of this fiber, the moment of its stress about the neutral axis $=f a c=\frac{a c^{2} \Delta \theta E}{s+c \theta}$. Summing over the entire
cross-section
from which

$$
M=\Sigma f a c=\frac{\Sigma a c^{2} E \Delta \theta}{s+c \theta}=\frac{I E \Delta \theta}{s+c \theta}
$$

$$
\Delta \theta=\frac{M(s+c \theta)}{E I} .
$$

For the curvature occurring in ordinary arches, $s+c \theta$ may be assumed equal to s. Hence

$$
\Delta \theta=\frac{M s}{E I},
$$

approximately. Summing over any given length of the axis the change in direction of the tangents at the ends of such length

$$
\Sigma \Delta \theta=\theta=\sum \frac{M s}{E I} .
$$

Figure I3 represents a straight cantilever beam under flexure. Assume origin of.coordinates as shown, that is,

Fig. 13.
at the point a whose displacements are to be determined. The change in angle between the tangents at the ends of any small division s of the axis due to flexure is $\Delta \theta=\frac{M s}{E I}$, in which M is the bending moment, on the particular division considered, due to the external loads. The total angular change between any two points is the sum of effects of all the small divisions between the points considered that is, $\theta=\sum \frac{M s}{E I}$. If the points considered are a and b, the summations will be for the divisions between these points; that is, $\theta=\sum \frac{M s}{E I}$. The vertical displacement at a con-
tributed by the flexure in s is, in circular measure, $x \Delta \theta=\frac{x M s}{E I}$. The total displacement of a from a line perpendicular to the support at $b=\sum_{a}^{b} x \Delta \theta=\sum_{a} \frac{}{}$ Mxs , the summations being for the divisions between a and b.

Note that the quantity x is an expression for moment on any division s, due to unit load at a, that is, at the point whose displacements are desired, the unit load acting in the direction of the desired displacement. The expression for the displacement δ_{a} may therefore be written $\sum \frac{M M_{a} s}{E I}$. If the origin of coordinates had been taken at the support b instead of at a, the expression for the vertical displacement δ_{a} would be $\sum_{a}^{o} \frac{M(d-x) s}{E I}$, in which d is distance between a and b. In this case, too, $(d-x)$ would be an expression for moment on s due to unit load at a, and we would have as before

$$
\delta_{a}=\sum_{a}^{b} \frac{M M_{a} s}{E I} .
$$

This equation is an expression of Maxwell-Mohr's Theorem.
In the numerical example following, the total deflection of point a, from a line perpendicular to the support at b, is calculated.

The beam is assumed to be homogeneous, that is E (modulus of elasticity) is the same for all divisions, s. Consequently quantities for $\frac{M s}{I}$ and $\frac{M x s}{I}$ may be tabulated for the several divisions s and the summations multiplied by $\frac{1}{E}$ instead of finding the summation of the several quantities $\frac{M s}{E I}$ and $\frac{M x s}{E I}$; for the reason that

$$
\left(\frac{a}{E}+\frac{b}{E}+\frac{c}{E}+\ldots\right)=\frac{1}{E}(a+b+c+\ldots)
$$

That is, if E is constant,

$$
\sum \frac{M s}{E I}=\frac{\mathrm{I}}{E} \sum \frac{M s}{I} \quad \text { and } \quad \sum \frac{M x s}{E I}=\frac{\mathrm{I}}{E} \sum \frac{M x s}{I}
$$

In this example the divisions s were also arbitrarily assumed constant, that is, all 12 in. long, and this quantity might have been treated as was the quantity E. It was retained

X IS MEASURED FROM THE POINT AT WHICH DISPLACEMENTS ARE 70 BE FIGURED, TO THE CENTERS OF OIVISIONS.

$$
\text { Fio. } 14 .
$$

in the tabulation, however, to illustrate the process when it is convenient to vary the length of divisions.

Illustrative Example r.-Find the deflection at a of the cantilever beam shown in Fig. 14 under the loads indicated.

Point	M Inch- Pounds	s Inches	I	x Inches	$\frac{M s}{I}$	$\frac{M x s}{I}$	$\frac{M}{E I}$
1	456,000	12	200	66	27,400	$1,810,000$	00000760
2	403,000	12	190	54	25,800	$1,393,000$	00000715
3	360,000	12	180	42	24,000	$1,008,000$	0000660
4	312,000	12	170	30	22,000	660,000	0000611
5	264,000	12	160	18	19,000	357,000	00000550
6	216,000	12	150	6	17,300	104,000	0000480
$\mathbf{\Sigma}$					136,300	$5,332,000$	

For a steel beam E (modulus of elasticity) $=30,000,000$.
Approximate angular change from support to point a

$$
=\sum \frac{M s}{E I}=\frac{1}{E} \sum \frac{M s}{I}=\frac{136,300}{30,000,000}=0.0045 \text { radian. }
$$

Approximate deflection at a

$$
=\sum \frac{M x s}{E I}=\frac{1}{E} \sum \frac{M x s}{I}=\frac{5,332,000}{30,000,000}=0.18 \text { inch. }
$$

The smaller the divisions the closer will be the approximation. In this problem the results are accurate to a small fraction of I per cent. Figure 15 shows the quantities $\frac{M}{E I}$ plotted to scale. The process fol-

Fig. 15.
lowed in the above problem shows that the angular change between any two points will be the area of the $\frac{M}{E I}$ diagram, between such points, plotted to scale; that is $\sum \frac{M s}{E I}$. Likewise the deflection will be the moment of the portion of the $\frac{M}{E I}$ diagram between the points considered, about the point of displacement.

Fig. 16.
The Curved Cantilever Beam (Fig. 16).-The angular change contributed by the flexure of any division s of the axis of a member may be measured by the change in angle
between the tangents at the ends of the division or between the radii or between any lines, straight or broken, attached to the ends of the divisions. Making use of this geometric principle, the deflection of a point in any desired direction may be readily calculated as shown. Assume, as before, origin of coordinates at the point a whose calculated displacements are desired. From the figure it is seen that the vertical displacement of point a contributed by the flexure in s is $x \Delta \theta=\frac{M x s}{E I}$ and the horizontal displacement is $y \Delta \theta=\frac{M y s}{E I}$, in which M is the bending moment on division s due to the loads acting on the beam. Summing the effects of all points on the axis (from support to a) the total vertical displacement $=\sum \frac{M x s}{E I}$ and total horizontal displacement is $\sum \frac{M y s}{E I}$. Likèwise the total angular change (from support to a) is $\sum \frac{M s}{E I}$. Note that in the expressions $\frac{M x s}{E I}$, above (for straight or curved cantilever beams) x is the moment on the several divisions s due to vertical unit load placed at the point where vertical displacements are to be measured. Whence the expression for vertical deflection may be written $\sum \frac{M M_{0} s}{E I}$, in which M_{0} is the secondary moment on the several divisions s due to unit vertical load at a. Likewise for horizontal deflection at a in the curved beam, $\sum \frac{M y s}{E I}$ may be written $\sum \frac{M M_{n} s}{E I}$, in which M_{h} is the secondary moment on the several divisions s due to unit horizontal load at a. In general the secondary moments are calculated in the several divisions due to a unit load acting at the point and in the direction for which the desired deflections are to be calculated.

If the coordinate system had been selected with origin at b, x and y then being measured from b, the expressions for total vertical and horizontal deflections would then be respectively $\sum \frac{M(l-x) s}{E I}$ and $\sum \frac{M(h-y) s}{E I}$. Here again ($l-x$) and ($h-y$) would be expressions for moments due respectively to unit vertical load and unit horizontal load acting at a; and we have, as before, total vertical deflection at $a=\sum \frac{M M_{v} s}{E I}$ and total horizontal deflection $=\sum \frac{M M_{h} s}{E I}$, with the same definitions for M_{v} and M_{h}.

The last forms of the equations for deflection are the general forms for deflection whatever the coordinate system may be.

Simple Span Beam (Fig. 17).-For simplicity of demonstration the flexure contributed by a small length s only is

Fic. 17.
shown to exaggerated scale in the figure. It will be convenient in what follows to find the constants for a load unity (say I lb.). Let $\delta_{a b}$ indicate deflection at a due to unit load at b and $\Delta \delta_{a b}$ indicate the increment of deflection contributed by s. By geometry $\Delta \delta_{a b} \doteq \frac{x \Delta \theta d}{l}$. From what has preceded $\Delta \theta=M_{b} \frac{s}{E I}$ in which $M_{b}=$ moment on s due to unit load at b. Then $\Delta \delta_{a b}=\frac{x d}{l} M_{b} \frac{s}{E T}$. Summing the
effects of flexure on all elements s, we have

$$
\Sigma \Delta \delta_{a b}=\delta_{a b}=\Sigma M_{b} \frac{s}{E I} \cdot \frac{x d}{l}
$$

For load P greater than unity we have of course

$$
P \delta_{a b}=P \Sigma M_{b} \frac{s}{E I} \cdot \frac{x d}{l}
$$

Note now that the expression $\frac{x d}{l}$ is the same as for moment on s due to unit load at $a=M_{a}$. The equation for deflection may then be expressed as

$$
P \delta_{a b}=P \sum \frac{M_{b} M_{a s} s}{E I}
$$

It is obvious from the form of this equation that

$$
P \delta_{a b}=P \Sigma M_{u} M_{b} \frac{s}{E I}=P \delta_{b a}
$$

This is Maxwell's Theorem of Reciprocal Displacements.
If the origin of the coordinate system had been taken as in the other examples, through the point for which the

Fic. 18.
calculated deflection is desired, as shown in Fig. 18, the expression for $\Delta \delta_{a b}$ would be

$$
\frac{d(l-x-d) \Delta \theta}{l}=\frac{d(l-x-d) P M_{b} \frac{s}{E I}}{l}
$$

and total deflection

$$
=P \sum \frac{d(l-x-d) M_{b} \frac{s}{E I}}{l}
$$

Again note that the expression $\frac{d(l-x-d)}{l}$ is the moment on division s due to unit load at a; whence

$$
P \delta_{a b}=P \Sigma M_{b} M_{a} \frac{s}{E I}
$$

as before. The last form of the equation is a general form of equation for deflection, whatever the coordinate system may be.

Illustrative Example 2.-Assume a simple span beam loaded as shown in Fig. 19. Find deflection at a. Moments of inertia at centers

Fig. 19.
of $2-\mathrm{ft}$. divisions are indicated. In the table below, columns I to 5 inclusive only are involved in this calculation. Constants are first found for unit load at b, which are then multiplied by $P=20,000$. $s=24$ in.

Point	Inch Pounds		$\frac{s}{I}$	$M_{a} M_{b} \frac{s}{I}$	$M_{a} M_{a} \frac{s}{\underline{s}}$
	M_{a}	M_{b}			
1	5.4	2.7	0. 1042	1.5	3.0
2	16.4	8.2	0.0632	8.5	17.0
3	27.3	13.6	0.0461	17.1	34.3
4	38.2	19.1	0.0369	26.9	53.8
5	49.1	24.5	0.0333	40.1	80.4
6	60.0	30.0	0.0324	58.3	116.6
7	58.9	35.5	0.0333	69.6	115.5
8	45.8	409	0.0369	69.2	77.4
9	32.7	46.4	0.0461	70.0	49.3
10	19.6	27.8	0.0632	34.4	24.3
11	6.5	9.3	0.1042	6.3	4.4
Σ				401.9	576.0

$$
P \delta_{\alpha b}=\frac{P}{E} \Sigma M_{a} M_{b} \frac{s}{I}=\frac{20,000}{30,000,000} \times 402=0.27 \text { inch }
$$

Illustrative Example 3.-For the same beam, find deflection at a for upward load R at a as shown in Fig. 20.

$$
R \delta_{a a}=\frac{R}{E} \Sigma M_{a} M_{a}^{s} r^{s}
$$

$\Sigma M_{a} M_{a}$ is calculated in column 6 of table above. Substituting values,

$$
R \delta_{a a}=\frac{R}{30,000,000} \times 576=\frac{R}{52,000} .
$$

Fig. 20.

Fig. 21.

Mlustrative Example 4.- Find reaction R for continuous beam over two spans of 12 ft . and io ft . loaded as shown in Fig. 21 and having the same moments of inertia as in preceding example. The deflection at point a of the simple span beam was calculated above separately for the $20,000-\mathrm{lb}$. load at b and for the upward load R at point a. For the continuous beam of this example the deflections at point a due to the $20,000-\mathrm{lb}$. load and that due to the reaction R must be equal and opposite. That is,

$$
20,000 \delta_{a b}-R \delta_{a a}=0
$$

or

$$
0.27-\frac{R}{52,000}=0
$$

From which

$$
R=+14,000
$$

the + sign indicating that R acts as assumed in the figure.
The value of R may be found more directly, without calculating actual deflections in terms of load and reaction. Since

$$
P \delta_{a b}-R \delta_{a a}=0
$$

or

$$
\frac{P}{E} \Sigma M_{a} M_{b} \frac{s}{I}-\frac{R}{E} \Sigma M_{a} M_{a} \frac{s}{I}=0
$$

from which

$$
R=\frac{P \Sigma M_{a} M_{b}{ }^{s}}{\Sigma M_{a} M_{a}^{s}}=\frac{20,000 \times 402}{576}=14,000 \mathrm{lb} . \uparrow
$$

Having found the redundant reaction R, the other reactions may be found by the simple rules of statics $\Sigma M=0$ and $\Sigma V=0$, as follows:

By moments $20,000 \times 5-14,000 \times 10-22 R_{1}=0$ from which

$$
R_{1}=\frac{20,000 \times 5-14,000 \times 10}{22}=-1800 \mathrm{lb} . \downarrow
$$

By addition

$$
R_{2}=20,000+1800-14,000=7800 \mathrm{lb} . \uparrow
$$

SYMMETRICAL TWO-HINGED ARCH

Refer to Fig. 22. Assume a curved beam resting on rollers at one end a and simply supported at the other. Flexure in any small division s of the beam will cause a horizontal displacement at the free end, $y \Delta \theta=\frac{M y s}{E I}$, in which M is the bending moment on the division s due to the external loads neglecting the horizontal thrust H. The total displacement due to flexure in all the divisions s is $\sum \frac{M y s}{E I}$.

Now assume a horizontal thrust applied to the end of the beam sufficient to counteract the horizontal displacement. New moments Hy are introduced acting on the individual divisions; and we have:

Total horizontal displacement due to thrust

$$
-\sum y \Delta \theta=\sum \frac{(H y) y s}{E I}=\sum \frac{H y^{2} s}{E I}
$$

The horizontal displacement due to external loads and that due to the thrust being equal and opposite, we have

$$
\sum \frac{M y s}{E I}-\sum \frac{H y^{2} s}{E I}=0
$$

from which

$$
\begin{equation*}
H=\frac{\sum \frac{M y s}{E I}}{\sum \frac{y^{2} s}{E I}} \tag{I}
\end{equation*}
$$

If E is constant,

$$
\begin{equation*}
H=\frac{\sum \frac{M y s}{I}}{\sum \frac{y^{2} s}{I}} \tag{2}
\end{equation*}
$$

In the equations above, y is also an expression for moment in the several divisions s due to horizontal load unity acting like H; that is ${ }_{\imath}$ at the point and in the direction for which the deflection of the unrestrained beam was calculated. Whence the expression for H may be written

$$
H=\frac{\Sigma M M_{a} \frac{s}{\bar{I}}}{\Sigma M_{a} M_{a} \frac{s}{I}}
$$

in which M_{a} is the moment on the several divisions s due to such unit load.

Thrust Due to Change of Span Length.-In equation (i) for $H, \sum \frac{M y s}{E I}$ is an expression for horizontal deflection at a (change of span length) due to the loads on the structure before application of the replacement force H. This change of span length is $\Sigma y \Delta \theta$, or say Δl. The general formula for H may then be written

$$
\Delta l=\frac{H}{E} \sum \frac{y^{2} s}{I} \text { or } H=\frac{E \Delta l}{\sum \frac{y^{2} s}{I}}
$$

in which Δl is the deflection (change of span length) due to any cause whatsoever.

If the supports move in a distance Δl they impose upon the structure a positive thrust (that is, acting as shown in Fig. 22) which causes negative moments $H y$. If they spread, the effect is opposite and H is negative, acting in

Fig. 22.
the opposite direction to that shown in Fig. 22 and causing positive moments.

Thrust Due to Temperature Change.-
Let $c=$ coefficient of thermal expansion $=0.0000065$;
$t=$ rise or fall of temperature in degrees Fahr.;
$l=$ span length;
$\Delta l=c t l$.

$$
H=\frac{E c t l}{\sum \frac{y^{2} s}{I}}
$$

Temperature rise tends to increase the span length. This tendency is resisted at the footings which develops a positive H (acting in the direction assumed in Fig. 22) producing negative moments. Temperature fall produces the opposite effect.

Rib Shortening. $-f_{c}=$ average direct compression in the concrete of any division, s, of the arch $=$ normal thrust N divided by area of section $\left(A_{c}+{ }_{15} A_{s}\right)$: Shortening of any division s caused by direct compression $=\frac{f_{c} s}{E}$.

If $\Delta x=$ horizontal projection of s, the change of span length

$$
\Delta l=\sum \frac{f_{c} \Delta x}{E} .
$$

Hence

$$
H=-\frac{\sum f_{c} \Delta x}{\sum \frac{y^{2} s}{I}}
$$

Rib shortening has the same effect as fall in temperature.

The axis divisions may often be assumed constant, with convenience to the calculator. The quantity s may then be placed outside the sign of summation and will cancel out of numerator and denominator of the equations for loads but not for change of span length due to temperature, etc. For constant s the convenient form of the denominators of the equations for H due to change of span length for temperature, etc., is $s \sum \frac{y^{2}}{\bar{I}}$, in case summations have been made for $\sum \frac{y^{2}}{\bar{I}}$ in dealing with load calculations.

SYMMETRICAL SINGLE-SPAN RIGID-FRAME BRIDGE

Fixed-End Conditions

The structure is indeterminate to the third degree as is the fixed arch shown in Fig. 8.

Refer to the demonstration for the curved cantilever beam and observe that the angular change and horizontal and vertical movements of any point on the beam are geometrical quantities resulting from the flexure in the structure. The deflections may be calculated for any point on the beam or for any point off the beam connected by a real or imaginary rigid arm. In this example, Fig. 23, a symmetrical frame is cut into two equal cantilever sec-
tions, and the unknown reactions due to a load P are assumed to be applied a certain distance z below the crown, as shown in the figure. The reason for this will be clear as we proceed. The origin of the coordinate system is at the assumed point of application of the unknown reactions. The problem is to find the values of the reactions which are alike for the two cantilever sections and which must be such that they will cause the ends of the two cantilevers to coincide as in the joined structure.

The total angular change at point O must be equal for the two cantilever halves, but opposite in direction relative to the two cantilevers; the total horizontal deflection at point O must be equal for the two cantilevers but of opposite sign because one cantilever span is lengthened and the other

Fic. 23.
shortened by the amount of such deflection; the total vertical deflection of point O must be equal and of the same sign, because either upward or downward for the two halves. M_{0} is a bending moment. Moments due to H_{0} are $H_{0} y$ and moments due to V_{0} are $V_{0} x$. In the figure an external load P is shown on the left cantilever only, but equations will be derived for loads on both spans, due to which the bending moment on any particular division s of the left half may be expressed as M_{L} and that on any division s of the right half may be expressed as M_{R}. In tabulating such moments for substitution in the formulas, the rules for algebraic signs which are explained later on must be observed, in order to arrive at correct results.

Applying the principles already deduced and noting that V_{0} produces bending moments of opposite sign in the two cantilever halves, we have:

Equating angular changes:

$$
\begin{align*}
& \sum M_{L} \frac{s}{E I}+M_{0} \sum \frac{s}{E I}+H_{0} \sum \frac{y s}{E I}+V_{0} \sum \frac{x s}{E I} \\
& \quad=-\left[\sum M_{R} \frac{s}{E I}+M_{0} \sum \frac{s}{E I}+H_{0} \sum \frac{y s}{E I}-V_{0} \sum \frac{x s}{E I}\right] \tag{I}
\end{align*}
$$

Equating horizontal deflections:

$$
\begin{align*}
& \sum M_{\Delta} \frac{y s}{E I}+M_{0} \sum \frac{y s}{E I}+H_{0} \sum \frac{y^{2} s}{E I}+V_{0} \sum \frac{x y s}{E I} \\
& \quad=-\left[\sum M_{n} \frac{y s}{E I}+M_{0} \sum \frac{y s}{E I}+H_{0} \sum \frac{y^{2} s}{E I}-V_{0} \sum \frac{x y s}{E I}\right] \tag{2}
\end{align*}
$$

Equating vertical deflections:

$$
\begin{align*}
& \sum M_{\tau} \frac{x s}{E I}+M_{0} \sum \frac{x s}{E I}+H_{0} \sum \frac{x y s}{E I}+V_{0} \sum \frac{x^{2} s}{E I} \\
& \quad=\left[\sum M_{R} \frac{x s}{E I}+M_{0} \sum \frac{x s}{E I}+\mathrm{H}_{0} \sum \frac{x y s}{E I}-V_{0} \sum \frac{x^{2} s}{E I}\right] \tag{3}
\end{align*}
$$

The XX axis of reference is so taken that $\sum \frac{y s}{E I}=0$.
This will be so when $z=\frac{\sum(z+y) \frac{s}{I}}{\sum \frac{s}{I}}$, the process of
determining the value of z being analogous to the process of finding the distance z from the crown to the center of gravity of all the quantities $\frac{s}{I}$. This expedient, by eliminating certain terms in the final working equations, shortens the labor of calculation.

Making all cancellations in equations (1), (2) and (3), and making $\sum \frac{y s}{E I}$ (but not $\sum M \frac{y s}{E I}$) equal to zero, we have

$$
\begin{align*}
& \sum M_{R} \frac{s}{E I}+\sum M_{L} \frac{s}{E I}=-2 M_{0} \sum \frac{s}{E I} \tag{4}\\
& \sum M_{R} \frac{y s}{E I}+\sum M_{L} \frac{y s}{E I}=-2 \mathrm{H}_{0} \sum \frac{y^{2} s}{E I} \tag{5}\\
& \sum M_{R} \frac{x s}{E I}-\sum M_{L} \frac{x s}{E I}=2 V_{0} \sum \frac{x^{2} s}{E I} \tag{6}
\end{align*}
$$

If E is constant it may be placed outside the sign of summation and will cancel out of both sides of the above equations. In the numerical example following, s is also made constant and will cancel out. Hence (calling $\left.M_{R}+M_{\iota}=M\right)$ the final equations become:

$$
\begin{aligned}
& \sum \frac{M}{I}=-2 M_{0} \sum \frac{1}{I} \quad \text { or } \quad M_{0}=-\frac{\sum \frac{M}{I}}{2 \sum \frac{I}{I}} \\
& \sum \frac{M y}{I}=-2 \mathrm{H}_{0} \sum \frac{y^{2}}{I} \quad \text { or } \quad H_{0}=-\frac{\sum \frac{M y}{I}}{2 \sum \frac{y^{2}}{I}} \\
& \sum \frac{M_{k} x}{I}-\sum \frac{M_{L x}}{I}=2 V_{0} \sum \frac{x^{2}}{I}
\end{aligned}
$$

or

$$
\begin{equation*}
V_{0}=\frac{\sum M_{R} \frac{x}{I}-\sum M_{L} \frac{x}{\bar{I}}}{2 \sum \frac{x^{2}}{\bar{I}}} \tag{9}
\end{equation*}
$$

In the above process of derivation note that $\sum \frac{s}{E I}$, $\sum \frac{y^{2} s}{E I}$ and $\sum \frac{x^{2} s}{E I}$ (or for constant E and $s, \sum \frac{1}{\bar{I}}, \sum \frac{y^{2}}{\bar{I}}$ and $\left.\sum \frac{x^{2}}{I}\right)$ were summations for the half arch.

Reactions Due to Change of Span Length Δl. - The left-hand members of equations (1), (2) and (3) above are expressions for, respectively, angular change, horizontal deflection and vertical deflection caused by loads on the structure.

In a symmetrical structure, there will be no resultant angular change at O due to straight stretching or compressing of the arch. Hence $0=-2 M_{0} \sum \frac{S}{I}$ or $M_{0}=0$. Likewise there will be no shear at O, that is $V_{0}=0$.

In equation (5) substitute, for the left-hand member, the general expression for horizontal deflection: $+\Delta l$ for increase of span length (stretching the arch) due to any cause whatsoever, and $-\Delta l$ for decrease of span length (compressing the arch) due to any cause whatsoever. Thus

$$
\Delta l=-2 H_{0} \sum \frac{y^{2} s}{E I} \text { or } H_{\theta}=-\frac{E \Delta l}{2 \sum \frac{y^{2} s}{I}} \text { for stretching (10) }
$$

and

$$
\begin{equation*}
H_{0}=+\frac{E \Delta l}{2 \sum \frac{y^{2} s}{I}} \text { for compressing } \tag{II}
\end{equation*}
$$

If in the calculations for external loads with constant s, summations are made for $\sum \frac{y^{2}}{I}$ the convenient form for the above equations will be

$$
\begin{equation*}
H_{0}=\mp \frac{E \Delta l}{2 s \sum \frac{y^{2}}{I}} \tag{12}
\end{equation*}
$$

If the footings spread, H_{0} will be negative and act opposite to the direction shown in Fig. 23.

If the footings move in, H_{0} will be positive and act as shown in Fig. 23. In the above equations $\sum \frac{y^{2} s}{I}$ is the summation for the half arch.

Reactions Due to Temperature Change.-Given

$$
\begin{aligned}
& c=\text { coefficient of thermal expansion }=0.0000065 ; \\
& t=\text { temperature rise or fall in degrees Fahrenheit; } \\
& l=\text { span length. }
\end{aligned}
$$

Then

$$
\Delta l=c t l
$$

The restraint of the footings resists change of span length due to temperature change; hence for a rise in temperature there will be a compressing effect and

$$
\begin{equation*}
H_{0}=+\frac{E c t l}{2 \sum \frac{y^{2} s}{I}} \tag{I3}
\end{equation*}
$$

or for constant s,

$$
\begin{equation*}
H_{0}=+\frac{E c t l}{2 s \sum \overline{y^{2}}} \tag{I4}
\end{equation*}
$$

For a fall in temperature there will be a stretching effect and

$$
\begin{equation*}
H_{0}=-\frac{E c t l}{2 \sum^{-\frac{y^{2} s}{\bar{I}}}} \tag{15}
\end{equation*}
$$

or for constant s,

$$
\begin{equation*}
H_{0}=-\frac{E c t l}{2 s \sum \bar{I}} \tag{16}
\end{equation*}
$$

The summation $\sum \frac{y^{2} s}{I}$ is for the half arch.
Rib Shortening. $-f_{c}=$ direct compression due to normal thrust (pounds per square inch on any division s of the arch). Shortening of any division s due to direct compression $=\frac{f_{s}}{E}$. If $\Delta x=$ horizontal projection of s, the change of span length $=\Delta l=\sum \frac{f_{c} \Delta x}{E}$.

Rib shortening results in a stretching effect.
Hence

$$
\begin{equation*}
H_{0}=-\frac{\sum f_{c} \Delta x}{2 \sum \frac{y^{2} s}{I}} \tag{土}
\end{equation*}
$$

or for constant s,

$$
\begin{equation*}
H_{0}=-\frac{\sum f_{c} \Delta x}{2 s \sum \frac{y^{2}}{\bar{I}}} \tag{18}
\end{equation*}
$$

The summation $\sum \frac{y^{2} s}{I}$ is for the half arch.
(Rib shortening is neglected in the numerical example.)
In all the formulas for H_{0} and V_{0} note that for the system of coordinates used (origin at point where deflections are measured for the two cantilever halves) x is an expression for moment M_{0} on any division s due to unit load acting like V_{0}, and y is an expression for moment M_{n} due to unit load acting like H_{0}. The various equations derived above might therefore be expressed as follows:

For external loads

$$
\begin{align*}
M_{0} & =\frac{\sum \frac{M}{I}}{2 \sum \frac{I}{I}} \tag{19}\\
H_{0} & =\frac{\sum \frac{M M_{n}}{I}}{2 \sum \frac{M_{n}^{2}}{I}} \tag{20}\\
V_{0} & =\frac{\sum \frac{M_{R} M_{0}}{I}-\sum \frac{M_{L} M_{0}}{I}}{2 \sum \frac{M_{0}^{2}}{I}} \tag{21}
\end{align*}
$$

In the equations for H_{0} due to change of span length, temperature change and rib shortening, the denominators may be expressed as $2 \sum \frac{M_{v}{ }^{2}}{I}$.

Likewise the fundamental equations for deflection (1), (2) and (3) may be expressed as follows:

$$
\begin{align*}
& \sum \frac{M_{L} s}{E I}+M_{0} \sum \frac{s}{E I}+H_{0} \sum \frac{M_{h} s}{E I}+V_{0} \sum \frac{M_{v} s}{E I} \\
& =-\sum M_{R} \frac{s}{E I}-M_{0} \sum \frac{s}{E I}-H_{0} \sum \frac{M_{h} s}{E I}+V_{0} \sum \frac{M_{v} s}{E I} \tag{22}
\end{align*}
$$

$\sum \frac{M_{L} M_{h} s}{E I}+M_{0} \sum \frac{M_{h} s}{E I}+H_{0} \sum \frac{M^{2} s}{E I}+V_{0} \sum \frac{M_{v} M_{h} s}{E I}$
$=-\sum \frac{M_{R} M_{h} s}{E I}-M_{0} \sum \frac{M_{h} s}{E I}-H_{0} \sum \frac{M_{h}{ }^{2} s}{E I}-V_{0} \sum \frac{M_{h} M_{v} s}{E I}\left(2_{3}\right)$
$\sum \frac{M_{L} M_{v} s}{E I}+M_{0} \sum \frac{M_{v} s}{E I}+H_{0} \sum \frac{M_{v} M_{h} s}{E I}+V_{0} \sum \frac{M_{v}{ }^{2} s}{E I}$
$=\sum \frac{M_{R} M_{v} s}{E I}+M_{0} \sum \frac{M_{v} s}{E I}+H_{0} \sum \frac{M_{v} M_{h} s}{E I}-V_{0} \sum \frac{M_{v}{ }^{2} s}{E I}$
If a different coordinate system had been selected, the form of all equations would change, including the fundamental equations as expressed in (1), (2) and (3), but excepting the fundamental equations as expressed in (22), (23) and (24). In (1), (2) and (3) x and y would be replaced by other terms containing x and y but these would still be expressions for moments due to unit loads acting like the reaction components whose value it is desired to find, thus resulting in equations expressed as in (22), (23) and (24).

UNSYMMETRICAL SINGLE-SPAN 'RIGD FRAME

Designed for Hinged Conditions at the Base

If the frame is unsymmetrical, as shown in Fig. 24, calculate the șimple span moments $\sum \frac{P x(l-x)}{l}$ on the
several divisions s as for the symmetrical structure. Moments due to the thrust $H\left(=\frac{\sum \frac{M y s}{I}}{\sum \frac{y^{2} s}{I}}\right)$ will be $H y$; y being measured from the centers of divisions, perpendicular to the axis XX. In this case, however, all summations must extend over the full span.

Fig. 24.
An alternative system of calculation is as follows (Fig. 25): Measure y vertically to the XX axis.

$$
H=\frac{\sum \frac{M y s}{I}}{\sum \frac{y^{2} s}{I}}
$$

will act horizontally and the moment on any division s due

Fri. 25.
to it will be Hy. In the numerical example in Chapter VII, the first system is followed.

CHAPTER IV

CALCULATIONS

Convention of Algebraic Signs.-In order to obtain correct results in calculation, it is necessary to adopt a convention of algebraic signs. Bending moments on any division of the arch or frame which cause tension on the inside or soffit face and compression on the outside face are considered positive, and contrary moments are considered negative. The character of the bending moment determines, of course, the direction of the contribution of the division to the potential deflection at the reaction point. The resultant of all increments of deflection determines the reaction which opposes it.

In illustrative example 4, Chapter III, the direction of the redundant reaction R of the continuous beam, under the downward vertical load, is obvious at the outstart; and the terms for load and reaction can be equated numerically without consideration of the algebraic sign of the summation quantities into which bending moments are entered. Likewise the horizontal thrust reactions of the single-span twohinged arch will obviously act inward for downward vertical loads and outward for upward vertical loads; while for earth pressure on one side the redundant horizontal reactions will evidently act in the direction shown in the numerical example for the symmetrical single-span frame with hinged-end conditions. Calculations for earth pressure on the steel frame bridge, Chapter VIII, and for the unsymmetrical concrete frame bridge, Chapter VII, are made for horizontal pressures acting inward, at both ends simultaneously, and the horizontal thrust reactions will obviously act outward.

In all these cases, equations for the redundant reaction, H, the direction of action of which is known, may be formed
numerically without attention to the algebraic sign of the summation quantity. The value of H having been determined, however, the bending moments due to it must be given their correct algebraic signs, as determined by inspection, so that they may be combined properly with the other bending moments having their correct algebraic signs.

For multiple-span arches or frames, however, it may not always be obvious in which direction the redundant reactions will act; but the observance of an additional convention of algebraic signs will make it unnecessary to predetermine the right direction. Any redundant reaction may be assumed in the beginning to act in either direction along its line of action. Instead of equating, numerically, the deflections at the reaction point due to load and the opposite deflection due to the reaction itself, all deflections at the same point are equated algebraically to zero; and the ordinates x or y are given algebraic signs in agreement with the character of the bending moments produced by the redundant reactions as assumed in direction. If the solution of the equations results in a positive value for a reaction, the assumed direction is correct; if negative, the opposite direction is correct. Applying this system to the two-hinged arch, the form of the equation for H due to loads would be $\sum \frac{M y s}{E I}+H \sum \frac{y^{2} s}{E I}=0$, or as explained in Chapter III, $\sum \frac{M M_{a} s}{E I}+H \sum \frac{M_{a} M_{a} s}{E I}=0$, in which M_{a} is a substitute expression for y and is the moment on any division due to unit load acting like H which may tentatively be assumed to act in one direction or the other. Values of y or M_{a} are now to be substituted into the tabulations with an algebraic sign: positive if the redundant reaction as assumed in direction would produce positive moment and negative if it would produce negative moment. Thus in the tabulations in Chapter V, y would be entered as negative, in agreement with the assumed direction of H, instead of positive.
$\sum \frac{M y s}{E I}$ would be negative and $\sum \frac{y^{2} s}{E I}$, of course, positive. Substituting the numerical values of these quantities with their proper algebraic signs into the equation of H as written above, a positive value for H would result, indicating that the direction as assumed in Fig. 28 is correct, that is, acting inward for downward vertical loads. If H had been assumed in the beginning as acting outward, values for y (or M_{a}) would be entered into the tabulations as positive, since the assumed direction of H would cause positive moments on the several divisions, and a negative value for H in the resulting solution would show that the correct direction for H is opposite to that assumed.

If some vertical reactions act upward and some downward, moments due to them will, of course, be entered into the calculations with their proper algebraic signs. Nevertheless, the correct direction of the redundant reaction for the combined loading may not be obvious at the outstart, if direct calculation is made instead of following the influenceline method. Under such circumstances it may be advisable to follow the full convention of algebraic signs to be explained later on.

Calculation for the double-span frame, Chapter IX, and for the skew frame bridge, Chapter X, are carried out in accordance with the complete convention of signs.

In the analysis of the fixed-end frame (Fig. 34) it is impossible to equate the algebraic sum of the calculated deflections at the crown to zero, since actual movement does occur. The deflections at the crown of the left half are therefore equated to the deflections of the right half, the algebraic signs being governed by the effects of the deflection on each half. This is explained in Chapter III. Influence tables are derived for downward vertical load on the left half, Values for y (moment due to unit value of H_{0}) are negative for points 7 L to 11 L (also ${ }_{7} \mathrm{R}$ to 11 R) because H_{0} applied as shown would cause negative moments at these
points. Values for y are positive for the remaining points because H_{0} would cause positive moments at such points. Values for x (moments due to unit values of V_{0}) are positive for points on the left half with load on the left half because V_{0} acting as shown would produce positive moments. Values of x are negative for the right half because V_{0} as assumed would produce negative moments to the right. Substitution of negative $\sum \frac{M}{I}$, negative $\sum \frac{M y}{I}$, and negative $\sum \frac{M_{L} x}{I}$ in formulas (7), (8) and (9) results in positive values for M_{0}, H_{0}, and V_{0} respectively, on account of the double negative, indicating that, for load on the left half, the assumed directions of these reactions are correct, as is almost obvious. If the wrong direction had been assumed for any of them, but algebraic signs for x, y, and unit value of M_{0} had been entered into the tabulations consistent with the assumed directions, a negative value would have indicated the error. All this will become clearer as the calculations are developed.

Denomination of Units of Calculation.-In all deflection calculations particular care must be taken to use units of single denomination-either all inch units or all foot units. In the preceding numerical examples all units were in inches (bending moments in inch-pounds, moments of inertia and modulus of elasticity in inch units, axis divisions s in inches, etc.), and the resulting calculated deflections were in inches. In the calculations for rigid-frame structures which follow later on, foot units are used. Bending moments, moments of inertia, all coordinates, etc., are expressed in foot units. In the final equations for reactions, E (modulus of elasticity) cancels out, but it appears in the final equation for horizontal thrust due to thermal expansion, as seen above. The familiar value of $2,00,000$ for modulus of elasticity of concrete (E) which is in inch units must therefore be converted into foot units. That is, in this equation $E=$ $144 \times 2,000,000=288,000,000$. Likewise, in the equa-
tion for rib shortening (if used), $f_{c}=$ pounds per square foot and l is in feet.

Free End Conditions.-Before proceeding with the design calculations of typical rigid-frame bridges an explanation will be given of the assumptions and short cuts used.

Referring to Fig. 33, p. 59, it will be observed that the structure rests on a rather wide base, the width being determined by the supporting value of the soil upon which the base rests. This figure shows the type used for a bridge resting "free" upon the soil. In Fig. $33 a$ is shown the type used when the structure rests "free" upon rock foundationthat is, not anchored down to the rock so as to be capable of developing tension over part of the area, and therefore a moment couple. In either case it is obvious that the reaction cannot go beyond the edge of the base if the base is not anchored down. In Fig. 33 the reaction point cannot come very near the edge because this would presume impossible conditions of soil pressure at the edge. If it could suddenly come very close to the edge, causing extremely high local pressure, slight yielding of the soil would automatically throw it in again. There is therefore a reasonable range on the base within which the reaction must come. That is, an imaginary hinge may be assumed traveling within a limited range, and calculations made accordingly. In the first rigid-frame bridges designed by the author, calculations were made for imaginary hinges in extreme positions and critical stresses determined for all sections. This proved to be an unnecessary refinement, and calculations are now made as for hinges in one position only-near the center of the base. The detail shown for a footing on rock has proved adequate. The vertical reinforcement near the bottom of the vertical legs is hooped as for a column, and no spalling of the concrete due to undue concentration of the reaction at the edge has been observed.

The assuming of hinged condition at the base permits the design of the single-span rigid-frame structure to be
made as for the two-hinged arch for which the equations for horizontal thrust have been derived in the preceding text. The designer should be able to follow the numerical example through without further discussion.

Derivation of the equations for a fixed-end single-span rigid-frame bridge structure is given, and influence lines are calculated in an illustrative example.

Restraint at Footings.-If pile foundations are needed, some restraint due to the grip of the concrete on the piles is introduced. This is unknown in amount, but if the structure is analyzed for both fixed and hinged conditions, the stresses will lie somewhere between those calculated and the structure will be conservatively designed. Figure 38, p. 74, shows the moment curves as calculated for both conditions in a single-span frame bridge. It has been found that but little extra steel is required to meet both conditions. Whether the positive moment at the crown will be slightly increased or slightly decreased by restraint at the footing depends upon the ratio of span length to height.

Effects of Earth Pressure.-In addition to active earth pressure from the approach fill acting at the ends of the frame, passive earth pressure may be developed due to flexure under live loads, or due to dead load if the earth fill is placed before striking the falsework. In one of the frame bridges built by the Bronx Parkway Commission an attempt was made to measure this by means of pressure gages installed before the earth fill was placed and false-work struck. The tests indicated that but little passive earth pressure was developed. This is due to the very small deflection in the vertical legs against the earth. An examination of the summaries of stresses in the design calculations following shows that earth pressures (acting on both ends) usually assist, and that heavy passive pressure might be developed without harm. In multiple-span frames where earth pressure may be a determining factor for some points of the frame, the calculated active earth pressure may, if
desired, be multiplied by a factor up to say 2 to allow for uncertainties.

The frame may be called upon to carry its dead load without the assistance of earth pressure, as when the falsework is struck before the approach fill is placed. Under some particular circumstances it may also be expedient to permit the contractor to fill in the approaches beginning at one end of the bridge so that trucks may go over the span and fill the other approach from above. This has been true for some of the Westchester bridges. Such conditions should be investigated by supplementary calculation to be sure that safe stresses are not exceeded, although stresses higher than the usual working stresses may be permitted. In most of the calculations shown in this book, stresses due to earth pressure acting on each end are tabulated separately, to permit such supplementary calculation of unit stresses. The calculation of unit stresses for these examples has not, however, been carried through.

Special Notes

Selection of Coordinate Systems.-It will be noted that a different coordinate system is used for the symmetrical

Fic. 26.

Fig. 27.
single-span frame when fixed-end conditions are assumed from that when hinged-end conditions are assumed. In the fixed frame three components of reactions exist at each footing as well as at the crown of the half frame (Fig. 26). Advantage is therefore taken of symmetry, and the YY axis
is taken through the crown. In the hinged frame, one indeterminate component (H) of the reactions exists at the hinge point and two (H and M) at the crown (Fig. 27). Calculations are therefore shortened by making one of the assumed hinge points the origin of the coordinate system.

Moments of Inertia.-Moments of inertia of a section with unbalanced reinforcement (that is, more reinforcement in one face of the section than in the other) are calculated as though the neutral axis were at the center of the section and the total reinforcement were equally divided, top and bottom. Error negligible.

Division of Axis.-In the following numerical examples the axis is divided into equal divisions s, and in such manner that a center-of-division point occurs at the point of maximum negative moment at the bend of the knee. This usually results in divisions of odd length at the bottoms of the vertical legs. Examination of the tabulations will show that, in the hinged structure, the quantities for these odd divisions have very little effect on the final summations. Correction for the odd lengths is therefore neglected. In the fixed structure, the quantities in the tabulations are largest for the divisions near the footings, and correction for the variation of s of these end divisions is made (as noted in the calculations) by multiplying the quantities pertaining thereto by the ratio of length of end division to length of regular divisions.

In the single- and double-span concrete frames selected for analysis, the inclination of the axis of the vertical legs is slight, and the imaginary hinged points at the bottoms of the bases of the hinged structure are assumed at such points near the centers of the bases that the vertical load moments for points in the vertical legs are negligible and about counterbalance, positive and negative. As a consequence, the quantities M and $\frac{M y}{I}$ for such points (which would be very small anyway) are entered as zero in the tabulations, and the
calculations are to that extent shortened. Where the inclination of the axis of the vertical legs is considerable, the negative moments of such points may have to be dealt with. For the fixed-end frame the exact coordinates of points on the vertical-leg axis are used in calculating the cantilever moments in the half-frame.

The slight curvature of the axis in the top of the singlespan and double-span concrete frames selected for analysis permits the assumption that the horizontal projections of the equal axis divisions are equal to the lengths of the divisions (4 ft . in the single-span structure and 5 ft . in the double-span structure). As a consequence of this slight approximation, observe that in Chapters V and VII the quantities in the several columns of the tabulation headed "Moment" are in exact arithmetical progression (reading vertically) both above and below the heavy zigzag line. The progressions above, however, are different from those below. Likewise reading horizontally from column to column headed "Moment," the quantities are in exact arithmetical progression up to the heavy zigzag line, but are in different progression to the right from what they are to the left. Also reading horizontally from column to column headed $\frac{M y}{I}$ the quantities are in exact arithmetical progression up to the zigzag line, but in different progression to the right and to the left. These observations assist in rapid calculation. Like results obtain in the calculations for the double-span frame. Where the curvature of the axis in the top of the frame is considerable, one of two procedures may be followed. All the axis divisions may be made equal, and exact horizontal distances between the centers-of-division points (used also as influence-load points) may be used in the calculations. Or the arithmetical progression of vertical load moments may be retained by making the unequal axis divisions correspond to their equal horizontal projections. Then s will be variable and must be carried through the
calculations; that is, $\frac{M y s}{I}$, etc., instead of $\frac{M y}{I}$ etc., must be calculated and tabulated for each point.

Influence Load.-In deriving the quantities for influence lines, an influence load different from unity is used in the calculations, that is, one of such magnitude that fractions will be avoided in the influence-load moments. In the analysis of the single-span frame, for example, note that the span is divided into 13 equal parts of 4 ft . each. If an influence load of $\frac{13}{4}$ is used, the smallest moment dealt with (that at point 6 L with influence load at 6 R) will be

$$
\frac{1}{13} \times \frac{13}{4} \times 4=1
$$

Beginning with this, the arithmetical progressions referred to above are very simple, as shown in the example. In plotting the influence line diagrams for load unity, the ordinates are plotted to scale $\frac{4}{13}$ of those calculated for the influence load of $\frac{13}{4}$. The same expedient is used in the calculations for the double-span frame, as will be observed.

The influence-line diagram shows influence lines for all points of the half span as the influence load travels over the full span, whereas the tables, for convenience in calculation, have been derived for all points of the full span as the load travels over the half span. Referring to Fig. 29, observe, however, that the moment for point 8 R , for example, when the load is at IoL, is the same as the moment for point 8 L when the load is at point 10 R . Thus the tables give all the necessary information.

For an unsymmetrical frame, moments at all points of the full span must be calculated for all positions of the load.

Proportioning Steel Reinforcement.-In proportioning the steel reinforcement of the various sections for final stresses, the required amount of tensile steel is calculated, neglecting the effect of any small amount of compressive steel that may be added as a result of carrying the tensile of steel adjacent sections past the points of contraflexure, or by reason
of providing shrinkage reinforcement, etc. This approximation is on the safe side.

Sometimes it will be advantageous to reinforce the crown section for compression rather than to increase the depth of section or to over-reinforce the tension side to reduce compressive stress in the concrete. In the calculation of steel reinforcement for the unsymmetrical single-span concrete frame bridge, for example, compression steel is used at points 12 and 13 near the crown. Calculations are shown below the table. The reader is referred to Hool and Kinne's "Concrete Engineer's Handbook," or other standard treatises, for explanation of the theory of proportioning sections reinforced for tension and compression and subjected to combined bending and direct stress. Another method of proportioning sections for such conditions is given in Section II of the Fifth Revised Edition of the "American Civil Engineers' Handbook," Merriman-Wiggin.

Adjustrent o! Calculations.-The depths of sections, reinforcing steel ratio, and consequently the moments of inertia assumed for analysis need agree only fairly well with the final results.

It is evident from the form of the equations for load reactions that, if all the assumed moments of inertia for the various sections involve the same percentage error, the calculated reactions will be exactly correct, and no adjustment of the detail calculations will be necessary. The formulas for temperature, etc., however, contain quantities for the reciprocal of moments of inertia in the denominator only. Therefore a correction for temperature reactions will be required, and it will be in direct ratio of actual to assumed moments of inertia.

If the errors in the assumed moments of inertia are irregular and serious in amount, correction of the detailed calculations may be necessary. Even then it has sometimes been found that as much as 10 to 20 per cent error for a few sections will affect the final results but little. A study of the
tabulations for a particular structure, and supplementary calculation of the effect of particular sections upon the summation quantities, will often avoid a complete recalculation. In some of the designs contained in this book a few sections were slightly increased in depth to meet stress conditions, but the tabulated moments of inertia assumed for analysis were not corrected.

The structures selected for analysis are of comparatively short span so that the methods may be illustrated the more briefly. Single-span concrete frame bridges have been built by the Westchester County Park Commission up to about $80-\mathrm{ft}$. span, and steel frame bridges up to about $120-\mathrm{ft}$. span.

CHAPTER V

CALCULATIONS FOR SYMMETRICAL SINGLE-SPAN CONCRETE FRAME BRIDGE; FREE-END CONDITIONS

TABLE I.-FRAME CONSTANTS

Point	$\stackrel{t}{\text { Feet }}$	$\begin{gathered} I_{c} \\ \frac{1}{1} y^{3} \end{gathered}$	$\begin{gathered} \mathbf{A}_{\boldsymbol{s}} \\ \text { Sq. } \mathrm{Ft} . \end{gathered}$	${ }_{\frac{i}{2}-0.17}$	$\stackrel{I_{s}}{{ }_{15} A_{s} D^{2}}$	$\begin{gathered} I \\ I_{c}+I_{s} \end{gathered}$	y	$\frac{y^{2}}{I}$
1	6.00	18.00				18.00	1.0	0
2	2.65	1.55	0.0083	1.16	0.17	1.72	4.0	9
'3	3.21	2.76	0.0140	1.45	0.43	3.19	8.0	20
4	3.85	4.75	0.0140	1.76	0.65	5.40	12.0	27
5	4.00	5.33	0.0140	1.84	0.70	6.03	15.9	42
6	3.55	3.73	0.0113	1.61	0.44	4.17	16.9	69
7	2.75	1.73	0.0076	1.21	0.17 ,	1.90	17.3	158
8	2.15	0.83	0.0076	0.91	0.09	0.92	17.7	340
9	1.70	0.41	0.0134	0.69	0.09	0.50	17.9	641
10	1.40	0.23	0.0172	0.54	0.07	0.30	18.1	1092
11	1.25	0.16	0.0172	0.465	0.05	0.21	18.2	1577
Σ								3975

- $\sum \frac{y^{2}}{I}$ for full arch $=2 \times 3975=7950$

46 SYMMETRICAL CONCRETE FRAME BRIDGE
Influence Load $=\frac{13}{4} ; s=4 \mathrm{ft}$.

Point	I	y	Influence Load at 9R				Influence Load at ioR				Influence Load at IIR				Point
			Mom.	$\frac{M y}{I}$	Hy	$\stackrel{\text { Total }}{M}$	Mom.	$\frac{M y}{I}$	Hy	$\underset{M}{\text { Total }}$	Mom.	$\frac{M y}{I}$	Hy	$\underset{M}{\text { Total }}$	
1 L	18.0	1.0	-	-	- 1.3	- 1.3		-	- 1.6	- 1.6					
2 L	1.72	4.0	-	-	- 5.3	- 5.3	-	-	-6.3	-63	-	-	-6.8	-6.8	2 L
${ }_{4}$	3.19	8.0	\bigcirc	-	- 10.6	- 10.6	-	-	-12.6	-12.6	\bigcirc	-	-13.7	-13.7	3L
${ }_{5}$	5.40 6.03	12.0 15.9	$\stackrel{\circ}{\circ}$	-	-16.0	-16.0	-	\bigcirc	-18.9 -25.0	- $\begin{array}{r}18 \\ -25.0 \\ -2.0\end{array}$	\bigcirc	\bigcirc	-20.5 -27.2	-20.5 -27.2	${ }_{5}^{4 \mathrm{~L}}$
66	4.17	16.9	4	16	-22.5	-18.5	5	20	-26.5	-21.5	6	24	-28.9	-22.9	6 L
$8 \mathrm{8L}$	1.90 0.92	17.3	12	72	-23.0	-15.0	10	90	-27.2	- 77.2	12	108	-29.6	-17.6	7 L
	0.92 0.50	17.7 17.9	12 16	232 572	-23.5	-11.5	15	290	-27.8	-12.8	18	348	-30.3	-12.3	8 L
10 L	0.30	18.1	20	1,208	-24.0	- 4.0	25	1,510	-28.4	-3.1	34	1,812	-31.0	- 1.6	${ }^{\text {90L }}$
HL	0.21	18.2	24	2,080	-24.2	-0.2	30	2,600	-28.6	+ I .4	36	3,120	-31.1	+ 4.9	il
IIR	0.21	18.2	28	2,424	-24.2	+ 3.8	35	3,030	-28.6	+ 6.4	42	3,636	-31.1	+10.9	${ }_{11}$
10 R	0.30	18.1	32	1,932	-24.0	+8.0	40	2,415	-28.4	+11.6	35	2,110	-31.0	+ 4.0	10R
9R	0.50	17.9	36	1,288	-23.8	+12.2	32	1,145	-28	+ 3.9	28	1,001	-30.6	-2.6	${ }^{9} \mathrm{R}$
8R	0.92	17.7	27	519	-23.5	+ 3.5	24	461	-27.8	- 3.8	21	404	-30.3	- 9.3	8 R
7R	1.90	17.3	18	164	-23.0	- 5.0	16	146	-27.2	-11.2	14	127	-29.6	-15.6	
6 R		16.9	9	36	-22.5	-13.5	8	32	-26.5	-18.2	7	28	-28.9	-21.9	6R
5R	6.03	15.9	\bigcirc	-	-21.2	-21.2	-	-	-25.0	-25.0	-	-	-27.2	-27.2	5R
${ }_{3 R}^{4 R}$	5.40	12.0	잉	-		- 16.0	\bigcirc	-	-18.9	-18.9	\bigcirc	-	-20.5	-20.5	${ }_{4}{ }^{\text {R }}$
3R	3.19	8.0	-	-	- 10.6	-10.6	\bigcirc	-	-12.6	-12.6	-	-	-13.7	-13.7	
2 R		4.0	-	\bigcirc	- 5.3	- 5.3	-	-	- 6.3	-6.3	-	-	-6.8	-6.8	2 R
IR	18.0	1.0	-	-	- 1.3	- 1.3	-	-	- 1.6	- 1.6	-	-	- 1.7	- 1.7	IR
Σ								12,454				13,576			
			$H=\frac{10,543}{7950}=1.33$				$H=\frac{12,454}{7950}=1.57$				$H=\frac{13,576}{7950}=1.71$				

[^0]

Fic. 29.
Moments for unit load $=\frac{4}{13}$ of moments calculated in tables.

DEAD LOAD MOMENTS

Moment factors ($M F$) are scaled from the influence line diagram. The product of load and moment factor will give the actual dead load moment M.

Load Point	Load	Point 2		Point 3		Point 4		Point 5		Point 6	
		MF	M								
6L	2.7	-0.4	-1.1	-0.8	-2.2	-1.3	-3.5	-1.7	- 4.6	+1.9	+5.1
${ }_{7} \mathrm{~L}$	2.2	-0.8	-1.7	-1.7	-3.7	-2.6	-5.7	-3.4	- 7.5	-0.2	-0.4
8L	1.8	-1.2	-2 2	-2.6	-4.7	-3.8	-6.8	-5.1	- 9.2	-2.3	-4.2
9L	1.6	-1.6	-2.6	-3 3	-5.3	-5 0	-8.0	-6.5	-10.4	-4.2	-6.7
10 L	1.5	-1.9	-2.8	-39	-59	-5.8	-87	-7.7	-11.6	-5.6	-8.4
11 L	1.4	-2.1	-29	-4.2	-5.9	-6.3	-8.8	-8.4	-11.8	-6.7	-9.4
11 R	1.4	-2.1	-2.9	-4.2	-5.9	-6 3	-8.8	-8.4	-11.8	-7.0	-9.8
10 R	1.5	-1.9	-2.8	-3.9	-5.9	-5.8	-8.7	-7.7	-11.6	-6.6	-9.9
9 PR	1.6	-1.6	-2.6	-3 3	-5.3	-5.0	-8.0	-6.5	-10.4	-5.7	-9.1
8 R	1.8	-1.2	-2.2	-2.6	-4.7	-3.8	-6.8	-5.1	- 9.2	-4.4	-7.9
7 R	2.2	-0.8	-1.7	-1.7	-3.7	-2.6	-5.7	-34	- 7.5	-3.0	-6.6
6R	2.7	-0.4	-1.1	-0.8	-2.2	-1.3	-3.5	-1.7	- 4.6	-1.5	-4.1
Totals			-26.6		-55.4		-83.0		0.2		-71.4
Load Point	Load	Point 7		Point 8		Point 9		Point 10		Point II	
		MF	M								
6L	2.7	+1.5	+4.3	+1.1	+3.0	+0.8	+2.2	+0.5	+1.4	+0.2	+0.5
7 L	2.2	+3.0	+6.6	+2.3	+5.1	+1.7	+3.8	+1.0	+2.2	+0.4	+0.9
8L	1.8	+0.7	+1.3	+3.6	+6.5	+2.6	+4.7	+1.6	+2.9	+0.7	+1.3
9 L	1.6	-1.5	-2.4	+1.1	+1.8	+3.8	+6.1	+2.4	$+3.8$	+1.2	+1.9
10 L	1.5	-3.4	-5.1	-1.2	-1.8	+1.2	+1.8	+3.6		+2.1	+3.2
IIL	1.4	-4.8	-6.7	-2.8	-3.9	-0.8	-1.1	+1.2	+1.7	+3.3	+4.6
11 R	1.4	-5.4	-7.6	-3.8	-5.3	-2.0	-2.8	-0.3	-0.4	+1.5	+2.1
IoR	1.5	-5.3	-8.0	-3.9	-5.9	-2.5	-3.8	-1.0	-1.5	+0.4	+o.6
9R	1.6	-4.6	-7.4	-3.5	-5.6	-2.4	-3.9	-1.2	-1.9	-0.0	-0.0
8 R	1.8	-3.6	-6.5	-2.8	-5.0	-2.0	-3.6	-1.1	-2.0	-0.2	-0.4
7R	2.2 2.7	-2.5	-5.5	-2.0	4.4	1.4	-3.2	-0.8	-1.8	-0.	-0.4
6R	2.7	-1.3	-3.5	1.0	-2.7	-0.7	-1.9	-0.	-1.1	-0.1	-0.3
Totals			-40.5		-18.2		-1.7		+8.7		+14.

Note.-Loads at points I to 5 inclusive produce very small moments in the structure which are neglected. They cause direct stresses, however, which are calculated as normal thrusts.

Dead Load Thrusts: see Fig. 28 for Dead Loads on Structure.
Point I. $\quad N=V=22.8$.
Point 2. $N=22.8-1.7=21.1$.
Point 3. $N=21.1-1.7=19.4$.
Point 4. $N=19.4-1.9=17.5$.
Point 5. $N=$ components at 45° of V and $H . \quad(17.5-2.3) \times 0.71+7.0 \times 0.71=15.8$.
Points 6 to II. $N=H$ as calculated from individual dead loads and H factors obtained from influence line for H as follows:
$(2.7 \times 0.11+2.2 \times 0.22+1.8 \times 0.32+1.6 \times 0.41+1.5 \times 0.48+1.4 \times 0.53) \times 2=7.0$.

Live Load Moments and Normal Thrusts

This bridge carries a $40-\mathrm{ft}$. roadway and is designed for H_{20} loading. (Refer to Appendix.) Allowing for reduction of traffic intensity for the $22-\mathrm{ft}$. width in excess of 18 , we have from the rear axle of a 20-ton truck:

$$
\frac{32000}{8}(1.00-0.22)=2800 \mathrm{lb} . \text { per foot width of bridge; }
$$

and from the front axle:

$$
\frac{8000}{9}(1.00-0.22)=700 \mathrm{lb} . \text { per foot width of bridge. }
$$

Adding impact allowance, $\frac{50}{L+150}=\frac{50}{50+150}=25$ per cent, we have concentrations of 3500 and 900 at $14-\mathrm{ft}$. centers, from the one 20-ton truck. Loads from the preceding and following 15 -ton trucks of the train spaced according to the specification will not affect this structure.

Normal Thrusts.-Normal thrusts N for points I to 4 are reactions V; loads are in the same position as when calculating the corresponding moments.

Normal thrusts for points 6 to II are horizontal thrust H; loads are in the same position as when calculating the corresponding moments.

Normal thrust for point 5 is the resultant at 45° of V and H, with loads in same position as when calculating the corresponding moments.

$$
\text { For } \begin{aligned}
3.5 \text { load } V \text { factor }=0.71 \times 0.54 & =0.38 \\
H \text { factor }=0.71 \times 0.53 & =0.38 \\
N \text { factor } & =\overline{0.76}
\end{aligned}
$$

For 0.9 load V factor $=0.71 \times 0.27=0.19$ H factor $=0.71 \times 0.37=0.26$
N factor $\quad=0.45$
CONCENTRATED LIVE LOAD MOMENTS M AND NORMAL THRUSTS N
Moment Factors (MF) and Thrust Factors (NF) are read directly from Influence Line Diagrams. The product of load and moment factor gives actual moments M and product of load and thrust factor gives actual thrusts N.

Load (Kips)	Point 2				Point 3				Point 4				Point 5				Point 6			
	$\boldsymbol{M F}$	\boldsymbol{M}	$N F$	N	$\boldsymbol{M F}$	M	$N F$	N	$M F$	\boldsymbol{M}	$N F$	N	MF	M	$N F$	N	MF	\boldsymbol{M}	$N F$	N
3.5 0.9	-2.1	-7.3 -1.3	0.54 0.27	1.9 0.2	-4.2 -2.9	-14.7 -2.6	0.54 0.27	1.9 0.2	-6.3 -4.4	-22.0 -4.0	0.54 0.27	1.9 0.2	-8.4 -5.9	-29.4 -53	0.76 0.45	2.7 0.4	-7.0 -4.4	-24.5 -3.3	0.53 0.32	1.9 0.3
Total.		-8.6		2 I		-17.3		2.1		-26.0		2.1		-34.7		3.1		-27.8		2.2
Load (Kips)	Point 7				Point 8				Poi.1t 8				Point 9				Point 9			
	$\boldsymbol{M F}$	\boldsymbol{M}	$N F$	N	$\boldsymbol{M F}$	\boldsymbol{M}	$N F$	N	MF	\boldsymbol{M}	$N F$	N	$M F$	M	$N F$	N	$\boldsymbol{M F}$	\boldsymbol{M}	$N F$	N
3.5 0.9	$\begin{aligned} & -5.4 \\ & -3.1 \end{aligned}$	$\begin{array}{r} -18.9 \\ -2.8 \end{array}$	$\begin{aligned} & 0.53 \\ & 0.27 \end{aligned}$	1.9 0.2	$\begin{aligned} & -3.9 \\ & -2.0 \end{aligned}$	$\begin{array}{r} -13.6 \\ -1.8 \end{array}$	0.51 0.22	1.8 0.2	$\begin{array}{r} +3.6 \\ 0.0 \end{array}$	+12.6	0.32	1.1	-2.5 -1.1	-8.8	0.48 0.16	$\begin{aligned} & 1.7 \\ & 0.1 \end{aligned}$	+3.8 +0.4	$\begin{array}{r} +13.3 \\ +0.4 \end{array}$	0.41 0.06	1.4 0.1
Total.		-21.7		2.1		-154.		$2 . \mathrm{C}$		+12.6		1.1		-98	.	1.8	\ldots	+13.7	1.5

	Point 10				Point 10				Point 11				Point				Point			
	$\boldsymbol{M F}$	\boldsymbol{M}	$N F$	N	MF	M	$N F$	N	MF	M	$N F$	N	MF	\boldsymbol{M}	$N F$	N	MF	\boldsymbol{M}	$N F$	N
3.5 0.9	-1.2 -0.2	-4.2 -0.2	0.41 0.06	1.4	$\begin{aligned} & +3.6 \\ & +0.7 \end{aligned}$	$\begin{array}{r} +12.6 \\ +0.6 \end{array}$	$\begin{aligned} & 0.48 \\ & 0.16 \end{aligned}$	1.7 0.1	$\begin{aligned} & +3.3 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +11.6 \\ & +0.5 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 0.3 \end{aligned}$								
Total.		-4.4	\ldots	1. 5	\ldots	+13.2	\ldots	1.8	+12.1	\ldots	2.2								

Uniform Live Load Stresses

100 lb . per sq. ft.
Area of moment curve for point $5=263$ units.
Moment $=263 \times 100=26,300 \mathrm{ft} .-\mathrm{lb} .=26.3 \mathrm{kip} . \mathrm{ft}$.
Concentrated live load moment is greater, $34.7 \mathrm{kip} .-\mathrm{ft}$.
It is obvious that concentrations will therefore give greater moments than uniform live load for all points.

The structure will carry a uniform live load of

$$
\frac{34.7}{26.3} \times 100=132 \mathrm{lb} . \text { per sq. } \mathrm{ft} .
$$

without over-stressing the critical section at Point 5 .

Temperature Stresses

$$
\begin{aligned}
c & =\text { coefficient of thermal expansion }=0.0000065 ; \\
t & =\text { temperature change in degrees Fahrenheit } \\
& =+35^{\circ} \text { or }-45^{\circ} ; \\
l & =\text { span length in feet }=52 ; \\
E & =\text { modulus of elasticity of concrete } \\
& =144 \times 2,000,000=288,000,000 \mathrm{lb} . \text { per sq. } \mathrm{ft} . \\
s & =\text { length of axis divisions }=4 \mathrm{ft} . \\
H & \doteq \frac{E c t l}{s \sum \frac{y^{2}}{I}}
\end{aligned}
$$

Note.-s is placed outside summation sign because assumed constant in calculations.

$$
\begin{aligned}
H & =+\frac{288,000,000 \times 0.0000065 \times 35 \times 52}{4 \times 7950} \\
& =+107 \mathrm{lb} .=0.107 \mathrm{kip} ; \\
H & =-\frac{45}{35} \times 107=-138 \mathrm{lb} .=-0.138 \mathrm{kip} .
\end{aligned}
$$

Point	y	Hy	Hy	Point	y	Hy	Hy
2	40	-04	+o 6	7	173	-19	+24
3	8 ○	-09	+1 1	8	177	-19	+24
4	120	-13	+17	9	179	-19	+25
5	159	-17	+22	10	181	-19	+25
6	169	-18	+23	11	182	-19	+25

Positive H causes negative moments; negative H causes positive moments. See p. 33.

Earth Pressure

Figure 30 shows the reactions for the free structure, with the horizontal reaction for earth pressure right at the right footing. Bending moments in the frame for the earthpressure loads shown in Fig. 28 and for the reactions shown in Fig. 30 are calculated in the first ten columns of the following table by moment increments-a method that is partly self-checking. From the succeeding calculations in the table a value of I.I kips for the redundant horizontal thrust is derived. The final horizontal reactions will then be I.I kips at the left footing and $6.0-\mathrm{I} . \mathrm{I}=4.9 \mathrm{kips}$ at the right footing.

SUMMARY OF MAXIMUM MOMENTS (KIP -FT.) AND NORMAL THRUSTS (KIPS)

Loading	Point 2		Point 3		Point 4		Point 5	
	M	N	M	N	M	N	M	N
Dead.	-26.6	21.1	-55.4	19.4	-83.0	17.5	-110.2	15.8
Earth P. Right.	- 4.4	0.8	-8.9	0.8	-13.3	0.3	- 17.6	1.4
Earth P. Left.	+15.1	-0.8	+22.4	-0.8	+24.0	-0.8	+ 21.9	0.2
Sub Total	-15.9	21.1	-41.9	19.4	-72.3	17.5	-105.9	\$17.4
Live -	-86	2.1	-17.3	2.1	-26.0	2.1	- 34.7	3.1
Temperature....:.	+ 06	\bigcirc	+1.1	\bigcirc	+1.7	\bigcirc	+ 2.2	-0.1
Temperature.	-0.4	\bigcirc	-	\bigcirc	-1.3	\bigcirc	- 1.7	+0.1
Maximum Total.	-24.9	232	-60.1	21.5	-99.6	19.6	-142.3	20.6

Loading	Point 6		Point 7		Point 8		Point 9	
	M	N	M	N	M	N	M	N
Dead.	-71.4	7.0	-40.5	7.0	-18.2	7.0	-1.7	70
Earth P. Right.	-15.7	1.1	-13.1	1.1	-10.5	1.1	-7.7	1.1
Earth P. Left.	+17.9	1.1	+14.4	1.1	+10.9	1.1	+ 7.6	1.1
Sub Total.	-69.2	9.2	-39.2	9.2	-17.8	92	- 1.8	9.2
Live +					+12.6	1.1	+13.7	1.5
Live -	-27.8	2.2	-21.7	2.1	-15.4	2.0	- 9.8	1.8
Temperature.	+2.3	-0.1	+2.4	-0.1	+2.4	-0.1	+ 2.5	-0.1
Temperature.	- 1.8	+0.1	- 1.9	+0.1	- 1.9	+0.1	- 1.9	+0.1
Maximum Total... Maximum Total.	-98.8	11.5	-62.8		-35.1	11.3	$\begin{array}{r} -13.5 \\ +14.4 \\ \hline \end{array}$	$\begin{aligned} & 11.1 \\ & 10.6 \end{aligned}$
Loading	Point 10		Point II		Point		Point	
	M	N	M	N	M	N	M	N
Dead. .	+8.7	7.0	+14.0	7.0				
Earth P. Right.... .	- 4.8	1.1	- 1.9	1.1				
Earth P. Left.	+ 4.3	1.1	+ 1.2	1.1				
Sub Total.	+8.2	9.2	+13.3	9.2				
Live +	+13.2	1.8	+12.1	2.2				
Live -...........	- 4.4	1.5						
Temperature......	+2.5	-0.1	+2.5	-0.1				
Temperature.......	- 1.9	+0.1	-1.9	+0.1				
Maximum Total....	+23.9	10.9	$+27.9$	11.3				

Design of Sections

The following table gives the calculation of required tensile reinforcement neglecting effect of steel in compression face, excepting at a few critical points as will be noted. The required amount of tensile steel per foot width of structure is obtained from a diagram in Hool and Johnson's "Concrete Engineer's Handbook," reproduced in the Appendix, by permission of the authors and the

Fig. 31.
publisher, McGraw-Hill Book Company. Having calculated $K=\frac{N e^{\prime}}{b d^{2}}$, enter the diagram at the left and at the bottom. Follow vertically upward to the intersection of the line for $f_{c}=800$ or $f_{1}=18,000$, whichever governs. From this intersection follow horizontally to the right to the proper line for $\frac{e^{\prime}}{d}$, thence vertically downward to the
bottom of the diagram, and read off the required percentage of tensile steel reinforcement. The required cross-sectional area of steel $\left(A_{0}\right)=p b d$, which is tabulated for each point in the last column of the table to the right.

Note that the thicknesses t finally used in the table for proportioning the steel reinforcement are less than the thicknesses assumed for analysis. The early bridges on the Bronx River Parkway and Westchester County Parkways were "over-designed." Later experience showed that more slender proportions could be used. The tables in Chapters V and VI for proportioning the sections and steel reinforcement have therefore been revised in this new edition to indicate the proper proportions for a bridge of about $49-\mathrm{ft}$. span carrying a separate roadway surface and designed for H_{20} loading, despite the fact that the analysis is based upon thicker sections.
CALCULATION FOR STEEL REINFORCEMENT
The

Point	Moment		$\begin{gathered} N \\ \mathbf{L b} . \end{gathered}$	$c=\frac{M}{N}$	$\stackrel{t}{\mathrm{In} .}$	$\begin{aligned} & d= \\ & t-2 \end{aligned}$	$\begin{gathered} c^{\prime}= \\ c+\frac{t}{2}-2 \end{gathered}$	$\frac{e^{\prime}}{d}$	$\begin{aligned} & k= \\ & \frac{N e^{\prime}}{b d^{2}} \end{aligned}$	f_{c}	$f s$	$\underset{p}{\text { Required }}$	Required Sq. In Sq. In. Per Ft Width	$A^{\prime \prime}$
	Ft.LLb.	Inch-Lb.												
2	- 24,900	- 299,000	23,200	12.9	32	30	26.9	0.9	58	470	18,000			
3	- 60,100	- 721,000	21,500	33.5	37	35	50.0	1.4	74	550	18,000	. 0017		
4	-99,600	-1,195,000	19,600	61.0	42	40	80.0	2.0	82	580	18,000	. 0028	1. 35	
5	$-142,300$ $-98,800$	-1,708,000	20,600	82.9 103.0	45	43 38	103.4 121.5	2.4 3.2	97 80	640 560	18,000	. 0037	1.90 1.64
7	- 988,800	$-1,186,000$ $-\quad 754,000$	11,500 11,400	103.0 61.1	40 31.5	38 29.5	121.5 79.9	3.2 2.7	88	560 600	18,000	.0036 .0038	1.64 0.34	
8	- 35,100	- 421,000	11,300	37.2	25	23	47.7	2.1	86	600 600	18,000	. .0038	0.34 0.86	
9	- 13,500	- 161,000	11,100	14.5	20	18	22.5	1.3	65	500	18,000	. .012	0.26	
9	+14,400	+ 174,000	10,600	16.4	20	18	24.4	1.4	67	500	18,000	. 0014	0.30	
10	+ 23,900	+ 287,000	10,900	26.3	17	15	32.8	2.2	133	800	18,000	. 0050	0.90	
11	+ 27,900	+ 335,000	11,300	29.7	15	13	35.2	2.7	197	800	11,00		2.33	0.5

[^1]

CHAPTER VI

CALCULATIONS FOR SYMMETRICAL SINGLE-SPAN CONCRETE FRAME BRIDGE; FIXED-END CONDITIONS

In the tabulations, the following rules as to algebraic signs are observed. Moments causing tension on the inside fibers of the frame are considered positive and moments causing compression on the inside fibers are considered negative. Thus, referring to Fig. 34, p. 62, and assuming the reactions in the directions indicated, moments on the left cantilever due to P are all negative; those due to M_{0} and V_{0} are all positive; and those due to H_{0} are negative for all points above the XX axis and positive for all points below the XX axis. Moments on the right cantilever due to M_{0} are all positive; those due to H_{0} are negative for all points above the XX axis and positive for all points below the XX axis; those due to V_{0} are all negative.

In calculating the table for Influence Load Moments, the summations of $\frac{M}{I}, \frac{M y}{I}$, and $\frac{M x}{I}$ are found first. These values are then used in the calculation of Reactions M_{0}, H_{0} and V_{0}, following the Influence Load Calculations, after which $M_{0}, H_{0} y$ and $V_{0} x$ may be entered in the Influence Load tables. Total Moments for influence load at the various points $=M+M_{0}+H_{0} y+V_{0} x$.

Observe that calculated reinforcement (vertical rods I sq. in. area per foot width of structure), is required at the inside face of the vertical legs of the frame, due to positive moment at points 1,2 and 3 .

For free-end conditions, nominal reinforcement only is used (Fig. 33); vertical rods being placed at the inside face of the vertical legs at wider intervals, overlapping the dowels projecting from the footings.

Compare steel areas required for free-end conditions and for fixed-end conditions.

TAELE /. FRAME CONSTANTS
NOTE TOW THIENNESSES OF SECTIONS AND CALCULATION OF MOMENTS OF INERTIA SEE CALCULATIONS FOR FRAME WITH FRFE ENDS.

$8^{2} 0^{4}$	x	$z+y$	I	$\frac{1}{1}$	$\frac{z+y}{7}$	Σ	y	$\frac{y}{7}$	$\frac{x}{7}$	$\frac{4^{2}}{1}$	$\frac{x^{2}}{1}$
11	2	0.0	0.21	4.76	0.0	1.2	-1.2	-5.70	9.5	6.9	19
10	6	0.1	0.50	3.35	0.33	\cdots	-1.8	-3.66	20.0	4.0	120
9	10	0.5	0.50	2.00	0.60	-	-0.9	- 1.80	20.0	1.6	200
8	14	0.5	0.92	1.09	0.54	*	-0.7	-0.76	15.2	0.5	218
7	18	0.9	1.90	. 53	0.47	-	-0.3	-0.16	9.5	0.1	170
6	22	1.3	4.17	. 24	0.31	\square	+0.1	± 0.02	5.5	0.0	116
5	25.8	2.3	6.05	. 17	0.30	\cdots	+1.1	+0.18	4.5	0.2	110
4	2G.2	0.2	5.40	. 19	1.15	-	$+5.0$	+0.93	4.8	4.6	127
3	25.9	10.2	3.19	. 51	3.20	\cdots	$+9.0$	+2.82	8.1	25.4	210
2	25.6	14.2	1.72	. 58	0.25	-	$+13.0$	$+7.55$	14.9	98.2	381
1	23.5	17.8	36.00	. 03	0.48	"	$+16.0$	+0.44	0.7	7.1	16
Σ	FOP	NALF A	CN	13,23	15.71			-0.14	.112.3	148.6	1683

NOTE: LEMETM OF DIVISNON WHOSE CENTER POINT AS $142 F T$ OA ONE-MALF LENGFN OF PROULAW OIVRSIONS. QUANTITIES PRPTAINING TO TNIS DIVISION AHF THGREPOPE GIVGN MHLF WEIOAT IN THE TAEULATIONS BY DOWELING THE WHUE OF IN THE GEMOMINATOP OF ALL QUANTITIES, AND S IS ELIMINATEO IN TWE SUNHNITION PQQaces

$\begin{aligned} & 30 \\ & 3 \end{aligned}$	I	y	x	Influence Load I of Crown								Influence Lood I of Point 10\%/L							
				M	$\frac{M}{I}$	$\frac{M y}{I}$	$\frac{M x}{I}$	Mo	$\mathrm{H}_{0} 4$	$V_{0} x$	Total Mom.	M	$\frac{M}{I}$	$\frac{M_{y}}{I}$	$\frac{M x}{I}$	M_{0}	$\mathrm{H}_{0} 4$	$V_{0} x$	Total Mom.
HL	0.21	-1.2	2.0	-2.0	-9.5	+11.4	-19	4.25	-0.98	1.0	+2.3	0				2.61	-0.93	0.74	+2.4
10 L	0.30	-1.1	6.0	-6.0	-200	+22.0	-120	\cdots	-0.90	30	+0.35	-2.0	- 6.7	+ 7.3	- 40	,	-0.86	2.23	+2.0
9 L	0.50	-0.9	10.0	-10.0	-200	+18.0	-200	-	-0.73	5.0	-7.5	-6.0	-12.0	+ 10.8	-120	,	-0.70	3.72	-0.4
8 L	0.92	-0.7	14.0	-14.0	-152	+10.6	-213	*	-0.57	7.0	-3.3	-10.0	-10.9	+ 7.6	-152	.	-0.54	5.20	-2.7
$7 L$	1.90	-0.3	18.0	-180	-9.5	+2.8	-171	.	-0.24	9.0	-5.0	-14.0	- 7.4	+ 2.2	-133	-	-0.23	6.70	-4.9
61	4.17	+0.1	22.0	-22.0	-53	-0.5	- 116	-	+0.08	11.0	-6.7	-180	-4.3	-0.4	-95	*	+0.08	8.20	-7.1
$5 L$	6.03	+1.1	25.8	-25.8	-4.3	4.7	-110	-	+0.90	12.9	-7.75	-21.8	- 3.6	- 4.0	- 93	-	+0.85	2.60	-87
41	5.40	+5.0	262	-26.2	-4.8	-24.2	-127	-	+4.07	13.1	-4.8	-22.2	-4.1	-20.6	- 107	-	+3.89	9.75	-5.95
3 L	3.19	+9.0	259	-25.9	-8.1	-73.0	-210	.	+7.32	12.95	-1.4	-21.9	-6.9	-61.7	-178	"	+ 7.00	2.65	-2.65
21	1.72	+13.0	256	-25.6	-14.9	-193.3	-381	.	+10.60	12.8	+2.05	-21.6	- 12.5	-163.1	-322	-	+10.10	252	+0.6
12	36.0	+16.0	255	-25.5	-0.7	-11.0	- 18	.	+13.03	12.75	+4.53	-21.5	- 0.6	9.6	- 15	-	+12.43	2.50	+3.05
IR				0				.	+13.03	- 12.75	+4.53	0				-	+12.43	- 9.50	+5.55
2R				0				,	+10.60	-12.8	+2.05	0				-	+10.10	-9.52	+3.2
$\frac{3 R}{4 R}$				0				,	+ 7.32	-12.95	-1.4	0				-	+ 7.00	-9.65	-0.05
4R				0				-	+4.07	-13.1	-4.8	0				.	+389	-9.75	-3.25
SR				0				-	+0.90	-12.9	-7.75	0				-	+0.85	-960	-6.15
6R				0				-	+0.08	- 11.0	-6.7	0				-	+0.08	-8.20	-5.5
7R				0				-	-0.24	-9.0	-5.0	0				-	-0.23	-6.70	-4.3
$\frac{8 R}{9 R}$				0				-	-0.57	-7.0	-3.3	0				-	-0.54	- 5.20	-3.1
				0				-	-0.73	- 5.0	-1.5	0				-	-0.70	- 3.72	-1.8
IIR				0				*	-0.90	-3.0	+0.35	0				-	-0.85	-2.23	-0.5
Σ				-112.3-241.9-1685				-	-0.98	-1.0	+2.3	0				-	-0.33	-0.74	+0.95
												-69.0-231.5-125							

[^2]| 4 | I | 4 | x | Influence Lood lot Point 9 I L L | | | | | | | | Influence Lood lat Point bil L | | | | | | | |
| :---: |
| | | | | M | $\frac{M}{T}$ | $\frac{M_{1}}{1}$ | $\frac{M_{x}}{\text { I }}$ | M_{0} | Hoy | $y_{0} x$ | | M | $\frac{M}{I}$ | ${ }^{M 4}$ | $\frac{M_{x}}{T}$ | Mo | $H_{0} 4$ | $v_{0} x$ | Total |
| IIL | 0.21 | -1.2 | 2.0 | 0 | 0 | | | 1.58 | -0.82 | 0.52 | +1.3 | 0 | | | | 0.96 | -0.65 | 0.35 | +0.66 |
| 102 | a 30 | -1.1 | 6.0 | 0 | 0 | | | . | -0.75 | 1.57 | +2.4 | 0 | | | | | -0.60 | 1.06 | +1.42 |
| π | 0.50 | -09 | 190 | -2.0 | 4.0 | $+36$ | -40 | | -0.61 | 262 | +1.6 | 0 | | | | . | -0.49 | 1.76 | +2.23 |
| $8 L$ | 092 | -0.7 | 14.0 | -6.0 | -6.5 | + 4.6 | -91 | . | -0.47 | 3.67 | -1.2 | -2.0 | 2.2 | $+1.5$ | -30 | | -0.38 | 2.46 | +1.04 |
| 7 | 1.90 | -0.3 | 18.0 | -1.0 | -5.2 | +1.6 | -95 | . | -0.20 | 4.71 | -3.9 | -60 | 3.2 | +0.9 | -57 | . | -0,16 | 3.17 | ${ }^{+2.03}$ |
| 62 | 4.17 | +a, | 22.0 | -14.0 | -3.4 | -0.3 | 74 | . | +0.07 | 5.76 | 6.6 | -10.0 | 2.4 | -0.2 | -53 | | +0.05 | 3.87 | -5.12 |
| 5 L | 6.03 | +1.1 | 25. | -17.8 | -3.0 | -3.3 | 76 | - | +0.75 | 6.76 | -8.7 | -13.8 | -2.3 | -2.5 | - 59 | , | +0.60 | 4.54 | -7.7 |
| 42 | 5.10 | 75.0 | 26. | -182 | -3.4 | -16.9 | -88 | . | +3.40 | 6.86 | -6.35 | -14.2 | -2.6 | -13.0 | -69 | | +2.72 | 4.61 | -5.9 |
| 32 | 3.19 | +9.0 | 259 | -77.9 | -5.6 | -50.5 | -145 | , | +6.11 | 6.80 | -3.4 | -13.9 | -4.4 | -39.2 | -113 | . | +4.89 | 4.56 | -3.5 |
| $2 L$ | 1.72 | +13.0 | 256 | -176 | -10.2 | -133.0 | 262 | . | +8.82 | 6.71 | -05 | -13.6 | -7.9 | -102.9 | 203 | . | +7.06 | 4.50 | -1.1 |
| 12 | 36.0 | +160 | 255 | -17.5 | -0.5 | 7.8 | 12 | . | +10.87 | 6.69 | +1.65 | -13.5 | 0.4 | 6.0 | | . | +8.70 | 4.49 | +0.65 |
| IR | | | | 0 | | | | . | +1.87 | -6.69 | +5.75 | 0 | | | | | +8.70 | 4.4 | +5.17 |
| 2R | | | | 0 | | | | . | +8.82 | -6.71 | $+3.7$ | 0 | | | | . | +7.06 | -4.50 | +352 |
| 3R | | | | 0 | | | | . | +6.11 | -6.80 | +0.9 | 0 | | | | | +4.89 | -4.56 | +1.29 |
| $4{ }^{4}$ | | | | 0 | | | | . | +340 | -6.86 | -1.9 | 0 | | | | | +2.72 | 4.61 | -0.93 |
| 5R | | | | 0 | | | | . | +0.75 | -6.76 | -4.43 | 0 | | | | - | +0.60 | -4.54 | -2.98 |
| GR | | | | 0 | | | | . | +0.07 | -5.76 | -4.10 | 0 | | | | . | +0.05 | -387 | -2.86 |
| 7R | | | | 0 | | | | . | -0.20 | -4.71 | -3.33 | 0 | | | | | -0.16 | -3.17 | -2.37 |
| SR | | | | 0 | | | | . | -0.47 | -3.67 | -2.56 | 0 | | | | - | -0.38 | -2.46 | ${ }^{-1.88}$ |
| 9 R | | | | 0 | | | | . | -0.61 | -2.62 | -1.65 | 0 | | | | | -0.49 | -1.76 | -1.29 |
| 108 | | | | 0 | | | | . | -0.75 | -1.57 | -0.74 | 0 | | | | . | -a60 | -1.06 | |
| HR | | | | 0 | | | | - | -0.82 | -0.52 | +0.24 | 0 | | | | - | -0.65 | -0.35 | 0.04 |
| Σ | | | | | -41.8 | -2020 | -883 | | | | | | -25.4 | -161.4 | -593 | | | | |

				Irriluence Lood / af Point $7 \frac{1}{2} L$								Influence Load I at Poini 6ž̀ L							
-	1	4	X	M	$\frac{M}{I}$	$\frac{M}{I}$	$\frac{M x}{I}$	M_{0}	$H \circ Y$	Yox	$\begin{array}{\|} \text { Total } \\ \text { Mom } \end{array}$	M	$\frac{M}{I}$	$\frac{M y}{I}$	$\frac{M x}{I}$	Mo_{0}	H_{6}	$Y \times$	$\begin{aligned} & \text { Total } \\ & \text { Mom. } \end{aligned}$
IIL	0.21	-1.2	20	0				0.56	-0.47	0.22	$+0.31$	0				0.30	-0.28	0.12	+0.14
101	0.30	-1.1	6.0	0				\cdots	-0.43	0.66	+0.79	0				\cdots	-0.25	0.36	+0.41
91	0.50	-0.9	10.0	0				*	-0.35	1.11	+1.32	0				\cdots	-0.21	0.60	+0.69
81	0.92	-0.7	14.0	0				\cdots	-0.27	1.55	+1.84	0				\cdots	-0.16	0.84	+0.98
72	1.90	-0.3	18.0	-2.0	- 1.0	$+0.3$	- 19	\cdots	-0.12	2.00	+0.44	0				\%	-0.07	1.07	$+1.30$
61	4.17	+0.1	22.0	-6.0	-1.4	-0.1	-32	4	$+0.04$	244	-2.96	-2.0	-0.5	0	- 11	\cdots	+0.02	$1: 32$	-0.36
51	6.03	+1.1	25.8	- 9.8	- 1.6	-1.8	-42	*	$+0.43$	2.86	-595	- 5.8	-1.0	- 1.1	-25	\cdots	+0.25	1.54	-3.71
41	5.40	$+5.0$	26.2	-10.2	-1.9	- 9.4	- 50	\cdots	$+1.95$	2.91	-478	- 6.2	-1.2	- 5.7	- 30	\cdots	+1.15	1.57	-3.18
32	3.19	+9.0	259	- 9.9	-3.1	-27.9	-80	\cdots	$+3.50$	2.88	-2.96	- 5.9	-1.9	-16.6	- 48	\bullet	$+2.07$	1.55	-1.98
21	1.72	+13.0	25.6	-9.6	-5.6	-72.5	-144	\cdots	$+5.05$	2.84	-1.15	-5.6	-3.2	-42.3	- 83	N	$+2.99$	1.53	-0.78
12	36.0	$1+16.0$	25.5	-9.5	-0.3	-42	-7	$*$	46.22	2.83	+0.10	- 5.5	-0.2	-2.5	- 4	"	$+3.68$	1.52	0
18				0				\bullet	$+6.22$	-2.83	$+3.95$	0				\cdots	$+3.68$	- 1.52	$+2.46$
21				0				\cdots	$+5.05$	-2.84	$+2.77$	0				\cdots	$+2.99$	-1.53	$+1.76$
36				0				\cdots	$+3.50$	-2.88	+1.18	0				\cdots	$+2.07$	-1.55	$+0.82$
42				0				\square	$+1.95$	-2.91	-0.40	0				-	$+1.15$	-1.57	-0.12
5%		*		0				\cdots	$1+0.43$	-2.86	-1.87	0				0	$+0.25$	-1.54	-1.00
$E R$				0				θ	+0.04	-2.44	-1.84	0				θ	+0.02	-1.32	-8.00
73				0				\cdots	-0.12	-2.00	-1.56	0				\cdots	-0.07	-1.07	-0.84
C2				0				4	-0.27	-1.55	-1.26	0				\cdots	-0.16	0.84	- 0.70
Qin				0				*	-0.35	-1.11	-0.90	0				*	-0.21	- a60	-0.52
103				0				-	-0.43	-0.66	-0.53	0				\cdots	-0.25	-0.36	-0.31
112				0				\cdots	-0.47	-0.22	-0.13	0				\cdots	-0.28	-0.12	-0.10
Σ					-14.9	-115.6	374						-8.0	-682	201				

Catculation of Reactions $M_{0} H_{0}$ and V_{0}
Note that summations for "Frame Constants" are for the half arch. For full arch, multiply by 2.

$M_{0}=\frac{-\sum \frac{M}{I}}{\sum \frac{1}{I}}$	$H_{0}=\frac{-\Sigma \frac{M_{y}}{I}}{\sum \frac{y^{2}}{I}} V_{0}$	$\frac{\sum \frac{M_{l} x}{I}-\sum \frac{M_{l} x}{I}}{\sum \frac{x^{2}}{I}}$	$\sum \frac{M_{P} x}{P}=0$
	Mo	H_{0}	v
Lood ot Crown	$\frac{112.3}{2 \times 1323}=4.25$	$\frac{2419}{2 \times 148.6}=0.82$	$\frac{1685}{2 \times 1683}=0.50$
Lood of $10 \frac{1}{2} \mathrm{~L}$	$\frac{69.0}{2 \times 13.23}=2.61$	$\frac{231.5}{2 \times 14.6}=0.78$	$\frac{1255}{2 \times 1683}=0.37$
Lood at $9 \frac{1}{2} \mathrm{~L}$	$\frac{41.8}{2 \times 13.23}=1.58$	$\frac{202}{2 \times 148.6}=0.68$	$\frac{883}{2 \times 1683}=0.26$
Lood at $8 \frac{1}{2} \mathrm{~L}$	$\frac{25.4}{2 \times 1323}=0.96$	$\frac{1614}{2 \times 148.6}=0.54$	$\frac{593}{2 \times 1683}=0.18$
Lood at $7 \frac{1}{2} L$	$\frac{14.9}{2 \times 13.23}=0.56$	$\frac{115.6}{2 \times 148.6}=0.39$	$\frac{374}{2 \times 1683}=0.11$
Lood ot $6 \frac{1}{2} L$	$\frac{8.0}{2 \times 13.23}=0.30$	$\frac{68.2}{2 \times 148.6}=0.23$	$\frac{201}{2 \times 1683}=0.06$

Fic. 35.

Fig. 36.

DEAD LOAD MOMENTS

Moment factors (MF) are scaled from the infuence line diagram. The product of loed

Live Load Normal Thrusts

The tabulated normal thrusts for points (1) to (4) are the reactions V with the concentrations in the same position as for colculating maximum moments. N-factors (N.F.) for these points are abstained from influence line for V. at point (5) the normal thrust N is the resultant at 45° of V and H with 3.5 kip load at point $9 \frac{3}{4} \mathrm{~L}$ and 0.9 kip load at $9 \frac{3}{4} R$. Calculation os follows:

For 3.5 load. $\begin{aligned} V \text { factor }=0.71 \times 0.71=0.50 \\ H \text { factor }=0.71 \times 0.71=\frac{0.50}{1.00} \\ N \text { factor }=\end{aligned}$
For 0.9 load. V factor $=0.71 \times 0.29=0.20$
H factor $=0.71 \times 0.71=\frac{0.50}{0.70}$
N factor $=$

Temperature Stresses
c. coefficient of thermal expansion $=0.0000065$.
$t=35^{\circ}$ rise or 45° fall.
$\ell=51$ feet.
$E=144 \times 2000000=288000000$ lbs. per SQ. ft.

$$
\begin{gathered}
H= \pm \frac{E c t l}{5 \sum \frac{y^{2}}{I}}=\frac{288000000 \times 0.0000065 \times 35 \times 51}{4 \times 2 \times 148.6}=+2.8 \mathrm{~K} \\
\text { or } H=-3.6 \mathrm{~K}
\end{gathered}
$$

Point	y	$H y$	
11	-1.2	-3.4	+4.3
10	-1.1	-3.1	+3.9
9	-0.9	-2.5	+3.2
8	-0.7	-2.0	+2.5
7	-0.3	-0.8	+1.1
6	+0.1	+0.3	-0.4
5	+1.1	+3.1	-3.9
4	+5.0	+14.0	-18.0
3	+9.0	+25.2	-32.3
2	+13.0	+36.5	-46.7
1	+16.0	+44.9	-57.5

Temperature rise causes positive thrusts acting os shown in Fig. 34.

Temperature fall causes negative thrusts acting in the opposite direction.
CONCENTRATED LIVE LOAD MOMENTS M AND NORMAL THRUST N
Moment Factors (MF) and Thrust Factors (NF) are read directly from Influence Line Diagrams. The product of load and

20no	mowy 1				mont 2				mant 2				mont 3				nown 4			
Kips	m	m	W	${ }^{*}$	mF	\cdots	NF	\cdots	m	\cdots	NF	\cdots	me	"	NF	\cdots	MF	${ }^{\circ}$	wr	\cdots
$\begin{aligned} & 3.5 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 58 \\ & 2.0 \end{aligned}$	$\begin{array}{r} 20.3 \\ 1.8 \end{array}$	$\begin{aligned} & 0.28 \\ & 0.05 \end{aligned}$	$\begin{array}{r} 1.0 \\ 0 \end{array}$	$\begin{aligned} & 3.7 \\ & 1.2 \end{aligned}$	$\begin{array}{r\|} \hline 129 \\ 1.1 \end{array}$	$\begin{aligned} & 026 \\ & 0.04 \end{aligned}$	$\begin{array}{r} 09 \\ 0 \end{array}$	$\begin{array}{r} -1.2 \\ 0 \end{array}$	$\left.\begin{gathered} -42 \\ 0 \end{gathered} \right\rvert\,$	$\begin{gathered} 0.86 \\ 0 \end{gathered}$	$\begin{array}{r} 30 \\ 0 \end{array}$	$\begin{aligned} & -36 \\ & -0.4 \end{aligned}$	$\begin{array}{\|r\|} \hline-126 \\ -0.4 \end{array}$	$\begin{aligned} & 0.80 \\ & 040 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 0.4 \end{aligned}$	$\begin{array}{\|l\|} \hline-6.2 \\ -3.4 \end{array}$	$\left\|\begin{array}{r\|} -21.7 \\ -3.1 \end{array}\right\|$	$\begin{array}{\|l\|} \hline .66 \\ .93 \end{array}$	$\begin{aligned} & 23 \\ & 08 \end{aligned}$
Toral		+22.1		10		+14.0		09		-4.2		3.0		-130		32		-24.8		3.1
20nd	mont 5				mant 6				monnt 7				moint 8				mont 8			
Kips	\cdots	\cdots	Nr	N	mr	m	NF	N	m	*	Nir	N	mF	\cdots	NF	\cdots	mF	\cdots	NF	\cdots
$\begin{aligned} & 3.5 \\ & 0.9 \end{aligned}$	$\begin{array}{\|l\|} -8.8 \\ -4.9 \end{array}$	$\begin{array}{\|r\|} \hline-30.8 \\ -4.4 \end{array}$	$\begin{aligned} & 1.00 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 0.6 \end{aligned}$	$\begin{array}{\|l\|} \hline-7.1 \\ -3.8 \end{array}$	$\left.\begin{array}{\|c\|} -24.8 \\ -3.4 \end{array} \right\rvert\,$	$\begin{aligned} & .77 \\ & .66 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 0.6 \end{aligned}$	$\left\|\begin{array}{\|l\|} -50 \\ -2.6 \end{array}\right\|$	$\left.\begin{array}{\|l\|} -175 \\ -2.3 \end{array} \right\rvert\,$	$.80$	$\begin{aligned} & 2.8 \\ & 05 \end{aligned}$	$\begin{array}{r} -33 \\ -1.6 \end{array}$	$\begin{array}{\|c\|} \hline-11.5 \\ -14 \end{array}$	$.82$	$\begin{aligned} & 29 \\ & 0.4 \end{aligned}$	$\begin{gathered} +24 \\ 0 \end{gathered}$	$+84$	$\begin{aligned} & .46 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 0 \end{aligned}$
rotal		-352		4.1		-28.2		3.3		-19.8		33		-129		33		+8.4.		1.6
Lono	now				mont 9				moint 10				point 10				nown //			
Kips	ur	M	NF	N	\cdots	m	NF	N	or	m	NF	N	mF	m	NF	N	${ }^{\text {MF }}$	\cdots	NF	N
$\begin{aligned} & 3.5 \\ & 0.9 \end{aligned}$	$\begin{array}{\|l\|} \hline-1.8 \\ -0.7 \end{array}$	$\left\|\begin{array}{\|c\|} -6.3 \\ -0.6 \end{array}\right\|$	$\begin{aligned} & .78 \\ & .31 \end{aligned}$	$\begin{aligned} & 27 \\ & 0.3 \end{aligned}$	+2.8	+9.8	. 62	$\begin{aligned} & 2.2 \\ & 0.1 \end{aligned}$	$\begin{array}{r} -0.7 \\ -0.2 \end{array}$	-25	$\begin{array}{\|l} .68 \\ .16 \end{array}$	$\begin{array}{l\|} 24 \\ 0.1 \end{array}$		+10.5	74	26	+3.2	+ 11.2	$\begin{array}{\|l\|} \hline .81 \\ .39 \\ \hline \end{array}$	$\begin{aligned} & 2.8 \\ & 0.3 \end{aligned}$
rotal		-6.9		3.0		+10.0		23		-2.7		2.5		+10.9		2.8		+115		3.1

GDMIVARY OF MAXIMUM MOMENTS (KIP FT) AND NORMAL THRUSTS (KIPS)																
		1	HOTNT	2	Foint	3	MOINT		POINT	5	POINT	\%	POINT		POINT	
Lombine	m	N	M	N	M	N	m	N	m	N	m	N	m	N	M	N
beas camisw ac lept	$\begin{aligned} & +55.4 \\ & -20.0 \end{aligned}$	$\begin{array}{r} 22.0 \\ -0.1 \end{array}$	$\begin{array}{\|} +23.6 \\ -8.2 \\ \hline \end{array}$	$\begin{array}{r} 20.3 \\ -0.1 \\ \hline \end{array}$	-21.1 +1.0	$\begin{array}{r} 18.5 \\ -0.1 \\ \hline \end{array}$	$\begin{aligned} & -64.4 \\ & +4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 16.4 \\ -0.1 \\ \hline \end{array}$	$\begin{array}{r} -100.3 \\ +\quad 4.1 \\ \hline \end{array}$	$\begin{array}{r} 16.7 \\ 0.4 \end{array}$	$\begin{array}{r} -70.2 \\ +\quad 3.4 \\ \hline \end{array}$	$\begin{array}{r} 10.3 \\ 0.7 \\ \hline \end{array}$	$\begin{array}{r} -40.0 \\ +\quad 2.5 \\ \hline \end{array}$	$\begin{array}{r} 10.3 \\ 0.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-18.3 \\ +\quad 1.7 \\ \hline \end{array}$	$\begin{array}{r} 10.3 \\ 0.7 \end{array}$
exatu P mient	$+8.0$	$+0.1$	$+6.0$	+ 0.1	$+3.4$	$+0.1$	$+0.7$	$+0.1$	-1.7	0.5	- 2.0	0.7	-1.7	0.7	-1.5	0.7
	+43.4 +22.1	22.0 1.0	$\begin{aligned} & +21.4 \\ & +14.0 \\ & -4.2 \end{aligned}$	$\begin{array}{r} 20.3 \\ 0.9 \\ 3.0 \end{array}$	-16.7 -13.0	18.5 3.2	- -29.2	16.4 3.1	-97.9	16.6 4.1	-688 -28.2	11.7 3.3	$\left\lvert\, \begin{aligned} & -39.2 \\ & -19.8\end{aligned}\right.$	11.7 33	-18.1 +8.4 -12.9	11.7 1.6 33
Trmperofure Teimpatarume	$\begin{aligned} & +44.9 \\ & -57.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +36.5 \\ & -46.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} +25.2 \\ -32.3 \\ \hline \end{array}$	$\begin{array}{r} 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & +14.0 \\ & -18.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r}+3.1 \\ -3.9 \\ \hline\end{array}$	$\begin{array}{r} 2.0 \\ -2.6 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & -0.4 \end{aligned}$	$\begin{array}{r}2.8 \\ -3.6 \\ \hline\end{array}$		$\begin{array}{r}2.8 \\ -3.6 \\ \hline\end{array}$	$\begin{aligned} & -2.0 \\ & +2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.8 \\ -3.6 \\ \hline \end{array}$
max total +	$\begin{aligned} & +110.4 \\ & -14.1 \end{aligned}$	$\begin{array}{r} 23.0 \\ 22.0 \\ \hline \end{array}$	$\begin{array}{r} +71.9 \\ -29.5 \end{array}$	$\begin{aligned} & 21.2 \\ & 23.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +8.5 \\ -62.0 \\ \hline \end{array}$	$\begin{aligned} & 18.5 \\ & 21.7 \\ & \hline \end{aligned}$	-102.0	19.5	-137.0	18.1	-97.4	11.4	-59.8	17.8	-33.0	17.8

Colculation for Reinforcement for $n=15$. Note that the thicknesses t of sections finally used are less than originally assumed for onolysis. The error involved will be neqliqible. The

Point	Moments		$\begin{gathered} N \\ \text { Lbs. } \end{gathered}$	$e=\frac{M}{N}$	$\begin{array}{c\|} t \\ \text { Inches } \end{array}$	$\begin{gathered} d= \\ t-2 \end{gathered}$	$\begin{array}{r} e^{\prime}= \\ e+\frac{t}{e}-2 \end{array}$	$\frac{e^{\prime}}{d}$	$\begin{aligned} & K^{\prime} \\ & \frac{N e^{\prime}}{b b^{2}} \end{aligned}$	f_{c}	f_{s}	Regd	$\begin{array}{\|l\|} \hline \text { Reg'd } A_{s} \\ \text { Sofns } \\ \text { on midin } \end{array}$	A_{s}^{\prime}	
	Ft. lbs.	Inch Lbs.													
1	+110400	+1325000	23000	57.5	60	58	85.5	1.47	49	430	18000	0.0012	0.84		1
1	- 14100	- 169000	22000	7.7	60	58	35.7	0.62	20						1
2	+ 71900	+862000	21200	40.6	32	30	54.6	1.82	107	680	18000	0.0034	1.22		2
2	-29500	-354000	23300	15.2	32	30	29.2	097	63	500	18000	0.0003	0.11		2
3	+ 8500	$+102000$	18500	5.5	37	35	220	0.63	28						3
3	-62000	-744000	21700	34.2	37	35	50.7	1.45	76	550	18000	0.0018	076		3
4	-102000	1225000	19500	62.9	42	40	81.9	2.04	83	580	18000	0.0030	1.44		4
5	-137000	-1644000	18100	90.7	45	43	111.2	258	91	610	18000	0.0037	1.91		5
6	- 97400	-1170000	11400	102.6	50	48	125.6	2.62	52	450	18000	00020	1.15		6
7	- 59800	-718000	17800	40.3	31.5	29.5	54.1	1.84	93	630	18000	0.0030	1.06		7
8	- 33000	-396000	17800	22.2	25	23	32.7	1.42	92	620	18000	0.0022	0.61		8
9	- 11800	-142000	17500	8.1	20	18	16.1	0.69	72	530	18000				9
9	$+10800$	+129600	10400	12.5	20	18	20.5	1.14	55	450	18000	0.0007	0.15		9
10	+21600	+259000	10900	23.8	17	15	30.3	2.02	122	750	18000	0.0043	0.78		10
11	$+27900$	+328000	11200	292	15	13	34.7	2.67	192	800	11000		2.26	0.42	II

Fig. 38.
Several comparisons like that shown above have been made for single- and double-span rigid-frame bridges from which certain conclusions may be drawn as explained in Chapter XI.

CHAPTER VII

CALCULATIONS FOR UNSYMMETRICAL SINGLE-SPAN CONCRETE FRAME BRIDGE; FREE-END CONDITIONS

The calculation for earth pressure acting on the ends of the frame, it will be noticed, is made for a single load 2.5 kips (2500 lb .). This structure was designed to span a stream in which the water level is constant and can be relied upon to counteract or partly counteract the earth pressure below a certain elevation. The single earth pressure load indicated in Fig. 39 was therefore assumed as an approximation of the actual conditions and water pressure was neglected in the calculation.

The footings of this structure were in rock and a detail like that shown in Fig. $33 a$ was designed.

In the Table of Frame Constants the steel areas $A_{\text {. }}$ at the various points are not entered. This is for the reason that the approximate effect of the reinforcing steel upon the moments of inertia of the concrete sections had been determined in another like structure.

Influence load moments are calculated in Table 2 for the influence load at alternate points ($17,15,13$, etc.). The uncalculated peaks of the influence lines in Fig. 40, at 16, 14, 12, etc., may be accurately located by observing that all peaks are located on a smooth curve.

In Fig. 42 are plotted required steel areas, and actual steel areas determined from bar areas and spacings. From this plot, the cut-off points of bars may be found and the steel patterns of extrados rods and intrados rods may be arranged.

76 UNSYMMETRICAL CONCRETE FRAME BRIDGE

Fig． 39.

PROPERTIES OF SECTIONS I FT．WIDE IN FOOT UNITS

Point	Depth t	I_{c}	A_{s}	$D=\frac{t}{2}-0.16$	$I_{s}=n A_{s} D^{2}$	$I=I_{c}+I_{s}$	y	$\frac{y^{2}}{I}$	x
					Per Cent				
1	204	0.71		䂞＋	11	－ 79	$\bigcirc 3$	\bigcirc	
2	274	1．71		$8 \sim$	${ }^{1}$	190	4.8	12	
3	344	3.49		㥻	16	405	92	21	
4	412	5.82		－	14	${ }^{6} 64$	137	28	
5	450	7.60		告	13	8.58	18.2	39	
6	384	4.72		它	12	529	18.6	65	
7	313	2.56		寿	10	2.82	18.8	125	
8	2.54	1． 37		\％	11	1.52	18.8	232	
9	2.08	0.75		－	16	0.87	18.6	397	
10	1.76 1.57 r	0.45 0.32			25 30	0.56 0.42 0.4	18.4 18.4 17	604 780	
11	1.57 1.50	0.38 0 0.28 0.38			30 31 31	0.42 0.47 0.37	18.1 17.6 1	780 837	
13	1.57 1.57	$\bigcirc 32$		¢	30	$\bigcirc{ }^{\circ} 42$	17.1	697	
14	1．76	0.45			25	0.56	16.4	48 r	
15	208	0.75		－	16	0.87	15.7	284	
16	2.54	1.37		$\stackrel{\text { a }}{\text { a }}$	11	1.52	14.8	144	
17	313	2.56		盛．	10	2.82	13.8	68	
18	3.84	4.72			12	5.29	12.7	31	
19	4.50	7.60		${ }^{4}$	13	8.58	$\begin{array}{r}11.2 \\ 6.8 \\ \hline 1\end{array}$	15	
20	3.86	4.80		号先	16	4.48	6.8	10	
21	2.62	1.50		2	${ }^{11}$	${ }^{1.66}$	2.3	3	
								$\Sigma=4870$	

[^3]| $\begin{aligned} & \text { 莙 } \\ & \text { R } \end{aligned}$ | | | ส్తి |
| :---: | :---: | :---: | :---: |
| | ⿹ㅏ율 | Marmmanmo oo onomanmnna | |
| | 2 | | |
| | N | | |
| | 宥 | －○○○○ー | |
| | 馬 | | た్లో |
| | \％ | | |
| | 弐 | | |
| | 葡 | | |
| Influence Load at II | 哥安 | | 8 |
| | \％ | | |
| | s | | |
| | 旡 | ०००O०＋Now | |
| | |
 | |
| | |
 | |
| | | | ผ |

Fro. 40

DEAD LOAD MOMENTS

Moment factors (MF) are scaled from the influence line diagram. The product of load and moment factor will give the actual dead load moment M.

Dead Load Thrusts:			
V_{L} (loads) 28.49		V_{R} (loads) 25.33	
V.C. of H	1.24	V.C. of H	1.24
Point 1:	29.73	Point 21:	24.09
	0.84		1.79
Point 2:	28.89	Point 20:	22.30
	1.86		2.65
Point 3:	27.03		19.65
	2.34		
Point 4 :	24.69		
	2.79		
	21.90		

Points 5 and 19: $N=$ components @ 45° of V and H.
Point 5: $\quad N=21.9 \times 0.71+11.19 \times 0.71=23.5$.
Point 19: $\quad N=19.65 \times 0.71+11.19 \times 0.71=21.9$.
Points 6 to 18: $N=$ approximately H, as calculated from individual dead loads and H factors, obtained from influence line for H.
$3.65 \times 0.13+2.98 \times 0.26+2.43 \times 0.38$
$+2.0 j \times 0.48+1.73 \times 0.57+1.55$
$\times 0.63+1.49 \times 0.64+1.55 \times 0.60$
$+1.73 \times 0.55+2.03 \times 0.47+2.43$
$\times 0.36+2.98 \times 0.25+3.65 \times 0.13$
$=11.19$.

LIVE LOAD 20-TON TRUCKS

Axle loads 32,000 and 8000 lb . on $9-\mathrm{ft}$. lane. Reduction (up to 25 per cent) I per cent per foot width of roadway in excess of 18 ft . Roadway on this bridge 30 ft . Reduction 12 per cent. Impact allowance 25 per cent. Concentrations, on $14-\mathrm{ft}$. wheel base, per foot width of bridge

$$
\begin{aligned}
\frac{32000}{9} \times 0.88 \times 1.25 & =3.9 \mathrm{kips} ; \\
\frac{8000}{9} \times 0.88 \times 1.25 & =1.0 \mathrm{kip} .
\end{aligned}
$$

Normal thrusts N for points 1, 2, 3, 4, 20, 21 are vertical reactions V, calculated from influence lines for V, with loads in same position as when calculating corresponding moments, corrected for the vertical component of H.

Normal thrusts for points 5 and 19 are resultants at 45° of V and H with loads in same position as when calculating corresponding moments.

Points 3 and 5. Rear axle at point $I \frac{1}{2}$; front axle at $14 \frac{1}{2}$.

$$
\begin{gathered}
\text { Point } 3 \\
V_{L}=0.53 \times 3.9+0.31=2.38 \\
H=0.64 \times 3.9+0.50=3.00 \\
N=2.38+\frac{1}{8} \times 3.00=2.71 \\
\text { Point } 5 \\
N=0.71(2.71+3.00)=4.05
\end{gathered}
$$

Points 19 and 21. Rear axle at point 12 $\frac{1}{2}$; front axle at $9 \frac{1}{2}$. Factors same as for points 3 and 5 .

Point 21. $N=2.38-\frac{1}{8} \times 3=2.05$.
Point 19. $\quad N=0.71(2.05+3.0)=3.58$.
CONCENTRATED LIVE LOAD MOMENTS M AND NORMAL THRUSTS N
Moment Factors (MF) and Thrust Factors (NF) are read directly from Influence Line Diagrams. The product of load and moment factor gives actual moments M and product of load and thrust factor gives actual thrusts N. Note that the position of the load system is not necessarily the same for maximum positive M and N as for maximum negative M and N.

Load (Kips)	Point 3				Point 5				Point 7				Point 9				Point 9			
	MF	M	NF	N	MF	M	$N F$	N	MF	M	$N F$	N	MF	M	NF	N	MF	M	NF	N
3.9 1.0	-6.0 -4.7	-23.4 -4.7			-11.7 -9.3	-45.6 -9.3			-7.8 -5.8	-30.4 -5.8	-0.63	2.5 0.4	-3.9 -2.3	-15.2 -2.3	0.58 0.29	2.3	+3.8	+14.8	0.48	1.9
Total.		-28. 1		2.7		-54.9		4.1		-36.2		2.9		-17.5		2.6		+14.8		1.9
Load (Kips)	Point 11				Point 12				Point 43				Point 15				Point 15			
	MF	M	$N F$	N	MF	M	NF	N	MF	M	$N F$	N	MF	M	$N F$	N	MF	M	$N F$	N
3.9 1.0	+4.1 +0.9	+16.0 +0.9	0.63 0.37	2.5	+4.4 +0.8	+17.2 +0.8	0.64 0.45	2.5 0.5	+4.8 +1.5	+18.7 +1.5	0.60 0.35	2.4 0.4	+5.5 +1.2	+21.4 +1.2	0.47 0.12	1.8 0.1	-2.5 -1.4	-9.8	0.59 0.27	2.3 0.3
Total.		+16.9		2.9		+18.0		3.0		+20.2		2.8		+22.6		1.9		-11.2		2.6
Load (Kips)	Point 17				Point 19				Point 21											
	MF	\boldsymbol{M}	$N F$	N	MF	\boldsymbol{M}	$N F$	N	MF	M	$N F$	N								
3.9 1.0	-4.8 -3.0	-18.7 -3.0	$\begin{aligned} & 0.63 \\ & 0.37 \end{aligned}$	2.5 0.4	$\begin{aligned} & -7.4 \\ & -5.3 \end{aligned}$	-28.9 -5.3			-1.5 1.3	-5.8 -1.3		\cdots								
Total.		-21.7		2.9		-34.2		3.6		-7.1		2.1								

Point	Moment Arm for E.P.	$\begin{array}{\|l\|} \text { Load, } \\ \text { Kips } \end{array}$	Moment Kip-ft.	y	I	$\frac{M y}{I}$	Hy	Total Moment Kip-ft.	Point
1				0.3	0.79		$+0.3$	$+0.3$	1
. 2				4.8	1.90		+ 4.4	+ 4.4	2
3				9.2	4.05		+8.5	+8.5	3
EP		2.5		13.7	6.64		+12.6	+12.6	4
5	4.1	2.5	10.2	18.2	8.58	- 22	+16.7	+6.5	5
6	4.8	2.5	-12.0	18.6	5.29	- 42	+17.1	+ 5.1	6
7	$5 \cdot 4$	2.5	-13.5	18.8	2.82	- 90	+17.3	+ 3.8	7
8	5.9	2.5	-14.8	18.8	1.52	- 183	+17.3	+2.7	8
9	6.3	2.5	-15.7	18.6	0.87	- 336	+17.1	+ 1.4	9
10	6.7	2.5	-16.8	18.4	0. 56	- 552	+16.9	+0.1	10
11	6.8	2.5	-17.0	18.1	0. 42	- 732	+16.7	-0.3	11
12	6.8	2.5	-17.0	17.6	o. 37	- 810	+16.2	- 0.8	12
13	6.8	2.5	-17.0	17.1	0. 42	-692	+15.7	- 1.3	13
14	6.7	2.5	-16.8	16.4	- 56	- 492	+15.1	- 1.7	14
15	6.3	2.5	- -15.7	157	0.87	- 283	+14.4	-1.3	15
16	$5: 9$	2.5	-14.8	14.8	1.52	- 144	+13.6	-1.2	16
17	5.4	2.5	-13.5	138	2.82	- 66	+12.7	-0.8	17
18	4.8	2.5	-12.0	127	5.29	- 29	+11.7	-0.3	18
19	4.1	2.5	-10.2	11.2	858	- 13	+10.3	+0.1	19
EP		2.5		6.8	4.48		+6.3	$+6.3$	20
21				23	166		+2.1	+2.1	21
Σ						-4486			

Temperature Stresses

$$
H=\frac{E c t l}{s \sum_{\bar{I}}^{y^{2}}} . \quad t=+35^{\circ} \text { or }-45^{\circ} .
$$

For $+35^{\circ}, H=$
$\frac{144 \times 2,000,000 \times 0.0000065 \times 35 \times 63}{4.5 \times 4870}=+0.19 \mathrm{kip}$. For $-45^{\circ}, H=-0.24$ kip. Moment $=H y$ for each point. Positive thrusts cause negative moments, and vice versa. Point 5. $N=0.71\left(0.19+\frac{1}{8} \times 0.19\right)=1.5$ for 35° rise.

$$
-0.71\left(0.24+\frac{1}{9} \times 0.24\right)=-1.9 \text { for } 45^{\circ} \text { fall. }
$$

Point 19. $N=0.71\left(0.19-\frac{1}{9} \times 0.19\right)=1.2$ for 35° rise.

$$
-0.7 \mathrm{I}\left(0.24-\frac{1}{8} \times 0.24\right)=-\mathrm{I} .5 \text { for } 45^{\circ} \text { fall. }
$$

Diagram Showing Required and Actual Areas of Steel Reinforcement

Fig. 42.

FREE-END CONDITIONS

SUMMARY OF MAXIMUM MOMENTS (KIP-FT.) AND NORMAL THRUSTS (KIPS)

Loading	Point 3		Point 5		Point 7		Point 9	
	M	N	M	N	M	N	M	N
Dead.	-101.1	27.0	-200.3	23.5	-86.6	11.2	-18.5	11.2
Earth Pressure.	+ 8.5	0.1	+ 65	1.1	+ 3.8	1.6	+1.4	1.6
Subtotal.	- 92.6	26.9	-193.8	24.6	-82.8	12.8	-17.1	12.8
Live +............							+14.8	1.9
Live -	- 28.1	2.7	- 54.9	4.1	- 36.2	2.9	-17.5	2.6
Temperature.	+ 2.2	-0.3	+ 4.4	-1.9	+ 4.5	-0.2	+ 4.5	-0.2
Temperature.	-	+02	- 3.5	+ 1.5	- 3.6	+ 0.2	- 3.5	+0.2
Maximum total. ... Maximum total.	-122.5	29.8	-251.2	30.2	-122.6	15.9	+2.2 -38.1	14.5 15.6
Loading	Point in		Point 12		Point 13		Point 15	
	M	N	M	N	M	N	M	N
Dead.	+13.2	11.2	+ 24.4	11.2	+ 25.1	11.2	+13.1	11.2
Earth pressure	- 0.3	1.6	- 0.8	1.6	- 1.3	1.6	-1.3	1.6
Subtotal.	+ 12.9	12.8	+ 23.6	12.8	+ 23.8	12.8	+11.8	12.8
Live +	+ 16.9	2.9	+ 18.0	3.0	+ 20.2	2.8	+22.6	1.9
Live -							-11.2	2.6
Temperature.	+ 4.4	-0.2	+ 4.2	-0.2	+ 4.1	-0.2	+ 3.8	- 0.2
Temperature.......	- 3.4	+ 0.2	- 3.3	+ 0.2	- 3.2	$+0.2$	-30	+ 0.2
Maximum total. .	+ 34.2	+15.5	+ 45.8	15.6	+ 48.1	+15.4	+38.2	14.5
Loading	Point 17		Point 19		Point ${ }^{21}$			
	M	N	M	N	M	N		
Dead Earth Pressure.	[$\begin{array}{r} \\ -\quad 31.2 \\ -\quad 0.8\end{array}$	11.2 1.6	$\begin{array}{r}\text { - } \\ \hline-\quad 0.1 \\ \hline\end{array}$	$\begin{array}{r} 21.9 \\ 1.2 \end{array}$	$\begin{array}{r} \\ \hline\end{array} \begin{array}{r}26.1 \\ +\quad 2.1\end{array}$	24.1 0.1		
Subtotal.	- 32.0	12.8	-125.0		- 24.0	24.1		
Live.	- 21.7	2.9	- 34.2	3.6	- 7.1	2.1		
Temperature	+ 3.3	-0.2	+ 2.7	- 1.5	+ 0.6	- 0.2		
Temperature.......	- 2.6	+ 0.2	- 2.1	+ 1.2	- ${ }^{0} 0.4$	$+0.3$		
Maximum total....	- 56.3	15.9	-161.3	27.9	- 31.5	26.5		

Note: Final depths of sections lto 9 were increased to make $1 \frac{1}{8}$ inch square rods af binch centers effeclive around the knee. The increase over tentative sections will make no appreciable error in calculation of H . Tensile steel reinforcement is required near the soffit (inside face) of the frame, for positive moment a near the back (outside face)for negative moment. CALCULATION OF REINFORCEMENT FOR POINT 12 | CALCULATION OF REINFORCEMENT FOR POINTI3 Assume $k=0.46 \quad K d=7.7 \quad j d=16.8-\frac{7.7}{3}=14.2$ $f_{s}=800 \times 15 \times \frac{9.1}{7.7}=14000 f_{s}^{1} 800 \times 15 \times \frac{5.7}{7.7}=8900$ Moment to be carried $=\mathrm{Ne}=15400 \times 449=692000$ Moment of Resistance $12 \times 7.7 \times 400 \times 14.2=530000$ To be carried byadditional steel $=162000$ $A_{5}^{\prime}=\frac{162000}{8900 \times 14.8}=1.23^{\circ "}$

CHAPTER VIII

CALCULATIONS FOR SYMMETRICAL SINGLE-SPAN STEEL GIRDER FRAME BRIDGE

In the following pages only those portions of the design which are peculiar to the rigid-frame type of construction are given. Design calculations are not given for the floor slab; the girder bases; the footings; the cross-frames which provide lateral support to the girder flanges and also act as floor-beams; the end walls retaining the approach fill and reinforced as vertical slabs spanning between the vertical legs of the frame girders; the connection between the component parts of the structure. This part of the design involves nothing new. When the maximum moments, thrusts and shears have been calculated for various points along the girders, the design of stiffeners, splices and determination of rivet spacing may be carried forward as for ordinary girders subjected to combined bending and direct stress.

In these calculations the effect of the concrete protective encasement of the vertical legs of the girders has been neglected both in calculating the moments of inertia and in proportioning the sections. Also the effect of non-parallelism of the girder flanges, which tends to increase slightly the flange stresses and decrease slightly the shears, has been neglected.

The curved portion of the girder at the knee or bend demands special consideration. In this region there is a strong tendency for web buckling and also tendency of the outstanding portions of both flanges to curl inward on account of the change in direction of flange stress. Closely spaced radial stiffeners faced to bear on the outstanding legs of both flanges are therefore used as shown in the details.

In addition, the curvature of the girder in this region affects the position of the neutral axis, throwing it inward from the center of gravity of the section toward the concave flange-in this case the compression flange. This tends to increase the stress in the compression flange and decrease that in the tension flange as calculated for the neutral axis at the center of gravity of the section. The formulas for the position of the neutral axis of a curved beam in which the curves of the outer and inner flanges or faces are concentric are given in Fuller and Johnston's Applied Mechanics, Volume II, and other standard textbooks on Mechanics. These formulas do not apply in this case, however, as the flange curves are not concentric. The derivation of formulas for such a case would be a complicated process if not impossible and a summation process of calculation remains to be developed. Until this is done, only approximations can be made based on the formulas for concentric curvature of both flanges and making allowance for the factors that tend to increase or decrease the calculated flange stresses. Such a calculation is not given here as the process of approximation will vary with each particular case. As a result of the approximation used in the design of this bridge, one cover plate was added to the section assumed for calculation of reactions as shown in Fig. 46.

The design of only a few girder sections is given in the following calculations. The procedure is the same for points $2,4,6$ and 8 as for points $1,3,5,7$ and 9 . The allowable unit stress in the compression flange at points 4, 5, 6 and 7 is calculated for an unsupported length of 11.5 ft . between cross-frames or floor-beams. The compression flange at points $\mathrm{I}, 2$ and 3 is embedded in the rein-forced-concrete back-wall retaining the approach fill, and higher unit stresses are permissible. The compression flange at point 9 is supported laterally by the floor slab, and higher unit stresses are permissible.

A calculation for stresses at point 3 is given based on.
the assumption that the neutral axis is at the center of gravity of the section.

It will be observed that axis divisions of considerable length (7.67 ft .) are used in this calculation. This was done for the purpose of illustrating the method of design without an undue quantity of figures. In the original calculation for this bridge, the axis was divided into 30 divisions whereas in this calculation 17 divisions are shown. An interesting result of this recalculation was the comparison of results which showed almost precise agreement. In other words, the use of the longer divisions resulted in no appreciable error.

The girder depths shown in Fig. 46 do not agree with those assumed at the beginning of calculation. After the bridge had been designed advantage was taken of a slight increase in headroom available and the depths of the girders were increased throughout. This increase amounted to 2 in . at the crown and 12 in . at point 3. Experience has shown that the calculated reactions will be disturbed a negligible amount and if anything, on the safe side.

Effects of Skew.-In a skewed bridge of this type certain effects of skew exist, though they may usually be neglected in proportioning. These effects are indicated in Fig. 43. The earth pressure E against the back-walls may be considered as being resisted by the reactions G, from the girders or the floor slab or both, and the components W acting along the back-walls. The components W are finally taken off at the footing, being counteracted by resistance of the back-wall against sliding. The overturning effect of the couple We is counteracted by the variation of pressure longitudinally along the footings. Torsional effects in the girders are negligible.

Expansion Joints.-A complete separation of the structure proper from the wing-walls retaining the sides of the approach fill should be made by means of expansion joints near the main structure.

Fic. 43 .

PROPERTIES OF SECTIONS

Point	Make up of Section ${ }^{3}$-inch Web 4 道 $6 \times 6 \times 14$ Cov. Pls. 14×8	Depth $b b$ ㄹ, Inches	Total Area of Sections, Sq. In.	Moment Inertia of Section (In.) ${ }^{4}$	Moment Inertia of Section (Ft.) ${ }^{4}$	$y \mathrm{Ft}$.	$\frac{y^{2}}{I}$ Foot Units
1	Web/E/i cov.	30	63.4	10,600	0.51	5.1	51
2	Web/le/ 2 cov.	50.5	91.1	45,700	2.20	128	74
3	Web/l $/ 2 \mathrm{cov}$.	64.5	98.1	77,600	3.74	20.5	112
4	Web/\&/2 cov.	52	91.1	48,700	2.35	21.7	200
5	Web/Le/2 cov.	39	85.4	26,300	1.27	22.3	390
6	Web/is/r cov.	29.5	63.1	10,200	0.491	22.8	1060
7	Web/is /r cov.	22	594	5,280	0.254	23.2	2120
8	Web/Le/r cov.	18.5	57.6	3.560	0.172	23.4	3190
9	Web/E/r cov.	18.0	57.4	3,340	0.161	23.5	*1710
$\Sigma(f o r ~ h a l f ~ a r c h) ~$ 8,907 Σ (for full arch) 17,814							

* Norn. $\frac{y^{2}}{\frac{1}{2}}$ for Point 9 is for half an axis division on the half-arch, since the division of which 9 is the conter-point is divided between the two half-spans.
LIVE $\angle O A D$ CONCENTRATIONS - $1-20$ TON TRUCK
NOTE:- POINTS TO LEFT AND RIGHT OF CENTER OFOPANIARE DESG BYTHE LETTERS L\&R. 7.5K
YTHE LETTERS L\&R. POLLOWING TABL
MOMENTS DUE TO INFLUENCE LOAD $=1.57$

MOMENTS DUE TO INFLUENCE LOAD $=1.57$

Point	I	y	Influence Load at ${ }_{\boldsymbol{i}} \mathbf{R}$				Influence Load at 8R				Influence Load at 9				Point
			Mom.	$\frac{M y}{I}$	Hy	Total M	Mom.	$\frac{M y}{I}$	Hy	$\begin{gathered} \text { Total } \\ M \end{gathered}$	Mom.	$\frac{M y}{I}$	Hy	$\begin{gathered} \text { Total } \\ M \end{gathered}$	
1 L	0.51	5.1	\bigcirc	\bigcirc	-4.7	-4.7	\bigcirc	\bigcirc							
2 L	2.20	12.8	-	\bigcirc	-11.9	-11.9	\bigcirc	-	-54 -137	-5.4 -13.7	\bigcirc	\bigcirc	-57 -143	-57 -143 -23	${ }_{2} \mathbf{1 L}$
${ }_{4}{ }^{\text {L }}$	3.74	20.5	\bigcirc	\bigcirc	-19.1	-19.1	-	-	-219	-21.9	\bigcirc	-	-23.0	-143	${ }_{3} \mathbf{L}$
${ }_{5}{ }_{5}$	2.35 1	21.7	8	36	-20.2	-16.2	5	46	-23.2	-18.2	6	54	-24.3	-183	${ }_{4}$
6 LL	1.27 0.491	22.3 22.8	$\begin{array}{r}8 \\ 12 \\ \hline 18\end{array}$	140	-20.7	-12.7	10	176	-23.8	-13.8	12	210	-25.0	-13.0	5 L
7 L	0.254	23.2	16	1556 1,460	-21.2	-9.2 -5.6	15 20	$\begin{array}{r}695 \\ 1,825 \\ \hline\end{array}$	-24.4 -24.8	-9.4	18	834	-25.5	-7.5	6L
8 L	0.172	23.4	20	2,720	-21.8	- 1.8	25	1,825 3,400	-24.8	-4.8	24	2,190	-26.0	-2.0	${ }^{7} \mathrm{~L}$
9	0.161	23.5	24	3,504	-21.9	+2.1	30	3,480 4,380	-25.0 -25.1	0.0 +4.9	30 36	4,080 5,256	-26.2 -263	+3.8 +9.7	
8R	0.172	23.4	28	3,812	-21.8	+6.2	35	4,765	-250	+10.0	30	4,080	-26.2	+3.8	8R
7R	0.254	23.2	32	2,924	-21.6	+10.4	28	2,560	-24.8	+3.2	24	2,190	-26.0	-2.0	7 R
6R	${ }^{0} \mathrm{O} .491$	22.8	24	1,113	-21.2	+2.8	21	975	-24.4		18			-7.5	
${ }_{4} \mathbf{4 R}$	1.27	22.3		281	-20.7	-4.7	14	246	-238	-9.8	12	836 211	-25.5 -25.0	-7.5 -130	${ }_{5 R}$
${ }_{4}^{4} \mathbf{R}$	2.35	21.7	-88	74	-20.2	-12.2	7	64	-23.2	-16.2	6	- 55	- 25.0	-130 -18.3	${ }_{4}^{5 R}$
$3 R$ $2 R$	3.74	20.5	-0	-	-19.1	-19.1	-		-21.9	-21.9	-	O	-23	-23.0	${ }_{3}{ }^{\text {R }}$
2R	2.20	12.8 5.1	\bigcirc	\bigcirc	-11.9	-11.9	\bigcirc	-	-137	-13.7	\bigcirc	-	-143	-14 3	2 R
1R	0.51	. 5.1		\bigcirc	-4.7	-4.7	\bigcirc	\bigcirc	-5.4	-5.4	-	\bigcirc	-5.7	-5.7	IR
Σ				16,620				19,132				19,996			
			$H=\frac{16,620}{17,814}=0.93$				$H=\frac{19,132}{17,814}=1.07$				$H=\frac{19,996}{17,814}=1.12$				

influence lines for Thrusts and reactions
Fic. 45.-Structural Steel Rigid Frame. Influence Lines for Vertical Unit Loads.
DEAD LOAD MOMENTS, THRUSTS AND SHEARS

UNIFORM LIVE LOAD MOMENTS, THRUSTS, AND SHEARS
100 Lb. Per SQ. Ft. Floor Area $=10$ Kips Per Panel Per Girder

$\begin{gathered} \text { Load, } \\ \text { Kips } \end{gathered}$	At Point	Point IR						Point 3R (Haunch)						Point ${ }^{\text {R }}$ (Negative)						Point 5R (Positive)								
		Moment		Vert. Thrust		Horiz. Thrust		Moment		Vert. Thrust		Horiz. Thrust		Moment		Vert. Shear		Horiz. Thrust		Moment		Vert. Shear		Horiz. Thrust				
		MF	M	$V F$	V	HF	H	MF	M	$V F$	V	HF	H	MF	M	$V F$	V	HF	H	MF	M	$V F$	V	HF	H			
0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0	iL 2L 3L 4 5L 6L 7L 8L 9 8R 7R 6R 5R 4R 3R 2R IR	Since maximum moments, thrusts and shears for points Nos. I and 3 are obtained from loading the whole span, the values for these points are obtained directly by proportion from corresponding dead load values.												\circ 0 0 0 $\mathbf{2 . 3 0}$		$\begin{aligned} & -0.08 \\ & +0.83 \\ & +0.75 \\ & +o .67 \\ & +o .58 \\ & +0.50 \\ & +0.42 \\ & +0.33 \end{aligned}$	$\begin{aligned} & \circ \\ & \dot{o} \\ & \dot{+} \\ & \\| \\ & 0 \\ & \dot{o} \\ & \dot{x} \\ & o \\ & \dot{+} \end{aligned}$	$\left\lvert\, \begin{array}{l\|} 0.16 \\ 0.32 \\ 0.46 \\ 0.59 \\ 0.68 \\ 0.71 \\ 0.68 \\ 0.59 \end{array}\right.$			$\begin{aligned} & \circ \\ & \dot{\alpha} \\ & \ddot{\\|} \\ & 0 \\ & \underset{\alpha}{\alpha} \\ & \dot{\sigma} \\ & \dot{\alpha} \end{aligned}$		$\begin{aligned} & \stackrel{0}{n} \\ & \ddot{u} \\ & 0 \\ & \underset{\sim}{o} \\ & \underset{0}{0} \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.32 \\ & 0.16 \end{aligned}$		IL 2L 3L 4L 5L 6L 7L 8L 9 8R 7R 6R 5R 4R 3R 2R 1R		
	$\boldsymbol{\Sigma}$													-48.50		+4.00		4.19		+9.9		0.50		0.94		Σ		
			men			.0 kip o kip 5 kip						$=8$ hrus				$\begin{aligned} & \text { ative } \mathrm{M} \\ & t=-485 \\ & =41 \\ & =40 \\ & \text { ximum } \mathrm{s} \\ & \text { ximum } \mathrm{t} \end{aligned}$		t) ip-ft. ps ips rega t, reg	$\begin{aligned} & \text { rdles } \\ & \text { ardle } \end{aligned}$			$\begin{gathered} \mathrm{n} \text { Posit } \\ \text { tr } \\ =+9 \\ = \\ = \\ = \\ =451 \\ = \\ =51 . \end{gathered}$		oment ip-ft. ps ps				

UNIFORM LIVE LOAD MOMENTS, SHEARS, AND THRUSTS
100 Lb. per Sq. Ft. Floor Area = 10 Kips per Panel per Girder

Load, Kips	At Point	Point 7R (Positive)						Point 7 R (Negative)						Point 9					
		Moment		Vert. Shear		Horiz. Thrust		Moment		Vert. Shear		Horiz.Thrust		Moment		Vert. Shear		Horiz. Thrust	
		MF	M	$V F$	V	HF	H	MF	M	$V F$	V	HF	H	MF	M	$V F$	V	HF	H
0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0	1L 2L 3L 4L 5L 6L 7L 8L 9R 8R 7R 6R 5R 4R 3R 2R 1R	 +2 20 +6 80 +4 50 +3 0 +1 50 18 ∞		$\left\lvert\, \begin{array}{ll} \text { +o } & 42 \\ \text { to } & 33 \\ \text { to } & 25 \\ \text { to } & 17 \\ \text { +o } & 88 \end{array}\right.$		$\begin{array}{lll} \circ & 68 \\ \circ & 59 \\ \circ & 46 \\ 0 & 32 \\ \circ & 16 \end{array}$						\circ 16 \circ 3 \circ 32 \circ 46 \circ 59 \circ 68 71 292		Since maximum positive moments, shears and thrusts are obtained by loading entire span, the values for Point 9 are obtained directly by proportion from corresponding dead load values.					
		Point 7 R (Maximum Positive Moment) Moment $=+180.0$ kip-ft. Thrust $=22.1 \mathrm{kips}$ Shear $=12.5 \mathrm{kips}$ Point 7 R (Maximum Negative Moment) Moment $=-146.0$ kip-ft. Thrust $=29.2 \mathrm{kips}$ Shear $=5.0 \mathrm{kips}$ Maximum shear, regardless of moment $=(1.25+1.25) \times 10=25 \mathrm{kips}$ Maximum thrust, regardless of moment $=5.15 \mathrm{kips}$												Point 9 Moment $=+180.0$ kip-ft. Thrust $=51.5 \mathrm{kips}$ Shear $=5.0 \mathrm{kips}$ Maximum shear, regardless of moment $=$ $\frac{5}{3}(28.0)=17.5 \mathrm{kips}$					

CONCENTRATED LIVE LOAD MOMENTS AND CORRESPONDING THRUSTS AND SHEARS

Point 9 (Crown)

Load, Kips	MF	M	HF	H	$V F$	V
30 at Point 9.	+6.40	+192.0	0.71	21.3	0.50	15.0
7.5 at Point 7.	+1.40	$+10.5$	0.59	4.4	0.33	2.5
Total		+202.5		25.7	17.5

Point 7R (Positive Momentr)

Load, Kips	MF	M	$H F$	H	$V F$	V
30 at Point 7R.	+6.80	+204.0	0.59	17.7	0.33	10.0
7.5 at Point 5 R.	+3.00	+ 22.5	0.32	2.4	0.17	1.3
Total.		- 226.5		20.1		11.3

Point 7R (Negative Moment)

Load, Kips	MF	M	HF	H	$V F$	V
30 at Point 7L.	-3.70	-111.0	0.59	17.7	+0.67	+20.1
7.5 at Point 5L.	-2.30	-17.2	0.32	2.4	-0.17	-1.3
Total.		-128.2		20.1		18.8

Note.-Since it is evident that the greater the distance from crown the less likelihood there is of concentrated live load moments exceeding those for uniform live load, the remaining points are not investigated for concentrated loading.

Point	Shear	Thrust N	Point	Shear	Thrust N	Point	Shear	Thrust N
$\mathbf{1}$	-31.9	0	4	0	45.6	7	0	45.6
2	+14.1	0	5	0	45.6	8	0	45.6
3	+32.2	32.2	6	0	45.6	9	0	45.6

Shear and Thrust at $3=45.6 \times 0.707=32.2$

SUMMARY OF MAXIMUM MOMENTS (KIP-FT.) AND CORRESPONDING NORMAL THRUSTS (KIPS)

SUMMARY OF MAXIMUM SHEARS

Loading	Point I		Point 3		Point 5		Point 7		Point 9	
		Shear								
Dead. .		82.2		131.0		71.0		40.0		8.0
Earth P.		-31.9		32.2		-		-		\bigcirc
Sub Total. .		50.3		163.3		71.0		40.0		8.0
Unif. Live+.		51.4		82.0		45.0		30.0		17.5
Unif. Live -.										
Concentrated +								11.3 .		17.5
Concentrated -								18.8		
Temperature...	Negligi	ble								
Max. Total + Max. Total - .								70.0		25.5
		101.7		245.2		116.0.		58.8		

Stresses Due to Temperature Change

For a change of $50^{\circ} \mathrm{F}$. above or below normal,

$$
\begin{aligned}
H & =\frac{E c t l}{s \sum^{\wedge} \overline{y^{2}}}=\frac{144 \times 30,000,000 \times 0.0000065 \times 50 \times 92}{7.67 \times 17,8 \mathrm{I} 4} \\
& = \pm 1.0 \mathrm{kip} .
\end{aligned}
$$

Max. Mom. at Crown $=23.5 \times 1.0=23.5$ kip-ft.
Rib-shortening effects (calculations not shown here) will be equivalent to about 25 per cent of the effects due to a drop of temperature of $50^{\circ} \mathrm{F}$.

According to usual specifications, temperature and rib-shortening effects may be neglected if they do not exceed 25 per cent of other stresses combined.

Design of Sections

See Table of Properties of Sections for Areas and Moments of Inertia of Sections in Inch Units.

$$
\text { Unit Stress }=\frac{N}{A} \pm \frac{M c}{I}
$$

Point 1. $f_{1}=-\frac{175.5}{63.4} \mp \frac{408.2 \times 12 \times 15.6}{10,600}$

$$
=-2.8 \mp 7.2=-10.0 \mathrm{kips}
$$

ro,000 lb. per sq. in. Comp.
Point 3. Calculation based on neutral axis at C. G. of section.

$$
\begin{aligned}
f_{1}= & -\frac{245.3}{98 . \mathrm{I}} \mp \frac{2664 \times 12 \times 33.5}{77,600} \\
= & -2.5 \mp \mathrm{I} 3.8=-16.3 \mathrm{kips} \\
& \cdot 16,300 \mathrm{lb} . \text { per sq. in. Comp. }
\end{aligned}
$$

IO2 SINGLE-SPAN STEEL GIRDER FRAME BRIDGE

$$
\begin{aligned}
& \text { Point 5. } f_{6}=-\frac{169.7}{85.4} \mp \frac{1078.6 \times 12 \times 20.8}{26,300} \\
& =-2.0 \mp 11.2=-13.2 \mathrm{kips} \\
& \text { 13,200 lb. per sq. in. Comp. } \\
& \text { Point 7. } f_{6}=-\frac{147.9}{59.4} \mp \frac{267.9 \times 12 \times 11.6}{5280} \\
& =-2.5 \mp 7.1=-9.6 \mathrm{kips} \\
& \text { 9,600 lb. per sq. in. Comp. } \\
& \text { Point 9. } f_{t}=-\frac{153.5}{57.4} \mp \frac{460.5 \times 12 \times 9.6}{3340} \\
& =-2.7 \mp 15.9=-18.6 \mathrm{kips}
\end{aligned}
$$

Depth at crown, finally increased from 18 in . to 20 in . as previously mentioned.

Allowable unit stress for compression flange not supported laterally by the floor slab or by the vertical cut-off walls supporting the approach fill is calculated as follows:

$$
\frac{l}{b}=\frac{11.5 \times 12}{14}=10
$$

Allowable compression

$$
=\frac{18,000}{I+\frac{l^{2}}{2000 b^{2}}}=\frac{18,000}{1+\frac{100}{2000}}=17,000 \mathrm{lb} . \text { per sq. in. }
$$

Recent Developments in Design

The first steel rigid-frame bridge built by the Westchester County Park Commission was originally detailed with a rectangular knee section instead of with curved flanges around the bend at Section 3 as shown in Figs. 44 and 46. It was realized that there was no satisfactory basis for predicting the paths of stress in the rectangular section, and, to satisfy other parties interested in the construction of the bridge, the detail was changed and curved flanges were used. Although some approximation is involved in the design of the curved flanges at the knee, the stresses can be calculated with some degree of accuracy. This type of construction does, however, involve expensive fabrication, which militated against steel construction of rigid-frame bridges.

Recent research shows that the simpler knee detail is safe. Several important bridges with straight flanges have been built and are giving satisfactory service. The cost of fabrication was materially reduced. The reader is referred to Chapter XIV for further information.

Fic. 46.
Rigid-Frame Steel Girders for Central Boulevard Bridge. Bridge consists of three intermediate girders and two outside (fascia) girders all spaced 11 ft .10 in . on centers. Cross frames, iI ft .6 in . on centers, span between the girders. Girders and cross-frames support the two-way reinforced-concrete floor deck. Vertical reinforced-concrete cut-off walls, spanning between the vertical legs of the girders, retain the approach fill. The vertical legs of the girders buried in the approach fill are encased in protective concrete.

[^4]
Construction View of a Steel Rigid-Frame Bridge.

106 SINGLE-SPAN STEEL GIRDER FRAME BRIDGE

Erection of a Steel Frame Gırder Bridge.

Steel Rigid-Frame Bridge carrying Palmer Avene over Central Park Avenue, Yonkers, N. Y. Built by Westchester County Engineer. Span 115 ft . between vertical legs of girders.

CHAPTER IX

THEORY AND DESIGN OF DOUBLE-SPAN FRAME BRIDGE. HINGED CONDITIONS AT FOOTINGS

Assume a structure as indicated in Fig. 47 hinged at (2), resting upon rollers at (I), and without support at (3). This structure is statically determinate, and its reactions and the deflections at any point may be easily calculated. A system of loads, P, C, D, and F, is indicated on the structure, the reactions being V_{L}, V_{R}, and H. Displacements at the reaction points are designated as follows; the total horizontal

Fic. 47.
displacement at (I) is δ_{c}, being that occurring along the line of action of C. The portion of this displacement due to load P is designated as $P \delta_{c p}, \delta_{\text {cp }}$ being the deflection along the line of C due to unit load acting like P and being used as a coefficient of P. The portion due to load C is designated as $C \delta_{c o}$, that due to D as $D \delta_{c d,}$, and that due to F as $F \delta_{o f}$. The total horizontal displacement at (3) is δ, being that along the line of action of F, and the several partial displacements 107.
are $P \delta_{f p}, C \delta_{f c}, D \delta_{f d}$, and $F \delta_{f f}$. Likewise the several vertical displacements at (3) are: total δ_{d}; partial, $P \delta_{d p}, C \delta_{d c}, D \delta_{d d}$, $F \delta_{d f}$. This way of expressing displacements makes use of the calculated displacements due to unit load as coefficients of the known or unknown loads. The increments of the total, or any one of the partial displacements contributed by flexure in a single small division s of the structure, is designated by the symbol Δ, for example, $\Delta \delta_{d f}, \Delta \delta_{f p}$, etc.

Let us now assume that, for a known load P, a set of values may be selected for C, D, and F such that the algebraic sum of all the partial deflections is equal to zero; that is,

$$
\begin{align*}
& \delta_{c}=P \delta_{c p}+C \delta_{c c}+D \delta_{c d}+F \delta_{c f}=0 \tag{I}\\
& \delta_{d}=P \delta_{d p}+C \delta_{d c}+D \delta_{a d}+F \delta_{a f}=0 \tag{2}\\
& \delta_{f}=P \delta_{f p}+C \delta_{f c}+D \delta_{f d}+F \delta_{f f}=0 \tag{3}
\end{align*}
$$

Then C, D, and F, whose values are unknown at first, will be the true reactions in a double-span frame supported on hinges at (1), (2), and (3) which are fixed in location. The problem then is to find numerical values for the coefficients of C, D, and F; substitute these values in equations (I), (2), and (3); and solve the three simultaneous equations for C, D, and F.

The directions of C, D, and F along their lines of action need not be known at the outstart. They may be assumed to act in either direction, and, if algebraic signs, consistent with the assumed directions, are given to their coefficients, the correctness or incorrectness of the assumed directions will be indicated by the algebraic signs of the numerical results. If positive, the assumed direction was correct; if negative, the correct direction is opposite to that assumed. See Chapter IV.

The increments $\Delta \delta_{c}, \Delta \delta_{d}$, and $\Delta \delta_{f}$ of the displacements δ_{c}, δ_{d}, and δ_{f} contributed by flexure in typical divisions s of the structure are indicated in Fig. 48. These increments are grossly exaggerated, but in reality they are so small compared with the dimensions of the structure that the evident approximations made in the geometric demonstrations
are negligible. (See discussion in Chapter III.) In Fig. $48 a$ we have, by geometry, the external angle $\Delta \theta$ equal to the sum of the internal angles $\Delta \alpha$ and $\Delta \beta$. Hence $\Delta \delta_{c}=y \Delta \alpha$ $+y \Delta \beta=y \Delta \theta=M y{ }_{E \bar{I}}^{s}$, in which M is the bending moment on division s. If the calculated moment is due to unit

Fig. 48. (a and b).
load acting like P or C, or D or F, we have respectively $\Delta \delta_{c p}=M_{p} \frac{y s}{E I} ; \Delta \delta_{c c}=M_{c} \frac{y s}{E I} ; \Delta \delta_{c d}=M_{d} \frac{y s}{E I}$ and $\Delta \delta_{c f}=$ $M_{j} \frac{y s}{E I}$. Note now that y is an expression for moment due to unit load acting like C, that is, M_{0}. Substituting M_{0} for y in
these equations and summing the effect of flexure in all divisions s contributing to the deflection δ_{c}, we have for these unit loads:

$$
\left.\begin{array}{rl}
\delta_{c p} & =\sum M_{p} M_{c} \frac{s}{E I} \cdot \\
\delta_{c c} & =\sum M_{c} M_{c} \frac{s}{E I} . \\
\delta_{c d} & =\sum M_{d} M_{c} \frac{s}{E I} \\
\delta_{c f} & =\sum M_{f} M_{c} \frac{s}{E I} .
\end{array}\right\}
$$

Equations A.

By the same reasoning we have

$$
\begin{aligned}
\delta_{f p} & =\sum M_{p} M_{f} \frac{s}{E I} \\
\delta_{f c} & =\sum M_{0} M_{f} \frac{s}{E I} \cdot \\
\delta_{f d} & =\sum M_{d} M_{f} \frac{s}{E I} \\
\delta_{f f} & =\sum M_{j} M_{f} \frac{s}{E I} .
\end{aligned}
$$

Equations B.

In Fig. $48 a$ we have by geometry

$$
\Delta \delta_{d}=x \Delta \theta \frac{l_{2}}{l_{1}}=M \frac{s}{E I} x_{2}^{l_{2}}
$$

In Fig. 48b,

$$
\begin{aligned}
\Delta \delta_{d} & =\Delta \theta\left(l_{1}+l_{2}-x\right) \\
& =M \frac{s}{E I}\left(l_{1}+l_{2}-x\right)
\end{aligned}
$$

Note that in each case the quantities $\frac{l_{2}}{l_{1}} x$ and $\left(l_{1}+l_{2}-x\right)$ are expressions for bending moment in the division s under consideration, due to unit load along the line of action of $D=M_{d}$. Hence $\Delta \delta_{d}=M_{d} M_{\frac{s}{E I}}$.

The partial moments due to unit loads acting like P or C or D or F are M_{p}, M_{c}, M_{d}, and M_{f}, and the corresponding partial deflections are $\Delta \delta_{d p}, \Delta \delta_{d o}, \Delta \delta_{d d}$, and $\Delta \delta_{d j}$. Hence,
summing the effects of flexure in all divisions s contributing to the several partial deflections, we have

$$
\begin{aligned}
\delta_{d p} & =\sum M_{p} M_{d} \frac{s}{E I} \\
\delta_{d e} & =\sum M_{c} M_{d} \frac{s}{E I} \\
\delta_{d d} & =\sum M_{d} M_{d} \frac{s}{E I} \\
\delta_{d f} & =\sum M_{f} M_{d} \frac{s}{E I}
\end{aligned} .
$$

Equations C.

The substitution of Equations A, B, and C in equations (1), (2), and (3) will give the final equations. For a homogeneous structure, E is constant; and if the arch axis is divided into equal divisions s, both these quantities may be placed outside the sign of summation and will cancel from both sides of the equations. Then the final forms of the working equations are:

$$
\begin{aligned}
& \delta_{c}=P \sum \frac{M_{c} M_{p}}{I}+C \sum \frac{M_{c} M_{c}}{I}+D \sum \frac{M_{c} M_{d}}{I}+ \\
& F \sum \frac{M_{c} M_{f}}{I}=0 . \\
& \begin{array}{r}
\delta_{d}= \\
\delta_{f}= \\
\delta_{j} \sum \frac{M_{d} M_{p}}{I}+C \sum \frac{M_{d} M_{c}}{I}+D \sum \frac{M_{d} M_{d} M_{p}}{I}+C \sum \frac{M_{f} M_{c}}{I}+D \sum \frac{M_{f} M_{d}}{I}+ \\
F \sum \frac{M_{d} M_{f}}{I}=0 . \\
F \sum \frac{M_{f} M_{f}}{I}=0 .
\end{array}
\end{aligned}
$$

Figures $48 a, 48 b, 48 c$, and $48 d$ show that flexure in member I-4 contributes only to $\delta_{0} ; 4-5$ contributes to δ_{0} and δ_{d} 5-2 contributes to δ_{c} and $\delta_{f} ; 5-6$ contributes to δ_{d} and δ_{f}; $6-3$ contributes to δ_{f} only. The expedient of expressing y and the functions of x as moments due to unit loads at the reaction points of the transformed structure facilitates the mental process of fixing the proper limits of summation for

112 THEORY AND DESIGN OF DOUBLE-SPAN BRIDGE

the various terms in the equations which are the partial deflections contributed by flexure in the various members. The figure preceding Table II will assist in observing the proper limits. Numerical values for M_{p}, M_{c}, M_{d}, or M_{f} are entered in this table as positive or negative according to whether the assumed directions of C, D, and F would

Fic. 48. (c and d).
produce positive or negative moment in the division s under consideration, as already explained. C, D, and F having been determined for any loading, the final reactions V_{L}, V_{R}, and H may be found by the simple laws of statics. In the following example of design, the two spans are equal; that is, $l_{1}=l_{2}$.

The solution of the double-span frame may be approached by assuming the redundants differently. In.

Fig. 49, for example, the transformed structure is assumed to be supported upon rollers at (1) and (3) and is without vertical support at (2). Member (2) is, however, held laterally at (2) as by vertical rollers, so that the structure will be stable under horizontal loads. The statically determinate reactions V_{L}, V_{R}, and H, and the redundants C, D, and F, are as shown. As before, the redundants are considered loads of unknown magnitude, and numerical values

Fig. 49.
are derived that will satisfy the condition that δ_{c}, δ_{d}, and δ_{f} shall equal zero.

A number of other arrangements for the transformed structure are possible, some being shown in Fig. 50. The form of the equations will be alike for all systems. The system shown in Fig. 47 was selected because the numerical work involved in the solution is less than for most of the other systems.

In the following numerical example an influence load $=8$ is assumed in deriving influence tables so the smallest moment M_{p} will equal unity and decimals will be avoided. The influence diagram is constructed for unit load by plotting $\frac{1}{8}$ the values for total moment as calculated in the tables.

II4 THEORY AND DESIGN OF DOUBLE-SPAN BRIDGE

Fig. 50.

II6 THEORY AND DESIGN OF DOUBLE－SPAN BRIDGE

TABLE I．－PROPERTIES OF SECTIONS 1 FT．WIDE（Foor Units）AND FRAME CONSTANTS．

弐	－०० 1111111111
분。	$0000000000000 \begin{gathered} \text { M0 N M } \\ 111 \end{gathered}$
弐	
*in	
v	
$\pm{ }^{\circ}$	 $+++1\|1\| 1\|1\| 1\| \| l \mid$
\％	｜｜1｜｜｜｜｜｜｜1｜｜｜
λ	
$\begin{aligned} & 4 \\ & +1 \\ & i \\ & 40 \end{aligned}$	
$\begin{aligned} & \text { Ey } \\ & \text { İ } \\ & \text { II } \\ & \hline \end{aligned}$	
$\begin{gathered} 0 \\ \hline 0 . \\ 1 \\ 1 \\ -11 \\ 11 \\ 0 \end{gathered}$	0 MmMmOOOOOOMNOOO
＊	\%ow
\sim	NNMMHOOOOOONAOOO
$\begin{aligned} & \text { 咅 } \\ & \text { 员 } \end{aligned}$	
む	
＊	

TABLE II

Influence Load 8 at Point $\mathbf{4 L}^{\mathbf{L}}$								Influence Load 8 at Point 5 L						
Point	M_{p}	$\frac{M_{c} M_{p}}{\boldsymbol{I}}$	$\frac{M_{d} M_{p}}{\boldsymbol{I}}$	CM ${ }_{c}$	DM $_{\text {d }}$	$\boldsymbol{F M} \mathrm{f}_{\boldsymbol{f}}$	Total Mom.	M_{p}	$\frac{M_{c} M_{p}}{I}$	$\frac{M_{d} M_{p}}{I}$	$C M_{c}$	$D M_{d}$	$\boldsymbol{F M} \boldsymbol{M}_{\boldsymbol{f}}$	Total Mom.
IR						-1.0	- 1.0						-2.6	-2.6
2R					-2.1	- 2.1						-5.5	-5.5
3 R						-3.2	-3.2						-8.3	-8.3
${ }_{5 R} \mathrm{R}$					0.4	-3.9	-3.5					1.1	- 10.4	- 9.3
6R					1.3	-4.2	- 2.9					3.4	- 10.9	-7.5
6R					2.2 3.0	-4.3	- 2.1					5.7	- 11.2	-5.5
7R					3.0	-4.4	- 1.4					7.9	-11.5	- 3.6
9R					3.9 4.8	-4.4	-0.5					10.2	-11.7	-1.5
IoR					4.6	-4.5	+ 0.3 +1.2					12.4	-11.7	+0.7
IIR					6.5	-4.3	+ 2.2 $+\quad 2.2$					14.7 17.0	-11.6	+3.1 $+\quad 5.6$
12R					7.4	-4.2	+3.2 +3.2					19.2	-11.4	+ 5.6 +8.1
13 R					8.3	-4.1	+ 4.2					21.5	- 10.7	+10.8
14		9.4	-2.9	$+6.5$				+26.9		-7.7	+19.2
15				5.9		-1.8	+4.1				+16.9		-4.8	+12.1
16			.	2.4		-0.8	+ 1.6				+ 6.8		- 1.9	+ 4.9
${ }_{12 \mathrm{~L}} \mathbf{1}$	3	- $\quad 2$	5 38	-13.1 -13.6	8.2 7.4		-3.9	3	- 6	16	-37.6	21.5	-13.1
12L	3	- 17	38	-13.6	7.4		-3.2	9	- 52	113	-39.0	19.2		- 10.8
H1L	5	- 86	162	-14.0	6.5	- 2.5	15	- 257	485	-40.0	17.0		-8.0
10 L	7	- 406	649	-14.2	5.6	- 1.6	21	- 1220	1950	-40.8	14.7		- 5.1
9L	9	-1225	1650	-14.3	4.8	-0.5	27	-3670	4950	-41.0	12.4		- 1.6
8 L	II	- 1495	1650	-14.3	3.9	$+0.6$	33	-4490	4950	-41.0	10.2		+2.2
7 LL	13	- 1050	910	-14.2	3.1	.	+ 1.9	39	-3150	2730	-40.6	7.9	.	$+6.3$
6L	15	- 580	368	-13.9	2.2	.	$+3.3$	45	- 1740	1100	- 39.6	5.7		+11.1
5L	17	- 229	90	-13.4	1.3		+4.9 +6.9	51	- 685	269	-38.4	3.4		+16.0
${ }_{31}$	19	- 90	12	-12.7	0.4	.	$+6.7$	17	- 80	11	-36.6	1.1		-18.5
3L				-10.3			-10.3				-29.4			- 29.4
${ }_{12} \mathbf{2}$				-6.7			-6.7				-19.3			- 19.3
LL	\ldots	3.2	.	.	3.2	-92	- 9.2
		-5180	5534						-15,350	16,574				

II8 THEORY AND DESIGN OF DOUBLE-SPAN BRIDGE

TABLE II-Cont:nued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Influence Load 8 at Point 6L.} \& \multicolumn{7}{|l|}{Influence Load 8 at Point 7L}

\hline Peint \& M_{p} \& $\frac{M_{c} M_{p}}{I}$ \& $\frac{\boldsymbol{M}_{\boldsymbol{d}} M_{p}}{\boldsymbol{I}}$ \& $C M_{c}$ \& DM ${ }_{\text {d }}$ \& $\boldsymbol{F M} M_{f}$ \& Total Mom. \& M_{p} \& $\frac{M_{c} M_{p}}{\boldsymbol{I}}$ \& $\frac{M_{d} M_{p}}{\boldsymbol{I}}$ \& $C M_{c}$ \& DM $_{\text {d }}$ \& FMf \& Total Mom.

\hline 1R \& \& \& \& \& \& - 3.4 \& \& \& \& \& \& \& \&

\hline ${ }_{3 R} \mathbf{2 R}$ \& \& \& \& \& \& -3.4
-7.2 \& -3.4
-7.2 \& \& \& \& \& \& - 2.7 \& - 2.7

\hline 3R \& \& \& \& \& \& - 7.2
-10.9 \& - 7.2 \& \& \& \& \& \& - 5.6 \& - 5.6

\hline 4R \& \& \& \& \& 1.5
+1.3 \& -13.6
-14.2 \& -12.1 \& . \& \& \& \& I. 1 \& -8.6 \& -8.6
-9.6

\hline 6R \& \& \& \& \& 4.3
7.2 \& -14.2
-14.7 \& -9.9
-7.5 \& \& \& \& \& \& -11.2 \& -8.0

\hline 7R \& \& \& \& \& 7.2
10.1 \& -14.7
-15.1 \& -7.5
-5.0 \& \& \& \& \& 5.3
7.3 \& - 11.5 \& -6.2

\hline 8R \& \& \& \& \& 13.0 \& -15.2 \& 2.
$-\quad 2.2$
$+\quad 0.7$ \& \& \& \& \& 7.3
9.5 \& -11.8
-12.0 \& -4.5
-2.5

\hline 10R \& \& \& \& \& 15.9
18.8 \& -15.2
-15.2 \& +0.7
+3.6 \& \& \& \& \& 11.6 \& -12.0 \& - 0.5

\hline IsR \& \& \& \& \& 18.8
21.7 \& -15.2
-14.9 \& +8.6
+6.8 \& \& \& \& \& 13.7
15.8 \& - 11.9 \& +1.8

\hline 12R $\mathbf{1 3 R}^{\text {R }}$ \& \& \& \& \& 21.7
24.6
27.5 \& -14.9
-14.5
-14.0 \& +6.8
+10.1
+13.5 \& \& \& \& \& 15.8
17.8 \& -11.7 \& +4.1
+6.4

\hline 14 \& \& \& \& +41.3 \& 27.5 \& -14.0
-10.0 \& +13.5
+31.3 \& \& \& \& \& 20.0 \& -11.4 \& + 6.4
+9.0

\hline 15 \& \& \& \& +25.9 \& \& -10.0
-6.3 \& +31.3
+19.6 \& \& \& \& +493
+30.9 \& \& - 7.9 \& +41.4

\hline \& \& \& \& +10.5
-57.6 \& \& - 2.5 \& +79.6
+7.9 \& \& \& \& +39.9
+125 \& \& -4.9
$-\quad 2.0$ \& +26.0
+10.5

\hline 121, \& 5

5 \& $-\quad 10$
$-\quad 86$ \& 27
189 \& -57.6
-59.8 \& 27.5
24.6 \& \& -25.1
-20.2 \& 7 \& - 15 \& 37 \& -688 \& 20.0 \& \& +10.5
-41.8

\hline 12L \& 25 \& - 429 \& 806 \& -69.3 \& \& \& -20.2 \& 2 35 \& - 121 \& 265 \& -71.4 \& 17.9 \& ... \& -32.5

\hline rol \& 35 \& - 2,030 \& 3,250 \& -62.5 \& 18.8 \& \& -14.6
-8.7 \& 35 \& - 600 \& 1,130 \& -73.2 \& 157 \& . \& -22.5

\hline 9 gL \& 45 \& - 6,110 \& 8,250 \& -62.5 \& 18.8
15.9 \& \& -8.7 \& 49 \& - 2,840 \& 4,550 \& -74.6 \& 13.7 \& \& - 11.9

\hline 81 \& 55 \& - 7,480 \& 8,250 \& -62.9 \& 13.0 \& \& - 2.0
$+\quad 5.1$ \& 63 \& - 8,560 \& 11,550 \& -750 \& 11.6 \& \& - 0.4

\hline 6I \& 65 \& - 5,250 \& 4,550 \& -62.3 \& 10.1 \& \& +5.1
+12.8 \& 77 \& - 10,460 \& 11,550 \& -75.0 \& 9.5 \& \& +ri. 5

\hline ${ }^{6 L}$ \& 75 \& - 2,900 \& 1,835 \& -60.7 \& 7.2 \& \& \& \& $-7,350$
$-\quad 2510$ \& 6,360 \& -74.3 \& 7.3 \& \& +24.0

\hline ${ }_{4}$ \& 45 \& - 605 \& 238 \& - 58.9 \& 4.3 \& \& +21.5
-9.6 \& 65
39 \& - 2,510
$-\quad 523$ \& 1,590
206 \& -72.5
-70.3 \& 5.3 \& \& - 2.2

\hline ${ }_{3} \mathbf{3}$ \& 15 \& 71 \& 10 \& $$
\begin{aligned}
& -56.1 \\
& -45.0
\end{aligned}
$$ \& 1.5 \& \& -39.6 \& 13 \& - 6r \& 8 \& -70.3

-67.0 \& 3.2

1. \& \& -28.1
-52.9

\hline ${ }_{21}^{2 L}$ \& \& \& \& $$
\begin{array}{r}
-45.0 \\
-29.6
\end{array}
$$ \& \& \& -45.0 \& \& \& \& - 53.8 \& \& \& -53.8

\hline 1 L \& \ldots \& \& \& -14.2 \& \& \& -29.6 \& \& \& \& -35 3 \& \& \& -35.3

\hline \& \& \& \& \& \& \& \& \& \& \& -169 \& . \& . \& -16.9

\hline \& 2 \& 97 \& 27,405 \& \& \& \& \& \& -33,040 \& 37,246 \& \& \& \&

\hline
\end{tabular}

TABLE II-Continued

Influence Load 8 at Point 8L								Influence Load 8 at Point 9L						
Point	\boldsymbol{M}_{p}	$\frac{M_{c} M_{p}}{I}$	$\frac{M_{d} M_{p}}{I}$	$C M_{c}$	DM ${ }_{\text {d }}$	${ }_{F M}{ }_{f}$	Total Mom.	M_{p}.	$\frac{M_{c} M_{p}}{I}$	$\frac{M_{d} M_{p}}{I}$	$\mathrm{CM}_{\boldsymbol{c}}$	DM $_{\text {d }}$	PMf	Total Mom.
12						-0.1								
212						-0.1	-0.1						+3.2 +6.8	+3.2 +6.8
${ }^{3 / 8}$						-0.2	-0.2						+ +10.3 +1.3	+ +10.3
$4^{1 / 2}$					-0.2	-0.3	-0.5					- 1.7	+12.8	+11.1
68.					-0.6	-0.3	-0.9					-5.2	+13.4	+8.2
					-1.0	-0.3	- 1.3					- 8.8	+13.9	+5.1
8					-1.9	-0.3	- 1.8					-12.3 -15.8	+14.2 +14.4	+ 2.1
9R					-2.3	-0.3	- 2.6					-19.8 -19.3	+14.4 +14.4	-1.4 $-\quad 4.9$
IOR					-2.8	-0.3	- 3.1			-22.8	+143	-8.5
IIR					-3.2	-0.3	-3.5					-26.3	+14.0	-12.3
12k					-3.6 -4.0	-0.3	- 3.9					-298	+13.7	-16.1
14				47.7	-4.0	-0.3	-4.3 +475					-33 3	+13.2	-20.1
15				29.9	-0.1	+29.8				37.4 23.4	+9.4 $+\quad 5.9$	+46.8 +29.3
				12.1			+12.1				$\begin{array}{r}9.5 \\ \hline 9.5\end{array}$		P $+\quad 2.4$	+ri. +1
${ }_{13 \mathrm{~L}}^{18 \mathrm{~L}}$		- 19	48 340	-66.6 -69.1	-4.0 -3.6		-616 -45	11	23	58	-52.1	-33.3		-74.4
18L	27	- 159	340 1,455	-69.1 -70.9	-3.6 -3.2		-457 -291	33	190	416	-54.1	-29.8		-50.9
10L	45 63	- $\begin{array}{r}\text { 772 } \\ -8.650\end{array}$	1,455 5,850	-70.9 -72.3	-3.2 -2.8		-291 -12.1	55	943 4.465	1,780	-55.5 -56.6	-26.3		- 26.8
gL.	8 8	-11,010.	14,850	-72.6	-2.3		+6.1	77 99	4,465 13,450	7,150 18,140	-56.6 -56.9	-22.8		- 2.4
8	99	$-13,450^{*}$	14,850	-72.6	-1.9		+24.5	$8 \mathrm{8I}$	13,450 11,010	18,140 12,150	-56.9 -56.9	-193 -15.8	.	
yL	77.	- 6,220	5,380	-71.9	-1.5		+3.6	63	12,010 $\mathbf{5 , 0 9 0}$	12,140 4,410	-56.9 -56.3	- 15.8		+8.3 $-\quad 5.6$
6.	55	- 2,130	1,350	-70. 1	-1.1		-16.2	45	1,740	1,103	-54.9	- 8.8		-18.7
51.	33	- 444	174	-68 0	-0.6		-35.6	27	363	143	-53.2	-5.3		-31.5
4 L	17	- 52	7	-64.8	-0.2		- 54.0		42	6	-50.7	- 1.7		-43.4
${ }^{3 L}$				-52.0			- 52.0				-40.7			-40.7
${ }_{1} \mathbf{L}$			-34.2 -16.4			-34.2				-26.8			- 26.8
							16.4		-12.8	-128
		-37,902	44,304					\sum	-37,316	45,356				

120 THEORY AND DESIGN OF DOUBLE-SPAN BRIDGE

TABLE II-Continued

Influence Load 8 at Point roL								Influence Load 8 at Point ir						
Point	M_{p}	$\frac{M_{c} M_{p}}{\boldsymbol{I}}$	$\frac{M_{d} M_{p}}{I}$	CM_{c}	DM ${ }_{\text {d }}$	FMf	Total Mom.	M_{p}	$\frac{M_{\mathrm{c}} M_{p}}{I}$	$\frac{M_{d} M_{p}}{I}$	CM ${ }_{c}$	DMd	$F^{\prime}{ }_{\text {f }}$	Total Mom.
$1 \mathbf{R}$						+ 4.7	+ 47							
2R						+9.7 +9.7	+97 +97						42 88	+4.2 +88
3R						148	+148						134	+13.4 +18
4R					-24	185	+161					- 2.1	16.7	+ 14.6 +1.6
SR					172 -119	194 20	+122 +81					-6.3	175	+11.2
7R					-119 -167	20.0	+8.1 +3.8					- 10.6	18.1	+75
8 R					-16 -214	20.5 207	+3.8 +07					-14.8 -191	185 187	+37 $-\quad 04$
9 P					- 262	20.7	+3.8 $-\quad 57$					-191 -233	187 187	- 04 -4.6
10R					-310	206	-ro 4					-275	186	-89
$\underline{12 R}$					-35 7	20.2	-155					-318	182	-136
13 R				-40 5	197 19	- 20.8					-36.0	17.8	-18.2
14				25.6		136	a +392					-40.2	17.1	-231
15				16 r		85	+246				+165 +103		12.3	+288
16				6.5		3.5	+100				+103 +42		7.7	+180
13 L	13	- 27	69	-35.8	-45.2		-68	15	- 31	80	+42 -230		$+3$	+73
2 LL	39	- 224	491	-37.2	-40.5		-387	45	- 259	567	+230 -239	-402 -360		-482 -149
11L	65	- 1,115	2,100	-38.1	-35 7	...	-88	75	- 1,290	2,425	-245	-318		+187
10L	91	- 5,280	8,450	-388	-31 0		+212	65	- 3,770	6,030	-250	-275		+125
91	77	- 10,450	14,100	-39.1	-262			55	- 7,480	10,080	-251	-23 3		+66
8L	63	- 8,570	9,450	-391	-21.4		+25	45	- 6,110	6,750	-25 1	-191		+o8
7L	49	- 3,960	3,430	-387 -37	-167		-64	35	- 2,830	2,450	-24.9	-148		-4.7
6L	35	- 1,352	858	-37.7	-11.9		$-1.4 .6$	25	- 965	613	-243	-10.6		- 99
5 L	21	- 282	III	-36.6	- 7.2		-228	15	- 202	79	-235	-64		-149
4 L	7	- 33	5	-34.9	2.4	- ..	-303	5	- 24	3	-224	- 21		-195
3L				-279			-279				-180			-180
$\mathbf{1 L}_{\mathbf{2 L}}$				- 18.4			-184				- 118			-118
1 L		-8.8		-8.8		- 57	-5.7
		-31,293	39,064						-22,961	29,077				

TABLE II-Continued

Infuence Load 8 at Point 12L								Infuence Load 8 at Point ${ }_{13} \mathrm{~L}$						
Point	$\boldsymbol{u}_{\boldsymbol{p}}$	$\frac{\boldsymbol{\mu}_{c} \boldsymbol{\mu}_{\boldsymbol{p}}}{\boldsymbol{I}}$	$\frac{\boldsymbol{\mu}_{d} \boldsymbol{\mu}_{\boldsymbol{p}}}{\boldsymbol{I}}$	$C^{\prime}{ }_{c}$	${ }^{\text {D }} M_{d}$	FM_{f}	Total Mom.	${ }^{M} p_{\text {p }}$	$\frac{M_{c} M_{p}}{\boldsymbol{I}}$. $\frac{\boldsymbol{M}_{d} M_{p}}{\boldsymbol{I}}$	$C M_{c}$	${ }^{D} M_{d}$	FM_{f}	Total Mom.
${ }_{\text {r }} \mathbf{R}$						+2.9	+ 2.9						${ }^{+1.0}$	+1.0
2R 3 R						+6.0 +9.7	+6.0 +9.1							+2.10
${ }_{\substack{\text { in } \\ \text { R }}}$					-1...		+ 9.1 +9.9					-0.5	3.2	+ $\begin{aligned} & \text { +3.2 } \\ & +3.5\end{aligned}$
${ }_{68} \mathbf{5 R}$...i.				- ${ }_{7.1}^{4.3}$	$\begin{array}{r}11.9 \\ 12.2 \\ \hline 12.2\end{array}$	+ + +5.6 s.					--1.5 -2.5 .5	4.2 4.3 4.8	+2.7 +1.8
,						12.2 12.5 12.5 120	+					-2.5 -3.5	4.3 4.4	+1.8 +0.9
${ }_{\text {8R }}$					-12.8 -12.7	12.5	- 0.15					- $\begin{aligned} & -4.5 \\ & -4.5\end{aligned}$	4.4 4.5	+0.9
$\xrightarrow{\text { roR }}$					-15.7	12.7 12.6 120	- $\begin{aligned} & 3.0 \\ & \text { 5.9 }\end{aligned}$...				-5.5	4.5 4.5	-1.0 -2.0 2.0
12 R					${ }_{-21.3}^{-10.5}$	12.4	- 8.9				-7.5	4.5 4.4 4	-2.0
${ }^{122}$					-24.2	12.6	-12.2					-8.5	4.2	-3.1
${ }_{4}^{13 \mathrm{~S}}$					-27.0	${ }_{8.3}^{12.6}$	-15.4 +17.5					-9.5	4.1	${ }_{-5.4}^{5.8}$
15				5.7		5.2	+17.5 +10.9	...			${ }_{+1.8}^{+1.9}$		2.9 1.9 1	+
${ }_{13}^{16}$				($\begin{array}{r}2.3 \\ -12.8\end{array}$	-27.0	2.1	${ }_{-2.8}^{+4.4}$	19			${ }_{-4.1}^{+0.7}$		+0. 8	$\stackrel{+1.5}{+1.5}$
${ }_{212}$	${ }_{51}$	- $\quad 393$	642	-13.3	-24.2		+13.5	${ }^{17}$	- ${ }^{40} 8$	${ }_{214}^{101}$	-4.2	-8.5		+5.4 +4.3
${ }_{\text {roL }}^{\text {niL }}$	${ }^{45}$	- $\begin{array}{r}\text { 2,260 }\end{array}$	(1,460	-13.6 -13.9	-21.3 -18.5		+10.1 +6.6	15 13 13	[256	(\%	-4.3 -4.4	-7.5 -6.5		
-	-33	- 2,260 $=4.490$ $=$	${ }_{\text {cose }} \mathbf{3 , 0 2 0}$	-14.0	-15.7		+ ${ }^{+6.6}$ +	$1{ }_{1}^{13}$	- $\begin{array}{r}\text { 7,43 } \\ -1,955 \\ \hline\end{array}$	¢,	-4.4	-6.5		$\stackrel{+}{+1.1}$
${ }_{8}^{8 L}$	${ }_{27}^{27}$	- $3,680^{\circ}$	¢,	-14.0 -13.8	-12.7 -10.0		++ 0.3 2.8	9	$-1,225$ -566	${ }^{1,3,350}$	-4.4	- 4.5		${ }_{-0.9}^{+0.1}$
${ }_{6} 6$	15	- 580	${ }^{1,467}$	-13.5	- 7.1		- 2.8	7	- ${ }^{569}$	4930	-4.4	-		-1.8
5L	${ }_{3}$	- 1281	48	-13.18 -12.5	-4.3 1.4		- 8.4 10.9 10.9	${ }_{1}$	[${ }^{40}$	16 1	-4.2 -4.0	-1.5		- 2.7
${ }^{3 L}$				12.5 -10.0 -6.6			-10.6				-4.2			-3.5
${ }_{\text {IL }}$				- 6.6			-6. $\mathbf{3 . 1}$				${ }_{-1.0}^{-2.1}$.		-2.1 -1.0
	Σ	-13,933	17,799					Σ	-4,671	5,995				

$\underline{\text { Inflaence Load } 8 \text { of Point } \longrightarrow}$	4 L	5L	6 L	7 L	8L	9L	10 L	IIL	12 L	13 L
Equations										
1. $10,364 C-11,682 D-319 F=$	5180	15,350	24,971	33,040	37,902	37,316	31,293	22,961	13,933	4671
II. $-11,682 C+29,976 D-11,682 F=$ III. $-319 C-11,682 D+10,367 F=$	-5534	$-16,574$ 0	$-27,405$ 0	$-37,246$ 0	$-44,304$ 0	$\underset{0}{-45,356}$	-39,064	$-29,077$ 0	17,799 0	-5995
Dividing by Coefficient of C :										
1. $C-1.127 D-0.0308 F=$	0.500	1.48 I	2.409	3.188	3.656	3.600	3.019	2.215	1.344	0.451
III. $C-2.566 D+F=$	0.474	1.419	2.346	3.188	3.793	3.883	3.344	2.489	I. 524	0.513
III. $C+36.62 D-32.5 F=$										0
Subtracting II from I: (a) $1.439 D-1.0308 F=$	+0.026	to.062	+0.063	to.000	-0.136	-0.283	-0.325	-0.274	-0.180	63
Subtracting II from III:										
(b) $39.19 D-33.50 \%=$	-0.474	-1.419	-2.35	-3.188	-3.790	-3.88	-3.344	-2.49	-1.524	-0.513
Dividing by Coefficient of D :										
(a) $D-0.716 F=$	to. 018	+0.0431	+0.044	+0.000	-0.095	-0.197	-0.226		-0.125	-0.043
(b) $D-0.855 \mathrm{~F}=$	-0.012	-0.0362	-0.060	-0.0814	-0.097	-0.099	-0.085	-0.063	-0.0389	-0.013
Subtracting (b) from (a):					. 0.97	-0.099	0.085		0.039	0.013
$\mathrm{O}_{\mathrm{F}=1} 13 \mathrm{~F}$	+0.030	+0.0793	+o. 104	+0.0814	+0.002	-0.098	-0.141	-0.127	-0.0862	-0.030
$F=$	+0.217	+0.571	+0.747	+0.586	+0.014	-0.704	-1.014	-0.916	-0.620	-0.219
Substituting (a) $0.716 F=$	+0.156	+0.409	+0.535	+0.420	to.010	-0.504	-0.726	-0.656	-0.4	-0.157
	+0.018	+0.043	+0.044	+0.000	-0.095	-0.197	-0 226	-0.190	-0.125	-0.043
$D=$	+0.174	+0.452	+0.579	+0.420	-0.085	-0 701	-0 952	-0.846	-0.569	-0.200
Substituting in II $2.566 \mathrm{D}=$	+0.445	+1.160	+1.484			-1.800				-0.515
$-F=$	-0.217	-0.571	-0.747	-0.586	-0.014	+0.704	+1.014	+o.916	+o.620	+o. 219
	-0.474	+1.419	+2.346	+3.188	+3.793	+3.883	+3.344	+2.489	+1.524	to. 513
$C=$	+0.702	+2.008	+3.083	+3.680	+3560	+2.787	+1915	+1232	+0.684	+0.217

Diagrams Showing Complete Reactions for Unil Load

Fic. 52.

Moment factors ($M F$) are scaled from the influence line diagram. The product of load and moment factor will give the actual dead load moment M.

Note.-Average values of influence line ordinates over distance s are used for Point 4 R, Load at 4 R; Point $5 R$, Load at $5 R$, etc.

[^5]Point 3R: Right Vertical Reaction $+1.3=10.9$.
2R: $10.9+1.3+1.1=+13.3$.
IR: $13.3+$ I.1 $+0.8=15.2$.
14: Middle Vertical Reaction
$15: 24.1+1.5=25.6$.
$16: 25.6+1.5=27.1$.

Live Lending Hz

Width of Roadway 40 ft.
Reduction of intensity of loading for 22 fitwith in excess of inst? Use impact factor thruafthour for loosest length of one span, so ff

1 impact $\frac{50}{30+150-25 \%} 1.25 \times 0.78^{-}=304 \%$. Use wheel loads distributed over traffic lane width of $94 t$. Concentrations per ff. width of bridge from no ton truck $\frac{32010}{9}=3500^{*}$ and $\frac{8000}{9}=900^{*}$
From 15 ton trucks $\frac{24000}{9}-2700$ and $\frac{6000}{9}=700^{*}$
Train load for calculating lice load moments and thrusts from influence lines, as follows or reversed

TABLE V.-CONCENTRATED LIVE LOAD MOMENTS M AND NORMAL THRUSTS N
Moment Factors (MF) and Thrust Factors ($N F$) are read directly from influence line diagrams. The product of load and moment factor gives actual moments M, and product of load and thrust factor gives actual thrusts N

Load	Point IR				Point IR				Point 2R				Point 2R				Point 3R			
Kips	$\mathbf{M F}$	μ	$N F$	N	MF	M	NF	N	MF	M	$N F$	\boldsymbol{N}	MF	M	NF	N	MF	M	NF	N
3.5 0.9 2.7 0.7	$\begin{aligned} & +0.59 \\ & +0.18 \end{aligned}$	$\left\lvert\, \begin{aligned} & +2.06 \\ & +0.16 \end{aligned}\right.$	$\begin{aligned} & -0.122 \\ & -0.04 \end{aligned}$	$\left\|\begin{array}{l} -0.42 \\ -0.0 \end{array}\right\|$	$\left\lvert\, \begin{array}{lll} -2 & 1 \\ -1 & 2 \\ -1 & 42 \end{array}\right.$	$\left[\left.\begin{array}{ll} -7.35 \\ -1.38 \\ -1.13 \end{array} \right\rvert\,\right.$	$\begin{aligned} & \text { Yo } 70 \\ & \text { to. } 27 \\ & \text { Ho } 08 \end{aligned}$	$\left\|\begin{array}{\|} +2.45 \\ +0.24 \\ +0.22 \end{array}\right\|$	$\begin{aligned} & +1.20 \\ & +040 \end{aligned}$	$\begin{aligned} & +4.2 \\ & +0.4 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.13 \\ & -0.13 \\ & -0.04 \end{aligned}\right.$	-0.5	$\left\|\begin{array}{lll} -4 & 40 \\ -2 & 20 \\ -0 & 90 \end{array}\right\|$	$\begin{aligned} & -154 \\ & =20 \\ & -244 \end{aligned}$	$\begin{array}{lll} \text { Ho } & 65 \\ \text { +o } & 21 \\ \text { Ho } & 08 \end{array}$	$\begin{aligned} & +23 \\ & +{ }_{2} \quad 3 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +185 \\ & +060 \end{aligned}$	$\left\lvert\, \begin{array}{ll} +6.50 \\ +0.54 \end{array}\right.$	$\begin{aligned} & -0 \\ & -0 \\ & -0 \\ & \hline \end{aligned}$	-0.4
Total		+ 2.2		. 4		- 9.6		+2.9		+46		-0.5		198						

Load	Point 3R				Point 4R				Point ${ }_{4} \mathbf{R}$				Point 5R				Point 5R			
Kips	MF	M	NF	N	$\boldsymbol{M F}$	M	NF	N	M ${ }^{\text {F }}$	M	NF	,	MF	M	NF	N	MF	M	NF	N
3.5	-6.7 -3.8	-23.50	+0.70	+2.45	+195	+6.8		-0.45	-680	$=23.8$	+o 46		+20	+ 7.00	+0 25	+0 9				
3.9 3.7	- $\begin{aligned} & \text { - } \\ & \text { - }\end{aligned}$	- 3.42	+0.26	+0.25	$+\infty .65$ +0.80	+ ${ }^{+}{ }^{+8}$	+0.05 +0.10	+ $\begin{aligned} & \text { + } 05 \\ & +0.27\end{aligned}$	- $\begin{array}{r}3 \\ \hline 150 \\ \hline 0\end{array}$	- $\begin{array}{r}3.2 \\ -40 \\ \hline\end{array}$	+020 +0.08	+o.2				\therefore	a -200 -105	- 1.80	+o 15	+0.1 +0.1
0.7	-1.4												+1.5 +o 5	+405 $+\quad 35$	$\left\lvert\, \begin{array}{ll} -0 & 12 \\ -0 & 0 \end{array}\right.$	-0.3	-125	- 3.38	+o 10	+0.3
Total		-30		+2.9		+ 9.6		-0.1		-31.0		+20		+ 11.4		+0.6		-20.8		+1.9

Loed	Point 6R				Point 6R				Point 7 R				Point 7R				Point 8R			
Kips	$\boldsymbol{M F}$	M	NF	N	$\boldsymbol{M F}$	M	NF	N	MF	M	NF	N	MF	M	, \boldsymbol{F}	,	MF	M	NF	N
3.5	+2.70	+ 9.4	to. 40	+1.4	-2.45	-8.6	$\bigcirc 40$	+1 4	+3 ${ }^{\circ}$	+10 50	+o 46	+r. 6	-08	- 2.80						
3.9 2.7					- 1.00 -095	$-\quad 0.9$ -2.6	0 12 0 0	+o. 1 +0.2	+035 +05	+ 0.32	+o 11	+0. 1	-0 25	- ${ }^{2} 28$	+o 06	+o. 1	+0 30	+0.3	0.28	+0. 3
0.7	+0.40	$\begin{array}{r}\text { + } 2.7 \\ +0.3 \\ \hline 12.4\end{array}$	-0.13	-0.3					+0 5 +0 O5	+	-	-0.4	-065	- 1.75	to 11	to 3				
Total		+12.4		+1. 1		-12.1		+1.7		+12.2		+1.3		- 4.8		+1.4		+II. 1		+1.9

TABLE V-Continued

Load	Point 8R				Point 9R				Point 9R				Point roR				Point raR			
Kips	MF	M	$N F$	N	$\boldsymbol{M F}$	M	NF	N	MF	M	VF	N	$\boldsymbol{M F}$	M	NF	N	MF	M	NF	N
3.5	-0.35	- 1.2	+0.07	to. 25	+2.85	+10.0	+0.35	+1.2	-0.70	- 2.4	-0.13	-0.5	+2.65	+ 9.25		+o. 8	-1.60	- 5.60		
0.9	-0.05		-0.12	-0.11	+0.50	+0.5	+o. 99	+0.1	-0.30	- 0.3	-0.05	-0.0	+0.30	+0.27	+o 05	-	-0.60	- 0.54	+0 22	+0.2
2.7			+0.10	+0.3	+0.11	+0.3	-0.25	-0.7	+0.40	+1. 1	+0.45	+ 1.22	to 11	+0.3	-1.30	- 3.51	-0 13	-0.4
0.7	,																-0.45	- 0.32	-0 05	-
Total		1.2		+o. 1	+10.8	+1.6	- 3.4	+o. 6		+10.7		+1.1		-10.0		+1.4

Load	Point IIR				Point IIR				Point 12R				Point 12R				Point 13R			
Kips	MF	M	NF	N	MF	M	NF	N	MF	M	$N F$	N	MF	M	NF	N	MF	M	$N F$	N
3.5	+2.35	+8.2	+o. 13	to. 5	-3.80	-13.3	0.42	+1.5	+1.7	+ 5.95	+0.08	+0.3	-6.3	-22.0	+0.37	+1.3	+1.70	+6.0	0.11	
0.9	-0.30	+ 0.2	-0.02	-0.0	-1.45	- 1.3	- 37	+0.3	-1.3	- 1.27	-0.07	-0.1	-2.8	- 2.2 .8	+0.37 +042	+0.4	+1.70	+ 6.0	0.11	+0.4
2.7	+0.85	+2.3	+0.10	+o. 3	- 1.95	$=5.3$	-0.13	-0.4	+1.3	+ 3.51	+0.11	+o. 3	-2.2	- 5.93	-0.10	-0.3				
0.7				-0.70	- 0.5	-0.04	-0.0					-1.5	- 1.05	-0 08	-0.1				
Total		+10.3		+o. 8		-20.4	+1.4		$+8.2$		+0.5		-31.5	+1.3		+ 6.0		+o. 4

Load	Point 13				Point 14				Point 15				Point 16				Point			
Kips	MF	M	$N F$	N	MF	M	, $\boldsymbol{N} \boldsymbol{F}$	N	MF	M	NF	,	MF	M	VF	N	MF	M	. $\mathrm{N} F$	N
3.5	-9.30	-32.5	+0.36	+1. 3	± 6.0	± 21.0	+0.60	+2.1	± 3.75	± 13.1	+0.60									
0.9	-3.55	- 32.2	+0.42	+o. 4	± 3.6	± 3.2	+0.06	+o.1	± 2.10	± 1.9	to 06	+0.1	± 0.90	± 0.8	+0.06	+o.1				
2.7 0.7	- 2.75	- 7.4	-0.10	-0.3																
0.7			-0.07	-0.0													
Total	-44.4	+1.4	± 24.2	+2.2	± 15.0	+2.2		± 6.2	+2.2				

I30 THEORY AND DESIGN OF DOUBLE-SPAN BRIDGE

 Redundant Reactions Removed

[^6]
Temperature stresses. Toble VIf

1. $10020 \mathrm{H}+5840 \mathrm{~V}+\frac{\text { Eet } l}{5}=0$.
II. $5840 \mathrm{H}+3751 \mathrm{~V}+0=0$
$\frac{\text { Ectl }}{5} \cdot \frac{144 \times 2000 \times 0.0000065 \times 35 \times 50}{5} .655$ (kip-ft. units for $35{ }^{\circ}$ rise in femperafune)
I. $\begin{aligned} & H+0.583 \mathrm{~V}=-0.065 \\ & \mathrm{II} \quad H+0.642 \mathrm{~V} \cdot 0 \\ & \end{aligned} \quad 0.059 \mathrm{~V}=0.065$
$V=1.1$ and $H=-0.7$ for temperature rise of 35°
Mom. due to H. Hy. Mom. due to $V, V \frac{2 \cdot x}{2}$

Moments.

Point	1	2	3	4	5	6	7	8	9	10	11	18	13
y	4.6	9.6	14.6	18.2	19.1	19.7	20.2	20.4	20.4	20.3	19.9	19.4	18.7
$(7-x)$	0	0	0	1.2	3.8	6.2	8.8	11.2	12.8	16.2	18.8	21.2	23.8
$H y$	-3.2	-6.7	-10.2	-12.7	-13.4	-13.8	-14.1	-14.3	-14.3	-14.2	-13.9	-13.6	-13.1
$(v(7-x)$	+0	+0	+0	+1.3	+4.2	+6.8	+9.7	12.3	+16.2	+17.8	+20.7	+23.3	+26.2
Totol	-3.2	-6.7	-10.2	-11.4	-9.2	-7.0	-4.4	-2.0	+0.9	+3.6	+6.8	+9.7	+13.1

$$
\begin{array}{ll}
\text { Normal Thrusts: } & \text { Points } 1,2.3 ; N=+0.5 \\
& \text { Points } 4+013 ; N=+0.7 \\
& \text { Points } 14,15,16 ; N=-1.1
\end{array}
$$

For temperature fall of $45^{\circ} \mathrm{Moments}$ and Nopmal Thrusts will be of opposite sign and numerically $\frac{45}{35} \times$ those cakulated obove.

Table VIII - Summory of Maximum Moments (Kip-ft.) and Thrusts (kips)																
Looding	Point IR		Point 2R		Point 3R		Point 4R		Point 5R		Point 6R		Point $7 R$		Point 8R	
	M	N	M	N	M	N	M	N								
Dead	-17.6	+15.2	-37.7	+13.3	-57.2	+10.9	-49.1	+3.9	-21.4	+3.9	-3.7	+3.9	+4.1	+3.9	+6.9	+3.9
Eorth P.	+14.5		+17.7		+11.3		$+3.3$	+2.5	+ 1.3	2.5	+0.4	+2.5	-0.6	+2.5	-0.8	+2.5
sub-totol	-3.1	+1	-20.0	+13.3	-4	+10.9	-45.8	+6.4	-20.1	+6.4	-3.3	+6.4	+3.5	+6.4		
Live	$+2.2$	-0.2	+4.6	- 0.5	+ 7.0	- 0.4	+ 9.6	-0.1	$+11.4$	+0.6	+12.4	+1.1	+12.2	+ 1.3	+11.1	+1.9
Liver	-	+	-1	+2.7	-30.7	+2.	-31.0	+2.0	-20.8	+1.9	-1	7	-4.8	+1.4	-1.2	+0.1
Temp.	-3.2	$+0.5$	-6.7	+	-1	+0.5	-11.4	+0.7	-9.2	+0.7	-	+0.7	-4.4	+0.7	-2.0	+0.7
Temp. fall	+	-0	+8.	-0.6	+13.1	-0.6	$+14.7$	-0.9	+11.9	-0.9	+9.0	-0.9	+5.7	-0.9	+2.6	-0.9
Maxitofolt Mox.Total-										$\begin{aligned} & +6.1 \\ & +9.0 \end{aligned}$					19.8	29
								I2R				P		R		16R
Loading	M	N														
Dead	$+3.5$	+3.9	- 5.3	+3.9	-20.9	$+3.9$	-45.7	+ 3.9	-82.8	+ 3.9		+24.1		+25.6		$+27.1$
Earth P.	-0	+2	+0.4	+2.5	+ 1.9	+2.5	+ 3.5	+2.5	+ 5.8	+2.5						
Sub-fotal	+3.1	+				+6.4										
Live +	+10.8	+ 1.6	+10.7	+1.	+10.3	+0.8	$+8.2$	$+0.5$	$1+6.0$	$+0.4$	$+24.2$	$+2.2$		+2.2		$+2.2$
Live -		$+0.6$	-10.0	+1.4	-20.4	+1.4	-31.5	+ 1.3	-44.4	+1.4	-24.2	$+2.2$	-15.0	+2.2	-6.2	$\left\lvert\, \begin{aligned} & +2.2 \\ & +2.2 \end{aligned}\right.$
Temp. pise	+0.9	+0.7	$1+z$	+0.7	+6.8	+0.7	$\begin{array}{r} +9.7 \end{array}$	+0.7	$+13.1$	$+0.7$		-1.1		-1.1		$\mid-1.1$
Ternp foll	-1.2	-0.9	-4.6	-0.9	-8.7	-0.9	-12.5	-0.9	-16.9	-0.9		$+1.4$		$+1.4$		$+1.4$
Max.Totalt Max. Total-	+148	+8.7	$\begin{array}{r} +9.4 \\ -19.5 \\ \hline \end{array}$	$\begin{aligned} & +8.2 \\ & +6.9 \end{aligned}$	-48.	+6.9	6.2	+6.8		. 9	$\begin{aligned} & +24.2 \\ & -24.2 \end{aligned}$	$\begin{aligned} & +25.2 \\ & +25.2 \end{aligned}$	$\begin{array}{r} +15.0 \\ -15.0 \\ \hline \end{array}$	$\begin{aligned} & +26.7 \\ & +26.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +6.2 \\ -6.2 \\ \hline \end{array}$	$\begin{aligned} & +28.2 \\ & +28.2 \end{aligned}$

Table $1 x$

Note that the thicknesses t used in the obove table and for the actual structure are slightly less than mos assumed in the foregoing design calculations. The dead loads and frame constants would be slightly Colculain of reinforcement for point 8: o be corried : Ne' $7100 \times 368=2720$ Moment of resistonege $12 \times 49 \times 400 \times 9.6 .226000$ 70 be corried by additiond! sieel :
Nofe that smaller value fork would give lorger A_{s}^{\prime} and smolker As.

134 THEORY AND DESIGN OF DOUBLE-SPAN BRIDGE

Fig. 55.

I36 THEORY AND DESIGN OF DOUBLE-SPAN BRIDGE

Application of Double-Span Rigid-Frame Bridges

The illustration at the end of this chapter shows the adaptation of the double-span bridge to dual highways. The modern tendency to separate opposing traffic, wherever possible, by means of a separation strip, is bringing the construction of double-span bridges to the fore.

See Chapter XI for discussion in regard to rigid-frame bridges restrained at the footings.

34th Street grade separation on the Mount Vernon Memorial Highway in Virginia. Courtesy of U. S. Bureau of Public Roads.

CHAPTER X

THE THEORY AND DESIGN OF SKEWED ARCH OR FRAME BRIDGE

General Discussion.-The design of skewed bridges is constantly assuming more importance as the needs of modern traffic are better appreciated. It is little short of criminal nowadays to permit crooked alignment of a through highway, approaching a bridge, in order to avoid skew in the structure; and many existing structures will have to be replaced in the near future in order to eliminate blind curves, originally introduced to permit the construction of a square bridge. A particular reason for avoiding skewed bridges of the solid barrel-arch type has been the fact that several failures convinced conservative engineers that the skew introduced certain forces that were not generally recognized. Some engineer mathematicians realized that the skew arch demanded special consideration, and for many years various attempts were made to solve the problem but without success.

The difficulty lay in the fact that they were dealing with forces in space whereas the edifice of structural analysis has been reared upon uni-planar mechanics. The practical engineer who risked a skewed arch design was accustomed to analyze a unit strip parallel to the main axis as he would a square arch element and assume that the skew arch was a composition of a number of such strips or elements. The error of such an assumption may be made apparent by a homely illustration. Cut from a piece of cardboard a skew slab abcd as indicated in Fig. 57, and support it upon two triangular scales or like supports along lines $e-f$ and $g-h$ so that the ends cantilever beyond the supports. Apply a load
in the middle. The acute corners will rise off the supports, showing that the load tends to travel the shortest distance to the supports and the slab deforms so that the elements of curvature are visibly perpendicular to the unsupported edges. Now, with the load still applied, press down on the

Fig. 57. cantilevered ends of the cardboard until the slab is horizontal along the supports. The slab is so constrained that the elements of curvature are visibly parallel to the supported edges of the slab and the load is obviously traveling in the skew direction to the supports instead of in the shortest direction. The restraint introduced in the second case is an element of design which should be considered. Skew arch action is analogous.

If the fixed skew arch ring proper is adequately secured to abutments of sufficient mass to resist the skew effects, the loads will travel parallel to the skew; if not, incipient failure will cause the loads to travel a shorter distance to the abutments and complete failure may result. In the twohinged skew arch the skew forces must be resisted at the hinges. In the skew rigid frame, the legs act as abutments for the top of the frame and are of sufficient mass so that usually little transverse reinforcement is required. In heavily skewed bridges of long span relative to width, the tendency of the acute corners to rise must be examined.

The general proposition may thus be stated as follows: The skew arch is a structure containing forces which cannot generally be made parallel to a single plane; they must therefore be analyzed in three dimensions instead of two as for the right arch. The skew of the structure introduces forces and moments which either do not exist at all in the right arch or are present in a small degree.

Before proceeding with the discussion, a system of reference axes for working in three planes will be adopted. As in a right arch, the horizontal axis perpendicular to the
abutments is called the X axis, and the vertical axis, the Y axis. The axis parallel to the abutment (not used for the right arch) is called the Z axis. Each axis is perpendicular to the other two and each of the three planes formed by the axes is perpendicular to the other two. The $X Z$ plane which is the horizontal plane in which both the X and Z axes lie is perpendicular to the $Y Z$ plane and to the $X Y$ plane; the latter is the vertical plane perpendicular to the abutments, and the plane in which all forces and reactions in a right arch are assumed to lie. A moment couple about any particular axis lies in a plane parallel to the plane in which the other two axes lie.

Fig. 58.
In Fig. 58 is represented a two-hinged skew arch with its reactions due to any load. The general directions of the X, Y and Z axes are shown, but the most convenient points of origin will be indicated later on. The total vertical reactions R_{ν} are the same as for a simple beam of the same span, and of a width equal to the skew width of arch. The total horizontal reactions R_{s} are equal to each other
and depend upon the elastic and geometric properties of the arch. If the analysis of this arch is to be general, the assumption must be made that reactions R_{y} and R_{x} are not uniform along the abutments but in general as shown in Fig. 58; that is, variable and unsymmetrical about the center line of the abutment. This condition as to reaction R_{x} may be represented by placing reaction R_{x} at the center of the abutment and introducing a moment or couple M_{ν} equal to $R_{x} e$ about the Y axis. Likewise the condition as to reaction R_{ν} may be represented by placing reaction R_{ν} at the middle of the abutment and introducing a moment or couple M_{x} equal to $R_{\nu} e^{\prime}$ about the X axis. It is also seen that the two horizontal reactions R_{x} form a coup.'. which tends to rotate the structure as a whole. To resist this tendency, the two cross shears R_{s} are called into play and form a couple which balances in part the moment produced by the two reactions R_{x}.

The moment M_{x} was illustrated by the cardboard skew slab experiment, in which the tendency of the acute corners to rise off the supports was shown. A moment reaction like M_{x} in Fig. 58 was required to resist this tendency.

In general terms the five reactions in a skew two-hinged arch are set up by the tendency of the unrestrained structure to deflect and rotate in all directions and in all planes when subjected to load. The abutments are free to rotate at the real or assumed hinges; therefore no resisting moments are set up to compensate. The tendency of the abutments to deflect along the X axis is resisted by reactions R_{x} (horizontal thrust as in the right arch) and the tendency to deflect along the Z axis is resisted by reactions R_{x}. The tendency of the abutments to rotate about the X axis is resisted by moment M_{x} and the tendency to rotate about the Y axis is resisted by moments M_{v}. The tendency of the abutments to deflect along the Y axis is resisted by reactions R_{ν}.

Fixing the footings affects the skew arch in the same manner as it does the right arch; the tendency to rotate about the Z axis is resisted by a counter moment, and there
are therefore six reaction components instead of five as in the hinged structure.

The magnitude of the reactions for any given condition of loading is found by deflection calculations, applying the principles heretofore demonstrated, as will be shown in a numerical example.

Once the reactions are determined, the stresses existing at any section may be calculated from considerations of equilibrium. Reactions R_{v} and R_{x} produce moments, shears and thrusts in the vertical planes perpendicular to the Z axis-the stresses met with in the right arch. Reactions R_{z} produce shear parallel to the Z axis. Reaction moments M_{y} and M_{x} produce torsion in the vertical and horizontal portions of the arch, respectively. Reactions R_{ν} with moment arms along Z axis and reactions R_{z} with moment arms along the Y axis produce torsion in the horizontal sections of the arch. Reactions R_{x} with moment arms along the Z axis produce torsion in the vertical sections of the arch. Torsion in the inclined sections of the arch is produced by combinations of all the torsion moments. The torsion moments in turn produce vertical shears in the $Y Z$ plane, which are small and may be neglected. They also produce horizontal shears parallel to the Z axis which must be combined with the shears due to reaction R_{2}. A moment about the Y axis is also developed by all the reactions and reaction moments parallel to the $X Z$ plane. This moment, though large numerically, is resisted by the entire arch acting as a horizontal beam between reaction supports; the width of the arch is the depth of the beam, therefore the stresses produced are very small. This horizontal moment about the Y axis may then be neglected as far as the horizontal portion of the arch is concerned. In all cases, as in the analysis of any other structure, the external forces have their effect on the numerical values of the stresses outlined above.

The first complete solution for the reactions in a skew
fixed arch appeared as a paper by J. Charles Rathbun (then of the University of Washington) in the Transactions, 1924, of the American Society of Civil Engineers. His pioneer mathematical work was afterward verified by the classical three-dimensional deformeter analysis of Professor George E. Beggs of Princeton University. Subsequently Professor Rathbun extended his method of analysis to the two-hinged arch or frame bridge for the Westchester County Park Commission. Based upon this theory, several skew arch and frame bridges have been designed and built, up to 50 degrees skew. The following exposition of Professor Rathbun's theory is by Richard M. Hodges, designer for the Westchester County Park Commission.

Derivation of Equations.-It has been shown in the foregoing discussion that a skewed hinged arch or frame structure under load develops five reaction components at each abutment. As in the case of the double-span squareframe bridge, the supports are assumed to be so altered by the removal of redundant reactions that the structure becomes a simple span beam, as indicated in Fig. 59. In this case the redundant reactions are R_{x}, R_{x}, M_{x} and M_{v}, all at the right support, R_{v} being the simple span reaction. Because this transformed structure is statically determinate, the stresses in all parts of the structure due to any given loading may be found by the laws of static equilibrium. Likewise, the linear and angular deflections at the right support may be calculated. The redundant reactions are now assumed to be applied in such manner that the linear and angular deflections due to them are equal and opposite to the deflections in the transformed structure. In other words, the total resultant deflection in any direction at the right support with all forces acting is equal to zero. The fundamental general equations used in this derivation are mathematical expressions of the above statement.

This is the same general principle followed in finding the reactions for the double-span frame. Attention is called
to the general discussion of algebraic sign conventions in Chapter IV. The same convention of signs is used here as applied in the design of the fixed-end frame and the doublespan frame.

In accordance with the convention of signs used in the foregoing work, all moments causing tension along the intrados are considered positive. In the case of the skewed frame, all moments about the z axis, corresponding to the moments occurring in rectangular structures, are governed by the same convention; but it is necessary to consider, in addition, moments about the v axis (the torsional moments) which also enter into the equations for the unknown reactions. The positive direction of moments about the v axis, and also the positive directions of all other forces and moments acting at P, are in the directions shown in Fig. 59. All redundant reactions at the right support are assumed to be directed as shown in the figure. Unit thrusts and couples are in each case assumed to act in the directions of the corresponding reactions.

All substitutions in the general deflection equations, to obtain the final equations, are made with due regard to the signs of the moments caused at P by the reactions acting as assumed, and by the direction of the external loading under consideration. In making numerical substitutions in the final equations, it is only necessary to take care of the proper signs of terms containing trigonometrical functions of the angle ϕ. After solution of the equations, the true directions of the reactions are established in each case by their signs. If positive they are in the directions originally assumed, and, if negative, they are in the opposite directions.

The internal stresses at any section (such as P, Fig. 59) may be represented for the sake of simplicity by a system of external forces and moments exerted by the portion of the arch to the left of the cut section on the portion of the arch to the right of the cut section. These forces and reactions must be such as to keep the portion of the arch
to the right of the cut section in equilibrium under the applied loading and the reactions at right support. The forces and moments representing the internal stresses at P are $T_{u}, T_{v}, T_{z}, M_{u}, M_{v}$ and M_{z}, acting along the three axes

Fig. 59.
u, v and z perpendicular to each other and intersecting at P. As will be seen by referring to the figures, the axis v is tangential to the neutral surface at P and in plane perpendicular to the abutments; the axis u is perpendicular to the neutral
surface at P; and the axis z is horizontal and parallel to the abutments. Axes u and v (while always remaining in a vertical plane) change in direction according to the location of P. Axis z is in the same direction for any location of P, and for the special case when P is at the right support, axis z becomes the line of action of reaction R_{z}.

The best way to avoid difficulty in skew arch analysis is to obtain, in the beginning, a clear idea of the various axes and the moments and forces acting. This can be done only by a close study of the figure.

The moment M_{u} and the thrust T_{u} are shown dotted, indicating that they exist, although they have been neglected in the computations.

The quantity $F=\frac{b t^{3}}{3 \cdot 58^{3}}$, used in the calculations, is the factor of torsion; an empirical quantity which is analogous to the polar moment of inertia. For further information, the reader is referred to Bulletin 3, Faculty of Applied Science and Engineering, School of Engineering Research, University of Toronto. All other symbols and quantities used in the analysis and in the computations are defined in Fig. 59 and Table I.

The slide rule is sufficiently precise for all the numerical work in the following tables, excepting the solution of the simultaneous equations in Table II. Here it is advisable to use the calculating machine.

REACTIONS FOR TWO-HINGED SKEWED ARCH

By inspection of the diagram, general expressions may be written for $M_{v}, M_{u}, M_{z}, T_{v}, T_{u}$ and T_{v}, respectively, in terms of the loading and the unknown reaction components. Since M_{u} and T_{u} may be neglected-see text-expressions for these quantities have been omitted.

For Vertical Loading as Indicated on Diagram

$$
\begin{aligned}
M_{z}= & R_{y} x-W\left(x-x^{\prime}\right)-R_{x} y=M_{0}-R_{z} y ; \\
M_{v}= & R_{x} \sin \phi \epsilon x-R_{z} u+M_{x} \cos \phi-M_{y} \sin \phi \\
& +R_{y} \cos \phi \epsilon x-W \cos \phi \epsilon\left(x-x^{\prime}\right) \\
= & R_{x} \sin \phi \epsilon x-R_{z} u+M_{x} \cos \phi-M_{y} \sin \phi \\
& +M_{0} \cos \phi \epsilon ; \\
T_{v}= & -R_{y} \sin \phi+W \sin \phi+R_{x} \cos \phi=V_{0} \sin \phi \\
& +R_{x} \cos \phi ; \\
T_{s}= & R_{z}
\end{aligned}
$$

In which $M_{0}=$ moment for simple beam of right span l;
In which $V_{0}=$ shear for simple beam of right span l.
The above equations for vertical loading can be made to apply to the horizontal earth pressure loading shown on diagram ($30 \mathrm{lb} . / \mathrm{sq} . \mathrm{ft}$./ft. depth) without rewriting by making the following substitutions:

For simple span moment M_{0} in expression for M_{s} : substitute $R_{\nu} x-5 h^{3}$

For $M_{0} \cos \phi$ in expression for M_{0} :
substitute $R_{\gamma} x \cos \phi-15 h^{2} \sin \phi\left(x-x^{\prime}\right)$
For $V_{0} \sin \phi$ in expression for T_{0} :
substitute- $R_{v} \sin \phi-15 h^{2} \cos \phi$
Nots.-All terms underlined above are to be dropped in considering any point to the right of location of applied loading.

Derivation of Equations for Redundant Reactions

Consider the deflections at right support due to moments $M_{\text {: }}$ and M_{0} at any section such as P in diagram. (Deflections due to M_{u} and to the thrusts T_{s}, T_{w} and T_{v} are comparatively small and may be neglected.)

Let $M_{z}=$ moment at P about z axis due to all forces acting;
$M_{0}=$ moment at P about v axis due to all forces
acting;

$$
\begin{gathered}
m_{0(x)}=\underset{\text { moment at } P \text { about } v \text { axis due to unit thrust }}{\text { at right reaction along } R_{z} ;} \text {; }
\end{gathered}
$$

$m_{0(\theta)}=$ moment at P about v axis due to unit thrust at right reaction along R_{z};
$m_{\text {voas })}=$ moment at P about v axis due to unit couple at right reaction along M_{x};
$m_{\text {v(ov) }}=$ moment at P about v axis due to unit couple at right reaction along M_{ν};
$m_{z(t)}=$ moment at P about z axis due to unit thrust at right reaction along R_{x};
$m_{s(x)}=$ moment at P about z axis due to unit thrust at right reaction along R_{z};
$m_{t(0 x)}=$ moment at P about z axis due to unit couple at right reaction along M_{z};
$m_{z(0))}=$ moment at P about z axis due to unit couple at right reaction along M_{ν};
$G=$ shearing modulus of elasticity;
$\epsilon=$ tangent of the skew angle;
$s=$ a division of the arch axis;
$k=$ ratio of modulus of elasticity for direct stress to modulus for shear $=\frac{E}{G}$.

The total deflections at right support along the lines of action of each of the unknown reaction components, due to all forces acting, are equal, respectively, to zero.

That is:
I. $\frac{s}{G} \sum \frac{M_{0} m_{0(x)}}{F}+\frac{s}{E} \sum \frac{M_{2} m_{2(x)}}{I}=0$
II. $\frac{s}{G} \sum \frac{M_{0} m_{0(2)}}{F}+\frac{s}{E} \sum \frac{M_{2} m_{z(2)}}{I}=0$
III. $\frac{s}{G} \sum \frac{M_{r} m_{v(o x)}}{F}+\frac{s}{E} \sum \frac{M_{z} m_{2(0 x)}}{I}=0$
IV. $\frac{s}{G} \sum \frac{M_{v} m_{v(0 v)}}{F}+\frac{s}{E} \sum \frac{M_{z} m_{2(0 v)}}{I}=0$

Referring to Fig. 59 and to page 146 :
M_{v} (for vertical loading) $=R_{x} \sin \phi \epsilon x-R_{z} i t$
$+M_{x} \cos \phi-M_{\nu} \sin \phi+M_{0} \cos \phi \epsilon$
M_{z} (for vertical loading) $=-R_{x} y+M_{0}$
M_{v} (for horizontal loading) $=R_{x} \sin \phi \epsilon x-R_{z} u$
$+M_{x} \cos \phi-M_{y} \sin \phi$
$+\left[R_{\gamma} x \cos \phi-15 h^{2} \sin \phi\left(x-x^{\prime}\right)\right] \epsilon$
M_{z} (for horizontal loading) $=-R_{x} y+R_{\nu} x-5 h^{3}$.

$$
\begin{array}{ll}
m_{v(x)}=\sin \phi \epsilon x ; & m_{v(z)}=-u ; m_{v(o x)}=\cos \phi ; m_{v(0 v)}=-\sin \phi ; \\
m_{z(x)}=-y ; \quad m_{z(z)}=0 ; \quad m_{z(o x)}=0 ; \quad m_{z(v)}=0 .
\end{array}
$$

Substituting above values in equations I, II, III and IV, simplifying cancelling and collecting terms, the final equations are obtained as follows:

$$
\begin{aligned}
& \text { I. } R_{x}\left(\epsilon^{2} \kappa \sum \frac{x^{2} \sin ^{2} \phi}{F}+\sum \frac{y^{2}}{I}\right)-R_{z} \epsilon \kappa \sum \frac{u x \sin \phi}{F} \\
& +M_{x} \in \kappa \sum \frac{x \sin \phi \cos \phi}{F}-M_{y} \in \kappa \sum \frac{x \sin ^{2} \phi}{F} \\
& =-\epsilon^{2} \kappa \sum \frac{M_{0} \sin \phi \cos \phi x}{F}+\sum \frac{M_{0} y}{I}
\end{aligned}
$$

II. $R_{x} \in \sum \frac{u x \sin \phi}{F}-R_{z} \sum \frac{u^{2}}{F}+M_{x} \sum \frac{u \cos \phi}{F}$

$$
-M_{v} \sum \frac{u \sin \phi}{F}=-\epsilon \sum \frac{M_{0} u \cos \phi}{F}
$$

$$
\text { III. } \begin{aligned}
R_{z} \epsilon & \sum \frac{x \sin \phi \cos \phi}{F}-R_{z} \sum \frac{u \cos \phi}{F}+M_{x} \sum \frac{\cos ^{2} \phi}{F} \\
& -M_{\nu} \sum \frac{\sin \phi \cos \phi}{F}=-\epsilon \sum \frac{M_{0} \cos ^{2} \phi}{F}
\end{aligned}
$$

$$
\text { IV. } R_{x} \epsilon \sum \frac{x \sin ^{2} \phi}{\bar{F}}-R_{z} \sum \frac{u \sin \phi}{F}+M_{x} \sum \frac{\sin }{\phi \cos \phi} \frac{F}{F}
$$

$$
-M_{v} \sum^{\sin ^{2} \phi} \bar{F}=-\epsilon \sum^{-M_{0} \sin \phi \cos \phi} \underset{F}{F}
$$

Note that left-hand members of above equations apply to any loading. Right-hand members of equations as above given apply particularly to vertical loading, for which $M_{0}=$ simple span moment. For horizontal earth pressure use substitutions given on page 148. For temperature reactions substitute for right-hand members of equations I, II, III and IV, respectively, the terms:

$$
\begin{gathered}
+\frac{E_{c t l}}{s} ;-\frac{E_{\epsilon c t l}^{\kappa s}}{\kappa s} \circ ; \text { and } 0 .\left(t^{\circ} \text { rise }\right) \\
(c=\text { coefficient of expansion })
\end{gathered}
$$

Equations as given are in final form for numerical substitution. All summations are to be carried through entire arch. Summations in left-hand members of equations are constant summations; once made they will apply for all loadings. Summations in right-hand members are variable summations and must be made separately for each loading and each position of influence loads. All symbols and quantities are as shown in Fig. 59 and explained in text.

Design of Sections.-The method for designing sections explained in the following text is substantially that proposed originally by Professor Rathbun in 1926 and later explained in detail in his paper in Proceedings, American Society of Civil Engineers for April, 1931. The procedure can be readily understood by following through the tabulated calculations: Figure 65 shows the forces acting on any
cut section as found from the preceding analysis, and the transformation of these forces into directions parallel to the assumed directions of the two systems of reinforcement.

The transformed forces having been determined, the final step is to design the two reinforcement systems independently, using for each system the two forces acting in the direction considered. The forces used for the longitudinal system are the direct moment M_{l} and the direct thrust T_{l}. The forces used for the transverse system are the torsion moment M_{t} and the shear T_{t}. The longitudinal system is designed for flexure and compression in the same way as for a rectangular arch and needs no explanation. The transverse system is designed for a combination of torsional and direct shear in accordance with the method proposed by Professor Rathbun, which will be found clearly illustrated and explained in the tabulations. The general method may be briefly summarized as followṣ:

The direct transverse shear, at the location considered, is distributed parabolically across the width of the arch, and in the same way as vertical shear is distributed along the depth of a simple beam. The maximum intensity, three halves of the average unit shear, is at the center line of the arch and is constant throughout the depth.

The maximum torsional shear is found by Merriman's formula, $v=9 M_{t} \div 2 b t^{2}$ for elongated rectangular shafts, which is used in this connection in preference to St. Venant's formula simply because it is more severe. The maximum torsional shears exist at the top and the bottom across the center line of the arch, and in opposite directions; the vertical distribution being triangular, as shown in diagram accompanying Table XIX. The direct shear and torsional shear acting across the center line of arch at the section considered are combined, and the capacity of the plain concrete (30 lb . per sq. in.) is deducted. Transverse reinforcement is then designed to take the remainder by a method analogous to that followed for designing vertical
stirrups for an ordinary concrete beam whose depth is the width of bridge and whose width is the depth of arch.

Figure 59 indicates the positive directions of M_{v} and T. at any section. Whenever M_{v} and T_{s} are of the same sign they work together to cause shearing stress at the extrados and against each other in causing shearing stress at the intrados; and conversely, when they are of different sign they combine to cause shearing stress at intrados and oppose each other in causing shearing stress at the extrados. After making the transformation the same effects hold true for M_{t} and $T_{\text {t }}$.

This leads to the following rule, which is based on the positive directions of M_{v} and T_{s} as previously assumed:
(I) When v_{t} and v_{c} are of the same sign, add to obtain resultant shear at extrados and subtract to obtain resultant shear at intrados.
(2) When v_{t} and v_{1} are of different sign, add to obtain resultant shear at intrados and subtract to obtain resultant shear at extrados.

The algebraic sign of the resultant shear is not significant in view of the type of reinforcement used. Therefore in Table XVIII the signs are dropped as soon as they have served their purpose of determining the resultant shears top and bottom.
DIAGIRAM SHOWING RIGHT RNOLE PROUECTION OFRPRMELORDINE,

TABLE I.-FRAME CONSTANTS

TABLE II.-SOLUTION OF SIMULTANEOUS EQUATIONS

TABLE II.-SOLUTION OF SIMULTANEOUS EQUATIONS-Continued

Equations	Vertical Load at Point No.			Earth Pressure Left	Temperature Stresses
	6R	8R	10R		
Adding Equation A to Equation B: $-0.6317 M_{y}$ $\cdots+M_{y}$	$=+0.2894$ $=-0.4581$	$=-0.0359$ $=+0.0568$	$=-0.2714$ $=+0.4296$	$\begin{aligned} & =-\quad 306.3^{8} \\ & =+\quad 485.01 \end{aligned}$	$\begin{aligned} & =+933.5 \\ & =-1477.8 \end{aligned}$
Substituting value of $M_{\boldsymbol{y}}$ in Equation A, and solving:. . . Mx.	$=-0.4016$ $=+0.1798$	$=-0.9685$ $=-0.0223$	$=-0.5354$ $=-0.1686$	$\begin{array}{ll}= \pm & 266.93 \\ =- & 190.37\end{array}$	$\begin{aligned} & =+886.0 \\ & =+580.0 \end{aligned}$
	$=-0.2218$	$=-0.9908$	$=-0.7040$	$=+\quad 76.56$	$=+1466.0$
Sabstituting values of M_{x} a and M_{y} in Equation I and solving:	$=+0.1569$ $=+0.0022$ $=-0.0076$	$= \pm 0.3004$ $= \pm 0.0002$ $=-0.034^{2}$	$= \pm 0.3906$ $=-0.0021$ $=-0.0243$	$\begin{array}{rrr}=+ & 111.83 \\ =- & 2.33 \\ =+ & 2.64\end{array}$	$\begin{array}{lr} =+ & 11.6 \\ =+ & 50.5 \\ =+ & 7.0 \end{array}$
	$=+0.1515$	$=+0.2660$	$=+0.3642$	$=+112.14$	$=+69.2$
Substituting values of $\widehat{R_{x},} M_{x}$ and M_{y} in Equation I and solving:	$\begin{aligned} & =+0.1648 \\ & =+0.0020 \\ & =+0.0022 \\ & =+0.0391 \end{aligned}$	$\begin{aligned} & =+0.3139 \\ & =+0.0002 \\ & =+0.0011 \\ & =+0.0686 \end{aligned}$	$\begin{aligned} & =+0.4023 \\ & =+0.0018 \\ & =+0.0008 \\ & =+0.09 .39 \\ & \hline \end{aligned}$	$\begin{array}{lr}=+108.95 \\ =+ & 2.09 \\ =-1 & 0.08 \\ =+ & 28.92\end{array}$	$\begin{array}{rrr}=+ & 10.1 \\ =+ & 17.8 \\ =- & 1.6 \\ =- & 6.3\end{array}$
	$=+0.2021$	$=+0.3838$	$=+0.4988$	$=+139.88$	$=+20.0$

For earth pressure substitutions, see Tables VI \& VII. For temperature substitutions, see Table VIII.

[^7]TABLE III．－VERTICAL INFLUENCE LOAD AT 6R

muod			
－	\％		
	${ }^{\text {¢ }}$	10	
	$\square \operatorname{son}_{80}$		
	ϕ us		
	${ }_{\text {¢ mis }}^{6}$		
	${ }^{4}$		
	＇ж	WF	
	${ }_{6}^{4} \times 1$		
	＊	 	
	${ }^{\circ} 9800{ }^{\text {\％K }}$		
	\％os		
	m＊		
	${ }_{\text {¢ }}^{\text {giso }}$	000088°	\％\％
			\％
	$\frac{1}{10 \%}$		㝘菏
			年
	$\frac{d}{\text { cos }}$		－
		\％	~内以 N M
भ10		\％a\％ํํ	

DESIGN OF SKEWED ARCH BRIDGE

TABLE IV.-VERTICAL INFLUENCE LOAD AT 8R

158 DESIGN OF SKEWED ARCH BRIDGE
TABLE V.-VERTICAL INFLUENCE LOAD AT ioR

Fic. 6i.

Fig. 62.

DESIGN OF SKEWED ARCH BRIDGE
TABLE VI.-EARTH PRESSURE ON LEFT
Quantities for Substitution in Equations (See Table II)

葆	$M_{0}=R_{y} x-5 h^{2}$			$M^{\prime}{ }_{0}=R_{y} \cos \phi x-15 h^{2} \sin \phi\left(x-x^{\prime}\right)$			Right-Hand Members of Equations I, II, III, IV					荷
	$R_{\boldsymbol{y}} \mathbf{x}$	$5 h^{2}$	M_{0}	$R_{y} \boldsymbol{\operatorname { c o s }} \phi \boldsymbol{x}$	$\begin{aligned} & 15 h^{2} \sin \phi \\ & \times\left(x-x^{\prime}\right) \end{aligned}$	$M^{\prime}{ }_{0}$	$\frac{M_{0} y}{I}$	$\frac{M^{\prime}{ }_{0} \sin \phi}{F}$	$\frac{M^{\prime}{ }_{0} u}{F}$	$\frac{M^{\prime}{ }_{0} \cos \phi}{F}$	$\frac{M^{\prime}{ }_{0} \sin \phi x}{F}$	
IR	0		0	\bigcirc		0	0	0	0	0	0	IR
2R	0		0	0		0	0	0	0	0	0	2R
3R	0		0	\bigcirc		-	\bigcirc	0	0	0	0	3R
4 R	0		0	-		-	0	0	0	0	0	4R
5R	$+5.5$		$+5.5$	$+5.3$		$+5.3$	+ 0.2	-0.0009	$+0.06$	$+0.004$	-0.004	5R
6R	+10.9		+10.9	+10.7		+10.7	+ 1.0	-0.0028	+ 0.26	+ 0.015	- 0.024	6R
7R	$+16.4$		+16.4	+16.2		+16.2	+ 3.1	-0 0068	+ 0.82	+ 0.046	- 0.088	7 R
8R	+21.9		+21.9	+21.7		+21.7	$\begin{array}{r} 3.4 \\ +\quad 8 \end{array}$	-0.0130	+ 2.18	+ 0.119	- 0.224	8R
9R	+27.3 +28	:	+27.3 +23	+27.2 +22.8		+27.2 +27.8	$\begin{array}{r} 18.3 \\ +\quad 1 \end{array}$	-0.0158	$+\quad 5.03$ $+\quad 8.75$	+ 0.258	- 0.340	9R
IOR	+32.8	\%	+32.8 +38.3	+32.8	\%	+32.8	$+\quad 30.7$	-0.0112	+ 8.75	$+0.433$	- 0.289	IOR
Iol	+38.3 +	\%	+38.3 +33.7	+38.3 ++43.6	\%	+38.3	$+\quad 35.7$ $+\quad$	+o.0131	+ 10.93	+ 0.504	+ 0.394	IoL
915	+43.7	Z	+43.7 +49.	+43.6	Z	+43.6	+ 29.3	+0.0253	+ 9.43	+ 0.414	$+0.870$	9L
8 L	+49.2		+49.2	+48.8		+48.8	$\begin{aligned} & 18.8 \end{aligned}$	+0.0292	+ 6.53	+ 0.266	+ 1.130	8L
7 L	+54.7		+54.7	+54.0		+54.0	$+\quad 10.5$	+0.0227	+ 3.98	$+0.151$	+ 0.977	7 L
6 L	+60.2		$+60.2$	+58.9		+58.9	+ 5.6	+o 0156	$+\quad 3.31$ $+\quad 1$	+ 0.082	+ 0.738	6L
5L	+65.6		$+65.6$	+63.7		+63.7	$+\quad 2.8$	+0.0104	$+\quad 1.35$ $+\quad 1.14$	+ 0.043	$+\quad 0.738$ $+\quad 0.837$	5 L
4 L	$+71.0$		+71.0	+50.2		$+50.2$	$+\quad 1.8$	+0.0156	+ 1.14	+ 0.016	+ 0.870	4L
3 L	$+71.0$	+7.2	$+63.8$	-	-	-	$+\quad 1.5$	-	-	-	0	3 L
2 L	+71.0	+19.0	+52.0	0	0	\bigcirc	+ 1.6	\bigcirc	\bigcirc	-	0	2 L
1 L	$+71.0$	+39.4	$+31.6$	\bigcirc	\bigcirc	\bigcirc	+ 1.1	0			0	IL
Σ	\ldots	\ldots	…....	1770.4 $+\quad 1$	+0.0814	$\begin{array}{r} \\ +\quad 52.77 \\ \hline\end{array}$	+ 2.351	$\begin{array}{r} \\ +\quad 4.547 \\ \hline\end{array}$	Σ
$\frac{\frac{W H^{2}}{2} \cdot \frac{H}{3}}{55.9}=\frac{5 \mathrm{H}^{2}}{55.9}=1.27 \mathrm{kips}$						* 80 L * 80 $\boldsymbol{\epsilon} \boldsymbol{\Sigma}$ * $80 \epsilon^{2} \kappa \Sigma$	$+13632.0$	$+5.09$	$+3298.0$	$+146.9$	$+593.0$	

[^8]TABLE VII.-EARTH PRESSURE ON LEFT

Final Moments and Thrusts															
Poi	$M_{v}=R_{x} \sin \phi \in x-R_{y} u+M_{x} \cos \phi-M_{y} \sin \phi+M^{\prime}{ }_{0}{ }_{\epsilon}$						$M_{z}=M_{0}-R_{x} y$			$T_{v}=-R_{y} \sin \phi-15 h^{2} \cos \phi+R_{x} \cos \phi$				T_{z} R_{z}	Points
	$R_{x} \sin \phi x \epsilon$	$R_{z} u$	$M_{x} \cos \phi$	$M_{y} \sin \phi$	$M^{\prime}{ }_{0}{ }^{*}$	M_{v}	$M_{0}{ }^{*}$	$R_{x}{ }^{\nu}$	M_{z}	$R_{y} \sin \phi$	${ }_{1} 5 h^{2} \cos \phi$	$R_{x} \cos \phi$	T_{v}		
1 R	-	-	-	-485	-	+ 485	-	602	-602	-101. 6		\bigcirc	+1016		IR
2R	-	-	-	-485	-	+ 485	-	1204	-1204	-101.6		-	+1016		2 R
$3^{\mathbf{R}}$	-	-	-	-485	-	+ 485	-	1806	-1806	-101.6		-	+101. 6		${ }_{3} \mathrm{R}$
${ }_{4} \mathrm{R}$	-	1360	54.1	-3+3	-	- 963	-	2408	-2i08	- 720		98.8	+170.8		4 R
5 R	- 109	1870	74.4	- 113	+ $33{ }^{1}$	-146I	440	2560	-2120	- 23.7		135.8	+159.5		${ }_{5} \mathrm{R}$
6R	- 175	1930	75.2	- 90	+ 669	-1271	870	2685	-1815	- 18.9		137.1	+156.0		6R
7 R	- 208	1980	75.7	- 72	+1013	-1027	1310	2780	-1460	- 15.1		$13^{8.2}$	+153.3		7R
8 R	- 204	2050	76.0	- 53	+1355	- 770	1750	2850	- 1100	- 11.1		138.8	+149.9		8 R
9 R	- 143	2180	76.4	- 30	+1698	- 519	2180	2910	- 730	- 6.2		1394	${ }^{+1456}$		9R
10 R	- 73	2270	76.6	- 13	+2050	- 203	2620	2940	- 320	- 2.6		1397	+1423	$\stackrel{7}{1 i}$	IoR
10 L	+ 85	2440	76.6	+13	+2390	+ 99	3050	2940	+ 110	+ 2.6	寅	1397	+137.1	*	roL
gL.	+ 229	$25+0^{\circ}$	76.4	+ 30	+2720	+ 455	3490	2910	+ 580	+ 6.2	$\stackrel{\square}{4}$	1394	+133.2		9L
8 L	+ 460	2740	76.0	+ 53	+3050	+ 793	3930	2850	+1080	+ 11.1		$13^{88} 8$	+127.7		8 L
7 L	+695	2920	75.7	+ 72	+3370	+1149	43^{80}	2780	+1600	+ 15.1		$13^{8.2}$	+123.1		7 L
6.	+959	3100	. 75.2	+90	+3680	+1524	4810	2685	+2125	+ 18.9		137.1	+118.2		6 L
5 L	+1313	3320	74.4	+113	+3980	+1934	5250	2560	+2690	+ 23.7		1358	+112.1		${ }_{5}$ L
4.	+4310	5800	54.1	+343	+3140	+1361	5680	2408	+3272	+ 72.0		98.8	+ 26.8		4 L
3 L	+6100	6270		+485	,	- 655	5110	1806	+3304	+101.6		8,	-101.6		3L
2 L	+6100	6270	-	+485	-	- 655	4160	1204	+2956	+101.6		-	-101. 6		2 L
IL	+6100	6270	-	+485	-	-655	2530	602	+1928	+101.6		-	-101. 6		IL

DESIGN OF SKEWED ARCH BRIDGE

TABLE VIII.-TEMPERATURE STRESSES $\pm 50^{\circ} \mathrm{F}$.
Values for substitution in equations (see Table II):

$$
\begin{aligned}
& \frac{+E c t l}{s}=\frac{288,000 \times 0.0000065 \times 50 \times 55.9}{4.3}=+1215 \mathrm{kips} / \mathrm{square} \mathrm{ft} . \\
& \frac{-E c t l}{s}\left(\frac{\epsilon}{\kappa}\right)=-1215\left(\frac{0.7813}{2.67}\right)=-356 \mathrm{kips} / \text { square feet }
\end{aligned}
$$

$$
\begin{array}{ll}
M_{\nu}=-1478 & R_{z}=+69.3 \\
M_{x}=+1466 & R_{x}=+20.0
\end{array}
$$

Point	$M_{\nu}=R_{x} \sin \phi \epsilon x-R_{z} u+M_{x} \cos \phi-M_{\nu} \sin \phi$					$M_{z}=-R_{x} y$	T_{v}	T_{x}
	$R_{z} \sin \phi \in x$	$R_{z} u$	$M_{x} \cos \phi$	$M_{y} \sin \phi$	M_{v}	$-R_{x} y$	$R_{x} \cos \phi$	R_{z}
1 R	\bigcirc	\bigcirc	\bigcirc	$+\mathrm{I}_{4} \mathrm{~F}^{8}$	-1478	-86	\bigcirc	
2R	\bigcirc	\bigcirc	\bigcirc	+1478	-1478	-172	-	
3 R	a	\bigcirc	\bigcirc	$+1478$	-1478	-258	\bigcirc	
4 R	\bigcirc	838	1036	+1044	- 846	-344	14	
${ }_{5} \mathrm{R}$	-16	1155	1425	+ 344	- 90	-366	19	
6R	- 25	1190	1436	+ 275	- 54	-3^{84}	20	
7 R	- 30	1225	1448	+ 219	- 26	-398	20	
8R	- 29	1266	1455	+ 161	-	-409	20	
9R	- 21	1343	$1+62$	+ 90	+	-416	20	
10R	II	${ }^{1} 397$	1466	$+3^{8}$	+ 20	-420	20	+
10L	+ 12	1503	1466	-3^{8}	+ 13	-420	20	II
9L	+ 33	1572	1462	- 90	+ 13	-416	20	20\%
8L	+ 66	1690	1455	- 161	- 8	-408	20	
7 L	+100	1800	1448	- 219	- 33	-393	20	
6L	+137	1910	1436	- 275	- 62	-384	20	
5L	+188	2050	1425	- 344	- 93	-366	19	
4L	+617	3570	1036	- 1044	-873	-344	14	
3L	+872	3870	0	-1478	-1520	-259	-	
2 L	+872	3870	\bigcirc	-1478	-1520	-172	\bigcirc	
ıL	+872	3870	\bigcirc	-1478	-1520	-86	\bigcirc	

Mom	facto	rs	are				m		produt									
Point	Load	$\begin{aligned} & \text { Poir } \\ & 2 R \end{aligned}$	$\begin{aligned} & \text { int } \mathrm{IR}, \\ & R, 3 R \end{aligned}$		int 4 R		int 5 R	Poin	6R	Poin	${ }_{7} 7 \mathrm{R}$	Poin	t 8R	Poin	9R	Poin	IoR	Point
		$\boldsymbol{M F}$	M	MF	\boldsymbol{M}	MF	M											
12	288	0	\bigcirc	0	0	-	-	-	-	-	-	-	-	-	-	\bigcirc	0	IR
2 R	175	-	-	\bigcirc	0	-	-	-	-	-	\bigcirc	-	-	-		-	-	2R
3R	199	0	-	-	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	3R
4 R	510	\bigcirc	0	\bigcirc	0	\bigcirc	-	0	\bigcirc	4 R								
\%R	361	-0.4	- 144	-1.3	- 469	+1.8	+650	+1.1	+ 397	+o. 8	+ 289	+0.6	+217	+0.3	+108	+0.1	$+36$	${ }_{5 R}$
6 R	289	-0.4	- 116	-2.3	-665	-0.3	- 87	+2.3	+665	+1.7	+ 491	+1.2	+347	+0.7	+202	+o. 1	+ +	6 R
7R	237	-0.3	- 71	-3.2	- 758	-2.1	- 498	+o. 3	+ 71	+2.8	+664	+2.0	+474	+1.1	+261	+o. 3	+71	7R
	196	-0.1	- 20	-3.9	-765	-3.5	- 686	-1.5	- 294	+0. 5	+ 98	+2.8	+548	+1.8	$+353$	+0.6	+118	8R
9 R	170	+0.2	+ 34	-4.3	-731	-4.6	- 782	-2.9	- 493	-1.2	- 204	+o 5	+85	+2.7	+459	+1.3	+221	9 R
10R	155	+0.6	+ 93	-4.5	- 698	-5.3	-822	-3.8	- 589	-2 4	- 372	-0.9	-140	+0.7	+109	+2.5	+388	10 R
IoL	:55	+1.1	+171	-4.1	- 636	-5.3	-822	-4.2	-651	-3.1	- 481	-1.7	-264	-0.4	-62	+1.0	+155	10 L
9 L	170	+1.5	+ 255	-3.5	- 595	-4.8	-816	-4.1	- 697	-3.2	- 544	-2.0	-340	-1.0	-170	+o. 1	+ 17	9 L
	196	+1.6	+314	-2.8	- 549	-4.1	- 805	-3.6	- 705	-2.9	- 568	-2.0	-392	-1.2	-235	-0.3	- 59	8 L
7 L		+1.4	+ 332	-2.2	- 52 I	-3.3	- 782	-2.9	-687	-2.4	- 568	-1.7	-403	-1.1		-0 4	- 95	
6 L	289	+1.1	+318	-1.4	- 405	-2.3	- 665	-2.0	- 578	-1.7	- 491	-13	-375	-0.9	-260	-0.4	-116	6 L
5 L	361	+o.6	+216	-0.7	- 253	-1.2	- 433	-1.0	- 361	-09	- 325	-0 7	-252	-0.5	-181	-0.2	- 72	5L
4 L	510	-	-	-	-	\bigcirc	-	\bigcirc	-	-	-	-	-	-	-	\bigcirc	-	4 L
3L	199	-	-		-		-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	3 L
2 L	175	-	-	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	${ }^{2}$
1 L	288	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-	-	\bigcirc	-	-	1L
Σ			$+1382$		-7045		-6548		-3922		-2011		-495		+323		+693	Σ

[^9]Moment factors（MF）are scaled from the influence line diagram．The product of load and moment factor will give the actual dead load

茄			W
	＂	0000 $t++t+t++1111$	c + +
	5		
	＂	$0000 \stackrel{\otimes}{\infty} \underset{\sim}{\infty} \underset{\sim}{\sim}$	∞ + + +
	4		
	\geqslant		べ
	$\underset{y}{c}$		
	－	000 。 $++++1 \begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	筑
	$\underset{y}{4}$		
	\＄	$+++111111111111$	$\begin{gathered} 0 \\ \text { o } \\ \text { i } \\ \hline \end{gathered}$
	4		
	\％	$+11111111111$	com
	\pm		
$\begin{gathered} \text { ag } \\ \text { I } \\ \text { B } \\ \hline 10 \end{gathered}$	N		$\begin{gathered} N \\ \underset{N}{0} \\ 1 \\ 1 \end{gathered}$
	$\stackrel{1}{4}$		
	－		$\begin{gathered} 08 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ \hline \end{gathered}$
	－		
	－		$\begin{aligned} & \hline \infty \\ & \hline 060 \\ & 1 \\ & \hline \end{aligned}$
	嵒		
$\begin{aligned} & \text { 쓱 } \\ & \text { 릉 } \\ & \text { ㄹ } \end{aligned}$	矢	－○ ○ ○ 111111111111	\＃
	C		
\％			
－豆			N

TABLE XI．－DEAD LOAD THRUSTS T_{v}

$\stackrel{*}{4}$	䓂			ω
	号	H		＊
$\vec{\square}$		$\stackrel{*}{4}$		
플	$\begin{aligned} & \text { ä } \\ & \text { a } \\ & \text { an } \end{aligned}$	5		$\stackrel{\sim}{\infty}$
$\underset{\sim}{\Perp}$		先		
家	．	H	－○○○	\％
ᄂ		$\stackrel{A}{4}$	$\left.0000 \begin{array}{c} 80 \\ 0 \\ 0 \end{array}\right)$	
	$\begin{aligned} & \text { 쏟 } \\ & \text { : } \\ & \text { an } \end{aligned}$	$\stackrel{H}{ }$		¢
5		＊	○○○○	
－	淙	H	－○○○®にす！	\％
－		\＆		
$\overline{\mathrm{O}}$	$\begin{aligned} & \text { 品 } \\ & \text { 范 } \end{aligned}$	H		\％
تِ		$\stackrel{8}{4}$	－○○○	
	$\begin{aligned} & \text { a } \\ & \stackrel{H}{0} \\ & \text { a } \end{aligned}$	H		\％
弟				
淢	$\begin{aligned} & \text { d } \\ & \stackrel{y}{0} \\ & \text { a } \end{aligned}$	$\stackrel{H}{ }$		E
		\＆	$0088 \text { Nowns }$	
el	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{a}{0} \\ & \hline \end{aligned}$	\cdots		¢్ల్
ت̈		㮩	 \qquad	
	$\begin{aligned} & \text { 品 } \\ & \text { 总 } \end{aligned}$	H		$\stackrel{\text { ¢ }}{\sim}$
$\begin{aligned} & \text { E } \\ & \frac{0}{6} \end{aligned}$		会	8888 のが心 	
U	\％			
E	劲			ผ

TABLE XII．－CONCENTRATED LIVE LOAD MOMENTS M_{v} AND NORMAL THRUSTS T_{z}
Moment Factors（ $M F$ ）and Thrust Factors（TF）are read directly from Influence Line Diagrams．The product of load and moment factor gives actual moments M_{v} ，and the product of load and thrust factor gives actual thrusts T_{z} ．Note that the position of the load system must be the same as for maximum M_{s} moments（see Table XIII）since the latter controls．in all cases．

．Load					Point 4 R，Load B at $10 \frac{1}{3} \mathrm{~L}$				Point 5R，Neg．，Load C at 6R				Point 5R，Pos．，Load B at ${ }_{5}$ R				Point 6R，Neg．，Load B at roL			
	$\mathbf{1 2 F}$	M	TF	T	$\boldsymbol{M F}$	\boldsymbol{M}	$T F$	T	$M F$	M	TF	T	MF	M	$T F$	T	$M F$	\boldsymbol{M}	$T F$	\boldsymbol{T}
A 48 B 192 C 192 D $\mathbf{3 4 4}$	+1.6 +0.8 -0.4 0.0	1777 +154 -14 0	0.28 0.37 0.08 0.0	13 71 3 0	-2.8 -4.4 -1.2 0.0	-134 -845 $-\quad 43$ 0	0.28 0.37 0.08 0.0	13 71 3 0	-3.3 -5.1 -0.3 0.0	-158 -980 $-\quad 11$ 0	0.22 0.36 0.16 0.0	11 69 6 0	0 +1.9 0.0 0.0	0 +365 0 0	0.0 0.08 0.0 0.0	0 15 0 0	-3.2 -4.2 0.0 0.0	-154 -807 0 0	0.25 0.37 0.0 0.0	12 71 0 0
Total + Total－		＋217		87 $\therefore .$.		－1022		87		－ 1149		86		$+365$		15		－96I		83
Load	Point 6R，Pos．，Load B at 6R				Point 7 R，Neg．，Load A at ${ }_{7} \mathrm{~L}$				Point ${ }_{7} \mathbf{R}$, Pos．，Load B at ${ }_{7} \mathbf{R}$				Point 8R，Neg．，Load B at 91L				Point 8R，Pos．，Load B at 8R			
	MF	M	TF	T	$M F$	M	TF	T	MF	M	TF	T	$M F$	M	$T F$	T	$M F$	M	TF	T
	0.0 +2.4 0.0 0.0	0 +46 r 0 0	0.0 0.15 0.0 0.0	0 29 0 0	-2.5 -3.2 0.0 0.0	-120 -615 0 0	0.23 0.36 0.0 0.0	11 69 0 0	+0.4 +2.8 0.0 0.0	+19 +538 0 0	0.04 0.22 0.0 0.0	2 42 0 0	-1.6 -2.0 0.0 0.0	-77 $-38+$ 0 0	0.21 0.36 0.0 0.0	10 69 0 0	+0.9 +2.8 0.0 0.0	+43 +538 0 0	0.11 0.29 0.0 0.0	5 56 0 0
Total＋ Total－	－	＋461		29		－735		80		$+557$		44		－ 46		79		＋581		6r

$\stackrel{\square}{0}$	＊	※ミ00	∞
\％	A	Nomo	
$\begin{gathered} \dot{\hat{b}} \\ \dot{Q} \\ \dot{\alpha} \end{gathered}$	7		＋
	\％	＋	
$\stackrel{\rightharpoonup}{2}$	H	N $\mathrm{F}^{0} 0$	！\ddagger
莺	䋯		
$\left\|\begin{array}{c} 80 \\ 4 \\ 20 \\ 0 \\ 0 \end{array}\right\|$	\pm	meoo 11	$\begin{aligned} & \vdots \infty \\ & \vdots \\ & 1 \end{aligned}$
	5	M ${ }^{+}$	
$\begin{aligned} & \underset{\alpha}{a} \\ & \stackrel{a}{\alpha} \end{aligned}$	5	9000	昼
$\begin{array}{\|l\|l\|} \hline \text { 罗 } \end{array}$	A		
$\begin{aligned} & \hat{d} \\ & \dot{\sim} \\ & \dot{\alpha} \end{aligned}$	7		＋
$\begin{gathered} 9 \\ \frac{a}{2} \\ \dot{a} \end{gathered}$	年		
슿	H	9000	$\stackrel{\sim}{*}$
$\begin{array}{\|c} \text { 心́ } \\ \text { E } \\ \hline \end{array}$	${ }_{\text {R }}$		
感	\pm		：
	$\stackrel{4}{4}$		
	\％	か응․ \qquad ＜	$\begin{aligned} & +1 \\ & \text { 哥荡 } \end{aligned}$

TABLE XIII.-CONCENTRATED LIVE LOAD MOMENTS M_{z} AND NORMAL THRUSTS T_{v}
Moment Factors (MF) and Thrust Factors (TF) are read directly from Influence Line Diagrams. The product of load and moment factor gives actual moments M_{ℓ}, and product of load and thrust factor gives actual thrusts T_{v}.
Stresses for 10R Neg. are neglected since Uniform Live Load Stresses are larger.

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{Lond} \& \multicolumn{4}{|l|}{Point IR, Load B at roll} \& \multicolumn{4}{|l|}{Point 2R, Load B at rołL} \& \multicolumn{4}{|l|}{Point \({ }^{\text {R }}\), Looad B at rof \({ }^{\text {L }}\) L} \& \multicolumn{4}{|l|}{Point \({ }^{\text {R }}\), Load B at \({ }_{\text {col }} \mathbf{L}\) L} \& \multicolumn{4}{|l|}{Point 5R, Pos., Load B at 5R} \\
\hline \& MF \& \(\boldsymbol{4}\) \& TF \& \(\boldsymbol{T}\) \& \(\boldsymbol{M F}\) \& \(\boldsymbol{M}\) \& TF \& \(T\) \& \(\boldsymbol{M F}\) \& \(M\) \& TF \& \(T\) \& MF \& M \& TF \& \(T\) \& MF \& M \& TF \& \(T\) \\
\hline \multirow[t]{2}{*}{} \& \[
\begin{array}{r}
-1.7 \\
-2.2 \\
-0.4 \\
0.4
\end{array}
\] \& \& \[
\begin{aligned}
\& 0.30 \\
\& 0.50 \\
\& 0.92 \\
\& 0.0
\end{aligned}
\] \& \[
\begin{gathered}
14 \\
96 \\
33 \\
\hline
\end{gathered}
\] \& \[
\begin{array}{r}
-3.3 \\
-4.4 \\
-0.9 \\
0.0
\end{array}
\] \& \[
\begin{array}{r}
-158 \\
-845 \\
-32 \\
0 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 0.30 \\
\& 0.50 \\
\& 0.92 \\
\& 0.0
\end{aligned}
\] \& \[
\begin{gathered}
14 \\
96 \\
33 \\
0
\end{gathered}
\] \& \[
\begin{array}{r}
-4.9 \\
-6.6 \\
-1.3 \\
0.0
\end{array}
\] \& \[
\begin{aligned}
\& 2335 \\
\& -\quad 1255 \\
\& -\quad 47 \\
\& \hline \quad 0
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.30 \\
\& 0.50 \\
\& 0.92 \\
\& 0.02 \\
\& 0.0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
14 \\
96 \\
33 \\
0 \\
\hline
\end{gathered}
\] \& \[
\begin{array}{r}
-6.6 \\
-8.7 \\
-1.7 \\
0.0 \\
\hline
\end{array}
\] \& \[
\begin{gathered}
-\quad 3178 \\
-\quad 668 \\
-\quad 6 \mathbf{1} \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 0.49 \\
\& 0.72 \\
\& 0.73 \\
\& 0.0
\end{aligned}
\] \& \[
\begin{gathered}
24 \\
{ }_{36}^{36} \\
26 \\
0
\end{gathered}
\] \& \[
\begin{array}{r}
0.0 \\
+2.3 \\
0.0 \\
0.0
\end{array}
\] \& \[
\begin{array}{r}
\circ \\
+44{ }^{\circ} \\
\circ \\
0
\end{array}
\] \& \[
\begin{aligned}
\& 0.0 \\
\& 0.18 \\
\& 0.0 \\
\& 0.0 \\
\& \hline 0
\end{aligned}
\] \& + \\
\hline \& \& - 518 \& \& 143 \& \& - 2035 \& \& 143 \& \& -1547 \& \& 143 \& \& -2046 \& \& 186 \& \& +442 \& \& 35 \\
\hline \multirow[t]{2}{*}{Lond} \& \multicolumn{4}{|l|}{Point 5R, Neg., Load C at 6R} \& \multicolumn{4}{|l|}{Point 6R, Pos., Load B at 6R} \& \multicolumn{4}{|l|}{Point 6R, Neg., Load B at 10L} \& \multicolumn{4}{|l|}{Point 7R, Pos., Load B at 7 R} \& \multicolumn{4}{|l|}{Point 7R, Neg., Load A at 7L} \\
\hline \& \(\boldsymbol{M F}\) \& \(M\) \& TF \& \(T\) \& MF \& M \& TF \& \(T\) \& MF \& \(\boldsymbol{M}\) \& TF \& \(T\) \& MF \& M \& TF \& \(T\) \& MF \& \(M\) \& TF \& \(T\) \\
\hline \& (1) \(\begin{array}{r}\text { - } 4.5 \\ -7.1 \\ 0.0 \\ 0.0 \\ 0.0\end{array}\) \& \[
\begin{array}{r}
216 \\
-\times 363 \\
0 \\
0 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 0.34 \\
\& 0.56 \\
\& 0.39 \\
\& 0.0
\end{aligned}
\] \& \[
\begin{array}{|c}
16 \\
107 \\
14 \\
\hline 4 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
0.0 \\
+3.4 \\
0.0 \\
0.0
\end{array}
\] \& \[
\begin{array}{r}
0 \\
+653 \\
0 \\
0 \\
\hline
\end{array}
\] \& \[
\left\lvert\, \begin{aligned}
\& 0.0 \\
\& 0.26 \\
\& 0.0 \\
\& 00
\end{aligned}\right.
\] \& \[
\begin{array}{r}
\circ \\
50 \\
\circ \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
-4.2 \\
-5.7 \\
0.0 \\
0.0 \\
0.0
\end{array}
\] \& \[
\begin{array}{r}
201 \\
-1094 \\
0 \\
0 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 0.38 \\
\& 0.57 \\
\& 0.0 \\
\& 0.0 \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{|c}
18 \\
18 \\
0 \\
0 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
+0.6 \\
+4.2 \\
0.0 \\
0.0 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
\hline+89 \\
+806 \\
0 \\
0 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 0.04 \\
\& 0.33 \\
\& 0.0 \\
\& 000
\end{aligned}
\] \& 1
\({ }^{2}\)
0
0
0
0 \& \[
\left.\begin{array}{r}
-3.0 \\
-4.2 \\
0.0 \\
0.0
\end{array} \right\rvert\,
\] \& \[
\begin{array}{r}
-144 \\
-806 \\
0 \\
0 \\
0
\end{array}
\] \& \begin{tabular}{ll}
O \& \\
\hline \& 34 \\
0 \& 34 \\
0 \& 55 \\
0 \& 0 \\
0 \& 0
\end{tabular} \& \(\begin{array}{r}16 \\ 106 \\ \text { 10 } \\ 0 \\ \hline\end{array}\) \\
\hline \[
\underset{\text { Total }}{\text { Total }} \pm
\] \& \& -1579 \& \& 137 \& \& +653 \& \& 50 \& \& -1295 \& \& 127 \& \(\cdots\) \& \begin{tabular}{|}
+835 \\
\(+\ldots\)
\end{tabular} \& \& \({ }^{66}\) \& \& -950 \& \& 122 \\
\hline \multirow[t]{2}{*}{Loed} \& \multicolumn{4}{|l|}{Point 8R, Pos., Load B at 8R} \& \multicolumn{4}{|l|}{Point 8R, Neg., Load B at 91L} \& \multicolumn{4}{|l|}{Point 9R, Pos., Load B at 9R} \& \multicolumn{4}{|l|}{Point 9R, Neg., Load C at \({ }^{6} \mathbf{7} \mathrm{R}\)} \& \multicolumn{4}{|l|}{Point roR, Pos., Load B at roR} \\
\hline \& MF \& \(\boldsymbol{M}\) \& TF \& \(T\) \& MF \& M \& TF \& \(T\) \& 3FF \& M \& TF \& \(T\) \& \(\boldsymbol{M F}\) \& M \& TF \& \(T\) \& MF \& M \& TF \& \(T\) \\
\hline \& \(\begin{array}{r}\text { +1.3 } \\ +1.0 \\ \text { O. } \\ 0.0 \\ 0.0 \\ \hline\end{array}\) \& \[
\begin{array}{r}
+62 \\
+68 \\
0 \\
0 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 0.13 \\
\& 0.40 \\
\& 0.0 \\
\& 0.0
\end{aligned}
\] \& \(\begin{array}{r}\text { r } \\ \\ 7 \\ 7 \\ 0 \\ 0 \\ \hline\end{array}\) \& \(\begin{array}{r}2.0 \\ -2.7 \\ 0.0 \\ 0.0 \\ \hline\end{array}\) \& \[
\begin{array}{|r}
\hline-96 \\
\hline 518 \\
0 \\
0 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 0.3 \mathrm{II} \\
\& 00.52 \\
\& 00.0 \\
\& 0.0
\end{aligned}
\] \& \[
\begin{array}{r}
15 \\
100 \\
0 \\
0
\end{array}
\] \& \[
\begin{array}{r}
+\mathbf{1} .3 \\
+3.7 \\
0.0 \\
0.0 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
62 \\
+770 \\
0 \\
0 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 0.24 \\
\& 0.46 \\
\& 0.0 \\
\& 0.0
\end{aligned}
\] \& \begin{tabular}{c}
12 \\
88 \\
88 \\
0 \\
0 \\
\hline
\end{tabular} \& \[
\begin{array}{r}
-1.0 \\
-1.2 \\
0.0 \\
0.0
\end{array}
\] \& \[
\begin{array}{|r}
\hline 4^{88} \\
-23 \mathrm{I} \\
0 \\
0 \\
0
\end{array}
\] \& \[
\begin{aligned}
\& \circ \\
\& 24 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& 12
90
0
0
0 \& \[
\begin{array}{r}
+0.9 \\
+3.3 \\
0.0 \\
0.0
\end{array}
\] \& \[
\begin{array}{r}
+43 \\
+633 \\
0 \\
0
\end{array}
\] \& 0.32
0.51
0.0
0.0
0 \& 15

98
0
0
0

\hline $$
\underset{\text { Totalal }}{\text { Total }} \pm
$$ \& \& +830 \& \& 83 \& \& - 614 \& \& 115 \& \& + 772 \& \& 100 \& \& - 279 \& \& 102 \& \& +676 \& \& 113

\hline
\end{tabular}

TABLE XIV.-SUMMARY OF MAXIMUM MOMENTS (KIP-FT.) AND NORMAL THRUSTS (KIPS)

Moments M_{z} and Thrusts $\boldsymbol{T}_{\boldsymbol{y}}$																				
Loading.	IR		2R		3R		4 R		5R		6R		7 R		8R		¢R		10R	
	M	T	M	T	M	T	M	T	M	\boldsymbol{T}	M	T	M	T	M	T	M	T	M	\boldsymbol{T}
Dead. Earth pressure, left.		$\begin{array}{r} 2580 \\ 102 \end{array}$	$\begin{array}{\|l\|} \hline-6878 \\ -1204 \\ \hline \end{array}$	$\begin{array}{r} 2292 \\ 102 \\ \hline \end{array}$	$\begin{array}{r} 10,368 \\ -\quad 1,806 \\ \hline \end{array}$	$\begin{aligned} & 2117 \\ & 102 \end{aligned}$	$\begin{array}{r} 13,762 \\ -\quad 2,408 \\ \hline \end{array}$	2063 171	$\begin{aligned} & -8,523 \\ & -2,120 \end{aligned}$	$\begin{array}{r} 1068 \\ 160 \end{array}$	$\begin{array}{\|} -4870 \\ -1815 \\ \hline \end{array}$	$\begin{array}{r} 947 \\ 156 \end{array}$	\|r ${ }^{-2031}$	877 153	- 226	835 150	+958 730	$\begin{aligned} & 812 \\ & 146 \end{aligned}$	+1261 $-\quad 320$	794 143
Sabtotal. Earth pressure, righ	$\begin{array}{r} -4096 \\ +1928 \end{array}$	$\left\lvert\, \begin{array}{r} 2682 \\ -102 \end{array}\right.$	$\begin{array}{r} -8082 \\ +2956 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{r} 2394 \\ -102 \end{array}\right.$	$\begin{array}{r} -12,174 \\ +\quad 3,304 \\ \hline \end{array}$	$\begin{array}{r} 2219 \\ -102 \\ \hline \end{array}$	$\begin{array}{r} -16,170 \\ +\quad 3,272 \\ \hline \end{array}$	$\begin{array}{r} 2234 \\ 27 \\ \hline \end{array}$	$\left\|\begin{array}{r} -10,6.43 \\ +\quad 2,690 \end{array}\right\|$	$\begin{array}{r} 1228 \\ 112 \end{array}$	$\left\|\begin{array}{r} -6685 \\ +2125 \end{array}\right\|$	1103	+3491 +1600	$\begin{array}{r} 1030 \\ 123 \end{array}$	+1326	985 128	+ 228 +580	958 134		937 137
Subtotal........Concentrated Concentrated Temperature$\left\{\begin{array}{l}\text { Rise. } \\ \text { Fah. }\end{array}\right.$	- 2168	2580 143 0	$\left\lvert\, \begin{aligned} & -5126 \\ & \hdashline \ldots \ldots 35 \\ & \mp \quad 172 \end{aligned}\right.$	$\begin{gathered} 2292 \\ \hdashline \mathbf{1 4 3} \\ 0 \end{gathered}$		$\begin{gathered} 2117 \\ \cdots \cdots \\ 143 \\ 0 \end{gathered}$	$\begin{array}{r}-12,898 \\ \cdots \cdots \\ \hline\end{array}$	$\begin{array}{r} 2261 \\ 186 \\ \pm 14 \end{array}$	$\left\|\begin{array}{rr} - & 7,953 \\ \pm & 442 \\ \hdashline & 1,579 \\ \mp & 366 \end{array}\right\|$	$\begin{array}{r} 1340 \\ 35 \\ 137 \\ \pm \quad 19 \end{array}$	$\left\lvert\, \begin{aligned} & -4560 \\ & +\quad 653 \\ & -1295 \\ & \mp \quad 384 \end{aligned}\right.$	$\begin{array}{r} 1221 \\ 50 \\ 127 \\ \pm 20 \end{array}$	(1891 +885 950 \mp	1153 66 122 ± 20	$-\quad 246$ +830 $-\quad 614$ \mp	1113 83 114 ± 20	$\left\|\begin{array}{l} +808 \\ + \\ + \\ -279 \\ \mp \\ \hline \end{array}\right\|$	$\begin{array}{r} 1092 \\ 100 \\ 102 \\ \pm 20 \end{array}$	$\left\|\begin{array}{c} +r 051 \\ +676 \\ \cdots \\ \mp 420 \end{array}\right\|$	$\begin{array}{r}1074 \\ 113 \\ \cdots \\ \hline 10\end{array}$
$\xrightarrow{\text { Maximum }}$ Matal +	2600	2723	-5989	2435	-10,159	2260	-15,288	2461	-9,898	1496	-6239	1368	-3239	1295	$\left\|\begin{array}{r} +992 \\ -1268 \end{array}\right\|$	$\begin{aligned} & 1176 \\ & 1247 \end{aligned}$	+1996	1172	+2147	1167
Moments M_{y} and Thrusts T_{z}																				
	1R		2R		3R		4 R		5 R		6R		7R		8R		9R		10R	
Loading.	M	\boldsymbol{T}	M	\boldsymbol{T}	M	T	M	T	M	T	M	T	M	T	M	T	M	T	M	T
Dead........... . Eart .	$\begin{array}{r} +1382 \\ +485 \\ \hline \end{array}$	594	$\begin{array}{r} +1382 \\ +485 \\ \hline \end{array}$	594	$\begin{array}{r} +1,382 \\ +\quad 485 \\ \hline \end{array}$	594 112	$\begin{array}{r}7,045 \\ -\quad 963 \\ \hline\end{array}$	594	$\begin{array}{r}16,548 \\ -1,46 \mathrm{r} \\ \hline\end{array}$	1124 129		5112	- $\begin{array}{r}\text { - } 2011 \\ -1027 \\ \hline\end{array}$	$\begin{aligned} & 594 \\ & 112 \end{aligned}$	$\left\|\begin{array}{l} -495 \\ -770 \end{array}\right\|$	$\begin{aligned} & \mathbf{5 1 2 4} \\ & \mathbf{1 1} \end{aligned}$	$\left[\begin{array}{r} +323 \\ -\quad 519 \end{array}\right]$	594	$\left\|\begin{array}{c} +693 \\ \pm \quad 203 \end{array}\right\|$	594 112 1
Subtotal. Earth pressure, right	$\begin{array}{r} +1867 \\ -\quad 655 \\ \hline \end{array}$	$\begin{aligned} & 706 \\ & 112 \end{aligned}$	$\left\lvert\, \begin{array}{r} +1867 \\ -\quad 655 \end{array}\right.$	$\begin{aligned} & 706 \\ & \mathbf{x 1 2} \end{aligned}$	$\pm \begin{aligned} & 1,867 \\ & -\quad 655 \end{aligned}$	$\begin{aligned} & 706 \\ & 112 \end{aligned}$	$\begin{array}{r} 18,008 \\ +1,36 \mathrm{x} \\ \hline \end{array}$	$\begin{aligned} & 712 \\ & 112 \end{aligned}$	$\begin{array}{r} -8,009 \\ +\quad 1,934 \\ \hline \end{array}$	$\begin{aligned} & 706 \\ & 112 \end{aligned}$	$\left\|\begin{array}{r} -5193 \\ +1524 \end{array}\right\|$	$\begin{aligned} & 706 \\ & 112 \end{aligned}$	$\begin{array}{r} -3038 \\ +1149 \\ \hline \end{array}$	$\begin{aligned} & 706 \\ & 112 \end{aligned}$	$\begin{array}{r} -1265 \\ +\quad 793 \\ \hline \end{array}$	$\begin{aligned} & 706 \\ & 112 \end{aligned}$	$\left\lvert\, \begin{array}{rr} -196 \\ + & 455 \\ \hline \end{array}\right.$	$\begin{aligned} & 706 \\ & 112 \end{aligned}$	$\begin{array}{r} +\quad 490 \\ +\quad 99 \\ \hline \end{array}$	706 112 818
Subtotal. Concentrated + Concentrated Temperature $\left\{\begin{array}{l}\text { Rise. } \\ \text { Fall }\end{array}\right.$	$\begin{aligned} & +1212 \\ & +217 \\ & \cdots \cdots \cdots \\ & \mp 1500 \end{aligned}$	818 87 $\cdots \quad$. ± 69	+1212 +217 $\cdots \cdots$.	818 87 \cdots ± 69	$+1,212$ + \cdots \cdots	$\begin{array}{r} 818 \\ 87 \\ \hdashline \cdots \\ \pm 69 \end{array}$		$\begin{array}{r} 818 \\ \cdots 87 \\ \pm 69 \end{array}$	$\begin{array}{r} 6,075 \\ +365 \\ -\quad 1,149 \\ \mp \\ \hline \end{array}$	$\begin{array}{r} 818 \\ 15 \\ 86 \\ \pm 69 \end{array}$	$\left\|\begin{array}{r} -3669 \\ \pm \\ \hline \\ \hline \end{array}\right\| 6191$	$\begin{array}{r} 818 \\ 29 \\ 83 \\ \pm \quad 69 \end{array}$	$\left\|\begin{array}{rr} -1889 \\ + & 557 \\ - & 735 \\ \mp & 30 \end{array}\right\|$	$\begin{array}{r} 818 \\ 44 \\ 80 \\ \pm 69 \end{array}$	$\left\|\begin{array}{cc} - & 472 \\ + & 58 \mathrm{I} \\ - & 46 \mathrm{I} \\ \mp & 5 \end{array}\right\|$	$\begin{array}{r} 818 \\ 61 \\ 79 \\ \pm 69 \end{array}$	$\left\|\begin{array}{rr} + & 259 \\ \pm & 377 \\ - & 378 \\ \pm & 10 \end{array}\right\|$	$\begin{array}{r} 818 \\ 77 \\ 72 \\ \pm 69 \end{array}$	$\left\|\begin{array}{lr} + & 589 \\ + & 517 \\ \vdots & 82 \\ \pm & 17 \end{array}\right\|$	818 83 44 ± 69
Maximum total+ Maximum fotal -	+2929	836	+2929	836	+2,929		$\mid-3,529$	974	-7,316	974	-4688	970	-2654	967	$\left\|\begin{array}{l} +114 \\ - \\ -938 \end{array}\right\|$	$\begin{aligned} & 810 \\ & 966 \end{aligned}$	$\mid+786$	826	+1089	832

TABLE XV.-FUNCTIONS OF ANGLE V

Point	$\cos \phi$	$\tan V=$ $\epsilon \cos \phi$	Angle V	$\sin V$	$\cos V$	$\sec V$	$\sec ^{2} V$	Point
1	0	0	0	0	1.000	1.000	1.000	1
2	0	0	0	0	1.000	1.000	1.000	2
3	0	0	0	0	1.000	1.000	1.000	3
4	0.707	0.552	$28^{\circ} 55^{\prime}$	0.483	0.875	1.142	1.305	4
5	0.972	0.759	$37^{\circ} 15^{\prime}$	0.605	0.796	1.256	1.577	5
6	0.982	0.767	$37^{\circ} 30^{\prime}$	0.609	0.793	1.260	1.589	6
7	0.989	0.773	$37^{\circ} 40^{\prime}$	0.611	0.791	1.264	1.597	7
8	0.994	0.777	$37^{\circ} 50^{\prime}$	0.613	0.790	1.266	1.603	8
9	0.998	0.780	$37^{\circ} 55^{\prime}$	0.615	0.788	1.268	1.608	9
10	1.000	0.782	38°	0.616	0.788	1.269	1.610	10

ϕ (see Fig. 59). $V=$ The projection of the skew angle on a plane tangent to the neutral surface at the point considered.

Angle $\alpha<$ Angle V

Angle $\alpha>$ Angle V

Transverse Reinforcement Parallel to Abutments.
Fig. 65.-Transformation of Forces Acting on Cut Section as Calculated, to Forces Acting in Directions Desired for Design of Reinforcement.

Equations

$$
\begin{array}{ll}
T_{l}=T_{v} \sec V & M_{l}=M_{z} \sec V \\
T_{t}=T_{v} \tan V-T_{z} & M_{i}=M_{z} \tan V-M_{v}
\end{array}
$$

The transformations of T_{v} and T_{z} only are indicated on the figures. M_{v} and M_{z} correspond vectorially to T_{s} and T_{v}, respectively; therefore their equations may be written down directly as shown.

Note that V is not the bridge skew angle, but its projection onto a plane tangent to the neutral surface at the point under consideration.
TABLE XVI.-TRANSFORMATION OF MOMENTS AND FORCES. TRANSVERSE STEEL PARALLEL TO ABUTMENTS

Pcint	M_{z}	M_{v}	T_{v}	Tz	$\begin{gathered} M_{\boldsymbol{l}}= \\ M_{z} \sec V \end{gathered}$	$\begin{gathered} T_{l}= \\ T_{v} \sec V \end{gathered}$	$M_{t}=M_{z} \tan V-M_{v}$			$T_{t}=T_{v} \tan V-T_{z}$			Point
							$M_{z} \tan V$	M_{v}	M_{t}	$T_{v} \tan V$	T_{z}	T_{t}	
11	$-2,600$	+ 2,929	2723	836	- 2,600	2723	\bigcirc	+2929	-2929	\bigcirc	836	-836	1
2	- 5,989	+ 2,929	2435	836	$-5,989$	2435	-	+2929	-2929	0	836	-836	2
3	-10,159	+ 2,929	2260	836	$-10,159$	2260	-	+2929	-2929	0	836	-836	3
4	-15,288	$-8,529$	2461	974	-17,500	2820	-8450	-8529	+ 79	1360	974	$+386$	4
5	$-9,898$	$-7,316$	1496	974	-12,440	1880	-7520	-7316	- 204	${ }^{11} 38$	974	+164	5
6	-6,239	$-4,688$	1368	970	$-7,860$	1720	-4790	-4688	- 102	1050	970	+80	6
7	- 3,239	$-2,654$	1295	967	- 4,100	1643	-2500	-2654	+ 154	1000	967	$+33$	7
8	- 1,268	-938	1247	966	- 1,605	1580	-988	-938	- 50	972	966	$+6$	8
8	$+992$	+ 114	1176	810	+ 1,256	1494	$+772$	+114	$+658$	914	810	+104	8
9	+ 1,996	+ 786	1172	826	+ 2,536	1482	+1560	$+786$	+ 774	914	826	+ 88	9
10	+ 2,147	+ 1,089	1167	ε^{32}	+2,730	1486	+1677	+10-9	$+588$	915	832	$+83$	10

Note.-All moments are in kip-feet (1000 ft .-lb.). All thrusts are in kips (1000 lb .). All quantities are for full width of bridge.
TABLE XVII.-DESIGN OF LONGITUDINAL REINFORCEMENT. TRANSVERSE REINFORCEMENT PARALLEL TO ABUTMENTS

Point	$\begin{gathered} \text { Mi } \\ \text { Full } \\ \text { Width, } \\ \text { Kip-Ft. } \end{gathered}$	$M i$ Full Width, Kip-In.	$\begin{gathered} T_{l} \\ \text { Full } \\ \text { Width, } \\ \text { Kips } \end{gathered}$	$m l$ One Foot Width, Kip-In.	t_{l} One Foot Width, Kips	$\begin{gathered} c= \\ \frac{m_{l}}{t_{l}} \\ \text { In. } \end{gathered}$	In.	$d=$ $t-2.5$, In.	$\begin{gathered} c^{\prime}= \\ c+\frac{t}{2}-2.5 \\ \text { In. } \end{gathered}$	$\frac{e^{\prime}}{d}$	$K=$ $\frac{t e^{\prime} e^{\prime}}{b d^{2}}$	$\begin{gathered} f_{c} \\ \text { Lb. } \\ \text { per } \\ \text { Sq. In. } \end{gathered}$	$\begin{gathered} f_{s} \\ \text { Ler } \\ \text { pq. In. } \end{gathered}$	p	A_{s} per Ft. Square Width	Location	Point
1	$-2,600$	- 31,200	2723	- 512	$44 \cdot 7$	11.4	32	29.5	$24 \cdot 9$	0.9	106	6\%0	18,000			Ex.	I
2	- 5,990	- 71,900	2435	-1180	39.8	29.6	42	39.5	48.1	1.2	102	660	18,000	00017	0.81	Ex.	2
3	$-10,160$	-121,900	2260	-2000	37.1	54.0	52	49.5	77.5	1.6	98	640	18,000	00027	1.61	Ex.	3
4	$-17,500$	-210,000	2820	-3450	46.2	74.5	56	53.5	100.0	1.9	135	800	18,000	O 0044	2.83	Ex.	4
5	-12,440	-149,300	1880	-2450	30.8	79.5	48	$45 \cdot 5$	101.0	2.2	125	750	18,000	00047	256	Ex.	5
6	- 7,860	- 94,300	1720	- 1545	28.2	54.7	39	36.5	71.7	2.0	127	760	18,000	00045	1.97	Ex.	6
7	$-4,100$	$-49,200$	1643	-807	26.9	30.0	32	29.5	$43 \cdot 5$	1.5	112	700	18,000	0.0029	1.03	Ex.	7
8	$-1,605$ $+1,256$	- 19,300 $+15,100$	$\begin{aligned} & 1580 \\ & 1494 \end{aligned}$	-316 $+\quad 248$	25.9 24.5	$\begin{aligned} & 12.2 \\ & 10.1 \end{aligned}$	27 27	24.5 24.5	23.2 21.0	$\begin{aligned} & 0.9 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 84 \\ & 7 I \end{aligned}$	$\begin{aligned} & 590 \\ & 525 \end{aligned}$	$\begin{aligned} & 18,000 \\ & \text { 18,000 } \end{aligned}$	00004 0000	0.12 0	$\begin{aligned} & \text { Ex. } \\ & \text { Int. } \end{aligned}$	8
9	+ 2,536	+30,400	1482	+ 499	$24 \cdot 3$	20.5	23	20.5	29.5	1.5	143	800	16,500	0.0038	0.94	Int.	9
10	+ 2,730	+32,800	1486	$+538$	24.4	22.0	21	18.5	30.0	1.6	178	800	10,000	00107	2. 3^{8}	Int.	10

[^10]Note that thicknesses t finally used (to give convenient spacing of reinforcing rods) are slightly larger than originally assumed for analysis.
TABLE XVIII．－TOTAL NET SHEARS FOR DESIGN OF TRANSVERSE REINFORCEMENT．

Point	Unit Shears due to Torsion					Unit Shears due to Direct Shears		Total Unit Shear $v_{t} \pm v_{s}$ Lb．per Sq．In．		Total Net Shear to be taken by Steel Lb．per Sq．In．		Point
	$\begin{gathered} M_{t}, \\ \text { Kip-Ft. } \end{gathered}$	$\begin{gathered} M_{t} \\ \text { Kip-In. } \end{gathered}$	$\frac{t_{3}^{\prime}}{\text { In. }}$	t^{2}	$v_{t}=\frac{9 M_{t}}{2 b t^{2}}$ Lb．per	$\begin{gathered} \boldsymbol{T}_{t} \\ \text { Kips } \end{gathered}$	$\begin{gathered} v_{s}=\frac{1.5 T_{t}}{b t} \\ \text { Lb. per } \\ \text { Sq. In. } \end{gathered}$	Intrados	Extrados	$\underset{v_{2}}{\text { Intrados }}$	$\underset{v_{1}}{\text { Extrados }}$	
1	－2929	$-35,150$	32	1024	F171	-836	－44	127	215	97	185	I
2	－2929	－35，150	42	1764	F100	-836	－33	67	133	37	103	2
3	－2929	－35，150	52	2700	干 65	-836	－27	38	92	8	62	3
4	＋ 79	＋ 948	56	3140	± 2	$+386$	＋12	10	14	\bigcirc	0	4
5	-204	$-2,448$	48	2300	干 5	＋164	＋ 6	11	1	0	\bigcirc	5
6	－ 102	－1，224	39	1521	干 4	＋ 80	$+3$	7	1	\bigcirc	\bigcirc	6
7	＋150	t，1，800	32	1024	± 9	$+34$	$+2$	7	11	0	\bigcirc	7
8	＋658	＋7，900	27	729	± 54	＋104	$+6$	48	60	18	30	8
9	＋ 774	＋9，240	23	529	± 87	＋88	$+6$	81	93	51	63	9
10	$+588$	＋7，060	21	441	± 80	$+83$	$+7$	73	87	43	57	10

Note．$-b$ in above table $=$ width of bridge in direction of transverse reinforcement $=75 \mathrm{ft}$ ．
The concrete is assumed to carry its share of total shear at 30 lb ．per sq．in． TRANSVERSE REINFORCEMENT PARALLEL TO ABUTMENTS

Design of Transverse Reinforcement

The shear distribution diagrams shown in the sketches accompanying Table XIX are drawn to scale for the points at the crown and near the footing and are typical of the diagrams for the remaining points. The direct shear is always small in comparison with the torsional shear, and it rarely occurs, as in the diagram for point I, that the direct shear is greater than the amount of shear assumed to be taken by the concrete alone.

For practical purposes, the design throughout the width of this structure is based on the maximum shears which occur along the center line, and the steel is made the same top and bottom, being calculated for the moment about the neutral axis of the larger of the shear triangles.

Opinions differ as to the correct theory for the design of transverse reinforcement, but there seems to be little disagreement in the final results reached by the several methods proposed. A more rigorous analysis than that given here is unnecessary. The reader is referred to the paper by Professor Rathbun, and the discussions following, which appear in Volume 98 (1933) of the Transactions of the American Society of Civil Engineers: "An Analysis of Multiple Skew Arches on Elastic Piers."

Distribution at Point I

Distribution at Point 10

TABLE XIX.-DESIGN OF TRANSVERSE REINFORCEMENT-RODS PARALLEL TO ABUTMENTS

Point	$\begin{aligned} & t, \\ & \text { in. } \end{aligned}$	Extrados						Intrados						Point
		v_{1}	t_{1}	d_{1}	$d_{1}-$	a_{1}	A_{s}	0_{2}	t_{2}	d_{2}	$d_{2}-$ 3.5	a_{2}	A_{0}	
1	32	185	17.0	20.0	165	14.0	0.90	97	9.0	12.0	8.5	9.0	0.33	I
2	42	103	21.8	28.2	24.7	20.9	0.63	37	7.7	13.8	10.3	II. 2	0. 10	2
3	52	62	24.5	37.3	33.8	29.0	0.44	8	3.0	14.7	11.2	13.7	0.01	3
4	56	\bigcirc		4
5	48	0	. .											5
6	39	\bigcirc				6
7	32	\bigcirc				7
8	27	30	7.5	15.3	11.8	12. 5	0.08	18	4.5	11.7	8.2	10. 5	0.03	8
9	23	63	8.5	12.4	8.9	9. 5	0.19	51	6.8	10.6	7. 1	8.3	0. 14	9
10	21	57	7.5	II. 5	8.0	9.0	0.16	43	5.5	9. 5	6.0	$7 \cdot 3$	0.10	10

t_{1} and t_{2} are scaled from diagram for each point.
$A_{6}=$ required transverse steel area in square inches per foot, width of bridge.

$$
18,000 A_{6}\left(d_{1}-3.5\right)=\frac{v_{1} 1_{1} a_{1}}{2} \times 12 ; \text { or } A_{6}=\frac{1}{3000}\left(\frac{v_{1} t_{1} a_{1}}{d_{1}-3.5}\right) .
$$

Fic. 67.

Permissible Approximations

A study was begun by the Westchester County Park Commission under the direction of Richard M. Hodges to determine what approximations could be made to the exact analysis of skewed arch or frame bridges to reduce the amount of mathematical work; but the study was suspended before the procedure for proportioning the transverse reinforcement was completed. This appeared to be the only unsolved element of the problem. The author, however, feels warranted in making recommendations with respect to the design of concrete rigid-frame bridges up to about 25° skew. Within this limit the skew frame bridge may be designed as one without skew, having a span length equal to the skew span of the actual structure. Nominal transverse reinforcement, such as is used to position the longitudinal reinforcement and knit the structure together laterally, will be adequate to resist the relatively small torsional effects.

METHOD OF DESIGN OF SYMMETRICAL DOUBLE-SPAN SKEW FRAME BRIDGE

By PROFESSOR J. CHARLES RATHBUN
College of the City of New York

Let Fig. 68a represent a double-span skew structure symmetrical about a vertical axis. This can be analyzed for any system of loads provided that one is able to analyze the right span of this structure after certain changes are made in the central post.

First Step. Let us assume that for every load on the right span there is an equal load symmetrically located relative to the central vertical axis. From the nature of this arch every stress and every strain in one arch has its corresponding equal stress and strain in the other. In the central leg these either cancel each other or combine to double their value.

We can therefore obtain a complete solution by considering arch $A B C D$ of Fig. 68b, in which the loads, dimensions, and material are the same as in the right part of Fig. $68 a$ with the exception of the leg $A B$.

As the vertical thrust and moment about the vertical (Y) axis from the two spans combine in the middle leg, the leg should be considered as having half its actual rigidity for such forces.

The two horizontal force components R_{x} and R_{z} of one span are canceled by those from the other, and the same is true for the moments about each of the horizontal axes. Therefore the middle leg should be assumed as infinitely rigid for the forces along, and moments about the X axis and Z axis.

With these changes in the properties of the section $A B$ the arch $A B C D$ may be analyzed by the methods and formulas previously given in this chapter.

Second Step. Let us assume that the loading on the right span is the same but that the loads symmetrically opposite are negative or upward. The solution of this problem will give the same stresses in each arch except that those opposite each other are of opposite sign. This can easily be shown by revolving the structure a half revolution about its vertical axis of symmetry. This gives a complete reversal of stress. The solution indicated is the only one that will give this result.

At B and in the leg $A B$ the vertical force and the moment about the vertical axis will be zero, owing to the fact that forces in one arch are opposite those in the other. However, the horizontal force and the moment about a horizontal axis (each represented by two components) mutually aid each other. This as before can be allowed for in the single arch $A B C D$ by making the section $A B$ infinitely rigid to the first moment and force and of half the actual rigidity to the other two moments and two forces.

With these changes in the properties of $A B$, the arch.
$A B C D$ can again be solved. The resulting stresses in the left arch will be the same except for change in sign.

Third Step. By combining the solutions of these two steps we have the analysis of the symmetrical two-span frame under an unsymmetrical load.

Fourth Step. In an actual bridge structure some loads (such as dead loads) are symmetrically placed and some are not. For the symmetrically placed loads, the procedure outlined as the "First Step" is to be followed. For the unsymmetrically placed loads the procedure outlined as the "First Step" is to be followed using a loading of one half the sum of the loading on the left and right spans. Then the procedure outlined under "Second Step" is to be followed using a loading of one half the difference of the loading on the left and right spans. One need solve for the forces and moments at D only. Adding the two results gives the reactions at the right abutment; while subtracting them gives those at the left. The stress analysis and design from this stage on is the same as previously explained in this chapter for the single-span structure.

It is to be noted that the signs of the reactions at the abutment of the left arch are taken when it is rotated into the position of $A B C D$.

The above solution may be followed for those special cases where the designer feels that the assumption of hinged abutments is unwarranted, by using the formulas and methods of paper 1542 of the ig24 Transactions of the American Society of Civil Engineers for the design of the sections $A B C D$ of Fig. $68 b$.

The more general solution of this problem may be found in paper 1827 of the 1933 Transactions' of the American Society of Civil Engineers. Here the unsymmetrical structure of two or more spans is analyzed by an entirely different method.

Fra. 68.

CHAPTER XI

PRACTICAL POINTS ON DESIGN AND CONSTRUCTION

design of bridges having restraint at the footings

Chapter IV as written for the first edition of this book contains some observations relating to the design of rigidframe bridges without physical hinges at the footings. The results of recent experience, studies, and laboratory tests provide the basis for more definite recommendations for the design of this type of structure. The topic is therefore discussed at more length here as applying at least to both single-span and double-span structures, of the size that would be used for grade separation projects.

Concrete Frame Bridges

In Fig. 38, Chapter VI, a comparison was shown of total maximum moments for fixed-end conditions and for hingedend conditions in a single-span concrete rigid-frame bridge. Excepting for the positive moment in the vertical leg the agreement is very close. It will also be noticed from the calculations for reinforcement that the only practical difference in the final result is that reinforcement is required at the inside face of the vertical legs for assumed fixed-end conditions. If the influence lines for both conditions are superimposed one upon the other it will be seen that, point for point, there is considerable divergence. Nevertheless the total effect of dead load, live load, earth pressure, and temperature change has been found to be nearly the same
for fixed-end and hinged-end conditions for bridges of $40-\mathrm{ft}$. to $60-\mathrm{ft}$. span.

A few comparisons for assumed fixed-end conditions and hinged-end conditions in double-span concrete frame bridges have also been made which show close agreement except for the positive moments requiring reinforcement on the inside faces of the vertical legs. Figure 69 shows the results of one comparison for the critical moments.

In an actual bridge structure, the condition of complete fixity at the footings is rarely realized. For assumed hinge points at the middle of the base some calculated restraint may be introduced by an actual eccentricity of the reaction due to the bearing width of the footing on soil foundation or rock foundation; but this is of negligible amount as was explained in Chapter IV. With pile foundations it is possible that considerable restraint may be introduced by reason of the grip of the footings upon the piles which will necessitate reinforcement at the inside faces of the vertical legs. It is the opinion of the writer that even then it is unnecessary to design for the two extremes of hinged-end conditions and fixed-end conditions or to use physical hinges, which are expensive expedients and entirely superfluous except under extraordinary circumstances.

In laboratory tests made at the University of Illinois * on single-span concrete rigid frames with bases rigidly fixed by mechanicial means, there was a discrepancy between the experimental results and the calculated fixed-end moment at the bases. No cracks were visible above the footings, but it was finally discovered that microscopic cracks had developed just above the footings-such cracks as would be no more damaging to the structure than those occurring in any flexural member at ordinary working stresses. Nevertheless this was sufficient materially to reduce the calculated end

[^11]

Courtesy of Gordon L. Jeppesen, University of Illinois.
Fig. 69.
moments. It thus appears that in an actual structure very small angular changes at the footings due to the elasticity of the soil or to very small yield of piles will be sufficient to minimize restraint at the footings so that it will act like a structure with hinge points near the middle of the base. For concrete rigid-frame bridges of the size usually required for highway grade separation, a calculation for assumed hinged-end conditions only will be adequate, and a good guess can be made of the amount of reinforcement on the inside faces of the vertical legs that will provide for all probable contingencies. The analysis made in Chapter VI for a single-span bridge will be a good guide.

Steel Rigid-frame Bridges.-Steel rigid-frame bridges have been treated in different ways.
I. When very good soil conditions were encountered so that the footings were comparatively narrow (in the longitudinal direction of the bridge), the bases of the girders were anchored to the concrete footings and hinge points were assumed at the bottom of the footing near its center line.
2. When soil conditions required comparatively wide footings and the vertical legs of the girders were embedded in concrete, with the cut-off walls for retaining the approach fill placed in front of the vertical legs of the girders, the bases of the girders were set upon lead plates in pockets formed by angles securely anchored to the concrete footing. Hinge points were assumed, for design purposes, to be at the middle of the girder bases. After the girders were set all interstices in the pockets were filled with bituminous material and added insurance against collection of water was provided by weep holes from the pockets. This arrangement is preferable to the use of pin bearings, which would not be open to inspection after construction.
3. When soil conditions required comparatively wide footings and the vertical legs of the girders were to be permanently exposed, with the cut-off walls for retaining the
approach fill placed back of the vertical legs of the girders, physical hinges (usually of the pin variety) were placed at the bases of the girders.
4. Steel frame bridges have been designed and constructed for fixed-end conditions when for particular reasons massive footings had to be built, the anchorages at the bases of the girders being designed for the calculated fixed-end moment.

The choice of any one of these expedients will depend upon the foundation conditions, the relative cost of fixed-end anchorage or pin bearings for any particular bridge, and the preferences of the designer.

Secondary Effects in Design. - Recommendations are sometimes made to allow, in the design of concrete structures like those illustrated in this book, for such secondary effects as shrinkage and restraint of "side-sway." Plastic yield is also a secondary effect as certain as that of shrinkage but not usually recognized as an element of design. The combined effect of shrinkage, plastic yield, and restraint of side-sway in the structures we are considering is uncertain and not of great importance. In the opinion of the writer all these secondary effects may be neglected unless the designer is governed by specifications to the contrary. The neglect of them is less serious than the neglect of other factors that we are not accustomed to worry about, such as the position of the live load laterally that would give maximum calculated stresses in an arch-like structure. This point is discussed further on. Design calculations are necessarily more or less of a convention for arriving at reasonable proportions for a bridge, which is not a laboratory specimen, so that it will carry expected loads at safe unit stresses and give good service. The simpler these calculations are, the better. Monumental structures may require more accuracy in design than small ones because certain secondary effects may be more pronounced relative to the principal effects. Secondary effects are discussed here so
that the reader may understand their implications and not be disturbed by differences in practice.

Shrinkage.-As the concrete in a structure ages, shrinkage will occur. Its effect will be equivalent to that due to a drop in temperature, but it will be less in a heavily reinforced structure than in one with light reinforcement. A shrinkage coefficient of 0.0002 is sometimes used, which will have a calculated effect equivalent to a drop in temperature of about 30°. The effect of shrinkage, however, will be modified by plastic yield. The two effects are concomitant, and one cannot properly be considered as an element of design without the other. In like manner the effect of seasonal change in temperature will be modified by plastic yield. It is true that over a period of several years plastic yield diminishes until it practically disappears and its relieving effects decrease; but during this period the structural quality of the concrete is improving. Working stresses are based upon the qualities of concrete at an age of 30 days when plastic yield is fully effective.

Finally all calculated stresses are derived by neglecting the considerable amount of tension in the concrete that remains over part of the section of flexural members at the stage of working stresses. This is as it should be, the point to this discussion being that there is a range of uncertainty of structural action so that minor differences in practice are of little significance.

Plastic Yield or Flow.-Under sustained loads, such as the dead loads, the concrete in a structure will be subject to continued deformation up to a certain limit. This structural change of the concrete will result in a lowering of the neutral axis of a flexural member and a readjustment of the internal stresses on a cross-section. Although the modulus of elasticity of the concrete itself may stay practically constant after the curing process is complete, the effect of plastic flow upon the deformations of the structure and upon the redistribution of stress on a cross-section is
as though the modulus of elasticity of the concrete had decreased. For this reason the structures in this book were designed for a modular ratio $n=E_{0} \div E_{c}=15$, although the tests on the field control cylinders of concrete showed a value of $E_{c}=3,000,000$ or more. The current specifications of the American Association of State Highway Officials specify a design value of $n=E_{0} \div E_{c}=10$, and it is recommended that this be observed in the design of new structures for the sake of uniformity in practice. A considerable difference in the assumed value of the modular ratio will make little difference in the final design of the structure, so that the effect of plastic flow as an element of design may ordinarily be neglected. For further discussion of this topic the reader is referred to a paper by F. E. Richart, R. L. Brown, and T. G. Taylor in the Journal of the American Concrete Institute, January-February, 1934, "Effect of Plastic Flow in Rigid Frames of Reinforced Concrete."
"Side-Sway."-If the live loads upon a symmetrical structure like that shown in Fig. 28, Chapter V, are symmetrically placed each side of the crown, it is obvious that the bending and deflections of the members will also be symmetrical about the crown and that the top of the frame will not move longitudinally relative to the footings. If the live loads are unsymmetrically placed, as for example a single line of loads across the bridge at point 8 R of Fig. 28, the bending and deflections will be unsymmetrical about the center of the span; and the top of the frame, unless restrained by other forces, will move longitudinally with respect to the footings; in other words, it will have a horizontal deflection.

If this deflection is restrained by external forces, additional stresses will be set up in the structure. It is doubtful whether any considerable restraint to side-sway in an actual bridge structure will be provided by the development of passive earth pressure at the ends of the frame. Tests on
one of the bridges built by the Bronx River Parkway Commission indicated that the elasticity of ordinary soil was sufficient to prevent any appreciable amount of piling up of passive earth pressure, due to flexure in the structure. Expansion joints in the roadway pavement at the ends of the bridge should be adequate to prevent restraint that might otherwise be developed. If a portion only of the width of the bridge is loaded, the unloaded portion will restrain side-sway in the loaded portion; but the load itself will be distributed laterally and the stresses in the longitudinal strip under the load will be less than if the strip is calculated as an independent unit.

Even if side-sway were fully restrained the results would be of little consequence, partly because live-load stresses are a small part of the total and partly for the following reasons. For the condition of live loading causing maximum stresses at the critical sections (the knee and the crown) the tendency to sway is very slight; and at other points where eccentric live loading for the maximum stresses does cause appreciable tendency to sway, the concrete sections have excess capacity. Any calculation for restraint of side-sway is therefore of little practical value. As a matter of academic interest, however, the method of calculation is explained.

Calculation of Restraint of Side-Sway. - The influence table following Fig. 28 in Chapter V shows "total moments" for an influence load of $13 / 4$ at any particular point. The horizontal deflection at the crown will be $\frac{s}{E} \sum \frac{M y^{\prime}}{I}$, in which y^{\prime} is measured from the point at which the deflection is being calculated; that is, $y^{\prime}=18.2-y$ in Fig. 28. If "side-sway" is prevented by a force H^{\prime} acting horizontally at one end of the frame the calculated horizontal deflection at the crown due to it must be equal and opposite to that due to the vertical load at 8 R . To find its coefficient, assume tentatively $H^{\prime}=1$. Horizontal components of,
the reactions for $H^{\prime}=1$ may be calculated in the same manner as were the horizontal components for earth pressure at one end of the frame. Vertical components of the reactions are due to the overturning effect of $H^{\prime}=\mathrm{I}$. Total moments M^{\prime} may then be calculated for all divisions, and the crown deflection will be $\frac{s}{E} \sum \frac{M^{\prime} y^{\prime}}{I}$. From the two equations for deflection there is derived

$$
H^{\prime}=\frac{\sum \frac{M y^{\prime}}{I}}{\sum \frac{M^{\prime} y^{\prime}}{I}}
$$

It is to be noted that analysis by the moment-distribution method infers that side-sway does not occur, and a correction is necessary to determine stresses under the condition that the structure is free to sway. Despite the apparent inconsistency involved, it is the writer's opinion that, if analysis is made by the method explained in this book, correction for restraint may be neglected; and if analysis is made by the moment-distribution method, correctional stresses resulting from freedom to sway may also be neglected. Restraint is probably partial, and the effect of either restraint or sway in bridges is negligible, for reasons explained heretofore; except perhaps in unsymmetrical structures having legs of quite different length.

Placement of Live Load.-The accepted convention for calculating live-load stresses in a slab or arch-like structure which is continuous for its full width is to assume that the maximum stress that is produced on any portion carrying a traffic lane will be that produced by the direct loads upon the lane. As a matter of fact, the eccentric application of live loads to one side only of the roadway will increase the stresses at the edge of the bridge due to the direct application of the load, the principle being analogous to that of the eccentrically-loaded column. In general, the maximum
stresses at the edge of the bridge will occur when the outer two-thirds of the roadway is loaded; and, if considered in design, this would result in a progressive strengthening of the sections from the center line of the bridge to the outer edges. This is a point that appears to have escaped the attention of bridge engineers, but there is good reason against revising our conventions of design with respect to the use of live load to agree with theory.

We have a clear case of expediency to consider: whether to design the structure for extreme but occasionally probable conditions of loading within conventional limits of stress, or to design for ordinarily expected conditions and permit the conventional working stresses to be exceeded for the extreme conditions. The usual conventions of design as to loading and working stresses do result in structures that perform good service; therefore we may conclude that they represent the usual wear and tear upon the structures very well and that it is unnecessary to assume conditions that would result in abnormalities of proportion.

If any specific recommendation may be made, the writer would suggest that, in designing bridges of the barrel type, the provision of the specification permitting reduction of intensity of live load for the wider bridges be ignored. This provision is intended to allow for the effect of supposed dispersion of traffic upon wider roadways. Ignoring this reduction will automatically provide in some degree for the effect of eccentricity of the reduced loading. This recommendation has not been followed in the design calculations contained in this book, but the specification for loading has been followed literally.

Intrados Curves.-The rigid-frame bridges illustrated in this book were built without fillets at the inside corner of the knee. Bridges have been built with fillets, but the compounding of the fillet curve and the circular segment curve of the top present a less pleasing appearance. Compound intrados curves are usually unsatisfactory.

By referring to the tests on knee specimens and rigid-frame-bridge models described in Chapter XIV, it will be seen that very high stress concentrations exist, under load, at the sharp corners of the unfilleted specimens. When these specimens were tested to destruction, however, failure did not occur on the sections at the corner but on sections some distance from the corner where the stress condition was more like that existing in a beam. The only exception was for knees having abnormally high percentages of steel reinforcement. Failure at the point of high stress concentration had to be induced deliberately. The Columbia University tests described in the first edition of this book and the University of Illinois tests described in Chapter XIV of this edition demonstrated beyond all reasonable doubt that the unfilleted knee is safe in the construction of structures like rigid-frame bridges.

The significance of localized high concentration of compressive stress such as exists at the sharp corner of a knee specimen is not yet known. The reason why such specimens do not fail at the corner may be that the compression at the corner is a confined stress. Compressive forces come in from all directions-along each leg and radially toward the corner from the curved band of reinforcing rods.

In a so-called compression test of a concrete cube the specimen really fails by shearing along inclined planes, indicating a comparatively low apparent compressive value. A flat plate, however, would show much higher compressive resistance. Another analogy is afforded by calculated shear. Higher working stresses are allowed for punching shear than for shear used as a measure of diagonal tension in a concrete beam. The designer should not impair the appearance of his structure in order to minimize the stress concentration at the knee.

Proportions for Analysis.-Experience with this type of structure has been too limited to establish general rules for proportioning, preliminary to analysis. A rough guide for a
single-span concrete solid section frame bridge carrying a separate roadway pavement and designed for H20 loading is as follows:

Make the thickness at the knee (t in inches) $=4+\frac{S}{14.5}$ and the crown thickness $=4+\frac{S}{53}$, in which $S=$ the clear span length in inches. The depth at the knee may be decreased at the expense of an increase in thickness at the crown, and vice versa; but no general rule can be given.

For a double-span concrete solid section frame bridge the thickness at the knee may be assumed as $4+\frac{S}{17}$ and the thickness at the face of the vertical leg may be assumed as $15+\frac{S}{15}$. The crown thickness will be about the same as for the single-span struçture. The final design need not agree exactly with these approximate proportions assumed for analysis. Observe the sample calculations.

Construction Joints.-In construction it is convenient to pour the footings as the first operation. The cantilever portions of the footing are reinforced by means of bent rods shown in typical plan Fig. 33, which are crossed in the footing and carried above the footing about 3 or 4 ft . as a splice to the main rods in the vertical legs which are set up as a second operation after completion of the footings. Effective keyways should be provided in the tops of the footings to bond the vertical legs thereto.

The third operation is the casting of the vertical legs. It is convenient in pouring to make construction joints at the tops of the vertical legs, stepped and keyed, as shown in the typical plan (Fig. 33). The top of the frame may be poured monolithic or in two or more longitudinal sections.

It is of the utmost importance that all construction joints be thoroughly cleaned, picked and broomed to
remove all laitance and expose clean aggregate before making the succeeding pour.

Expansion Joints.-In structures not faced with arch ring stones it has been the practice of the Westchester County Park Commission to provide expansion joints between the approach retaining walls and the structure proper, so that the frame is free of all other construction. In structures faced with stone arches, provision is preferably made for carrying the large thrust of the stone arch directly into the approach walls and in such cases expansion joints between the frame and approach walls are avoided, or placed back of the point where the thrust may be considered as reaching the ground. The superincumbent masonry of the walls and parapets will bring the thrust quickly to the foundations, and back of this point expansion joints may be provided in the walls if desired. It is realized that inter-action between the frame proper and the stone arch will disturb the calculated stresses in both, but if both units are designed to be separately selfsupporting no concern need be felt over this condition of affairs.

Anchoring of Stone Arch Facing.-It has been the practice of the Commission to securely anchor each individual arch ring stone of stone-faced bridges to the concrete frame by means of two steel anchors embedded in the joints, and hooked into drill holes in the bed face of the stones. These anchors project into the concrete frame which is poured after setting up the stone arch on falsework.

Secondary Reinforcement.-"Distributing" rods, tierods and stirrups are used in addition to the calculated main reinforcement. "Distributing" rods are used in the stone-faced structures only, when expansion joints between the approach retaining walls and structure proper are omitted immediately back of the frame. This is to prevent the formation of cracks in the corners of the frame where it abuts against the approach walls. The distribut-

196 PRACTICAL POINTS ON DESIGN AND CONSTRUCTION

ing rods are about five or six in number, about 1 sq. in. in section, hooked at each end and are placed in the extrados at the knee. Transverse tie-rods about $\frac{3}{4} \mathrm{in}$. in diameter and about 3 ft . on centers top and bottom serve to hold the main reinforcement in place and to tie the structure together, preventing any formation of cracks due to possible uneven supporting action of the soil. Stirrups hooked over the top and bottom mainrods or transverse tie-rods, as shown on the typical plan Fig. 33 serve to hold the top and bottom systems of reinforcement securely in place. They are not required as calculated shear reinforcement.

Footings.-In designing pile foundations, in particular, in which piles are driven through soft material offering little lateral resistance, the direction of the reactions should be determined for all probable cases; dead load with active earth pressure; dead and live load with active earth pressure; and possibly dead load with excess earth pressure equal to twice ordinary active pressure; dead and live load with excess earth pressure. If the direction of the reactions depart far from the vertical, battered piles should be used so that they will properly carry the inclined loads coming upon them.

CHAPTER XII

GENERAL NOTES ON RIGID-FRAME BRIDGES

Rigid-frame bridge construction in the United States was first applied to some of the grade separations between the parkways of Westchester County, New York, and intersecting streets and highways. The rigid-frame type was evolved to overcome the difficulties encountered where the distance between the two roadway grades was restricted and where street excavation for the abutments of an arch bridge would have been expensive. The type was so well adapted to its purpose that, in addition to about ninety built in Westchester County from 1922 to 1933, about four hundred were built elsewhere in the United States up to 1939. Rigid-frame bridge construction is advancing rapidly abroad so that nearly every country in the world now has its examples. Many have been built to carry heavy railroad traffic.

The rigid-frame bridge has its varieties. The sample calculations given in this book for concrete bridges are for the solid or barrel type, because it is predominant for grade separation structures. In Westchester County a few concrete bridges of ribbed construction have been built, but the best example is that shown in this chapter. The outstanding example of cellular construction is in Seattle, Washington. In this chapter several varieties are illustrated.

Figure 70 shows a solid-section or barrel-type concrete frame bridge with an elliptical intrados, of which several were built in Westchester County. The elimination of massive abutments necessary for a fixed arch proved to be an economy, and the elliptical opening, permitted by the conditions controlling the grades of the intersecting road-

I98 GENERAL NOTES ON RIGID-FRAME BRIDGES

Fig. 70.
ways, was a pleasing variation among the other frame bridges on the parkways.

Figure 7I illustrates ribbed construction. This con-

Fig. 71a.

One Holf Longitudinal Section

$$
\text { Fio. } 716 .
$$

Krape Park Bridge, Freeport, Illinors
struction in mid-span reduces the dead-load bending moments throughout the structure, and for long spans the saving in materials may offset the increased cost of formwork and the fabrication and placement of steel reinforce-
ment. The bridge itself, designed by Mogens Ipsen, is a beautiful example of modernistic treatment which at the same time avoids the bizarre.

Figure 72 illustrates cellular construction. The bridge is

Fic. $72 a$.

Cross Section of the Box Girders of the center of the 175:0" Span

$$
\text { Fic. } 72 b .
$$

Schmitz Park Bridge, Seattle, Washington. 175-ft. span Courtesy of the City of Seattle.
in Schmitz Park, Seattle, Washington, and was designed in the office of the city engineer. A full description appears in the Engineering News-Record for June 24, 1937.

Figure 73 shows the type of construction of a through .

Fio. 73.

Fic. 74.-The Herval Bridge, Brazil. Built by the firm of Emilio Baumgart; Rolf Schjodt in charge of design. Middle span 224 ft . End spans 88 ft .

202 GENERAL NOTES ON RIGID-FRAME BRIDGES

Fic. 75.

Fic. 76.
girder bridge, consisting of two concrete rigid-frame girders carrying a floor system of transverse floor-beams and a deck slab. The bridge carries the Bronx River Parkway over the New York Central Railroad tracks at Valhalla, N. Y., and it is a good example of what should not be done along the lines of bridge architecture. Contrasted with this is the Herval Bridge at Ste. Catharina, Brazil, shown in Fig. 74, which is also through girder construction with cross-beams between the girders to carry the floor slab. Its slender proportions and simplicity of line and detail produce a beautiful effect. The middle span is 224 ft . and end spans about 88 ft . A full description of the bridge and its construction appears in the Engineering News-Record of August 6, 193 r.

Figures 75 and 76 illustrate the advantage of the archlike structure over the through girder or truss type in providing an unobstructed roadway over the structure. Both bridges are modern and were built to carry a highway over a railroad right-of-way, the total width of roadway being the same for both. The width of roadway was such that a middle truss was necessary for the through bridge. This constitutes an obstruction in a highway that is not divided by a continuous separation strip, as on a dual highway.

A few good examples of rigid-frame bridges finished in concrete are shown as a conclusion to this chapter. They are expressions of certain fundamental principles of architectural design, which are clearly and concisely explained in a booklet by the Portland Cement Association, "Architectural Design of Concrete Bridges." These principles alone cannot be applied by a novice to produce a beautiful bridge. A good architect has something to contribute in addition to the application of certain rules of thumb. Nevertheless the structural designer should know what principles of architectural design cannot be violated without resulting in a structure that is a positive offense to the eye.

The rigid-ffame bridge has now become a recognized

204 GENERAL NOTES ON RIGID-FRAME BRIDGES

type, better adapted than any other for a particular set of conditions. It solves the problem, for example, when the distance between the roadways above and below is restricted, or when the length of approaches is an item of importance. In some instances the rigid-frame type has been selected when another type (such as the "rainbow" arch, in which the thrust closely follows the axis) would have been a better solution. The engineer should base his selection upon sound engineering principles.

The selection of barrel, ribbed, or cellular construction will depend upon the size of the structure and the relative cost of materials, fabrication and placement of reinforcement, and formwork. No general rules can be given.

Findlay-Delphos Road Bridge, Putnam County, Ohio. 50-ft. span Courtesy of the Portland Cement Association

GENERAL NOTES ON RIGID-FRAME BRIDGES

Brige carrying Six Mule Road over Middle Rouge Parkway, Wayne County, Michigan. Span 60 feet

CHAPTER XIII

DEFORMETER ANALYSIS

For Rigid Frame Bridges of High Indeterminacy

By PROFESSOR GEORGE E. BEGGS
Princeton University

FOREWORD BY THE AUTHOR

The mathematical methods explained in this book have been found to be rapid and easily applied in the designing room, for structures which are indeterminate to the third or fourth degree. The analysis of the skew arch or frame is more complicated but thus is a problem by itself. The Westchester County Park Commission has not had occasion to build more than one double-span frame bridge for fixed-end conditions and only two triple-span frame bridges for free-end conditions. Mathematical methods have therefore not been systematized for such highly indeterminate structures. In such cases a different method of attack is used, namely the deformeter method of Professor George E. Beggs of Princeton University, who will discuss the method in this Chapter.

discussion by professor beggs

Figure 77 illustrates the principle underlying the determination of the reactions for a statically indeterminate structure fixed at the footings by measuring relative displacements in a flat model of the structure. It is desired to find the reaction at B, say, due to an assumed load P acting as shown. The model is fixed at A, C and D. Move point B vertically a known amount d_{1} without permitting rotation. Measure carefully the corresponding deflection.
d_{2} in the direction of application of the assumed load P. Then it may be shown that $V d_{1}=P d_{2}$, the equation giving the relation between the vertical component V of the reaction and any load P in terms of relative displacements.

Restore the model to its unstrained position. Move B horizontally a known amount d_{3} again without permitting rotation. Measure again the corresponding displacement d_{4} and the equation $H d_{3}=P d_{4}$ gives the relation between the horizontal component H of the reaction and any load P in terms of relative displacements.

Restore the model as before. Rotate point B without permitting other motion, and measure the rotation d_{5} and
 displacement d_{6}. Then $M d_{5}=m P d_{6}$ in which m is the

2 Panes of cince rlues of tho ourrerent sizes mroouce

 The cavare ames "m"mo n "

Monent fluss of angerent anmetses macoce pues reLatuc rotation extween "inimion" Fio. 78. scale ratio of the model. Having now H, V and M, the amount, direction and point of application of R_{B} may be found as indicated in Fig. 77. In the same manner the reactions at A, C and D may be determined for a given load P. Proceed in like manner for assumed load at other points in order to deter-
mine the influence lines for the structure by means of which reactions for any system of loading may be found.

The arbitrarily imposed displacements at reaction points of the model are accomplished by means of deformeter gages capable of producing very small deflections with an accuracy to $1-40,000$ of an inch, and the corresponding small displacements at the points of application of the assumed loads are measured by means of filar micrometer microscopes. The principle of the deformeter gages is illustrated in Fig. 78. Bar m is fastened to the board on which the model is mounted and the reaction point of the model is fastened to the movable bar n which is held against

Fig. 79. the gage plugs by means of a spring connection between m and n. In the unstrained position of the model, normal plugs are in place. These may be removed by spreading the bars m and n by means of small wooden wedges. To produce a known vertical displacement of the reaction point the normal plugs are removed and smaller diameter plugs of like size are inserted. A reading on a reference point on the model at the point of application of the assumed load is then taken by means of the micrometer in the field of the measuring microscope (Fig. 79). The small plugs are then removed from the deformeter gages and the larger diameter plugs are inserted, the difference in diameter of the small and large plugs being the known vertical displacement. A second reading is then taken on the reference point at the point of application of the assumed
load by means of the micrometer microscope and the difference of the two readings gives the displacement at the load.

Horizontal displacements at the reaction points are produced by means of rectangular plugs as indicated in the middle line of Fig. 78. Rotation of the reaction point is produced by interchanging a small-size plug and a largesize plug in the sockets of the deformeter gages as indicated in the lower line of Fig. 78.

Fio. 80
Figure 80 shows the set-up of the deformeter apparatus over a model of one of Mr. Hayden's rigid-frame bridges designed for the Westchester County Park Commission.

The models used in the investigations may be of cellu-
loid or pasteboard so cut that the width at any section is proportional to the cube root of the gross moment of inertia of the corresponding section of the structure. Threedimensional structures such as ribbed frames having T-shaped sections may thus be analyzed by means of twodimensional models, the only restriction being that the forces analyzed must be uniplanar.

In order that the displacements in the celluloid or pasteboard models may be unaffected by frictional resistance, the models rest on small steel ball-bearings supported on plate glass. Small steel weights (shown in Fig. 80) hold the models against the ball-bearings and prevent warping of the models.

Fig. 81.
It is to be noted that no actual loads are applied to the model, the process being only the measurement of related displacements, the ratio of which is the ratio of load to reaction component. Models cut from homogeneous mate-
rials may be relied upon to give results that are substantially correct as applied to structures of such composite materials even as reinforced concrete. The approximation involved is no greater than is involved by the application of mathematical methods of analysis, in which the elastic properties are calculated for gross moments of inertia of the uncracked sections thus assuming practical homogeneity. The reliability of theory based on such assumptions has been verified by numerous tests such as those of Abe (University of Illinois Bulletin 107) and the government tests of Slater (Proceedings, American Concrete Institute, 1919) on constant-section frames. Stresses are, of course, calculated on the cracked section.

A comparison of analysis by deformeter and by mathematical methods for a small rigid-frame structure is shown in Fig. 8r. The agreement is seen to be very close.

CHAPTER XIV

RESEARCH IN RIGID-FRAME BRIDGES

By HAROLD E. WESSMAN
Professor of Structural Engineering, New York University

The increasing use of steel and reinforced-concrete rigidframe bridges in recent years has been accompanied by a series of investigations which have enhanced knowledge of this type of structure. Most of the research has focused attention on the knees, points where the usual beam analysis fails to provide a satisfactory picture of stress conditions. Other studies, however, such as those at the University of Illinois on full-size reinforced-concrete ribs have given insight into the validity of the elastic theory of analysis for the structure as a whole.

The practicability of the design of the first structure built by the Bronx Parkway Commission in 1922 was questioned, chiefly because of unknown stress conditions at the knee. In a curved beam, the unit stress is greater at the concave surface than it is on the convex side at the same section. The neutral axis does not coincide with the gravity axis but approaches the inner surface as the curvature increases. In a structural member such as a rigid-frame bent, with a sharp re-entrant angle at the knee, a high stress concentration tends to develop at the inside corner. Research to date indicates that this is not serious enough to endanger the safety of the structure.

It is important before discussing any tests to sound a note of warning. The treatment in this chapter must necessarily be brief, and readers are advised to scrutinize carefully the references for detailed information about test data. It should be kept in mind that what is so often referred to
in reports as "measured stress" is actually "measured strain." Measured strains below the yield point in steel members or steel reinforcing may be converted quite accurately into corresponding stresses, barring errors in gage readings. But measured strains in concrete give little clue to the corresponding stresses because of plastic flow and the variation of modulus with load and with time.

Some of the earliest tests on knee details were made at Columbia University in 1922 by A. H. Beyer and W. T. Krefeld. These tests are fully described in the Engineering News-Record for January 18, 1923. Six reinforced-concrete L-shaped or knee models $10 \frac{1}{2}$ in. thick, 18 in . wide, and 7 ft . high were tested. As the load increased, tension cracks developed in the concrete, beginning at the outside surface and reaching almost to the re-entrant corner. The apparent neutral axis moved inward close to the corner, indicating a high compressive unit stress in that region. There was no compression failure, however, and the tests demonstrated the safety of the sharp-cornered detail. The effect of filleted corners was also studied, and it was found that fillets tend to reduce the local stress concentration.

Photoelastic tests were also made at this time in the Physics Laboratory of the Massachusetts Institute of Technology by T. H. Frost and D. B. Sayre. Two celluloid models, one with square corners and one with a filleted knee, were tested in polarized light. The shift of the neutral axis and the effect of the fillet in reducing the stress concentration at the inside corner were again demonstrated.

Field tests were also made by the Bronx Parkway Commission on two reinforced-concrete model frames 3 ft . wide with a clear span of 10 ft . and a height of 4 ft . The rib depth at the crown was $3^{\frac{1}{2}} \mathrm{in}$., and the depth at the knee $10 \frac{1}{2}$ in. Each model supported a concentrated load of 13 tons at the center of the span, with calculated unit stresses of $79,000 \mathrm{lb}$. per sq. in. in the steel reinforcement and $4,900 \mathrm{lb}$. per sq. in. in the concrete. These stresses were calculated
on the assumption that the flexure formula was valid for these high stresses.

University of Illinois Tests.-The first tests on reinforcedconcrete rigid frames at the University of Illinois were made by Mikishi Abe during the World War. The purpose was, primarily, to study the cross-frames of concrete ships. These tests are reported in Bulletin 107 of the Engineering Experiment Station and will not be discussed here.

A rather extensive investigation relating particularly to rigid-frame bridges has been made in recent years, however, under the sponsorship of the Portland Cement Association. Part I of this investigation, published in 1938 in Bulletin 307 of the University of Illinois Engineering Experiment Station, is entitled "Tests of Reinforced Concrete Knee Frames and Bakelite Models," by F. E. Richart, T. J. Dolan, and T. A. Olson. Part II, also published in 1938, is entitled "Laboratory Tests of Reinforced Concrete Rigid Frame Bridges," by W. M. Wilson, R. W. Kluge and J. V. Coombe.

The tests of knee frames reported in Part I were planned "to determine the moment-resisting capacity and the elastic properties of the corner portion of a rigid frame, using various types of fillets and arrangements of reinforcement." Twenty-four frames, twelve different types with two of each type, were tested to failure at 28 days. Eight other frames, representing four different types, were held under a sustained load of $12,400 \mathrm{lb}$. for 1 year and 5 months in order to observe the effect of plastic flow on strains, rotations, and deflections. The load was then removed to observe the elastic recovery before the frames were tested to failure.

Figure 82 illustrates the type of specimen and the manner of loading for both the rapid and sustained tests. Each leg of the knee frame is 6 ft long. The depth of the leg on the unfilleted specimens at the sections adjacent to the re-entrant corner is 16 in . All frames were 12 in . wide, and all frames, except one pair, had i per cent of steel tensile reinforcement, an amount which required a calcu-

Fyo. 82.-Test Frames Under Rapid and Sustained Loading Courtesy of University of Illinois Engineeting Experiment Station
lated load of $12,400 \mathrm{lb}$. in order to develop working stresses. Three per cent of tensile reinforcing was used in one pair of frames in order to insure a compression failure at the knee. Variety in the types tested was obtained by using compression reinforcing in some frames and by having two sizes of 45° fillets and two sizes of circular fillets.

In the rapid loading tests "cracking began in all of the frames at a load of about $10,000 \mathrm{lb}$., and most of the frames failed initially by exceeding the yield point of the tensile reinforcement." A secondary crushing occurred in some of the frames, but the only well-defined compression failure occurred in the two frames having the high percentage of tensile steel. This failure occurred near the re-entrant corner, but at relatively high loads, loads which were more than four times as much as the load giving normal computed working stresses.

Specimens with fillets showed a marked increase in strength over those with sharp corners. Even though it is recognized that fillets tend to reduce local stress concentrations, the increase in strength was probably due to the fact that the fillets reduced the moment-arm of the applied load and also increased the depth of the section where failure occurred.

As noted previously, only one pair of frames had enough tensile reinforcing to develop a definite compression failure; consequently, it is not possible to determine from these tests any definite relations between ultimate strength, local stress concentrations at the re-entrant corner, and fillets. It must also be kept in mind that the knee frames in these tests behave somewhat differently from a rigid-frame bridge. Adding a fillet to the knee frame causes a decrease in moment at the corner section due to a given applied load. Adding a fillet to a rigid-frame bridge may cause an increase in the moment at the corner section due to a given load. There is a change in the distribution of positive and negative moments. Nevertheless, there is no question but that
fillets reduce local stress concentrations. This has been beautifully demonstrated by photoelastic tests.

The eight frames which were kept under sustained loading for I year and 5 months showed very definite time yield effects. Deflections, rotations, and concrete strains increased greatly over those measured when the load was first applied. But, when the frames were finally tested to destruction, they showed little variation in ultimate strengths from those of the corresponding frames tested at 28 days. Of most significance in these tests was the effect of compressive reinforcing in reducing plastic yielding to practically one-half of that occurring in corresponding frames with no compression steel.

Photoelastic tests on Bakelite scale models of the knee frames are also reported in Part I of the University of Illinois investigation. Figure 83 shows the fringe photographs for seven models. Each fringe or black band represents a locus of points having the same difference of principal stresses, or, in other words, the same intensity of maximum shearing stress. In the frames with sharp inside corners, a large number of fringes converge at the corner, indicating high stress concentrations in this region. Fringe photographs of frames with fillets indicate a reduction in localized stress intensities.

Part II of the University of Illinois Investigation is significant by virtue of the size of specimens tested. Figure 84 presents the details of Specimen I. It is practically a full-size slice $\frac{1}{2} \mathrm{ft}$. wide from a highway bridge with a span of 48 ft . One other specimen was also tested. It differed from Specimen I only by the addition of shear reinforcement, consisting of $\frac{1}{2}$-in. round looped stirrups spaced on 12 -in. centers in the deck and legs.

Specimen I was tested, both with bases fixed and bases hinged, to determine whether the actual behavior of the structure conformed to the action anticipated from calculations based on the elastic theory. Specimen 2 was built

Fic. 83.-Fringe Photographs of Bakelite Knee Frame Models Courtery of University of Illinois Eugineering Experiment Station
primarily for use in the study of time yield effects in concrete upon a rigid-frame bridge. It was also tested, however, for certain elastic constants, such as the reaction components, M, H and V, at each base due to a horizontal displacement of 0.10 in., without any settlement or rotation. Components were also determined for a settlement of 0.10 in . and then for a rotation of 0.001 radian. These

Fig. 84.-Details of Rigid-Frame Bridge
Courtesy of University of Illinois Engineering Experiment Station
tests were made because similar tests for Specimen I produced values having considerable variation, particularly in the moment at the base in the fixed structure. In both specimens, however, experimental values of M, H and V due to arbitrary displacements or rotations differed materially from values calculated by the elastic theory. A small microscopic crack near the base was subsequently detected near the base of one leg of Specimen 2. Further tests and studies indicated that cracks, too small to be detected with the naked eye, will affect the elastic behavior of reinforced-
concrete structures such as these when subjected to foundation displacements. On the other hand, final moments due to loads at sections governing the design of the structure were not appreciably affected by cracks.

Influence lines for crown moment calculated by the elastic theory agreed quite closely with those obtained experimentally, both with the structure free to sway and with sway prevented. There was also good agreement at the knee when the structure was free to sway. With sway prevented, however, maximum influence ordinates determined experimentally for moment at the knee are approximately 50 per cent greater than when sway is allowed. In a symmetrical structure this would not change dead-load moments but might increase live-load moments appreciably. However, it takes only a very small sway, 0.01 to 0.02 in., to reduce the moment to that corresponding to the free condition.

Design loads corresponding to the axle loads, including impact, of a 20 -ton truck distributed over a $9-\mathrm{ft}$. width of roadway were subsequently placed on Specimen I. The larger load was applied at the center of the span and the smaller one 14 ft . from the center. The moment at the crown obtained with the bases hinged was 15 per cent less than that calculated by the elastic theory. When the bases were fixed, the actual value was 14 per cent less than the theoretical value. These differences, though not very large, may seem somewhat puzzling, in view of the fairly good agreement obtained for the influence lines. It must be kept in mind, however, that the reactions due to a 20 -ton truck load acting upon a statically indeterminate, reinforcedconcrete structure may not be exact multiples of the reactions caused by unit loads acting upon the structure in the same positions. The influence lines were computed, of course, from the effects of unit loads. Moreover, the final crown moment is obtained by getting a difference of values. A small error in one of the values consequently results in a.
much larger error in the final answer. For the hinged bent, the following equation expresses the crown moment:

$$
M_{c}=M_{v}-H y_{c},
$$

where M_{c} is the final moment at the crown, $M_{\text {a }}$ is the "simple-span" moment at the same point, H is the horizontal thrust, and y_{0} is the ordinate to the crown. An error of ${ }^{1}$ per cent in H may result in an error of 15 per cent, or even more, in the value for M_{r}, depending upon the relative magnitude of the two terms on the right-hand side of the equation.

At the knee, with bases hinged, the design loads gave a moment 3 per cent greater than that from the elastic theory. When the bases were fixed the values coincided.

Finally, Specimen I was loaded to destruction, by adding increments of load corresponding to design live loads. Five live loads and a fraction had been placed when the structure failed abruptly in shear near the quarter point at a section where the moment was very small. There was no evidence of impending failure at the sharp re-entrant corner at the knee, even though tension cracks beginning at the outside. surface extended to within 3.5 in . of the inside face.

Specimen 2 was also finally tested to destruction, but not until it had been subjected to time yield tests. The effect of temperature was studied over a period of 462 days. The tests indicated that time yield or plastic flow in the concrete reduces temperature stresses somewhat during the first two or three years, but that the amount of reduction gradually decreases as the structure becomes older. The effect of gradual spreading of the bases was also studied. The span subject to the design live load was increased by increments of $\frac{1}{4} \mathrm{in}$. with 7 -day intervals between increments until a total spread of 4 in . was recorded. Again, it was noted that time yield appreciably reduced the stresses caused immediately after each displacement of the bases.

The span length was then maintained at a value 4 in .
greater than normal, while the structure was tested to failure. In spite of the severe initial punishment, the frame carried a maximum of five live loads. Failure, when it occurred, was due to steel at the knees being stressed beyond the yield point. The resulting yielding enhanced the deflection at the crown where the steel had also passed the yield point. The failure was not abrupt like that of Specimen I , thus demonstrating the value of the shear reinforcement in giving a tougher structure.

Of interest are the recommendations relative to design appearing at the end of Bulletin 308, Part II, of the University of Illinois Investigation. They are quoted here in full.
(1) An analysis of a reinforced concrete rigid frame bridge by the elastic theory gives values for the moment, thrust, and shear on any section which are accurate enough for purposes of design if the analysis is based on the following assumptions:
(a) The stress-strain relation for the concrete has the same value at all sections and at all stresses.
(b) The moment of inertia is for an uncracked section.
(2) The variations in the modulus of elasticity of the concrete that may be expected in a field structure will not have an appreciable effect upon the stresses due to loads.
(3) Restraining the deck of a rigid frame bridge so as to prevent longitudinal sway due to eccentric loads on the deck does not increase the maximum live-load moment at the crown, but does increase the liveload moment at the knee somewhat. But, since the dead load causes no sway and the dead-load moment at the knee is greater than the liveload moment, the resultant moment is not greatly affected. Provision should be made to prevent the structure from being subjected to an active longitudinal horizontal force at the end of the deck due to an expanding road slab or other similar cause.
(4) For a rigid frame bridge of the type tested, a flexural failure at the knee will cause the structure to collapse; a flexural failure at the crown may injure the roadway, but so long as the deck retains its ability to resist shear and thrust, the structure will not collapse nor will the moment be greatly affected at other sections; a flexural failure at the base will not appreciably affect the moment due to load at other sections, nor will it cause the structure to collapse if the base retains its capacity to resist shear and thrust; a small increase in thickness at the knee will
result in a considerable increase in the flexural strength of the knee. For these reasons an approximate determination of the moments at the crown and bases is satisfactory for purposes of design, but it is highly desirable to make ample provisions to resist the shear at these points. Because the moment at the knee is affected by the restraint against sway and is therefore somewhat uncertain, because extra flexural strength of the knee can be obtained with so little cost, and because a flexural failure of the knee is so serious, it is good engineering sense to design the knee for a moment somewhat greater than the moment computed by the elastic theory for structures free to sway.
(5) Variation in the angular restraint of the bases does not appreciably affect the resultant moments (resultant of the dead-load, liveload, temperature, and shrinkage moments) at the knee and crown. But because, for a structure of a given height, the moments at the bases due to shrinkage and temperature changes increase with the span and become excessive for long spans, hinged bases are definitely advantageous for long spans and are not disadvantageous, except possibly for cost, for short spans.
(6) Shear reinforcement added to the tenacity of the reinforced concrete rigid frame bridges tested, thereby increasing the deformation to which they could be subjected without failure.
(7) Deformation stresses of considerable magnitude have no great effect upon the load-carrying capacity of a concrete member properly reinforced for longitudinal and shearing stresses.

Photoelastic Analysis of Stress States.-The photoelastic method of stress analysis is now definitely recognized as a useful aid in securing valuable information about stress states at sections of a structure not susceptible of pure mathematical analysis. Briefly, the method consists of passing polarized light through loaded transparent models of structural units, and then scanning or taking pictures of the resulting image in order to evaluate the bands or fringes in terms of definite stress intensities. If a white light source is used, the fringes are colored red, green, yellow, etc. If a monochromatic light source is used, the fringes will be alternately black and white. Each fringe is proportional to the difference of principal stresses. The optical phenomenon of double refraction constitutes the fundamental basis for the procedure.

The method may be explained briefly by referring to Fig. 85, which illustrates the optical train in the Photoelastic Laboratory of the College of Engineering of New York University.

Unit I is the light source, here a mercury lamp. The light is passed through a filter making it monochromatic. The light, after being passed through lenses which are incor-

Fig. 85.-Photoelastic Laboratory at New York University
porated in unit I to make the emerging rays parallel, strikes the polarizing lens, unit 2 in the train. Before striking the lens, the rays are vibrating in all planes. After passing through the polarizer, however, they vibrate only in one plane, corresponding to the principal axis of the lens. The path of vibration or displacement is commonly portrayed as a sine curve. The plane-polarized beams of light then encounter the loaded, transparent model which is set up in the loading frame, unit 3. The model is usually made from
polished Bakelite and has the outline of the particular structural unit to be analyzed. In Fig. 85, a model of a rigid-frame bridge may be discerned. Loading frames of various types are used. This particular frame is a universal frame adaptable to a variety of loading conditions.

When a polarized beam of light strikes a point of the model under stress, the beam is resolved into two components vibrating in planes perpendicular to one another and coinciding with the directions of the two principal stresses existing at the point. The rays are retarded in passing through the model, and the relative retardation is expressed by the equation:

$$
R=k(P-Q),
$$

where k is an optical constant depending upon the thickness and kind of material used for the model, and P and Q are the principal stresses at the point. When P and Q have different values, the two rays emerge out of phase. The rays then pass through the analyzer, unit 4 in the optical train, whose principal axis is set at 90° to that of the polarizer. Components of the two rays parallel to this axis are passed, and they emerge, vibrating in one plane, but still out of phase. This phase difference causes an interference which manifests itself in bands of different colors, or in alternate light and dark bands, which are directly proportional to $P-Q$. Continuous dark bands or areas connect points of equal values of $P-Q$.

Unit 5 is a projection lens assembly for focusing the image on the ground-glass plate of unit 6 , a camera without a lens. Unit 6 may be replaced by a screen upon which a large image may be projected for demonstration or lecture purposes.

A single continuous fringe, see Fig. 86, connects points which have the same value for the difference of principal stresses. The fringe is consequently called an "isochromatic." Since; in a two-dimensional stress system, the
maximum shearing stress is equal to one-half the difference of principal stresses, isochromatics are also loci of maximum shearing-stress intensities.

When a model is loaded gradually, a succession of fringes will be formed or will pass through a particular point or region under observation. The fringes, or dark bands, are counted in order of occurrence and are termed first order, second order, third order, etc. Each order corresponds to a definite value of the difference, $P-Q$ such as 350 lb . per sq. in. Hence, if five fringes or orders have passed a certain point, the value of $P-Q$ for that point is 1750 lb . per

Fic. 86.-Fringe photographs of Rigid-Frame Bridge Models. Half of model with sharp corner shown on the left; half of model with filleted corner shown on the right
sq. in. If the point is located on a free boundary, the actual stress is 1750 lb . per sq. in., because then Q or one of the principal stresses is 0 .

In many engineering problems, only the edge or boundary stresses are wanted. These may be quickly determined, since usually one principal stress is zero or has a relatively small value. Interior stresses are more difficult to obtain, inasmuch as the photoelastic method gives $P-Q$, the difference of principal stresses. In order to obtain separate values for P and Q, it is necessary to find $P+Q$ and then solve the two equations simultaneously. Although a number of methods are available for getting $P+Q$, they will not be described here. Suffice it to say, none of them is
absolutely satisfactory. They require the exercise of extreme care in order to achieve accurate results.

The preceding discussion has brought out the significance of fringes or "isochromatics." It may be noted that the dark bands are formed by the complete extinguishing of light at a series of points. This occurs when the relative retardation is an integral number of wave lengths of the light used. But other black bands will also appear which are not isochromatics. They are due to the fact that the directions of the principal stresses at some points coincide with the directions of the principal axes of the polarizer lens and the analyzer lens. The light is extinguished then, because the analyzer cannot pass components of a beam which meets it in a plane at 90° to its axis. These dark spots are called "isoclinics" because all points covered by these dark areas have the same directions for principal stresses.

In order to avoid confusion in distinguishing between "isochromatics" and "isoclinics," two quarter wave plates are added to the optical train. One of these may be seen in Fig. 85 attached to the polarizer unit. The other is mounted on the analyzer unit. The picture shows them swung out of line. When placed in line, they remove the isoclinics or directional effects completely. A thorough analysis of a stress state requires the evaluation of isochromatics for a definite loading; the determination of directions of principal stresses at all points by plotting isoclinics for different orientations of the axes of the polarizer and analyzer, keeping them, however, always at 90° to one another; and then the determination of the value of $P+Q$ at all points by one of several possible methods. The separate values of the principal stresses may then be calculated.

Figure 86 shows fringe photographs of two rigid-frame bridge models made in the Photoelastic Laboratory at New York University with the aid of Geo. B. Stevens, graduate assistant in civil engineering. One has a sharp, re-entrant
corner at the knee, and the other has a filleted inner corner. Two concentrated loads, symmetrical about the center line, were applied to the models. Stresses along the inner and outer surfaces of each model are plotted in Fig. 87. The maximum compressive stress in model I is at least 3180 lb . per sq. in. at the re-entrant corner. The fringes were so

Fic. 87.-Edge Stresses in Rigid-Frame Bridge Models
close together that it was impossible to count them accurately. The maximum stress in model 2 is 1850 lb . per sq. in. This tends to illustrate the effect of the fillet. It must be kept in mind, however, that practical considerations make the square corner preferable in an actual reinforced-concrete or steel bridge.

National Bureau of Standards Tests.-In cooperation with the American Institute of Steel Construction, a number
of tests on steel knee frames were made by the National Bureau of Standards at the Washington Laboratory. The tests were made primarily to determine stress states in the flanges and web at the knee for working loads. Subsequently, the frames were loaded to destruction in order to determine failure characteristics and give more information on comparative behavior of different types of rigid knees. Detailed discussions of the tests may be found in Research Papers RPii30, RP 1161, $^{\text {, and RP 1224, National Bureau of }}$ Standards.

Three full-size specimens were tested. Specimen I is pictured in Fig. 88. It is a fabricated girder with a sharp re-entrant corner at the knee. Each flange consists of 2 angles 6 in . by 6 in . by $\frac{3}{8} \mathrm{in}$. The web plate is $\frac{3}{8} \mathrm{in}$. thick. The depth at the section adjacent to the knee is $3 \mathrm{ft} .4 \frac{1}{2} \mathrm{in}$. There were stiffeners at the knee in line with the flange angles, but no diagonal stiffeners were used. Reinforcing plates were bolted to the outside corner, and tests were made with and without the plates.

Specimen 2 was also a fabricated girder, but instead of a sharp inside corner a curved flange of large radius was used. Flanges consisted of 2 angles 4 in . by 4 in . by $\frac{1}{2} \mathrm{in}$. The web plate was also $\frac{3}{8}$ in. thick. Crimped, bolted, radial stiffeners at the corner were used at first and then removed in a subsequent test. The outside corner was initially reinforced with a bent plate and clip angles, which were also removed in a subsequent test.

Specimen 3 was a welded girder frame with a sharp, re-entrant corner at the knee. Figure 89 illustrates both the manner of testing and the details of the frame. The flanges are 10 in . wide and $\frac{3}{4} \mathrm{in}$. thick. The web is $\frac{3}{8} \mathrm{in}$. thick, except at the ends of the legs under the loading shoes, where it was made $\frac{5}{8}$ in. thick. A diagonal stiffener was welded across the corner. The legs of specimen 3 were approximately in ft . long, those of specimen 2 approximately 10 ft ., and those of specimen I about 12 ft . in length. Depths at the knee also

Fic. 88.-Riveted Knee Frame in Testing Square with Line Courtesy of F. H. Frankland, Chief Engineer, American Institute of Steel Construction
differed in each specimen; hence, they are not directly comparable.

Fig. 89.-Welded Knee Frame under Test
Courtesy of F. H. Frapkland, Chief Engineer, Atnerican Institute of Steel Construction

Numerous strain gage readings were taken on each specimen. Rosette patterns, each consisting of four intersecting gage lines 2 in . long, inclined at 45° to each other, were spotted at many points on the web at the knee and at
sections near the knee. See Fig. 88. Strain readings were also taken at different points on the flanges. Principal stresses and their directions were then computed from the measured strains. In every specimen, diagonal compression stresses in the web at the knee were relatively low. Maximum compression stresses in the flange at the re-entrant corner in specimen I were not excessive, in general being less than computed values. For the test load of 75 kips, which was 10 per cent higher than the design load calculated to produce a maximum compressive stress of $18,000 \mathrm{lb}$. per sq. in., the data indicate an actual stress slightly more than $18,000 \mathrm{lb}$. per sq. in. in the inner flange at the knee. Stresses in the compression flange of specimen 2, the filleted specimen, also seemed to be lower than computed values. In the welded specimen, compression stresses at the re-entrant corner seemed to be slightly greater than the computed values. In every specimen, stresses at the outside corner of the knee were quite small.

The three specimens were finally loaded to failure. The design loads corresponding to a calculated compression stress of $18,000 \mathrm{lb}$. per sq. in. and the ultimate loads are shown in the following table:

TABLE I

Specimen	Design Load, lb.	Maximum Load, lb.
1	67,900	168,000
2	56,800	72,000
3	73,800	153,600

Failure occurred in every specimen by sidewise deflection of the inside corner accompanied by buckling of the compression flange at the knee. There was also some buckling of the web in specimen 3. Table I indicates that the filleted specimen was the weakest. Relative performance, however, cannot be based on the data in Table I. It must be remem-.
bered that the width of flange for specimen 1 was $12 \frac{3}{8} \mathrm{in}$., and that for specimen 3 was 10 in., whereas for specimen 2, the filleted specimen, it was only $8 \frac{3}{8} \mathrm{in}$. The specimens were not designed to have the same buckling resistance.

The tests indicate that knee details, like that of specimen I , which are preferable from a fabricating standpoint, are also satisfactory from a structural viewpoint. A rectangular knee section, stiffened along the sides, did not develop any weakness. Moreover, it was shown that diagonal or radial stiffeners were not necessary. It is not good engineering, however, to generalize on the basis of these few tests. It must be kept in mind that the knee sections tested were not deep sections. Small strain readings do not always indicate absence of danger. In buckling failure, a slight increase of load may cause large deformations. Long-span girders with deep sections may need intermediate stiffeners in addition to stiffeners along the sides of the rectangular area at the knee. On the other hand, the behavior of specimen I gives confidence in the use of that type for girders not having radically different proportions.

Lehigh University Tests.-Two riveted-steel rigid frames were tested in 1938 at Lehigh University by Inge Lyse and W. E. Black in cooperation with the American Institute of Steel Construction. One of the frames was fabricated with knee sections approximately square and with sharp reentrant angles at the inside corners; the second was constructed with curved inner fillets and straight outside flanges. Both frames were tested as two-hinged structures, chiefly to determine whether the stress states in the corners were similar to those obtained in the knee frames tested at the Bureau of Standards in Washington. Slippage of foundations and accuracy of the conventional theory of analysis and design were also investigated.

The frames were considered to be one-quarter-size models of imaginary prototypes with 72 -ft. spans. Frame I had a
span of $18 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$., center to center of pins, and a rise of 6 ft . $\frac{1}{2}$ in. to the center of the crown section. Frame 2 had a span of $18 \mathrm{ft} .7 \frac{1}{2} \mathrm{in}$. and a rise of 6 ft . The top member of frame I was constructed with a depth which varied from 6 in . at the crown to $15 \frac{1}{2} \mathrm{in}$. at the knee. The legs varied in width from $8 \frac{1}{2} \mathrm{in}$. at the base to $15 \frac{1}{2} \mathrm{in}$. at the knee. The top member of frame 2 had a constant depth of 6 in. from the crown to the knee section. The legs had a width of $7 \frac{1}{2} \mathrm{in}$. The depth at the knee section was variable, owing to the inner flange being curved to a radius of 2 ft .3 in . In both frames, a web plate $5 / 32$ in. thick was used. Each flange of frame I consisted of two angles 2 in . by 2 in . by $3 / 16 \mathrm{in}$., whereas in frame 2, each flange had two angles 2 in. by 2 in. by $\frac{1}{4}$ in. No special reinforcing, such as stiffeners or a thickened web plate, was provided at the knees in either frame.

Each frame was loaded at 2 points, 5 ft .4 in . apart, and symmetrical with respect to the center of the span. Measurements were taken with an initial total load of 1000 lb . and with a final load of $13,000 \mathrm{lb}$. The differences consequently gave values corresponding to a total working load of $12,000 \mathrm{lb}$. Strains at a number of points on the web plate at the knee were measured with Huggenberger tensometers having $\mathrm{I}-\mathrm{in}$. gauge lengths. Three-line strain rosettes were used. Strains on the surface of the flange angles, both at the heel and at the toe of each angle, were also observed. Most of the measurements were taken in the region at the knee, but flange strains at mid-span and various other points were also observed in order to permit a complete study of the behavior of the models. Stress states were then calculated, plotted and compared with computed stresses. Theoretical values in the web plate at the square knee were determined by the method of analysis developed at the Bureau of Standards.*

[^12]Values determined experimentally were in general agreement with theoretical values. The maximum shear in the web of the square knee did not exceed $10,000 \mathrm{lb}$. per sq. in., for loads which gave a maximum compression stress of $24,000 \mathrm{lb}$. per sq. in. in the flange of the girder adjacent to the re-entrant corner. The compression stress in the flange of the column adjacent to the inner corner was $17,000 \mathrm{lb}$. per sq. in. The diagonal compression in the center of the web at the knee was also less than $10,000 \mathrm{lb}$. per sq. in. At the re-entrant corner, diagonal compression stresses were about $14,000 \mathrm{lb}$. per sq. in., but this was in a region of lateral support.

Stresses in the web plate of the frame having a curved fillet were also low. The maximum diagonal compression stress was approximately $10,000 \mathrm{lb}$. per sq.in. On the other hand, the compression stress in the flange angles at the knee was high, amounting to $27,000 \mathrm{lb}$. per sq. in. at a section near the beginning of the corner fillet. It is interesting to note that there was considerable difference between the stresses at the toe and at the heel of the angles. The preceding value of $27,000 \mathrm{lb}$. per sq. in. occurred at the heel of the angle. The corresponding stress in the toe at the same section was slightly more than $16,000 \mathrm{lb}$. per sq. in., thus indicating a decided variation in stress over the cross-section of the flange. There was a tendency for the outstanding legs of the curved flange angles to deflect inward, as the result of the radial component of compression caused by the curvature. This local yielding undoubtedly contributed to the stress concentration at the heel. Radial stiffeners milled to bear on the flange, or cover plates on the curved flange, might cause a different stress distribution. This matter was not investigated, however, in these tests.

The stress concentrations which developed at the sharp re-entrant angle of the square knee were, in the opinion of the investigators, due principally to imperfect bearing at the intersection of the compression flanges. It was found
that tight bearing did not exist in the frames as fabricated. There were small gaps at the ends of the flange angles, which were filled with shims tack-welded in place. This produced tight bearing only along the outstanding legs of the girder flange angles.

One interesting recommendation of the investigators relative to design of square knee-frames is as follows: "The horizontal and vertical sections through the inside corner of the knee are critical sections with respect to normal stresses. Apply the usual formula for flexure and direct stress to the horizontal section. On the vertical section, assume that the flange angles carry all the moment and thrust in the girder."

The last sentence of this recommendation reflects the type of fabrication of the test specimen. The vertical section was the one along which the splice was made between the top girder and the column leg. No definite web splice was provided at this section. If a definite web splice is provided in actual design, the web will undoubtedly assist the flange angles in carrying part of the moment and thrust.

The investigators also recommended that the web at the knee be designed to take a total horizontal shear equal to the tension in the top flange of the girder. In other words, the horizontal area along the top of the web at the knee, and likewise the number of rivets connecting the web to the flange, must be sufficient to develop the tensile strength of the flange where it intersects a vertical section through the inside corner of the knee.

In the curved knee, the investigators recommended that a square piece of the web above the neutral axis of the corner be investigated. Two sides of this square would coincide with the outside flange angles. The inside corner of the square would be defined by a point located one-quarter of the distance from the inside flange along the radial diagonal through the external corner of the knee. It was recommended that the square piece be investigated for the boundary forces introduced by the outside tension flanges
and by the bending and shearing forces along the inside edges.

It was found, as might be expected, that normal stresses upon radial sections of the curved knee did not exhibit a linear relationship. The neutral axis did not coincide with the centroidal axis, but was close to the curved compression flange. In the specimen tested, it was about one-fourth of the distance from the compression flange to the exterior corner along a radial diagonal section. Experimental values for compressive stresses in the curved flange were generally higher than computed values. The investigators recommend a method of reducing section moduli and moments of inertia within the curved knee in order to produce better agreement. The method is not included here because, on the basis of this one test, its general applicability is questionable.

Designers of rigid frames have wanted to know more about the uncertain stress'states at the knees. They have also been interested, however, in the validity of the conventional methods of analysis for determining redundant reactions. In the two specimens tested, it was found that good agreement existed between horizontal reactions computed by conventional methods of analysis and those determined experimentally for both the square and the curved knee frame.

The preliminary report of the Lehigh University tests was kindly furnished to the writer by Mr. F. H. Frankland, Chief Engineer of the American Institute of Steel Construction.

CHAPTER XV

THE ARCHITECTURE OF SHORT-SPAN BRIDGES

By GILMORE D. CLARKE
Fellow, American Society of Landscape Architects Landscape Architect, Westchester County Park Commission

The development of bridge construction constitutes an important element in the extension of communication and transportation and has been, from its earliest inception, one of the most important factors in human progress and the spread of civilization. Among the earlier civilizations, the Chinese evolved arch forms embodying a distinctively picturesque architectural treatment, but with no thought of adaptability for wheeled traffic. Later, and doubtless after the lapse of centuries, the Romans effectively developed the arch principle and extended its application to multiple arches supporting roadways and aqueducts, some of which still stand as monuments of skillful architectural and engineering design. The Greeks contributed practically nothing to the art of bridge building because their largest unit of construction was the stone or timber lintel with inherent limitations of span. The bridges built in Europe during the Middle Ages, particularly by peoples having old established governments and cultures, were characterized by distinctive architectural treatment.

Bridge building in America, on the other hand, has just as naturally reflected the pioneer conditions of life in the youngest of the great nations, engrossed, during its first century of growth, in conquering the wilderness and employing strictly utilitarian necessities for developing lines of communication and natural resources. With the progress

240 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

that has now been made in such development and the resulting accumulation of wealth, there is developing the trend, characteristic of the growth of all civilized nations, toward a higher culture and more wholesome artistic standard for public works. The time has arrived when serious attention must be given to bridges as one of the most essential and important classifications of such works.

The problem before us today is to be able to build bridges which will endure, employing modern methods and materials, and at the same time giving them charm and beauty. This does not mean that we should attempt merely to imitate the designs of old bridges; we should rather build structures having individual architectural beauty, appropriate to their environment and to the materials used, instead of types that are purely utilitarian. Bridges designed with beauty of line and mass and having simplicity and refinement of detail will endure longer than structures lacking artistic conception.
> " If you get simple beauty, and naught else, You get about the best thing God invents."

> Robert Browning.

In all architectural study, we must go back to the beginning and study the art of the past, that we may, by seeing what has been done, profit by both good and bad examples. After all, ancient masonry bridges from a structural standpoint are not radically different from modern bridges of the same type. The only difference between the modern arch of reinforced concrete and the ancient arch of stone is that the modern structure may be constructed more economically, is less limited by restrictions, and may reach much longer spans than stone arches. The test of time will doubtless prove that concrete is no better than stone, in fact it may not be as long-lived, but we are forced to use it for the sake of economy in construction.

Bridges have played an important part in history and.
have often been the center in battles, at one time defended, at another destroyed to prevent the advance of the enemy. As a result, many of the old structures have been either entirely destroyed or remain standing in part, serving no purpose save as reminders of the grim events of the past. Probably the most famous of these old bridges is the Pont St. Benezet over the River Rhone at Avignon, built by St. Benezet between the years 1177 and 1185 . This magnificent old structure occupies the site of an old Roman bridge and some of the stone used may have been part of the older structure. The Pont St. Benezet no longer reaches across the Rhone since all but four arches and the tomb of the friar architect, St. Benezet, have been destroyed. The chapel has withstood the ravages of flood and battle, although a number of the arches were destroyed, rebuilt, and destroyed a second time. The bridge originally consisted of 21 arches, not built straight across the river, but pointed " V " shape up stream to resist floods and to serve as a more favorable means of protection against attacks of enemy infantry and cavalry.

Bridges are not only a measure of the historical development of peoples, but of their artistic development as well. They are among the oldest existing structures built by man and many remain as monuments to the engineering and artistic development of departed races. The ancient aqueduct, the Pont du Gard, which crosses the valley of the Gard near Remoulins, France, built by the Romans about I9 A.D. stands today the most famous and handsome of Roman monuments, a stirring tribute to the engineering and artistic genius of a race of builders. The fortified Pont Valentre over the River Lot at Cahors, a twelfth century French masterpiece, is one of the most interesting of the older bridges; the Puente de Alcantara at Toledo, Spain, is notable among fortified bridges. Originally Roman, it was rebuilt in the thirteenth and again in the seventeenth centuries. Bridges and rivers were inseparable and were

242 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

dominating influences upon towns and cities. When we think of Rome and the Tiber we remember the venerable old bridges which span that historic stream; Venice brings to mind the "Canale" and the Rialto; Florence gives us the Arno and the Ponte Vecchio; and so on.

Let us consider Paris, a city divided by the river Seine, where there exists today an almost complete historical and technical exhibit of the gradual development of bridge construction. The Seine is not a wide stream and there was every inducement to build many structures to provide for communication between the two parts of the city. There probably does not exist in any city of the world a group of bridges having the combined artistic merit of the 32 bridges which make the 24 crossings of the Seine within the city of Paris. It is doubtful if an ugly bridge would have stood the test of time; as a matter of fact it is believed that at least two-multiple-span suspension bridges, so common in France, were erected over the Seine and later replaced by arched bridges, torn down doubtless because they did not possess the artistic merit indicative of the French capital. It is of peculiar interest to note that "until the end of the 18th century all masonry bridges in Paris were built with semi-circular arches; from 1787 to 1852 all had segmented arches, and after that time, beginning with the new Pont Notre Dame, all had elliptical arches."*

In old bridges, little importance was given to the clearance under the structure, or "free-way" as it was called. The Romans built as many piers as were necessary to provide for semi-circular arches without consideration of the use of the waterway, often giving little thought to flood requirements. Restriction of the free-way in many old bridges resulted in washing away piers or in the undermining of abutments. To provide more free-way the "Corne de Vache" and openings in the abutments and -"Bridges of Paris," Cari L. Rimmele, "The Military Engineer."
piers were resorted to. Later the flatter arch, both elliptical and segmental, were developed, the most daring design being the series of long flat segmental arches in Perronet's Pont de la Concord in Paris. Commerce demanded still more river-way and the next development in bridge design was the use of iron. The iron bridge was adaptable for use on longer spans than was possible with the stone arch and with the rapid expansion of civilization steel bridges were fabricated by the thousands without regard for appearance. The result is what we find throughout the length and breadth of the United States today, thousands of ugly beam, truss, and cantilever bridges over rivers, highways and railroads, which in time must be replaced, not entirely because of the effects of deterioration, but because people require something to satisfy their growing sense of the artistic. For a time it was thought that iron would replace stone even for short-span bridges, but now I feel sure that stone in modern bridges is destined to continue, because of the possibilities of its use in conjunction with reinforced concrete and with steel and iron.

Engineers have often pointed out that many, in fact most, of the old bridges were designed and built by engineers without the aid of architects. The designers, however, were both engineer and architect in one. When the old bridges were built, the science of engineering had not developed to the extent that it has today. "The balancing of the arch and the founding of its abutments were long practiced before they were reduced to something approaching scientific exactness. A good example of the haphazard method of building was a bridge built at Pont-y-pridd, in South Wales, by William Edwards less than 200 years ago. It was first built as a three-span arch, but soon after its completion was washed away by a flood. The builder then thought it would be better as a single span of 140 ft ., although this was a larger span than had been attempted anywhere since the days of the Romans. The shape of

244

 THE ARCHITECTURE OF SHORT-SPAN BRIDGESthe arch was determined solely by the sweep of a pair of compasses, with the result that in its turn it fell down. The builder could see as it fell that the crown was pushed upwards by the great weight over the haunches. In rebuilding it, he introduced relieving openings to reduce this weight, and on the third occasion the bridge was successfully built. It remains to this day. It was a case where the first bridge failed by lack of knowledge of foundations, and the second bridge by lack of knowledge of the theory of balancing an arch, which is entirely a matter of its shape in relation to the load placed upon it. Finally both errors were corrected by experience gained in their observation, and not by deduction from elements as is the scientific practice of today."*

The Pont Neuf or New Bridge, the oldest in Paris, begun in 1578 and completed in 1604, was more fortunate in that it was in continuous use until 1848 before the first repairs were made.

[^13]the builders can probably not be held responsible in the same manner as the builder of the bridge at Pont-y-pridd, since the former structure stood for almost 250 years before repairs became necessary.

How are we moderns to design bridges which approach models of perfection in every respect? Scientific research in engineering has taught the use of steel, and of steel and concrete in combination, probably the most economical types of construction for bridges. The exacting methods necessary to design the modern bridge structure require that the engineer devote his entire professional activity to master the science of structural design. The mind of the engineer is trained and disciplined to the working out of difficult computations and formulas. It is not reasonable to expect a mind, trained to the exactness of the engineer's, to possess at the same time a full knowledge and appreciation of those esthetic principles necessary to obtain a pleasing mass, a harmonizing of materials of construction, a continuity or flow of outline, rhythm in expressing several units in a larger mass, and with all, unity and simplicity to express the use for which a structure is intended.

In designing a bridge the best results are doubtless obtained when engineer and architect, each appreciating the limitations of the other, combine efforts to produce a bridge, structurally sound and esthetically pleasing. Few bridges have been constructed within recent years by engineers alone which would not have been more attractive, and not necessarily more expensive, had an architect been consulted as the design progressed. It is neither desirable nor sufficient for an engineer to design a bridge and then pass it on to the architect, who may apply decoration to either cover up structural members, which are neither pleasing nor artistic to the eye, or add decoration which only serves to distract from the structural honesty of the structure. Neither should the reverse order be practiced;

246 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

the architect may design a bridge pleasing in every way but not adaptable for good structural design. The ideal way is for engineer and architect to collaborate from the start; the result is more likely to possess those principles of good design which the representatives of both professions are able to contribute together toward a resultant work unified in structural soundness and artistic worth.

There has never been a time when collaboration has been more vital to the development of the works of man. Centuries ago the varied fields of endeavor in the arts and engineering were often accomplished by single practitioners. Michelangelo was an architect, engineer, painter and sculptor. Now each profession is in itself so complex that it is in turn divided into special branches, so that there are engineers who specialize in the design of bridges, or roads, or sewers; architects who specialize in school, or church, or apartment house design; and landscape architects who specialize in estate, or park design, or city planning. This specialization has been brought about by reason of the fact that our lives are short and modern civilization has developed to the extent that one individual must specialize upon one single phase, rather than attempt to master a whole profession, in order to be proficient in a limited but highly specialized field. The result is that we must be more proficient collaborators. This does not mean that one art or one scientific pursuit must be subservient to another, for an architect would never for one moment admit, for example, that the engineer should dominate in the field of house planning. On the other hand, there are collaborative problems in engineering which are unquestionably dominant, and here the architect must willingly recognize that fact. We must all learn to weigh the importance of our contributions, of our competence to contribute to the solution of any given problem. The leadership in a collaborative problem is not an easy one. That question is very often, usually, in fact, settled by the client. He may decide wisely
and he may not. Nevertheless, each collaborator can make as valuable and as generous a contribution whether assuming the dominant position in the scheme or not. Collaboration is dependent upon the collaborators being tactful, reasonable, and respectors of each other's opinions.

Three rules may be given for the guidance of collaborators. These I believe are essential to the success of any enterprise where representatives of more than one profession are involved and if satisfactory results are to be obtained. First, the collaborators must keep each other informed as to the development of each one's plans, since what one does or plans to do may affect the work of the other. Second, each collaborator must keep posted upon. what the others are doing or plan to do and must personally assume the entire responsibility for suggestions for the improvement of the plans of the others, merely, however, in the capacity of consultant, whenever this is possible. This is especially true when the work of others relates closely to his own. Third, when one or the other of the collaborators is concerned about any particular phase of the problem which vitally concerns the resultant design, if after discussion and careful consideration they cannot agree, then the difference should be clearly set forth to the client, who will make the final decision.

The vast expansion of our systems of railroads and highways has called for the construction of many bridges, and since the development of structural steel, the large majority are purely utilitarian with no thought given to the esthetic principles of design. The reason for this was the speed and economy which appeared to be necessary and the more or less temporary nature of many of the structures. Practical pioneers in railroading and in highway development were not interested in the appearance of structures so long as they were structurally sound. There were exceptions, of course, but the exceptions were few. As a people, we were satisfied with the many ugly structures on highway

248 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

and railroad; but gradually we became sensitive to things out of harmony with nature, things which irritate those who have benefited by contact with the fine arts. The pioneering days of opening up vast new and unexplored regions are over and we are taking time for consideration of the beautiful in our surroundings.

In spite of this new artistic consciousness on the part of the people, many railroad and highway engineers con-

Fio. 1.-Bronx River Parkway Bridge-Westchester County Park System (Concrete " T " beam construction, timber faced)
tinue to perpetrate upon a tolerant public, monstrosities which offend even the uncultured layman. One notable exception is the Pennsylvania Railroad, which has built many beautiful bridges, probably because artistic structures have become an asset to the railroad business. When wood and stone were the only materials for construction, bridges were, on the whole, most satisfactory in appearance. With the advent of structural steel and reinforced concrete, many ugly utilitarian structures were designed by engineers, principally because it was possible to build

Fig. 2.-Plate Girder Bridge. (Compare with Fig 1)

Fic. 3.-Reinforced Concrete Slat Bridge. (Compare with Fig. 1)
bridges quickly and cheaply. Only recently has the possibility for the extended use of these materials been worked out with a view toward learning how they may be used artistically. Concrete, steel beam, or girder used without the application of imagination as to their latent possibilities resulted in commonplace, ugly structures. Add the imaginative ideas of the engineer seeking for something better to replace the stereotype designs of the last fifty years and immediately it becomes possible to develop structures having a wide range of possibilties from the standpoint of architectural as well as engineering design without increasing the cost, and in many cases even reducing the cost over the commonplace design. The "rigidframe" design in both steel and reinforced concrete made possible the development of interesting and beautiful bridges in places where normally the ordinary flat beam or girder bridges would have been used.

It is not intended to leave the impression that steel or reinforced-concrete beam or girder bridges are not subject to satisfactory artistic treatment. On the contrary, it is possible to treat them most satisfactorily and to make them artistic and pleasing, more particularly for relatively short spans and for the smaller structures where, in addition, the wood beam will be continued in use.

Let us now consider a few of the more important principles which should guide designers of bridges:

Fitness and beauty of design must be developed together. For a structure to be fit it must appear strong enough to fulfill the purposes for which it is built and at the same time be simple and honestly portray the materials which go to make it up. We should strive for honesty in design and construction. By that is meant to allow a structure to appear what it is intended to be. For example, concrete looks better, when, in the finished structure, it shows that it was poured. Our so-called "modern" architecture lends itself particularly well to the use of concrete since there are
no wide overhanging mouldings or cornices and the finished product appears as though it came out of a mould. Wood or steel forms are necessary, in most cases, to hold the concrete in the shape it is to have finally. Why not, therefore, permit the marks of these forms to be exposed since they tell the story of the mode of construction? More often these markings look better than a treated surface if the construction of the forms is the subject of careful planning. Many of the bridges illustrated in this volume are of rigidframe reinforced-concrete construction with stone facing. The stone facing does not take away from the frankness of

Fig. 4.-Boston Post Road Bridge over Cross County Parkway, Rye-Westchester County Park System
the design since the stone serves to protect the exposed faces of the bridge from the elements and at the same time aids in bringing the structure into closer harmony with its surroundings. This is more particularly true in a terrain where natural rock outcrops abound; in sections where there is no native rock, exposed concrete may be more economical and may be designed to be in keeping with the surroundings, for example, along the parts of the seashore where sand is the only natural building material.

Recently, we have listened to a controversy between the advocates of this demand for structural honesty in the case of the great new suspension bridge across the Hudson River between Manhattan Island, New York City, and New

252 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

Jersey, to date the longest single suspension span ever built. The tall structural steel piers stand as huge monuments to engineering genius. In their fabrication the architect had no concern but they are nevertheless impressive in their simple design reaching skyward to hold the suspension cables which reach across the waters of the Hudson River. The plans call for encasing these steel towers with stone, so that when the bridge is completed the cables will, in effect, be supported by immense piles of granite. The advocates of the naked steel piers are strong in denouncing the policy of the designers to cover up the steel with stone. On the other hand, the designers defend the adopted policy and state that the granite protects the steel and gives the piers a finer proportion. In a notable book on the general subject of bridges ("Bridges," by Charles S. Whitney) the author says, "A stone covering for steel or concrete may sometimes be proper to protect it from the elements or to provide a harmonious architectural treatment. Obviously, its use could be abused if stone work were constructed only as a sham serving no structural purpose. It is no more necessary for us to see the material inside of a bridge than it is to look through the bark of a tree." We cannot settle this difference of opinion here; the example has served to bring an important matter to the attention of all those interested in bridge design. Let us hope that the controversy will bring engineers and architects closer together rather than widening the gap between the two professions.

Beauty is only a relative attribute. A bridge may be beautiful to some, ugly to others. Again a bridge may be beautiful by night, ugly by day; this may be caused by overdone decoration, which is lost to view at night, leaving only the outline silhouetted against the sky; still another argument for simplicity in design. A simple structure graceful in outline, expressing at the same time unity in design, will usually be pleasing and therefore beautiful.

Fig. 5.-Park Avenue Bridge on the Bronx River Parkway.

254 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

Unity in design is a most important factor. In designing a particular bridge having five steel arch spans, with one of the end spans a single lift bascule, the architect felt that it was important to have the structure possess unity and to that end decided that it was necessary to plan the bascule differently than is customary. The bridge between Glen Island Park (Westchester County Park System, N. Y.) and the mainland, illustrated here, shows five similar steel arches, the highest and longest the bascule span, the others gradually decreasing in width and in height above the water as they approach the last span. The five spans of the bridge give the whole structure a feeling of unity since the similar arches carry a certain definite rhythm over the spanned space. Ordinarily, the bascule span would have been a flat girder, quite possibly curved at the hinged end; if thus planned the unity of the structure would have been lost.

A structure must be suitable, it must fit well into its surroundings. Bridges in the environment of cities may be formal in design with a refined use of materials and of course planned in harmony with the surrounding structures. Bridges in the country and in parks may take on a more rustic aspect and naturally there are degrees of this fashioned treatment. The more rugged the scenery and surroundings, the more rustic may the bridge be. It should never be so dominant a part of a picture that it does not leave one with the impression that it is a part of the earth it is built upon. A bridge, more than any other structure built by man, should harmonize with its surroundings and become a suitable part of a large composition. To bring a structure, no matter what it may be, (a house, a bridge, a church, or a monument) into a close relation with the surroundings, is as important as the design itself. The greatest works of architecture, the Parthenon, St. Peter's in Rome, the great cathedrals of Europe, are not in themselves alone, beautiful. These

Fig. 6.-Glen Island Park Bridge-New Rochelle, N. Y.-Westchester County Park System
(Steel cantilever construction. The first span on the left is a single leaf bascule.) Waddell \& Hardesty, Consulting Engineers for bascule span.

256 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

Fio. 7.-Bronx River Parkway Bridge-Westchester County Park System
C. W. Stoughton, Architect. (Concrete "T" beam construction with stone arches)
great monuments are parts of a landscape, part of larger artistic compositions from which they cannot be dissociated. To bring structures, and bridges more particularly, into close harmony and relation with their surroundings is, in the broader sense, the contribution which the artist makes to the field of design. It requires skill in the arrangement of architectural forms, and of the landscape as they relate to the big broad and unified compositions of nature and the works of man.

Fic 8 -Highway Bridge, Constructed in 1929 (Compare with Fig 7, a "T" beam bridge of about same span)

The bridge has most simple requirements, but a single purpose, namely, to carry traffic. It should reflect those simple requirements in its design by being simple in plan and elevation, expressing conditions of the site as concerns the type of surroundings and the condition of the soil. It makes a difference whether the bridge is designed for mountain gorge or meadow stream, urban street or woodland road, rockbound shore or sandy beach. The problem for the designers is to find that one single structure, which will most admirably fit all the conditions of the site so that it satisfies the requirements of traffic, of waterway, of flood, and other conditions peculiar to each particular structure.

258 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

The illustrations in this volume of bridges in which the engineer and architect collaborated from the beginning should prove the value of collaborative effort.

In closing this brief chapter, I want to pay tribute to Mr. Arthur G. Hayden, author of the other chapters in this volume, an engineer who has always fully appreciated the value of the architect in collaboration. To him must go the credit for the engineering design of nearly all of the bridges illustrated in this volume, some of rigid frame, some of other types of design. In each case the architect imposed restrictions or limitations and each time he has solved the particular special problem so as to retain the spirit of the original design as the architect intended. If this chapter merely serves to emphasize the importance of collaborative effort in this age of specialization, it will have served well.

Odell Avenue Bridge, Yonkers, N Y.-Saw Mill River Parkway-Westchester County Park System
Concrete rigid frame, stone faced, 62 -foot arch, over parkway Steel ngid frame, 80 -foot arch, over railroad

The Fenway-Boston Metropolitan Park Svstem. Olmsted Bros, Landscape Architects

262 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

Mill Road Bridge, Hutchinson River Parkway-Westchester County Park System

Iatidge Over Hutchinson River Parkway for N. Y., N. H. \& H. Railroad Westchester County Park System

Colomal Heights Bridge-Bronx River Parkway-Westchester County Park System Bowdin \& Webster, Architects

Wilmot Road Bridge over Hutchinson River Parkway. (Rigid Frame)
Westchester County Park System

Railroad Bridge Constructed in 1929
(Compare with ngid frame bridge of simular span on page 265)

A Rigid-Frame Bridge Would Have Been More Economical (Compare with rigid-frame bridge on page 265)

Bridge Carrying Bronx Parkway Extension over New York Central Rallroad at Mt. Pleasant. A steel rigid-frame structure. Awarded First Prize

A grade separation structure, with highway passing over the railroad. Note economical design of wing walls. Design prepared for New York
Central Railroad by Westchester County Park Commission.

THE ARCHITECTURE OF SHORT-SPAN BRIDGES

Bridge at Scarsdale-Bronx River Parkway—Westchester County Park System C. W. Stoughton, Architect

North Avenue Grade Separation, Lincoln Park, Chicago
(Concrete beam construction. Compare with rigid-frame designs on page 269)

Bridge on Cross County Parkway, Mt. Vernon, N. Y.-Westchester County Park System

R. F. \& P. Raikoad Bridge-Mt. Vernon Memorial Highway, Washington, D. C. (Plate girder construction)
Gilmore D. Clarke \& Clinton F. Loyd, Architects. J. V. McNary, Designing Engineer, U. S. Bureau of Public Roads

272 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

274 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

Cross County Parkway Bridge Over Central Park Avenue, Yonkers, N. Y.-Westchester County Park System

276 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

Woodland Place Viaduct, White Plains, N. Y.-Bronx River Parkway, Westchester County Park Commıssion.

278 THE ARCHITECTURE OF SHORT-SPAN BRIDGES

Garth Woodt, Bronx River Parkway-Westchester County Park System

 C. E. Wheeler, Architectural DesignerDouble-wpan reinforced concrete "T" beam bridge. Abutments are faced with native atome. Coacrete beant is faced with large timbers which have been adzed and treated with - wreathed gray stain.

APPENDIX
Bending and Direct Stress-Steal in Tension Face Only. Tension over Part of Section. Based on $\boldsymbol{n}=15$

Fig. 87.

LIVE LOADS AND UNIT STRESSES

The live loadings now being used in the design of these bridges by the Westchester County (New York) Park Commission which first built them are as specified for steel highway bridges by the American Railway Engineering Association and the American Association of State Highway Officials.

Highway Concentrated Loads.-Motor trucks of various weights, all with 14 ft . wheel base and 6 ft . gage, eight-tenths of the total weight being on the rear axle and two-tenths on the front axle. Trucks in train are assumed to be a distance apart of 30 ft . from rear axle of preceding truck to front axle of following truck. Truck train loads consist of one heavier truck, the tonnage of which designates the load class, preceded and followed by any number of lighter trucks, each being three-quarters the weight of the heavier truck.

H 20 train load includes one 20-ton truck and any number of 15-ton trucks.
H_{15} train load includes one 15 -ton truck and any number of 11 $\frac{1}{2}$-ton trucks.
H io train load includes one io-ton truck and any number of $7 \frac{1}{2}$-ton trucks.

Traffic lanes are assumed 9 ft . wide and bridges having widths not in even multiples of 9 ft . are assumed to be loaded over their entire width with a load per foot of width equal to one-ninth of the load of one traffic lane. Trains of trucks over the width of the bridge are all assumed to be headed in the same direction. The wheel concentrations of these trains will have a lateral distribution and in the solid barrel arch-like type of structure under consideration it is assumed that the weight of each row of wheels across is uniformly distributed on a line over the width of bridge so that the load per foot of width will be one-ninth of an axle load. For example, each longitudinal strip one foot wide of a solid barrel arch is assumed to be loaded with a concentration of $\frac{32,000}{9}=s a y 3600 \mathrm{lb}$. from the rear axle of a 20 -ton truck.
and $\frac{8000}{9}=$ say 900 lb . from the front axle. No longitudinal distribution of wheel loads is assumed.

Reduction of Traffic Intensity for Wide Bridges.- For bridges over 18 ft . wide, the above loads are reduced I per cent for each foot of width in excess of 18 ft . up to a maximum reduction of 25 per cent for bridges 43 ft . width and over.

CLASS

Fig. 88.

Equivalent Uniform Loading. - The following uniform loadings equivalent to the above concentrated loadings are specified by the A. R. E. A. and A. A. S. H. O. to be used for loaded lengths of 60 ft . or over. The figures given are for a uniform load per linear foot of traffic lane (9 ft . wide) and the concentrated e.cesses to be used in addition to the uniform load are to be considered as uniformly distributed on a line across the lane and are to be placed on the span so as to produce maximum stress at the point'under consideration.

H 20 Unif. 640 lb. per lin. ft.
Excess concentration $\left\{\begin{array}{l}18,000 \mathrm{lb} \text {. for moment } \\ 26,000 \mathrm{lb} . \text { for shear }\end{array}\right\}$

H 10 Unif. 320 lb . per lin. ft. $\underset{\text { Excess concentration }}{ }\left\{\begin{array}{l}9,000 \mathrm{lb} \text {. for moment } \\ 13,000 \mathrm{lb} \text {. for shear }\end{array}\right.$
Correction for widths of roadway not in even multiples of 9 ft . and allowance for reduction of traffic intensity in the case of wide bridges are as for the concentrated train loads.
(Only the concentrated train loads will be used in this work since the influence line method is used throughout and there would not be the same saving of labor by the use of the equivalent uniform loading that there is in the stress calculation for truss members.)

Electric Railway Loadings.-The standard electric car loadings shown in Fig. 88 are recommended by the A. R. E. A. and A. A. S. H.O. unless otherwise specified by the interested electric railroad company. The loading consists of two cars on each track preceded and followed by a uniform load (without concentrated excess) corresponding to the class of highway loading specified in the preceding paragraph. Electric railway traffic lanes are assumed to be 10 ft . wide. Highway bridges carrying electric railway traffic should be designed for either of the following conditions whichever governs. (a) The highway loading of the appropriate class specified on any portion of the roadway including the electric car lanes. (b) The electric railway loadings on the car tracks and the highway loading on the remaining traffic lanes.

Sidewalk Loads.-Sidewalk loads, as recommended by the A.R.E.A. and A. A. S. H. O., for steel highway bridges, varying in intensity according to the width of sidewalk and the loaded length producing the maximum stress in the member under consideration, will not be used here. In the solid barrel type of structure treated in this book, it is more practical to carry the reinforcement calculated for the roadway section across the entire width of bridge including sidewalks, than to design the sidewalk sections separately. For the steel rigid-frame girder structure it is preferable, in designing the fascia girders, to use a flat load of say 80 lb . per square foot of sidewalk than to vary the intensity according to the critical loaded lengths of the various points.

Impact.-The specifications of the A. R. E. A. and A. A. S. H. O. for steel highway bridges provide for an allowance due to impact, vibration, etc., from the live loads, excepting the sidewalk loads. This allowance is a fraction of the live load stress calculated as $I=\frac{50}{L+150}$ in which L is the critical loaded length for the member under consideration. For the type of structure treated of in this book, varying the impact factor according to the critical loaded length of the point under consideration is an unnecessary refinement. L will therefore be defined.
here as the clear span of the structure and a single impact factor used for all points for which stress is calculated. For the sake of brevity, the live-load concentrations will be increased by the amount of impact allowance before applying them in design.

Allowance for Temperature Change.-Stresses induced in indeterminate reinforced-concrete structures by seasonal change in temperature are less in proportion than for steel structures, on account of gradual relief of temperature stresses due to the phenomenon known as "time yield" in the concrete. This fact accounts for the difference in temperature range specified for steel and for concrete structures.

Metal Structures:

Moderate climate, from 0° to $+120^{\circ} \mathrm{F}$.
Cold climate, from -30° to $+120^{\circ} \mathrm{F}$.
The rise and fall in temperature is to be figured from an assumed mean temperature.

Concrete Structures:

Temperature	Temperature
Rise	Fall
$30^{\circ} \mathrm{F}$.	$40^{\circ} \mathrm{F}$.
$35^{\circ} \mathrm{F}$.	$45^{\circ} \mathrm{F}$.

Unit Stresses for Concrete Structures.--The Joint Code is followed and allowable working stresses are given for a grade of concrete that will show a compressive strength of 2000 lb . per sq. in. in standard cylinder tests when the concrete is 28 days old. For other grades of concrete the allowable stresses would be in proportion to the indicated compressive strength.

Extreme fiber stress in compression (due to bending or combined bending and direct stress).... 800 lb . per sq. in.

Shear.

 60 lb . per sq. in.Bond: for plain bars.
80 lb . per sq. in.
for deformed bars.
100 lb . per sq. in.
Tension in steel reinforcement. $18,000 \mathrm{lb}$. per sq. in.
Standard specifications usually permit an increase of 25 per cent in unit stresses for arch ribs when temperature and rib-shortening effects are included, if such effects amount to more than 25 per cent of the total tresses without them.

Note.-Since publication of this book, the impact factor and allowance for temperature change, specified by the American Association of State Highway Officials, have been revised.

[^0]: Norte.-Simple-span moments M due to vertical loads cause tension on the inside fibers and are + . Moments caused by the horizontal
 thrust H cause compression on the inside and are -.

[^1]: Reinforcement for point 11. Assume $k=0.52, k d=6.8$ in., $j d=13-\frac{6.8}{3}=10.73$,
 $f_{s}=15 \times 800 \times \frac{6.2}{6.8}=11,000, f^{\prime}=15 \times 800 \times \frac{4.8}{6.8}=8,500$.
 $\begin{array}{ll}\text { Moment to be carried }=N e^{\prime}=11,300 \times 35.2 & =398,000 \\ \text { Normal moment of resistance } 12 \times 6.8 \times 400 \times 10.73=350,000\end{array}$
 To be carried by additional steel
 Required area compression steel $=\frac{48,000}{8,500 \times 1 \mathrm{l}}=0.5 \mathrm{sq} \mathrm{in}$.
 Net area tension steel $=\frac{350,000}{11,000 \times 10.7}+\frac{48,000}{11,000 \times 11}-\frac{11,300}{11,000}=2.33 \mathrm{sq} . \mathrm{in}$.
 Note.-Smaller value for k would give larger \boldsymbol{A}^{\prime}, and smaller \boldsymbol{A}_{s}.

[^2]: Moments producing tension on the soffit (inside face) of the frame are considered t.

[^3]: Influence Load used in calculating these tables $=\frac{14}{4.5 \times 2}=\frac{14}{9}$. Therefore "Total M " calculated above are multiplied by $\frac{9}{14}$ to ubtain ordinates in Influence Line Diagram for unit load.

[^4]: In later designs of steel rigid-frame girders of this span length, 8 in . by 8 in . flange angles were used to avoid congestion at the splices and to reduce the number of cover plates.

[^5]: Dead Load Thrusts: Points 4 R to ${ }_{13}$ R: Right Horizontal Reaction $=3.9 \mathrm{~h}: \mathrm{ps}$.

[^6]: Equation I. Horiz deflection of $H=0: H \Sigma \frac{M_{H}^{2}}{I}+V \Sigma \frac{M_{y} M_{Y}}{I}+\Sigma \frac{M_{P} M_{H}}{I}=0$
 Equation II. Vert. deflection of $V=0: H \Sigma \frac{M_{r} M_{H}}{I}+V \Sigma \frac{M_{v}{ }^{2}}{I}+\Sigma \frac{M_{e} M_{r}}{I}=0$.
 $\{V=0.17$
 $H=4.64$
 Normal Thrusts: Points 4 to $13, N=7.2-4.7=2.5$ Points $1,2,3 ; N$ is negligible.

[^7]: For coefficients of $R_{s}, R_{c}, M_{x}, M_{y}$, see Table I.
 For unit vertical load substitutions, see Tables III, IV \& V.

[^8]: * Nors.-All figures to this point are based on earth pressure acting on a one-foot vertical strip of abutment. Resulting summations are therefore multiplied by 80 (skew
 width of bridge) befote substituting in equations.

[^9]: Thrust Factor for unit load at any point is constant throughout. Hence $\boldsymbol{T}_{\mathbf{z}}$ for all Points $=\Sigma$ (Load \times Thrust Factor).
 $T_{z}=2 \times[(361 \times .08)+(289 \times .15)+(237 \times .22)+(196 \times .29)+(170 \times .34)+(155 \times .37)]$. $T_{z}=594 \mathrm{~K}$.

[^10]: Note.-Ex. indicates extrados; Int. indicates intrados.
 m_{l} and t_{l} are obtained by dividing M_{l} and T_{l} by the square width of bridge (61 ft .).

[^11]: *See "Tests on Rigid Frame Bridges" by Wilbur M. Wilson, Ralph W. Kluge in the American Concrete Institute Journal, May-June, 1938, and Bulletin 308 of the University of Illinois Engineering Experiment Station.

[^12]: *"Strength of a Riveted Steel Rigid Frame Having Straight Flanges," by A. H. Stang, Martin Greenspan, and W. R. Osgood. Journal of Research of the National Bureau of Standards, Vol. 2I, September 1938, p. 294.

[^13]: " The piers rested on timber platforms, which, although laid directly upon the sand, were, when the bridge was constructed, about three inches below the river bed. In 1885 one of the piers settled to such an extent that longitudinal fissures over a half meter wide appeared in the roadway. Investigation showed that the upstream half of the pier had been undermined, and that, since the construction of the bridge, the bed of the river had been lowered more than three meters so that in some cases it was below the pier footings. The repairs included the rebuilding of half the pier and half the adjoining arches." \dagger

 It appears, therefore, that the bridge builders prior to the beginning of the nineteenth century might have better been called "architects" than "engineers," since too little attention was paid to the purely structural requirements, although they doubtless utilized all of the available information of their day. In the case of the Pont Neuf,
 *" Bridges," by Sir E. Owen Williams, K. B. E., B. S. C., M. Inst. C. E. Journal of the Royal Institute of British Architects.
 \dagger "Bridges of Paris," Carl L. Rimmele, "The Military Engineer."

