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PREFACE TO THE FIFTH EDITION.

This edition contains a chapter on the calculatiod of the stresses in stiff frames by
moment distribution as developed by Professor Hardy Cross, and detailed descriptions
and designs of several typical steel frame buildings, a hangar and an air dock. The
specifications for steel frame mill buildings as given in Appendix I have been revised to
bring them in line with the latest practice. Numerous minor changes have been made
in the text and all known errors have been corrected.

The aim in this book has been to develop the methods of calculating the stresses
in framed structures in such a way that the student or the engineer may be able to calculate
the stresses in any structure even though the framework may be of a new or novel type.
Both algebraic and graphic methods are developed for both statically determinate and
statically indeterminate structures. The details of the design of steel frame buildings are
developed for the completed structure.

Credit is due Milo S. Ketchum, Jr. for assistance in writing the chapter on moment
distribution and the preparation of the drawings.

M. 8. K.
UrBANA, ILLINOIS,
Sept, 1, 1932.



PREFACE TO FOURTH EDITION.

This book covers the calculation of the stresses in framed structures, and also the
design of buildings having a self-supporting steel frame with a light covering, usually
fireproof. In this edition the book has been rewritten and enlarged, the type has been
reset and the plates have been recast. The type page is the same size as that used in
the author’s ‘‘Structural Engineers’ Handbook.” The scope of the book has been
enlarged by the addition of a concise discussion of the calculation of the stresses in
statically indeterminate trusses and frames, several problems in framed structures and
detailed designs of a crane girder, a roof truss, and a steel frame mill building. The
book is written to serve as a text book in structural engineering and also as a book of
reference for engineers.

The book is divided into three parts and in addition has one appendix.

Part I covers the calculation of the stresses in simple beams, trusses, portals, the
transverse bent, and the three-hinged arch. The stresses in pins and the stresses due
to bending stress combined with compression and tension, and due to eccentric loading
are briefly discussed. This part contains 40 problems which cover the calculation of
the stresses in practically all types of simple trusses, bents and portals. Part I covers
the ground required for a preliminary course in stresses in framed structures.

Part II covers the calculation of the deflections of structures, the calculation of
the stresses in statically indeterminate girders, trusses and frames, and secondary
stresses in trusses. The stresses in stiff frames, the two-hinged arch, and the steel
head frame are calculated and explained in detail. This part contains the detail solu-
tions of nine problems and the statements of six additional problems. The discussion
of statically indeterminate structures in this section covers most problems in building
construction and is preliminary to a study of movable bridges, arch, cantilever and
suspension bridges.

Part III covers the design and construction of steel frame buildings for mines,
mills, smelters and other industrial plants. The detailed design of a crane girder, a
roof truss and a steel building are given. The design and construction of floors, roof
coverings, foundations, corrugated steel, windows, doors, wall covering and other details
of steel frame buildings are fully discussed.

A complete specification for steel frame mill buildings is given in Appendix I.

While this book is a companion volume to the author’s ‘“Structural Engineers’
Handbook,” the two books are independent.

As far us practicable, credit has been given in the body of the book for drawings
and data. Credit is due Professor R. 8. Wallis, Iowa State College, for assistance in
making drawings, to Professor W. C. Huntington, University of Colorado, for assistance

vi
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in preparing material for Chapters XVII and XXII, and in making drawings, and to
C. L. Eckel, Assistant Professor of Civil Engineering, University of Pennsylvania, for
assistance in making calculations, making drawings, and reading proof.

The author wishes to acknowledge the appreciation with which the previous editions
have been received by engineers and instructors.

UNIVERSITY OF PENNSYLVANIA,
PHILADELPHIA, PA.,
November 1, 1921.

M. 8. K.

PREFACE TO FIRST EDITION.

s —

This book is intended to provide a short course in the calculation of stresses in
framed structures and to give a brief discussion of mill building construction. The
book is intended to supplement the elementary books on stresses on the one hand, and
the more elaborate treatises on bridge design on the other. While the book is concerned
chiefly with mill buildings it is nevertheless true that much of the matter will apply
equally well to all classes of steel frame construction.

In the course in stresses an attempt has been made to give a concise, logical and
systematic treatment. Both the algebraic and graphic methods of calculating stresses
are fully described and illustrated. Each step in the solution is fully explained and
analyzed so that the student will get a definite idea of the underlying principles.

Attention is called to the graphic solutions of the transverse bent, the portal and
the two-hinged arch, which are believed to be new, and have proved their worth by
actual test in the class room. The diagram for finding the stress in eye-bars due to
their own weight is new, and its use will save considerable time in designing bridges.

In the discussion of mill building construction the aim has been to describe the
methods of construction and the material used, together with a brief treatment of mill
building design, and the making of estimates of weight and cost. The underlying idea
has been to give methods, data and details not ordinarily available, and to discuss the
matter presented in a way to assist the engineer in making his designs and the detailer
in developing the designs in the drafting room. Every engineer should be familiar and
be provided with one or more of the standard handbooks, and therefore only such
tables as are not ordinarily available are given.

The present book is a result of two years experience as designing engineer and
contracting agent for the Gillette-Herzog Mfg. Co., Minneapolis, Minn., and four
years experience in teaching the subject at the University of Illinois. This book repre-
sents the course given by the author in elementary stresses and in the design of metal
structures, preliminary to a course in bridge design. While written primarily for the
author’s students it is hoped that the book will be of interest to others, especially to
the younger engineers.

The author will consider it a favor to have errors brought to his notice.

UniveraiTy op Irnivois,
CramMpalGN, ILL.
August 17, 1903.
M. 8. K.
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THE DESIGN OF STEEL MILL BUILDINGS.

INTRODUCTION.

This book covers primarily the design and construction of buildings made by cover-
ing a self-supporting steel frame with a light covering, usually fireproof. The design
of steel structures of this type requires the solution of many problems not usually
met in the design of bridges, as well as the design of girders and trusses for moving loads.

This book is used by the author as a text in three courses given to civil engineering
students as follows:

(1) Part I is used as a text in the calculation of stresses in framed structures in the
junior year; (2) Part II is used as a text in the calculation of stresses in statically
indeterminate structures in the senior year, while (3) Part III is used as a text in the
design of steel frame buildings in the senior year. To make the courses in stresses
complete, it has been necessary to consider the calculation of the stresses in simple
bridge trusses due to equal joint loads and due to concentrated loads as well as a full
discussion of influence diagrams. The scope of each section of the book will be briefly
discussed.

The discussion in Part I covers the calculation of the stresses in simple beams,
trusses, portals, the transverse bent and the three-hinged arch. The stresses in pins,
the stresses due to combined compression and tension, and due to eccentric loading
are also briefly discussed. The forty problems in Chapter XIII cover the calculation
of the stresses in practically all types of simple trusses, bents and portals. In each
case a problem is stated and fully solved, and the details of the solution are discussed.
A second problem, similar to the first problem, is given without a solution. The student
is required to study the solution of the first problem and to make an independent solution
of the unsolved problem.

A very satisfactory course in framed structures can be given by requiring the
student to solve about three-fourths of the problems in Chapter XIII.

The discussion in Part II covers the calculation of the deflections of structures, the
caleulation of the stresses in statically indeterminate girders, trusses and frames,
and the calculation of secondary stresses in trusses. The most important methods for
the calculation of deflections are deseribed in detail. The stresses in stiff frames, the
two-hinged arch, and the steel head frame are calculated and explained in detail. The
detail solutions of nine problems and the statements of six additional problems are given
in Chapter XXII. The discussion of statically indeterminate structures in this section
is preliminary to a study of movable bridges, arch, cantilever and suspension bridges.

The discussion in Part III covers the design and construction of steel frame buildings
for mines, mills, smelters and other industrial plants. The detailed design of a crane
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2 INTRODUCTION

girder, a roof truss, and a steel frame mill building are given. The design and con-
struction of floors, roof coverings, foundations, corrugated steel, windows, doors,
ventilators, wall covering, and other details of steel frame buildings are fully discussed.
A complete specification for steel frame mill buildings is given in Appendix I. For
properties of sections reference is made to the author’s ‘Structural Engineers’ Hand-
book.” While this book is a companion volume to the ‘Structural Engineers’
Handbook,” the two books are independent.

For a brief course in structural engineering for mechanical or electrical engineering
students Chapter VII, Chapter VIII, and all of Part II may be omitted.



PART 1L

STRESSES IN FRAMED STRUCTURES.

CHAPTER L.

GRrAPHIC STATICS.

Introduction.—Structures are acted upon by external forces consisting of the loads
and the reactions of the supports. The loads may be due to the weight of the structure,
due to the weights carried by the structure, or be due to snow or wind. The external
forces acting on a structure are held in equilibrium by internal forces called stresses.
If a straight member is acted upon at its ends by two equal external forces in the direc-
tion of its length, equilibrium at any right section of the member will be maintained
by internal forces called stresses acting on opposite sides of the section, equal in amount,
but opposite in direction to the external forces. When the external forces tend to
elongate the member, the stress is tension; when the external forces tend to shorten
the member the stress is compression; while when the external forces tend to shear the
member off, the stress is shear. Strain is the deformation caused by stress, the ratio
of stress to strain being equal to a quantity, usually a constant, called the modulus of
elasticity. Compressive stresses will be considered positive stresses, while tensile
stresses will be considered negative stresses. Forces are concurrent when their lines of
action meet in a common point, non-concurrent when their lines of action do not all
meet in a common point. Forces acting in a plane are talled coplanar; forces acting in
different planes are called non-coplanar forces. Coplanar forces only will be considered
in this chapter.

The moment of a force about a point is its tendency to produce rotation about
that point. Moment is measured by the product of the magnitude of the force and the
perpendicular dropped from the point to the line of action of the force. Moments are
commonly measured in foot-pounds, inch-pounds, foot-tons or inch-tons.

The resultant of a system of forces is a single force that will replace the system.
The force equal and opposite to the resultant will be the equilibrant of the system of
forces. Where the system of forces reduces to a couple no one foree will replace the
system, but the resultant and equilibrant of the system will each be a couple.

Equilibrium.—Statics considers forces as at rest and therefore in equilibrium. To
have static equilibrium in any system of forces there must be neither translation nor
rotation and the following conditions must be fulfilled for coplanar forees (forces in one
plane).

3



4 GRAPHIC STATICS. Cuar, I.

Z horizontal components of forces =0 (1)
2 vertical components of forces =0 (2)
Z moments of forces about any point = 0 3)

Representation of Forces.—A force is determined when its magnitude, line of
action, and direction are known, and it may be represented graphically in magnitude
by the length of a line, in line of action by the position of the line, and in direction by
an arrow placed on the line, pointing in the direction in which the force acts. A force
may be considered as applied at any point in its line of action.

Force Triangle.—The resultant, B, of the two forces P, and P, meeting at the
point a in Fig. 1 is represented in magnitude and direction by the diagonal, R, of the
parallelogram a-b-c-d. The combining of the two forces P, and P, into the force R is
termed composition of forces. The reverse process is called resolution of forces.

Fic. 1

The value of B may also be found from the equation
R? = P11+P22+2P1'P20050

It is not necessary to construct the entire force parallelogram as in (a) Fig. 1, the
force triangle (b) below or (c) above the resultant R being sufficient.

If only one force together with the line of action of the two others be given in a
system containing three forces in equilibrium, the magnitude and direction of the two
forces may be found by means of the force triangle.

If the resultant R in Fig. 1 is replaced by a force E equal in amount but opposite
in direction, the system of forces will be in equilibrium, (a) or (b) Fig. 2. The force E
is the equilibrant of the system of forces P and P..

2

(o (6)
Fia. 2.

It is immaterial in what order the forces are taken in constructing the foroe triangle,
88 in Fig. 2, as long as the forces all aet in the same direction around the triangle. The
foree triangle is the foundation of the seience of graphic statiocs.
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Force Polygon.—If more than three concurrent forces (forces which meet in a
point) are in equilibrium as in (a) Fig. 3, R, in (b) will be the resultant of P, and P,,
R; will be the resultant of R, and P, and will also be the equilibrant of P, and P;

F1g. 3.

The force polygon in (b) is therefore only a combination of force triangles. The force
polygon for any system of forces may be constructed as follows:—Beginning at any
point draw in succession lines representing in magnitude and direction the given forces.
each line beginning where the preceding one ends. If the polygon closes the system of
forces is in equilibrium, if not the line joining the first and last points represents the
resultant in magnitude and direction. As in the case of the force triangle, it is imma-
terial in what order the forces are applied as long as they all act in the same direction
around the polygon. A force polygon is analogous to a traverse of a field in which the
bearings and the distances are measured progressively around the field in either direc-
tion. The conditions for closure in the two cases are also identical.

It will be seen that any side in the force polygon is the equilibrant of all the other
sides, and that any side reversed in direction is the resultant of all the other sides.

Equilibrium of Concurrent Forces.—The necessary condition for equilibrium of
concurrent coplanar forces therefore is that the force polygon close. This is equivalent
to the algebraic condition that Z horizontal components of forces = 0, and 2 vertical
components of forces = 0. If the system of concurrent forces is not in equilibrium the
resultant can be found in magnitude and direction by completing the force polygon.
The resultant of a system of concurrent forces is always a single force acting through
their point of intersection.

Equilibrium of Non-concurrent Forces.—If the forces are non-concurrent (do not
all meet in a common point), the condition that the force polygon close is a necessary,
but not a sufficient condition for equilibrium. For example, take the three equal
forces Py, P; and Ps, making an angle of 120° with each other as in (a) Fig. 4.

The force polygon (b) closes, but the system is not in equilibrium. The resultant,
R, of P; and P, acts through their intersection and is parallel to P,, but is opposite in
direction. The system of forces is in equilibrium ‘for translation, but is not in equi-
librium for rotation.

The resultant of this system is a couple with a moment = — P,-h, moments
clockwise being considered negative and counter-clockwise positive, (¢) Fig. 4. The
equilibrant of the system in (a) Fig. 4 is a couple with a moment = + Py-h.

4 couple.—A couple consists of two parallel forees equal in amount, but opposite
in direction. The arm of the couple is the perpendicular distance between the foroés.
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The moment of a couple is equal to one of the forces multiplied by the arm. The
moment of a couple is constant about any point in the plane and may be represented
graphically by twice the area of the triangle having one of the forces as a base and the
arm of the couple as an altitude. The moment of a force about any point may be
represented graphically by twice the area of a triangle as shown in (c¢) Fig. 4.

/«‘-‘6.
A Resu/tant Momern? - S

i P,
khst, M i

R .
1 5 Positive Moment

\4 M= +Ph
B 2 774
< /ﬂ"g
B / v

2

(a) (6) "z

Negative Moment
M=-Ph
(c)

Fic. 4.

It will be seen from the preceding discussion that in order that a system of non-
concurrent forces be in equilibrium it is necessary that the resultant of all the forces
save one shall coincide with the one and be opposite in direction. Three non-concurrent
forces can not be in equilibrium urless they are parallel. The resultant of a system of
non-concurrent forces may be a single force or a couple.

Fia. 5.

, Equilibrium Polygon.—First Method.—In Fig. 5 the resultant, a, of P, and P, acte
through their intersection and is equal and parallel to a in the force polygon (a); the
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resultant, b, of @ and P; acts through their intersection and is equal and paralle]l to b
in the force polygon; the resultant, ¢, of b and P, acts through their intersection and
is equal and parallel to c in the force polygon; and finally the resultant, R, of ¢ and Ps
acts through their intersection and is equal and parallel to B in the force polygon.
R is therefore the resultant of the entire system of forces. If R is replaced by an equal
and opposite force, E, the system of forces will be in equilibrium. Polygon (a) in Fig. 5
is called a force polygon and (b) is called a funicular or an equilibrium polygon. It will
be seen that the magnitude and direction of the resultant of a system of forces is given
by the closing line of the force polygon, and the line of action is given by the equilibrium
polygon.

The force polygon in (a) Fig. 6 closes and the resultant, R, of the forces P,, P,,
Ps, P,, Ps is parallel and equal to Ps, and is opposite in direction. The system is in
equilibrium for translation, but is not in equilibrium for rotation. The resultant is a

Resultant Moment I z
M=-Rh (6)

Fia. 6.

-

couple with & moment = — Ps:h. The equilibrant of the system of forces will be a
couple with a moment = + Pgs-h. From the preceding discussion it will be seen that
if the force polygon for any system of non-concurrent forces closes the resultant will be a
couple. If there is perfect equilibrium the arm of the couple will be zero.

Second Method.—Where the forces do not intersect within the limits of the drawing
board, or where the forces are parallel, it is not possible to draw the equilibrium polygon
as shown in Fig. 5 and Fig. 6, and the following method is used.

The point O, (a) Fig. 7, which is called the pole of the foree polygon, is selected so
that the strings a—o, b-o, c-0, d-o0 and e-o in the equilibrium polygon (b), which are
drawn parallel to the corresponding rays in the force polygon (a), will make good inter-
sections with the forces which they replace or equilibrate.

In the force polygon (a), P, is equilibrated by the imaginary forces represented by
the rays o—-a and b-o acting as indicated by the arrows within the triangle; P, is equi-
librated by the imaginary forces represented by the rays o-b and c-o acting as indicated
by the arrows within the triangle; P; is equilibrated by the imaginary forees repre-
sented by the rays o—c and d-o acting as indicated by the arrows within the triangle;
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and P, is equilibrated by the imaginary forces o~d and e—o acting as indicated by the
arrows within the triangle. The imaginary forces are all neutralized except a—o and
o—¢, which are seen to be components of the resultant R.

/,’/ \P

AT

~\ d:\\ é \{ d ‘b

/),0 ;:\~<~6'_>g«\*r7:’/$
PN |0’,’é

'\'k\¢1-’-

1A

\4
(6)

Fia. 7.

To construct the equilibrium polygon, take any point on the line of action of P,
and draw strings o—a and o-b parallel to rays o—a and o-b, b—o is the equilibrant of o-a
and P,; through the intersection of string o-b and P, draw string c-o parallel to ray
¢-0, c—o is the equilibrant of o-b and P,; through the intersection of string c-o and Ps
draw string d—o parallel to ray d-o, d-o is the equilibrant of o-c and P;; and through
the intersection of string d-o and P, draw string e-o parallel to ray e-o, e-o is the equi-
librant of o-d and P,. Strings a-o and o-e acting as shown are components of the
resultant B, which will be parallel to R in the force polygon and acts through the inter-
sections of strings a—o and o-—e.

The imaginary forces represented by the rays in the force polygon may be considered
a8 components of the forces and the analysis made on that assumption with equal ease.

It is immaterial in what order the forces are taken in drawing the force polygon, as
long as the forces all act in the same direction around the force polygon, and the strings
meeting on the lines of the forces in the equilibrium polygon are parallel to the rays
drawn to the ends of the same forces in the force polygon.

The imaginary forces a-o, b-0, ¢—0, d-o, e-o0 are represented in magnitude and in
direction by the rays of the force polygon to the same scale as the forces Py, P,, P, Py
The strings of the equilibrium polygon represent the imaginary forces in line of action
and direction, but not in magnitude.

Reactions of a Simple Beam.—The equilibrium polygon may be used to obtain the
reactions of a beam loaded with a load P as in Fig. 8.

The force polygon (b) is drawn with a pole O at any convenient point and rays o—a
and o—c are drawn. Now from the fundamental conditions for equilibrium for trans-
lation we have P = R; + R;. At any convenient point in the line of action of P draw
the strings o—a and o—c parallel to the rays o-a and o, respectively, in the force polygon.
The imaginary forces o-a and ¢—o atipg as shown equilibrate the force P. The imag-
inary, foree a—o acting in a reverse, ion as shown is an equilibrant of R,, and tha
imaginary force e-¢ acting in a reverse ion is an equilibrant of By, The remaining



REACTIONS OF A CANTILEVER TRUSS. 9

equilibrant of B, and of R, must coincide and be equal in amount, but opposite in
direction. The string b-o is the remaining equilibrant of B, and of B; and is called the
closing line of the equilibrium polygon. The ray b-o drawn parallel to the string b-o
divides P in two parts which are equal to the reactions R, and R: (for reactions of
overhanging beam see Chapter IV).

P a
A TR
1 :‘\R
A o
Y _ ) P \\
I 5 S vt
Rl L& .. 2= L B2
Iklf 10 T “ 17z f‘?z_ Y =
B xy7r” € c
(3) (6)
FiG. 8.

Reactions of a Cantilever Truss.—In the cantilever truss shown in Fig. 9, the
direction and point of application B of the reaction R, are known, while the point of
application A of the reaction R, only is known. The direction of reaction B may be
found by applying the principle that if a body is in equilibrium under the action of
three external forces which are nol. parallel, they must all meet in a common point,

Fia. 9.

i. e., the forces must be concurrent. The resultant of all the loads acts through the
point ¢, which is also the point of intersection of the reactions R, and R,. Having the
direction of the reaction R., the values of the reactions may be found by means of a
foroe polygon.

The direction of reaction B: may be found by means of a force and equilibrium
polygon as follows: Construct the foree polygon (b) with pole O and draw equilibrium
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polygon (a) starting with point A4, the only known point on the reaction R,, and draw
the polygon as previously described. A line drawn through point O in the force polygon
parallel to the closing line of the equilibrium polygon will meet R,, drawn parallel to
reaction R, in the point y, which is also a point on R.. The reactions R, and R. are
therefore completely determined in direction and amount.

The method just given is the one commonly used for finding the reactions in a
truss with one end on rollers (see Chapter I1I).

Equilibrium Polygon as a Framed Structure.—In (a) Fig. 10, the rigid triangle
supports the load P.. Construct a force polygon by drawing rays a-1 and c-1 in (b)
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parallel to sides a-1 and c-1, respectively, in (a), and through pole 1 draw 1-b parallel
to side 1-b in (a). The reactions R, and R, will be given by the force polygon (b), and
the rays 1-a, 1-c and 1-b represent the stresses in the members 1-a, 1-¢ and 1-b, re-
spectively, in the triangular structure. The stresses in 1-a and 1-c are compression
and the stress in 1-b is tension, forces acting toward the joint indicating compression
and forces acting away from the joint indicating tension. Triangle (a) is therefore an
equilibrium polygon and polygon (b) is a force polygon for the force P;.

From the preceding discussion it will be seen that the internal stresses at any point
or on any section hold in equilibrium the external forces meeting at a point or on either
side of the section.

Graphic Moments.—In Fig. 11 (b) is a force polygon and (a) is an equilibrium
polygon for the system of forces P, P,, P;, P,. Draw the line M-N = Y parallel to
the resultant R, and with ends on strings o—e and o—a produced. Let r equal the alti-
tude of the triangle L-M-N and H equal the altitude of the similar triangle o—e-a.
H is the pole distance of the resultant R.

Now in the similar triangles L-M-N and o-e-a

R:Y::H:r
and
Rr=HY

But R-r = M = moment of resultant R about any point in the line M-N and
therefore
M=HY
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The statement of the principle just demonstrated is as follows: The moment of
any system of coplanar forces about any point in the plane is equal to the intercept on a
line drawn through the center of moments and parallel to the resultant of all the forces,
cut off by the strings which meet on the resultant, multiplied by the pole distance of
the regultant. It should be noted that in all cases the intercept is a distance and the pole
distance 18 a force.
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This property of the equilibrium polygon is frequently used in finding the bending
moments in beams and trusses which are loaded with vertical loads.

Bending Moments in a Beam.—It is required to find the moment at the point M
in the simple beam loaded as in (b) Fig. 12. The moment at M will be the algebraic

Fia. 12.

sum of the moments of the forces to the left of M. The moment of P, = H X B-C,
the moment of P, = H X C-D and the moment of B, = — H X B-A. The moment
at M will therefore be ’

M,=HXB-C+HXC-D—HXB-A=HXA-D=—-H-y
The moment of the forces to the right of M may in like manner be shown to be
Ml - +H.y
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In like manner the bending moment at any point in the beam may be shown to be the
ordinate of the equilibrium polygon multiplied by the pole distance. The ordinate is a
distance and is measured by the same scale as the beam, while the pole distance is a
force and is measured by the same scale as the loads.

To Draw an Equilibrium Polygon Through Two Points.—In Fig. 13 it is
required to draw an equilibrium polygon through the two points 1 and 2. Construct a°
force polygon for the given forces P,, P,, P;. Through points 1 and 2 in (a) draw
reactions R; and R: parallel to the resultant a—d in force polygon in (b). Beginning
with point 1 in (a) draw equilibrium polygon 1-2’. The dotted strings in (a) are drawn
parallel to the dotted rays in (b). Through pole O’ in (b) draw O’-e parallel to the

Fia. 13.

closing line 1-2’ in (a). Then line ¢~a is R, and d-¢ is R,. Now through point 1 in (a)
draw closing line 1-2, and through point ¢ in (b) draw line e-Q parallel to the closing
line 1-2 in (a). Now any equilibrium polygon drawn through point 1 in (a) with a
pole O in (b) will pass through the required point 2 in (a). For reactions R, and R:
are the same for all force and equilibrium polygons.

To Draw an Equilibrium Polygon Through Three Points.—In Fig. 14, it is required
to draw an equilibrium polygon through the three points 1, 2, 3. Construct a force
polygon for the three forces Py, Psy, Ps in (b), with pole 0’. Through points 1 and 3
in (a) draw reactions R; and R,, respectively, parallel to resultant a—e~d in (b). Alsc
through points 1 and 2 draw reactions R,’ and R,, respectively, parallel to resultant
a—c in (b). Now through point 1 in (a) draw dotted equilibrium polygon 1-2’-3’, with
strings parallel to the dotted rays in (b). In force polygon (b) draw line O’—e parallel
to closing line 1-3’ in (a@). Then in (b), e-a = R;, and d-¢ = R,. Also draw line O’

* in (b) parallel to closing line 1-2’ in (a). Then f-a = Ry and c-f = R,’. In (a) draw
closing lines 1-2, and 1-3, respectively. Through points ¢ and f in (b) draw lines
parallel to closing lines 1-3, and 1-2 in (a), respectively. Now every equilibrium
polygon having its pole on the line e~0O will pass through points 1 and §, and every

" equilibrium polygon having its pole on the line f~0 will pass through points 1 apd 2.
Point O is common to both foree polygons, and therefore an equilibrium 'polygon with a
‘pole at 0, may be drawn through the given points 1, 2, 3.
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It will be seen that while an infinite number of equilibrium pelygons may be
drawn through two points, only one equilibrium polygon can be drawn through three
points.

Fic. 14.

Properties of Equilibrium Polygons.—Given the forces P,, P;, Ps in (a) Fig. 15.
Construct the force polygon in (b) and draw resultant a-d = R. Now with pole O in
force polygon (b) draw equilibrium polygon a—-b-c-d in (a). Also with pole O; in force

Fi1a. 15.

polygon (b) draw equilibrium polygon a4, by, ¢1, d1in (a). Now the intersections of strings

o0 and a;-0,; b-0 and b:-0:; ¢-0 and ¢1-0,; d-O and d\~0, will meet at the poin

o', ¥, ¢, &, respectively, which will be on a straight line parallel to the line 0-0, wM&z :
3
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passes through the poles O and O, in (b). This relation is due to the reciproeal relation
of the force and equilibrium polygons, and may be proved as follows: In force poly-
gon (b) force P; may be resolved into rays d-O and O-c, it may also be resolved into
rays d-0; and O,-c. In like manner it will be seen that force O-0; may be resolved
into rays d-0O and 0,-d, it may also be resolved into rays ¢-O and Oy-¢. Now if strings
0-d and O-c are drawn from a point on P; in (@), and if string O,~d; is drawn through d?,
and string O;~c, is drawn as shown, then ¢'~d’ will be parallel to 0-0;. For the resultant
of ¢-0 and Oi—c is equal to 0-0;, and must act in a line parallel to 0-0,; likewise the
resultant of d-O and O,-d is equal to 0-0,, and must act parallel to 0-O;; and in
order to have equilibrium ¢’-d’ must be parallel to 0-0,.
In like manner it may be proved that a’, ¥/, ¢/, @’ are in a straight line.
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Center of Gravity.—To find the center of gravity of the figure shown in (a) Fig. 16,
proceed as follows: Divide the figure into elementary figures whose centers of gravity
and areas are known. Assume that the areas act as the forces P,, P;, P; through the
centers of gravity of the respective figures. Bring the line of action of these forces into
the plane of the paper by turning them downward as in (b) and to the right as in (c).
Find the resultant of the forces for case (b) and for case (¢) by means of force and
equilibrium polygons. The intersection of the resultants R will be the center of gravity
of the figure. The two sets of forces may be assumed to act at any angle; however,
maximum accuracy is given when the forces are assumed to act at right angles. If the
figure has an axis of symmetry but one force and equilibrium polygon is required.

Moment of Inertia of Forces.—The determinat'on of the moment of inertia of
forces and areas by graphics is interesting. There are two methods in common use:
(1) Culmann’s method, in which the moment of inertia of forces is determined by finding
the moment of the moment of forces by means of force and equilibrium polygons, and (2)
Mohr’s method, in which the moment of inertia of forces is determined from the area
of the equilibrium polygon. The moment of inertia of a force about a paxallel axis is
equal to the force multiplied by the square of the distance between the force and the axis.

Culmann’s Method.—1It is required to find the moment of inertia, I, of the system
of forces Py, P, Ps, P, Fig. 17, about the axis M-N. Construct the force polygon (a)
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with a pole distance H, draw the equilibrium polygon a-b—c-d-¢, and produce the strings
until they intersect the axis M-N. Now the moment of P, about axis M-N equals
E-D X H; moment of P, equals D-C X H; moment of P; equals C-B X H; moment
of P, equals B-A X H; and moment of resultant R equals E-A X H. With inter-
cepts E-D, D-C, C-B, B-A, as forces acting in place of P,, P;, P;, P, respectively,
construct force polygon (d) with pole distance H’, and draw equilibr'um polygon (c).
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As before the moments of the forces will be equal to the products of the intercepts and
pole distance and the moment of the system of forces represented by the intercepts
will be equal to the intercept G-F multiplied by pole distance H’. But the intercepts
E-D, D-C, C-B, B-A, multiplied by the pole distance /I equal moments of the forces
P,, P,, P;, P, respectively, about the axis M-N, and the moment of inertia of the
system of forces Py, Ps, P3, Ps, about the axis M-N will be equal to the intercept G-F
multiplied by the product of the two pole distances H and H’, and

I=F-GXHXH

Mohr's Method.—It is required to find the moment of inertia, I, of the system of
forces Py, Ps, Ps, P4, Fig. 18, about the axis M-N. Construct the force polygon (a)
with & pole distance H, and draw the equilibrium polygon (b). Now the moment of P,
about the axis M—N equals intercept F-G multiplied by the pole distance H, and the
moment of inertia of P, about the axis M—N equals the moment of the moment of P,
about the axis, = F-G X H X d. But F-G X d cquals twice the area of the triangle
F-G-A, and we have the moment of inertia of P: equal to the area of the triangle
F-G-A X 2H. In like manner the moment of inertia of P, may be shown equal to
area of the triangle G-H-B X 2H; moment of inertia of P; equal to area of the triangle
H-I-C X 2H; and moment of inertia of P, equal to area of the triangle I-J-D X 2H.
Summing up these values we have the moment of inertia of the system of forces equal
to the area of the egnuilibrium polygon multiplied by twiee the pole distance, H, and

I = area F~A-B-C-D-E-J-F X 2H .
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To find the radius of gyration, r, we use the formula
I =R

In Fig. 18 the moment of inertia, I,, of the resultant of the system of forees about
the axis M-N, can in like manner be shown to be equal to area of the triangle F~E-J
X 2H.

If the axis M-N is made to coincide with the resultant R the moment of inertia
I, ,. of the system will be equal to the area of equilibrium polygon A-B-C-D-E X 2H.
This furnishes a graphic proof for the proposition that the moment of inertia, I, of any

MOHRS METHOD

I of Forces about axis M-IY
=Area FABCDEJF xZH

(&)
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system of parallel forces about an axis parallel to the resultant of the system is equal to
the moment of inertia, I..,, of the forces about an axis through their centroid plus the
moment of inertia, I,, of their resultant about the given axis.

I=1., +RW
=Icy.+Ir

It will be seen from the foregoing discussion that the moment of inertia of a system
of forces about an axis through the centroid of the system is a minimum.

Moment of Inertia of Areas.—The moment of inertia of an area about an axis in
the same plane is equal to the summation of the products of the difterential areas which
compose the area and the squares of the distances of the differential areas from the axis.

The moment of inertia of an area about a neutral axis (axis through center of
gravity of the area) is less than that about any parallel axis, and is the moment of inertia
used in the fundamental formula for flexure in beams

u -1t
c

where
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M = bending moment at section in inch-pounds;
f = extreme fibre stress in pounds;
I = moment of inertia of section in inches to the fourth power;
¢ = distance from neutral axis to extreme fibre in inches.

An approximate value of the moment of inertia of an area may be obtained by
either of the preceding methods by dividing the area into laminae and assuming each
area to be a force acting through the center of gravity of the lamina, the smaller the
laminae the greater the accuracy. The true value may be obtained by either of the
above methods if each one of the forces is assumed to act at a distance from the given
axis equal to the radius of gyration of the area with reference to the axis, d = Va? + 13,
where a is the distance from the given axis to the ccuter of gravity of the lamina and r is
the radius of gyration of the lamina about an axis through its center of gravity. If Ao
is the area of each lamina the moment ¢f inertia of the lamina will be

I = Ay d? = Agea® - Ay = Ao a® + Ic.q.
which is the fundamental equation for transferring moments of inertia to parallel axes.

Problems.—For problems illustrating the principles discussed in this chapter,
gee Chapter XIIL.






CHAPTER 1II.
STRESSES IN FRAMED STRUCTURES.

Methods of Calculation.—The determination of the reactions of simple framed
structures usually requires the use of the three fundamental equations of equilibrium,

Z horizontal components of forces =0 1)
2 vertical components of forces =0 (2)
Z moments of forces about any point = 0 (3)

Having completely determined the external forces, the internal stresses may be
obtained by either equations (1) and (2) (resolution), or equation (3) (moments).
These equations may be solved by graphics or by algebra. There are, therefore, four
methods of calculating stresses:

Algebraic Method
Graphic Method
Algebraic Method
Graphic Method

Resolution of Forces {
Moments of Forces {

The stresses in any simple framed structure can be calculated by using any one
of the four methods. However, all the methods are not equally well suited to all
problems, and there is in general one method that is best suited to each particular
problem.

The common practice of dividing methods of calculation of stresses into analytic
and graphic methods is meaningless and misleading for the reason that both algebraic
and graphic methods are analytical, . e. capable of analysis.

The loads on trusses are usually considered as concentrated at the joints in the
plane of the loaded chord.

Algebraic Resolution.—In calculating the stresses in a truss by algebraic resolution,

the fundamental equations for equilibrium for translation,

* X horizontal components of forces = 0 (1)

2 vertical components of forces = 0 2)

are applied (1) to each joint, or (2) to the members and forces on one side of a section

cut through the truss.
(a) Forces at a Joint.—The reactions having been found, the stresses in the members

of the truss shown in Fig. 1 are calculated as follows: Beginning at the left reaction,
R,, we have by applying equations (1) and (2)
. 1-z-sin 6 — 1-y-sin @ = 0 (4)
1-z-co8 § — 1-y:cos ¢ — By = 0 (5)
19
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The stresses in members 1-z and 1-y may be obtained by solving equations (4)
and (5). The direction of the forces which represent the stresses in amount will be

LA v
%
2 4l

Q) o) (C)
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determined by the signs of the results, plus signs indicating compression and minus
signs indicating tension. Arrows pointing toward the joint indicate that the member
is in compression; arrows pointing away from the joint indicate that the member is in
tension. The stresses in the members of the truss at the remaining joints in the truss
are calculated in the same way.

The direction of the forces and the kind of stress can always be determined by
sketching in the force polygon for the forces meeting at the joint as in (¢) Fig. 1.

It will be seen from the foregoing that the method of algebraic resolution consists
in applying the principle of the force polygon to the external forces and internal stresses
at each joint.

Since we have only two fundamental equations for translation (resolution) we can
not solve a joint if there are mnre than two forces or stresses unknown.
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Where the lower chord of the truss is horizontal as in Fig. 2, we have by applying
fundamental equations (1) and (2) to the joint at the left reaction,

1-z = + Ry-sec 0 (6)
1-y = — Ry-tan 6 (7}

the plus sign indicating compression and the minus sign tension. Equations (8) and (7)
may be obtained directly fromw force triangle (c). Equations (6) and (7) are used in
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calculating the stresses in trusses with parallel chords and lead to the method of coef-
fictents (Chapter VI).

(b) Forces on One Side of a Section.—The principle of resolution of forces may be
applied to the structure as a whole or to a portion of the structure.

() (b
Fig. 3.

If the truss shown in Fig. 3 is cut by the plane A-A, the internal stresses and
external forces acting on either segment, as in (b) will be in equilibrium. The external
forces acting on the cut members as shown in (b) are equal to the internal stresses in
the cut members and are opposite in direction.

Applying equations (1) and (2) to the cut section

3~y + 2-3-cos @« — 2-x-sin @ =0 (8)
2-3-sina — 2-z-cos§ + Ry — P, =0 9

Now, if all but two of the external forces are known, the unknowns may be found
by solving equations (8) and (9). If more than two external forces are unknown the
problem is indeterminate as far as equations (8) and (9) are concerned.

In the Warren truss in Fig. 4 the stresses at a joint may be calculated by com-

. ! S
¥ Stoar P | /
" b) ¥, 2
KN X Stress 2-3=Shear in Fanel x sec8
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pleting the force pofygon as at the left reaction in (b) Fig. 4. Applying equations (1)
and (2) to a section as in (¢)

2z 4+ 2-83-8inf — 3-y =0 (10)
—-2-3-cos —P+R, =0 (11)
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Now, R, — P = ghear in the panel. Therefore the stress in 2-3 = — (R, — P) sec §
= shear in panel X sec . This analysis leads directly to the method of coefficients as
explained in detail in Chapter VI.
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Graphic Resolution.—In Fig. 5 the reactions R; and R; are found by means of the
force and equilibrium polygons as shown in (b) and (a). The principle of the force
polygon is then applied to each joint of the structure in turn. Beginning at the joint L,
the forces are shown in (c), and the force triangle in (d). The reaction R, is known and
acts up, the upper chord stress 1-z acts downward to the left, and the lower chord
stress 1-y acts to the right, closing the polygon. Stress 1-x is compression and stress
1-y is tension, as can be seen by applying the arrows to the members in (c). The force
polygon at joint U, is then constructed as in (f). Stress 1-z acting toward joint U,
and load P, acting downward are known, and stresses 1-2 and 2-z are found by com-
pleting the polygon. Stresses 2~z and 1-2 are compression. The force polygons at
joints L, and U, are constructed, in the order given, in the same manner. The known
forees at any joint are indicated in direction in the force polygon by double arrows, and
the unknown forces are indicated in direction by single arrows.

The stresses in the members of the right segment of the truss are the same as in
the left, and the force polygons are, therefore, not constructed for the right segment.
The foree polygons for all the joints of the truss are grouped into the stress diagram
shown in (k). Compression in the stress diagram and truss is indicated by arrows
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acting toward the ends of the stress lines and toward the joints, respectively, and tension
is indicated by arrows acting away from the ends of the stress lines and away from the
joints, respectively. The first time a stress is used a single arrow, and the second time
the stress is used a double arrow is used to indicate direction. The stress diagram in (k)
Fig. 5 is called a Maxwell diagram or a reciprocal polygon diagram. The notation
used is known as Bow’s notation. The method of graphic resolution is the method
most commonly used for calculating stresses in roof trusses and simple framed structures
with inclined chords.
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Warren Bridge Truss.—In Fig. 6 the dead load stresses in a Warren bridge truss
loaded on the lower chord, are calculated by the method of graphic resolution. In the
stress diagram the loads are laid off from the bottom upwards. The details of the
solution can easily be followed by reference to Fig. 6 and Fig. 5. It will be seen that
the upper chord of the truss is in compression, while the lower chord is in tension.

Algebraic Moments.—The reactions may be found by applying the fundamental
equations of equilibrium to the structure as a whole: In the truss in (a) Fig. 7, by taking
moments about the right reaction we have

R, X 6d = 5P, X 3d
R1 = 'g‘P 1= Rg

To find the stresses in the members of the truss in (¢) Fig. 7, proceed as follows:

Cut the truss by means of plane AA, as in (b), and replace the stresses in the members
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out away with external forces. These forces are equal to the stresses in the members in
amount, but opposite in direction, and produce equilibrium.

’7 Q
A

N
Y4
(5)

Fia. 7.

To obtain stress 4-r, take center of moments at L., and take moments of external
forces
4—ZXG+P1Xd—R1X2d=O

R, X 2d — P,rd 4P-d
4-r = ———

a

(compression)

To obtain stress in 4-5 take center of moments at Ly, and take moments of external
forces
4-5Xb—2P X §d=0
3P-d
b

4-5 = (tension)

To obtain the stress in 5—y take center of moments at joint U, in (c), and take
moments of A external forces
5y X h — Ry X3d 4 3P;:d =0

3R:'d—3P;:d 9P,-d
5y = s ; 2z -——-2;' (tension)



ALGEBRAIC MOMENTS. 25

To Determine Kind of Stress.—If the unknown external foree is always taken as
acting from the outside toward the cut section, i. e., is always assumed to cause com-
pression, the sign of the result will indicate the kind of stress. A plus sign will indicate
that the assumed direction was correct and that the stress is compression, while a
minus sign will indicate that the assumed direction was incorrect and that the stress
is tension.

In calculating stresses by algebraic moments, therefore, always nbserve the fol-
lowing rule:

Assume the unknown external force as acting from the outside toward the cut section;
a plus sign for the result will then show that the siress in the member is compression, and a
minus sign will indicate that the stress in the member is tension.

(b) <)
Fic. 8.

The stresses in the web members 3-4, 2-3, 1-2, are found by taking moments
about joint Lo as a center. The stresses in y-3 and y-1 are found by taking moments
about joints U, and U,, respectively; and the stresses in z-2 and 2-1 are found by
taking moments about joint L.

The method of algebraic moments is the most common method used for caleulating
the stresses in bridge trusses with inclined chords and similar frameworks which carry

moving loads.

Stresses in a Bridge Truss.—Calculate reaction R,, Fig. 8, by taking moments of
the vertioal forces about joint Ly. Then R; X L = 6P-L/2, and R, = 3P = R..
To oalculate the stress in any member in the truss, pass a section cutting the member
in which the stress is required, and cutting away the truss on one side of the section.
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The stresses in the members cut away are assumed as replaced by external forces acting
in the line of the member and equal to the stresses in amount.

To calculate the stresses take the center of moments so that there will be but onc
unknown stress  The solution of the equation of moments about this center of moments
will give the required stress. To calculate the stress in 4-5 in (b) Fig. 8, pass the
section a-a, cutting away the right side of the truss, and take the center of moments at
the intersection of the top and bottom chords. Now 5-r and 4-y act through the
center of moments and produce no moment. The moment of the stress in 4-5 acting
from the outside toward the cut section with an arm ¢, holds in equilibrium the reaction
Ri, and the two loads, P. The sign of the result wil! determine the kind of stress,
minus for tension and plus for compression. To calculate the stress in the top chord
U.Us, pass section b-b in (c) and take moments about joint L.

(b)
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Graphic Moments.—The bending moment at any point in a truss may be found
by means of a force and equilibrium polygon as in (b) and (a) Fig. 9. To determine the
stress in 4—z cut section A4 and take moments about joint L, as in Fig. 9. The moment
of the external forces on the left of L, will be M, = — H-y,, and stress

4-1 = — Msfa = + H-y./a
To obtain stress in 4-5 take center of moments at joint Lo, and stress
) 4-5 = M,/b = = H-y,/b

To obtain stress in 5~y take center of moments at joint Uj, and stress

5y = My/h = — H-ys/h

The method of graphic moments is principally used to explain other methods and
is little used as a direct method of calculation.

Problems.—For problems illustrating the principles discussed in this chapter,
see Chapter XIII.



CHAPTER III.
StrEssES IN SiMmpLE Roor TRUSSES.

Loads.—The stresses in roof trusses are due (1) to the dead load, (2) the snow load,
(3) the wind load, and (4) concentrated and moving loads. The stresses due to dead,
snow, wind and concentrated loads will be discussed in this chapter in the order given.

Dead Load Stresses.—The dead load is mude up of the weight of the truss and
roof covering and is usually considered as applied at the panel points of the upper chord
in computing stresses in roof trusses. {f the purlins do not come at the panel points,
the upper chord will have to be designed for both direct stress and stress due to flexure,
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The dead load is usually specified as a certain number of pounds per sq. ft. of
horizontal projection of roof supported. ,

The stresses in a Fink truss due to dead load are calculated by graphic resolution
in Fig. 1.

The loads are laid off, the reactions found, and the stresses calculated beginning at
joint Lo, as explained in Fig. 5, Chapter II. The stress diagram for the right half of
the truss need not be drawn where the truss and loads are symmetrical as in Fig. 1;
however it gives a check on the accuracy of the work and is well worth the extra time
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28 STRESSES IN SIMPLE ROOF TRUSSES. Crap. 111

required. The loads P, on the abutments have no effect on the stresses in the truss
and may be omitted in this solution.

In calculating the stresses at joint Pj, the stresses in the members 3-4, 4-5 and
2-5 are unknown, and the solution appears to be indeterminate. The solution is easily
made by cutting out members 4-5 and 5-6, and replacing them with the dotted member
shown. The stresses in the members in the modified truss are now obtained up to and
including stresses 6—z and 6-7. Since the stresses 6-x and 6-7 are independent of the
form of the framework to the left, as can easily be seen by cutting a section through the
members 6-z, 6-7 and 7-y, the solution can be carried back and the apparent ambiguity
removed. The ambiguity can also be removed by caleulating the stress in 7-y by
algebraic moments and substituting it in the stress diagram. It will be noted that all
top chord members are in compression and all bottom chord members are in tension.

The dead load stresses can also be calculated by any of Lhe three remaining methods,
as previously described.

Dead and Ceiling Load Stresses.—The stresses in a triangular Pratt truss due to
dead and ceiling loads, are calculated by graphic resolution in ¥ig. 2.
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For simplicity the stresses are shown for one side only. The reaction R is equal
to one-half of the entire load on the truss. The solution will appear more clear when
it is noted that the stress diagram shown consists of two diagrams, one due to loads
on the upper chord and the other due to loads on the lower chord, combined in one, the
loads in each case coming between the stresses in the members on each side of the load.
The top chord loads are laid off in order downward, while the bottom chord loads are
Jaid off in order upward.
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Snow Load Stresses.—Large snow storms nearly always occur in still weather,
and the maximum snow load will therefore be a uniformly distributed load. A heavy
wind may follow a sleet storm and a snow load equal to the minimum given in Fig. 2,
Chapter XXIV should be considered as acting at the same time as the wind load. The
stresses due to snow load are found in the same manner as the dead load stresses.

Wind Load Stresses.—The stresses in trusses due to wind load will depend upon
the direction and intensity of the wind, and the condition of the end supports. The
wind is commonly considered as acting horizontally, and the normal component, as
determined by one of the formulas in Fig. 4, Chapter XXIV, is taken.

The ends of the truss may (1) be rigidly fixed to the abutment walls, (2) be equally
free to move, or (3) have one end fixed and he other end on rollers. When both
ends of the truss are rigidly fixed to the abutment walls (1) the reactions are parallel
to each other and to the resultant of the external loads; where both ends of the truss
are equally free to move (2) the horizontal components of the reactions are equal;
and where one end is fixed and the other end is on frictionless rollers (3) the reaction at
the roller end will always be vertical. Either case (1) or case (3) is commonly assumed
in calculating wind load etresses in trusses. Case (2) is the condition in a portal or
framed bent. The vertical components of the reactions are independent of the eon-
dition of the ends.

Winp Lo4o,
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* Wind Load Stresses: No Rollers,—The stresses due to a normal wind load, in a
Fink truss with both ends fixed to rigid walls, are calculated by graphic resolution in
Fig. 3. The reactions are parallel and their sum equals sum of the external loads:
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they are found by means of force and equilibrium polygons as in Fig. 8, Chapter I,
and Fig. 5, Chapter II. The stress diagram is constructed in the same manner as that
for dead loads. Heavy lines in truss and stress diagram indicate compression, and
light lines indicate tension.

The ambiguity at joint Ps is removed by means of the dotted member as in the
ocase of the dead load stress diagram. It will be seen that there are no stresses in the
dotted web members in the right segment of the truss. It is necessary to carry the
solution entirely through the truss, beginning at the left reaction and checking up at
the right reaction. It will be seen that the load P, has no effect on the stresses in the
truss in this case.

Wind Load Stresses: Rollers.—Trusses longer than 70 feet are usually fixed at
one end, and are supported on rollers at the other end. The reaction at the roller end
is then vertical—the horizontal component of the external wind force being all taken

by the fixed end. The wind may come on either side of the truss giving rise to two con-
ditions; (1) rollers leeward and (2) rollers windward, each requiring a separate solution.
Rollers Leeward.—The wind load stresses in a triangular Pratt truss with rollers
under the leeward side are calculated by graphic resolution in Fig. 4. .
The reactions in Fig. 4 were first determined by means of force and equilibrium
polygons, on the assumption that they were parallel to each other and to the resultant
of the external loads. Then since the reaction at the roller end is vertical and the
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horizontal component at the fixed end is equal to the horizontal component of the
external wind forces, the true reactions were obtained by closing the force polygon.

In order that the truss be in equilibrium under the action of the three external
forces Ri, R, and the resultant of the wind loads, the threa external forces must meet in a
point if produced. This furnishes a method for determining the reactions, where the
direction and line of action of one and a point in the line of action of the other are
known, providing the point of intersection of the three forces comes within the limits
of the drawing board.
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The stress diagram is constructed in the same way as the stress diagram for dead
loads. It will be seen that the load P, has no effect on the stresses in the truss in this
case. Heavy lines in truss and stress diagram indicate compression and light lines
indicate tension.

Rollers Windward.—The wind load stresses in the same triangular Pratt truss as
shown in Fig. 4, with rollers under the windward side of the truss are calculated by
graphic resolution in Fig. 5. '

The true reactions were determined directly by means of force and equilibrium
polygons as in Fig. 9, Chapter I. The direction of the reaction R, is known to be
vertical, but the direction of the reaction R; is unknown, the only known point in its
line of action being the right abutment. The equilibrium polygon is drawn to pass
through the right abutment and the direction of the right reaction is determined by
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connecting the point of intersection of the vertical reaction R, and the line drawn
through O parallel to the closing line of the equilibrium polygon, with the lower end
of the load line.

Since the vertical components of the reactions are independent of the conditions
of the ends of the truss, the vertical components of the reactions in Fig. 4 and Fig. 5
are the same. It will be seen that the load P, produces stress in the members of the
truss with rollers windward. If the line of action of R, drops below the point Ps the
lower chord of the truss will be in compression, as will be seen by taking moments
about Ps.

Concentrated Load Stresses.—The stresses in a Fink truss due to unequal crane
loads are calculated by graphic resolution in Fig. 6.
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The reactions were found by means of force and equilibrium polygons. The truss
is reduced to three triangles for the loading shown. The solution of this problem is
similar to that for ceiling loads in Fig. 2. The moving crane trolley will produce
maximum moment when it is at the center of the truss, and this case should be investi-
gated in solving the problem.

The method of graphic resolution is commonly used for calculating the stresses in
roof trusses and similar structures. For examples of the calculation of stresses in
trusses by algebraic resolution, algebraic and graphic moments, see Chapter VI and
Chapter XIII.

Problems,—For problems illustrating the prineiples discussed in this chapter,
see Chapter XIII.



CHAPTER 1V.
SiMmpLE Brawms.

Reactions of a Simple Beam.—A force and an equilibrium polygon may be used to
obtain the reactions of a beam loaded with a load P, as in Fig. 1.
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The force polygon (b) is drawn with a pole O at any convenient point, and rays
O-a and O—c are drawn. Now from the fundamental conditions for equilibrium for
translation we have P = R, + R.. At any convenient point in the line of action of P,
draw the strings O-a and O-c parallel to the rays a—0 and O-c, respectively, in the force
polygon. The imaginary forces O—a and O-c¢ acting as shown, equilibrate the force P.
The imaginary force a—O acting in a reverse direction, as shown, is an equilibrant of R,
and the imaginary force c-0, acting in a reverse direction, is an equilibrant of B.. The
remaining equilibrant of B, and of B, must coincide and be equal in amount, but oppo-
site in direction. The string b-O is the remaining equilibrant of R, and also of R,
and is called the closing line of the equilibrium polygon. The ray 5O drawn parallel
to the string b-0 divides P in two parts, which are equal to the reactions R, and R..

Reactions of a Cantilever Beam.—As a second example let it be required to find
the reactions of the overhanging beam shown in Fig. 2.

Construct a force polygon with pole O, as in (), and draw an equilibrium polygon,
a8 in (a). The ray O-d, drawn parallel to the closing line O-d in (a), determines the
reactions. In this case reaction R, is negative. It should be noted that the closing
line in an equilibrium polygon must have its ends on the two reactions.

The ordinate to the equilibrium polygon at any point, multiplied by the pole
distance, H, will give the bending moment in the beam at a point immediately
above it.
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Moment and Shear in Beams: Concentrated Leads.—The beuding moment in
the beam shown in Fig. 3 may be found by constructing the force polygon (a) and
equilibrium polygon (b) as shown.

The bending moment at any point is then equal to the ordinate to the equilibrium
polygon at that point multiplied by the pole distance, H. The ordinate is to be mea-
sured to the same scale as the beam, and the pole distance, H, is to be measured to the
same scale as the loads in the force polygon. The ordinate is a distance and the pole
distance is a force.

Or, if the scale to which the beam is laid off be multiplied by the pole distance
measured to the scale of the loads, and this scale be used in measuring the ordinates,
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the ordinates will be equal to the bending moments at the corresponding poin:os. This
is the same as making the pole distance equal to unity. Diagram (b) is called a moment
diagram.
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Between the left support and the first load the shear is equal to RB;; between the
loads P; and P, the shear equals R, — P;; between the loads P, and P; the shear
equals Ry — Py — P.; between the loads P; and P, the shear equals By — Py — Py
— P3; and between load P, and the right reaction the shear equals R, — Py — P
— Py — Py = — R,. At load P, the shear changes from positive to negative. Dia-
gram (c) is called a shear diagram. It will be seen that the maximum ordinate in the
moment diagram comes at the point of zero shear.

The bending moment at any point in the beam is equal to the algebraic sum of
the shear areas on either side of the point in question. From this we see that the shear
areas on each side of P, must be equal. This property of the shear diagram depends
upon the principle that the bending moment at a1y point in a simple beam is the definite
integral of the shear between either point of support and the point in question. This
will be taken up again in the discussion of beams uniformly loaded which will now be
considered.

Moment and Shear in Beams: Uniform Loads.—In the beam loaded with a uni-
form load of w 1b. per lineal foot shown in Fig. 4, the reaction R, = R; = jw-L. Ata

Load = w /6. per lin. 7. e
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distance = from the left support, the bending moment is
M=Ryz—3wa=3w(lz—1? 1
which is the equation of a parabola.

The parabola may be constructed by means of the force and equilibrium polygons
by assuming that the uniform load is concentrated at points in the beam, as is assumed
in a bridge truss, and drawing the force and equilibrium polygons in the usual way, as
in Fig. 4. The greater the number of segments into which the uniform load is divided
the more nearly will the equilibrium polygon approach the bending moment parabola.

The parabola may be constructed without drawing the force and equilibrium poly-
gons as follows: Lay off ordinate m-n = n—p = bending moment at center of beam
= }w-I?. Divide a-p and b-p into the same number of equal parts and number them
as shown in (b). Join the points with like numbers by lines, which will be tangents to
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