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PREFACE TO THE FIRST EDITION 

Dr Besant’s Treatise on Hydromechanics was first published in 
one volume in 1859. When a fourth edition was called for in 
1882 the subject matter had grown sufficiently to warrant the 
sub-division of the book into two volumes. Part I on Hydro¬ 
statics appeared alone in 1883 and in the preface a hope was 
expressed that Part II on Hydrodynamics would follow shortly. 
Several chapters were written and materials for other chapters 
were collected but laid aside owing to pressure of other work. In 
1904 Dr Besant kindly invited me to co-operate with him in 
bringing out a new edition—^the sixth—of the Hydrostatics, and 
suggested that I should undertake to complete the Hydro¬ 
dynamics. This latter task I was unable to perform until the 
present year. Dr Besant kindly placed all his materials at my 
disposal, but as modes of expression and analysis have altered 
somewhat in the last thirty years, it seemed desirable to write a 
new book ab initio.... 

In the matter of the sign of the velocity potential I have 
followed the precedent of Professor Lamb and Sir George 
Greenhill. It does not seem a matter of intrinsic importance 
which sign is used, but uniformity is desirable and as all serious 
students of the subject will ultimately read it in the classic work 
of Professor Lamb, there is good reason why his precedent should 
be followed.,.. 

I am indebted to Mr W. Welsh for advice and assistance, and 
most of all my thanks are due to Mr J. G. Leathern for reading 
the whole book in proof and making many valuable criticisms 

and suggestions. 
A.S.R. 

Magdalene College 

Cambridge 

December 1912 

PREFACE TO THE FOURTH EDITION 

As stated in the preface to the first edition, the book was 
written in the first place for beginners, it does not profess to be 
an exhaustive treatise and it does not aim at taking the reader 
to the limits of knowledge in the subject. But since of late years 
the study of hydrodynamics has become increasingly important 
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in view of the rapid developments of the kindred subject o^ 

Aeronautics, therefore the additions have been made with a view 

to the needs of students who desire to take their studies further 

in this direction. A chapter on viscosity has been added as well 

as some applications of contour integration to problems of two- 

dimensional motion and some discussion of the part played by 

‘circulation’ in producing ‘lift’ and of the application of con¬ 

formal transformation to aerofoil theory. The chapter on 

viscosity is placed at the end of the book but it contains direct 

references to so few of the other chapters that there is no rea.son 

why a student who prefers to do so should not read it at an 

earlier stage, e.g. before the chapters on waves. 

In conclusion I wish to acknowledge my indebtedness and 

express my gratitude to Dr S. Goldstein of St John’s College 

for reading the proofs of all the additions and making many 

valuable suggestions. Th(! book owes miich to his careful 

criticism. 
A. S.H. 

March 1035 

PREFACE TO THE SIXTH EDITION 

Save for a few minor alterations and corrections this edition is 

a reprint of the last. 
A. S. R. 

May 191(3 
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HYDRODYNAMICS 

CHAPTER I 

KINEMATICS 

In the introduction to Part I of this work it was ex¬ 

plained that all propositions in Hydrostatics are true for all fluids 

whatever their degree of viscosity. A very little consideration will 

suffice to shew that the motion of fluids cannot be independent of 

such properties as viscosity, and the results obtained from a dis¬ 

cussion of the motion of fluids which ignores their internal friction 

can only be regarded as an approximation to what actually takes 

place in nature, and in some cases are far from representing 

reality. In the ‘classicar treatment of the subject of Hydro¬ 

dynamics however it is usual, for the sake of simplicity, to regard 

the fluid medium as a ‘perfect fluid’, incapable of exerting 

shearing stress, and, whether at rest or in motion, such that the 

pressure it exerts on any surface in contact with it is always 

normal to the surface and consequently, as was shewn in Hydro¬ 

statics, the pressure at any point in such a fluid is the same in 

every direction. 

In the present chapter we shall limit ourselves to the considera¬ 

tion of some properties of the motion of fluids which are inde¬ 

pendent of causation, that is with the kinematics of fluids, 

leaving the equations of motion, or equations connecting the 

acting forces with the motions arising therefrom, for a subse¬ 

quent chapter. 

1 • 11. There are two jmethqdsLj9£te^ 
of Hyckodynamics or motion of a continuous medium; in the one, 

any particle of the fluid is selected and observation is made of its 

particular motion—it is pursued throughout its course; in the 

other, any point in the space occupied by the fluid is selected and 

observation is made of whatever changes of velocity, density and 

pressure take place at that point. The two methods are commonly 

called the Lagrangian Md the Eulerian methods respectively 

though both wefe^'uieS by Euler, but the former was used by 

Lagrange in the Kkanique Analytique. The latter is sometimes 
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also called the flux method. Clerk Maxwell suggested the words 

Historical and Statistical as descriptive of the two methods. We 
shall obtain the equations requisite for the determination of fluid 
motions from both these points of view. 

1‘12. In the Lagrangian Method x, y, z denote the co¬ 

ordinates of a particle at time t, then the components of its 
velocity are x, i/, z and the components of its acceleration are 

X, y, z. Also X, y, z and the velocities and accelerations are func¬ 
tions of t and of three independent parameters a, b, c which define 
the position of the chosen particle at a particular instant, thus 
a, b, c may be the coordinates of the chosen particle at the instant 
of time from which t is measured. In using this method it is well 
to remember that it resembles that of Dynamics of a Particle only 
in so far as the coordinates x, y, z of the chosen particle are de¬ 

pendent on the time t \ but in the case of fluid motion t is not the 
only independent variable, for the particle is any particle in the 
fluid, and three other variables a, b, c are needed to specify which 

particle has been chosen, so that there are altogether four inde¬ 
pendent variables a, 6, c, t 

1*13. In the Eulerian Method velocity at a point is mea¬ 
sured thus: if a small plane surface be placed at the point at right 
angles to the direction of flow, the velocity at the point is mea¬ 
sured, when uniform, by the volume of fluid per unit area that 
flows across the surface in unit time; and when variable by the 
time-rate of flow of volume of fluid per unit area across the surface. 

Thus if j be the velocity and p the density of the fluid at any 
point, the mass that in time 8^ flows across a small area Ay the 
normal to which makes an angle 0 with the velocity, is pqA cos 0 St, 
and the rate at which mass crosses the surface is pqA cos 0, 

As statod in 1*11, in the’Eulerian Method a particular point 
in the space occupied by the fluid is selected; we shall denote this 

point by (x, y, z) so that in this case x, y, z and t are independent 
variables. And it is important to remember that in the use of 
this method, unless some further meanings are assigned to the 
symbols, such expressions as dxjdt, d^xjdt^ do not occur, foj* the 

simple re^on that ic^and i are independent. 
When the axes are rectangular we shall use UyV,w to denote 

the components of the velocity q at the point {oc, y, z). In general 
Uy V, w are fimctions of the four independent variables x, y, z and t 
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If we regard (a;, 2;) as a fixed point, then the values of u, v, w will 
tell us what happens at that point as t changes; and if we regard t 
as fixed, then since (z, y, z) may be any point of the fluid, u, v, w 
will tell us what is happening at every point of the fluid at the 
particular instant under consideration. 

If we wish to connect the Eulerian and Lagrangian methods or 
combine both notations in any particular problem, we regard 
Uy V, w as the components of velocity of the element of fluid at 
{Xy yy z) and the relation between the two sets of symbols is then 
Uy Vy W^Xy yy Z. 

1’2. Acceleration. In considering the meaning of accelera¬ 
tion and how to obtain its value by the flux method, we have to 
take two facts into account. Firstly, if P denote the point 
(Xy y, z)y then inasmuch as Uy Vy w are functions of t a change of 
velocity of the fluid can take place at the fixed point P as time 
progresses without any variations in x, yyZ. Secondly, in order to 
estimate correctly the acceleration of an elementary portion of the 
fluid it is not sufficient merely to note what change of velocity is 
taking place at the point P, but we must also pursue the element 
for a short space after it passes P, in order to observe whether as 
it moves onwards it does so with the velocity it had on reaching P 
or acquires any additional velocity. 

Let (XyyyZyt), 

The particle which is at (XyyyZ) at time t will after a short 
interval 8t have moved to (x-huSty y + vBt, z + w8t) so that its 
velocity will become 

+ {x-^u8t, y + v8ty z + §0 

-h terms containing higher powers of 8^. 

Hence the x component of acceleration, being Lt Stt/8^, is equal 
to 

or 

dt 

du 

dt 

■ a/ 8/ df 
+u^ + v^ + w^ . 

ox dy dz .(1), 

du du du 
.(2): + u^ + v^ + w ^ . 

dx dy dz 

and in this expression the first term is the rate at which the 
velocity increases at the point (x, y, z) regarded as a fixed point in 
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space, and the other terms arise from the changing velocity of the 
element of fluid in its onward course. 

We shall denote the operator 

d d d d 

by the symbol ^, and speak of it as' diflferentiation following the 

motion of the fluid 

With this notation the components of acceleration are DulDt, 
DvjDt, DwjDt) and if/ {x, y, z, t) be any function of the position of 
a particle of the fluid and the time, the rate of change of this 

function following the motion of the fluid is DfjDt, 

1*21. As an illustration let us consider the flow of waioT through a 
pipe, which is filled by the water. Firstly, let the pipe be of uniform section, 
then the velocity u is the same at every point, but inasmuch as the water 
may bo forced through the pipe at varying speeds there may be an accelera¬ 
tion du/dt, which, in this case, will at any instant have the same value at all 
points in the pipe. Secondly, let the motion be steadyy i.e. the velocity at 
any particular point of the pipe keeps the same value u for all time; also let 
the pipe be of variable section, then the velocity varies from one point 
to another inasmuch as the section is variable, for the total flow across 
each section must be the same. Hence if s denote distance measured along 
the pipe to a point where the velocity is w, the element of fluid which 
occupies this position at time t will at time have moved to a point 
indicated by s + uU, and if u =/(a), its velocity in the second position is 

w-f 8w=/ + =/ (d) + ^u8t 

to the first power of 8t. Therefore 

Su = ~u8t, 
ds 

and the element of fluid has therefore an acceleration 

= Lt hujSt = u dujda. 

Thus we see that even in steady motion there may be acceleration; and in 
the general motion of water through a pipe of variable section the accelera- 

tion is given by du &u 

1*3. The Equation of Gontiqjuity. The motions that we 

shall have to consider will be, in general, continuous motions; 

that is, we shall assume that u, v, w are finite and continuous 

functions and that their space derivatives dujdx, dujdy, dujdz are 

also finite. 
In continuous motion, if we consider any closed surface drawn 

in the fluid, it is clear that the increase in the mass of fluid within 
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the surface in any time St must be equal to the excess of the mass 
that flows in over the mass that flows out. 

Let p denote the density of the fluid at (a;, y, z), and with this 

point as centre construct a small parallelepiped with edges of 
lengths A, k, I parallel to the axes. 

The mass of fluid which in time crosses a unit of area parallel 
to the yz plane at (x, y, z) is puSt, or say, / (x, y, z) St, 

To find the flow across the face kl of the parallelepiped nearest 

to the origin, take a point (x — ^h, y + r), z + l) on this surface. 
Then the mass of fluid which in time flows across a small area 
drjdi^ at this point is / (a; — y+ rj, z-{~ Qdrjdi^St, or, to the first 

power of the small quantities, h, t}, 

The total flow in time 8^ into the parallelepiped across this face 

kl is obtained by integrating the last expression over the area kl, 

noting that pu and its derivatives are values at the centre of the 

parallelepiped and rj, ^ are the only terms which vary over the 

face kl. Hence the flow is 

or j kl 8t. 

Similarly the flow out across the opposite face is 

Therefore the increase in mass inside the parallelepiped in time 

St due to the flow across these two faces is — hklSt, The other 
ox 

pairs of faces give like contributions so that the total increase in 
mass in time SHs , ^ ... , 

OX oy dz 

But the original mass inside the parallelepiped is phkl, and its 

increase in time St is “ hklSL Whence we get the equation 

dp dpu dpv dpw_ 
dt dz^ dy'^ dz (1). 
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This equation is clearly equivalent to 

Dp 

Dt +P 
dv dw 

'^dy'^ dz 
').o ■(2), 

and either of these may be called the equation of continuity. 
It follows from above that the expression 

du dv dw 

dx ^ dy dz 
.(3) 

measures the rate at which the volume of an element of fluid at 
(X, y, z) is expanding. It may be called the dilatation or the 
expansion. 

The expression (3) when u, v, w denote components of any 
vector is called the divergence of the vector, and is often written 
diV {Uy Vy w). 

Ifthe fluid is homogeneous and incompressible, pis constant and 

the equation reduces to 
du dv dw 

dx^ dy^ dz 
.(4). 

If the fluid is heterogeneous and incompressible, p is a function 

of {x, yy Zy t) such that = 0, i.e. the density of an element does 

not alter as that element moves about; hence in this case also 
(4) follows from (2). 

1*31. We can also obtain the equation of continuity by following the 
motion of a small element pdxdydz of fluid, and expressing the fact that its 
mass remains unchanged during the short interval ht. 

If .c, y, z are the coordinates of a particle at time t, its coordinates at time 
t + 8^ are x-\-uhtyy-^vUyZ + wU. Similarly the particle whose coordinates 
are x + dxy y, Zy will move in time 8^ to 

x + uU + dx-\-^^ dxhty y^vU+^dxUy z + dxhty 
ox ox ox 

so that dx is changed to dsy, whose projections on the axes are 

dx 

with similar expressions for dy and dz. Therefore the new volume of the 
parallelepiped is 

-8* dxdydz 

& St, 

1 + |«, 

8x 

8y 

dz ae, 

= dxdydss+(^+^+^^dxdydz6t .(1) 
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to the first power of and the density p is changed to p + ^ BL Equating 

the product of these to the original mass pdxdydz, we get 

as before. 
Dt^^\dx^dy’ dz) 

0 (2) 

1*32. We may also obtain the equation of continuity by 
making use of Green’s Theorem— 

JJ(y+mff + nA)(;^=JJJ 
where /, g, h are functions of {x, y, z), which with their first 
derivatives are finite and continuous throughout a region bounded 
by a closed surface S, and (i, m, n) are direction cosines of the 
outward drawn normal at a point on the surface, the /J being 

taken over the surface and the JJJ throughout the space en¬ 
closed. 

By considering any region in the fluid bounded by a closed 

surface S we have 

jjpdxdydz S^ = increase in mass inside the surface in time ht 

= excess of flow in over flow out across the 
surface in time 8t 

= — jj{lpu + mpv-\-npw)dSSt 

/dpu dpv 

dx dy dz 

Therefore jj/i 

j dxdydzSt, 

by Green’s Theorem. 

dp dpu ^ dpv ^ dpw\ 

dt ~dx 

for all ranges of integration within the fluid. 

Therefore 

at every point of the fluid. 

dp dpu dpv 

dx"^ dy’^ dz 

1*4. The Equation of Continuity in the Lagrangian 
Method* Let a, b, c be the coordinates of a particle P at a given 
epoch, and x, y, z the coordinates of the same particle after the 
lapse of time t. Take a small tetrahedron PABC in the fluid with 
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its edges PA, PB, PC parallel to the coordinate axes of lengths 

ha, 8b, Sc. 

After time t, the element of fluid that occupied the space 

PABC at the given epoch will form a differently situated tetra¬ 
hedron P'A' B' C\ and x, y, z being the coordinates of P\ the 

coordinates of A* relative to P' will be 

dx dz 5 

oiB' 
db^^’ 

and of O' 
dx 

Hence the volume of the tetrahedron P‘A*B'C 

and its mass 

8x dy 

dx dy 

w w 

da 
SaSbSc, 

dz 

% 

dx dy dz 

dc' 0c ’ dc 

d{x,y,z) 

^^d{a,b,c) 
SaSbSc. 

But if pQ be the initial density the mass is ^p^SaSbSc, and 

therefore d(x,y,z) 

which is the equation of continuity. 

1*41 • We can prove, by a direct transformation, the equivalence of 
the two forms of the equation of continuity. Beginning with the Lagrangian 
form, let 

J = g). 
a (a, 6, cY 

then pJ is constant, and 

or 

d(pJ)/df=:0, 

dt 

But these time-rates are variations due to the motion of a particle, or the 
variability of x,y,z; and we can change now from the Lagrangian to the 
Eulerian system of variables by either writing DIDt instead of didt or by 
writing w, v, w for x, y, z. And on this hypothesis we shall write 

* d dx ^ 
05 
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^ ^ d{yy z) du d(y^z) du d (y, z) 
di da d(ht c) db d (c, a) dc d (o, 6) 

4. ^ ^ 4. ^ ^ dv d(z, X) 
^ da d (6, c) db d (c, a) ^ (a, 6) 

dwd{x,y) dwd(x,y) dwd(x,y) 
ddd(by cydbh(c, ay dcd(a,b) 

= y* g) , ^ (a^» y* 
0 (a, 6, c) ^ 5 (a, 6, c) ^ ^ (a, 6, c) ’ 

~ ^a; So dy da dz da* 

du_dudx du dy du dz 
db‘~^^^ dydb'^^ 

^ _^dudx dudy dudz 
dc'^dx dc^ dy dc dz dc * 

and by eliminating —, ^ we get 

dudjx, y, y, z) 
dx d (o, 6, c) d (a, 6, c)' 

or a(ti, y, z)_ du^ 
d(a, 6, c)'^ dx* 

and from this and similar expressions we get 

dJ_ ^ I 
”” \dx dy dz) * 

andtherefore 

1-5. Particular cases of the Equation of Continuity. The 
equation of continuity may be transformed to cylindrical and 

to polar coordinates by the ordi¬ 
nary processes of change of the 
independent variable, but it is 
simpler to obtain it directly in 
each case from the principle that 
the increase in the mass con¬ 
tained in an element of volume 
in any short time hi is equal to 
the excess of the mass that flows 
in over the mass that flows 
out. 

Thus in polar coordinates if denote the components 
of velocity in the directions of the elements dr, rdB, r sin Qdw, 

1-5 

Hence 

But 
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the excess of flow in over the flow out arising from the face 

r^sin ddddo) and the opposite face is 

d 
— ^ (pq^r^ain OdOdco) dr hi, 

from the face r sin Odojdr and the opposite face 
0 

-^ Odwdr) rdOU, 
r VO 

and from the face rdddr and the opposite face 
0 

-(nq rdOdr) r sin 0 dio Bt, 
ramdoo} 

and the increase in mass is 

Therefore 
^ (pr^ sin 0drd$dw) Bt. 

1 3 / 1 3 / . 1 
dt r*dr ^^ fsine Wrsin6 da> 

Similarly if in cylindrical coordinates v^, vq, denote the 

components of velocity in the directions of the elements dr, rd0, 
dz^ we can shew that 

dp I d /o\ 
. 

1*51 • Another form of the equation of continuity may also be given. 
Let PQ = 85 be an arc of the line of motion passing through a point P; 

and let ^ be a small area normal to the arc, 
such that all the particles of fluid crossing it ^ ^ 
may be considered as moving perpendicular ^ 
to it, 4 

Let AA\ BE', etc. be small arcs of the lines 
of motion through the bounding points of AB^ 
and A'B' the normal section through Q of the " ® 
surface formed by these lines of motion. 

Take p as the density of the fluid in PQ at the time t, k the area of AB, 
and V the velocity at P; then the quantity of fluid which enters at AP 
during the time ht _ ^ 

and that which flows out at A'B* 
pk 

= KpV ^ 

The excess of the former over the latter of these two expressions is the 
whole increase of the fluid in PQ during the time 8<, and is 
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but the mass of fluid at the time t being Kphs, the increase in the time U is 

also expressed by ^ ^ 

and therefore 

3 d 
^^(KpS8)8t, or -(Kp)SsS^, 

From the way in whicli this equation has been obtained, it will be seen 

that allowance is made for the expansion of the element which may in 

certain cases take place, and it is only in this way that k can be an explicit 

function of the time. The small section A B may be taken arbitrarily, but 

the section A'B^ will depend, not only on the arc PQ^ but also on the 

directions of the lines of motion passing through the bounding curve of 

AB; the variation of k may therefore depend on the time explicitly, since 

these lines of motion may vary with the time. 

1*52. Accelerations in Polar and Cylindrical Coordi¬ 
nates. Referring to the figure of 1*5, if we take a right handed 
system of axes at the origin in the directions of the elements 
dVy rdd and rsinOdoj, and let g^ denote the components of 
velocity in these directions, then the small displacements in time 

S^are rS6 = q0U, rsindScD — q^^St, 

and the axes named above possess an angular velocity whose 
components are P, Q, E given by 

P == cii cos 6 casing R—d 

Also since the particle which is at (r, 0, co) at time t is transferred 

in time to (r + ht, 6 -f -- St. a> -h St i, the rate of increase of 
\ r rsind / 

a velocity component qj. following the motion of the fluid, as in 
1'2, is 

Dt dt 
n , qe^qr . qu> 

dr r dO rsin00a>* 

But this and the corresponding rates of change of gp and are 
not the whole accelerations in the prescribed directions, because 
qr, 9$y qo) velocities parallel to fixed axes, but parallel to 
axes rotating with angular velocities P, Q, R; so that, as in the 
general theory of moving axes, there are additional terms in the 
accelerations, viz. 

-Eqg+Qq^, -Pq^+Rq^ and -Qqr + Pie 

qjGOte ^ q^qe 

r r 
and M. + M!^cot6. 

r 
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Hence the total components of acceleration in polar coordi- 
iiates are 

^+a 
dt ^ dr r dO rsin ff do) r 

^ l^e.qe^e ^<10 qjoot^ , grge I 
dt r de^rsine'dw r 

- + „ ^gg. I 90 ^qw , gg, 9ga. 

0r r dd rsin^ dto 
' + ?®^“cotg 

r 

By like arguments with cylindrical coordinates r, 6, if 
denote the velocities in the directions dr, rdd, dz, the 

components of acceleration are 

dt^ ' dr r 'de'^ ^dz T 

^• + „..,2). 
dt ^ dr r dO dz r 

dv, dv„ Va dv^ 

'di^'’'^r^~rY6^''^di J 
If in (2) we put v^=^0, we get the components of acceleration in 

polar coordinates in two dimensions. 
From 1*5 (1) and (2) it is easy to see that the expression for 

the dilatation in polar coordinates is 

4. ??>• + ?gi 4. g0^2^ 4. __L ^g?' l‘i\ 

dr r rdd r rsin^Stu. ’ 

and in cylindrical coordinates 

dr^r^rde^dz .^ 

1*6. The Boundary Surface. At any fixed boundary the 
velocity of the fluid normal to the surface must vanish, that is 

at every point of the boundary; Z, m, n denoting the direction 
cosines of the normal. 

At the surface of a solid moving in the fluid the normal velocity 
of the fluid must be equal to that of the solid. Also for any 
surface in the fluid composed of a given sheet of particles or, what 

is the same thing, for any surface which always contains the same 
fluid matter within it, we must have the normal velocity of the 
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surface equal to the velocity in the same direction of a neigh¬ 
bouring particle of fluid. Thus if 8v is an element PP' of a normal 

tothesurfaxje F (x,y,z,t)=^0.(1), 

and X, y, z are the coordinates of P, those of P' are x + l8v, 
y + rnhv, where Z, m, n are direction cosines of PP' and 
therefore proportional to dFjdx, dFjdy, dFjdz. But P' hes on the 
surface at time t -f- SZ, therefore 

F(x + I8v, y + m8v,z-i-nSv, t + 8t)==0 .(2), 

and from (1) and (2) we get, to the first power of Sv and 8^, 

/,aP dF dF 

\ ox oy oz 
Again 

dF dF dF 

dx dy dz 

j 8v + ^|^8< = 0. 

\dzj 

mv -f nw 

= normal velocity of particle of fluid 

= normal velocity of surface 

= V 

,dF dF dF 

dx dy dz ) 

dtj {\dxj \dy) \dz] ] 

therefore 
dF dF dF dF ^ 

-h 4-V-^5-= 0 
dt dx dy dz 

.(3), 

and the equation of every boundary surface must satisfy this 
differential equation. 

1*61. Alternatively if we assume that a boundary surface 
always consists of the same particles of fluid, we may conclude at 
once that if F (x, y, 2, Z) = 0 be such a surface, then following the 

motion of the fluid 

DF 

Dt 
= 0, 

dF dF dF dF ^ 

dt dx dy dz 

Though this hypothesis is generally true for continuous motion 
it may cease to hold in some cases of discontinuous or turbulent 

motion. 
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1*7. Stream Lines. A stream line or line of flow is a curve 

such that at any instant of time the tangent at any point of it is 
the direction of motion of the fluid at that point. A tubular space 

in the fluid bounded by lines of flow is calied a tube of flow. 
The direction of motion of the fluid particle at the point 

(x, y, z) is defined by the quantities u, v, w and therefore the 

differential equations of the stream lines are 

dx dy dz 

U V 

Except in the case of steady motion, u, v, w are always functions 
of the time and therefore the strea m lines are continually changing 

with the time, and the actual path of any particle of the fluid will 
not in general coincide with a stream line. For if P, Q, R are 

consecutive points on a stream line at time a particle moving 
through P at this instant will move along PQ but when it arrives 

at Q at time 14- 8^, QR is no longer the direction of the velocity at 
Q and the particle will therefore cease to move along QR and 

move instead in the direction of the new velocity at Q. But if the 
motion be steady the stream lines remain unchanged as time 
progresses and they are also the paths of the particles of fluid. 

The differential equations for the paths of the particles a^re 

x=zu, y = v, z = w .(2), 

for when u, v, w are known functions of x, y, z, t these equations 
will determine x, y, z in terms of t and three arbitrary constants 
which might be taken to be a, 6, c, the initial values of the co¬ 

ordinates of a particle, and hence the paths of the particles would 
be obtained. 

1*71. The stream lines dxju^dylv — dzlw are cut at right 
angles by the surfaces given by the differential equation 

udx + vdy-^'Wdz^O .(1); 

and the condition for the existence of such orthogonal surfaces is 

the condition that the last equation may admit of a solution of 
the form 

(f>{x,y,z)^C (2), 
the analytical condition being 
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1*8. Velocity Potential. When the expression 

udx + vdy + wdz 

is an exact differential —d<f>, so that 

d<f> d(f> 3<A 
w, . 

then (f> is called the velocity potential or velocity function. 
It is clear that in this case 

dw dv du dw dv du 

dy dz' dz dx^ dx dy 

so that condition (3) of 1*71 is satisfied and surfaces exist 
which cut the stream lines orthogonally. 

.(1), 

.(2), 

1‘81. As an example consider the case in which 

—c^yjr^^ v = c^xlr^f = 

where r denotes distance from the z-axis, so that the velocity is wholly 

transversal and everj^here equal to c*/r. These values satisfy the equation 

of continuity and therefore represent a possible motion. 

The lines of flow are given by 

dx _dy_dz 
— y^ X ^ 0 

or a;* + 2/® = const., z = const. 

In this case 
dv 

dx' 

c^{y^ — x^) __du 

dy* 

so that conditions (2) of 1*8 are satisfied. 

In fact udx-^-vdy + wdz = cH, 

so that there is a velocity potential 

^ - c* tan~^ ^, 
^ x 

and the planes y=:KX cut the stream lines orthogonally. 

1*82. It is possible however for the orthogonal surfaces to exist 

without a velocity potential. Take for instance the case 

w = — tut/, V = a>x, w = 0, 

where again the velocity is transversal and varies as the distance from the 

z-axis, so that the whole mass rotates os if solid. 

In this case we have the same lines of flow as in the last article, but 

udX’k’Vdy^wdz is not an exact differential, so there is no velocity 

potential though condition (3) of 1* 71 is satisfied and 

w cfer 4-V dy-h = 0 

leads to the family of planes y = kx, which cut the stream lihes orthogonally^ 
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1*9. Irrotational and Rotational Motion. When the ex¬ 

pressions g^ g^ g^ g^ 

dy dz ’ dz dx' dx dy 

all vanish, the motion is said to be irrotational. When they do 

not ail vanish the motion is said to be rotational. 
The reason for this nomenclature will be given hereafter. 
It will be noticed that, when a velocity potential exists, the 

motion is irrotational. Thus the motion of 1*81 is irrotational, 

and that of 1*82 is rotational. 

EXAMPLES 

1. A mass of fluid moves in such a way that each particle describes a 
circle in one plane about a fixed axis; shew that the equation of continuity is 

Sp 8(po,)_ 

Be'~ ’ 

where a> is the angular velocity of a particle whose azimuthal angle is 6 at 
time t. 

2. A mass of fluid is in motion so that the lines of motion lie on the 
surface of coaxial cylinders; shew that the equation of continuity is 

dt'^r ee ' 

where , v, are the velocities perpendicular and parallel to z. 

3. The particles of a fluid move symmetrically in space with regard to 
a fixed centre; prove that the equation of continuity is 

where u is the velocity at distance r. 

4. Each particle of a mass of liquid moves in a plane through the axis 
of z; find the equation of continuity. 

5. If the lines of motion are curves on the surfaces of cones having their 
vertices at the origin and the* axis of z for common axis, prove that the 
equation of continuity is 

, cosec e djpqj _ ^ 
dt^ dr r r dw ‘ 

6. If the lines of motion are curves on the surfaces of spheres all touching 
the plane of xy at the origin O, the equation of continuity is 

+ -f sin0?-^-f pw(l4-2cos0)=:O, 

where r is the radius CP of one of the spheres, $ the angle PCO, u the 
velocity in the plane PCO, v the perpendicular velocity, and the inclina¬ 
tion of the plan<^ PCO to a fixed plane through the axis of z. 
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7. If every particle moves on the surface of a sphere, prove that th e 
equation of continuity is 

cos 0 + (pw cos 6) + (pay' COS 6) = 0, 

p being the density, 6, <f> the latitude and longitude of any element, and 

w and co' the angular velocities of the element in latitude and longitude . 

respectively. (M.T. 1877.) 

8. Shew that, if f, r), f be orthogonal coordinates and if C/, F, IF be the 

corresponding component velocities, the equation of continuity is 

^ + p (+ W'a.) + A, I (pC/) + A, ^ (pF) + ft, I (pT7) = 0, 

and respectively the sums of the principal curvatures of the 

three orthogonal surfaces. (Coll. Exam. 1896.) 

Shew that \ tan* ^ ^ cot* i = 1 

is a possible form for the bounding surface of a liquid, and find an expression’^ 

for the normal velocity. (Coll. Eixam. 1899.) 

10, In the steady motion of homogeneous liquid if the surfaces/i = Ui, 

/a = Ua define the stream lines, prove that the most general values of the^ 

velocity components v^w are 

Fill, ft) 
HA. ft) 
'8{y.z) ' 

F(fi.ft) 
HA. ft) 
'S(z.x) ’ FiA.ft) 

HA. ft) 
e{x,y) ’ 

where F is any arbitrary function. (Coll. Exam. 1892.) i/ 

, ''Ml. Shew that all necessary conditions can be satisfied by a velocity 

potential of the form = ox* + /Sy® + yz®, 

and a bounding surface of tlie form 

F = ax^ + hy^ -I- — x (0 = 

where x(P) ® given function of the time, and a, j3, 7, a, 6, c suitable ^ 
functions of the time. (Trinity Coll. 1895.) 

RK 2 



CHAPTER II 

EQUATIONS OF MOTION 

2* 1. Let u, v, w be the components of velocity, p the density 
and^ the pressure at the point (x, y, z) in a mass of fluid, and let 
X, Y, Z be the components of external force per unit mass at the 

same point. 
As in 1*3, consider a small rectangular parallelepiped hicl with 

its centre at (x, y, z), and resolve parallel to the a:-axis; then we 

hav © /I?/ ci'Y) 
phkl~==pXhkl^^hkh 

for the last term can be shewn, as in 1*3, to be the difference 
of the pressures on the two ends of area kL 

Hence 

or 

Similarly 

Du _ ^ \dp 

iH^^'^pdx’ 

du du du du ^ 19^ 1 

dv dv dv dv 1 dp 

dw dw dw dw „ I dp 

These are Euler’s Dynamical Equationr 

(1) 

2*11. If the fluid be elastic we have to make use of the physical 
laws connecting pressure and density. Thus, if the temperature 

be constant, we have p=Kp 

where /c is a constant. But if the changes that take place occur 

with such rapidity that there is not time for heat to enter or leave 
the fluid element, as is the case in the expansions and contractions 

of air that result in the propagation of sound waves, then the 
relation is the ‘ adiabatic ’ one, 

p=-Kpv, 
where y is a definite constant*. 

* Hydroataiica, Art. ©4. 
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2*12. In the case of a liquid, if II be the external pressure 
upon its surface and p the pressure of the liquid at the surface, we 
shall have (neglecting surface tension) 

p=n, 
and therefore at all points of the free surface 

Dp im 

~Dt~ Dt* 

or if we suppose that 11 depends only on the time 

dp dp dp dp dll 

2*2. Integration of the equations of motion. When a 
velocity potential exists and the external forces are derivable 
from a potential function, the equations of motion can always be 
integrated. 

In this case w, v, t/; = ~ 3^/3x, — dcfy/dy, — 3^/3z; 

and X,Y,Z:= -3F/3x, ~3F/3y, -3F/3z; 

so that equations 2*1 (1) become 

^ dii>d^ _ dV Idp 
dxd’t^ dx dx^ dy dxdy dz dxdz dx pdx' 

^^3 3^ dv I dp 
dydt dx dxdy ^ dy dy^ ^ dz dydz dy p dy' 

dzdt dx dxdz dy dydz dz dz^ dz pdz* 

Multiplying these equations by dx, dy, dz and adding we get 

or, if q denote the velocity, 

-d^4-^yi^^-^dV + -dp^0.(1). 
ct p 

Whence, assuming the existence of a functional relation 
between the pressure and the density, we get by integration 

.P), 
where C is in general an arbitrary function of the time. 

If the fluid be homogeneous and inelastic, the equation (2) 
becomes ^ 

= C.(3). 
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If the motion be steady = and therefore 

where 0 is an absolute constant. 

2*21. Steady Motion. Bernoulli’s Theorem. Case of no 
Velocity Potential. We may obtain a similar equation when the 
motion is steady even though a velocity potential does not exist. 
Thus by considering the motion of a small cylinder of section k 

with its axis of length 8^ along a stream line, if q be the velocity 
and S the component of external force per unit mass in direction 

of the stream line, 
-PkBsS - 

and in this case 

so that 

Dt 

dt'^^da pda 

If the motion be steady dqjdt = 0, and if the external forces have 
a potential function such that —dVjds, then by integrating 

along a stream line, 
J^ + iS® + F=C .(2), 

where (7 is a constant, whose value depends on the particular 

stream Une chosen. This is BerrumlWs Theorem. 

2*22. In general, when no velocity potentieQ exists, we make use of 
equations 2*1 (1), in order to find the pressure at any point. 

For instance, if a mass of liquid revolve uniformly without change of 
form or relative displacement about a fixed axis, there is no velocity 
potential, but taking the fixed axis as axis of «, 

M=—col/, i? = coa:, u; = 0; 

hence from equations 2* 1 (1), 

and therefore 

-dp = X<ia:-f Ydy-{- Zdz‘\‘w*(xdx-\'ydy)t 

as in Hydrostatics, Art. 28. 
For homogeneous liquid and conservative forces this becomes 

- — Jco* (ic* 4- y*) + F = constant. 
P 

At first sight this equation may appear to contradict 2*21 (2), but this 
is not so, for in that equation the constant C depends on the particular 
stream line; and in this particulcur case the velocity q is constant along a 
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stream line, so that all the information we get from 2*21 (2) is that in this 

fdp case 
- 4- F is constant along a stream line. 

2*23. When a velocity potential exists and the forces are conser¬ 
vative, the pressure is given by equation 2*2 (2) or (3). 

Take, for instance, the case given in 1*81 in which there is a velocity 
potential — c^B, while the velocity at distance r from the axis of z is c*/r. 
Let z be measured vertically upwards and gravity be the only external 
force, then equation 2*2 (3) becomes 

^ + |r>+9'* = C'- 

If we take the pressure at the surface to be constant and assume that a 
is the value of z when r is infinite, we have for the equation of the surface 

2g{x^ + y^){a-z)^c*^. 

2*3. Equations of motion by the Flux Method. The 

equations of 2*1 can also be obtained by considering the changes 

of momentum that take place within a definite region of space due 
to the external forces acting throughout this region and to the 

fluid pressures on the boundary. 

Thus if m, n are direction cosines of the outward-drawn 
normal to the element dS of any closed surface S drawn in the 

fluid and fixed in space, with the same notation the time-rate of 
increase of momentum parallel to the x-axis of the fluid inside 8 

is p'^dxdydzj and this is composed of three parts: 

(1) The rate of increase of x-momentum inside 8 due to the 
flow of momentum across the boundary, viz. 

—j j pu(lu + mv -\-nw)d8; 

(2) The rate of increase of x-momentum due to the pressures 

on the boundary, viz. — JJlpd8; 

(3) The rate of increase of x-momentum due to the external 

forces acting throughout the region inside 8, viz. JJ jpXdxdydz, 

Hence 

dt HP dxdydz^ - jj pu(lu+mv + nw) dS — 

- j j j pXdxdydz; 
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and by transforming the surface integrals into volume integrals 

by Green’s Theorem, we get 

If/ + + = 
and since this must hold for all ranges of integration within the 

fluid, we must have at every point 

0 0 0 0 0n 

and if we multiply this by u and subtract, we obtain 

as before. 

du du du du ^ \ dp 

2*4. Equations referred to moving axes. Let U, F, W be 

the component velocities of the origin and P, Q, R the angular 

velocities of the frame of reference. Let w, v, w be the absolute 
velocities of the fluid at the point (x, y, z) rigidly connected to the 

frame and v\ to* the velocities of the fluid at the same point 

relative to the frame. 

We have u=U +u'-yR+zQ\ 

vzrrF +t;'~«P.(1). 

w=W -j-w' — xQ + yP) 

If we consider the increase in mass in a small rectangular 

element of volume attached to the frame of reference with its 
centre at (x, y, z) where p is the density of the fluid, we obtain as in 

ar ax ^ ay ^ a? . 
for the equation of continuity. 

In the case of incompressible fluid this reverts to the standard 

du dv dw 

. 

To obtain the equations of motion we proceed thus*: 

Let k denote the component of the absolute velocity in a 

direction fixed in space whose direction cosines referred to the 

* Greenhill, Emyc, Brit, llth edition. Art. ‘Hydromechanics*. 
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moving axes are I, m, n, i.e. k^lu^-niV’^-nw, In time 8^ the 
coordinates of the fluid particle at (a;, y, z) will have increased by 
(u', v', iv') 8t, so that lu will have become 

4-terms containing higher powers of 8^, as in 1*2. 

Whence we get 

Dk dl dm dn . (du ,du ,du ,du\ 

Di-Si'‘*-S’*di'"*' U*’* Tx*’ Ty+’" s) 
[dv ,dv ,dv ,dv\ 

+”(§<+’* 5+* ^+”’s) 
(dw ,dw ,dw , 

8^) 

But since Z, m, n are direction cosines referred to the moving 
axes of a line fixed in space, therefore 

^^-mR^nQ-0, -nP-\-lR = 0, ZQ + mP = 0 ...(5), 

Dk j (du ^ ,du ,du ,du\ . . . . 

ay'"”’ 
.(6). 

Again by resolving the external forces and the pressure in the 
direction {I, m, n) we obtain 

and since the choice of the direction (Z, m, n) is arbitrary, a com¬ 

parison of (6) and (7) gives the equations of motion in the form 

du „ ^ ,du ,du ,du ^ I9p^ 

df dx dy dz pdx\ 

du „ ^ ,du ,du ,du ^ I9p^ 
-vR-^’wQ^u' 

df dx dy dz p dx 

dc „ „ ,dv ,dv ,dv .. Idp 
-- -wP-^-uR-^u' ^ = F-- 
dt dx dy dz p dy 

dw ^ ^ ,dw ,dw ,dw „ I dp 
~;^-~-uQ-hvP -tu' ^~ = Z — / 
dt dx dy dz p dzJ 

...(8), 

where the values of u', v', w' in terms of u, v, w and the velocities 

of the frame are given by (1). 
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2*41. The pressure equation. When a velocity potential 
exists, we substitute the values of u', v', «/ from 2'4 (1) in (8), 

then write u,v,w= — (3^/3ar, d^jdz). 

multiply the equations (8) by dx, dy, dz respectively, add and 

integrate. The result is 

J P cz J 

(1). 

where = U)^ + (v — F)^ + — TF)^.(2). 

It should be noted that is what the square of the velocity of 

the fluid would become if a velocity equal and opposite to that 
of the origin were superposed on the fluid and the frame thus 

reducing the origin to rest. 
Also that if fl denotes the resultant angular velocity (P, Q, B) 

and K denotes the resultant moment of momentum per unit 
volume about fixed axes coinciding momentarily with the 

moving axes, then (1) may be written 

j-p--^ + i9^-li^-K)+V^F(t) .(3), 

where (Q. K) denotes the scalar product of the two vectors. 

2*5. Lagrange’s Equations. Let a, 6, c be the initial co¬ 

ordinates of a particle and x, y, z the coordinates of the same 

particle at time t, then a, b, c, t are the independent variables 
and our object is to determine a;, y, z in terms of a, b, c, t and 

so investigate completely the motion. At time t the component 

accelerations of the fluid element Sx8y8z are d^x/dt^, 

dhjdt^, and if we assume the existence of a potential V for the 

external forces, we get as in 2*1 

d^x dV 1 dp 
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To deduce equations containing only differentiations with 
regard to the indepepdent variables a, 6, c, t, we multiply these 

by dzjda, dyjda, dzjda and add, therefore 

dhc dx d^y dy dh dz 

.. - d^xdx d^dy dHdz 
Sinularly + 36 ‘ 

d^x dx 3*2/ dy dh dz 

dV_ldp 

da p da 

dV^_l^ 
'db pdb 

dV_l^ 
dc p dc 

These equations, together with the equation of continuity 

9 {x, y, z) _ 
^d{a, b, c)~^®’ 

constitute Lagrange^8 Hydrodynamical Equations. 

2* 51. Cauchy’s Integrals. Assuming that p is a function of 

p, differentiate equations (2) and (3) of 2*5 with regard to 
c and b respectively and subtract, and we obtain after writing u, 

V, w for dxfdt, dyjdt, dzjdt, 

dht dx dhi dx dh) dy dh) dy dhv dz dhv _ 

dtdbdc dtdcdb^ dtdbdc dtdcdb~^ dtdbdc dtdcdb 

Integrate this equation with regard to t, and take 

initial values; then 

du dx du dx dv dy dv dy dw dz dw dz _ dw^ dv^ 

db dc dc db ^ db dc dc db 36 3c dc db db dc ’ 

for initially dxjda^ 1, dxjdb = dx/dc = 0, etc., etc. 

du dudx dudy dudz ^ 

da^ dxda^ dyda^ dz da'^ ^ *’ 

and making these substitutions, the equation becomes 

/dw dv\d(y,z) /du dw\d(z,x) /dv du\d(x,y) dwQ dv^ 

\3y 32/3(6, c)^\32 3a;/3(6,c) \3a: dy]d{b,c) db dc * 

Writing 

dy dz^ 

du dw ^ _^_af 
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we obtain the equations 

^3ib,c) 
^9(y. g) 
^9(C, o) 

+ V 

+v 

>9(y. g) 
^S(o,6) +1J 

9(2, a;) d{x,y) ^ 

d{b,cy^d{f),c) 
d{z,x) yd{x,y) 

d{c,a)'^^d(c,a) ^®’ 

3(2, a:) d{x,y) 

d(a,by^d{a, 6)“^®’ 

Multiply these equations by dxjda, dx/db, dxjdc respectively and 

add and take account of the equation of continuity 

pd(x,y, z)ld{a, b, c)=po, 

and we get 

Similarly 

p poda podb p^dc' 

p po da Pq db 3c ’ 

and 
P />o9® Po^f> Po^^ 

We notice that when a velocity potential exists ^ J = 0, 

and from the foregoing equations it is evident that these quantities 

are always zero if their initial values are zero. 
As we have already stated, when a velocity potential exists 

^ the motion is said to be irrotational and we therefore have the 

theorem that the motion of a fluid under conservative forces, if 

once irrotational, is always irrotational. This constitutes Cauchy’s 

proof of this important theorem first enunciated by Lagrange. 

When a velocity potential does not exist, the motion is called 
rotational. The reason for the phraseology employed to distinguish 

the two kinds of motion is given in the following article taken 

from a paper by Stokes*. 

2*52. Physical Interpretation. Conceive an indefinitely small ele¬ 
ment of a fluid in motion to become solidified suddenly, and the fluid about 
it to be destroyed suddenly; let the form of the element be so taken that the 
resulting solid shall be that which is the simplest with respect to rotatory 
motion, namely, that which has its three principal moments about axes 
passing through the centre of gravity equal to each other, and therefore 
every axis passing through that point a principal axis, and consider the 
linear and angular motions of the element immediately after solidification. 

By the instantaneous solidification velocities will be suddenly generated 
or destroyed in the different portions of the element, and a set of impulsive 

♦ Trans. Camb. Phil. Soc. vm. p. 287, or Math, and Phys. Papers, i, p. 112. 
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forces will be called into action. Let a;, y, z be the coordinates of the centre 
of gravity Q of the element at the instant of solidification, y + y\ 
z-\-z' those of any other point in it. 

Let w, V, w be the velocities of O along the three axes j ust before solidifica¬ 
tion, u', v\ w' the relative velocities of the point whose relative coordinates 
are x\ y\ z\ 

Let Uf Vy w be the velocities of (7, the relative velocities of the 
point (x\ y\ «')» i* V* f angular velocities just after solidification. 

Since all the impulsive forces are internal, 

u = u, V = Vy w = w. 

Also, by the conservation of angular momentum, 

Em {y' (Wi — w') — z' (v^ — v')} = 

m denoting an element of the mass considered. 

But u^-rjz'-^y', 

, du . du . du , . , , 
“ = fe* + 82/2/ + , Ultimately, 

and similar expressions hold good for the other quantities. 
Substituting in the above equations, and observing that 

'£(my'z') = 0, S(mz'a:') = 0, S (mx'i/') = 0, 

we have 
8v_^ 

^ Bx By' 

and Smx'* = Tmy'^ = Emz'*, 

dv ^ ^du dw 
dy'dz" 

We see then that an indefinitely small element of the fluid of which the 
three principal moments about the centre of gravity are equal, if suddenly 
solidified and detached from the rest of the fluid, will begin to move with a 
motion of translation only if udx-^vdy-^wdz is an exact differential, but 
if this expression is not an exact differential the motion of the element will 
be rotational as well as translational; and this constitutes the reason for 
the nomenclature of 1*9. 

The quantities 17, 5 are called the components of spin. The term mole¬ 
cular rotation has been used in this sense, but there is no connection be¬ 
tween the rotations and the molecules. 

2*6. Assuming that the forces are conservative and p a function of p, 
we may write the equations of motion 

so that 

therefore 

pu_ 
Dt dx pdx dx* 

Di ^ dy p dy~~ dy* 

Dw_ 
Dt dz p dz'^ dz* 

Y ^ — ^*9 __ ^ 
dzDt“ ?kdy^dy DC 

D dudw bvdw dwdw 
Dt\dy ^dy ^ dy ^ dy dz 

du dv dv dv divdv^ 
dzdx dzdy dz dz'^ * 
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or by adding and subtracting ^ this equation may be written 

' dx^^Bx^^Bx ^\Bx By 

^ A. ^ 
Dt~^ Bx'^'^^' 

Di dy dz) 

or dw 
dx 

where + but by the equation of continuity -^4-0 = 0 ' dx 
Hence we get 

-I Dt^ 
7}dv tdw 

t) dv 

\pj pdx pi 

Dt \-p/ p i 

Dt \pj f 
Also observing that 

for 1 1 rf^ o\ du ^ ydu 

p dx ’ 

,_:+v-+f?*? 
pBy pBy p By’ 

- f ^ 3 ^ 4. i 
pdz pdz p dz 

the equations take the form 

Dt \p) p dx p dy p ^ \ 

I ,n 
Dt\p)'^ pdx^ pdy^'pdz . 

^ /A — 
Dt \p) pdx p dy p dz, 

These equations for the case of p constant were given by Stokes* and 
Helmholtzf and were extended to the form given above by Nanson J. 

From these equations Helmholtz concludes that if in a fluid element 
f, 17, f are simxiltaneously zero, we also have 

D(IDt = DrflDt=DtilDt=0. 

Hence those dements of fluid which at any instant have no rotation remain 
during the whole motion without rotation. The justiflcation for this con¬ 
clusion is found in Stokes’ paper already cited§. Thus in equations (1) we 
may assume that dujdx, dvjdx, etc., are finite, and let L denote their 
superior limit, then (Ip, riJp, J/p cannot increase faster than if they 
satisfied the equations 

. 
and if we put pQ = f +17 + we have 

DQfDt^SLQ, 

80 that if Q be not zero, by dividing by O and integrating we get 

Cl:=:Cd^, 

* hoc, dt. p. 23. 
t Credos Journal, 1868; Phil. Mag. xxxm. Fourth Series, 1867, p. 486. 
t Messenger of Math, m, 1873, p. 120. 
§ Also in Math, and Phys. Papers, n, p. 36, or Comb, and Duh. Math. Journal, 

m, p. 216. 
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and no value of C other than zero will allow Q to vanish when ^ = 0; but by 
hypothesis f, rj, £, and therefore fl also, are zero when ^ = 0, therefore Q is 
always zero. But Q is the sum of three quantities which evidently cannot 
be negative, therefore eaeh of them must be zero. And as J remain 
zero when they satisfy (2), still more will they do so when they satisfy (1). 

2*7. Impulsive Action. If impulsive forces be made to act 
on a fluid, or if impulsive pressure be excited by a sudden change 
of motion of one of the boundaries, it can be shewn as in Hydro¬ 

statics, Art. 6, that the impulsive pressure at any point is the same 
in every direction and in the case of a liquid that the impulsive 
pressure is transmitted equally throughout the liquid. The in¬ 
compressibility of the liquid implies infinitely rapid propagation 

of pressural effect, so that an impulsive pressure can be produced 
insj^ntaneously throughout the liquid. 

I To find the relation between impzdsive pressure and change of 
velocity. 

Let w denote the impulsive pressure and X\ Y\ Z' the ex¬ 

traneous impulses per unit mass of fluid at the point {x, y, z). 

Let u, V, w and u\v', w' denote the velocity components at this 
point just before and just after the impulsive action. Since 

impulses are measured by the change of momentum they pro¬ 
duce, by considering a small parallelepiped SxSySz with centre at 
(x, y, z), we get 

p (u' — u) SxSySz=pX' 80:8^82: —SxSySz, 

the last term representing the difference between the impulsive 

pressures on the two ends of area SySz found as in 1*3. 

dw 

dx 

dw 

. 
dw 

dz, 

Therefore p(u'-u)=^pX'^ 

p(v'--v)=pr- 

p(w' — w)=pZ' —^ 

.(1). 

If there are no e^itTaojeous impulses the equations are equi- 

vadegt to 

dto = — p (u' — tt) cte—/) (t?' — v) rfy—p (w'—w) dz, 

or if <f>' denote the velocity potential just before and just after 
the impulsive action. 
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hence, by integration, when p is constant 

ter=— p<f} -f C. 

The constant C may be omitted, as an extra pressure, constant 

throughout the fluid, would not affect the motion. 

2'71. Physical meaning of velocity potential. From the 
preceding article we see that any actual motion of a liquid, for 
which a single valued velocity potential exists, could be produced 

instantaneously from rest by a set of impulses properly applied, 
and if the liquid be regarded as of unit density the velocity 
potential is the impulsive pressure at any point. 

We also conclude that when a state of rotational motion exists 

in a liquid, the motion could neither be created nor destroyed by 

impulsive pressures. 

2*72. When there are no extraneous impulses and p is 
constant, by differentiating equations 2‘7 (1), and making use 

of the equation of continuity, we obtain 

0% dhn dhn _ 
dx^ dy^ dz^ (1), 

and the general problem of impulsive motion consists in ob¬ 

taining a solution of this equation to satisfy the given boundary 
conditions. 

2*73. It W618 pointed out by Stokes* that in selecting a solution to 
satisfy the given boundary conditions it is necessary also to note that the 
value of the fluid pressure, whether finite or impulsive pressure, cannot 
change abruptly from point to point in the fluid. He considers the 
following example: Suppose a mass of fluid to be at rest in a finite cylinder, 
whose axis coincides with the axis of z, the cylinder being entirely filled and 
closed at both ends. Suppose the cylinder to be moved by impek^t with 
initial velocity C in the direction of x; then the velocities are given by 

U=Cy v=0, W=:0, 

For these make udx + vdy + wdz an exact differential where </> 
satisfies (I) of 2*72; they also make the normal velocity equal to that of 
the cylinder over the boundary, and give a value for the impulsive pressure, 
namely C' — Cpx, which does not alter abruptly. But if we had supposed 
that <l> was equal to — (7a; — C' tBxr'^yjx all the conditions would still have 
been satisfied, except that we should have obtained for the impulsive 
pressure a vedue 'bt= (7"^—/>((7a;-f C'tan~^y/a;), in which the last term 
alters abruptly as tan*"^ yjx passes through the value 2ir. Hence the former 
was the correct solution of the problem. 

* Tram, Camb, Phil. 8oc, vm, p. 105, or Math, and Phy$. Papers^ i, p. 23, 
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This is also an illustration of a theorem we shall have to discuss later, 
namely that cyclic irrotational motion cannot exist in simply connected 
space. 

2*8. The following examples will serve to illustrate the application to 
particular cases of the principles of hydrod5mamics. 

(1) A quantity of liquid occupies a length 21 of a straight tube of uniform 

small bore under the action of a force to a point in the tube varying as the dis¬ 

tance from that point. It is required to determine the motion and the pressure» 

Let p be the pressure and u the velocity at a distance x from the fixed 
point 0; and let z be the distance of the nearer free surface from O. 

The equation of continuity is 
dujdx = 0. 

The equation of motion is therefore 

— fix ^ • 

Integrate this equation with regard to x, 

therefore a; ™ = <7 — — -, 
ut p 

and p = 0 when x = z and when x=:z + 2l, 

therefore —fi(z + l). 

But clearly u = z, 

therefore 2 4* /x (2 *f i) = 0, 

hence 2 4* i = -4 cos {V/if 4- a), the constants being determined by the initial 
position and velocity. 

Also pIp= -ifi{x^-z^)-(x-z) ^ 

= -ifi{x^-z^)+fi(x-z){z-\-l), 

and thus the pressure at any point is determined. 

(2) Oscillations of water in a bent uniform tube in a vertical plane. 

Let O be the lowest point of the tube, AB the equilibrium level of tho 
water, h the height oi AB above O, a, j8 the inclinations of the tube to the 
horizontal at A and B and 6 its inclination at a distance s from 0. Let a, b 

denote the lengths OA, OB and suppose that at time t the water is dis- 

O X 
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placed a small distance x along the tube from its equilibrium position. 
Then if u is the velocity the equation of continuity is dujda = 0, so that the 
equation of motion is j ^ 

du 

Integrating this equation, we get 

du 

dy 1 ^ 
p da * 

and by taking the values at the ends of the water, 

(a+x)^= -gi(A+a;8ina)-5 + 2!’(t), 

and -(b-x)^= -g{h-XBmp)-^ + F(t), 

where n is the atmospheric pressure. 

du 
Therefore (a + b)-^= — gx (sin a + sin j8); 

but = ^r, so that this equation represents oscillations of period 

27ry/{(a + h)jg (sin a + sin )5)}. 

(3) A mass of liquid surrounds a solid sphere of radius a, and its outer 
surfacej which is a concentric sphere of radius 6, is subject to a given constant 
pressure 11, no other forces being in action on the liquid. The solid sphere 
suddenly shrinks into a concentric sphere ; it is required to determine the subse¬ 
quent motion, and the impulsive action on the sphere. 

At time t, let p be the pressure and v' the velocity at distance r' from the 
centre; then the equation of motion is 

dv' ,dv' I dp 
pdr’’ 

and the equation of continuity is 

r'h}' = F(t), 

therefore 
l§p 
p^' 

(1). 

Let B, r be the radii of the external and internal boimdaries at time t, 
and F, v their velocities; these quantities are fimctions of ^ only, and 

F=jR, t? = f. 

Integrating equation (1) with reg€u:d to r' from r' = r to r' = R, we get 

-p’'w(i-g)+i(«*-n=n/p. 

But F[t)=:r*v^R^V, 

. dv 
therefore F^ (t) = 2m* + ^ 

= 2rv^+r^vdvjdr. 

Hence + = 
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Putting = Zt and multiplying by 2^®, and observing that 

this becomes 

ZUr.;, = - « - [I- 
(r^ + c^)^J Ir (r3-f-c»)ij 

Integrating^we obtain 
2n««^r3_ /I n 
3/» r.* “ V Sj‘ 

Take r for the radius of the solid sphere, and let u denote the impulsive 
pressure at distance r'; then 

, , r^vdr' 
d:u=i-pv dr = -p ; 

therefore, since tz: = 0 when r' = R, 

^lp = r^v{l-^ 

gives the impulsive pressure when r' = r. 
The whole impulse on the sphere 

.= 47rr*ar = Ixrpr^y (i? — r)/i?, 

and the whole momentum destroyed 

: j ^Ttr'^pv'dr':=:4:7rpr^v(R — r). 

The velocity may also be obtained at once by help of the principle of 
energy. 

For, the kinetic energy 

= i j pv'^dr' 

and the work done by the outer pressure 

= < 7/0 (&’ - J?*) = ^ irH (o» - r»). 

Hence the equation of energy gives us at once the expression for the 
velocity. 

EXAMPLES 

1. If a bombshell explode at a great depth beneath the surface of the 
sea, prove that the impulsive pressure at any point varies inversely as the 
distance from the centre of the shell. 

2. A straight tube of small bore, ABGy is bent so as to make the angle 
A BC a right angle, and AB equal to BC. The end 0 is closed; and the tube 
is placed with the end A upwards and AB vertical, and is filled with liquid. 
If the end O bo opened, prove that the pressure at any point of the vortical 
tube is instantaneously diminished one-half; and find the instantaneous 
change of pressure at any point of the horizontal tube, the pressure of the 
atmosphere being neglected. 

KH 3 
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3. Steam is rushing from a boiler through a conical pipe, the diameters 
of the ends of which are D and d; if V and v be the corresponding velocities 
of the steam, and if the motion be supposed to be that of divergence from 
the vortex of the cone, prove that 

-2>“ 

whore k is the pressure divided by the density, and supposed constant. 

4. An elastic fluid, the weight of which is neglected, obeying Boyle’s 
law, is in motion in a uniform straight tube; shew that on the hypothesis 
of parallel sections the velocity at any time ^ at a distance r from a fixed 
point in the tube is defined by the equation 

8t^ ^~dr 

8 dv dv\ c 

5. Air, obeying Boyle’s law, is in motion in a uniform tube of small 
section; prove that if p be the density and v the velocity at a distance x 
from a fixed point at the time 

6. Two equal closed cylinders, of height c, with their bases in the same 
horizontal plane, are filled, one with water, and the other with air of such a 
density as to support a column h of water, h being less than c. If a com¬ 
municate be opened between them at their bases, the height x, to which 
the water rises, is given by the equation 

cx^chlog*^-~ =: 0. 

7. Water flows steadily along a pipe of variable cross section. If the 
pressure bo 700 millimetres of mercury at a place where the velocity is 
150 cms. per second, find the pressure at a place where the cross section of 
the pipe is twice as large. [Take the specific gravity of mercury as 13*6.] 

(Univ. of London, 1907.) 

' 8. A sphere of radius a is surrounded by infinite liquid of density p, the 
pressure at infinity being xr. The sphere is suddenly annihilated. Shew 
that the pressure at distance r from the centre immediately falls to 

w 

Shew further that if the liquid is brought to rest by impinging on a 
concentric sphere of radius a/2, the impulsive pressure sustained by the 

surface of this sphere is V7mpa^/6. ’ (M.T. 1931.) 

9. A spherical shell of homogeneous gravitating liquid, having no initial 
motion, is left to itself; find the pressure at any point during the coUapse. 

10. A mass of homogeneous liquid is moving so that the velocity at any 
point is proportional to the time, and that the pressure is given by 

^=p.xyz - 4^* -f + ^V) I 
P 
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prove that this motion may have boon generated from rest by finite natural 
forces independent of the time; and shew that, if the direction of motion at 
every point coincide with the direction of the acting force, each particle of 
the liquid describes a curve which is the intersection of two hyperbolic 
cylinders. (M.T. 1877.) 

11. A given quantity of liquid moves, under no forces, in a smooth 
conical tube having a small vertical angle, and the distances of its nearer 
and farther extremities from the vertex at the time t are r and r'; shew that 

the pressures at the two surfaces being equal. 

Shew also that the preceding equation results from supposing the vis 
viva of the mass of liquid to be constant; and that the velocity of the inner 
surface is given by the equations 

F>=C7r7r»(r'~r), = 

O and c being constants. 

* 12. A portion of homogeneous fluid is confined between two concentric 
spheres radii A and a, and is attracted towards their centre by a force 
varying inversely as the square of the distance. The inner spherical surface 
is suddenly annihilated, and when the radii of the inner and outer surfaces 
of the fluid are r and i?, the fluid impinges on a solid ball concentric with 
their surfaces; prove that the impulsive pressure at any point of the ball 
for different values of JR and r varies as 

13. A fine tube whose section ^ is a function of its length a, in the form 
of a closed plane curve of area A, filled with ice, is moved in any manner. 
When the component angular velocity of the tube about a normal to its 
plane is 11 the ice melts without change of volume. Prove that the velocity 
of the fluid relatively to the tube at a point whore the section is K at any 
subsequent time when w is the angular velocity is 

2A(a-<o)~K 1^, 

the integral being tcficon once round the tube. (M.T. 1873.) 

^ 14. A centre of force attracting inversely as the square of the distance 
is at the centre of a spherical cavity within an infinite mass of incompres¬ 
sible fluid, the pressure on which at an infinite distance is cr, and is such 
that the work done by this pressure on a unit of area through a unit of 
length is one-half the work done by the attractive force on a unit of volume 
of the fluid from infinity to the initial boundary of the cavity; prove that 
the time of filling up the cavity will be 

£(2-{f)^}; 

a being the initial radius of the cavity, and p the density of the fluid. 
(M.T. 1874.) 
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15. A homogeneous liquid is contained between two concentric 

spherical surfaces, the radius of the inner being a and that of the outer 

indefinitely great. The fluid is attracted to the centre of those surfaces by a 

force (r), and a constant pressure 11 is exerted at the outer surface. 

Suppose i ({> (r) dr — ijj (r), and that xjs (r) vanishes when r is infinite. Shew 

that if the inner surface is suddenly removed, the pressure at the distance r 

is suddenly diminished by a a 

Find so that the pressure immediately after the inner surface is 

removed may be the same as it would be if no attractive force existed. 

Also with this value of (r), find the velocity of the inner boundary of the 

fluid at any period of the motion. 

16. A stream in a horizontal pipe, after passing a contraction in the 

pipe at which its sectional area is A, is delivered at atmospheric pressure at 

a place where the sectional area is B, Shew that if a side tube is connected 

with the pipe at the former place, water will be sucked up through it into 

the pipe from a reservoir at a 

delivery per second. 

'^2^ below the pipe; 8 being the 

(St John’s Coll. 1896.) 

17. A sphere whose radius at time t is 6-f ocosn^ is surrounded by 

liquid extending to infinity under no forces. Prove that the pressure 

at distance r from the centre is loss than the pressure at an infinite 

distance by 

P (^ + o cos |a (1 — 3 sin* nt) + h cos ni + ^ ^ sin* nt (b + a cos . 

(Coll. Exam. 1913.) 

18. A sphere of radius a is alone in an unbounded liquid, which is at 

rest at a groat distance from the sphere and is subject to no external forces. 

The sphere is forced to vibrate imlially keeping its spherical shape, th(^ 

radius r at any time being given by r = a + 6 cos nt. Shew that if II is the 

pressure in the liquid at a great distance from the sphere the least pressure 

(assumed positive) at the surface of the sphere during the motion is 

n-n*p5(a + 6). (M.T. 1913.) 

19. Shew that the rate per unit of time at which work is done by the 

internal pressures between the parts of a compressible fluid is 

wherep is the pressure, and (w, v, w) the velocity at any point, and the inte¬ 

gration extends through the volume of the fluid, (St John’s Coll. 1898.) 

* 20. A sphere is at rest in an infinite mass of homogeneous liquid of 

density p, the pressure at infinity being a?. Shew that, if the radius B of the 

sphere varies in any manner, the pressure at the surface of the sphere at any 

“““ 
(Coll. Exam. 1900.) 
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21. An infinite mass of homogeneous incompressible fluid is at rest 

subject to a uniform pressure II, and contains a spherical cavity of radius a, 

filled with gas at a pressure mil; prove that, if the inertia of the gas be 

neglected, and Boyle’s law be supposed to hold throughout the ensuing 

motion, the radius of the sphere will oscillate between the values a and na, 

whore n is determined by the equation 

1 + 3mlogn~n® = 0. 

If m be nearly equal to 1, the time of an oscillation will be 

p being the density of the fluid. (M.T. 1869.) 

• 22. A mass of liquid, of density p and volume i ttc®, is in the form of a 

spherical shell; a constant pressure H is exerted on the external surface of 

the shell, there is no pressure on the internal surface, and no other forces 

act on the liquid; initially the liquid is at rest and the internal radius of the 

shell is 2c, prove that the velocity of the internal surface, when its radius is 

c, is y i4n 

3p 2^-1* 

(Coll. Exam. 1904.) 

23. Investigate an expression for the change in an indefinitely short 

time in the mass of fluid contained within a spherical surface of small 

radius. 

Prove that the momentum of the mass in the direction of the axis of x is 

greater than it would be if the whole were moving with the velocity at the 

centre by 

(M.T. 1876.) 

24. An infinite fluid in which is a spherical hollow of radius a is initially 

at rest under the action of no forces. If a constant pressure II is applied at 

infinity, shew that the time of filling up the cavity is 

7r“o(p/n)M^{r(J)}-^ (Trinity Ooll. 1900.) 

25. A solid sphere of radius a is surrounded by a mass of liquid whoso 

volume is and its centre is a centre of attractive force varying 

directly as the square of the distance. If the solid sphere be suddenly 

annihilated, shew that the velocity of the inner surface, when its radius is 

Xy is given by 

{(a?®-|-c®)^ — a;} = (2n/3/)-j-2/iC®/9)(o®~£c*) (c® + ir®)^, 

where p is the density, II the external pressure and p. the absolute force. 

(M.T. 1881.) 

26. A mass of gravitating fluid is at rest imder its own attraction only; 

the free surface being a sphere of radius b and the inner surface a rigid con¬ 

centric shell of radius a. Shew that if this shell suddenly disappear, the 

initial pressure at any point of the fluid at distance r from the centre is 

(6 - r) (r — a) ^ ^ -h 1^. (Trinity Coll. 1902.) 
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27. A spherical hollow of radius a initially exists in an infinite fluid, 

subjact to constant pressure at infinity. Shew that the pressure at distance 

r from the centre when the radius of the cavity is x is to the pressure at 

infinity as ^4 ^ _ 4^3^ ,.3 __ 

(Trinity Coll. 1903.) 

28. A spherical mass of liquid of radius b has a concentric spherical 

cavity of radius a, which contains gas at pressure p whoso mass may be 

neglected: at every point of the external boundary of the liquid an impul¬ 

sive pressure xu per unit area is applied. Assuming that the gas obeys 

Boyle’s law, shew tliat when the liquid first comes to rest, the radius of the 

internal spherical surface will be 

a exp { — xs*hl2ppd^ (b — a)}, 

where p is the density of the liquid. (M.T. 1900.) 

29. A mass of homogeneous liquid, whose bounding surfaces are con¬ 

centric spheres, is at rest under the €W5tion of no forces in a g€is of uniform 

pressure. If the pressure of the external gas be suddenly increased, deter¬ 

mine the instantaneous pressure in the liquid, and investigate the differ¬ 

ential equation for the subsequent motion of the liquid and the pressure 

inside the shell at any time. (Coll. Exam. 1895.) 

30. A volume J ttc® of gravitating liquid, of density p, is initially in the 

form of a spherical shell of infinitely great radius. If the liquid shell con¬ 

tract imder the influence of its own attraction, there being no external or 
internal pressure, shew that when the radius of the inner spherical surface 

is X, its velocity will be given by 

(2z* + 2z>x + 2z‘x‘ - 3zx» - 3x*), 

where y is the constant of gravitation, and z^ = x^ + c®. (M.T. 1899.) 

31. A mass of uniform liquid is in the form of a thick spherical shell 

bounded by concentric spheres of radii a and b (a <b). The cavity is filled 

with gas the pressure of which varies according to Boyle’s law, and is 

initially equal to the atmospheric pressure 11, and the mass of which may 

be neglected. The outer surface of the shell is exposed to atmospheric 

pressure. Prove that if the system is symmetrically disturbed, so that each 

particle moves along the line joining it to the centre the time of a small 

oscillation is ^ ^^ ^ 

where p is the density of the liquid. (Coll. Exam. 1896.) 

32. A mass of perfect incompressible fluid, of density p, is boimded by 

concentric spherical surfaces. The outer surface is contained by a flexible 

envelope which exerts continuously a uniform pressure 11 and contracts 

from raMiius to radius i?*. The hollow is filled with a gas obeying Boyle’s 

law, its radius contracts from to Cg, and the pressure of the gas is initially 

px. Initially the whole mass is at rest. Prove that, neglecting the mass of 

the gas, the velocity (v) of the inner surface when the configuration 
(i?g, Cj) is reached is given by 

5_2i 
/» p 

(Trinity Coll. 1908.) 
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33. An infinite mass of fluid is acted on by a force fir ~ - per iniit mass 
directed to the origin. If initially the fluid is at rest and there is a cavity 

in the form of the sphere r = c in it, shew that the cavity will be lilled up 

after an interval of time (Trinity Coll. 1905.) 

34. Explain on general grounds why two pulsating spheres in a liquid 

attract each other, if they are always in the same phase. 
(Coll. Exam. 1906.) 

36. A mass of liquid of density p whoso external surface is a long circular 

cylinder of radius cr, wdiich is subject to a constant pressure 11, surrounds a 
coaxial long circular cylinder of radius b. The internal cylinder is suddenly 

destroyed, show that if v is the velocity at the internal surface when the 

radius is r, then 211 ^ r^) 

^ (r* + 
(Coll. Exam. 1894.) 

36. Liquid is contained between two parallel plemes; the free surface is 

a circular cylinder of radius a whose axis is perpendicular to the planes. 

All the liquid within a concentric circular cylinder of radius b is suddenly 

annihilated; prove that if tij be the pressure at the outer surface, the initial 
pressure at any point of the liquid distant r from the centre is 

log r —log b 

log a ~ log 6 * 
(Coll. Exam. 1896.) 

37. Prove that the differential equations of motion for a frictionless 
fluid are 

I dp ^ , du ^ du , du 

p to - ^ “ ex ^ 32/+02 

— (coj* + cu,“) X — — U>1 a>,) y + + to, cui) 2 = 0, 

and two similar equations; u, v, w being the components of the velocity at 

the time t at the point x, y, z relative to moving axes having component 
angular velocities cui, a>a, coj. (M.T. 1881.) 

38. The motion of an incompressible fluid is referred to rectangular 
axes which are rotating with constant angular velocities 6i, prove 

dW 
= 0, and that the equations 

and two similar equations, where U, F, W are the velocities relative to the 

axes, and 

<?* = C72 + F* + -f (^* + y* + 2=*) + (^1 a; + 
(Trinity Coll. 1898.) 

that the equation of continuity is -f H- * 
ox oy 

of motion are a 

39, If the motion is irrotational mid the axes to which the motion i^ 

referred rotate with angular velocities B^, , shew that 

^ + F + i g* + (zv - yw) + fl, (xw -zu) + et{yu-xv)-^^ 

is a function of the time. (M.T. 1898^ 



CHAPTER III 

PARTICULAR METHODS AND APPLICATIONS 

3-1, Motion in Two Dimensions. The Current Function. 
When the motion is the same in all planes parallel to that of xy, 
and there is no velocity parallel to the z-axis, i.e. when u, v are 
functions of x, y only, and w — O, we may regard the motion as 
two-dimensional and consider only the circumstances in the 
plane xy\ and when we speak of the flow across a curve in this 
plane we shall mean the flow across unit length of a cylinder whose 
trace on the plane xyi^ the curve in question, the generators of the 
cylinder being parallel to the ;:-axis. 

The differential equation of the lines of flow in this case is 

vdx — udy^O .(1), 

and the equation of continuity is 

du 

dx ’ 

or 
du 

dx % ’ 
which shews that the left-hand member of (1) is an exact differ¬ 
ential, d\(f say; i.e. 

vdx ~ udy — dijj — ^^dx-^- ^^dy, 

so that 
dijj 

and 
dy dx 

This function ^ is called the stream function or the current 
function, and it is clear that the lines of flow are given by the 
equation 

where C is an arbitrary constant. 
A property of the current function is that the difference of its 

values at two points represents the flow across any line joining 
the j)oints. 

For if ds be an element of a curve and d the inclination of the 
tangent to the a:-axis, the flow across the curve from right to left 

=J {vcos0~i48in 9)ds=j ^^dx + ^^dy^ 
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where by ‘from right to left’ we mean in relation to an observer 
placed on the curve and looking in the direction in which s 

increases, the axes being so placed that rotation from x towards 

y is counterclockwise. 
We might also define the value of the current function </f at 

any point P the amount of flow across a curve AP where A is 

some fixed point in the plane, for this makes 

=J 

{v COS 9 —-<4 sin 9) ds 

{vdx’-udy). 

And by varying the position of P, we get 

v^dif/jdx and u= —dif//dy, 

in agreement with our former definition. Also it is easily seen 

that the velocity from right to left across any arc ds is dip/ds, 

311. It is to be observed that the existcmce of tlie current function 

does not depend on whether the motion is irrotational or rotational. For 

the components of spin as defined in 2*52 we have 

f 2\ey 
dv 

'dz 

1 
2\dz 

and 
^“2 \dx 2 

Hence in irrotational motion the current function has to satisfy 

dx^ dy^ 

3*2. Irrotational motion in two dimensions. When tliere 
is a velocity potential <f> we have 

d<f>_ dtl> 

'dx~ dy 
and 

dy 

dxf, 

dx •(1) 

The equation of continuity is 

dx^^dy^ ’ 

and as we saw in 3*11, ^ must satisfy the same equation. 

The equations (1) shew that 

d<ff di// d<f> di/f ^ 

^ dxdx^ dy dy ’ 

so that the families of curves 

^ = const., iff = const. 

cut orthogonally at all their points of intersection. 
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Tliese conditions are satisfied by taking <f> -f iifi to be a function 
of the complex variable x -f iy. 

Thus if we write <f> + itfj =/ (z + iy), we have 

dz 

and 

so that 

dy ^ dz dz* 

ay- a^:* 

Such functions are called conjugate functi(ms\ and we see that 
if (f>, xfj are two conjugate functions, a possible form of irrotational 
motion is obtained by taking the curves <j> = const, to be curves of 

equi-velocity potential, and the curves f/f = const, to be stream 
lines. 

3*21. In the theory of functions of a complex variable, if z 

denote the complex variable x -f iy, and w the function (j> + the 

relation w=f{z) implies that w has a definite differential co¬ 

efficient with respect to z or that the limit of as z' tends 
Z z 

to 2 is independent of the path by which the point 2' approaches 2. 

But- Su, 
S2 S(a;-hiy) Sx + iSy ’ 

and if this is to approach a definite limit as 8a; and Sy tend to zero, 
independently of the ratio 8a;: 8y, we must have 

Hence, as before, 

dy dy 

dif> dib dd> dilf 
and 

and we have for the value of the differential coefficient 

du) d<f> . di/f d<f> . d(f> 
dz dx^^dx dx ^ dy' 

It follows that any relation of the form w ==/ (2), or 

^ + i^=/(a;+iy), 
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represents a two-dimensional irrotational motion, in which the 

magnitude of the velocity at any point is given by . For 

= velocity. 

Also, if the curves <^ —const., = const, are drawn, and 
denotes the arc of the curve ift intercepted between <f) and <f> -h 8(f>, 

the velocity at P where <f> and 0 in- / 
tersect being normal to the curve ^ 

<f> i8 • Similarly if be the 

arc of the curve (f) intercepted be- 
tween ^ and ^ -f 8^, the velocity 

at P as measured by the rate of / 

flow across is > where we / / \ 

adopt the convention of sign of \pisyp ^ 
3*1, so that with curves placed ^ 
as in the figure 3^/3«i = 3^/0^2> interchange the rela¬ 
tive positions of the (f> and ^ curves we should obtain 

d<f>ldsi^ — 3^/3^2* 

3*22. Since the conditions = are also satisfied by the 
ox oy oy ox 

relation 
+ (x-)riy), 

it follows that from any given two-dimensional form of irrotational motion 

another may in general be deduced by inttjrchanging the lines of equi- 

velocity potential and the stream linos. 

If the motion be referred to polar coordinates, wo have 

d(ft dtfi Q 1 • o i 
^=^0080 + ^8111 <»=^COS( 

dtp . ^ (dij) dy dij) 8x\ _ Sip _ 

{^dyae'^'ax8e)~f8r 

3*23. As an example of the foregoing theory we might take 

w = Az^, 

giving 

and 

^4-= A (a;-f iy)*; 

^ = A (»• — y*) = const., 

tp S 2Aa:^=const.. 
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for tho linos of equi-velocity potential and the stream lines. These are two 
families of rectangular hyperbolas. Inasmuch as the axes 2; = 0,1/ = 0 are 

I)arts of the same stream line = 0, 

we maj^ take tho positive parts of 

tho axes to bti rigid boimdaries 

and thus obtain a full representa¬ 

tion of the steady motion of liquid 

in the angle made by two perpen¬ 

dicular walls. 

The velocity at any point 

= I dwidz I = I 2Az I = 2Ar^ 

and varies directly as the distance 

from tho intersection of tlie walls. 

Before considering further ex¬ 

amples we shall discuss some cases 

of liquid motion arising from what 

are known as ‘ sources ’ and ‘ sinks 

taking first the general case of motion in three dimensions. 

3-3. Sources and Sinks. Tf the motion of a liquid consists 
of symmetrical radial flew in all directions proceeding from a 

point, the point is called a simple source. If the total flow across 
a small surface surrounding the point is 4r7nn, rn is called the 
strength of the source*. 

If (j) be the velocity poteiitial due to a simple source of strength 

m in liquid at rest at infinity, the velocity at distance r is — d(j>jdr, 
and the flow across a sphere of radius r is — 4trrr^d<f>ldr, therefore 

— 477r2~~ = 477m, 
dr 

leading on integration to 

A source of negative strength, or inward radial flow, is called a 
sink. 

A source or sink implies the creation or annihilation of fluid 

at a point. Both are points at which the velocity potential and 

stream function become infinite, and they are to be regarded 
as due to the exigencies of analysis rather than as physical 

realities. 

3*31. Doublets. A combination of a source of strength m 

and a sink of strength — w at a small distance Bs apart, where in 

the limit m is taken infinitely great and hs infinitely small but so 

that the product mhs remains finite and equal to p., is called a 

* Some writers define the strength of the source to be the quantity of liquid 
produced in unit time, thus making the unit source iir times as large as the one we 
have defined and introducing a symbol 7«/4ir instead of the m used in the text. 
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doublet of strength yb\ and the line hs taken in the sense from 

— m to + m is called the axis of p 

the doublet. 

To find the velocity potential due 

to a doublet, ^ 

Let A, B denote the position of ^ ^ ^ . 

the source and sink and P be any 

and suppose to make an angle ^ ^ 
6 with the axis of the doublet. Then by superposition, which is 
justified by the linearity of all equations that have to be satisfied, 

, m m nt 8r 
~ 2-- r r + or 

mSsconO aeosO 9 /1\ 
- . - - = o - , or /X. - ; ‘ 

/ - as \r j ^ 

so that the velocity potential due to a doublet may be obtained 
from the velocity potential due to a source by a differentiation 

in the direction of the axis of the doublet. 
The components of velocity are 

— “ = - along the radius vector, 
dr ” 

and 
d(f> 

rdd r 

sense of 6 increasing. 

sin0 
Ts perpendicular to the radius vector, in the 

3-32. Sources and Sinks in Two Dimensions. In two 
dimensions a source of strength m is such that the flow across anj'^ 
small curve surrounding it is 2nm*, 

If (/) be the velocity potential due to such a source the flow 
across a circle of radius r is — 27rr9^/0r, so that 

— Znr = 27rm, 
dr 

therefore <^=—mlogr .(1). 

The curves of equi-velocity potential obviously are concentric 
circles. We may obtain the stream function firom the considera¬ 

tion that is a function of x + iy, or of and since 
= — m log r, we must have 

^== — . 

* See footnote on p. 44. 

(2), 
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and the stream lines are (as is otherwise obvious) straight lines 
radiating from the origin. 

The relation between w and z for a single source is therefore 

—mlogs;, 

and for sources of strengths , mg, mg,... situatedsat the points 

—m^\Xig{z — a^)-m2k>g{z--a^ — m^\og{z — a^)... 

leading to ^=—Smlogr and 0=—Sm0, 

where r denotes the length of the radius vector drawn from the 
source of strength m, and d denotes the inclination of this radius 

vector to any fixed direction. 

3*33, To take a simple case, let there be a source of strength m at the 

point (a, 0) and a sink of strength — w at the point (— a, 0). Then 

-mlogj,, 

and i(i=:—m (6’-$'); 

so that the stream lines are circles pewsing from source to sink, and the 

lines of equi-velocity potential are ^ 

the orthogonal family of circles. 

Since in this case 

3*34. Doublets in Two Dimensions. Referring to the 
figure of 3’31, and with the same notation, we have 

^=m log r — TO log (r+Sr) 

= — TOlog(l + Sr/r) 

= —mSrjr 

= mSs cos 6jr 
T 

where /x is the strength of the doublet. 
f The curves const, in this case are clearly circles touching 
the y-axis at the origin. 

We may obtain the stream function fiom the consideration 



3-41 IMAGES 47 

that <f> + itft is a function of x + iy, or re^, and the form of <f) suggests 

^ 4- 

= /xr~^ (cos B — i sin 0), 

Msin0 
so that 

Hence the stream lines are circles touching the a;-axis at the 

origin. 
The relation between w and z for a single doublet of strength 

/A at the origin directed along the x-axis is therefore 

and if the doublet makes an angle a with the x-axis, we have 

LLC^“ 
or w —-. 

z 

If the doublet be at the point 2 == a, the relation becomes 

and for any number of doublets of strengths fti, , ^3, • • • situated 
at z = Ug, ... and making angles a^, ag, ocg, ... with the 

x^axis lipioc 

z — a 

3’4. Images. If in a liquid a surface S can be drawn across 

which there is no flow, then any systems of sources, sinks and 
doublets on opposite sides of this surface may be said to be images 
of one another with regard to the surface. And if the surface 8 
be regarded as a rigid boundary and the liquid removed from 
one side of it, the motion on the other side will remain unaltered. 

3*41. To find the image of a simple source with regard to a plane. 

If there are two equal sources of strength m at -4 and B on 
opposite sides of and equidis- ^ 
tant from the plane OP, the 
normal velocity at P 

—OAP B 6^ A 

+ ^g^0O8OPP=0; 
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that is, there is no flow across the plane. Therefore the image of a 
simple source with regard to a plane is an equal source equi¬ 
distant from the plane. 

Cor. The image of a doublet with regard to a plane is an equal 
doublet symmetrically placed. 

3*42. To find the image of a source with regard to a sphere. 

Let a be the radius of the sphere, f {> a) the distance of the 
source A from the centre 0, m the strength of the source and B 
the inverse point of A. We may regard the velocity potential as 
composed of two parts, viz. a part due to the source alone when 
the sphere is not present, and a part presence of 

the sphere; this latter part will be the velocity potential of the 
required image system. 

Taking 0 as origin and OA as axis, we have at any point 

P = mjAP^ m (r^-f/^ — 2?/cos 6)~^ 

where p — cosd, and is Legendre’s coefficient of order n. This 
expression holds for all values of r less than /. 

Since the motion is symmetrical about OA and the velocity 
potential has to satisfy Laplace’s equation we may assume for 

a series of the form n 

We then have the condition that the velocity normal to the 
0 

sphere is zero, i.e. ^ {<f>i + ^2) = when r=a. 

Therefore P„-S(n+1)^P„ = 0. 

for all values of 6, so that 

^5 = 0 and An = n'ma^-^^l{n+l)f’^+^. 

Therefore = m S 
1 » +1 ■ * 

00 g a»"+^ Pn 
, j-n+l^n+l n+V 

or if 0B=c=a?lf, and we add and subtract a term, 

Wlttv p Pn 
/ 7r«+i " / or»+i« + l‘ 
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The firat term = --^, and is therefore the 
/(r2 + c2-2fccos0)i 

velocity potential due to a source of strength ma//at B, 
Now for a source of unit strength at any point on OB at distance 

A from O, we have a velocity potential 

;^ = (r* + A* - 2rA cos 0)"^ = | P„, 

r\ «>A"+^ P 
SO that I ^ • 

Jo 0 n-i-1 

Therefore the second term in 

^2 -- ^ 
/ 0 ^ + 1 

and this is the velocity potential due to a continuous line distri¬ 
bution of sinks of strength — mja per unit length extending from 

Oto B. 
Hence the required image consists of a source of strength rnalf 

at the inverse point B, and a line sink of strength — mja per unit 
length extending from the centre to the inverse point*. 

3*43. To shew that the image with regard to a sphere of a 
doublet whose axis passes through the centre is a doublet at the 
inverse point. 

Regard the doublet as a source m at ^ and sink — m at ^ 
where OA-f, AA' — 8f and mSf=^p. 

The image of m at ^ is malf at B and a hne sink of strength 
— mja per unit length from O 
to B. 

The image of — m at is 

-ma/(/+8/) 
at B\ that is 

-nhalf+mabflP 

at B'] and a line source of strength mja per unit length from 0 to 

B\ Compounding these we get a doublet of strength ^ . BB', 

a source map and a sink /- ^ BB', all ultimately at the inverse 

point. But OB—a^lf, therefore BB' = so that the source 
P 

♦ VV. M. Hicks, P/«7. Trails. 18SU. 

RH 
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and sink cancel each other and there remains only the doublet 
VYliCt^ 

of strength or at the inverse point in the op})osite 

direction to the given doublet. 

We might also obtain this result without assuming tliat of 3*42, 

by supposing the image to be a doublet of strength m' at B and 

then determining the ratio of m' to m in order that the velocity 
normal to the sj^here should be zero. 

3*44. Images in Two Dimensions. Jt is easy to see tliat 

the image of a simple source with l egard to a straight line in the 
plane of motion is an equal source equidistant from the line, and 

that the image of a doublet is an equal doublet symmetrically 
placed with regard to the line. But we must remember that as 

our two-dimensional motion is the motion of a licjuid occupying 

three dimensions, what we axW a simple source is a line source 
perpendicular to the plane of motion, and by the image of the 
simple source with regard to a line we mean the image of the line 

source with regard to a plane 

parallel to itself, the image being ^ 

an equal line source equidistant / ^ 

from and parallel to the same I 6 }. - ^ 
plane. \ J 

With regard to a circle, if we \ 

have a simple source m at A and 
place an equal source m at the inverse point B the velocity at 

P normal to the circle 

= - ,,cos OP A q- -77,, cos OPB. 
AP BP 

But cos OPB = cos OA P = (4P + OP cos PBA )10A 

BP BP 

Therefore 

normal velocity = cos OP A + ^p + PBA = ^p. 

Hence if we place a sink — m at 0 the normal velocity will be 

zero, so that the image system consists of an equal source at B 

and an equal sink at 0*. 

* JKirchhoff, Aytn. Phyti. Chem. 1845. 
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Alternatively if we place sources of strength m at A and B and an equal 
sink at O, the equations of the stream linos are 

mB -f mB' — mB" = constant, 

where B, B\ B" are vectorial angles at A, O. 
For any point P on the circle we have 

B-^B'-B'' = PAX’\-PBA~-POA 

= OPA -f POA + PBA - POA 

= TT, 

SO that the circle is a stream line and this verifies that for this arj'angoment 

of sources and sink there will bo no flow across the boundary. 

Cor, In like manner the image of a two-dimensional doublet at 
A with regard to a circle is another doublet at the inverse point 
B, the axes of the doublets making supplementary angles with 

m 
- m— 

O Bm 

the radius OBA^ This is clear from the figure and it is also seen 
that the moments of the doublets at B and A are in the ratio 
BB': AA\ or :/2, if a is the radius of the circle and OA =/. 

3*5. Conjugate Functions. As a further example of th(i use of 
conjugate functions let us consider _ 
the relation 

2*— a* 
w=—m\oa-^ 

This may also be written 

{z-a) (2 + a) 
w=- — mlog 

(z — ia) (z-riay 

so that mlog 

and 

where the symbols are used os in 
the figure and A, A\ B' are 
the points (a, 0), (-o, 0), (0, a), 
(0,~a). 

The circle ABA'B' is the stream line ib 

y 

B / // 
' ^ V

 \ /^4 y?! 
O 

y 
/ r ^ 

m7r/2, as can be seen by 
taking P on the circle, and the axes are the stream hne ^ = 0, 

From 3*32 we see that the motion could be produced by equal sources 
at At A' and equal sinks at B, B' all of strength m. And it is clear that the 
axes or the circle or both ixught be taken a>s fixed boundaries, and we have 
thus solved the problem of the motion in the quadrant, inside or outside 

the circle, due to an equal source and sink at the ends of the radii. 

4-a 
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The velocity at any point may be found by compounding the components 

due to each source and sink, or more simply as the value of j | • 
Thus we have after a little reduction 

dw _ 4m2a® 

dz z* — 

— — ^ ^ sin 0) 

~ r* cos 40 —a*-i- ir^ sin 40 * 

so that the velocity = 
dw 
dz 
_4ma^r_ 

(r® + a® — 2r*a® cos 40)^ 

We may also observe that 

dw ^ _4m2a''^_ 

dz^ (z — a) (z + o) (2 — ia) (z + ia)* 

so that we also have the velocity 

dw _ 4ma-OP 
dz ~pa :ta\T1T7pb'^ 

3*51. It is sometimes convenient to use relations of the form 

z = F (w) instead of w — F (z). 
If -f itfj is a function of a:: + iy it follows that x + iy is a function 

of <f} A- iifj. 
Thus if (f»-\-iip—f{z)=f(x + iy), then by differentiating with 

regard to ^ and ^ in turn we get 

and 

Therefore 

Again if 

therefore 

dx _ dy 
and 

dx _dy 

dz 
W^fiz), then l=/'(z)-^, 

dz I dw 

dw I dz' 

But if q denote the velocity 

dw 

dz 

Also, from above, 
dz 

so that - = 
dz 

dw 

1 dx dy 
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Therefore 

1 IdxV /dyV . , /dxY (dyY 

?-(§?) “"“‘"‘y -(a?) +(0?) ■ 
_ dx dy dx dy 

dip dip dip ’ 

~d(<pjy 
We also notice that 

dz _ 1 1 1 _ u + iv 

dw~dw~dp .dtp —u + iv u^ + v^' 

dz dx~^^ dx 
dz 

80 that — ^ is a vector in the direction of the velocity whose 

modulus is the reciprocal of the velocity*. 

3*52. Now consider 2 = ccoshtt>, 

or a; + i2^ = ccosh(^ + ^^), 

so that X = ccosh^costp, y^csinh0sin 

By eliminating ip and ^ in turn we get 

A 2/* _ ^2 

and 

cosh^ <p sinh* tp ~ 

_x*_^ 

cos* ^ sin* ip 
= c* 

equations which define <p and ip respectively as functions of x and y, and 

by giving different values to <l> and to ip in th(^se equations we get the curves 

of equi-velocity potential and the stream lines. 

These are confocal ellipses and hyperbolas. The foci ( ± c, 0) correspond 

to the values <p = 0, ip=- mr, and the v(^locity q is given by 

1 dz 
= c sinh iy = c sinh + 

and at the foci this is zero, so that the velocity in the corresponding 

motion would be infinite at the foci. 

If we take the hyperbolas ip = const, as the stream lines, the stream line 

j/f = nTT will be the part of the x-axis outside the foci and this might be made 

a rigid boundary, so that we should then have the case of liquid streaming 

through a slit of breadth 2c in an infinite plane, but the results of the 

theory could not be realized in practice because the theory makes the 

velocity infinite at the edges of the slit. We shall return to this point later. 

* Kirchhoff, Mechanik, p. 291. 
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3*6. Steady motion—Efflux of Liquid. We shall now 
consider some further application of the equations of motion, 

particularly cases of steady motion, that is 

motion in which the velocity components at i 
any point are indeiiendent of the time. As 
we have seen in 2'21, in this case, for a 

liquid, we have the equation 

P 
where C may be an absolute constant, or a 
constant depending on a particular stream 
line. This equation shews that neglecting the 

external forces the smaller the 'pressure the 
greater the velocity and vice versa. Thus in 
the case of water flowing through a pipe if 
the pipe is narrowed the velocity is increased 
and the pressure is consequently diminished. 

This is an important principle. A practical 

application of it is seen in jet exhaust pumps, 
one of which is shewn in the figure, the air 

being sucked in fit the narrow portion of the 

jet. 

3*61. Consider the case of a vessel kept 
constantly full of water and having a hori¬ 

zontal orifice in its base from which the water issues at a uniform 
rate. Let A, a be the areas of the free surface and the orifice, U, u 

the velocities at the free surface and the orifice, and h the depth 
of the orifice below the free surface. 

If 2 be measured downwards from the free surface F = —gz, so 

that 
^+\q^-gz=C- 
P 

and if IT denotes the atmospheric pressure, at the free surface 

-+im=c, 
P 

and at the orifice ^-f —gh—C, 
P 

so that 
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but the condition of continuity of the water requires that 

AU — au, 

therefore = 2ghA {A^ — a^), 

and if the orifice be small, the ratio a!A may be neglected, 
and u^^2gh approximately. 

This is Torricelli’s Theorem. 

If the vessel be not kept constantly full, the motion will not 

be steady, but when the orifice is small compared to the area 

of the free surface of water the motion may be taken as being 

approximately steady, and the expression y/{2gh) may be 

employed as the velocity of the issuing liquid. 

3*62. The Clepsydra. On this hypothtjsis we can find the form of a 

vessel of revolution with a small aperture at its lowest point so that the 

surface of the water in it may descend uniformly. 

At time t let x be the height of the free surface above the orifice, iry^ its 

area, and a the area of the orifice. Then, approximately, 

velocity at the orifice=v^( 2gx); 

but if U is the uniform velocity at tho free surface 

Try* U = a V 2gx, 

therefore y^ccx or y^ = a^x 

gives the form of tho vosvsol required. 

This is tho theory of tho Clepsydra or ancient water clock. 

3*63. The Contracted Vein. When liquid issues through a 
small orifice in the thin base of a vessel, it is observed that the 
issuing stream is not cylindrical, but, near the orifice, is contracted 

so that its sectional area is less than the area of the orifice; and 

afterwards the stream expands. The ratio of the area of the secti on 
of the ‘contracted vein’ to the area of the orifice is called the 

coefficient of contraction and it can be shewn that this coefficient is 

greater than *5 and less than unity. 
Neglecting external forces suppose liquid of density p to be 

escaping through an orifice of section a in the bottom of a vessel 
in which the pressure is to a region in which the pressure is 

Pq . Theoretically the velocity acquired in passing from pressure 
Pi to pressure p^ is given by 

lf>t=Pi-Pi) .(!)• 

At the edge of the orifice a the pressure is Pq, but in the 

interior of the area of the orifice the pressure is somewhat higher. 
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The actual velocity of the liquid in the plane of the orifice is 
therefore q at the edge, but falls off somewhat towards the interior. 

It follows that the actual rate of discharge is less than aq and this 
for two reasons. First because the velocity at the edge is not 

perpendicular to the plane of the orifice, and it is the resolved 

velo(*ity that determines the discharge, and secondly because the 

mean actual velocity itself falls short of g. 
If a be the area of the section of the jet at a place where the 

velocity at every point of the section is parallel and uniform, and 

therefore by equation (1) equal to g, the discharge is o-'g; and 
since this is less than aq it follows that a is less than cr, or the 

coefficient of contraction is less than unity. 

The quantity of momentum carried away by the jet in unit 
time is pa and the force generating this momentum is the force 

necessary to hold the vessel at rest. If the whole interior surface 

of the vessel w^re subject to the pressure Pi — Po force would 
have no existence. 

But on account of the orifice the equilibrium of pressures is 

disturbed and a force (Pi~Po)^ is uncompensated. But this 
assumes that the internal pressure would be uniform and equal to 

/Ji over the whole of the bottom of the vessel, whereas at the edge 

of the orifice itself it is Pq and for a sensible distance will vary 

between and , we may therefore call the force that produces 
momentum {Pi — pQ){o-\-da), where da is a small positive 

quantity. 

Hence p^'^^—{Pi~Pq){^'^da), 

but \pq^=P\-Po, 

therefore a' = J (a + da), 

or the coefficient of contraction is greater than *5. 

This discussion is based on that given by Lord Rayleigh*. If 

the hole in the vessel be replaced by a thin tube projecting into 
the interior of the vessel and the tube be long enough for the 

sides of the vessel to be sufficiently removed from the region 

of ra})id flow to allow the pressure on them to be treated as 

constant, da is evanescent and a —\a. This form of opening is 

known as Borda’s mouthpiecef. 

*■ Phil. Mag. ii, 187G, p. 441, or Scientific Papers, i, p. 297, and a letter to 
EttAjinerring, April 10, 1876. 

t Memo ires de VAcad. dea Sciences, 1766, 
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An exact method of treating the problem regarded as a problem 
in two dimensions was developed by Kirchhoff ♦ and discussed in 
detail with numerical results by Lord Rayleighj. We shall have 

more to say on this subject in Chapter vi. 

3* 64• Efflux of Gases. For a gas the steady motion equation 

IS 

Consider the efflux of gas from a vessel in which the pressure 
is Pi and density to an atmosphere of density at pressure . 

In practice the adiabatic law will hold true approximately, so that 
p = Kpy. Neglecting external forces the velocity acquired is given 

ypy-^dp 
J Pi P J pi 

Pol’ 

2y Pi 
or g2 = 

-(ri- y-l Pi 

which is the usual formula for the efflux of gases. 

It follows that a diminution of pressure accompanies an increase of 

velocity and vice versa, and this is the explanation of a common experi¬ 

ment which is performed as follows: One end of a tube is fitted into a hole 

in a disc of cardboard, the end of the tube being flush with the surface of 

the cardboard; if a piece of paper is placed over this end of the tube, 

blowing through the tube will cause the pap(3r to remain in contact with 

the card: but as soon as the current of air ceases the paper falls off. 

3’7. Steady Motion. Transverse acceleration. In steady 

irrotational motion, or in steady motion in which the Bernoulli 

constant (2*21) has the same value along neighbouring stream lines, 

r dn ’ 

where r is the radius of curvature of a stream line and djdn is a 

differentiation along the principal normal towards the centre of 

curvature. 

* Mechanik, chap xxn. t Loc. cit. 
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This result was given as an example in earlier editions of this 
book; we now state it as a theorem because of the important place 
which it has taken in the theory of discontinuous motions*. 

There are several methods of proof: thus, w^e may take q^/r as 
the normal acceleration of an element of the fluid and resolve 

along the normal to a stream line inwards, getting 

(1) 
r dn pdn 

But by Bernoulli’s Theorem 

P+V + ^q^=C.(2), 
P 

and if the motion is irrotational or in any case in which C has the 
same value for neighbouring stream lines, by differentiating along 

the normal 13- dV dq 

. 

Thence, by comparing (1) and (3) 

.(4). 
r cn 

Or, as a two-dimensional problem in steady irrotational motion the 

theorem is a purely kinematical one. 

Thus let PP\ QQ' be elements of stream lines and . 

PQt P'Q^ lines of equivelocity potential <p\ 

Then PQ, P'Q' are normals to the stream lines and \ |p^ 

meet in the centre of curvature 0. Also \ 

Then g'^vel. at P along PP' 

= -8^/PP', 
do 

and ^ -f Sn = vel. at Q along QQ' 

= -mQQ'; 'O 

.u * 1 . 1 PO r , , 8n 
so that rTn- ~ 5 =1 + -“, 

qdn QQ QO r —8 a r 

whence we get ^ = ^, as before. 
^ r dn 

3*71 • An immediate corollary to the last theorem is that in 

steady irrotational motion if the stream lines are straight the 

velocity has the same value at all points of a cross section of the 

stream. It also follows that when the stream lines are curved the 

♦ V. Tlic Physics of Solids and Fluids, by P. P. Ewald, Th. Pdschl and L. Prandtl, 
1930, p. 225. 
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velocity increases as we cross the stream lines towards the centre 

of curvature, and from Bernoulli’s Theorem, neglecting external 
forces, it therefore follows that the pressure decreases as we cross 

the stream lines in the same sense. Thus when a stream flows 
between curved banks the pressures will on this account have 

greatest values (+) on the outsides and least values ('^) on the 
insides of the curves, but they may also bo affected by a trans¬ 

verse circulation of the liquid. 

3* 72. Now suppose that the thick line in the figure represents 

the common surface of two streams flowing with different 

velocities one over the other: the dotted lines representing lines 

of flow. If we mark the positions of the excesses and defects of 
pressure in the two streams above and below the common surface 

as explained in 3*71, it is at once apparent that what the figure 

depicts cannot be a permanent state, for the defects of pressure 

on one side of the common surface are all opposite to excesses of 

pressure on the other side, so that any slight unevenness (de¬ 
parture from the plane) in the surface of separation will tend 

immediately to become exaggerated. As will be seen later the 

surface is a vortex sheet and the effect of disturbance is that it 

rolls up on itself into more or less concentrated vortices*. This is 

what actually happens when streams from different sources con¬ 

verge ; but when a stream flows over a sharp edge and the fluid 
behind the edge does not possess the general velocity of the 

stream the phenomenon is rather different. A vortex sheet begins 

to be formed but is not fully developed. It curls round on itself 
and something in the nature of a concentrated vortex is formed, 

* F, L. Rosenhead, Proc. Roy. Soc. A, cxxxiv, 1931, p. 187. 
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EXAMPLES 

1. Liquid is streaming steadily and irrotationally in two dimensions in 

the r(^gion bounded by one branch of a hyperbola and its minor axis; 

determine the stream lines. (St John’s Coll. 1901.) 

2. Within a rigid circular boundary of radius a there is a source of 

strength m at a point P distant b from the centre; at X, X, the extremities 

of the diameter through P, are equal sinks. Find the velocity potential and 

stream function of the (two-dimensional) fluid motion. 

(St John’s Coll. 1900.) 

3. In the case of two -dimensional fluid motion due to a simple source A 

outside a circular disc, prove that the asymptotes of the stream lines all 

pass through the same point and are parallel to the tangents to them at the 

point A. (Coll. Exam. 1906.) 

4. Find the Cartesian equation of the linos of plane flow, when fluid is 

streaming from three equal sources situated at the comers of an equilateral 

triangle; and make a rough sketch of their configuration. 

(St John’s Coll. 1896.) 

5. Find the stream function of the two-dimensional motion due to two 

equal sources and an equal sink midway between them; sketch the 

stream lines and find the velocity at any point. 

In a region boimded by a fixed quadrantal arc and its radii, deduce the 

motion due to a source and an equal sink situated at the ends of one of 

the bounding radii. Shew that the stream line leaving either end at an 

angle a with the radius is 

r® sin (a 4-19) = a* sin (a —0). (M.T. 1911.) 

/ 6. Find the lines of flow in the two-dimensional fluid motion given by 

-f — Jn («-f iy)^ 

Provo or verify that the paths of the particles of the fluid (in polar 

coordinates) may be obtained by eliminating t from the equations 

r cos (nt 4- 0) - a’o = r sin (n^ 4- ^) - ?/o = — 2/0) * 

(Coll. Exam. 1908.) 

7. X denoting a variable parameter, and / a given function, find the 

condition that / (x, y. A) = 0 should be a possible system of stream lines 

for steady irrotational motion in two dimensions. (Coll. Exam. 1893.) 

8. If a homogeneous liquid is acted on by a repulsive force from the 

origin, the magnitude of which at distance r from the origimis yr per imit 

mass, shew that it is possible for the liquid to move steadily, without being 

constrained by any boundaries, in the space between one branch of the 

hyi)erbola a?* — y* = a® and the asymptotes; and find the velocity potential. 

(Coll. Exam. 1902.) 

9. In the case of the two-dimensional fluid motion produced by a 

source of strength m placed at a point S outside a rigid circular disc of 

radius a whose centre is O, shew that the velocity of slip of the fluid in 
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contact with the disc is greatest at tlio points whoi'o tlie Jines joining S to 
the ends of the diameter at right angles to OS cut the circle ; and prove that 
its magnitude at these points is 

2m,OSI{OS^-a^). (Coll. Exam, 1908.) 

10. A source of fluid situated in space of two dimensions, is of such 
strength that represents the mass of (luid of density p omitted per 
unit of time. Shew that the force necessary to hold a circular disc at rest in 
the plane of the source is 27rp/A V/r (r* — where a is the radius of the disc 
and r the distance of the source from its centre. In what direction is the 
disc urged by the pressure? (M.T. 1893.) 

; 11. Between the fixed boundaries 0= Jtt and d~ —In there is a two- 
dimensional liquid motion due to a source of strength m at the point 
(r = a, 0 = 0), and an equal sink at the point (r = 6, 0 = 0). Shew that the 
stream function is 

-if,™ rMa^-6")ain40 ) 
—6^)cos40-f ’ 

(Coll. Exam. 1901.) 

'12. A two-dimensional liquid motion is due to a som^ce of strength m at 
the point whose polar coordinates are (a, 0) and a sink of equal strength at 
the point (6, 0), between the fixed boundaries 0 = Jtt and 0= — Jtt. Shew 
that the velocity at (r, 0) is 

_ _4wi (g^ ~ 6^) _ 

(r® — 2aV^ cos 40 + u®)^ (r® — 26V* cos 40 + 6®)^ 
(Trinity Coll, 1905.) 

13. Prove that for liquid circulating irrotationally in the part of the 
plane between two non-intersecting circles the cuiwes of constant velocity 
are Cassini’s ovals. (St John’s Coll. 1898.) 

14. Between the fixed boundaries 0=i7r and 0= — /j 7T there is a two- 
dimensional liquid motion due to a source at the point (r = c, 0 = a), and a 
sink at the origin, absorbing water at the same rate as the source produces 
it. Find the stream function, and shew that one of the stream lines is a part 

of the curve r^sinSa^c^sinSO. (M.T. 1901.) 

15. What arrangement of sources and sinks will give rise to the function 
«^; = log (z —a^/z)? 

Draw a rough sketch of the stream lines in this case, and prove that two 
of them subdivide into the circle r = a, and the axis of y, 

(St John’s CoU. 1911.) 

16. An area A is bounded by that part of the a-axis for which x>a and 
by that branch of a:* — which is in the positive queulrant. There is 
a two-dimensional unit source at (a, 0) which sends out liquid uniformly 
in all directions. Shew by means of the transformation w = log (z* — a*) 
that in steady motion the stream lines of the liquid within the area A are 
portions of rectangular hyperbolas. Draw the stream lines corresponding 
to ^ = 0, J w and ^tt. If pi and p, are the distances of a point P within the 
fluid from the points (± a, 0), show that the velocity of the fluid at 
P is measured by 20P/pipg, 0 being the origin. (M.T. 1904.; 
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17. Find the velocity potential when th(Te is a source and an equal sink 
inside a circular cavity and shew that one of the .stream lines is an arc of the 

circle which jjasses througli the source and .sink and cuts orthogonally tlio 
boundary of the cavity. (Coll. Fxain. 1894.) 

18. Prove that, in the two-dimensional liquid motion duo to any 

luunbcr of sources at points on a circle, the circle is a stream line provided 

that there is no boundary and that the algebraic sum of the str(3ngths of tKe 

sources is zero. 
Sh('w that the same is true if the region of flow is bounded by a 

circle which cuts orthogonally tlie circle in question. 
(St Jolm’s Coll. 1908.) 

19. In the part of an infinite plane boimded by a circular quadrant 

AB and the productions of the radii OA, OB, there is a two-dimensional 

motion due to the production of liquid at A, and its absorption at B, at 

the uniform rat»' /a. Find the velocity potential of the motion; and shew 

that the fluid whicli issues from A in the direction making an angle n with 

OA follows the path whose polar equation is 

r = a sin'^ 26 [cot /i *f \/(cot^/x + cosec^ 2^)] , 

the positive .sign being taken for all the square roots. (M.T. 1902.) 

20. In the case* of the motion of liquid in a part of a plane bounded by a 

straight line duo to a source in the jilane, provt; that if m/> is the mass of 

fluid (of ilensity p) generated at the source pi^r imit of time the pn^ssure on 

the Ic'ngtli 21 of the boundary immediately opposites to the source is loss 

than that on an equal length at a great distance by 

J m '^p (1 

2 wi* Ic 

I 
tan~^ 

c 

wdicre c is the distance ol‘ the source from the boundary, 

(St Jolm’s Coll. 1898.) 

21. Within a circular boundary of ladius a there is a two-dimensional 

liquid motion duo to a source producing liquid at the rate m, at a distance/ 

from the centre, and an equal sink at the centre. Find the velocity 

potential, and shew that the resultant of the pressiu*e on the boundary is 

pm^PI{2a^n(iX^^P)}, 
where p is the density. 

Deduce, as a limit, the velocity jiotential due to a doublet at the centre. 

(St Jolm’s Coll. 1905.) 

22. Use the method of images to prove that if there bo a source m at the 

point (2o) in a fluid bounded by the lines 0=0 and 0 = tt/S, the solution is 

^ = - m log {(z» - V) (2® - 2o'’)}. 

where Zq = + Wq ^-nd Zg'=““ ^2/© • (Coll. Exam. 1906.) 

23. A source S and a sink T of equal strengths m are situated within 

the space bounded by a circle whose centre is 0. If 8 and T are at equal 
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distancos from 0 on opposite sides of it and on the same diameter AOB, 
show that the velocity of tlie liquid at any point P is 

06^2+0^2 PA.PB 
' PB.PS'.PT.PT* 

where S' and T' arc the inverse points of >S* and T with respect to the circle. 

(Coll. Exam. 1901.) 

^ 24. Witliiii a rigid boundary in the form of the circle 

(a:4-a)2 4-(y~4a)2=:8a2 

there is liquid motion duo to a doublet of strength /x at the point (0, 3a), 

with its axis along the axis of y. Show that the velocity potential is 

\ a _4._„ 1 
(x - foif + y- + (y - ' 

(Coll. Exam. 1903.) 

25. The internal boundary of a liquid is composed of the two orthogonal 

circles + 2/^ + 22/ = 1 and ~2y~ 1. A som’ce producing liquid at the 
rate m is placed at one of the points of intersection (2=1); show that the 

complex of the fluid motion is log {2 (2-*-f l)/(2-~ 1)^}, and that the two 
ZiT 

circles are the only stream line pos.ses.sing double points. 

(Coll. Exam. 1910.) 

26. In two-dimensional irrotational fluid motion shew that, if the 

stream linos are confocal ellipses 

a:V(a^-fA)4-2/V(6^-f A)==l, 

= A log (VcP -f A + -f A) 4- 

and the velocity at any point is invemoly proportional to the square root of 

the rectangle imder the focal radii of the point. (Coll. Exam. 1894.) 

27. Liquid flows steadily and irrotationally in two dimensions in a 

space with fixed boundaricis the cross section of whicli consists of the two 

lines ± jJy TT and the em ve r® cos 50 = /c®; prove that, if V is the velocity of 

the liquid in contact with one of the plane boundaries at unit distance 

from their intersection, the volume of liquid which passo.s per unit time 

through a circular ring in the plane 0 = 0 is j7rFa^(a'^-f 12a^c--f 8c*), 

wliore a is the radius of the ring, and c the distance of its centre from the 

intersection of the plane boundaries. (Coll. Exam. 1896.) 

28. Shew that any two-dimemsional irrotational motion of a liquid may 

be transformed into any other by multiplying the velocity of each particle 

of the fluid by and turning its direction round through an angle (?, where 

P, — Q are suitably chosen conjugate functions of x, y. 
(Coll. Exam. 1906.) 

29. In a two-dimensional liquid motion and ^ are the velocity 

potential and cuirent function; shew that a second fluid motion exists in 

which ^ is the velocity potential and — <j> the current function; and prove 

that if the fli'st motion bo due to sources and sinks, the second motiah can 

bo built uji by replacing a source and an equal sinlv by a line of doublets 

uniformly distributed along any curve joining them. (Coll. Exam. 1899.) 
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30. A line source is in the presence of an infinite plane on which is 

placed a semi-circular cylindrical boss; the direction of the source is parallel 

to the axis of the boss, the source is at distance c from the plane and the 

axis of the boss, whose radius is a. Shew that the radius to the point on the 

boss at which the velocity is a maximum makes an angle 6 with the radius 

to the source, where 2 r 2 

e = cos-1 . (Coll. Exam. 1907.) 
V2(o«-fc*) 

31. A source and a sink, each of strength /n, exist in an infinite liquid on 

opposite sides of, and at equal distances c from, the centre of a rigid sphere 

of radius a. Shew that the velocity potential V may be expressed in the 

form 
_ 2/x " 

S 
n=-0 

2n-f 1 
2n- + 2 

c /a® 

a \rc, 

i^an+2 

f’lfi+i (cos 0), 

6 being the vectorial angle measured from the diameter of the sphere on 

which the source and sink lie, and r < c; and find an expression for V when 

r>c. (M.T. 1900.) 

32. If a fluid be in motion with a velocity potential ^ = 2logr, and if 

the density at a point fixed in space be independent of the time, shew that 

the smfaces of equal density are of the form r^(logr—i)—z^=f(0,p); 
where p is the density and 2, r, $ the cylindrical coordinates. 

(Coll. Exam. 1897.) 

33. A single source is placed in an infinite perfectly elastic fluid, which 

is also a perfect conductor of heat; show that if the motion be steady, the 

velocity F at a distance r from the source satisfies the equation 

and hence that 

2k 

r ' 

r = 

V* 
iK 

(Coll. Exam. 1905.) 

34. If fluid fill the region of space on the positive side of the x-axis, 

which is a rigid boundary, and if there be a source m at the point (0, a) 
and an equal sink at (0, 6), and if the pressure on the negative side of the 

boundary be the same as the pressure of the fluid at infinity, shew that 

the resultant pressure on the boundary is 7rpW“ (a — by^jab (a + b), whore p 
is the density of the fluid. (Coll, Exam. 1906.) 

35. In a steady two-dimensional motion of an incompressible liquid 

the stream lines are given by ;r=/i(A;,c), 2/=/a(A;,c), where c is a para¬ 

meter defining a stream line and A: is a parameter defining a point on a 

stream line. Shew that the particle at the point given by kg, Cq at time tg 
will be at the point given by k, Cg at time t, where 

t^tg 

and C is a function of c. 
ko^{ic,c) Jc-t*o 

(M.T. 1920.) 

36. An infinite mass of liquid is moving irrotationally and steadily 

under the influence of a source of strength p, and an equal sink at a distance 



EXAMPLES 65 

2a from it. Prove that the kinetic energy of the liquid which passes in unit 

time across the plane which bisects at right angles the line joining the 

source and sink is | p being the density of the liquid. 

(Coll. Exam. 1896.) 

37. Draw the stream lines ^ = 0, 0=7r and some of the intermediate 

stream lines for the motion given by the equation 

2 = (Trinity Coll. 1895.) 

38. Trace the stream lines along which 0 = 0 and 0 diminishes from + co 

to — 00 in the two cases 

(1) a; + tt/ = 2(0 + t0)^, 

(2) a? + i2/=(04-i0—l)^ + (0 + i0-f 1)>, 

and indicate roughly the form of the stream lines for which 0 has a positive 

value. (Univ. of London, 1909.) 

39. The space on one aide of an infinite plane wall, j/ = 0. is filled with 
in viscid, incompressible fluid, moving at infinity with velocity U in the 

direction of the axis of x. The motion of the fluid is wholly two-dimensional, 

in the (a?, y) plane. A doublet of strength ft is at a distance a from the wall, 

and points in the negative direction of the axis of x. Shew that if /x is less 

than 4a* 17, the pressure of the fluid on the wall is a maximum at points 

distant \/3a from O, the foot of the perpendicular from the doublet on 

the wall, and is a minimum at O. 

If p is equal to 4a*i7, find the points where the velocity of the fluid is 
zero, and shew that the stream lines include the circle 

i»* + (y — a)* = 4a*, 

where the origin is taken at O. (M.T. 1934.) 



CHAPTER IV 

GENERAL THEORY OF IRROTATIONAL MOTION 

4*1, In this chapter we shall examine in general terms the 

nature of irrotational motion and the circumstances under which 

it is produced. In the first place let us analyse the most general 
type of displacement of an element of fluid. 

Let u, V, w be the components of velocity of the particle at the 

point P whose coordinates are x, y, z. Then the relative velocities 

of the particle at P' whose coordinates are a;-}- x, 2/ + y, z^-z at 
the instant considered will be 

u = ax + jty4-gz + 7^z-^y| 

v=Ax + 6y+/z + ^x-^z .(3). 

w = ^x+/y + cz+^y-7,xj 
Thus the relative motion in the most general case consists of 

two parts: a motion in the direction of the normal to the surface 

ox*+6y* + cz* + 2/yz + 2^x + 2Axy = const. ... (4), 

and a rotation of which the component angular velocities are 
C- The former motion is called a pure strain*, it is'Jaeh that 

lines drawn parallel to any one of three mutually perpendicular 

disonaaion of this subject see Kelvin and Tait, Natural Philosophu, 
Arte. 165-185, or Love, Mathematical Theory of Elasticity, chap. i. ^ 
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directions (the axes of the quadric (4)) undergo elongation at a 
uniform rate. Thus if the equation of the quadric referred to its 
principal axes be , , „ ,, , ^ „ 

a X 2 + z 2== const., 

the velocities due to the pure strain, parallel to the axes, are 

u' = a'x', v' = 6y, w'-cV, 

so that a\ 6', c' are the time-rates of elongation of lines parallel to 
the axes of x\ y\ z'. If there is no change of volume, as in the 

case of a liquid, it is clear that a', h\ c' cannot be independent; in 

fact we have ^ i ^ ^ a -fo -he ==a-ho-hc 

du dv dw 

dx 8y ^ dz 

Hence the most general displacement of a fluid element con¬ 
sists of a pure strain compounded with a rotation; and this 
analysis of the motion is unique, for if we were to compound 
together a pure strain and a rotation both arbitrarily assumed and 
endeavour to adapt them so as to result in a given displacement 
of a fluid element, the equations to determine the axes of the 
strain-quadric and the components of spin would be exactly those 
we have used above. 

In accordance with 2*52, 77, ^ are the components of spin, 
and if they are all zero the motion is irrofational, and in this case 
the relative displacement of a fluid element consists of a pure 
strain only. 

j: 
/:(• 

4* 11. Flow and Circulation. If A, P be any two points in 
a fluid the value of the integral 

(udx -h vdy -h ivdz), 

I dx dy dz\ 
or \Uj--\-v/-^w y\ 

ds ds ds) 

taken along any path from A to P, is called the flow along that jpath 

from A to P. 
When a velocity potential exists, the flow from A to P is 

equalto d<f>d,f> . \ 

The flow round a closed curve is called the circulation round 
the curve. If a single-valued velocity potential exists the circula- 

5-3 
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txon round any closed curve is clearly zero; and we shall see 

presently that if the velocity potential is many-valued there are 

closed curves for which the circulation is zero, though it is not 

zero for all such paths. 

4*2. Stokes’s Theorem. We shall now shew that the 

circulation round any closed curve drawn in a fluid is equal to 

twice the surface integral of the normal component of spin taken 
over any surface having the curve for boundary, provided the 

surface lies whoUy in the fluid: i.e. we shall prove that 

judx + vdi/ + wdz = 2 JJ (l^ + m7f-hnC)dS, 

where I, m, n are direction cosines of the normal to the element dS 
of the surface and the other symbols have the usual meanings; 
and throughout this theorem sense of circulation on the surface 

is to be associated with the positive 
direction of the normal to the surface 

by the right-handed or the left- / \ 

handed screw convention according til 
as the axes of coordinates are right- 1 H I \ 1 

handed or left-handed. \ 

In the first place we observe that xf \l 
any surface can be divided up into ^ ' 

small areas by drawing a net-work of lines across it as in the 

figure; and if we take the sum of the circulations round each 

mesh of the surface, the flow along all lines common to two 
meshes will be taken twice in opposite directions, so that the 
result will be the circulation round the boundary. 

Now with the notation of 4* 1, let the point (x, y, 2) be a point 

P within a mesh and let (x 4- x, 2/ + y, z -h z) and (x -f- x 4- dx,.) 

be points P', P'' on its boundary. The circulation round the mesh 
is then ^ 

{(«4 + u)dx-h(v-f v)dy-}- (w;4'W)dz}, 

and substituting from 4*1 (3), jbhis becomes 

J{(«+ax+Ay+s«+ijz-^y)dx+... + ...} 

or jd{ux+vy+iffz + i (a, b, c,f, g, h) (x, y, z)*} 

+(y - z#)+r)(zdx- xdz)+C {xdy - yix)}. 
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The former of these integrals taken round the mesh is clearly 
zero, and in the latter rj, ^ are constants for the mesh, being 
values at a definite point P, and their coelBScients are twice the 
projections on the coordinate planes of the area PP' P", hence if 
dS denotes the area of the mesh the circulation round it is 

2{l^-\-7m) + nl)dS. 

By summation we get the circulation round any closed curve 

= 2 (Z| -f mrj + n^) dS. 

Hence the theorem follows as stated. 
The proof that we have given above is stated in terms of 

hydrodynamical ideas, but the theorem is one of pure analysis 
and is true for any functions u, v, w which are continuous and 
differentiable throughout a region including the ranges of inte¬ 
gration*. 

In the language of vectors the theorem is expressed by saying 
that 2^, 2r], 2^ are components of a vector 2co which is the ‘curl’ 
of the vector q whose components are w, v, w. Thus 2a> is the curl 
of y, when the surface integral of the normal component of 2a> 
over any surface is equal to the line integral of the component of 
q round the boundary; and the result may be written 

2(6 ri, 0 = curl{w, V, w). 

4*21. The foregoing theorem will still be true for a surface 
which is bounded by more than 
one closed curve; as for example 
the shaded area in the accom¬ 
panying figure, provided the cir¬ 
culations round the boundary 
curves are taken wdth proper 
signs. We can see this by regard¬ 
ing the boundary as a continuous 
curve ABCADEFDA and ob¬ 
serving that the total flow along 
AD and DA is zero. 

♦ This theorem, generally knovm as Stokeses Theorem, first appeared in print m a 
question set by Stokes in the Smith’s Prize Examination in 1854, but it occurs in a 
letter from Kelvin to Stokes dated July 2, 1850. See Stokes, Math, and Phya. 
Papers, v, p. 321 footnote. Stokes however appears to have priority in the use of the 
vector wUch is the subject of the surface integral. 
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4*22. Irrotational Motion. If ^ are all zero, that is, in 
the case of irrotational motion, the circulation round any closed 
curve is zero, provided that the closed curve can be regarded as 

the boundary of a surface every part of which lies within the 
fluid. When this is the cjise the curve or circuit is said to be 

reducible] that is, it can be contracted to a point without passing 
out of the fluid. If the circuit be irreducible we cannot conclude 
that the circulation is zero. Thus if the last figure represents 
fluid filling the space between two infinite cylinders, the circuit 

ABC is irreducible, but it will still be true, as in 4*21, that 
the circulations round ABC and DEF are together zero if the 
motion is irrotational, so that the circulations in the same sense 

round the circuits A C and are equal, whence it follows that 
the circulation in all circuits going once round the inner cylinder 

in the same sense is constant and the same for all. We shall have 

more to say on this point later under the heading of multiply- 
connected space. 

4*23. Constancy of Circulation. Let AB any line of 
particles in the fluid and moving with it. 

Let P, Q be two consecutive points on the line; {x^ y, z), 
(a;-f8:r, y-f-8y, z + Sz) their coordinates; u, v, w the velocity 
components at P and u-f hu, those at Q. Then 

DSx 

P, 5 . F>u DSx 

must be the x-component of the relative velocity of 

the points P, Q; that is DhxjDl-hu. 

Hence = 

and similar equations in v, w. 

If the external forces have a single-valued potential O we get 
by addition 

^(uSx + vSy-hwSz)=^ —-f 

where — 

And by integration along the line from Aio B 
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This gives the rate of change of flow along any line moving with 
the fluid. 

If there be any integrable functional relation between the 

pressure and density and we make the line a closed circuit the 
right-hand side of the last equation vanishes. Whence it follows 

that the circulation in any closed path moving with the fluid is 

constant for all time. This is true whether the motion be rotational 
or irrotational, the only assumptions being that the external 

forces are conservative and that there is a relation between the 
pressure and the density. 

The foregoing proof is due to Kelvin*. 

4*24. From the theorem of 4*23 it is easy to deduce the 

theorem of the Permanence of Irrotational Motion proved 
in 2’51. For at any instant at which the motion of a fluid is 

irrotational the circulation in all reducible circuits in the fluid 

vanishes, but the circulation in any such circuit is constant for 

all time and therefore remains zero. Hence, at any subsequent 

time, by 4*2, c c 
I I 4-= 

where the integration may be taken over any surface lying wholly 
in the fluid, and this requires that 

at every point in the fluid, so that the motion is always irrota¬ 

tional. 

>1/- 

4*25. Components of spin in Cylindrical and in Polar Co¬ 
ordinates. Using cylindrical coordinates, let (r, 8, z) be the centre 

of an element of volume whose diameters are of 

lengths Sr, r 80, 82;, let v^yVQ, be the components of 

velocity in these directions, and f, 77, f correspond¬ 

ing components of spin. 

Let A BCD be a central section of the element 

with diameters rB8 and Bz. 

Then 

2i.rB6Bz = circulation round A BCD ... (1). 

The contributions to the circulation from the sides AB and CD are 

v^r86~-^^^(v^rBd)Bz and — ^erBO + ^ ^(v^rBS) 8z^^ 

making uj) — . r B6 82. 

[ C 

' T’"' 

B 

♦ ‘On Vortex Motion,* Trans. Roy, Soc, Edin. xxv, 1869; also Math, and Phys, 
Papers, iv, p. 49. 
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Similarly the contributions of the sides BC and DA are 

v^Sz + ^^^^{v^Sz)rSe and - jv.Sz-g-g^(«,8z)r8tf| 

4-25- 

making up ^i-rsesz. 
rdB 

Hence from (1) we get 1 II 

Similarly 
80, bv, 

bz br 

and 
„ lb(Vgr) bVr 

^ r br rbd 

.(2). 

In like manner using polar coordinates, let (r, 6y at) he the centre of 

an element of volume whose diameters are of lengths Sr, rS^?, rein ^Sco, and 

let qr, ge, t)e the components of velocity in these directions and f, 77, J 
corresponding components of spin. Then by taking the circulation round 

central sections of this element of volume as above, we can shew that 

.r® sin . . rsineSco, 

similarly 

and 

2r.= —- 
^ r Bind dot 

rdB 

d {q^ sin 6) 

r sin 6 dot' 

Sgo\ 
de bm)' 

r dr 

^ rm' 

.(3). 

4*3. Classification of Regions of Space. A region in which 
every closed curve can be contracted to a point without passing 

out of the region is called a simply-connected region. Otherwise 
the space is multiply-connected. In any multiply-connected space 
it is possible to draw at least one section of the region, or insert 
one bamer, having a closed curve for boundary, without breaking 
lip the space into disconnected regions. A region of space for 
which one such barrier can, be drawn is said to be doubly-con¬ 
nected. If w — 1 such barriers can be drawn, the region is n-ply 
connected or of connectivity n. 

A region bounded by a single surface such as a sphere or 
ellipsoid or the space between two closed surfaces one within the 
other such as concentric spheres is simply-connected, for every 
closed curve within it is reducible and no barrier can be drawn 
across it without dividing it into two disconnected regions as is 
seen in Fig. 1. But the space inside an anchor ring is doubly- 

connected for one barrier can be drawn without dividing the 
space into disconnected regions (Fig. 2). 
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Fig. 3 represents an anchor ring and another tubular region 
communicating with it, forming a triply-connected region; and 

in like manner Fig. 4 shews a quadruply-connected region. It 
will be seen that in each of Figs. 2-4 the maximum number of 

barriers have been inserted without dividing the region into 
disconnected parts. 

Fig. 3 Fig. 4 

In the same way the space outside the regions shewn in 
Figs. 2, 3, 4 are respectively doubly-^ triply- and quadruply- 

connected, thus for the space outside the anchor ring a barrier 
might be drawn filling the opening of the ring, for such a barrier 
would be bounded by a closed curve and would not divide the 

external space into disconnected portions; and similarly for the 
other figures. 
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Wlien in a multiply-connected region all barriers have been 
inserted that can be inserted without dividing the region into 
disconnected parts, if these barriers are regarded as temporary 
boundaries the region will have been reduced to a simply-con¬ 
nected one. This will be obvious from a study of the figures. 

4*31. Circuits in a given region may be called reconcilable or 
irreconcilable, according as they can or cannot be deformed so as 
to coincide with one another without going out of the region. In 
simply-connected space all circuits are reconcilable and reducible. 

We can shew that in ^-ply connected space n—1 independent 
irreconcilable and irreducible circuits can be drawn; for in a 
doubly-connected space such as an anchor ring (Fig. 2) one such 
circuit can be drawn and it cuts the one barrier. And it is clear 
from Figs. 3, 4 that for every region added to a multiply- 
connected space, which adds unity to the degree of connectivity 
and therefore increases the number of possible barriers by unity, 
one new circuit can be drawn passing through the new barrier 
and not reconcilable with any existing circuit. Thus in Fig. 3, 
which represents a triply-connected region, two such circuits can 

be drawn, and so on for any degree of connectivity. 

4*32. Cyclic Constants. The circulation in a circuit which 
crosses only one barrier in a multiply-connected region and crosses 

that barrier once only is constant. 
For in the figure, which represents 
part of a multiply-connected re¬ 
gion, XY being the barrier, the 
circuit ABECDFA is a reducible 
one and the circulation in it is 
therefore zero, and as the flow 
along the parts AB, CD are ulti¬ 
mately equal and opposite when A 
coincides with D and B with (7, 
therefore the circulations in closed 
circuits BECB, DEAD are equal 
and opposite; or the circulations in 

any two such circuits taken in the same sense are equal to a con¬ 
stant /c, and if the circuit crosses the barrier p times in the same 
sense the circulation will be p/c. k is called the cyclic constant of 
the circuit. 
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In the same way if , icg, ... be the cyclic constants of the 

n — 1 irreducible circuits of an ^-ply connected space, the circula- 

tion in any compound circuit will be +^2^2 + • • • » 
where p^ denotes the excess'of the number of crossings of the rth 
barrier in the positive sense over the number of crossings in the 
negative sense. Motion in which the circulation in every circuit 
does not vanish is called cyclic motion. 

4*4. Nature of the Problems to be discussed. The types 
of irrotational fluid motion with which we shall be chiefly con- 
cerned, in what follows, may be classified thus: 

(i) A finite mass of liquid is enclosed within a given boundary 
and possibly limited internally by other boundaries. Liquid 
motion is set up by giving a definite motion to one or more of the 

boundaries, or by applying given impulses to one or more of the 
boundaries. 

(ii) An infinite mass of liquid is limited internally by the 
surfaces of one or more bodies, and either 

(a) the liquid is at rest at infinity and the bodies are in 
motion; or 

{b) the liquid has a uniform constant velocity at infinity, 
and the bodies are at rest or in motion. 

We propose to prove the determinateness of these problems; 

i.e. that a definite liquid motion will result from definite motions 
of the boundaries, or from the application of definite impulses to 
the boundaries. 

As we have seen already, irrotational motion implies the exist¬ 
ence of a velocity potential which satisfies Laplace’s equation 

020 02^ 
3x2 ■^3^2+ 922 = 0, or V2<^ = 0; 

and the solution of any problem in irrotational motion depends on 

finding a solution of the equation V2(^ = 0 that will give the correct 

values to the normal velocity di^jdn, or to <j) which may be taken 
as a measure of the impulse, over the boundaries. In this respect 

the problem is akin to the general problem of electrostatics. 

We do not propose to prove the existence of a j)otential 
function which will satisfy given boundary conditions, but we 

shall prove that if the problem has a solution it is a definite one; so 

that, in any particular case in which we have found a solution 
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that fits the circumstances of the case, we shall know that since 
only one solution is possible our solution is the right one. 

We shall begin by proving a theorem of Green’s which is of 

fundamental importance in physical investigations. 

4*5, Green’s Theorem*. Let <f>, be two functions of x, y,z 
which with their first and second derivatives are finite and single¬ 

valued tliro ughout the region considered; and let S denote a closed 
surface bounding any singly-connected region of space and dn an 

element of the normal at a point on this boundary drawn into the 
region considered, then 

dx dx ^ dy dy^ dz 
^^dxdydz 

= 1^' diS'-JJj ^V^’dxdydz 

= - JJ <f>' 4>' ^^dxdydz (1). 

where the surface integrals are taken over the closed surface S 

and the volume integrals throughout the space enclosed. 

To prove this, integrate dxdydz by parts, integrating 

along a prism of section dydz which intersects the surface in 

elements dS^, dS2 where the inward-drawn normals have x- 

direction cosines , 4 • 

* G. Green, Essay on Electricity and Magnetism, ^828, or Math. Papers (ed. 
Ferrers), p. 23. 
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The result is 

where ^^-^dydz=-<f>^^^l^d8^-<f>^^l^d8^ 

--<^f^ld8, 

where in this expression dS is taken to include the two elements of 
area at the ends of the prism. 

Hence 

J/Jss *'*!'*= - '**‘*!'*’ 
and by similar treatment of the remaining terms of the first 

expression in (1), and remembering that 

d£ ,d<l>' d6' d6' 

ox oy dz 

we prove the first expression equal to the second; and by inter¬ 
changing (f) and <f>' it becomes equal to the third. 

4*51. The statement of the theorem needs modification if the 
given region includes discontinuities in the values of (f>, <f>' or their 
first derivatives. But the theorem is still true if we surround the 

point or surface of discontinuity by a closed surface and exclude 
the enclosed space from the region of integration, provided that 
the remaining space is singly-connected and we include in the 

surface integrals integration over the extra surface or surfaces that 

we have introduced. 

4*52- Deductions from Green’s Theorem. We shall now 
make some deductions from Green’s Theorem, but we remark at 

the outset that many of these are capable of very simple inde¬ 

pendent proof. 

(i) Put == constant. Then 

and if ^ satisfies Laplaee’s equation, we also have 
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If (f> denotes a velocity potential this result means that the total 
flow of liquid into any closed region at any instant is zero. 

(ii) If (^, <f>' are both velocity potentials, 

a reciprocal theorem which has a physical meaning if we bear in 
mind that, ifp denotes density, p(f>, p(f>' denote impulsive pressures 
that would produce the motions instantaneously and d<f>ldn, 
d(j>' jdn are the velocities of the boundaries at which these pressures 

may be supposed to be applied. 

(iii) Put = Then, if </> is a velocity potential, 

Hence if q be the velocity and p the density of the liquid, we 
have for the kinetic energy of the liquid within S 

Ip jjjq^dxdydz== - 

Since p(f> is the impulsive pressure that would set up the 
motion'TnstantaneousTy from r and ~-d<f>ldn is the inward 
normal velocity at the surface, therefore the last result is an 
example of the theorem that the kinetic energy set up by im¬ 
pulses, in a system starting from rest, is the sum of the products 
of each impulse and half the velocity of its point of application. 
The result also shews that the kinetic energy of a given mass of 
liquid moving irrotationally in simply-connected space depends 
only on the motion of its boundaries. 

4*53. For the present we shall consider that (f> is the velocity 
potential of a liquid in singly-connected space. From 4*52 (iii) 
we see that, if the boundaries are at rest or if = 0 over the 
boundaries, we must have 

/// q^dxdydz = 0, 

so that g = 0 at every point. Hence irrotational motion is impos¬ 
sible in a closed singly-connected region with fixed boundaries. 
Also if a closed vessel full of liquid which moves irr6tationally is 
suddenly brought to rest the liquid is also brought to rest. 
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4*54. Uniqueness Theorem. There cannot be two different 
forms of irrotational motion for a given confined mass of liquid whose 
boundaries have prescribed velocities or are subject to given impulses. 
For if two such motions are possible let ^2 denote their 
velocity potentials, then at all points of the boimdaries either 

d<f>ildn — or else = <^2 • But ~ 02 ^dl also satisfy 
Laplace’s equation and represent an irrotational motion in which 
either the boundary velocity d — (f>2)/dn is zero or (f>^ — <^2 zero 
over the boundary. Hence in this case, by 4*53, the liquid is at 
rest, or (fy^ — j>2 is constant everywhere. Therefore the two motions 
are the same. 

4* 55. Mean Potential over Spherical Surface. If a region 
lying wholly in the liquid be bounded by a spherical surface the 
mean value of the velocity potential over the surface is equal to its 
value at the centre of the sphere. 

For if 0^ denote the mean value of ^ over a sphere of radius r, we 

have 1 r r 1 r r 

where dco is the solid angle which the element dS subtends at the 
centre of the sphere. 

Therefore Hr 
dr 

¥ 
dr 

dco - 

and the last integral is zero by 4*52 (i), so that is independent 
of the radius r; consequently the mean value of 6 is the same over 
all spheres having the same centre, and by continually diminish¬ 
ing the radius we get that this mean value is the same as the value 

of 0 at the centre. This theorem is due to Gauss. 

4*56. We shall now extend the last theorem to the case 
where the region in which the motion takes place is periphractic, 
that is bounded internally by one or more surfaces. 

Suppose that a sphere of radius r in the liquid encloses one or 
more closed surfaces and that the total flow across these surfaces 
into the given region is 47rJlf, There must be accordingly an equal 
flow outwards across the sphere so that 

where cUo has the same meaning as before. 
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This may also be written 

M 
r2’ 

and by integrating with respect to r, we get 

or (1). 

where C is constant with respect to r, but has yet to be proved 

independent of the position of the sphere. 
Supposing the liquid to extend to infinity and to be at rest 

there, let the sphere be displaced a small distance 8a: in any 
direction without altering its radius, then the consequent change 

in <l>^ is 
= — 

dx 47rr^J J dx 
= hx. 

OX 

Hence dCjdx is equal to the mean value of d(f>ldx taken over 

the sphere. But d(f)/dx vanishes at infinity and so does its mean 

value over an infinite sphere; therefore dC/dx is zero when the 
sphere has a very large radius. But C is the same for all spheres 

having the same centre, therefore C is not altered by displacing 
the sphere, and the result (1) is true for all spheres provided they 

lie within the liquid and enclose the same internal boundaries*. 

4*57* From the previous two articles it follows that the velocity 
potential <f> cannot have a maximum value at a point within the 

liquid, for if there were such a point and a sphere were described 
with this point as centre the mean velocity potential over this 

sphere would be less than at its centre. Similarly there cannot be 
a point at which <f} has a minimum value. 

By a similar argumentf the square of the velocity cannot have 

a maximum within the liquid. For when <f> satisfies Laplace’s 

equation so does d<l>ldx, therefore the theorem of 4*55 is true when 

we write d<f>/dx for so that d<f>ldx cannot have a maximum or 

minimum at a point in the liquid. Now take the axis of x in the 

direction of the velocity at a point P, so that {d(f>jdxY is the square 
of the velocity at P. Then since (d^/dx)^ has no maximum there 

Kirchhoff, Mechanik, p. 191. t Ibid, p. 186. 
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must be points Q in the vicinity of P at which {d(f>/dx)^ is greater 
than the square of the velocity at P, and much more then is 
(d<l>/dx)^ + {d<f>ldyy^ (d(l>/dz)^, or the square of the velocity at Q, 
greater than the square of the velocity at P. Hence the square of 
the velocity cannot be a maximum at P. It will be apparent in 
what follows that it may have a zero minimum value. 

4* 6. Liquid extending to Infinity. When the liquid extends 
to infinity the arguments of 4-53,4*54 cannot be applied directly 

without examining the value of jj<f>^dS over an infinite 

boundary surface; for, though the velocity may vanish at infinity, 
it does not necessarily follow that this integral vanishes when 
taken over an infinite area. 

As a first step in this discussion we shall make a further 
deduction from Green’s Theorem. 

If (f>, both satisfy Laplace’s equation, within a region bounded 
by a surface we have 

s"."»• 

Let P be any point within the region, and put = 1 /r, where 
r is the distance from P. Since becomes infinite at P we must 
exclude P from the region to which the theorem (1) is applied by 
surrounding it by a surface, say a sphere of small radius e and 
surface S. This surface must be added to the range of integration, 

and we get 

‘la^ 
dn 

Since dS==€^da>, where is the solid angle subtended at P by 
dS, therefore the second integral tends to — 47r^p as e tends to 
zero, where <f>p denotes the value of <f> at P. For the same reason 
the fourth integral tends to zero with e. Hence we have 

dn 
dS^ i/j; dn 

(2). 

Now consider an infinite mass of liquid bounded internally by 

certain finite surfaces S and let us apply the last result, taking 
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foF external boundary a sphere S of large radius B with its centre 

at P. We have for any point P in the liquid 

Assuming that the total flow of liquid across the internal 

boundaries is zero and that the velocity vanishes at infinity, by 

4*56 the third integral is a definite constant C. And the total 

flow across the sphere S is also zero, so that the fourth integral is 

zero. Therefore 

.('>• 

Now let P move to an infinite distance from the inner bound¬ 

aries aS, the integrands then tend to zero and the range of integra¬ 
tion is finite, so that the integrals vanish and we see that the 

velocity potential ^ tends to a definite constant limit at infinity, 
when the velocity vanishes at infinity*. 

Now apply 4*52 (iii) to the space between the inner boundaries 
S and a sphere S of large radius R and we get 

Also because of the constancy of the whole mass of liquid 

and on the sphere S as its radius increases ^ tends to a constant 
limit f7, therefore 

where the surface integral extends to the inner boundaries 
only. 

♦ It cannot be assumed that ^ must be constant at infinity if its space-derivatives 
all vanish there. For example, if ^ =:log r then d<l>ldr = 1/r and vanishes as r oo, but 
^ becomes infinite. 
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Hence if the inner boundaries are at rest, or if </► — C — 0 over the 
boundaries, we get ^ 

I I <l^dxdydz==^Q, 

so that ^ = 0 everywhere. That is. irrotational motion is impossible 

in a liquid at rest at infinity unless its inner boundaries are in 
motion. 

4*61 • Further, if the value of d(f>ldn, or of <f), is prescribed over 
the inner boundaries there is only one motion possible. For if 
two different motions of the liquid were possible having equal 
values of d(f>ldn or of <f) at each point of the boundaries, let (f>2 

denote their velocity potentials; then (f>^ — <^2 satisfies V^(f) — 0, and 
is also the velocity potential of a motion giving zero velocity or 
making <f> — G zero over the boundaries. Hence as in the last article 
the velocity in this case is zero everywhere, that is the two 
motions are the same. 

4*62. Referring to 4*4 we have now only to consider the case 
in which the liquid has uniform constant velocity at infinity; 
and the determinateness of the problem in this case follows from 
the consideration that the problem of the relative motion is not 

affected by imposing on the whole mass of liquid and its bound¬ 
aries a velocity equal and opposite to the velocity at infinity. The 
liquid is then at rest at infinity and it follows from 4* 61 that if the 
velocities of the boundaries are prescribed or if given impulses 
are applied to them there is only one possible motion of the liquid. 

4*7. Minimum Kinetic Energy. If a jnass of liquid be set 
in motion by giving prescribed velocities to its boundaries, the 
Kinetic Energy in the actual motion is less than that in any other 
motion consistent with the same motion of the boundaries. 

Let T be the kinetic energy of the motion of which <f> is the 
velocity potential, and the kinetic energy of any other possible 
state of motion in which the velocity components at {x, y, z) are 

^1- These components must satisfy the equation of con¬ 

tinuity 0^ 0^ 0^ 
—^ j-i j-3 = 0 
dx^dy^ dz 

(1), 

and give the same normal boundary velocity as in the other 

motion, which condition is expressed by a relation 

lu^ -f- -h nwy^ + mv -^nta .(2). 
6-3 
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Now 

= jjj{'i^i^-i-Vi^-{-Wj^)dxdydz--^p jjj(u^-^v^ + w^) dxdydz 

= |pJJJ{2u (i^i —+ (^1““^)^+ ... + ...)dxdydz. 

But, by an integration similar to that used in the proof of Green’s 

Theorem, 

III 
{u (% — u)-\-v{v^ — y)-\-w {w^ — 1^)} dxdydz 

- JJJ ||” I dxdydz: 
== JJ <f> (Z {Ui ‘-'U)^m{v^ — v)-^n {w^ —16»)} dS 

3 3 3 
dxdydz 

= 0, from (1) and (2). 

Hence 

T^ — T — \p JJJ {('14^ - u)^ + (^1 — v)^ -f {w^ — wY\ dxdydz 

= a positive quantity. 

Hence the theorem follows. This theorem is due to Lord Kelvin*, 

and was subsequently generalized by him so as to apply to all 

dynamical systems started impulsively from restt* 

4-71. Kinetic Energy of an Infinite Mass of Liquid 
moving irrotationally. 

We have, as in 4*6, 

jjjq^dxdydz=^-jj{<f>-(0)^^d8, 

where C is a constant and the surface integral extends to the inner 
boimdaries of the liquid; and, if the total flow across the inner 

boundaries is zero, 

jj dn 
d8=0, 

80 that the kinetic energy is 

dn 
dS. 

♦ Camb, and Dub. Math. Journal, 1849, p. 92, or Math, and Phy«. Papers, i, p. 107. 
t Kelvin and Tait, Natural Philosophy, § 312. 
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4*8. Irrotational Motion in multiply-connected Space. 
We have seen in 4*32 that the circulation in any circuit in an 

(7i-f l)pIy-connected region is of the form 

.(1)> 

where the ac’s are the cyclic constants of the n irreducible circuits, 

and the ^’s are integers. 

" *’-L {udx 4- vdy 4- wdz) .(2), 

be the flow along a [)atli from a fixed point ^ to a variable point 
P, the value of </» depends on the particular path; because, if 

A BP and ACP ai^e two paths, the circulation round ABPCA is 

not generally zero. Hence <f) is indeterminate or many-valued to 
the extent of the addition of an expression of the form (1). 

By displacing P parallel to the axes in turn we obtain from (2) 

u—-‘d<j>jdx, v^—d<l>ldy, —d<f>ldz\ 

and these are single^valued expressions whether 0 be multiple¬ 
valued or not. 

4*81. Kelvin’s Modification of Green’s Theorem. In our 
proof of Green’s Theorem in 4*5 we assumed that <j), (j>' were 

single-valued functions in the region considered, but if either be 

a many-valued or cyclic function the formula needs modifica¬ 
tion. Thus, if we suppose to be cyclic, the second expression in 

4*5 (1) must be corrected so as to take account of the indeter¬ 
minateness of (f>. We can do this by supposing all the barriers that 

are necessary to reduce the region under consideration to a simply- 
connected space to be inserted: then we may regard <f> as single¬ 

valued throughout this region and the correction to be made con¬ 

sists therefore in including in the range of the surface integral 

both sides of each of the barriers. 
If da^ be an element of area of one of the barriers and ac^ the 

corresponding cyclic constant, we have to take over 

psjf 

both sides of the barrier. The values of —, being taken in opposite 
on 

directions on opposite sides of the barrier, are equal in magnitude 
but opposite in sign at corresponding points; while the value 

of <l> on the positive side of the barrier exceeds the value on the 

negative side by the cyclic constant , so that the contribution 
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of this barrier to the surface integral is /c^ JJ da taken once 

over the barrier. 
Hence the theorem becomes 

///( 
d^d£ 

dx dx ^ dy cy^ dz dz } dxdydz 

No extra terms arise because of the indeterminateness of ^ in the 
last integral, if we suppose that V2(^' = 0, for the indeterminate 
part of <!> is a constant. 

It is clear that the coefficient of each k is the total flow in the 
positive direction across each barrier due to a velocity potential 
f. 

If we assume cf)' to be cyclic with cyclic constants etc., 
we get another relation similar to (1) in which <f>, <f>' are inter¬ 
changed and Kj! is written for . 

4*82. Kinetic Energy of Cyclic Irrotational Motion. If 
we put = in 4*81, and take ^ to be a velocity potential, we 
get for the kinetic energy of the motion 

.(')■ 

This assumes, of course, that the barriers do not obstruct the 
motion of the liquid, but move along with it. 

If the liquid extend to infinity as in 4*71, we must replace the 
first term on the right by 

.(2). 

where (7 is a constant and the integral extends to the internal 
boundaries of the liquid, the C term being omitted if the total 
flow across these inner boundaries is zero. 

4* 83. Determinateness of Irrotational Motion in multi - 
ply-connected Space. If the cyclic constants Kg, ... are 
given and the boundary velocities, we can shew that the motion is 
determinate. For supposing the space to be rendered simply- 
connected by the introduction of suitable barriers, let there be 
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two possible motions represented by velocity potentials (f>, <f>' 

which both have the same cyclic constants. Then (f> — (l>' will be a 

velocity potential having no cyclic constants, i.e. the velocity 

potential of an acyclic motion, in which, in addition, the velocity 

is zero at all boundaries. Hence by 4*54 and 4*61 the two 

motions are identical. 

4*831. Example. Let us take, as an example, two-dimensional 
irrotational motion in the space between two coaxial circular cylinders; 
and suppose that the velocity at distance r from the axis is c^/r at right 
angles to the radius vector. 

We have seen in 1*81 that the velocity potential is given by 

— c®tan“ 

This is a many-valued function, the region being doubly-connected, and 

cyclic constant k = circulation 
= 27rr X c*/r 
=:27rC», 

so that the circulation in any closed path is riK or 2rrnc*, where n is the 
number of times the path embraces the cylinder. 

To find the kinetic energy of the liquid contained between unit lengths 
of the cylinders we may proceed directly taking 

T = ip / 227rrdr=7rpc*log6/o, 
J a 

where a and 6 are the radii of the inner and outer cylinders; or we may shew 
that we get the same result from the expression (1) of 4*82. The first 
integral in that expression is zero because d<l>jdn vanishes over the fixed 
boundaries. 

For the second integral, —ipK j j we may take as barrier a plane 

through the axis of the cylinders; — 5^/^, the velocity perpendicular to the 
barrier, is then the whole velocity c*/r, and the integral becomes 

ip dr^\ p#fC® log 6/a = Ttpd^ log 6/a. 

4*9. Motion regarded as due to Sources and Doublets. 
Referring to the theorem represented by 4-6 (2), viz. 

Idf 

dn 
dS, 

it follows from 3*3 and 3’31 that the velocity potential at P is the 

same as if the motion in the region bounded by the surface S were 

due to a distribution over S of simple sources with a density 

— — ^ per unit area, together with a distribution of doublets 
^TTon ^ 
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with axes pointing inwards along the normals to the surface of 

density ^jiir per unit area. 

Now let a closed surface 8 be drawn in a liquid and let <f>' 

denote the velocity potentials of possible motions inside and 

outside S respectively, with the condition that vanishes at 

infinity. If P is an}' point inside 8, we have 

'l^s. 
r on 

Also since P is not within the region of velocity potential </>' 

where dn, dn' are drawn inwards and outwards from the surface 8, 

so that djdn= —didn'. Then by addition 

If we take = at the surface 8, we have 

. 

and, if we take — = ~, we get 
dn dn ° ^ 1 

.<’>■ 

Equation (2) shews that when the velocity potential is con¬ 

tinuous but the normal flow across S is discontinuous the motion 

inside S might be produced by a distribution over the surface of 

simple sources of density — ^ -f j per unit area. 

Equation (3) shews that when the normal velocity across the 

surface is continuous, but the velgcity potential discontinuous, 

the motion inside S might be produced by a distribution over the 

surfiice of doublets with axes along the normals inwards of 

density {<f> — <f>')j4t7r per unit area. Such a distribution might be 

called a double sheet. 
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MISCELLANEOUS EXAMPLES 

1. Explain the meaning of the term rotational as applied to fluid moti on; 

and determine the character of the circulatory motion of fluid, round a 
straight axis, which is not rotational. 

Shew that, in such a case, minute bubblas of air in the circulating fluid 

will be sucked in towards the axis. (St John’s Coll. 1896.) 

2. When a body immersed in a fluid executes periodic vibrations it 

appears to exert an attraction on other bodies at rest in the fluid. Give a 

general explanation of this phenomenon. (Coll. Exam. 1903.) 

3. Prove that if the velocity potential at any instant be Aa^, the 

velocity at any point (x-f f) relative to the fluid at the point 

{x, y, 2), where f, rj, J are small, is normal to the quadric xt)^ + -h sf= 

constant, with centre at {x, y, 2). (Trinity Coll. 1897.) 

4. Prove that if 
dx) 

and fif V are two similar expressions, then Xdx-h fidy + vdz is a perfect 

differential, if the forces are conservative and the density is constant. 

(Coll. Exam. 1902.) 

5. Show that, if a heterogeneous incompressible liquid moves irrota- 

tionally under the action of conservative forces, the surfaces of equal 

pressure and equal density coincide; and that a homogeneous liquid 

cannot move irrotationally under the action of non-conservative forces. 

(Coll. Exam. 1901.) 

6. Shew that the theorem, that under certain conditions, the motion of 

a frictionless fluid, if once irrotational, will always be so, is true also when 

each particle is acted on by a frictional resistance varying as its velocity. 

(Coll. Exam. 1895.) 

7. If p denote the pressure, V the potential of the external forces and q 

the velocity of a homogeneous liquid moving irrotationally, shew theft 

is positive; and is negative provided that V2F = 0. Hence prove 

that the velocity cannot have a maximum value and the pressure cannot 

have a minimum value at a point in the interior of the liquid. 
(Coll. Exam. 1900.) 

'^8. Shew that in the motion of a fluid in two dimensions if the co¬ 

ordinates (x, y) of an element at any time be expressed in terms of the 

initial coordinates (a, b) and the time, the motion is irrotational if 

/ + = (Coll. Exam. 1903.) 
/ d(a,b)^8(a,b) ' 

^9. Prove that, if 

J (ax* -f 6t/* 4- C2*), F = i (/x* 4-niy^ 4- n2*), 

where a, 6, c, /, w, n are functions of the time and a 4* 6 4- c = 0, irrotational 

motion is possible with a free surface of equi-pressure if 

(J + a*+d)e'^‘““. {m + b^ + h)e* !’><“, (n + c* + c) 

are constants. (Coll. Exam. 1903.) 
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10. Shew that if the velocity potential of an irrotational fluid motion is 

equal to ^ 
A +1/® + z®) -z tan“^ ~, 

X 
the lines of flow lie on the series of surfaces 

a;®-f-2/® 4-2* = (a?®-f y*) 

J 
(Coll. Exam. 1899.) 

11. A thin stratum of incompressible fluid is contained between two 

concentric spheres; shew that the velocity at any point is equivalent to the 

components j 

sin Bdu}'' 36 

along the meridian and parallel respectively. Also if the fluid be homo¬ 

geneous and the motion irrotational, prove that 

d<l>_ 1 dtif 

d6'~8m6d(x}* sinddci) 36* 

and deduce that + tan \6). (St John’s Coll. 1906.) 

12. In the case of irrotational motion in two dimensions, on the surface 

of a sphere, shew that the velocity potential is of the form 

r being the radius of the sphere and x, y, z the coordinates of a point referred 

to rectangular axes through the centre of the sphere. 
(Coll. Exam. 1893.) 

13. A rigid envelope is filled with homogeneous frictionless liquid; shew 

that it is not possible, by any movements applied to the envelope, to set its 

contents into motion which will persist after the envelope has come to rest. 

(St John’s Coll. 1898.) 

14. A space is bounded by an ideal fixed surface S drawn in a homo¬ 

geneous incompressible fluid satisfying the conditions for the continued 

existence of a velocity potential ^ under conservative forces. Prove that 

the rate per unit time at which energy flows across S into the space 

bounded by S is 

-P 

where p is the density and dn an element of the normal to dS drawn into the 

space considered. (M.T. 1908.) 

15. Deduce from the principle that the kinetic energy set up is a 

minimum that, if a mass of incompressible liquid bo given at rest, com¬ 

pletely filling a closed vessel of any shape and if any motion of the liquid 

be produced suddenly by giving arbitrarily prescribed normal velocities 

to all the points of its bounding surface subject to the condition of constant 

volume, the motion produced is irrotational. (Thomson and Tait.) 

10. Ifq is the resultant velocity at any point of a fluid which is moving 

irrotationally in two dimensions, prove that 

(to) ■'■(%) (Univ. of London, 1911.) 

II d<f> 3<f) 

dt 3n 
dS, 
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17. Shew that the curvature of a stream line in steady motion is 

^ ip ( P ^ ^ pressure, density and velocity of the 

liquid, V the potential of the external forces, and dv is an element of the 
principal normal to the stream line, and hence obtain the velocity potential 
of the two-dimensional irrotational motion for which the stream lines are 
confocal ellipses. ’ (Coll. Exam. 1900.) 

18. Prove that in acyclic irrotational motion of a homogeneous fluid the 
total momentum of the fluid contained within a sphere of any radius is 
equivalent to a single vector through the centre of the sphere. 

(Univ. of London, 1915.) 

19. Incompressible fluid of density p is contained between two coaxial 
circular cylinders, of radii a and h(a<h)^ and between two rigid planes 
perpendicular to the axis at a distance I apart. The cylinders are at rest 
and the fluid is circulating in irrotational motion, its velocity being V at 
the STirface of the inner cylinder. Prove that the kinetic energy is 
rrpaHV^ log bja. (Trinity Coll. 1896.) 

20. Liquid of density p is flowing in two dimensions between the oval 
curves == where are the distances measured from two 
fixed points: if the motion is irrotational and quantity q per unit time 
crosses any line joining the bounding curves, then the kinetic energy is 

npq^/logbla, (Trinity Coll. 1895.) 

21. A thin sheet of incompressible fluid moves on the surface of a sphere 
of unit radius. Shew that the velocity potential and stream function are 
conjugate functions of the Cartesian coordinates of the stereographic pro¬ 
jection of any point; and that if the boundary move as a rigid curve on the 
sphere and its axis of instantaneous rotation cut the sphere in 0, the 
stream function at any point P of the boundary differs from o) cos OP by a 
constant, where w is the instantaneous angular velocity of the boundary. 

(M.T. 1896.) 



CHAPTER V 

SPECIAL PROBLEMS OF-IRROTATIONAL MOTION 

IN TWO DIMENSIONS 

5*1. In Chapter m we introduced the stream function 0 for 
motion in two dimensions and found expressions for it in certain 

cases. We propose now to make use of it for the determination of 
two-dimensional irrotational motion produced by the motion of 
a cylinder in an infinite mass of liquid at rest at infinity, or for the 
disturbance produced in a steady stream by the presence of a 
fixed cylinder. For the sake of simplicity we shall suppose the 
cylinder to be of unit length, and the liquid and the cylinder to be 

confined between two smooth parallel planes at right angles to the 
axis of the cylinder. 

The stream function tp must satisfy Laplace’s equation = 0 

at all points of the liquid and must also satisfy the boundary 
conditions as follows: 

(1) When the liquid is at rest at infinity then at infinity 
dtpldx = 0 and dip/dy = 0. 

(2) At any fixed boundary the normal velocity must be zero, 
or the boundary must coincide with a stream line tft = const. 

(3) At the boundary of the moving cylinder, the normal com¬ 
ponent of the velocity of the liquid must be equal to the normal 
component of the velocity of the cylinder. 

Condition (3) may be expressed by a formula for ip as follows: 
let a point of the cross section of the cylinder chosen as origin 
have velocities U, V parallel to the axes of x and y and let 
the cylinder turn with angular 
velocity so that the velocity 
of a point whose coordinates 
are Xy y has components 

U — a>y, V -I- (M, 

Let da be an element of arc of 
the cross section of the cylinder. 

The velocity of the liquid in the 
direction of the outward normal 
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is — difjjds, and the cosines of the angles which this normal makes 
with the axes are dyfds and —dxjds^ so that 

Whence, by integrating along the arc, we get 

ifj—Vx— Uy \(ju + y^) C .(1). 

This is the condition for the most general type of motion of the 

cylinder and of course includes a simple translation co = 0 and 

say F = 0 8othat tfs^-Uy+C .(2), 

or a simple rotation [7 = F = 0 and 

ilj^loj(x^ + y^)+C.(3). 

5“2. Circular Cylinder. The solution of the problem indi¬ 
cated in 5*1, viz. to determine a two-dimensional irrotational 

motion satisfying given boundary conditions, has been effected 

in a limited number of cases; and the method of solution has 

frequently been an inverse one. That is to say, instead of a direct 

investigation of a solution of V^^ = 0 which will sativsfy given 

boundary conditions, known solutions have been studied to see 

what kind of boundary conditions each will satisfy and the 

problems have not been formulated until their solutions have been 

obtained. As an example let us consider the motion represented 

by the functional relation ^ v 

A 
or (f> + iifj = ~ (cos d — i sin 6), 

A. sin 0 
This gives -and if we take this value for 0 in the 

boundary equation 5*1 (2) we have 

^sin0 TT • n ^ 
-== - t/rsmfl-f <7. 

This equation represents a family of curves, and if we put 

0 = 0 and A = Ua^y the family includes a circle of radius a. Hence 

cosd 

are the stream function and velocity potential due to the motion 
of a circular cylinder of radius a moving with velocity U parallel 

to the aj-axis; the origin being always on the axis of the cylinder. 
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We observe that the velocity potential and stream function are 
the same as for a two-dimensional doublet of strength Uon the 

axis of the cylinder in an infinite mass of liquid. 
The case of liquid streaming with general velocity TJ past a 

fixed cylinder of radius a may be deduced from the foregoing 
case by imposing a velocity — U parallel to the a:-axis on both the 

cylinder and the liquid. The cylinder is then reduced to rest and 
we have to add to the velocity potential a term Uxto correspond 
to the additional velocity, that is UrooBd; hence a term Ur sin d 

must be added to i/j, so that 

Hence the equation (r— a^/r) sin ^ = const, represents the stream 

lines relative to the cylinder, and this is true whether the cylinder 

be moving or at rest. 

5’21. Another method of solving problems of the same class 

is to find a velocity potential that will satisfy the given boundary 

conditions, i.e. to find a that will satisfy = 0 at every point 
of the liquid, and make the normal velocity — d(f>ldn assume the 
proper values at the boundaries. 

In this connection it is useful to remember that in polar co¬ 

ordinates in two dimensions Laplace’s equation takes the form 

Jr^'^rdr'^'r^de^ ’ 

and that it has solutions of the form 

r^cosnO, r^sinnO, 

where n is any integer, positive or negative. Hence the sum of 
any number of terms of the form 

A^r^cos nO, r^sinnd 
is also a solution. 

Reverting to the problem of liquid streaming past a fixed 

circular cylinder, with the notation of 5*2, the uniform stream 

in the negative direction of the a;-axis is represented by 

J7a?= Urcos 6, 

and we have to add a term or terms to represent the disturbance 
due to the cylinder. Since the disturbance vanishes at infinity 

these terms can only involve negative powers of r. 
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The boundary condition is ^ = 0, when r = a, and if we assume 

this leads to 

(k— Ur GOQ0 + ~- cos 6, 
r 

U — or A^a^U, 

whence as before ^ = [7 4- ^ j cos 6, 

and the conjugate function is 

0 = [7 — y j sin 0, 

5*22. Two Coaxial Cylinders. As a further example let us consider 
a problem of initial motion. Let a cylinder of radius a be surrounded by a 
coaxial cylinder of radius h, the space between the cylinders being filled 
with liquid. Suppose the cylinders to be moved suddenly parallel to 
themselves in directions at right angles with velocities 27, V respectively. 

The boundary conditions for the velocity potential (/» are: 

(i) when r::!; a, —(7cos0, 

(ii) whenr = 6, ^=: —Fsin^. 

To satisfy these assume that 

<l> = [^Ar + -j cos ^ + ^(7r -f " j sin B; 

U cos 6 = cos 6 4- ^(7 — sin B, 

■ V sin 6 = (a — cos 0 4- ^<7 — sin B, 

for all values of 6, Hence 

A-?^-U. C-2 = 0, 

A g,-0. 
from which we get 

, a®C7 / 62\ ^ . b^V ( , a2\ . . 

and the conjugate function 

, a^U ( 6a\ . , bW ( a\ . 
4/f=; — o--fo(r-jsm^-s—j-olr-icos^. 
^ a^-b^\ rj a^-b^\ r/ 

It must be remembered however that these equations only represent 
the motion at the instant when the cylinders are coaxial. 
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5*23. Equations of Motion of a Circular Cylinder. Re¬ 
verting to the case of 5*2—a cylinder moving in a liquid at rest 
at infinity—we have to calculate the forces acting on the cylinder 
owing to the presence of the liquid. Tf the extraneous forces have 
a potential and act on the cylinder and hquid alike their 
resultant effect is, from Hydrostatical considerations, a force 
equal to the difference between the forces exerted on the cylinder 
and the liquid displaced, i.e. if a, p are the densities of the cylinder 
and hquid the resultant extraneous force is {a — p)la times what it 
would be if the liquid were not present. Omitting the extraneous 
forces, the part of the pressure due to the motion is to be found 
from the equation ^ , 

.(1) 

of 2-2 (3). 

Let the centre of the section be the point ZQ^XQ-{-iyQ, so that 
if C7, V denote the components of velocity of the cyhnder, 

U = ^0, F = yo- 

Let 
AU-^iV) 

(2), 

this being the same type of relation as 5*2 (1) with the constants 
adjusted to give the correct hquid velocity normal to the surface 
of the cyhnder. For if we put z — — so that r denotes 
distance from the axis of the cyhnder, we have 

4- = — (tr 4- iP) (cos d — i sin 6) 

and = —(C7 cos0-f Fsin 6) 
T 

(3), 

making the normal velocity on r = a 

— cos 0 4- F sin d, 
dr 

Again since 

therefore 

or 
dt dt 

dw^a^(U->riV) a^jU + iV)^ 
dt^ 2-20 ' 

"-{[/-hiF) {cos0 —isinS) 

-f “2 ((7 + iVY (cos 2B—i sin 2B), 
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Hence on r=a 
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dt 

Also 

= a{Ucosd + Vsin6) + (U^~ F®)cos 26 + 2VVsin 20...(4). 

dw^ 
liz 

,{U + iV) * a‘(f7*+F*) .(6). 

Now the components of force on the cylinder are 

^27r r2tT 

X = — apcos0d0 and Y= — I apsm0d0 
Jo Jo 

Putting r = a in (5), substituting from (4) and (5) in (1) and per¬ 
forming the integrations, we find that 

and Y= -7rpa2F= ~J[fT, ) . 

where M' is the mass of liquid displaced by the cylinder (of unit 
length). 

Hence if M denotes the mass of the cylinder and X\ Y' the 
components of what the extraneous force on the cylinder would be 
if no liquid were present, the equations of motion are of the form 

MU^-M'U + ^X', 
a 

or MU 
O — P y, 

M + M'~ a 

ov MV ^ ~—^ X' and a similar equation in V and Y\ 
cr + p 

Hence the effect of the presence of the liquid is to reduce the 
extraneous forces in the ratio a—p: a + p. 

Result (6) implies that if the cylinder were to move with uni¬ 
form velocity the resultant pressure set up by the motion or the 
resistance to motion would be zero. This is of course contrary 
to experience. It will be seen later that a small amount of fnc- 
tion in the liquid alters very considerably the character of the 
motion in the immediate neighbourhood of the cylinder so that 
the result obtained above does not apply in the case of a real 
liquid. 

5*231. We may also obtain result (6) of 6*23 from the principle of 
energy. By 4*71 the kinetic energy of the liquid is given by 

RH 7 
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integrated round the boundary of the cylinder. And since, if U denotes 

the velocity of the cylinder, = C7 -- cos 6, therefore 

f27r 
T=ipa*U^ I co8^0d$ 

= i7rpa^U^=iM'l7^. 

Hence the presence of the liquid may be considered to increase the 

effective inertia of the cylinder by an amount M\ And if X denote the 

force parallel to the axis of x, 

~ iM' U^)—rate at which work is being done 

so that 

^dU_^ 'dU 

^ dt~^ ^ dt ' 

so that the pressure of the liquid, apart from any extraneous force acting 

on it, is equivalent to a force —M'dUjdt opposing the motion. 

5*24. Circulation about a moving Cylinder. To complete 
the discussion of irrotational motion of a liquid about a moving 
cylinder, we must include the possibility of cyclic motion, since 
the liquid occupies a doubly-connected region. The solution is 
completed by adding to the velocity potential and stream 
functions terms that will correspond to a constant circulation k 

about the cylinder. 
The appropriate form may be found thus: by taking the 

circulation round a circle of radius r whose centre is at the origin, 

we get sd, „ 

kO k 
so that — and the conjugate function is = — log r. 

JjTt Ztt 

Hence <f) + itl/ = ~ (logr + iO) or M;=^log2; .(1). 
Ztt Ztt 

Hence, with the notation of 5*23, we may put for the whole motion 

^{U + iV) , iK, . . ... 
=a» ----- + ^ log (8 - Zo) .(2). 

This gives 

- dw\^ . Trv \ 
«’= *1 = 

I ®*/rT -T^v 
x|-p(C7-tF)e*«— 

= g(C7»+F«) + ^, + ^*(l78mfl-rcostf) ...(3). 

SO that 
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Again dtjtldt has the same value as in 5*23 (4), plus a term arising from 

the circulation, viz. the real part of —iK(U-f iF)/27r(z —Zq)* 

K (V cos [7sin B)l2TTr, 

Whence by substituting in-5* 23 (1) and integrating we get 

and ■=-/: 

ap cos ddd= — npa^U — KpV 

ap sin Odd— — Trpa^V KpU 

.(4). 

Hence if, as before, M denotes the mass of unit length of the cylinder 

and M' = npa^ and there are no extraneous forces, the equations of motion 

{M + M')V=-KpV]^ 

(M + M')V = KpU j . 

These equations give UU + VV =^0, or 

.(6). 

-h F* = const.(6), 

, UV-^VU Kp 

17«+F> ~M + M” 

or i=Kpl(M+M') .(7), 

where € = tan~^(F/f/) is the inclination of the direction of motion to the 

axis of X. 

Equations (5) shew that the cylinder is acted on by a force Kp (velocity) 

at right angles to the path. We shall see subsequently that this force is 

independent of the cross section of the cylinder. 

Equations (6) and (7) shew that the cylinder describes a circle of radius 

(M + M') (U^ j Kp with constant velocity F*)^ in the sense of 

the cyclic motion. 

Suppose now that the liquid and the cylinder are subject to a field of 

force of the nature of gravity in the negative direction of the axis of ?/. 

Then if <7 be the density of the cylinder, the equations of motion are 

rrera^U = — npa^U KpV^ 

and Trora*F = — npa^V 4* KpU — rr (a — p) o*(7, 

or say 17 + nF = 0 

and V--nU=~-g\ 

The solutions of which are 

U ^ g'/n — c sin {nt y.) 

and F = cco8(nt + a); 

so that, if Xt y denote the coordinates of the centre of the cylinder referred 

to fixed axes, by another integration 

^ 0 
X = -f - 4* - cos (nt 4 a) 

n H ^ 

c 
€uid y = yo-f-sm(n<4’a), 

n 
so that the path is a trochoid. 

7-a 
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The existence of the transverse force due to circulation was first investi¬ 

gated by Lord Rayleigh* as the explanation of the swerve of a ball in 

tennis, golf, cricket or baseball, the circulation of the air being due through 

friction to the spin of the ball. The same force is the basis of modem 

Aerodynamics. Since the force clearly only depends on the relative motion 

of the cylinder and the liquid, it will be unaltered if we superpose on the 

whole mass a velocity equal and opposite to that of the cylinder, so that the 

cylinder will then be at rest in a stream of liquid circulating about it. 

5*25. In the case of a fixed circular cylinder in a steady stream with 

a circulation k superposed, we have 

^=l7(r + ®’)co8e-~ .(1). 

where the velocity of the stream at infinity is — 17 parallel to Ox, 

The velocity on the cylinder r = a is therefore 

. 
If there were no circulation there would be points of zero velocity on the 

cylinder at ^=0 and tt, the former being the point at wliich the on¬ 

coming stream divides. But when there is circulation the positions on 

the cylinder of these critical points is given by 

sin^= —/c/4Tral7 .(3), 

and they only exist when I I < 47rC7a .(4). 

The lines of flow are then as indicated in the figure, N' being points of 

zero velocity. It is clear that any point on the circumference might be 

made a critical point by a suitable choice of the ratio k/ U; and we shall see 
later that this fact has an important bearing in the theory of aerofoils. 

When (4) is not satisfied because the circulation is relatively too large 

there are no points of zero velocity on the cylinder but there is such a point 

below the cylinder on the axis of y in the figure. At this point a stream line 

crosses itself and the liquid between this stream line and the cylinder 

circulates continually rormd it and is not carried onwards by the stream. 

* See Lord Rayleigh, ‘On the Irregular Flight of a tennis ball*. Mess, of Math, 
1877, or 8ci. Papers, i, p. 344. Also Greenhill, Mess, of Math. 1880. 
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5*3. Conjugate Functions. Elliptic Cylinders. Suppose 
that we have a relation 

w^==/(2J)> or <f> + iiff=f (x + iy), 

and that in addition 

z = F(C), or i?^), 

so that X, y are conjugate functions of r]. Then <f>, ifs are also 
conjugate functions of 7?. For, the elimination of z gives a 
functional relation 

from which we obtain 

d<fi dtp d<p dtp 

Since 

and 

31 drj^ dri df 

d<p _ d<p d^ dtp dj] 
dx didx^drjdx* 

dtp dtp d^ dtp dr) 

dy didy^d'qdy^ 

therefore, by squaring and adding and remembering that 

and 
dx^dy ^ dy^ dx^ 

we 

dw dw 
or 

dz dz 

Similarly we can prove that 

dx^^dy^ 

^ d^\ 
, where h = 

i + di 



102 ELLIPTIC CYLINDER 5-3- 

Greometrically, if we draw the curves ^ = const., tfi = const, and 
S«i, 8^2 denote elements of tfj intercepted between <f> and ^ 4- S<^, 

and of <!> intercepted between ^ and 0 -f 8^, we have 

(^r=(g)^(^r=H(irniri 
(W= 
[dsj 

the same expressions. 

Though for the curves | = const., —const, the corresponding 

relations are of course g^ 

dsi 3^2 ’ 

v4’ 31. Elliptic Cylinders. 

The relation z = c cosh ^ or x + iy = c cosh 4- ir)) 

gives a; = c cosh I cos 77 and y = csinhf sinT^. 

Let f have all values from zero to infinity and 77 all values from 

0 to 27r; then ^ _ const, and 77 = const. 

represent confocal ellipses and hyperbolas respectively, viz. 

^land—-_=1 
c^cosh^f ^ c^sinh^l^ c^cos^rj c^Bin^r] * 

the distance between the foci being 2c, and in any particular 

ellipse 77 denotes the eccentric angle. 
In dealing with elliptic cylinders, it is useful to observe that 

the equation g2^ gss^ 

has solutions of the type 

cosh 

3^2^3772 

sinh> (nf) 

and that must be used when vanishing at infinity is required, 

i.e. when the liquid extends to infinity. For confocal ellipses the 
cos 

form {A cosh sinh n^) (nij) may be used. 

To determine the stream function when an elliptic cylinder 

moves in an infinite liquid with velocity U parallel to the axial 

plane through the major axis of a cross section. 

Let the cross section be the ellipse x^la^+y*jb^ = l. This is the 
same aa^ — x, if a=coosha, &=csmha. 
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The boundary condition is +constant, where f = oc, 
i.e. where y — csinh asimj. 

Since the eflfect is to vanish at infinity and sinrj is the only 
variable factor in the boundary condition we must therefore 
assume a complex relation which gives to ^ the form e~^ sin 77. 

Assume therefore that 

so that ^ sin 17. 

Then at the boundary ^ = a, we must have 

— Ae"“sin77= — f/csinhasinT] + 

for all values of rj. This requires that B = 0, and A = Uce°^&inh(x„ 

— U sinh cx sin 17 

is a stream function which will make the boundary of the ellipse 

a stream line, when the cylinder moves with velocity ^7. 

Also ce“ sinh a = 6e“ = 6 (a + 6)/c = 6 

therefore ■ -Ub 
A 

/u 4- b t . 
/-r e“& sin 77 
/ 

and so Ub 
/a + ft t 

/-rC^COST? 
I a — b 

(I). 

To examine whether this is a correct solution it is easy to 

verify that it makes the velocity vanish at infinity. 
If the cylinder moves parallel to the axial plane through the 

minor axis of its cross section with velocity F, we get in like 

manner j~TT 
^ = Fa r^e-^cosT) 

.(2). 

and i = Fa /—~e-fsin77 
^ V a — b ) 

The forms of these results are the same for all confocal ellipses 

and therefore this last result includes the case of a plane lamina 
of breadth 2c moving at right angles to itself in the liquid; the 

ellipse in this case reducing to the straight line Joining the foci 

and the formulae becoming 

^ = Fce“^ cos 77, 

4^= Fce~i sin 77. 
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But these equations would make the velocity infinite at the 
edges (^ = 0,7^ == 0), and therefore cannot represent real conditions. 

In reality there is a region of ‘dead water’ behind the body, 

separated by surfaces of discontinuity from the moving liquid. 
The foregoing analysis assumes continuous motion. 

5*32. Liquid streaming past a fixed Elliptic Cylinder. 
This case may be deduced from 5*31 by superposing on the 
liquid and cylinder a velocity equal and opposite to that of the 
cylinder. Thus when the general velocity of the stream is — U 
parallel to the major axis, we must add Ux to the value of and 

Uy to the value of 0; so that 

Ud cosn-h ?7— cosh^cosri, 
M u — o 

and ifj——JJb I-—^e“^sin7]-f Vo^—i^sinh^sinr]. 

5*33. Elliptic Cylinder rotating in an infinite Mass of 
Liquid at rest at Infinity. If cu be the angular velocity the 
boundary condition is 

+ (5.1(3)) 

or, putting x = c cosh ^ cos rj and y = csinh ^ sin t/, 

^ ^ ojc^ (cosh 2^ -f cos 27])-\-C, where ^ == a. 

Since the effect is to vanish at infinity and the only variable 
term in the boundary condition is cos2t/, therefore we must 

assume a complex relation which gives to iff the form cos 2rj, 

Assume therefore that 

so that iff = cos 2r). 

Hence at the boundary ^ = a, we must have 

Ae"*® cos 2r] = I (cosh 2a -{- cos 2r]) -h C 

for all values oftj. And this is the case, provided 

A = J ojc^e^^ and (7 = ~ J cosh 2a. 

Therefore Ja;c®c^““^cos 27] gives a stream function which 

makes the boundary of the ellipse a stream line, when the 

cylinder rotates with angular velocity a>. 
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Since = (a + 6)^, we may write the results 

^ J oj (a + 6)* 6“^ cos 217, 

and <^ = i a> (a + 6)* e~~^ sin 27], 

It is easy to verify that the velocity vanishes at infinity. 

5*34. Any of the previous motions may be superposed. Thus if the 

elliptic cyhnder be moving parallel to itself with velocity v in a direction 

making an angle 6 with the major axis of the cross section, wo have from 

5*31 

and 

(/, = v ^ ^ e“f (6 cos rj cos ^ + a sim^ sin 8), 

0 = — v 1 ^ ® V 8). 

5*35. Circulation about an Elliptic Cylinder, If in 5*34 the 

iiTOtational motion is cyclic, with cir- 

culation k round the cylinder, we can /I 

take this into account by means of the 

function 

To verify that this gives the correct 

value to the circulation, wo have that 
the circulation 

da 

taken round the cylinder. 

-/■ r2rr 

Jo 
/•27r ^ 

Jo 271 

dy 
dr, 

dl-j = 

Hence if in addition to the velocity v of 5*34 the cylinder also rotates 

with angular velocity w, and there is a circulation k about the cylinder, 

we have 

<l> = (6 cos Tj 008 8 + a sin rj sin 8) + \u)(a + 6)* sin 2r; — , 
V Ztt 

and 

^ — V\/a — 6 ^ ^ ^ ^ ^) + J o> (o -f 6)2 c“2f cos 27j + 

✓ 
^ 5'4. Kinetic Energy. In any of these cases of a cylinder 

moving in liquid at rest at infinity, the expression for the kinetic 

energy is, as in 4* 71, r 
T=-yj^^ds, 

where the integration is now round the perimeter of the cylinder, 

and we are supposing as before that the liquid is confined between 
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two smooth planes at unit distance apart. But —d(f>jdn is the 

normal velocity outwards, and dift/ds 
is the normal velocity inwards, so that 

d(f>jdn — d\ltjds, 
and therefore 

As an example consider the rotating elliptic cylinder of 5*33, bounded 

by the ellipse ^ = a. Here we have on the boundary 

0 ^ w (a 4- 6)® cos 2r), 

and <^ = J c • (a -h b)^ sin 2iy, 

f2n 
SO that ^ = A + b)* e~^ I sin^ 2tjdri 

= ^ Trpii)^ (a* — 6*)* 

gives the kinetic energy of the liquid. 

5*5. Liquid contained in Cylinders. In cases of two- 
dimensional motion of liquid contained in a cylinder moving 

parallel to itself, the boundary condition is clearly the same as 

was obtained in 5* 1 for the motion of a cylinder surrounded by a 
liquid. 

As examples let us consider the following: 

(1) Let t£;= — Uzy 

or <f>^ — Ux, 

This represents a motion satisfying the boundary condition for uniform 

translation whatever be the form of the boundary; and the velocity at 

every point of the liquid is — d<f}/dx or t7, so that the liquid in the cylinder 

moves as if solid, and by 4*54 this is the only motion possible ip simply 

connected space. 

(2) Let w=^ — iAz*, 

or ^ = .4r*sin2^ cos 26 

= 2Axy, = — A 

Let us adapt these forms to the boundary condition for uniform rotation 

assuming the liquid to bo contained in arotating cylinder. From 5* 1, at the 

boundary we must have 

ia)(x* + y^)-B^-A(x^-y^), 

or —j?. 

Hence the boundary of the section may be an ellipse 

a;*/a* + y^jb^ = 1, 

provided a*(J<i> + ^) = 6*(Ja> — 

A = — 
a®-6* 

or 
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Therefor© 
a* — ib* — /)» 

and 

determine the motion of the liquid in the rotating elliptic cylinder 

referred to fixed axes momentarily coinciding with the axes of the cross 

section. 

If q denote the velocity. 

Hence the kinetic energy T of unit length is given by 

0/71 _ X ,-.2 — _ 

a2 + 62 

If we require the motion of the liquid relative to the cylinder, we may pro¬ 

ceed thus: The velocities in space of the particle, whose coordinates are 

(x, y) referred to the moving axes of the cross section, are x — any and y -h anx; 

therefore a la 
dip a® — 

and y + ^x=-£ = o>-^-^.x-. 

so that 

Hence 

which leads on integration to 

x = B cos -f- a ), 

and therefore V = ~ - H sin f , a>t + a V 
^ a \a^-\-b^ ) 

It follows that the motion is simple harmonic motion; the patlis of the 

particles being ellipses similar to the boundary ellipse, described in time 

7r(a®-f 6*)/a6a>. 
Or, to get the relative motion, we may impose on the whole system the 

angular velocity a> reversed. That is, we must increase ij/hy — J ta (a;® 4- y^) • 

This makes a — fe* 

=i " (** - y’)—i “»(®*+y*) 
_ oja^b^ /x* y^\ 

a*T6a 
shewing that the stream lines are similar ellipses. 

(3) Another simple case is that of a rotating prism whose section is an 

equilateral triangle. For this we take 

w—iAz^, 

or — Ar* sin 3^, ^=Af* cos 3$ — A (x^ — 3ary*). 
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The boimdary condition for rotation gives, in this case, 

Tkxy^) = ^ a> {x^ + y^) + i?, 

to be satisfied at all points of the boundary. 

To include the line x = o in the boundary, we must take 

J a>a2 4- 

and 

so that the equation becomes 

X® — 3x2/® + 3a (x® + y^) = 4a®, 

or (x —a)(x—\/32/ + 2a)(x + v'32/H-2a) = 0. 

These three line^ form an equilateral triangle with its centre at the origin; 

and the motion of liquid in a prism having this triangle for section and 

rotating with angular velocity oj is given by 

^ ^ r® sin Zd, ^ ^ r® cos 3^. 
DQ DO 

5*51. The stream function has been determined for the motion of 

liquid produced by moving cylinders of a great variety of forms. We have 

discussed some of the simplest cases very fully and append here a list of 

other cases with references to show where the investigations may be 

found. 

1. Rotating rectangular prism or box. Stokes, Tram, Camb, Phil. 

Soc, vin, or Math, aiid Sci. Papers, i, p, 60. Ferrers, Qiuirt, Journal, xv, 

p. 83. Greenhill, ibid, p. 144. Basset, Hydrodynamics, i, p. 96. 

2. Rotating semicircle. Hicks, Mess, of Math, viii, p. 42. 

3. Rotating quadrantal sector of a circle. Greenhill, ibid. p. 89. 

4. Rotating sector of a circle. Stokes, Trans, Camh, Phil. Soc, vm, or 

Math, and Sci. Papers, i, p. 305. Greenhill, Mess, of Math, x, p. 83. 

Basset, Hydrodynamics, i, p. 98. Lamb, Hydrodynamics, 1932, p. 89. 

6. Rotating rectangle bounded by two concentric circular arcs and two 

radii. Greenhill, Mess, of Math, ix, p. 36. 

6. Rotating arcs of confocal ellipse and hyperbola. Ferrers, Qiuirt. 

Journal, xvn, p. 227. 

7. Rotating arcs of two confocal parabolas. Ibid. 

8. Confocal elliptic cylinders—^translation and rotation. Greenhill, 
Quart, Joumal, xvi, p. 227, and Encyc. Brit. Uth edition, ‘ Hydromechanics ’. 

9. Rotation and translation of inverse of an ellipse. Basset, Quart. 

Journal, xix, p. 190, xxi, p. 336, and Hydrodynamics, i, p. 102. 

10. Rotation and translation of a lemniscate. Basset, Quart. Journal, 

XX, p. 234, and Hydrodynamics, i, p. 106. 

5-6. Applications of the Theory of Functions of a Com¬ 
plex Variable. Some well-known theorems in the theory of func¬ 

tions of a complex variable have direct applications to the kind 

of hydrodynamical problems considered in this chapter. In parti- 
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cular Cauchy’s Theorem, that if C is a closed curve in a region 

within which f {z) isaregular function of z then f {z)dz — 0; with 
J 0 

its immediate corollary that if O' is another closed curve inside C 
or surrounding C and f {z) is regular in the region formed of G, C* 
and the part of the plane between them then 

f f{z)dz= I* f(z)dz. 
J G J C' 

Also the integral theorem in the theory of residues that if 
f (z) is regular on a closed curve C and at all points within it save at a 
fiumber of ^ poles ’ then 

f {z) dz = 27Ti {sum of residues off (z) at its poles inside C); 
J G 

where, if in the neighbourhood of a point z = a, f (z) can be ex* 
pressed in the form 

/ \ g {z) H-h  -- 4-... 4- -^, 
z-a {z-ay {z-a)^ 

and g {z) is regular at a, then / {z) is said to have a pole of order n 
at a, and the coefficient of (z —viz. 6^ is called the residue of 
/ (z) at a. 

5’61, Theorem of Blasius. In a steady two-dimensional 
irrotational motion given by the relation w —f{z)y iifi = f{x + iy), 
if the hydrodynamical pressures on the contour of a fixed cylinder are 
represented by a force (X, Y) and a couple N about the origin of co¬ 
ordinates, then r 

= dz 

and N=reai part of—^p j 
where the integrations are round any contour which surrounds the 
cylinder*. 

Let the normal to the cylinder at the point {x, y) make an angle 
0 with the axis of x, then 

X=—Jpcos0d5 and Y=—Jpsin0(fo .(1); 

where in steady motion 

♦ Blasius, ZeiU.f, Math, u, Phys, Lvm, 1910. The proof given above was outlined 
in a Tripos question in 1933. 
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Therefore 

X = |/)J {u^^v^)dy and Y=~ipJ (u^-\’V^)dz..,{2), 

where the integrals are round the contour G* of the cylinder. 
Now the contour of the cylinder is a stream line and on every 

stream line dxju^dylv, so that 

and 

X 

Y 

= IpJ {2uvdx — {u^ — v^) dt/}| 

= —1^1 {{u^ — v^) dx + 2uvdy} 
Jc' 

.(3). 

Again since 

therefore 

dw d<t> ,dJt 

*=iv 
I 

(u^ ■2iuv) (dx-\-idy) 
^C' 

X^iY .(4). 

Now in the plane outside the cylinder a singularity in the 
function {dwjdz)^ would only be occasioned by a physical singu¬ 
larity in the fluid, such as a ‘ source ’ or a ‘ vortexIt follows that 
if we take a larger contour C surrounding C' and such that be¬ 
tween (7'and C there are no such singularities, or, more generally, 
such that when such singularities exist the sum of the residues of 
(dwldz)^ at all poles between C' and G is zero, then the integrals 

of this function have the same value for aU such contours and 

X 
.<“'■ 

Again, with the same notation, the total moment about the 
origin of the pressure on the cylinder is 

N= (ycoBd — x&m0)pds 
Jo' 

= p{xdx + ydy) 
J O' 

= {u^ + v^){xdx+ydy) . 

Making the same usa as before of the stream line relation 
dxju = dyivy it is easy to see that 

N = Ip I [{(u^ -v^)y- 2uvx} dy - {{u^ -v^)x^ 2uvy] dx] 
J O' 

.(6). 
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and that this is the real part of 

-ipj^iu-ivf(x + iy)(dz-i-idy) or ^hpj zdz .,,(1), 

and subject to the same limitation as before regarding singu¬ 
larities in the liquid the integral may be taken round any contour 
which surrounds the cylinder. 

The advantage of being able to use any such contour will be¬ 
come evident later. It lies in the fact that if aU part^ of the con¬ 
tour lie at a great distance from the cylinder it is sufficient to use 
an approximation to the expression for as a function of z. 

5*7. Steady Streaming with Circulation. Theorem of 
Kutta and Joukowski. The relation 

represents fluid motion in which ^ decreases by k in making a 
circuit of any contour which encloses the origin; i.e. motion with 
circulation k. 

Let this circulation be superposed upon a steady stream 
w=Vz, in which the velocity in the direction of the axis of .r is 
— U, and let there be a fixed cylinder of some form in the finite 
region of the plane, its cross section containing the origin. The 
disturbance of the stream caused by the cylinder can be repre¬ 
sented at a great distance by terms of the form 

A B 
“ +-2-1-... 
z z^ 

where depend on U and k, so that at a great distance from 
the origin 

«;=C7z+-logz + - + o(-^).(2). 

Then by 5*61 the force exerted on the cylinder is given by 
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taken round any contour at a great distance from the origin. 

Expanding the integrand in the form I ip ] -h... [, the 

function is seen to have a pole at the origin with residue —pKUI2tt, 

so that the integral = — (5*6). 

The value of the integral might also be obtained directly by taking for 
contour a circle of large radius R; i.e. by writing z = It appears that 
when we make JR oo the only term which contributes to the result is the 

, f , f^^UKRie»^^ 

which is equal to —ipKU, 

Hence we have X —iY= —ipKUy giving 

X = 0 and Y^pkU .(3)*. 

There is thus a transverse force on the cylinder at right angles to 
the stream. 

The couple on the cylinder might be calculated as the real part 

zdz (5*61), but when we substitute for w from (2) 

above, it will be found that the terms which contribute to the 
result contain A, so that the couple depends on the form of the 
cylinder. 

It will be observed that the velocity /c/27rr due to circulation 
increases the general velocity of the stream on one side of the 

cylinder and decreases it on the other; that the pressure is 

H 
^ 27rr 

■s27rr 

* Kutta, 8iizb. d. k, bayr. Akad, d. Wias, 1910. An earlier publication is attri> 
buted to Joukowski, 1906; see also Joukowski, Adrodyrumique, 1916, p. 139. 
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greater on the side of less velocity causing a resultant force on 
the cylinder across the stream towards the side of greater 

velocity. 
Since the hydrodyuamical pressure on the cylinder is only due 

to the relative motion of the fluid and the cylinder, any common 
velocity may be superposed on the cylinder and fluid without 
affecting the result, so that the same formulae will give the 
resultant pressure when the fluid is at rest at infinity and the 
cylinder is in motion. 

5*71. Example. Consider the relation 

#c, . z 
= - tan“^ - 

-IT c .(1). 

_x + iy 

c 
or taxi ~ {<l> + i^) z 

Since tan - — itp) = , it is easy to eliminate ^ and ip in turn and 

obtain the equations 

coth = c* cosech* 
K / 

ajid -f 3/2 = cosec 
,2^ 

•(2), 

•(3). 

SO that the curves ^ = const, and ^ = const, are orthogonal families of 
coaxial circles, with z = ± ic as the limiting points G, G\ 

Consider a two-dimensional flow in 

which the ^-circles are stream lines and 

let ^=a be a fixed circular boimdary 
(cross section of a cylinder) of radius 

27rQt 
a = c cosech-, with its centre A at the 

K 

point ^0, c coth 

Though (1) represents tt; as a many- 

valued function, yet the velocity com¬ 

ponents being given by 

. dw K c ... 
— = ~ 2 - 2 •••(^) dz Trz^-f-c® 

y 

mm ShH 
o P CC 

c' 

are single-valued and define a definite 

motion. 

Again the circulation rormd the cylin¬ 

der is the decrease in ^ in going roimd 

any ^-circle. But if P is the centre of a 

^-circle, it is clear from (3) that the angle GPx is 2tt<I>Ik, and if P is to vary 

its position so that a point of intersection of the and ^/-circles travels 

roimd the latter, the angle CPx will increase by 2n or p will increase by 

RH 8 
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K, SO that the circulation round the cylinder is — /c in the positive sense 
or /c in the clockwise sense. 

We can also verify the sense of the motion by considering the velocity 

on the axis Oy; putting a? = 0 in (4) gives 

TT c* — 
, v = 0 (6) 

making u positive above the cylinder and negative below it. 

Now apply the theorem of Blasius to find the resultant fluid pressure 
on the cylinder. 

We have 
dw _K c 

dz TT 2® -f- c* * 

„d 

integrated round any contour between which and the given circle there is 

no singularity in the integrand. The integrand has a pole at« = ic, and to 

find its residue there we write 2 = tc-f { where J is small. Then 

(**+c*)» (2ici+{‘)> 4c*{’‘V 2cJ 

^ + 
4c»C 

so that the residue is — i/4c®, and the value of the integral is 7r/2c*. 

Hence X-iY: 
ipK^ 

" 4^c ’ 

or X=:0 and Y^--pK*l^nc —..(6). 

Now the fluid might have as an external boundary any other stream 

line, e.g. the x-axis, giving flow round a cylinder parallel to a wall; or a 

larger ^-circle, say a circle of radius b with its centre B at a distance d from 

that of the given circle A. 

In the former case, when the a;-axis is a rigid boundary, if the cylinder 

of radius a has its axis at a distance a' from the boimdary, then c® = a'® — a®, 

and the force per unit length on the cylinder towards the wall is from (6) 

p/c VItt v'( a'® — a®). 
In the case of the flow between two cylinders, we have 

OB^OA=^d and OB*-6® = c® = 0.d*~a®, 

so that OB + OA = (6® — a*)/d; 

therefore OB = (6* — o* + d^)l2d 

and c® = {(6* - a® + d®)® ~ 

It follows from (6) that in this case the force per unit length on either 

cylinder tending to increase the distance between their axes is 

px®d/27r ^{(a + 6 + d) (6 + d — a) (6 + a — d) (6 ~ d+a)}*. 

* These results were obtained by Cisotti, Aui deUa R, Acad\ dei Lincei, 6 A, 
1925. 
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5*72. Reaction on a Moving Cylinder. Other Formulae. 
Let the motion of the cylinder be defined as in 5*1 by the 
velocity components f7, F of a point of its cross section and by an 
angular velocity a>. Let the reaction on the cylinder per unit 
length be represented by a force X, Y and a couple N; we shall 
obtain expressions for X, Y and N as products of U, F, w and 

certain line integrals. 
In steady motion the pressure in the liquid surrounding the 

cylinder is given, as in 2*41, by 

pjp = const. — J {{u — C7)^ -f (v — F)®} + CO {xv — yu) .(1), 
and 

X= —I Y== —I mpd5andN=— {7nx — ly)pd8.,,{2)y 
J c J c J c 

where /, m are direction cosines of the outward normal to the 

element ds of the contour C of the cylinder. 
The method is now to substitute for p from (1) in (2) and 

transform the integrals by making use of Green’s Theorem in 

the form 

where the contour G in the first integral is the complete boundary 
of the area A of integration on the right, the contour is described 
in such a sense as to have the area on the left and here (Z, m) 
represents the normal drawn outwards from A, 

We must therefore assume an outer boundary for the liquid 
and take account of contour integrals on this part of the boundary. 
It is convenient to take a fixed circle of large radius as the outer 
boundary. Since no tubes of flow can end in the liquid or on a 
fixed boundary, therefore all such tubes start from the moving 
cylinder and return to it. The motion is therefore of the general 
type which would be produced by a doublet or doublets, so that 
(in two dimensions) the velocity potential at a great distance is 
of order 1/r and the velocity is of order l/r^. On the large circle 
we may also assume that Z/a; = m/y, so that the factor mx — ly is 

zero. 
Taking the variable terms in the pressure we have 

l{u^-\-v^)d8—p{ Z{w((7 —v(F + a>x))cfo...{3), 
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Considering the first integral, since on an infinite circle it clearly 
vanishes, we have by Green’s Theorem 

I) d^dy 

Cndu^ duv (du , j 

= J (lu^ + muv) ds.(4), 

where we have made use of the equation of continuity, and again 
note that the integral round the infinite circle vanishes. 

Hence (3) becomes 

X=:/9 j u(lu-\-mv)ds — p l{u(U — o}y)-\-v(^^iox)]ds 
Jo Jo 

where the integration is round the contour of the cylinder. But 

on this contour the normal velocity of the liquid is equal to that 

of the cylinder, so that 

lU'hrnv==l(U— a)y) + m{V+ cox) .(6). 

Therefore X=/> {mu — Iv) (V -f lox) ds; 
J c 

or, since m = — dxfds and I = dyjds. 

(F + cua;) ds 

and similarly Y=-”pJ (V — wy) dsj 

This gives 

X + »Y=-ip(C;- + iF)J ^ds+pa>j z^-^^ds. 

If there is a circulation k round the cylinder then — f ^^ds = K, 
Jc3« 

X + tY=iK/>(C7 + iF)+/>toJz^da.(8), 

including as a special case the theorem of Kutta and Joukowski. 

♦ This discussion is based on a paper by Lamb, Reports and Memoranda of the 
Aeronautical Research Committee^ 1218, 1929, also in Hydrodynamics, 1932, p, 1S4, 
which includes the effects of acceleration and contains results (7) and (12), and (8) 
in slightly different form. 
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If there is no circulation, then by an integration by parts we 

(9). 
get I* 

X + iY=—pa>j <f>dz . 
J c 

Again, from (1) and (2) 

N = Ip I (u^ + v^) {mx — ly) ds 
J c 

— p J {u{U — (x)y)-hv{V-\-tox)] {mx — ly)d8..,{\0), 

and since the first integral would vanish when taken round the 
infinite circle its value is, by Green’s theorem, 

fff I du 0t;\ / du , J J J r r sy1“ s+^ a) 1 
1 , , . «,, , ,. du dv 1 ^ . 

and, by making use of the relations t;-- =and fkis 
° oy ox ox oy 

is seen to be equivalent to 

'll 
dxuv dxv^ dyu^ dyuv 

dx dy dx dy 
dxdy. 

so that N = p {lu + mv) (xv — yu) da 
J c 

— p {u{U--ojy)-hV(Vojx)}{mx — ly)ds ...(11); 
J c 

whence by using (6) we find that 

N = — p {mu — Iv) {xU + yV) ds 
J c 

= -pj^{Ux+Vy)f^ds .(12). 

When there is no circulation, an integration by parts gives 

N=pJ ^(Udx+Vdy), 

or N = real part of p{U — iV) j ^dz .(13). 
J c 

When there is no circulation the formulae (9) and (13) may be 

further modified thus: taking the formula 5*1 (1) for t/r on the 

contour C, we have 

J iffdz^^ j {Vx— Uy-^^a){x^-^y^)}{dx + idy); 
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and provided that the origin is the centroid of the cross section of the 
cylinder ^ ^ 

j {x^-¥y^)dx=^ 

and J (x2 4- y^) dy=JJ ~ (x^ -h y^) dxdy = 0, 

80 that f ifjdz=^A{U^iV) .(14), 
J c 

where A is the area enclosed by the contour. 
It follows that (9) may be written 

X4-iY= —pea f wdz~\-ipAa){U-hiV) .(9'); 
J c 

and we may write (13), adding a purely imaginary term, 

N = realpartof |p(?7 —iF)J (f>dz-hipA (U^+V^) , 

or, from (14) 

N = real part of |p(?7~-iF)J {<l) + ii/f)dz • 

i.e. N = real part of p(J7 —iF) r wdz .(13')- 
J 0 

5-8. Formulae for Momentum. Consider the case of a 

two-dimensional motion represented by the relation w=^f{z). 

The components , Hy of the momentum of the liquid bounded 

by a contour C are given by 

H^^iH (u 4- iv) dxdy 

dtfj , J 

integrated over the area bounded by the contour C. It follows 

that 
{^ + iHy=p\ ^idz+idy)=p\ 

J c J c 

Alternatively, instead of (1), we have 

=p j <l>{idx—dtf)=^ip\ 4>dz .(3). 
Jc Jc 
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Also, by adding (2) and (3), we get 

— ilff) (4). 

It follows in the same way, that, if the liquid is contained 
between two contours (7, C of which C' is the outer, then 

H^ + iHy=p( t/idz-pf ijtdz .(5), 
J C' J c 

and similar formulae corresponding to (3) and (4). 
These expressions for the linear momentum may lead to results 

independent of the shapes of the contours. For example, con¬ 

sider the momentum y)roduced in liquid contained between two 
long cylinders, set in motion impulsively, so that their velocity 
components are U, V and U\ V at right angles to their lengths. 

Then, on C, 

and 

Similarly 

\\i—Vx—Uy (5'1) 

j I {Vx—Uy){dX’\-idy) 
J c Jc 

= A(l/ + iF). 

J il,dz = A’{V' + iV'), 

where A, A' are the ajeas of the cross sections of the cylinders. 
Hence, from (5) 

H.^^iHy^pA' {ly -^iV')^pA{U ^iV) 

or -MU and -M\\ 

where //^, Hy are momenta per unit length of cylinder, and 
M, M' denote the masses of liquid which unit lengths of the 
cylinders would contain. 

5*9. Example. An elliptic cylinder, semi-axes a and b, is held with 

its length perpendicular to, and its major axis making an angle 6 with, the 

direction of a stream of velocity V. Prove that the magnitude of the couple per 

unit length on the cylinder due to the fluid pressure is rrp (a* — 6^) F* sin $ cos 6, 

and determine its sense. (M.T. 1903.) 

Let w = Acosh(J~-)/) .(1), 

where A is real, { = f y = a -h ijS and z = c cosh 
This makes </f=0 on f = a, which we take to be the boundary of the 

cylinder. 
, . dw Asinh(f-*y) 

Then 
dz' osinhf 

.(2). 
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At a great distance from the cylinder f is large, and w = — F cos 

t? = — F sin 6, so that (2) takes the form 

c ^ c * 

giving A = cFe® and )5 = ^. 

Therefore = Fe* (cosh y — sinh y coth J) 

= Fe« (co8hy-8inhy^^^/_^^-,^). 

For large values of z this gives 

g=F«-Jco.h,-.inhy(l + ^.)} 

„ /'dw\^ ^ c^sinhyV 
=F*e-2(^e-i'-. 

This function has a pole at the origin with residue 

_ F«c‘e«—> sinh y = - iF»c» (e>« - e-“^), 

hsiS the value 

z dz taken round a large contour surroimding the cylinder 

— 7rtF*c* (c®* — cos 2B 4- i sin 26). 

By the theorem of Blasius the couple on the cylinder is — ip times the real 

part of this integral, i.e. — trpF* (a* — 6*) sin 6 cos 6. The — sign in relation 

to the direction assumed for F above indicates that the couple tends to set 

the cylinder broadside to the stream. 

The result may also be obtained simply from 5*72 (13'). 

EXAMPLES 

1. An infinite circular cylinder of radius a is in motion in homogeneous 

fluid which extends to infinity and is at rest there. Shew that at any 

moment the pressure at a point of the fluid at distance r from the axis of 

the cylinder exceeds the hydrostfwtic pressure by 

P [7/i + ^{(l—2^)“i*-( 
where fi is the component acceleration of the centre of the cylinder in the 

direction of r, Uj^ and are the component velocities in and perpendiculcir 

to that direction. (Trinity Coll. 1904.) 

2. In the case of the two-dimensional motion of a liquid streaming past 

a fixed circular disc, the velocity at infinity is in a fixed direction where u 

is variable. Shew that the maximum value of the velocity at any point of 

the fluid is 2u. Prove that the force necessary to hold the disc at rest is 

2fnu, where m is the mass of liquid displaced by the disc. 

(Coll. Exam. 1907.) 
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3. Shew that when a cylinder moves uniformly in a given straight line 

in an infinite liquid, the path of any point in the fluid is given by the 

equations ^ y^^t 

dt ~ (z' - F«)» ’ dt~ \z- F<)* ’ 

where V = velocity of cylinder, a its radius, and z, z* are x + ty, x-^iy where 

Xj y are the coordinates measured from the starting point of the axis, along 

and perpendicular to its direction of motion. (Coll. Exam. 1897.) 

4. The space between two fixed coaxial circular cylinders of radii a and 

6, and between two planes perpendicular to the axis and distant c apart, is 

occupied by liquid of density p. Shew that the velocity potential of a 

motion whose kinetic energy shall equal a given quantity T is given by AQ^ 

,7p^«clog6/a=T. 

Work out the same problem for the space between two confocal elliptic 

cylinders. (St John’s Coll. 1903.) 

5. A circular cylinder of radius a is moving with velocity U along the 

axis of x; shew that the motion produced by the cylinder in a mass of fluid 

at rest is given by the complex function 

w; = = a*i7/(2 — Ut), 

where 2 = x + tt/. 

Find the magnitude and direction of the velocity in the fluid; and deduce 

that for a marked particle of the fluid, whose polar coordinates are r, 0 

referred to the centre of the cylinder as origin, 

Idr ..de U fa^ . . . 

r *+"*=7(r«* 7 
Hence prove that the path of such a particle is the elastic curve given by 

where p is the radius of curvature of the path. (St John’s Coll. 1911.) 

6. An infinite cylinder of reulius a and density a is suiroimded by a 

fixed concentric cylinder of radius 6, and the intervening space is filled with 

liquid of density p. Prove that the impulse per unit length necessary to 

start the inner cylinder with velocity V is 

g^,{(<T + /))6*-((7-p)o»}F. (Trinity Coll. 1912.) 

7. A stream of water of great depth is flowing with uniform velocity V 

over a plane level bottom. An infinite cylinder, of which the cross section is 

a .semicircle of radius a, lies on its flat side with its generating lines making 

an angle a with the undisturbed stream lines. Prove that the resultant 

fluid pres.sure per unit length on the curved surface is 

2aII- SpoF^sin^a, 

where II is the fluid pressure at a great distance from the cylinder. 

(Trinity Coll. 1896.) 

8. The space between two infinit<^ly long coaxial cylinders of radii a and 

b respectively is filled with homogeneous liquid of density p and the inner 

cylinder is suddenljr moved with velocity U perpendicular to the axis, the 
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outer one being kept fixed. Shew that the resultant impulsive pressure on a 

length I of the inner cylinder is 

(M.T. 1882.) 

9. Verify that the stream functions for uniform streaming parallel to 

the axes past a solid, bounded by those parts of the circles 

l)*-f2/*rr2, (a?-l)a-fy® = 2 

which are external to each other, are 

+ (a;-f 1)^ + 2/® (x-l)*4-2/J 

, I , ^ , 2{x-hl) 2{x—l) ^ 

(a;4-l)* + y® (:r—l)® + y*' 

and, when the stream is inclined at an angle a to the line of centres, find the 

equation to the stream line that divides on the solid. (M.T. 1894.) 

10. If a long circular cylinder of radius a moves in a straight line at 

right angles to its length in liquid at rest at infinity, shew that when 

a particle of liquid in the plane of symmetry, initially at distance b in 

advance of the axis of the cylinder, has moved through a distance c, then 

the cylinder has moved through a distance 

—2—. (M.T. 1931.) 

6 + acoth 
a 

11. A circular cylinder is fixed across a stream of velocity U with 

circulation k round the cylinder. Shew that the maximum velocity in the 

liquid is 2TJ + » where a is the radius of the cylinder. (M.T. 1927.) 
JiTtCI 

12. An elliptic cylinder, the semi-axes of whose cross section are a and 6, 

is moving with velocity U parallel to the major axis of its cross section, 

through an infinite liquid of density p which is at rest at infinity, the 

pressure there being 11. Prove that in order that the pressure may every- 

where be positive pTP<2ami(2ab + b^). (M.T. 1906.) 

13. In the two-dimensional irrotational motion of a liquid streaming 

past a fixed elliptic disc x^fa^ + = 1, the velocity at infinity being 

parallel to the major axis and equal to F, prove that if 

x + ty = c cosh (f + ^>/), 

= and a = ccosha, 6 = csinha, 

the velocity at any point is given by 

^ a~6* sinh* f-f sin® 17 ’ 

and that it has its maximum value F (o -f 6)/a at the end of the minor axisi 

(Coll. Exam. 1899.) 

14. An infinite two-dimensional stream whose velocity potential is 

SA„r»»cosn0, is disturbed by the insertion of a stationary cylindrical 
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obstacle r=c. Shew that the pressure on the cylinder is in the direction 
00 

^ = 0 and of amount S An^n^n+i»where the A’s are independent of the ^I’s. 

' (M.T. 1921.) 

15. Shew that with proper choice of units the motion of an infinite 

liquid produced by the motion of an elliptic cylinder parallel to one of its 

principal axes is given by the complex function 

w = where 2 = 2 cosh f. 

Deduce the formulae 

and trace the curves ^ = const., ^ = const., indicating which parts are of 

physical interest. (St John’s Coll. 1909.) 

16. Prove that the relative stream lines of the liquid bounded by the 

hyperbolic cylinders 

rc (x — 2/) — a* = 0, y(x-^y) — h^=^() 

are the quartic curves 

{a; (a; ~ 1/) — a®} {i/(re 4-2/) = const. (M.T. 1881.) 

17. If liquid be contained between two confocal elliptic cylinders, and 

two planes perpendicular to the axes, prove that if the outer cylinder be 

made to rotate about its axis, the inner will begin to rotate with sech 2 (— a) 

times the angular velocity of the outer cylinder, supposing c cosh a, c sinh a 

the semi-axes of the inner cylinder, and ccoshjS, csinhjS of the outer; 

neglecting the inertia of the cylinder. (M.T. 1881.) 

18. An elliptic cylinder is placed in a steady stream which at infinity 

makes an angle a with the major axis of the cylinder. Shew that on the 

ellipse the pressure is greatest at the points where the stream divides, and 

least at the points where the fluid is moving parallel to the stream as it 

meets the ellipse. (Trinity Coll. 1906.) 

19. Prove that when an infinitely long cylinder of density a whose 

cross section is an ellipse of semi-axes a, 6 is immersed in an infinite liquid 

of density p the square of its radius of gyration about its axis is effectively 

increased by the quantity p 

So* ab 
(Univ. of London, 1907.) 

20. Determine the character of the two-dimensioneJ fluid motion inside 

—2 + 

pressure at each point in the cross section when there is no field of force. 
(St John’s CoU.1901.) 

21. An infinite elliptic cylinder with semi-axes a, b is rotating round its 

axis with angular velocity <*>, in an infinite liquid of density p which is at 

rest at infinity. Shew that if the fluid is under the action of no forces the 

moment of the fluid pressure on the cylinder round the centre is In pc* , 

(Coll. Exam. 1902.) where c* = a® — 6*. 
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22. The space between two confocal elliptic cylinders (a^, bo) and 

(ai, bi) and two planes perpendicular to their axis is filled with liquid. If 

both cylinders be made to rotate about their common axis with angular 

velocity the kinetic energy of the motion sot up is 

I {biCtQ bQCii)f{ciiciq bi b^) (Uj b^ Uq6q)« 

M being the mass of the liquid, and 2c the distance between the foci. 

(St John’s Coll. 1900.) 

23. An elliptic cylinder whose semi-axes are c cosh a, c sinh a is divided 

in two by a plane through the axis of the cylinder and the major axis of its 

cross section. An infinite liquid of density p streams past the cylinder, its 

velocity U at infinity being uniform and parallel to the major axis of the 

cross section of the cylinder. Shew that in consequence of the motion of 

the liquid the pressure between the two portions of the cylinder is 

diminished by 
pcC7*e» sinh a {2 cosh a + e* sinh a log tanh Ja} 

per unit length of the cylinder. (M.T. 1899.) 

24. A fixed elliptic cylinder whose principal axes are c cosh j8, c sinh p is 

surrounded by infinite liquid in which there is a source of strength m at the 

point ccoshy, 0; prove that if p is very small the stream function of the 

motion is 
tan”^ 

sin ^ sinhTy 

cos ^ cosh 71 — cosh y cosh (y +17) ~ cos f * 

x + iy =:ccos (Coll. Exam. 1900.) where 

26, A thin shell in the form of an infinitely long elliptic cylinder, semi- 

axes a and 6, is rotating about its axis in an infinite liquid otherwise at rest. 

It is filled with the same liquid. Prove that the ratio of the kinetic energy 

of the liquid inside to that of the liquid outside is 2ab: a* + 6*. 

(M.T. 1926.) 

26. A long circular cylinder moves through an infinite liquid, which is 

at rest at infinity, with a velocity u at right angles to the axis. If the cross 

section is not quite circular but has for equation 

r = a(l -f €cosn0), 

where c is small, shew that when the motion is parallel to the axis of x, the 

approximate value of the velocity potential is 

tia |^cos0-f €^;^cos(n-f 1) cos(n— 1) . 

(Coll. Exam. 1901.) 

27. Liquid of density p is circulating irrotationally between two con- 

focal elliptic cylinders f = a, f where 

x + iy = ccosh (f -f iri). 

Prove that, if k is the circulation, the kinetic energy per unit length of 

cylinder is (M.T. 1926.) 

28. If f, Tj be conjugate functions of .r and y, such that the curves for 

which ( is constant are closed ovals surroimding the origin, then the 

kinetic energy and moment of momentum of homogeneous fiuid of density 
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p contained between two curves and » which are rotating with unit 

angular velocity about the origin, can be expressed in the form and 

Mk^ respectively, where 

Mk^=ip J(x» + y^)^^dr, 

taken round the boundaries. (M.T. 1896.) 

29. Shew that the angular momentum, of a two-dimensional motion of 

a homogeneous fluid, about an axis perpendicular to the plane of the motion, 

is pjw<l>d8, the integral being taken round a cross section of the containing 

vessel, where oj is the perpendicular from the axis to the normal of the cross 

section, p is the density and ^ the velocity potential. 

If the vessel be rotating with angular velocity co, and /a>, IqO) are the 

angular momenta about the axis of rotation, and the line of centroids of 

the cross sections respectively, find an expression for / — in a form which 

does not depend on the shape of the vessel. (M.T. 1897.) 

30. Prove that, if 2a, 2h are the axes of the cross section of an elliptic 

cylinder placed across a stream in which the velocity at infinity is U 

parallel to the major axis of the cross section, the velocity at a point 

(o cos 7]y b sin r}) on the surface is 

U (a-hb) sin -q (6* cos^ sin* 7/)“^; 

and that, in consequence of the motion of the liquid, the resultant thrust 

(per unit length) on that half cylinder on which the stream impinges is 

diminished by ^ 4 /a-6Uj 

0 — 6 \ \a —6/ \a-h6/j* 

where p is the density of the liquid. (M.T. 1924.) 

31. An infinite cylinder contains fluid and is rotating with angular 

velocity about its axis Oz. Shew that the two-dimensional irrotational 

motion of the fluid may be determined by use of the relative stream func¬ 

tion Xf where x is constant on the boundary, and satisfies the equation 

^ = — 2ai at mtemal pomts. 

Shew that the kinetic energy of the fluid is less than its kinetic energy 

when it is rotating as a rigid body with the same angular velocity by 

(Univ. of London, 1916. 

32. A circular cylinder of radius a and infinite length lies on a plane in 

an infinite depth of liquid. The velocity of the liquid at a great distance 

from the cylinder is U perpendicular to the generators, and the motion is 

irrotational and two-dimensional. Verify that the stream function is the 

imaginary part of w^naUooth(-nalz), 

where z is a complex variable zero on the line of contact and real on the 

plane. Prove also that the pressures at the two ends of the diameter of the 

cylinder normal to the plane differ by 7r*pU^/Z2. (M.T. 1929.) 
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33. A hollow vessel of the form of an equilateral triangular prism, filled 
with liquid, is struck excentrically by a given blow in a plane perpendicular 
to the axis and bisecting the three edges; find the initial motion of the 
vessel. (M.T. 1887.) 

34. What is the nature of the motion in the neighbourhood of the 
origin, when, / (z) being continuous finite and one-valued in that neigh- 

bourhood, dto m ,, , 
(1) 

(2) 
dw 

dz 

im 
z +/(*). 

m and M being realf (Univ. of London, 1911.) 

35. Find the steady motion in two dimensions of an incompressible 
liquid, such that the stream lines are all ellipses similar to 

+ 1, 
which is possible under the action of external forces whose components at 
the point xy are X = Axy^, Y = Bx^, where A and B are constants. 

(Dublin Univ. 1911.) 

36. In a two-dimensional irrotational motion of an incompressible 
fluid, the space between two cylinders whose cross sections are the 
curves Ci and is completely filled with fluid, and Ci is wholly inside . 
Kthe velocity components axe ~ and — d<f>ldyf and ^ is single-valued, 

where I is the cosine of the angle between the outward normal and the 
axis of X, and the differentiation is along the outward normal. 

An infinite solid cylinder, whose section is the curve C, moves with 
velocity U along the axis of a; in an infinite expanse of invisoid, incom¬ 
pressible fluid, of constant density p, and ^ is the (single-valued) velocity 
potential of the flmd motion, defined as above. Shew that T, the kinetic 

energy of the fluid per unit length, is equal to ipU j l<j>d8. 

If for large values of z 

use the equality above to prove that 

r = ipC/*(2i7A-^), 

where A is the area enclosed by C. (M.T. 1934.) 



CHAPTER VI 

THE USE OF CONFORMAL REPRESENTATION. 

DISCONTINUOUS MOTION. FREE STREAM 
LINES. AEROFOILS 

6*1. Conformal Representation. If 

i + ii]=f(x + iy), or i=/(z), 

and we take (f, and (x, y) to be rectangular coordinates of 
points in two planes which we may call the t plane and the z plane, 
then the point {i, rj) in the t plane corresponds to the point {x, y) 
in the z plane and the functional relation between t and z implies 
(3*21) that at an ordinary point the ratio Ujhz of small corre¬ 
sponding elements tends to a limit which is independent of the 
direction of 8z. Thus let P, P^, P^ be near points z, z^, z^ and 
Q, Qi, Q2 the corresponding points t, <1, ■ Then we may write 

2j-z = rie‘^i, z^-z=^r^e^i, 

V 

0i 

Q 

o X o 

and since the limit of 8</8z is independent of direction, therefore 

and tend to the same limit. Hence the ratios and 
r^e 
PP, 

r.e^t QQz 
-p~ are ultimately equal, as are the angles ^2 — <t>i sJid 6^ - or 

2 

QiQQi and PjPPg, and this establishes the similarity of the 
corresponding infinitesimal elements of the two planes, though 
corresponding finite areas of the two planes are not similar. Such 
a relation between the two planes is called the conformal repre¬ 
sentation of either plane on the other. 
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It is to be observed that the similarity of infinitesimal elements 
of the two planes will not hold good at points at which dtjdz is 

zero or infinite, as for example at a branch point of a multiple- 
valued function. Thus, the origin is a branch point in the t plane 

of the function t = 

and as z describes a circular arc of angle a round the origin, t 

describes an arc of angle so that corresponding elements of the 

planes are not similar. 

Now let there be two areas occupied by a fluid in motion. Let 

7) be the coordinates of a point 11 in one, and x, y the coordinates 

of a corresponding point P in the other. Let ifj be the velocity 

potential and current function of any motion within the chosen 
area in the t plane given by 

and let the boundary be ^ = jPi{^,7^) = const. If we substitute 

for ^, 7) their values in terms of x, y, we get a relation 

i> + i^ = X2i^ + W)> 
and, if F^{^, 7)) = F^{x^y), the corresponding boundary in the 

z plane is ^ s (a:, y) = const. Hence the same functions (f> and ^ 

are now the velocity potential and stream function of a motion 

in the z plane with a boundary F2 (x, y) = const. 

6* 11. It is clear that tj are themselves the velocity potential 

and stream function of some motion in the z plane and if we write 

we may caU h the velocity of the transformation, and as in 5*3 
we see that veloc. of P=A X veloc. of 11. 

Thus the actual velocities at corresponding points may be com¬ 
pared. The directions of motion at corresponding points make 

equal angles with corresponding lines in the areas. 

Since = f^dxdy = hHxdy, 

corresponding elementary areae in the t and z planes are in the 

ratio A®: 1. Hence the kinetic energies of the two fluids that 
occupy corresponding areas are equal. Thus the whole kinetic 

energies of the two motions are equal, but differently distributed 

over the areas of motion. 
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6* 12. If a source exist in one fluid there will be a source at the 
corresponding point of the other fluid. This follows at once from 
the fact that iff is the same at corresponding points in the two 
fluids, so that Jdi/r taken along corresponding arcs of curves must 
have the same value. That is, the flow across corresponding arcs 
is the same. At a pair of corresponding points at which t and z 
possess no singularities a small curve surrounding one corresponds 
to a small curve surrounding the other, and f di}s round either 
curve represents the flow across it. Hence to a source at one such 
point must correspond a source of equal strength at the other. 
But care must be taken at a zero, infinity or branch point of the 
function that ^ is of z or that z is of t, A source will always 
correspond to a source but the strengths may differ; thus in the 
case t = z^, since a semicircle round ^ = 0 corresponds to a circle 
round z = 0 and the flow across both is the same, if there be a 
source of strength m at z = 0 the corresponding source at ^ = 0 
must be of strength 2m. 

If a doublet of strength m exists in the z plane at a point 
which occasions no singularity in t there will clearly be a doublet 
at the corresponding point in the t plane, the axes of the doublets 
will be in corresponding directions, i.e. they will make equal 
angles with any two corresponding lines through the points, and 
the strength m' of the doublet in the t plane will be given by 

/m = (dtjdz | = A, 

for the strength of a doublet is the product of the strength of a 
source and an infinitesimal length. 

6*121. Example. Consider the transformation 

t = 2*, 0 < K < 1. 

If we use polar coordinates r, 6 in the z plane and p, x in the t plane, this 
relation may be written 

so that X = ^^9 p^r*. 

Suppose there to be liquid in the z plane bounded by the real axis, i.e. 
from ^ = 0 to ^ = tr. The corresponding boimdaries in the t plane are ^=0 
and 6 = kv. 

First let the motion in the z plane be due to a source of strength m at the 
origin, then -tnloga. 

The corresponding motion in the t plane is therefore given by 
JL fin 

— mlog<*=-log^. 

Kit 9 
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and this represents motion due to a source of strength m/k at the origin in 
an area of the t plane boimded by 0=0 and 6= ktt. 

Secondly if the motion in the z plane is due to a source m at 2 = a, we 
must introduce an equal source at the image point a' with regard to the 
real axis in order to make the real axis a stream line. Then we have 

—m log (2 —a) (2 —a'). 

If 6 = a* and h' = a'“ be the points in the t plane corresponding to a and a' 

the motion in the t plane is given by 
111 1 

To investigate the form of this expression in the neighbourhood of the 
point 6, we write ^ = 6 + and it is easily seen that the variable part of 
</> + itp reduces to — m log 8t or —m log (t — b). Hence it follows that in this 
case the motion in the t plane is due to a source of strength m at 6. 

6*2. We may use this method, by proper choice of formulae 
of transformation, to deduce the motion with a complicated 

boundary from that with a simpler boundary. Thus to find the 
motion of a fluid with sources or doublets , Pg,... within an 
infinite area on the z plane with a boundary Pg (x, y) = 0. First 
suppose the sources and doublets removed and try to find a 
steady acyclic motion of fluid with the same, boundary. If this 
can be done, let rj be the velocity potential and stream function,, 
so that rj is constant along the boundary Pg, say ’q = k. Then use 
iy 7} as the formulae of transformation; the boundary Pg trans¬ 
forms into the straight line 7j==k and the area of motion trans¬ 
forms into the infibnite area on one side of this line. Now replace 
the sources and doublets P,, Pg, ... by corresponding sources 
and doublets 111, fig, ... in the t plane. The motion in the t plane 
due to the sources and doublets Hj, Og, ... can generally be 
inferred by placing single images for each on the other side of the 
line Tj = k, and so we obtain -j- in terms of for the motion 
in the t plane, and substituting for rj in terms of x and y we get 
^ -f in terms of a; -f iy giving the motion in the z plane due to the 
sources and doublets P^, .... 

6*21 • Examples. 1. To find the motion in the apace bounded a; = 0, 
2/ = 0, y = 6 due to a source at the origin. 

W© want a solution of 

dx^ 
= 0 

that will make constant when a;=0, j/ = 0, or 
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If we put Tf =/ (x) sin ^, we get 

dx^ 6* 
/=0. 

so that f(x) = A sinh B cosh , 

and we shall have 17 = 0 when a: = 0 if J5 = 0. 

Henoe . • v Jr* 

and the conjugate function is 

77 = ^ sinh sin ^, 

so that 

. . ^ttx Try 
cosh j cos ; 

f J -f- ^77 = cosh ^(x-i-iy)=^A cosh ^ 

transforms the given boundary into the straight line 77 = 0, and the point 
f = ^, 77 = 0 corresponds to a; = 0, y = 0. 

If we place a source of strength m at this point, we have for the motion 

in the « plane ^+i^=-fnlog(t-A). 

Therefore the motion in the z plane is given by 

^-f ^^ = — mlog^ ^cosh^~ , 

or omitting an additive constant 

4- = — 2mlog sinh 

and it is to be observed that since the straight boundary in the f plane 
corresponds to a right angle at O in the z plane, the motion in the z plane is 
due to a source of strength 2m. 

2. Verify thaty if r, 8 he real positive constantsy 

z=:x-^iyy a = /)e*^, = 4-^“^, 

the steady motion outside both the circles a:* + 2/* + = 0, x'^ + y^ — 2rx ~ 0, 
du>e to a doublet at the point 2 = a, outside both the circlesy of strength fx. and 

inclination a to the axis of x, is given by putting 4> + i^ equal to 

(«~2^) cot CTT Q cot a ) ] * 

where z^a^isthe inverse point to a with regard to either one of the circles. 

, . (M.T. 1896.) 
\ ^ J- ' 

The transformation < = -, or f 4-117 = -YTr~i * 
z X 4*2/ 

y — ® 

makes the given circles correspond to straight lines 77 = — 1 /2Sy 77 = l/2r in 
the t plane, and the space between these lines clearly corresponds to the 
space outside the circles. 

To correspond to the doublet of strength 71 at 21 = a we must take one of 

--L1- I<^1 Mxxi. ^ ^ sinfi + i cos 78 strength j^ j = ^at the pomt {4-^77=:^ = -= ---. 

9*2 
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To get the direction of this doublet in the i plane, we observe that the 
doublet ^ at a makes an angle a with Ox _ 
and therefore makes an angle Jtt — (2/8 — a) 
with the circle of the same coaxial family / \ 
that passes through a; and this circle trans- / \ 

forms into a parallel to in the t plane y /2/3 \ 
so that the doublet in the t plane makes j ^ 
an angle Jtt —(2^— a) with 17 = (cos \ / 

Instead of taking an infinite series of \ / 
images of this doublet in the parallel \v 
boundaries 77=—l/2«, 77 = l/2r in the -^ 
t plane, we make another substitution which transforms the strip of the 
t plane into the upper half of a plane z*; viz. 

for this makes 8' = 27rc ^77 + »so that, as rj increases from — 1 /2« to 1 /2r, 

6' increases from 0 to tt. And we may now omit the constant factor 
girei/j from z' as it only implies a rotation of the axes about the origin. 

There is now therefore a single boundary y' = 0; and the last doublet 

t at < = - becomes a doublet ~ at 2'= i.e. a doublet 
a p^ dt 

at 2'= i.e. a doublet 

^' = I 27rce*’"«»’^« 1 = g2«c(sin^)/p. 

Also since the doublet in the t plane makes an angle Jtt + a ~ 2/8 with 
7; = (cos/S)/p, therefore the doublet pf makes the same angle in the 2' 
plane with the radius 8'= (27rc cos /8)//), or an angle 

y = iwH-a~-2/S + (27rc cosj8)/p, 
with 0x\ 

This doublet gives rise to a motion represented by 

I-V* . «’*■■" 
ttrcifa pi ^ ^Iktreilz_g2irc>7a 

—TTcir^ —-) 

!: ^ ^ ^_ 

/I i\ . . /I i\ 
cos 7rc(-j—tsmTrC-) 

p* • /I 
^ sin ttC-) 

\J5 aj 

gi(a-a«) cot TTC f i + const, P* \z a J 

But this doublet will require an equed doublet as an image symmetri¬ 
cally placed with regard to the line y' = 0, and this can easily be shewn 
to give rise to the other term in w. 
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6*3. Discontinuous Motion. We have now arrived at a 

point in the theory of motion of a perfect fluid at which it is 
again necessary to emphasize the difference between this and 

real fluids. In any steady motion, apart from external causes, 
we have plp=C-\q^, 

where (7 is a constant, so that for large velocities the pressure 

will be negative. This is physically possible, and in the case of 

a liquid there is then the question whether ‘cavitation’ ac¬ 

companied by evaporation takes place or not. In many cases 

single liquid elements would be in the region of low pressure 

for too short a time for the necessary transfer of heat to cause 

evaporation, but if the liquid contained dissolved gas a separa¬ 

tion might take place. In the flow of a gas there is no question 

of cavitation because indefinite expansion is possible. So far as 

we are concerned with ideal liquid, cavitation would prevent 

the establishment of the large negative pressure and infinite 

velocities which the theory of continuous flow sometimes re¬ 

quires, e.g. in 5*31. But in real fluids viscosity is the important 

consideration, and the slightest amount of viscosity is effective 

in so modifying the motion, before any cavitation takes place, 

that no large negative pressures are brought into being. In the 

perfect fluid theory it is assumed that when an obstacle hinders 

the flow of a stream there is generally a region of ‘ dead-water ’ 

behind the obstacle; this region is separated from the rest by a 

surface of stream lines and there is a discontinuity in the tan¬ 
gential velocity as we cross the surface*. We have seen in 3*72 

reasons why such a surface should be unstable, but in the analysis 

which follows in the examples considered in the next few articles 
we shall proceed on the hypothesis of the existence of a steady 

state. 

6*31. We propose now to consider some cases of discontinuous 

two-dimensional motion, such as the flow of liquid through an 
aperture, and the impact of a stream on a plane lamina. The 

earliest solutions of problems of this nature were by Helmholtzf, 

♦ This idea of discontinuity was enunciated by Stokes, ‘ On the Critical Values 
of the Sums of Periodic Series*, Trans. Camb, Phil. Soc. viii, or Math, and Phys, 
Papers^ i, p. 310. 

t ‘Ueber discontinuirliche FliissigkeitsbewegungenBerlin. MonatsberichU, 
1868. 
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and Kircbhoff* who developed a general method of treatment 
applicable to cases in which the fixed boundaries are rectilinear, 

and where there may also be surfaces of constant pressure which 

may be free surfaces of the liquid or surfaces separating a portion 
of liquid at rest from the rest of the liquid. The given fixed 

boundaries are portions of stream lines, the other boundaries 

may be regarded as free stream lines and the solution of the 

problem will determine their form and position. Along the fixed 

boundaries the direction of the velocity is known but not its 
magnitude, and along the free stream lines, the pressure being 

constant, the velocity is constant in magnitude though its 
direction is not known. We must point out however that the 

problems of flow of a jet and flow past an obstacle are diflferent 
in character, and that in the latter case the results of the free stream 

line theory are of little practical importance because they are widely 

at variance with reality. 

6*32. In any particular case it is our object to find a suitable 

relation between w and Zy i.e. to express <f) and ^ in terms of x 
and y. When we have found the equation of the stream lines, 

^ = const., it will of course include the equations of the fixed 

boundaries. 
For this purpose Kirchhoff introduced the intermediate 

function u-^iv 
2r 

y dZ W I V < 

dw 

= e^lq. 

(3*51) 

where 9 is the inclination to the x axis of the velocity g, so that 6 

is constant along a fixed boundary and q is constant along a free 

stream line. Kirchhoff then shewed how, by conformal repre¬ 

sentation, to obtain a relation between w and this function and 

the elimination of ^ between this relation and dzjdw = — ^ gives on 

integration a relation between w and z. 

6*33. In our two-dimensional problem we have a certain 
region on the z plane bounded by stream lines, that is, Unes for 

which tfs is constant, so that the corresponding region on the w 

plane will be bounded by straight lines parallel to the axis. The 

method that we shall use for obtaining the relation between w and 

* CrelUy 1869. See also Mechanik, chaps, xxi, xxn. 
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2 consists in making two intermediate transformations*. Thus 
consider the function 

Q = log 5 = log + i6. 

Since the figure in the z plane is bounded by lines for which 
either 6 is constant or q is constant, and we may by suitable choice 

of units take unity to be the constant value of q along the free 

stream lines, hence if the z plane is conformally represented on 
the Q. plane the fixed boundaries {0 = constant) on the 2 plane 

will correspond to lines parallel to the real axis on the Q plane, 

and the free stream lines (7=1) on the 2 plane will correspond 

to portions of the imaginary axis on the JQ plane. Thus the 

figure on the Q plane is rectangular and bounded by straight 

lines. 

We next make use of a theorem due to Schwarzf andChristoffel J 

by which a rectilinear polygon in one plane can be transformed 

into the real axis in another plane, which we will call the t plane. 

This theorem enables us to determine the relations between and 

t and between w and t that will transform our figures in both the 

Handle; planes into the real axis in the t plane, so that points which 
ought to correspond in the Q. and w planes both correspond to the 

same point on the real axis in the t plane. The elimination of t 

then gives w in terms of LI or log (— dzjdw) and hence we get the 

required relation between w and 2, though it is sometimes more 

convenient to retain ^ as a variable parameter. 

6*4. Theorem of Schwarz and Christoffel. If z = x^iy 
and ^ ^ -f then any polygon bounded by straight lines in the 2 

plane can be transformed into the axis of points inside the 

polygon corresponding to points on one side of the axis of and 

the relation that effects tliis transformation is 

where a^, ag,... are the internal angles of the polygon in the 

z plane, and f ^> • • • points on the axis of ^ that corre¬ 
spond to the angular points of the polygon in the 2 plane. 

* See Love, ‘On the Theory of Discontinnous Fluid motions in two dimensions’, 
Proo, Camb. Phil, Soc, vn, p. 175. 

t ‘Ueber einige Abbildungsaufgaben*, CreUe, lxx, 1869, p. 105. 
i ‘Sul problema delle temperature stazionare’, Annali di Mateimtica, 1, 1867, 

p. 89. 
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To verify this, we observe that dzjdt is never zero or infinite 
except at the points ••• 
dzjdt = Re^^, where R is real, the argument 9 remains unchanged 
so long as t is real and does not pass through any of the values 
f 1 > ^2»• • • f n i hence the argument of dz is constant so long as t lies 
between any two of the values ^2»• • • points z which 
correspond to points between and ^,.^1, say, on the axis of lie 
on a straight line in the z plane. 

Hence it appears that points on one side of the axis of ^ in the 
t plane correspond to points within a polygon on the z plane and 
that the points , ^2»• • • correspond to the corners. 

Now consider the change in the argument of dzjdt as t, moving 
along the f axis, passes through the point ij.. It is clear that the 

only factor that will give rise to any change is {t — , and we 

> 

can make the passage by making the path near ^ semicircle of 
small radius e with centre at as in the figure. On this semi¬ 
circle t — so that 

e VTT / 
it-ir) 

and as the semicircle is described 9 changes from tt to zero, hence 
the argument of dzjdt increases by tt —oc,.. There is, therefore, a 
change of argument in the z plane amounting to tt —oc,., so that 
the lines in the z plane corresponding to ir frfr+l make 
an angle tt — with one another and the internal angle of the 
polygon corresponding to the comer is . 

6*41. When we wish to transform a given polygon in the z 
plane into the axis of f in the t plane, the values of , ag,... are 
known, and as regards the values of f 2»• • - f n three of them may 
be chosen arbitrarily and the others then depend on the dimen¬ 
sions of the polygon. For in order to construct a polygon similar 
to a given polygon of n sides we must have — 3 relations between 
the lengths of the sides. Any arbitrary distribution of the points 
it9 ••• in> provided they are taken in the proper order, will 
correspond to a polygon whose sides are in the right directions 
but, if the polygon is to have definite shape, only three of the 
points ^1, ^ chosen arbitrarily. 
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By consideration of the function 

d 

dt 

ajrr-l 

it can be shewn that if the point f=oo be taken to correspond 
with one comer of the polygon the corresponding factor in the 
expression for dz/dt is omitted’**. 

6*42. As indicated in 6*33 the cases jvith which we are concerned will 
be those in which the polygon is rectangular. For a rectangle 

TT 

and if the comers 
have 

correspond to the points f^, f,, f f4 on the f axis we 

dz A 

(i) If we take fi= —1» 1, fj = cx) it is clear that two sides of the 
rectangle are infinite, so that we must also have ^4 = —00, and the relation 
is, in this case, ^ ^ 

This gives 2 = ^4 cosh”^f + B; and if we take B = 0, which only means 
moving the origin in the z plane, we have 

^ = cosh2:/A, 

and the following values correspond: 

^=1, —1, cx>, —oo; z = 0, inA, 00, co + inA, 

The area in the z plane is then a strip of breadth nA parallel to the real 
axis and extending from a; = 0 to a: = 00, 

-00 

£3. 
O 

z 'plane 
_£4 

X 

J± 
-1 

V 

t plane 

1_ 
o 1 

^4_ 
00 I 

and the points in the two diagrams that correspond are indicated by like 
suffixes; 24, 2^, ^4 corresponding to f = — 00, — 1, 1, 00. 

(ii) Another method of representing on the t axis the comers of the same 
strip of the z plane is to regard the strip as a triangle of zero angle in the 

* See Forsyth’s Theory of Functions^ Art. 268. 
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direction X = cjc, we may then take any three points on the f axis in the 
t plane to correspond to the comers, say the points < = — 1, a, 1, as shewn 
m the figure. 

\y 

^3 
z/jlujte H 

< D X 

t plane 

[ h ^2 h 

-CD - 1 C ) a 1 CD 

The relation connecting z and i is then 

dz A 

which gives on integration 
iA 

Vl-a2 
cosh + B, 

or 2 = 0 cosh“i ^^ + B. 

If we choose the constfuit B so that 2 = 0 when f = — 1 we find B = 0; then 
^ = 1 makes z — irrC so that the width of the strip is nC, and t — a makes 
2 = 00 as it ought. 

(iii) As another case let us consider what sort of rectangle will correspond 
to the four points i = — oo, 0, 0, oo. The relation between t and z is 

dz A >11 a . r> 
dt=T' "*■ + 

e-B 

Considering t = e ^ , we have'as corresponding values 

00, 0, 00 and 2 = oo + ^ttAL, —00 + ^77.4 (or—oo), oo. 

So the rectangle in the z plane is a strip of width ttA extending the whole 
length of the real axis. 

y 

z plane 

»7 

h 

( plane 

h 
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6’5. We 8h6kll now apply the foregoing theory to some Examples, in 
every case assuming the velocity to be imity along the free stream lines 
and neglecting all external forces. 

Jet of Liquid through a Slit in a Plane Barrier. We assume that 
the sides of the vessel containing the liquid are infinitely distant from the 
slit compared to its breadth. In the diagrams fixed boundaries and lines 
that correspond to them are indicated by thick lines, free stream lines by 
thin lines, and the arrows indicate the direction of flow. Remembering 
that velocity is in the direction in which velocity potential decreases 
(g = — d(f)ld8)y we may place <^ = oo,<^ = —ooat opposite ends of the stream. 
For convenience we suppose the boundary stream lines to be ^ = 0, = ir. 
The region on the w plane which is to correspond to the given region on the 

cf) = CO 

z plane is therefore seen to be a strip of width tt extending along and above 
the axis of <f> from <^=--ooto^ = oo. 

We have now to tremsform the z plane on to the H plane, where 
n = log 4-In the z plane we take the origin at B', then for the 
velocity along A'B' we have 0 = 0 and along AB 0= — xr. Hence in the 
Cl plane the lines A'B', AB are 0 = O^and 6z= —n, and the lines correspond¬ 
ing to the free stream lines BC7, B'C' for which gf= 1 are parts of the 
imaginary axis. 

We have now to transform the areas in the w plane and in the Cl plane 
into the upper half of the t plane so that corresponding comers in the w and 
Cl planes are represented by the same point on the real t axis. 

Before lettering our w and Q diagrams it will be convenient to choose 
particular points on the real t axis to correspond to them, since as we saw in 
6*41 three such points may be chosen arbitrarily. Thus we may take* the 
edges of the slit B, B' to correspond tot=l,f= — 1 and let A correspond to 
^ = 00. The w diagram is then as indicated, where we may take the line BB' 

to be ^ = 0 so that B is the origin in this diagram. 



140 JET OF LIQUID 6-5- 

Tlie I’elation betweon w and ^ is as in 6*42 (iii) 

w=^A\o^t’\- B, 

and when ^=1, so that i?=:0; 

also w^itTr when ^=—1. But log (~ 1) = itt, 

therefore ^ = 1 and w — log t. 

The diagram in the plane has the point B' for origin, and the relation 

between Q and t is by 6’42 (i) 

0,-0 cosh"^ t-\-Dy 

and n= — trr when i=l, so that D——in; 

also 0 = 0 when ^ = — 1. But cosh-^ (— 1) = iV, 

therefore O = cosh~^ t — in^ or i = — cosh O. 

But n = log{ or 

hence we have cosh log { = — f = — e*®, 

or C+{'"=-2e« 

From which we deduce 

dw 

and the fact that J or is infinite when ^ = 0 and ^ = oo determines that 

the lower sign must be taken. 

^ = e”+Ve««’-l, Hence we get 
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We shall adopt so far as possible the same notation and lettering as in 6* 5. 
The boundary stream lines ABC, A'B'G' are ^ = 0 and ^ = rr, so that the 
diagram in the w plane is the same as in the last case. If we take the same 
set of corresponding points on the real axis in the t plane as before, we have 
the same diagram in the t plane, and the relation between w and t is still 

ti? = logt. 

The diagram in the plane is also the same as before but now the line 
A Bis B = 0 and A'B' is ^ = 27r so in the relation 

0 = 0 cosh~^ t + D 

we have 0 = 0 when t—\, so that i) = 0, 

and 0 = 2i7r when <=—1, so that, since cosh“^ (— 1) = iir, 

we have 0 = 2 and 0 = 2 cosh”^ t. 

With the origin at B in the z plane (also in the w and O planes) we get 
along the free stream line BO, or 0 = 0, 

log f, 

where t ranges from 1 to 0 and 

since ^=1, t^ = 0 = 2cosh~^^, so that t — cos^d, 

and a = log sec 

Then da;/c2« = cos0 and dyjda^sinO 

give a; = sin® — log sec and y=J(^~8in0) 

as the equations for the free stream line BO. 

^=-co CO 
A' B' C'C B A 

t 'plane 

When the two free stream lines BO, B'O' ultimately become parallel the 
distance between them is w, and the value of B being w, we get y = in, bo 

that the total distance between the walls AB,A 'B' of the opening is 2n and 
the coefficient of contraction is ^. This is in agreement with Borda’s theory 
as stated in 3*63. 

6*52. Impact of a Stream on a Lamina. We shall suppose the 
width of the stream to be infinite compared to that of the lamina and the 
lamina to be fixed at right angles to the stream. 

The stream line ^ = 0 which strikes the lamina at its middle point O 
divides there into the branches 0.4-4', OBB'. If we take ^ = 0 at O, the 
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region on the z plane occupied by liquid corresponds to the whole w plane 
regarded as bounded by the double line from the origin to — oo, ^ = 0. 

We may clearly choose a transformation on to the t plane so that the 
points A'f A, C, J5, B' correspond to^ = oo, 1, 0, —1, —oo. The relation 
between w and t is then t 

dt 

for the interior angle of the w polygon is This gives 

w = iAt‘, since w = 0 when ^ = 0 .(1). 

To get the diagram on the Cl plane we have 0 = 0 along GB, and ^ — tt 
along OA and g = 1 along BB' and AA'. Hence the diagram must be as 
indicated and the relation between Cl and t is by 6*42 (ii) 

B 

dt 

or 0 = (7cosh~^ 
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But when — 1 the diagram shews that Q = therefore Ds=0; and 
when < = 1, we have O = — iir, but cosh'”^ ( — therefore (7~ — 1. 

Heuoe 0= — oosh“^( —1/0 or ^=-~coshn .(2), 
t 

but 0=:log{;, therefore t = Y":^t. 

We have now to determine the constant A in equation (1), and its value 
must depend on the width of the lamina. 

Along the stream line CB, since ^=0 therefore {=1/3' and 

<=-2g/(l+g0. 

..... . which gives q =-1-. 
t 

We take the positive sign in order to make g = 0 when f = 0, for the velocity 
must be zero at the point C where the stream line breaks into two branches. 

Again, along CB, since 0 = 0 therefore 0 = t/;=iA^*, and, the velocity 
being wholly along the x axis, 

— g = ^0/ftc = Atdtldx» 

Therefore 
=-1-' 

or da? = 
At^dt 

i_vT^’ 

If 1 is the width of the lamina, this gives 

f-i l*dt 

and by writing < = sin we find 

Jl= — A (1-h iTT), so that A=- 
tr "T 4 

and i^= — 

21 

r + 4 
.(4). 

Relations (3) and (4) contain the solution of the problem. 
To find the Cartesian equation of the stream line BB' we have g = 1, 

SO that —oosh~^( —1/2), or co8^=—1/2. 

, , 22* 2sec*^ 
Also ^. = 0. sothat ^ = «;= 

Again 0^/a»=-g=-l, 

therefore 
.l(8ec»^~-l) 

7r-l-4 • 

measuring 8 from B where 0=0, is the intrinsic equation. 

Then dx = cos Bds = 21 sec ^ tan Bd$l{v -h 4), 

so that, taking the origin at C, 
22 

it = - (aeo0+^. 

and 

whence 

ir + 4 

dy = sin Bd8 ^2l8ecB tan* BdBI(v + 4)* 

y-- - {sec tan 6^—log (sec ^+tan^)). 
TT T* ^ 
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6*53. The same problem with oblique impact. We may proceed 

in the same way, but the stream line that divides is not in this case the one 
that strikes the barrier at its middle point. 

We get a similar set of diagrams (see next page) wherein, in this case, 

the points A'^ A, C, B, B' correspond to ^ = oo, 1, a, — 1, — oo, and the 

relation between w and t is 
dw 
dt 

= A(t-a), 

or w=lA{t — a)^ .(1), 

since u; = 0 when t = o. 

Also for the relation between O and t we have by 6*42 (ii) 

da^ G 
dt 

or 12=Ccosh->^^ + 2>. 
t Qi 

But when t = — 1, the diagram shews that Q = 0, therefore D = 0; and 

when i = 1 we have Q.= — in; but cosh"^ (— 3) = irr, therefore G = — 1. 

.at —I 
Hence n= — cosh“^ 

i-a * 

or 
at —I 
t — a 

=co8ha=i (;+£-!) .(2). 

Also, if the stream makes an acute angle a with the barrier, the final 

direction of A A' and BB' is given by ^ = — ( tt — a) when < = oo. Hence 

t(7r~a) = cosh~^a, or a= — cosa. 

Therefore (2) may be written 

^cosa -f 1 
^ ^ - = COSha=:i(J-f-J-^) t + cos a 4 \/ 

On the barrier from A to O 

B^—n and 

and from C to B 0 = 0 and £ = 1/g; 

.(3). 

therefore 
iq ' 

t cos a + 1 

- « 4-cos a ’ 

the upper or lower sign according as t lies between 1 and — cos a or between 

~ cos a and —1. _ 
fcosa+1 — sinceVl— 

This makes q— ±-t";-, 
^ t + cos a 

the signs being adjusted so that q shall not become infinite when t^ — cos a. 

Also along the barrier 

0 = 0 and <l> = w==iA{t — a)^, 

so that 
_ 00 _ A /f \ ^ 

the upper or lower sign according as we are on GB or CA, since these are 

the dix^tions of g. _ 
__ . .cU fcosa+1—sinav 1 — 
Hence 4(i+cosa)^=-( + c^- ’ 

and da;= —A(tco8a-hl+sinaVl — 
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Integrating this and taking the origin at the middle point of AB ao that 

t=zl,t=: — 1 give equal and opposite values for x, we obtain 

a;= ~ l)cosa + 2<4*sina(^'\/1 — -f sin“^ ^)}.(4). 

If we put — 1 we get half the width I of the barrier, so that 

Z = {4 + 7rsina) .(5). 

Hence w=:l(t + acoa(x)^/{4 + TrsinoL). 

—0 

wplanc 

0 — 00 

~00 
B' 

^=—1 t^a t^l 

B C A 

t plane 

t==^co 

BA' 

6=^0 

~1 

Q plane 

A ^=~7r C 

If in (4) we put ^ = — cos a we get for the distance from the middle of the 

barrier to the point where the stream divided 

X = i-4 |2 cos a (14- sin* a) + sin a| 

= |2co8a(l +Bin*a)H- — sinaj Z/(4 + 7rsina) .(6). 

Taking pjp we get on the free stream lines pjp = (7 — J; and 

this gives the pressure of the ‘ dead water ’ behind the lamina. Therefore 
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the difference of the pressures on opposite sides of the lamina at any point 

The resultant thrust on the lamina is therefore 

fH fit 
J-il P'<i^==ipj 

= ip 

But 

therefore 

and 

therefore the thrust (7) 

q= ± («cosa+1 — sinaVl — + cosa), 

q-^ = ± cos a 4-1 + sin qlV 1 — + cos a), 

gda; = ? -4 (^ + cos a) dt, 

■■ sin aVl-<»cft . 

= \npA sin a 

_ TrpZsina 
~4-f7rsina .^ ’ 

For the distance of the centre of pressure from the end A, we have that 

the moment of the pressure about the centre 

= ^^^p'dx=: ip (1 — q^)dx. 

To reduce this integral we notice that it is the same as (7) if we introduce 

the expression (6) as a factor, then the substitution ^ = sin x enables us to 

evaluate the integral at once giving as the result -j^^^Tr/o^^sinacosa. But 

the whole pressure is iTrpA sin a, therefore we have for the coordinate of 

the centre of pressure _ i ^ 
X = cos a = J 

4 4- TT sin a .(9). 

on the up-stream side of the middle point. 

This problem was discussed at length by Lord Rayleigh as the case of an 

elongated blade held vertically in a horizontal stream. He obtained 

results (8) and (9) by Kirchhoff’s method and gave tables for their values*. 

There is however an objection to the solution of the problem when 

viewed as one of a plane moving steadily through fluid at rest and carrying 

with it a region of ‘ dead water ’ extending behind it to inflnity, namely 

that the kinetic energy of the dead water would be infinite. But we have 

seen in 3* 72 a reason why the surfaces of discontinuity should be unstable 

and we shall see later, in the chapters on vortices and viscosity, the way 

in which the surfaces of discontinuity roll up and in general an eddying 

wake forms behind the body. 

6*54. A variety of cases have been worked out by Michellf, LoveJ, 
Greenhill § and other writers ||, the method has been extended by Hopkin- 

son^f to include the case of sources and vortices in the hquid, and important 

♦ Phil. Mag. n, 1876, p. 430, or Sci. Papers^ i, p. 286. 
t ‘On the Theory of Free Stream-Lines*, Phil. Trans. A, 1890. 
i Loc. cit. p. 136. § Encyc. Brit. 11th edition, Art. Hydromechanics. 
11 For a full bibliography of the subject see Love, Encyc. des Sc. Math, iv, 18, 

pp, 118-122, where an account is given of the recent work of T. Levi-Civita, M. 
Brillouin, H. Villat, U. Cisotti and other writers. 

^ ‘Discontinuous Motion involving sources and vortices’, Proc. L.M.S. 1898. 

10-2 



148 STEADY FLOW ABOUT A CIRCLE 6-54- 

applications of conformal transformation to curved boundaries have been 

developed by Leathern* by the introduction of curve factors into 

Schwarzian transformations. 

6*6. The hydrodynamical applications of conformal repre¬ 
sentation which have received most attention in recent years are 

concerned with the theory of aerofoils. They are to be foimd in 
the Journals of Aeronautical and other Societies and in a large 

number of books on the subject of Aeronautics!. We must limit 
ourselves here to the consideration of a few cases of transforma¬ 

tion of a state of steady flow about a circle. 

6-61. Steady flow about a Circle. Recapitulation. Such 

a flow is represented by 

«;={C7 + i F) (2 - log (z - )... (1). 
z — Zq Ztt 

where z^ is the centre of the circle and k the circulation. 

The velocity components u, v are given by 

dS . dJi dw 

ox ox dz 
■ U + iV- 

{U-iV)a^ IK 

,.••(2), 
(z-2o)2 27r(z-2„) 

so that the velocity at infinity has components — Z7, F; and if we 

put U=QcosV = Qsm^, then Q is the velocity at infinity 

and its direction makes an angle /3 with the negative direction of 
the z axis as in the figure. We may now write (1) and (2) 

w = Qe^P (z - Zo) + ^ log (z - Zo) .(1'), 

, . dw ^ jo Qah-^P iK 
and -u+tv = -j- = Qe*P---ra+K—7-7 

dz (z-z^f 2ir(2-Zo) 
....(2'). 

* Phil, Trans, R,8, ooxv, A, 1916, pp. 439-487, and Phil, Mag, xxxi, 1916, pp, 
190-197. 

t E.g. H. Glauert, Aerofoil and Airscrew Theory, 1926; and N. Joukowgki, Adro^ 
dynamique, 1916. 
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If we assume that there is a point of zero velocity on the circle at 
2 == Zj + o€*‘’'+“>=Z0 — ae^“, we have 

0 = Q ^ e-<“ 
27rCi 

or /c = 47TaQ sin (a + jS) .(3). 

This (for values of k not too large) gives two points symmetrically 
situated about the diameter perpendicular to the stream. These 

are the points N, N' of 5'25. 

6*62. Joukowski’s Condition. When the state of flow is 
transformed by a relation t =/ (z) the velocity in the t plane is 

given by , . , dw dwdz , . ^dz ... 

. 

Now the transformations which prove useful in aerofoil theory are 

such as give in the t plane the contour of a figure with a ‘trailing 
edge*, and this implies a singular point in the transformation, i.e. 
a point at which dzjdt is infinite. But in an actual state of flow 

about an aerofoil the velocity is not infinite, and it was pointed 
out by Joukowski that to get a finite velocity {u\ v') at the 
trailing edge, where dz/dt is infinite, it is necessary that (u, v) 
should be zero. This implies that the point on the circle which 
transforms into the edge of the aerofoil must be a point of zero 
velocity in the motion about the circle, and from (3) this requires 
that the circulation shall bear a definite ratio to the velocity of 
the stream. It must be noted that the circulation k is the same 
in both planes, but the velocity at infinity in the t plane is 

Qj dz/dt j (t infinite). 

6*63. A Joukowski Transformation. Let 

'-ih?) ..'*'*• 

or f = J +”jcos0, = -yjsinfl. 

This transforms the circle r = a into f = a cos 0, 7j = 0, i.e. into the 

diameter BA of the circle which lies along the real axis taken 
twice over. 

Any contour which surrounds the circle r = a will transform 

into a contour surrounding the line BA, and may be constructed 

♦ N. Joukowski, A&odynamique, 1916, p. 145. 
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thus: let P be a point z on a contour to be transformed, P' the 
inverse of P in the circle r = a, then P" the reflexion of P' in the 

real axis is the point a^/z, and 
if B is the middle point of P'^P 
the vector OB is half the sum 

of OP and OP'" so that B is the 

- I or t. point 

Now take a circle of radius 
a* in the z plane slightly larger 
than the circle r = a and touch- ® 

ing it at B. The contour ob¬ 
tained by transformation must 
touch the line BA on both sides 

at By and is a ‘fish-shaped’ 
figure extending a little be¬ 
yond the line BA at the end A. 

From (1) we have^^ = | points B and Ay 

i.e. 2 = + a, are the infinities of dzjdt. Comparing with 6*61 and 

6*62 we see that B should be a point of zero velocity in the 
motion about the circle. With the centre of the circle as origin, 

this means that in 6*61 (3) a is zero and 

K t= 47ra'Q sin j8. 

We might now eliminate z between (1) above and 6*61 (1'), 

expressing w as a function of t to get the flow about the aerofoil, 
and then use the theorem of Blasius to determine the resultant 
thrust upon it due to the motion. But we will reserve these 

calculations for a more general type of transformation. 

6’7. Consider the transformation 

(1), 

where A\B' are two points in the t plane which correspond to the points 

A, B in the z plane. Without loss of generality we may regard the planes 

as superposed so that the points A\ P' coincide with the points Ay P. 

We may call these points the poles, and 2 — ^ or A; the exponent of the 
w 

transformation. 

If we put 2 — = re*^y z-^B^ t —A' — pe*^ and — wo soo 

4,-^'=k(e-e') .(2). 
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It follows that if P, P' are corresponding points in the z and t planes, the 

angle AP^B = k.APB, 

Now if we apply the transformation to a circle C passing through A^ B 

in the z plane, the corresponding contour in the t plane consists of arcs of 

circles. And bearing in mind that it is the regions outside the contours 

which are to be transformed, we may exclude the singular points A and B 

by drawing small semicircles with centres A and B outside the circle C, 

Then when a point P travels round the circle C in the z plane, as P passes 

B the angle B' increases by tt. so that from (2) the corresponding increase 

in the angle <f>' in the t plane is kn. Consequently the two arcs in the 

t plane which correspond to the major and minor arcs of the circle G in the 

z plane intersect at B' and A' at an angle {2 — k)rr or x- The circle C has 

thus become a figure C' bounded by two circular arcs. 
Further, if we apply the same transformation to a circle Ci in the z plane 

which touches C at B and surrounds 0, we shall get a contour in the 

t plane toiiching at B the two arcs of the contour C" and surrounding C\ 

i.o. enclosing the other pole A, This contour Ci may be taken as the 

section of an aerofoil with a blunt nose and a trailing edge formed by the 

intersection of two surfaces which cut at a finite angle x 
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In this general case there is no simple geometrical construction such as 

we had in 6*63 for points on the contour but an analytical method has 
been given by Glauert*. 

Now suppose that the state of flow represented by 6*61 (1') exists out¬ 

side the circle »and that the circulation #c is such that B is a point of zero 

velocity, i.e. such that, in the notation of 6*61, 

K = ^naQsin (a + /3) .(3), 

when a is now the radius of the circle , and if we take the origin at B, by 

reference to the figure of 6*61 we see that the centre of the circle 0^ is 

Let BA = 21, then, with the origin at B, (1) becomes 

. 
Expanding z in powers of we get 

. 

or 2 = Co + Ci< + ^’+|j+... j 
so that = Cl - -J - y -.(6). 

Now from 6*61 (2') 

dz-^^ {z-zX^2n{z-z^) . 

but _i_ 

^ Co-2o + Cl< + ^’+.-. 

= i. ii+®0Z!,0^ 
C,<1 ^ c,< J 

_ _ J _Zq 
~c\t CiV* ■■■’ 

therefore + .(8) 
dz J 2n\Cit CiV / ' 

as far as 

Then by multiplying and squaring (6) and (8) we get 

+ .<»)■ 
By the theorem of Bktsius the components of force X, Y on the contour 

Cl due to the fluid motion about it in the t plane are then given by 

X-iY = iipJ(^ycU (5-61) 

* H. Glauert, Reports and Memoratida of the Aeronautical Research CommiUeSf 
911, 1924. 
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integrated round any surroiinding contour. By the theory of residues we 

get 
X — 'iY = ^ip. 2ni. 

iKQe^^Ci 

where from (6) 

Therefore 

or 

Ci = k, 

X — iY = — ipKQJc (cos p + i sin p) 

X = KpQk sin j3, Y = KpQk cos p (10). 

Now Q is the velocity at infinity in the z plane, and since ^ ~ ^ 

dz 
from (6) at infinity - =Ci = k, therefore the velocity at infinity in the 

Out 

t plane is Q'=:kQ, so that the force components on the aerofoil in the 

stream Q' are simply 

X==KpQ'amp, Yz^KpQ'coap .(11), 

i.e. a force R = .(12), 

at right angles to the stream, as might have been predicted from the 

theorem of Kutta and Joukowski (5*7). 

We remark that since the circulation round a curve is 

-/g<fe or -jd^, 

therefore as stated in 6*62 the circulations roimd corresponding contours 

in the t plane and z plane are the same. 

Hence if the circulation be such that the velocity in the t plane is finite 

at the trailing edge B, (3) is equivalent to 

4naQ' • f , o\ K = —^ 8m(a-f jS) 

and R = ^S!|g.'‘‘8in(a4-J?).(13). 

Again the moment about the origin B of the pressures on the contour 

Cl is 

N = real part of — f (^) 

= real part of ^pi |2Q' (a* + Cj c, e*'^) + ^, + —(c# - «o)|-. 

where Cq= — (A;—1)Z, Ci = fc, Cj= — (A;*—1)1*/3A: and Z(, = ae^. . 

Whence we get 

V( = vpQ hQ(k*-l)l*sm2p+’^(k-l)lcoap + -aco8{a + P)\, 
( rr TT j 

or, putting Q^Q'jk and using (3), 

N= I)l*sin2j3 + 2(A;— l)a/sin(a+ /S)cos j3 + a*8in2(a4-i3)|* 

.(14). 

The discussion of this general case is based upon two papers by W. Muller*. 

It is evident that by varying A;, a and a a great variety of contours can be 

* angew. Math, u. Meek, 1923, 1924. 
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obtained; in particular ik = 2 leads to Joukowski aerofoils with cusps as 

the trailing edges. 

It must be observed that the foregoing results have been obtained from 

Joukowski’s hypothesis 6*62 of smooth flow at the trailing edge, and that 

in the case of real fluids we should need to consider the possible effect of 

frictional drag on the aerofoil and of the formation of vortices streeuning 

from the edge (3*72). 

EXAMPLES 

1. The irrotational motion in two dimensions of a fluid bounded by the 

lines 2/ = 0,2/ = 6 is due to a doublet of strength ^ at the origin, the axis of 

the doublet being in the positive direction of the axis of x. Prove that the 

motion is given by ^ „ 

Sketch the stream lines, and shew that those points where the fluid is 

moving parallel to the axis of y lie on the curve 

cosh (Trxjb) = sec (Try/b), (Trinity Coll. 1904.) 

rrz 

2. Use the transformation to find the stream lines of the motion 

in two dimensions due to a source midway between two infinite parallel 

boundaries. [Assume the liquid drawn off equally by sinks at the ends of 

the region.] If the pressure tends to zero at the ends of the streams, prove 

that the planes are pressed apart with a force which varies inversely as 

their distance from each other, (M.T. ii. 1911.) 

3. A source is placed midway between two planes whose distance from 

one another is 2a, Find the equation of the stream lines when the motion is 

in two dimensions; and shew that those particles which at an infinite dis¬ 

tance are distant Ja from one of the boundaries, issued from the source in a 

direction making an angle 7r/4 with it. 

4. Fluid motion is taking place in the part of the plane bounded by 

the real axis and the lines x= + a and cr = — o, which is due to a source at 

one corner and a sink at the other comer of the strip, each of strength m; 

shew that the motion is given by 

tanh = tan , 
4w 4a 

and that the equation of the stream line which leaves the source at the angle 

7r/4 to the sides is 
(Trinity CoU. 1907.) 

7TX . , TfU 
COS ^ = smh ~ . 

2a 2a 

5. Prove that by proper adjustment of the constants (a, y, S) the 

assumption 2 = ati?4-4-8, (z^x-hiy^ w = 

may be made to give the solution for the two-dimensional motion of a liquid 

in a straight pipe of breadth b, and sides y = ± J 6, extending from a; = — 00 

to a? = 0, the velocity in the pipe at a? = — co being V, and the pipe opening 

into an otherwise unbounded liquid at rest at infinity. Find the values of 

these constants, assuming that at the point (0, J6) the value of ^ is ^0. 

(Trinity Coll. 1903.) 
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6. Prove in any manner that the velocity potential and stream func¬ 

tion of the two-dimensional motion between the walls y = 0, y = tt, due 

to a source of strength m at (a;i, y^) and an equal sink at (ajp, yo), are 
given by 

<4 + tiA = - loff r(X + ty) - Exp (x, + typ)} {E^cp (x + ty) - Exp (Xp - iyo)}~] 
^ ^ 2v ®L{E*P(® + *y)-Exp(x, + iy,)}{Exp(a; + tj/)-Exp(*,-tj/,)}J’ 

(St John’s Coll.) 

7. Determine the nature of the fluid motion in the space bounded by 

y = 0. 7r(a;* + y*)-2y = 0, 

which is given by <^-f-t^ = coth(x-f iy)“^. (M.T. 1894.) 

8. In the case of uniplanar efflux from a large vessel with two plane 

sides at right angles and an aperture in the comer equally inclined to the 

two sides, shew that the coefficient of contraction is 

or *747 

rr 

tr 4" 2 \/ 2 — 2 log^ (1 "I" \/ 2) * 
(M.T. 1919.) 

9. A rectangle open at infinity in the x direction has solid boundaries 

along X = 0, y = 0 and y = a. Fluid of amoimt 27rm flows into and out of the 

rectangle at the comers x=0, y = 0 and x = 0, y = o respectively. Prove 

that the motion of the fluid is given by 

w = 4m log tanh {ml 2a), 

Also shew that half the stream lies between x = 0 and the stream line 
which cuts y = Ja at the point 

x = “log(H-v/2). (M.T. 1928.) 
TT 

10. Prove that for liquid circulating irrotationally under no external 

forces in the part of the plane between two non-intersecting circles, the 

pressure on either of the circles is irp/c*/c, where 2c is the distance between 

the limiting points of the circles, and 2wk the cyclic constant of the motion. 

(Trinity Coll. 1898.) 
11. Shew that the transformations 

2= - {Vf*—1 —sec“^^}; t — e 
TT 

where z = x -f ty, tt^ = <^ 4-10, give the velocity potential ^ and the stream 

fimction ^ for the flow of a straight river of bresKlth a running with velocity 

V at right angles to the straight shore of an otherwise unlimited sheet of 

water, into which it flows; the motion being treated as two-dimensional. 

Shew that the real axis in the ^-plane corresponds to the whole boimdary 

of the liquid. (Univ. of London, 1910.) 

12. What problem is solved by the transformation 

d{x + iy)_ 1 

~t-a V<-1/ ’ 

where x and y arc the Cartesian coordinates of a point and and ^ the 

potential and current function respectively ? (M .T. 1891.) 
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13. The sides of a vessel are two planes which extend to infinity in one 

direction. The straight lines in the section, made by a plane perpendicular 

to the sides, are inclined at an angle 7r/n; cmd they are symmetrically 

situated with respect to the line joining those extremities that lie in the 

finite part of the plane of section. Fluid escapes from the orifice, the 

motion being parallel to the plane of section. Shew that the coefficient of 

contraction is ^ 

1 sin^ cot Bd^ . 

In the case where n = 2, shew that the coordinates of any point in the 

free stream line may be expressed as 

* = 2 tanh-i (I + * + 2 tanh-i (1 - e“ - 2 {(1 +e~ i*)* + (1 - e“ i*)*}, 

y = w + 2 {(1 + - (1 - - 2 tanh-M 1 + e'i*)* 
+ 2tanh-»{l-e~i*)i, 

where the middle stream line is the axis of a:, the distance along the free 

stream line from the edge of the nozzle is a, and the scale of measurement is 

so chosen that the final breadth of the stream is 2ir. (M.T. n. 1896.) 

14. Liquid moving in the plane (a?, y) escapes from an opening between 

two fixed boundaries given by y = 0, a; < 0, and y = h, x>bf the part of the 

plane for which y is greater than its value on the fixed boimdaries being 

completely filled with liquid which is at rest at infinite distances. Find the 

equations of the free stream lines, and prove that the ultimate direction of 

the jet makes with the axis of a; an angle a given by the equation 

^ = Jtana + -seca-h-log(tan Ja). (M.T. n. 1897.) 
A TT W 

16, The fixed botmdaries of a liquid moving in two dimensions are 

given by 2/ = 0 from a;=—ootoa; = 0 tmd from x = a to a; = oo, together with 

y = 6 from x= —ootox=oo; prove that if c denote the ultimate breadth of 

the jet escaping through the opening in y = 0 from x = 0 to x = a, c is given 

by the relation ^ ,2{, <.>, 26+ c 

® ® \T 26 - c’ 

and shew that if a = 6 the ratio of contraction is approximately 4/7. 

(M.T. n. 1900.) 

16. Discuss the case of a single source on one side of an obstructing line 

of finite length, when the perpendicular from the source to the line bisects 

the line, and prove that when the plane of motion bounded by the obstruct¬ 

ing line and the free stream lines is conformally represented in the portion 

of the plane of an aiixiliaxy variable t which is above the real axis, the 

functions w and Q are given by equations of the forms 

div_ aint dQ_ 1) 1 

+ ■*’“1 ^(l -t*)* 

Also shew how to obtain equations connecting the length of the obstructing 

line, the distance of the source from it, the strength of the source, and the 

velocity along the free stream lines. (M.T. n. 1901.) 
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17. Prove that the formula 

dz 1 — aw+\/(l — a®) v'(l — 14-aw+y'(l — a®) V^(l — ti*) 

dw’~ u — a ‘ w + a ’ 

where represents (in two dimensions) the efflux of liquid by a 

Borda’s mouthpiece (inward pointing tube) from the base of a cylindrical 

vessel, the vessel and the tube being coaxial, and the aperture of the tube 

at a distance from the base. 

Prove that the coefficient of contraction is equal to 

n-V{^(^-l)}» 

where n is the ratio of the breadth of the vessel to that of the tube. 

Verify this result from first principles. (M.T. ii. 1902.) 

18. Shew that, with the usual notation, the substitution 

w = A\ogz^-^B log (Zj -f A), 

where A, B, X are appropriate constants and 

Z8 = {cosh (log J)}2, 

gives the flow from a rectangular vessel with two infinite parallel sides and 

an aperture midway in the third side. 

Deduce from this the solution for the two cases (1) flow past a fixed 

obstacle set perpendicular to an infinite stream, (2) flow through an 

aperture in an infinite plane wall. (M.T. ii. 1906.) 

19. Exemplify the treatment of problems in discontinuous two- 

dimensional liquid motion by investigating the case of a stream whose 

breadth and velocity at infinity are a and V respectively, whose course is 

disturbed by a symmetrically placed transverse straight barrier of length b. 

Shew that the force necessary to keep the barrier in position is 

paF* (1 — sin a), 

where 6/a = 1 — sina-f-cosalog(cot*ia). (M.T. ii. 1906.) 
TT 

20. If a stream of infinite width is obstructed by a lamina with an 

elevated rim placed transversely, shew that the mean pressure on the 

lamina is „ yw 8 + .1 

where V is the velocity on the free stream lines, and c is the ratio of the 

height of the rim to the breadth of the lamina, and higher powers of c 

are neglected. (Love.) 

21. Water escapes, under pressure, from the plane wall of a vessel, by 

means of a large number of parallel, equal, and equidistant slits. The 

breadth of each slit is a, and the distance between the centres of consecu¬ 

tive slits is b. Prove that the final breadth c of each issuing jet is given by 

the equation o , 2/6 c\ ,c 
^ = 1+ ( — tan-^, . 
c TT \c 6/ 6 

Calculate the mean pressure on the wall, having given the velocity v of 

the issuing jets. (M.T. ii. 1907.) 
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22. Shew that the relation can be used to transform the 
z 

circumference of a given circle into (i) a circular arc of given angle; (ii) a 

circular arc whose chord is of any prescribed length not exceeding twice 

the diameter of the given circle. 

23. Explain the derivation of a Joukowski aerofoil by the transforma¬ 

tion M a. 
a'=z+ £ 

r=l ^ 

applied to a circle of centre and rcuiius o. 

Obtain the lift formula 

L = ^rrpaU* sin (a -h j8) 

and shew that the moment about the point z'^z^ia 

M = 27rpb^U^am 2 (a + y), 

where a is the angle of attack and p, b, y constants of the transformation. 

(M.T. 1931.) 
24. Shew that the relation 

/g-4-c\” 

t TIC *“ C / 

may be used for obtaining aerofoil sections with trailing edgesof finite angle. 

26. Shew that the relation 

i = z sin Ja 
2-fa cosec Ja 

0 < a < Jtt, 
2 -f a sin ia 

where a is real, will transform the circumference of the circle | z | = a into 

an arc of the same circle subtending an angle 2a at the centre. 

Shew that, in a two-dimensional flow about such an arc, the lift produced 

by a steady current V parallel to the chord of the arc is 2nphV^, where h is 

the height of the arc. 

26. A flat plate of infinite length and width I is placed in a current of 

incompressible fluid with its plane at an angle a to the imdisturbed stream 

lines, and its edges perpendicular to them. Determine the resulting flow 

on the circulation theory, assuming the velocity at the trailing edge is 

finite. By considering the pressures and velocities over a large cylinder 

whose axis is the median line of the plate, shew that the forces on the plate 

are equivalent to a force np UH sin a per unit length perpendicular to the 

current, acting at a distance \l from the leculing edge. (M.T. 1926.) 

27. A circle j z | = a is transformed into a thin aerofoil section of chord 

approximately equal to 4a by the equations 

Prove that the lift and moment coefficients are 

A;i = 7r(a +i?), 
Aj -f Jir jS -f — JjraCg, 

where a is the angle of attack, supposed small, and j5, D, and (7* are con¬ 

stants of the aerofoil. (M.T. 1928.} 



CHAPTER Vll 

IRROTATIONAL MOTION IN THREE DIMENSIONS 

7* 1. It is our purpose now to consider certain special forms 
of solution of the equation 

dx^ dy^ dz^ 

We do not propose to enter into a general discussion of spherical 
and other harmonics such as may be found in many text-books on 
pure and applied mathematics, and we shah only have occasion 
to assume an elementary knowledge of these functions. 

7*11. Motion of a Sphere through a Liquid at rest at 
infinity. If the centre of the sphere be moving along a straight 
line with velocity V, the motion of the liquid will be symmetrical 

about this line, and Laplace’s equation takes the form* 

.<')• 

A solution of this equation is known to be 

.(2), 

where is Legendre’s coefficient of order n. 
In our special problem if we suppose the centre of the sphere 

to be passing through the origin we have to satisfy boundary 

conditions 

dr 
= normal velocity = V cos d .(3), 

* This may be obtained directly by considering the flow of liquid across the faces 
of the polar element of volume drdddw. The gain of liquid in the element 
due to the flow in the direction of r is 

f Bin 6dddu^ dr, 
dr \dr / * 

and the gain due to the flow in the direction perpendicular to r is 

■4a f 4^. ^sin Bdrdo)) rdd, 
rd0 \rde J 

But the total gain in the element is zero, therefore 
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when r is equal to a, the radius of the sphere, and 

d<f> 

dr 
= 0, at infinity .(4). 

From (4) it is clear that the solution for (j> cannot contain 
positive powers of r, and (3) suggests that we shall take* 

<f, = -^OOBd .(6) 

j cos 6 = V COB 6, 

as the particular form of (2) to suit our conditions, since = cos d. 
Substituting from (5) in (3) we find that 

o» 

for all values of 6, so that £=JFo®. 
Hence the velocity potential is given by 

^ = cos 0 .(6). 

To find the lines of flow, at the instant the centre of the sphere 

is passing through the origin, we have 

dr _ rdd 

dr _ rdd 

cos0~i8in0’ 

so that the equation of the lines of flow is 

r=C'ein*^. 

7'12. Liquid streaming past a fixed Sphere. If we 
suppose the sphere to be fixed and the liquid to have a general 
velocity F, we can obtain the velocity potential from the last 
case considered by superposing a velocity — F on the sphere and 

* The student who is unacquainted with the properties of Legendre's coefficients 
may proceed thus. The condition (3) suggests that we should try to find a solution 
of (1) of the form ift=J(r) cos d. We get on substitution 

or 

or 

of which the solution is 

r*^ + 2r^-2/=0. 
ar* • ** ar 

f‘=‘Ar+?. 

On account of condition (4) we reject the solution Ar and proceed as above with 

^asjBr~*oosa, 
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the liquid. This adds a term Vx, or Vr cos 0, to the velocity 
potential, so that now 

(f>=Vr COS04-1 Fa^r “2 cos 0. 

For the stream lines we have 

dr rdd 

or cs-:)-. ■ 2cot 6d0^ 
2r^ 4- dr 

therefore 
Cr 

^3 ’ 

This equation gives, for either this problem or the last, the lines 
of flow relative to the sphere. 

7* 13. Equations of Motion of a Sphere. Reverting to the 
case of a sphere moving in a liquid at rest at infinity, we have to 
calculate the forces acting on the sphere owing to the presence of 
the liquid. If the extraneous forces have a potential 12 and act on 
the sphere and the liquid alike, their resultant effect is, from 
Hydrostatical considerations, a force equal to the difference 
between the forces exerted on the sphere and the liquid dis¬ 
placed; i.e. if a, p are the densities of the sphere and the liquid, 
the resultant extraneous force is {a —p)ja times what it would be 
if the liquid were not present. Omitting the extraneous forces, 
the pressure is to be found from the equation 

P 

df 

dt (1). 

Let the coordinates of the centre of the moving sphere referred 
to fixed axes be Xq, y^, and let U, F, ?/o, be the 
velocities of the centre. Then from 7*11 (6) the velocity potential 
at a fixed point of space {x, y, z) is 

where 

and 

A = 1 i + V + W 
^ 2 [ r r r 

r* = (a; - a;,,)* +{y- + (z - z^Y 

rr= -{pc-ZQ)xQ-{y-yQ)yf^-(z-Zf,)z^ 

^-U(x-x^)-V{y-y,)-W{z-z^). 

c-i), 

RH IX 



MOTION OF A SPHEBE 

Also d<f)ldt being the rate of increase of <f> at the fixed point 

(^j we have 

. . d<f> a^U 3a® ,, , 
Again = ^.-.^(x-Xo){U{x-Xo)+ + }, 

rjS 

Hence on the sphere r = a we have 

?=^F{t) + l{U{x-x,)+ +}-|(f7®+ +) + ^l^{U(x-x,)++r 

Then the components of the resultant thrust on the sphere due 

to the motion are given by 

x= -JJZijd.S= -^^p£dxdydz (Green’s Theorem) 

and similar expressions. 

Whence we get X= — ^npa^U, etc., 

or X,Y,Z--p/'(t/, F, W) .(6), 

where M' is the mass of liquid displaced. 
It follows that if X\ Y\ Z' are the components of the ex¬ 

traneous force on the sphere when no liquid is present, and M 
denotes the mass of the sphere we have equations of motion of 

the form _ 

MU= - lM’U + ''-~^X’ 

' M + \M’' a 

^^-X'. 1 ...\'f 
a + \p 

Hence the whole effect of the presence of the liquid is to reduce 
the extraneous force in the ratio a—p:a-{-\p. 

Result (6) implies that if the sphere were to move with uniform 

velocity, the resultant pressure set up by the motion or the resist- 
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ance to motion would be zero. This is contrary to experience and 
arises from our hypothesis that the motion is irrotational and the 
motion of a perfect fluid. In a real fluid the flow does not close 
up again at the rear of the sphere but separates from the 
surface leaving an area of suction behind, and in the rear of the 
sphere there is an eddying wake. In point of fact there is no 
reason why the result here obtained should resemble observed 
phenomena because we have assumed that the liquid slips over 
the surface of the sphere and a real fluid cannot do this. 

7*14. We may also obtain result (6) of 7‘13 from the principle of 

energy. From 4*71 the kinetic energy of the liquid is given by 

integrated over the sphere. So confining ourselves to rectilinear motion 

with velocity V . 
T = \aV coqB.V GORB.2na'^Qm.6d6 

Therefore the effect of the liquid is to increase the inertia of the sphere 

by half the mass of liquid displaced. And if X denote the force parallel to 

the axis of x 

(JMF* + \M'V^) = rate at which work is being done 

= XF; 

(Mh-JM')F = X, 

so that the pressure of the liquid, apart from any extraneous force acting 

on it, is equivalent to a force \M'V opposing the motion, 

7* 15. Sphere projected In a Liquid under gravity. As an example 

let us suppose the extraneous force to be gravity. Since there is no 

horizontal component of extraneous force the horizontal velocity is 

constant; and as in 7* 13 the vertical motion is the same as if the sphere 

moved in vacuo and gravity wore reduced in the ratio cr —p: a-f Jp. 

Consequently the centre of the sphere describes a parabola of latus rectum 

G-p g * 

where U denotes the horizontal velocity. 

7*2. Concentric Spheres. Initial motion. Let there be a sphere 

of radius a surrounded by a concentric sphere of radius 6, the intervening 

spade being filled with liquid. The methods that we have already used will 

enable us to determine the velocity potential of the initial motion when. 

BO that 

or 

11-3 
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say, a given velocity is imparted to either of the spheres, or a given 

impulse is applied to one of the spheres while the other is held fixed, or is 

free to move. 

Suppose the inner sphere receives a velocity V, the outer being fixed. 

The boimdary conditions are 

— = F cos 6 when r = a, 
dr 

and 

Assume that 

then we get 

Hence 

d<l> 

dr 
:0 when r = b. 

<f>=(Ar-\-^^y.ose, 
A -A-h =r F and A 

> -o- 

, Fa’ / , 

If M be the mass of the sphere and 1 the imj)ulse necessary to produce 

the velocity F; wo have r r 
MV:=^I- / I pcos^OdS, 

where p = p<l> denotes the impulsive pressure of the liquid. Therefore 

Af F = i — y + 2^2) / ^ ^ 

If now the radius b of the outer sphere is incTeased indefinitely, we get 

for the limiting value of the impulse necessary to impart a vdocity F to 

the inner sphere I = MV + |,rpo’ F, 

or I=:{M + iM')V. 

Comparing tliis result with 7*13 wo see that the impulse necessary to 

produce the velocity F is the same whether wo regard th(^ liquid as ex¬ 

tending to infinity and at rest there, or whether we suppose it to be 

enclosed by a fixed spherical envelope of infinite radius. 

If we calculate the impulsive pressure on the outer sphere, in like manner, 

we get V/{b» - a’), 

which tends to the finite limit 27r/>a^F, as 6 tends to infinity. 

It can also be shewn by simple calculation that the total momentum of 

the liquid in the direction of the impulse is — j7rpa®F, whatever be the 

radius of the outer spheric; and thus we have a verification of the dynamical 

principle that the impulse I is equal, in every case, to the total momentum 

in the same direction of the solid and the liquki, together with the impulsive 

pressure on the surrounding sphere. 

7-3. Stokes’s Stream Function. Motion symmetrical 
about an axis, the Lines of Motion being in Planes passing 
through the axis. Let the axis of symmetry be the axis of x 
and let w denote distance from the axis. Let u, v 
denote components of velocity in the directions of x and w. 
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'I’hen the equation of continuity may be got by equating to zero 
the flow out of the annular space obtained by revolving a small 

rectangle dmdx round the axis. The total flow out parallel to x is 
0 

g- (u27TZodw)dx] and parallel to ta, the total flow out is 

0 
{v27TWdx) dw, 

dm 

so by equating the sum to zero we get for the equation of con- 

tinuity 9 9 

^ (urn) + (vw) = 0. 
ox dm 

This is however the condition that 

vmdx — uwdm 

may be an exact differential, and, if we denote this by diffy we get 

1 I dib 
u=- = 

m dm m dx 

This function iff is called Stokes's Stream Function"^, 

Since the stream lines are given by 

dxju — dmfv, 

or w {vdx — udm) = 0, 

that is by = 0; it follows that the equation 

iff — constant 

represents the stream lines. 

A property of Stokes’s stream function is that 27t times the 

difference of its values at two points in the same meridian plane is 

equal to the flow across the annular surface obtained by the 

revolution round the axis of a curve joining the points. For if ds 

be an element of the curve and 0 its inclination to the axis, the 

flow outwards across the surface of revolution 

= J {vcos 0 — usin 6), 27rmds 

^ 27t jdiff = 27r (^2 “ ^i)* 

* See Stokes’s paper ‘On the Steady Motion of Incompressible Fluids’. Trans, 
Camb, Phil. Soc. vii, p. 439, or Math, and Phys. Papers i ,p. 12. 
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We might also define the value of Stokes’s stream function at 

any point P as l/27r Of the amount of flow across a surface got by 

revolving a curve AP round the axis, A being a fixed point in the 

meridian plane through P; for this makes 

rr 1 ri 

277 

•P 

(vcos 0 —14sin 0) 27rwds 

=/: = I (vxndx — uwdw). 

And by varying the position of P, we get as before 

. _ and V — — . 
TD ow m ox 

u = 

Also it is easily seen that the velocity from right to left in the 

sense indicated in 3* 1 across any arc ds is difjlwds. 

7* 31. When the motion is irrotational, we have the condition 

(4-25(2)), 

which leads to 
dx^ ^ dw^ w dw 

(1). 

Also, assuming that 14 = — d(f>ldx and v = — d(f>jdm, 

the equation of continuity 
1 Of 

we get from 

Equations (1) and (2) shew that <f> and ^ are not interchangeable 

in the way that applied to the velocity potential and stream 

function of two-dimensional irrotational motions. 

The corresponding equations in polar coordinates (r, 6) are 

frequently more useful than equations (1) and (2). If we take 

to be the velocities in the directions of dr and rdff, then, since 

w—rBind and remembering that the velocity from right to left 

across da is dtp/wds, we get 
1 dijf 

rsmO rdO* 

and = 

But in irrotational motion 

1 dijs 

r sin d dr * 

dr 
and 

rde^ 
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- 1 # , 1 9'A ^ therefore r: and -r—-xj 
r^Bindod or smB or oB 

d (I d^\ d / 1 d</f\ 
Sff \^r*sinBdB/ dBdr dr \sinB dr)’ 

that is 

or, putting cos 0 = /x, 

Prom the equation of continuity in polar coordinates, 1*5 (1), 

we get the equation for 

remembering that in this case is a function of r and 6 only. 

The latter is of course a form of Laplace’s equation and has 

solutions of the forms 

Again from (3) we have 

0™ or (w + 1) r .(6), 

The last equation gives, on integration, as possible solutions 

or 
^ w +1 djx n dfjL 

it being easy to verify that these forms also satisfy equation (4). 
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7*32. Applications. Solids of revolution moving along 
their axes in an infinite Mass of Liquid. If U is the velocity 

along the axis of x and ds an element of the meridian curve, the 

normal velocity at any point is 

Udw/ds or Ud{r&m6)lds] 

and the normal velocity of the liquid in contact with the surface 

is —di/jjwds or — dipjrsin 6ds. Therefore 

dip — — Ursmdd(rsin6), 

or lb — “ |r/r^sin^0-fconst.(1), 

is the boundary condition. 

We also have that ip has to satisfy the equation 

-f (1 — ^ = 0, where jx — cos 6, 
(Jr- ' ’ ' 

and we have seen that this equation has solutions of the types 

r and — ■” - - . 
71 -f 1 dfx nr^ dll 

The simplest case is that of a sphere of radius a. 

Taking n = 1, we have a solution of the form 

>P = A () 

then at the boundary we must have 

A (i-fi^)!a== ~Wa^{l-ii^) + C 

for all values of /x. This requires that 

C — 0 and A = — \lJa^. 

Ua^sin^d 

r 
Therefore 

But we know that 

d<l>_ Ua^ 
Therefore 
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7*33. Values of Stokes’s Stream Function In simple cases. 

(1) A simple source on the axis of x. 

Here, from 3*3 we have fft — m/r; but 

dxjj 2 d<f> 
a/x” 

Therefore i/f = m/x = mcos 0 or mxjr. 

(2) A doublet along the axis of x. 

Here, from 3*31, wo have ^ = Af cos but 

dr (1- 

Therefore 0=- 
Af sin* 6 

(3) A wm/orm Zme 5owrce along the axis. 

If m is the strength per unit length and the source extends from O to A, 

we iiave, at any point jP(f, tj), 

[OA rOA m{^ — x)dx 
0=1 m cos 6dx=: > -—Ta' , “ in 
^ Jo Jo + 

= m - V(fCM* + 
= m(OF-^P). 

fp 

We might also obtain result (2) by differentiating result (1). Thus for a 

simple source i/j = mxlr, therefore for a doublet 

M sin* 0 
r 

And result (1) might be obtained by considering the flow across a circular 

area whose centre is on tlio axis and plane perpendicular to the axis. By 

definition, taken from right to left, tht> flow is 2Tr^, and it is also m times the 

solid angle that the circle subtends at the source, so that having regard to 

2iTilf = — 27Trn (1 — cos 0)^ 

or omitting a constant cos 0. 

7*34. We may now obtain a simple verification of the result of 

3*42, viz. that the image of a simple source m at a distance/ (>a) from 

the centre of a sphere of radius a is a source majj o.t the inverse point and a 

line sink of strength —mja per unit length extending from tlie centre to 

the inverse point. It is only necessary to shew that the stream function ^ 

for this arrangement of sources and sink has a constant value on the 

sphere; and using 7*33 we can easily prove that on the sphtjre ^ = — w. 
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7*35. A comparison of the stream functions or the velocity potentials 
duo to the motion of a sphere with those produced by a doublet in an infinite 

mass of liquid, shews that a sphere of 

radius a moving with velocity U pro¬ 

duces the same effect as a doublet of 

strength at its centre. We can 

now deduce the streamlines for a sphere 

in the presence of a doublet. For if we 

take two doublets of strengths M and 

M' at points A, A' on the axis of x with their axes directed towards one 

another, we have . „ 
M sin® ^ ^ 

r ^ y.' ' 

- -W A A' O ) 

Hence on the stream line ^ = 0 

M 

' M 
= or 

r _(M\i 

This represents a sphere with regard to which A, A' are inverse points. 

This sphere may be taken as a solid boundary, and thus wo get the stream 

lines due to a doublet in the presence of a solid sphere. The imago is another 

doublet at the inverse point, such that if O is the centre and a the radius of 

the sphere „ ^ 
M__/rY__OA3^ a® .nf 3*43 1 

7*4. Ellipsoidal Boundaries. Motion of Liquid inside a 
rotating ellipsoidal Shell. Let + be the 
equation of the surface and co^ the components of the 

angular velocity, referred to axes fixed in space and coincident 

with the axes of the ellipsoid at the instant considered. 
The component linear velocities of a point (x, y, z) of the shell 

are zwy — ycog, xwg — zw^, yw^ — xcoy; and the direction cosines 

of the normal are proportional to x/a^, yjh^, z/c^. Hence if <f> be 
the velocity potential of the liquid motion the boundary condi¬ 

tion is 

X d<f> y d<f> z d<ff 

a® dx dy ~dz 

X Xi z 
= -2 - 2“'®) + ^ - *<"») •••(!). 

where x^ja^+y^lb'^-k-z^jc^=\ .(2). 

To satisfy this assume 

^ — AyZ‘\’Bzx-\-Cxy, 

this clearly being a solution of Laplace’s equation. 
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The equation (1) then becomes 

from which we obtain the values of B, C and then* 

0= — OJ yz— ^ -^co,,zx— ^ .(d). 

Since this result depends only on the mutual ratios of a, 6, c and 

not on their absolute magnitudes, it follows that the motion is 
the same in all ellipsoids of the same shape rotating with the 

same angular velocity. 
To find the paths of the particles relative to the ellipsoid. Let 

(^, 77, Q denote the coordinates of a particle P referred to the axes 

of the ellipsoid, then the velocities of P referred to axes fixed in 

space are ^ + la)y and similar expressions. 
Therefore 

, , d<f> c2-a2 
i - r,<o, + ^a,, = - rf, 

or 

where 

iyv-PO 

T) = 62(a^-y^) > .. 

C-=C^Wi-a.rj) 

fl= v= 
62 + c2’ P c* + a2’ ^ a^ + l)^' 

W, 

Multiply equations (4) by a/a®, j8/6®, yjc^, add and integrate and 

a^/a® + j37j/6® + y^/c® = const.(5). 

Again multiply the same equations by $la^, r)jb^, ^/c®, add and 

integrate and we get 

+ t,®/6® + ^®/c®=const.(6). 

The path of the particle therefore lies on the plane (5) and the 

ellipsoid (6) so that it is an ellipse. 
Again, if we assume that equations (4) have solutions of the 

form ^ = Pe^p‘, 7, = Qe^p‘, = 

* This result was published independently by Beltrami. Bjerknes and Maxwell 
in 1873. See Hicks, ‘Report on Recent Progress in Hydrodynamics’, Brit. Ahs. Rep. 
1882, p. 56. 
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we get by substitution and the elimination of P, Q, R 

ipja^, -y j8 =:r(), 

y, iplb\ - a 

- a, ip'ic^ 

whence (“2 + f 2 + j)" 

Hence every particle of the liquid describes an ellipse relative 

to the ellipsoid, like a particle moving under a law of force varying 
as the distance from a fixed point. And the periodic time for 
each particle is 27r//;, where 

We notice that for a sphere (a = b = c) 

P == {<^x^ + 

that is, the period of revolution of the liquid relative to the 

spherical shell is the same as the period of revolution of the 

shell; which means that the liquid is left at rest in space, the 

shell revolving alone*. 

7* 5. Motion of an Ellipsoid in an infinite Mass of Liquid. 
Before considering the problem it will be convenient to recall 

from the Theory of Attractions some solutions of Laplace's 

equation and formulae connected with the ellipsoid. 
If -f + z^jc^ — 1 is the equation of the boundary of a 

solid homogeneous ellij)soid of unit density, its potential at an 

externa] point {x, y, z) is 

F = .a6cf7l-^ , .7" . . . 
/a ( a^-{-u + (a^-f (62-f + 

where A is the positive root of the equation . 

2^ 

+ . 

We may write this F = tt (8 — olx^ — — yz^) .(3), 

where S==abc f cn — abc f . \ a > .(^) 
Ja a Ja (a^ + u)^ 

and A = (a^ + (b^ + u)^ (c® + 

♦ The latter p4rt of this article is based on a paper of I^ord Kelvin’s, ‘On the 
Motion of a Liquid within an Ellipsoidal Hollow*, Proc. i?. Soc. Edin. xm, 1885, 
p. 370, or Math, and Phys. Papers, rv, p. 196. 
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The potential at an internal point is a similar expression with 
A put equal to zero, and, with a similar notation, may be denoted 

V, = n{S,-o^x^-Poy^-y,z^) .(5), 

where a^, denote what 8, a, j3, y become when we put 

A-0. 
The components of attraction at an external point are X, F, Z, 

^ dv „ dVdX 
— — 27rax+ ^ . 

ax oA ax 

But dV/dX~0 in virtue of equation (2), therefore 

X — — 27ra.r, Y — — Z—~ 2Tryz.(6), 

where it is to be remembered that a, y are not constants but 
functions of X or x, y, z. 

We know that V is a solution of Laplace’s equation and there¬ 
fore also so are A’^, F, Z. 

Now consider an ellipsoid moving with velocity U in the 

direction of the x axis. The boundary condition is 

_x d<f>_y d4>_z ?<!> jjX 

a^dx b^dy c^dz a® .^ ’ 

over the ellipsoid, i.e. where A = 0. 
I.<et us try to satisfy this by the assumption 

We have 

but when A = 0, 

<f> = AX. 

~dx 
= — 2ttA ^a + a- 

3A\ 

aXdx}^ 

0a 1 

0A 

and from (2), by differentiating with regard to x, 

2x dX / x^ y^ \ 0 

0A 2jfix 

0x -f A ’ 

and similarly g- 

♦Hence when A = 0, 

2p^y 

62 + A ’ 
and 

0A 

dz 

2'p^z 

c^TA* 
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Similarly - = — 2irA I 
a*62j 

= -2irA 
I 2p^xz\ 

Therefore, substituting in (7) we get 

2p^x lx' 

a* a* \a* 

>2 .|y2 
\+y. 

Hence 

277(00-2)' 

^ 2--an 

gives the velocity potential of the liquid motion*. 
If the ellipsoid have a velocity of which C/, F, W are the com¬ 

ponents parallel to the axes, the velocity potential will be 

Uojx Vpy Wy z 

^ = ^“ao'^2->o'^2-yo* 

7'51. Ellipsoid rotating in an infinite Mass of Liquid. 
Let the ellipsoid turn about the axis of x with angular velocity 

The component velocities of any point of the ellipsoid are then 

0, so that, with the notation of the last article, the 

boundary condition is 

X dS y d<h z dS /I 1 \ ,,, 

~a^dx~b^Wy~c^dz'"'^^^\c^~hy .^ 
where A = 0. 

To find a solution of Laplace’s equation that will satisfy this 

condition, assume . n/ ^ x-\ 
<l> = C(yZ-zY), 

This makes 

and taking 

\dydz dzoyj 

<!>- -27rCyz{y-^) 

* This result was first given by Grec*n in his pajier ‘Researches on the vibra- 
tion of pendulums in fluid media’, Tram, R, Sac, Edin, 18213, or Math. Papent, 
p. 315. 
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and substituting in (1) we get 

and reducing this as in 7*5, we get, when A = 0, 

27rC' I (vo - ^o) (p + ^ (p " c*) I "" (c* “ p)' 

Therefore ^x(^-y)yg 
^2 I ^2 

is the required velocity potential*, where 

jS — y = abc (c^ — 6^) J 

A being the positive root of 

A (a^u)^ (b^u)i {c^-i-u)^' 

^ y ^ „ 
a>TA^P + A'''c2 + A“^' 

If the ellipsoid have angular velocities co^,, a>y, o)^ about the 
axes of X, y, z, the velocity potential will be 

<^x{P-y)y^ Wy (y — g) zx w^{(x.-^)xy 
/j2 _L y'S /»2 _i iTf2 fi2t _i A2 

2 + 62“J^o-ro) 2 + ^,+ -,(y„-«„) 2 + 

7* 52 • Spheroids. For a prolate spheroid b — c<ay we have 

a = a6* J ^ (Jfc — UIV I -----— -- , 

(a^-h u)^ {b^ u) 

and putting a* + = (a* — b^) we get 

where a* -|- A = (a® — 6®) i/®. 

Therefore a = 

(a* — 6*)^ 

dv 

J, v^v^-l)* 

2(l~e2) A, I'+l 1 

where e is the eccentricity of the generating ellipse. 

♦ This result is due to Clebsch, see Crelle, liii, p. 287. 
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Also J = y = ah^ j 
du 

^ (a* +(62 + «)® 

2(1-e*) /; dv 

= 45-(;;rri-4‘°g-nj .<2). 

In this case v = I /e'; whore e' is the eccentricity of the generating ellipse 

of the confocal spheroid through the external point considered. 

For an oblate spheroid a^h>Cy we have 

^ , /■* du a-P-a^c I - ; 
(a^-h uy (c^ + u)i 

and putting c* 4- w = — c^)v^ we get 

- 
2a^c 

where c* 4- A = (a® — c*) 

Therefore 

Also 

dv 

a .1 " \ 
= -e3- 

-a^c / *- — --- _ 

_ 2a^c _ 

... 

(3). 

2(l-e‘)i/l 
— cot” .(4). 

In this case is (I where e' has the same meaning as above. 

Hence for an oblate spheroid moving along the axis with velocity IF, we 

have Wyz 

2-yo’ 

whore y has the value given by (4), and is the value when A = 0, or when 

v = (1-~e*)^/e. Hence 
Wz(} ~e*)i 

e3_(i_e3)J 

Wz 

’ sin e — e (1 e*)* 

-—f ^ — cot-' 

— sin“'e^ 
e*)i 

As a special case we may take c = 0 or e = 1, and we get for the case of a 

circular disc moving at right angles to its plane 

. 2irz/l ^ , 
i ~ (-cot~' U 

TT \V )■ 
In this case = A and A is the positive root of 
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On the disc itself 2 = 0 and A = 0, so that = 0, but ^ has a definite value, 

for we may write 

z az / - 4- \ ^ 

so that 
2W 

i= -y 

taking the 4 or — sign on opposite sides of the disc. The normal velocity 

is ± W, hence for the kinetic energy of the liquid we have 

= ~—pi {a^—w^)*.2TTZudvj 
TT Jo 

= f^pa^WK 
We observe that, as is usual in such cases, the theory leads to infinite 

velocity of the liquid at the edge of the disc. 

7*53. Reverting to tlie case of an ellipsoid moving along one of its 

axes (7*5), we have Uolx 

^“2-ao’ 

and the kinetic energy of the li(|uid is given by 

T-. (W. 

But on the surface of the ellipsoid the normal velocity —lU, where 

(^, m, n) are the direction cosines of the normal. Therefore 

IxdSy 

and this integral is clearly the v^olume of the ellipsoid, so that 

T=i„~”-.ipnabcU\ 

or there is an effectiv(j increase in the inertia of the ellipsoid due to the 
presence of the liquid (jqual to a(,/(2 — ap) of the mass of liquid displaced. 

We shall now shew how the foregoing problems of liquid motion with 

ellipsoidal boundaries may be treated by a transformation of coordinates. 

7* 6. Laplace's Equation in Orthogonal Curvilinear Coordinates. 

A = const., ^ = const., r = const. 

be throe families of surfaces that cut one another orthogonally at all their 

points of intersection; A, g, v denoting functions of rectangular coordinates 

y, z. 
Let OABCD be a small curvilinear parallelepi})ed bounded by such 

surfaces, the opposite facets BC, AD corre- C 

sponding to A and A + SA, and so on; and 
the edges OA^ OBy OC being of lengths 

, 3^2 * ^^3 * 
If the coordinates of O are x, y, z those of 

A are O 
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Hence the direction cosines of the normal to the surface A = const, ore 

proportional to a?, f?, and their values are 
OA cA oA 

where 

Also 

f, dx , dy , dz\ 

V^dA* ^^dA)^ 

hi‘~\dx) VW ■ 

SO that = SA/hi and similarly Sfij = Sfi/h^, Bs^ = Bvjh^. 
Now if <j} is the velocity potential of a liquid motion the total flow of 

liquid outwards across the surface of the parallelepiped is by 4*52 (i) 

—VY times the volume, and we get from the pair of faces BC, AD a contri- 

so that by adding similar terms we have 

(4lf) +1. • 

7*7. Gonfocal Gonicoids. The equation 

. 
represents a family of confocal conicoids, of which three cutting ortho¬ 

gonally pass through each point of space. If A, p, v are the three roots of 

the equation regarded as a cubic in 6, and we assume that a>b>c, we 

know that ^ ^ 
oo>A> —c^>fjL> — — o*, 

and that A, /a, v correspond respectively to an ellipsoid, hyperboloid of one 

sheet, and hyperboloid of two sheets. 

Hence we have 

4. {k-e)(t.-e)(v^e) 
, A •” I • A * J O . AV/LO 1 A\ / ^9 1 /1\ ■■(a2 + ^)(6» + (9)(c* + 0) 

-L y‘ 
c^+d 

an identity for all values of 6, 

If we mvfltiply by a® 4- ^ and then put ^ = — a®, we get 

+•')) 
(a* — 6*) (a* — c^) 

.(2). 

Similarly 

and 

^ “ (6»-c»)(6*-a*) 

j ^ (c» + A) (c^ + fi)(c<‘+y) 
(c‘— a^) (c^ ^ b^) 

z- 

(3) 

By differentiating logarithmically we get 

dx ^ X ^ ^ y dz 

dA 
y 

'a* + A’ 0A“®6» + A’ 8X 
= i - ~- 

*c» + A 
(4). 

1 
V *1(0*4 + A)» ’ {6» + A)*'^(c* + A) )•} 

therefore (6). 



7-8 CURVILINEAR COORDINATES 179 

Hence = 2p^, similarly = 2/),, and = 2p^, wherePxtP%tPz are the 
central perpendiculars on the tangent pianos to the ellipsoid and hyper¬ 
boloids. 

Again by differentiating (2) with regard to 9 and then putting 6~X we 
get re* _ (A-/i)(A~p) 

“(a» + A)»”{a* + A) (6* + A) (c* + A) ’ 

therefore 
4 _ . 

(a« + A)(6» + A)(c« + A)’ 

Similarly 
4 (m->')(/*-A) 

V(a== + ^)(6» + ^)(c“ + /x) 

and 
4 (v — X){v — ii) 

V“(a2 + v)(6»+..)(c>+^)'J 

.(6) 

VV = {p-vj(p~X)(X-p)' 

In terms of these parameters A, p, v it follows that Laplace’s equation 

taJkes the form 

“ ^ ^ 2 (/* - ►) {(a* + A)i (6* + A)4 (c» + A)i % = 0 

.(7). 

7*71. We can now find solutions of the preceding equation and give 
hydrodynamical interpretations to them. 

An obvious solution is 

r_^_ 
J X (o^-f t4)4(62-f w)4(c®-i-u)4 

and by assuming the existence of solutions of the form 

^ = xx(A), 

and <t>-yzxW» 

it is easy to shew that there are solutions of the form 

du 

and 

4>=x j 

<l, = yz j 

^ (a* -f w)4 (6* -h w)4 (c* -H w)4 
du 

^ (a* + (6* + (c* 4* w)i 

The last two correspond to the translation and rotation of an ellipsoid 

and give the same results as were obtained in 7" 5, 7*51; the boimdary 
conditions in this notation being 

dX* 

d4> 
and 

dX ’ve\ d\)' 

for the two cases. For the details of the work we refer the reader to Lamb’s 

Hydrodynamicst pp. 162-165 (6th ed.), from which this investigation is 
taken. 

7*8. Ellipsoid of varying form. As we saw in 7*71, or as 
is clear from the theory of attractions, 

d\ 

A (o»+A)*(6*+A)*{c*+A)i 
•d) 

12-2 
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is a solution of Laplace’s equation. It clearly vanishes when 

A = 00 and it is constant over confocal ellipsoids, it may therefore 

represent the velocity potential of a liquid motion due to an 

ellipsoid whose surface is changing form. For the velocity at any 

point being given by 

Ch^ 

dn ~ aA “ (a2 + A)i + X)^c^ + Xji 

therefore, on any confocal ellipsoid, the velocity varies as the 

central perpendicular on the tangent plane. Hence the conditions 

are satisfied by supposing a boundary ellipsoid to vary so as to 

remain similar to itself keeping its axes fixed in direction. If 

the axes are changing at the rates d, 6, c the general boundary 

condition 3/ 3/ 9/ 9/ ; + u+ V ^ + IV ^ = 0 
ct ox ay oz 

becomes in this case 

^2 . 2/“; . X dJ) y dS z d<f> ^ 

a" O'* O'* a** ox dy c-* cz 
.(3). 

But we have 
dbc 

0^ 2Cp 
dn abc 

and on the surface A = 0, equation (2) becomes —; 

therefore, if we take Kabc = 2C, (3) and (2) are the same. 

Another expression for <}> that will satisfy the general boundary 

condition (3) is obviously* 

. .(4), 

i’s equation if 

d b c ^ 
*~d . 

abc .(5). 

This then is the velocity potential due to an ellipsoid which 

changes form so that its volume remains constant, for condition 

(5) is merely the condition that a6c = const. 

♦ This result is due to Bjerknes, Ooit, Nachrichten, 1873, p. 829. 
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EXAMPLES 

1. A solid sphoro moves through quiescent frictionless liquid whose 

boundaries aro at a distance from it great companKl with its radius. Prove 

that at each instant the motion in the liquid depends only on the position 

and velocity of th('/ sphere at that instant. Prove that the liquid streams 

past the sides of the sphere with half the velocity of the sphere. 

(St John’s Coll. 1901.) 

2. An infinite ocean of an incompressible perfect liquid of density p is 

streaming past a fjxod splu'rical obstacle of radius a. Tlie velocity is uni¬ 

form and equal to U exct^pt i?i so far as it is disturbed by the sphere, and 

the pressure in the li(iui(l at a great distance from the obstacle is 11. Shew 

that the thrust on that half of the splu^re on which the liquid impinges is 

7ra2 {II - pU^/U}. (Trinity Coll. 1900.) 

3. A rigid sphere of radius a is moving in a straight lino with velocity u 

and acceleration/ through an infinite incompressible liquid, prove that the 

resultant fluid pressures over the two hemisphere's into which the sphere is 

divided by a diametj al plane peri)endicular to its direction of motion are 

IlTra^ ± \Mf — ^{\Mu'^jay wlicro fl is th(i j)res.siiro at a great distance, and M 

is the mass of the fluid displaced by the sphert‘. (M.T. il. 1910.) 

4. A solid sphere is moving througli frictionless liquid: compare the 

vcilocities of slip of the liquid past it at different parts of its surface. 

Prove that when the sphere is in motion with uniform velocity f7, the 

pressure at the part of its surface wla^re the radius makes an angle $ with 

the direction of motion is increased on account of the motion by the amount 

^\pU^{9cos2d— 1), 

whore p is the density of the liquid. (St John’s Coll. 1898.) 

5. Find the pressure at any point of a liquid, of infinite extent and at 

rest at a great distance, through which a sj)horo is moving under no 

external forces with constant velocity fJ, and shew that the moan pressure 

over the sphere is in defect of the pressure fl at a gn^at distance by 

ipU^y it b(dng supposed that II is sufficiently large for the pressure 

everywhere to be positive, that is, that II > %pU^. (M.T. 1908.) 

6. An infinite homogeneous liquid is flowing steadily ptist a rigid 

boundary consisting partly f)f the horizontal piano = and partly of a 

hemispherical boss , with irrotational motion which tc^nds, 

at a great distance from tlie origin, to uniform velocity V parallel to the 

axis ofFind the velocity potential and the surfaces of equal pressure, 

(8t John’s Coll. 1905.) 

7. A stream of water of great depth is flowing with uniform velocity V 
over a plane level bottom. A hemisphere of weight w in water and of 

radius a, rests with its base on the bottom. Prove that tlu? average 

pressure between the base of the hemisphere and the bottom is less than 

the fluid pressure at any point of the bottom at a great distance from the 

homisphero, if > ^^wjl Vna^p. (M.T. 1894.) 
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8. Prove that at a point on a sphere moving through an infinite liquid 

the pressure is given by the formula 

(p -po)/p = io/ (9 cos* - 5)» 

where v is the velocity, / the acceleration of the sphere, and 6i are the 

angles between the radius and the directions of v,/ respectively, and Po is 

the hydrostatic pressure. (St John’s Coll. 1909.) 

9. When a sphere of radius a moves in an infinite liquid shew that the 

pressure at any point exceeds what would be the pressure if the sphere 

were at rest j 3 os 

where q is the velocity of the sphere and g' and/are the resolved parts of its 

velocity and acceleration in the direction of r and the density of the liquid 

is unity. (Coll. Exam. 1894.) 

10. A sphere of radius o is in motion in fluid, which is at rest at infinity, 

the pressure there being IT; determine the pressure at any point of the 

fiuid, and shew that the pressure on the front hemisphere cut off by a plane 

perpendicular to the direction of motion is the resultant of pressures 

rra* (11 — and Inpa^fin the directions respectively opposite to those 

of the velocity F, and the acceleration/, of the centre of the sphere. 

(Coll. Exam. 1910.) 

11. Prove that for liquid contained between two instantaneously con¬ 

centric spheres, when the outer (radius a) is moving parallel to the axis of x 

with velocity u and the inner (radius b) is moving parallel to the axis of y 

with velocity v, the velocity potential is 

(1 + -2^) - +1^)} ’ 
and find the kinetic energy. (St John’s- Coll. 1898.) 

12. Liquid of density p fills the space between a solid sphere of radius a 

and density p' and a fixed concentric spherical envelope of radius b; prove 

that the work done by an impulse which starts the solid sphere with 

velocity y is 2a' + 6» \ 
Jvo«F* {^2p' + p) ■ (CoU. Exam. 1896.) 

13. The space between two concentric spherical shells of radii a and b 

(a>b) is filled with an incompressible fluid of density p and the shells 

suddenly begin to move with velocities U, F in the same direction: prove 

that the resultant impulsive pressure on the inner shell is 

{3a»i7 - (a» + 26») V}. (Trinity CoU. 1896.) 

14, Incompressible fluid, of density p, is contained between two rigid 

concentric spherical surfaces, the outer one of mass and radius a, the 

inner one of mass and radius 6. A normal blow F is given to the outer 
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surface. Prove that the initial velocities of the two containing surfaces 

(U for the outer and V for the inner) are given by the equations 

2trp68(2^» + a»)l 

3 (a*-6^) j 
(Trinity Coll. 1896.) 

15. A sphere of radius a is placed in an incompressible fluid extending 

to infinity. Each point of the sphere is moving normally outwards with 

velocity d, also the fluid at points very distant from the sphere is moving 

with velocity F in a given direction. Find the velocity potential at any 

point of the fluid. 

Also prove that the resultant pressure on the sphere is the force ^ V 

in the direction of the stream, where M is the mass of the fluid displaced by 

the sphere at the instant considered. (Trinity Coll. 1897.) 

16. A solid is bounded by the exterior portions of two equal spheres 

(of radius a) which cut one another orthogonally; and is surrounded by an 

infinite mass of liquid. If the solid is set in motion with velocity u in the 

direction of the line of centres, shew that the velocity potential of the 

resulting motion is 

where r, r', R are the radii vectores of a point, measured respectively from 

the centres of the two spheres and from the point midway between them, 

and 6, 0 are the angles wliich these radii vectores make with the direc¬ 

tion of motion of the solid. (Coll. Exam. 1902.) 

1 a /cos cos 6 ^ oos 6 COS0 \ 

'a 2V2Ry* 

17. A sphere of radius a is made to move in incompressible perfect fluid 

with non-uniform velocity u along the x axis. If the pressure at infinity is 

zero, prove that at a point x in advance of the centre 

F = (M.T.1928.) 

18. Show that when a sphere of radius a moves with uniform velocity 

U through a perfect, incompressible, infinite fluid, the acceleration of a 

particle of fluid at (r, 0) is /„3 

(M.T.1917.) 

19. The motion of an incompressible fluid being symmetrical with 

respect to an axis, and the parts of the velocity resolved along and per¬ 

pendicularly to a radius vector drawn from a point fixed or moving on the 

axis in any Erection making with the axis an angle 6 being U and IF, prove 

that if 2f7 n' fj' 
17 = -^cos^+^(l + 3cos2^), IF =~3 sin sin 2^, 

the equation of constancy of mass is satisfied, and Udr+ WrdB is an exact 

differential, C and C' being either constants or functions of the time. 

Shew also that if the fluid be imlimited in extent, and (7' = 0, the as¬ 

sumed motion would be produced by a sphere moving in any manner with 

its centre on a fixed straight lino. (Smith’s Prize, 1877.) 
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20. A doublet of strength M is placed at the point (0, a, 0) with its axis 

parallel to the axis of z, prove that at points close to the origin the velocity 

potential of the doublet is approximately 

Mz 3Myz 

neglecting terms of the order r®/a® and higher powers. 

Deduce that if a small sphere of radius c is placed with its centre at the 

origin, the velocity potential is then increeised by the terms 

Af c® 2 Afc® yz 
(Univ. of London, 1911.) 

21. Shew that the image of a radial doublet in a sphere is another radial 

doublet, and compare their magnitudes; shew also that the velocity at any 

point of the sphere is proportional to where r is the distance from the 

doublet, and w the perpendicular on the diameter on which it lies. 

(Trinity Coll. 1906.) 

22. Discuss the motion for which Stokes’s stream fimction is given by 

^ J F cos d — r*} sin* 6, 

where r is the distance from a fixed point and 6 is the angle this distance 

makes with a fixed direction. (Coll. Exam. 1900.) 

23. Find the Stokes stream function ijf where fluid motion is due to a 

source of strength m (flux ^rrm) at a fixed point A, a sink —rn at another 

fixed point B, a translation of the fluid of velocity U in the direction AD 

being 8up>erpo8ed; explain how this solution can be used to deduce the 

motion of fluid past a certain solid of revolution. If C7 = 8m/9a*, where 

AB = 2a, prove that the solid is of axial length 4a, of equatorial radius 

approximately l*6a, and has the same effect on the fluid motion at a great 

distance os a sphere of rcwlius a (9/2)i. (M.T. 1932.) 

24. If A B be a uniform line source, and A and B equal sinks of such 

strength that there is no total gain or loss of fluid, shew that the stream 

function at any point is 

where c is the length of AB, and rj, are the distances of the point con¬ 

sidered from A and B, (Univ. of London, 1916.) 

26. A solid of revolution is moving along its axis in an infinite liquid; 

shew that the kinetic energy of the liquid is 

where ^ is the Stokes stream function of the motion, w the distance of a 

point from the axis and the integral is taken once round a meridian curve of 

the solid. Hence obtain the kinetic energy of infinite liquid due to the 

motion of a sphere through it with velocity V. (Coll. Exam. 1899.) 

26. An ellipsoidal cavity (semi-axes a, 6, c) in a solid initially at rest is 

filled with an incompressible frictionless fluid initially at rest. Prove that 

if the solid be moved with velocities u, v, w parallel to the axes of the 
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cavity, and be rotated with angular velocities g, r round the semi-axes, 

the angular momentum of the fluid round the semi-axis a at any instant is 

A ^* (Trinity Coll. 1902.) 

27. A rigid ellipsoidal envelope, without mass, encloses a perfect in¬ 

compressible fluid of mass M. The equation of the ellipsoid is 

An impulsive couple in the plane of xy caiises the envelope to rotate initially 

with angular velocity cj. Find the initial velocity potential of the fluid, 

and prove that the moment of the couple is 

lMay(a'^-b^fl(a^ + h^). (Trinity Coll. 1910.) 

28. Prove that, if two rigid surfaces of revolution, one of which sur¬ 

rounds the other, are moving along their common axis with velocities 

t/i, l/j space between them is filled with homogeneous liquid, the 
momentum of the liquid is M^U^ — where are the masses 

of liquid whicjh either surface would contain. 

29. Prove that the same result holds good for surfaces of any form pro¬ 

vided that the velocity potential is expressible in the form 

(/(^» yy z)-\-A}x. 

30. An ellipsoid surrounded by frictioiiless homogeneous liquid begins 

to move in any direction with velocity V. Shew that, if the outer boimdary 

of the liquid is a fixed confocal ellipsoid, the momentum set up in the liquid 

is — MF, where M is the mass of liquid displaced by the ellipsoid. 

(M.T. 1924.) 

31. If the space between two confocal ellipsoids is filled with liquid, and 

the inner and outer ellipsoids are suddenly moved with velocitic^s L/, U' 

parallel to the axis of x, prove that the velocity potential of the initial 

motion is given by 

^ = {(U-inoi-U{oLo'- 2/x) + 17' (ao- 2)}xl{ai^' - ao + 2 - 2;x), 

where the notation is that of 7* 5, a^' is the value of a for the outer ellipsoid, 

and fjL is the ratio of the volume of the inner to the outer ellipsoid. 

32. Shew that for a homogeneous solid ellipsoid of mass M rotating 

about the axis of Xf in liquid at rest at infinity, the effective moment of 

inertia is 
fAf [6» + c»i + 

2<x'2{b^-c^) + {b^ + c^){'Po 
_I 

Po-Yo)} 
where p, a are the densities of the liquid and solid and Pq, y© bavo the 

meanings of 7’5. 

33. Shew that when a circular disc of radius a rotates about a diameter 

in liquid at rest at infinity the kinetic energy of the liquid is 

w being the angular velocity of the disc and p the density of the liquid. 
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34. Prove that, when an oblate spheroid of eccentricity sin a moves 

parallel to its axis of figure with velocity V in infinite fluid, the kinetic 

energy of the fluid is ^ „ 
.. 

* a —sm a COS a 

where M' denotes the mass of the displaced fluid. (M.T. n. 1910.) 

36. The ellipsoid a;*/®* + y^= 1 surrounded by an infinite 
mass of water, and rotates about the axis of x. Prove that the component 

velocities of any particle of the water, parallel to the axes, will respectively 

b.proponio«alK, 

dz dy * dx dz' dy dx * 
where 

r - r UJ^_I'l__t.__ 2 ( ^ 

26* r - 
J « {a 

M=26* r---r. 

N=-2c* r__ 
y* (o* + #(6*+^)l(c> + ^)i' 

and € is a positive quantity, given by the equation 

»* I y* 1 ^1 
a*“f€ 6*-fe c* + € 

+ t/r; j (^2 + (^a + (c* + ^)i' 

Prove that, if the ellipsoid be a shell filled with water, the values of L, M, N 
with 0 instead of c for the inferior limit, will similarly determine the velocity 

of emy interned particle of the water. Find the distributions of density, on 

the surface of the ellipsoid, respectively giving the potentials L, Af, N, 
(Smith’s Prize, 1881.) 



CHAPTER VIII 

MOTION OF A SOLID THROUGH A LIQUID 

8*1. In the foregoing chapters we have considered some 

simple cases of the motion of a solid through a liquid, chiefly 

from the kinematical point of view. It is now our purpose to 

establish dynamical equations for the motion of a solid through 

an infinite mass of liquid, assuming that the motion of the liquid 

is due entirely to that of the solid, so that it is irrotational and 

acyclic. The motion of the liquid is therefore given by a single¬ 

valued velocity potential, and by reference to 4’61 we see that 

the problem is a definite one. 

8*11. The dynamical problem possesses features of special 

interest. It was* first solved by Kelvin and Tait* by treating 

the solid and liquid as one system and using Lagrange’s equa¬ 

tions and the method of ignoration of coordinates. We shall 

approach the problem by a different method also due to Lord 

Kelvin. 

8*2. The Impulse. In the general problem which we have to 

consider, we shall suppose first that the liquid is finite in extent 

and limited by a fixed boundary or envelope, and we shall then 

proceed to the case of a solid moving in an infinite mass of liquid 

by supposing the boimdary to increase in size until every part of 

it is at an infinite distance from the moving solid. We saw in 2* 71 

that any irrotational motion of a liquid may be produced in¬ 

stantaneously from rest by the application of a suitable impulsive 

pressure at every point of the boundary, and we shall define the 

impvise of the motion at any instant to be the impulsive wrench or 

system of impulses that, applied to the solid, would generate the 

motion from restf. We shall call this briefly ‘the impulse’. It is 

clear that the impulse is equal to the total momentum of the solid 

and liquid together with the impulsive pressure on the envelope 

that bounds the liquid. 

♦ Natural Phihaophy, Art. 320. 
t Soo Lord Kelvin, *On Vortex Motion*, Trans, R, Soc, Edin, xxv, 1809, or Math, 

and Phys. Papers, iv, p. 15. 
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8*21. Example. It will be convenient to recall here the results ob¬ 

tained in a simple case in 7*2. A solid sphere of radius a moving with 

velocity V in liquid bounded, at the instant under consideration, by a 

concentric sphere of radius 6. The impulse I necessary to produce the 

motion instantaneously was calculated and shown to tend to adefinitc limit 

when b is increased to infinity. The impulsive pressure on the envelope 

was also seen to tend to a definite limit as h is increased to infinity; and 

the same was shewn to be true of the momentum. We shall see in the 

next article that the impulse necessary to produce the motion always 

tends to a definite limit, but except in special cases when the form of the 

envelope is prescribed the impulsive pressure on the envelope and the 

momentum are indeterminate. 

8-22. The Impulse tends to a definite limit, but the 

Momentum is generally indeterminate. We have seen in4* 54 
and 4*61 that, whether the smrounding envelope be finite or 
infinite, if the velocity potential (or impulsive pressure) at each 

point of the surface of the solid is prescribed, there is only one 
form of irrotational motion possible. And since any irrotational 

motion could be produced instantaneously by t^e application to 

the solid of a suitable impulsive wrench, and one and only one 

form of motion can arise from a given impulsive wrench, it follows 
that, if the envelope be increased indefinitely so that every part of 

it becomes infinitely distant from the solid, the solid and liquid 

still having a definite motion, this motion must still be the result 

of a definite impulse. That is, as the envelope increases without 

limit the impulse tends to a definite limit. 
This is not generally true however of the impulsive pressure of 

the boundary. For the impulsive pressure at a point is measured 

by p<f>, and since the envelope is fixed the tubes of flow must all 

start from and end on the surface of the moving solid, so that at a 
great distance r from the solid the velocity potential <f> must be of 

the same order as the velocity potential due to a doublet. But 

the element of area of the infinite envelope is of order so the 
surface integral of the impulsive pressure on the envelope is in 

general finite but dependent on the shape of the envelope and 
therefore indeterminate. Similarly the momentum is in general 

indeterminate when the mass of liquid is infinite. 

8-23. Rate of change of Impulse = external Force. Con¬ 
sidering first the case of a finite mass of liquid and using axes 

fixed in space, let , ig be the a:-components of the impulse that 

would generate the motion from rest and of the impulsive pressure 
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on the envelope at time t \ M, X the ^-components of the whole 

momentum and the external force acting on the solid; and 

(?, m, n) the direction cosines of the outward normal to the 

where the integration is over the surface of the envelope. 

But M - /a and ^ + F {t), 
p vt 

where F (t) is an arbitrary function of the time. 

Therefore 

But 

cZ/i 

(it 
iy- + F(t)\ldS, 

IdS; 

also F (t) is constant over the envelope and will give zero result 
when integrated, so that we get 

Now let the envelope increase until every part of it is at an 
infinite distance from the solid; then, as in the last article, being 
of order q is of order on the surface of the envelope, so that 
JJ qHdS tends to zero, and tends to a definite limit /, therefore 
for a solid in an infinite mass of liquid 

dt 
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As the motion, in general, would require an impulsive wrench 
to produce it instantaneously, and a linear impulse on the solid 
might result in an impulsive wrench on the envelope, we must also 

consider the rate of change of the moment of the impulse. 
With a similar notation let /j', /g', M\ N denote moments 

about the x axis of the impulse, the impulsive pressure on the 

envelope, the momentum and the external forces on the solid. 

We have 
dW 
dt 

P ipy — W12;) dS, 

But M'^1^and —Hpj>{^y — mz)d8, 

so that we get by similar steps 

^ =N-tryJJg2 (ny - mz) dS 

for the case of the finite envelope. When the envelope becomes 

infinite the surface integral vanishes as before and tends to a 

definite limit so that , j, 

8*24, Kinematical Conditions. Before translating the 

foregoing principles into formal equations of motion, we shall 

establish some kinematical relations. It will be convenient to 
take rectangular axes fixed in the body, the origin having 

velocities u,v,wm the directions of the axes, and the axes having 

an angular velocity whose components about the axes are p, q, r. 

If <f> be the velocity potential we may write* 

^ = j4i + V^2 + «’^3+J’Xi + ?X2 + ^X8 .(1). 

where denotes the velocity potential when the only motion of 
the body is a translation along the x axis with unit velocity, and 

Xi denotes the velocity potential when the body rotates about the 

X axis with unit angular velocity, with similar meanings for 

If Z, m, denote the direction cosines of the normal at any 

point (x, y, z) on the surface of the body, we have 

-^=^l{u—yr+zq)+in(v-zp^xr) + n(w — xq + yp) 

* Kirohhoff, Mechanik, p. 224. 
(2), 
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by equating the normal velocity of the liquid to that of the 
body. Whence by substituting the value of <f> from (1) and 
equating coefficients of u, v, w, p, q, r we get 

11 
d(l>2 1 !l 

Svi 
— — Iz — nx, 

dn 

We may observe in passing that the values of <f>i, Xi* have 
been found in the case of an ellipsoid in 7*5 and 7*51, and that 
the problem of their determination is a definite one in the general 
case since they have to satisfy Laplace's equation as well as (3) 
and their derivatives vanish at infinity, for by hypothesis the 

liquid is at rest there. 

8'3 Equations of Motion. Let rj, A, p, v be the com¬ 
ponents of impulse, and X, F, Z, L, M, N of the external force 
system acting on the body at time t referred to axes fixed in the 

body moving as in 8*24. At time Si the coordinates of the 
origin referred to the axes at time t are uSty vSt, w8ty and the 
direction cosines of the axes referred to their former positions are 
(l,r8i, —qht), ( —rSi, l,^>8i), (gSi, —pSt, 1). Hence by resolving 
parallel to the new position of the x axis 

f f 4“ Si — Si -f X Si, 

and by taking moments about the same line 

A + 8A = A + /xr Si — vg^Si + rjwht — Si -f LSi, 

whence we get the six equations of motion 

^ —T^r + ^g' =X, \ —+ — + =1/, 

+ r, vp + Ar-^w + ^w; = JIf, 

i-iq-hrjp-Z, v-Xq + pp-^v + rju =X. 

As suggested by Lord Kelvin, these equations may conveni¬ 
ently be called the Eulerian equations of motion, since they refer 
to axes fixed in the moving body and correspond precisely to 

Euler's equations for the rotation of a rigid body*. 

♦ Math, and Phys. Paj>er«, iv, p. 70 footnote. 
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8*31. The Kinetic Energy. The kinetic energy of the liquid, 
by 4-71, is given by 

T=-y Ups.(1), 

where the integration extends to the surface of the moving solid. 
From 8*24 (1) it follows that T is a homogeneous quadratic 

function of the velocity components Uy v, w, p, q, r, so that we 
have 

2T — Au^ + Bv’^ + H- 2A'vw + 2B'wu -f 2G'uv 

+ ^ ^ ^ 2P'qr + 2Q'rp + 2R'pq 

+ 2p (Fu +Ov-h Hw) + 2q (F'u + G'v + H'w) 

+ 2r (F^u + G"v ... (2), 

where the coefficients Ay B, etc. by the help of 8*24 (3) can be 
expressed in the form 

The kinetic energy of the solid is also a homogeneous quadratic 

function of the velocities, so that the whole kinetic energy of the 

solid and liquid is an expression of the form (2), wherein the 
coefficients are only represented in part by the expressions (3). 

8*32. Impulse in terms of Velocities. It is a well-known 

dynamical theorem that the work done by an impulse is the 
product of the impulse and the mean of the velocities of its 

point of application before and after it acts. Accordingly an 

extra impulse in the x direction would do work Si^(w-h 
where u-{-hu is the velocity in the same direction after the 

impulse 8^ has taken place; and if 8^ be infinitely small we may 
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take u8$ to represent the work done or the increase of kinetic 
energy. Hence when the ‘impulse’ receives infinitesimal in¬ 
crements 8^, 8rj, 8^, 8A, S/x, Sv there is an increase of kinetic 
energy ST given by 

But 
ST = + vSrj + w8l-\-pSX-\-qSijL + r8v .(1). 

8T dT dT dT dT dT 
8T=^~8u + ^/-8v-h~~8w^~8p^^;f8q^^^8r.,.{2), 

du ov dw dp oq dr 

and if the velocities are all altered in a given ratio it is clear that 
the impulses will be altered in the same ratio, so that if we Avrite 

8w/^ = 8t;/t; ==... = Srjr = k, 
we must also have 

8^/^ = 817/17 = ... = Svj V=K, 

Whence by equating the two expressions for 87 in (1) and (2) and 

substituting from the last equations we get 

+ vr] 4* -f pA -\^qp-\-rv 

dT dT dT dT dT dT 
33’...(3). 

since T is a homogeneous function of etc. 
By varying this last equation we get 

287 = f8tx)4-... -f (r8v-i- v8r); 

and therefore by subtracting (1) 

S7 = ^Sw,-f i78?;4- ^8tx?4'A8p 4-/xSg4- v8r. 

Comparing the last result with (2), since the small variations 
are arbitrary, we get 

V . , 07 07 07 07 07 07 
^,7?, ^,A,/X, .(4). 

These results imply that the components of impulse are linear 
functions of the components of the velocity, hence the kinetic 
energy may also be expressed as a homogeneous quadratic 
function of the components of impulse; and when 7 is so expressed 

we get from (1) the reciprocal relations 

07 07 07 07 07 07 
7i,v,w,p,q,r- , g- ...(5). 

KH 13 
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8’33. Equations of Motion. The equations of 8"3 now take 

the form* d dT _ dT 

dt du ^ dv ^ dw^ ’ 

d dT 

dt dv 

d dT 

dT 

dT 

dt dw ^ du 

dT ^ 

dT „ 

d dT ST dT dT dT , 

d dT dT 

dr 

dT 

dw 

dT 

dt dq ^ dr ^ dp'^^dw ^du'^^’ 

dT dT dT dT 

^ dp ^ dq^^ du ^ dv^ 

d ^ 

dt dr 

Ill the case in which there are no extraneous forces we can 

obtain three integrals of these equations. Thus if we multiply 
them by v, q, r and add, we get 

But 

therefore 

but 

d dT d dT ^ 

^dt^ + -^^Wdr=^^ 

om dT 
du dr 

^dT _ ddT dTd^ 

dt ^ dt du ^ du dt^ 

d^JdTdu dTdv 

dt du dt^ dv dt^ 

.(1). 

.(2), 

.(3), 

and by subtracting (1) and (3) from (2) we get the equation of 
energy 

=0, or T = const. 
at 

Again, if we multiply the first three of the equations of motion 
by dTjdu, dTjdv, dTjdw and add and integrate, we get 

(dTY (dTY 
\u)A^) *\^) 

^2 +^2 ^^2^ const., or 

which represents that the linear component of the impulse or the 

intensity of the impulsive wrench is constant. 

♦ Kelvin, * Hydrokinetic solutions and observations Phil. Mag. xm, p. 362, or 
Math, arid Phys. Papers, i\, p. 69. Also Kirchhoff, Mechanik, p. 230, 
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And if we multiply the six equations by 

dT/dp, dTjdq, dTjdr, dTjdu, dT/dv, dT/dw, 

we get 

or 

dT dT dT,dT dTdT 

du dp dv dq dw dr 

+ rjp + = const., 

which represents that the couple component or the pitch of the 
impulsive wrench is also constant. 

8’34, Directions of Permanent Translation. When there 
are no external forces the equations of motion of 8*33 are 
satisfied by ^ = 5^ = r = 0, provided u, v, iv have constant values 

such that 
u \ v\w — 

0T aT 
du' dv ' 

d^ 
dw 

.(1). 

In this case T is a homogeneous function of u, v, w only, of the 

form 2T~ Bv^ + Cw^4* 2A'vw4- 2B'wu 4- 2C'nv ...(2). 

If we regard u, v, w as current coordinates the equation 

2T=^ const. 

represents an ellipsoid, and the equations (1) determine its 
principal axes. 

Consequently if the body be set moving without rotation in the 
direction of any one of the axes of this ellipsoid it will continue to 
move in the same direction without rotation*. 

, The stability of the motions has been discussed by H. D. Ursell 

8-4. Hydrokinetic Symmetry. The expression for the 
kinetic energy in 8*31 contains 21 constants, but the number of 
terms is reduced in particular cases. Thus the coefficients A\ B\ 
C' can always be got rid of by rotating the axes. Also 

(1) If the body has three perpendicular planes of symmetry 
the energy must remain unaltered when the sign of any velocity 
component is reversed, so that 

2T~ Au^ 4- Bv^ 4* Cw^ + Pp^ 4 Qq^ + 

(2) If the body is in addition a surface of revolution about 
Ox, the expression for 2T must remain unaltered when we write 
V, q, —w, — r for w, r, v, q, respectively, for this is equivalent to 

♦ Kirchhoff, Mechanik, p. 
t ‘Motion of a solid through an infinite liquid \ Proc, Carnb, Phil. Soc. xxxvn, p. 150. 

13-2 
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turmng the axes of yz through a right angle; hence B=^C and 
C = -B, so that 

+ w^) -f Pp^ +Q(q^ + 

The same expression holds when the solid is a right prism 

whose cross section is a regular polygon*. 

(3) When the body is similarly related to the three planes of 
symmetry as in the case of a sphere or cube we have 

2T — A + P{p^-\-q^-{~r^), 

(4) Another kind of symmetry is that represented by the 

expression 

2T = A P(p^ + q^ + r^) + 2L{up-hvq-htvr), 

the form of which is unaltered by any changes in the directions of 

the axes, and any direction is one of permanent translation. 

Such a solid is said to be ‘helicoidally isotropic 

8*5 Applications. Sphere. Taking u, w as the components of 
velocity of the centre of the sphere 

2T=:^A (u^ + V* + 

where ^ = U<I>1 + -f , 

and 
, a^x a* cos 6 . - - - 

2r> 

Hence A = M + pjj4^ldS 

= 3f + irpo*y^ COS* 8 sin 8d8 

= M + iM', 

where M' is the mass of liquid displaced. 

Therefore 2T^ {M + \M') (u^ + V* -f v)^). 

and 17, { = {M -f JM') {u^ v, w). 

The equations of motion, in this case, become 

{M + iM')(u, v,w) = (X, F, Z), as in 7-13, 

where X, Y, Z are the components of external force on the sphere. 
If external forces act on the liquid as well, their effect on the sphere is 

expressed by adding to X, Y, Z the reversed effect that these forces would 
exert on the liquid displaced by the sphere. 

♦ Larmor, ‘On Hydrokinetic Symmetry’, Quart. Jorumal, xx, p. 261, orKirchhoff, 
Mechanik, p. 243. 

t See Kelvin, ‘Hydrokinetic solutions and observations*, PhiL Mag, xi*ii, p. 365, 
or Math, and Phya. Papers, iv, p. 72. 

For other special forms see Lamb’s Hydrodynamics, Art. 126, or Larznor, loo, cit. 
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8‘51. Solid of Revolution. Taking the axis of the solid for axis of x, 

we have 2T = 4M» + B(v®+«>*) + f’j3* + 0{3»+r») .(1). 

Assuming that there are no impressed forces, the equations of motion of 
8’33 become /i • r> /ov 

Bv^Bpw — Aru .(3), 

Bw=zAqu — Bpv.(4), 

Pp = 0  (6), 

Qq =(Q — P)pr + (B--A)uw .(6), 

Qr = {P-- Q)pq + {A -B)uv .(7). 

From (6) we see that jp is constant throughout the motion. We can also 
deduce as in 8*33 three integrals 

T = const.(8), 

(v* + = /*  (9), 

and APup + BQ (vq’{‘tvr)^ 10  (10), 

where /, O are the constant components of the impulsive wrench at any 

instant. 

From (1), (2), (8), (9), (10) we can eliminate v, w, q, r. Thus 

Q{q^ + r^) =2T —Aw* —J5(v* + t<^*)--FiE>® 

= 2T-A^(l-^y-^~-Pp^, 

and BQ (vq-h‘ivr) = IO--APtip, 

therefore 

A*w* = F* (rv — qw)^ 

= F® {(v* + w®) (g® + r^) — (vg + itr)®} 

a polynomial of the fourth degree in Au so that Au is an elliptic function of 

the time. 

Again, if we put vjw = tan we have 

(v^ W^)tfj =ZWV — vw 

=p(v*-f W7®)—Aw(gv-|-rM;)/F, from (3) and (4). 

Therefore 
; Au lO’-APup 
*=p--q--1tz:a^' 

Thus, having expressed u in terms of the time, the last relation gives vjw 

and (9) gives v® + tt;®, thenp being constant (8) and (10) determine q and r, 

so that aU the velocity components are determined. 

The evaluation in terms of elliptic functions was first performed by 

Barchhofif, and the problem has been discussed at length by Greenhill* and 

others. 
* American Journal of Mathematics, 1898, 1906. 
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8*52. Solid of Revolution—Quadrantal Pendulum. The case 

considered in 8*51 is much simplifiod if the axis of the solid moves in a 

fixed piano. Taking this as the plane xy we have and the 

equations of 8*51 become 

Ail — Brv, Bv = — Aru, Qr^(A — B) uVj 

Y 

the three integrals reducing to two 

Au^ + Bv^ + Qr^ = const., 

and A + B^v^ = 

the third being an identity, as the ‘impulse* at any instant consists of a 

single impulsive force I. 

Let X, y be the coordinates of the centre of gravity o of the solid referred 

to axes fixed in the given plane whereof the x axis coincides with the line 

of the impulse I and makes an angle 0 with ox. 

Then r = Au:=: I cos ff, Bv=—l8m^, 

so that the first two equations of motion are satisfied identically, expressing 

the fact that the impulse is fixed in magnitude and direction. The third 

equation gives _ R 
Qff Acos 0 sin 0 = 0 .(1), 

or, if we write 2i9 = ^ = 0.(2), 

shewing that the motion corresponds to that of a simple pendulum, the 

body moving according to the same law through a quadrant on each side 

of its mean position, as the common pendulum with reference to a half 

circle on each side. A body moving in such a manner is called a Qiuidrantal 

Pendulum*. This motion is acquired by a solid of revolution in an infinite 

mass of liquid when it is given a rotation about an axis perpendicular to its 

axis of figure, or simply projected without rotation. 

The body, as it moves, may make complete revolutions or it may oscillate 

about a mean position. 

(i) In the case of complete revolutions we may write the first integral 

where a> is the value of C in the position ^=0 and 

w^^=(A-B)PIABQ . 

* Kelvin and Tadt, Natural Philotophy, § 322. 

(3). 
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Hence 

-i 

‘e)i 
dl -, where £ = sin 

Therefore sin ^ = sn a>^.(4), 

where k, as given by (3), is the modulus of the elliptic function. 

(ii) In the case of oscillations through an angle 2a about the position 

0 = 0, we may write the first integral of (1) 

\ 8m*a/ 

where 

Therefore 

.(6). 

sin a. dB 

~ sin a / - 
Jo M- 

(sin^ a ~ sin* B)i 

C dC 

, or if sin 0 = { sin a, 

(l~i*)i(l-sin*a.{*)*’ 

so that sin 0 = £ sin a = sin a sn (cosec a) . 

where sin a, as given by (6), is the modulus of the elliptic function. 

To find the path of the centre of gravity we have 

• a • Q T /cos* 0 sin* 0\ 
x = wcos0 —vsm0=/l 

and y = w sin 6 + v cos 0 = J sin 0 cos 0. 

Hence in case (i) 

^ |1 (s “ 1) 
_ fl /I iy~dn*a>fi 

a) AC* J 

./1 , A-B\ I{A--B) , „ , 

= ^ ~ ^ dn* cot, from (3). 

Therefore * = (J + ^J") « - ^ ><)f 

where E is the elliptic integral of the second kind. 

Similarly y = I ^ sn cot cn cot, from (4), 

(6), 

therefore 
y (u4 — jB) dn a>^ 

^^^'AB^ a»K* 
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In case (ii), in like manner, putting v for cat oosec a. 

8-52- 

AB 
sin® a sn® v) 

I Qo)^ 
= ^ ^-— from (6). 

A I sm*a 

Therefore x = f ^ y t — E{a}t cosec a, sin a), 
ism® ay isma ' 

Similarly 

therefore 

r(A^B) , . 
y = — i —sm a sn t> on V, 

r{A-B) . „ 

= -~^ cn((utcoseca,sina). 

In either case we see that the velocity of the centre of gravity consists of 

a constant part in a fixed direction together with periodic parts along and 

perpendicular to this direction. 

There is an intermediate case in which 

ABQio^^(A-B) 

corrasponding to « = 1, or a = 7r/2; then wo have 

6= w cos 

wt = log tan { Jtt + i^)* so that 

Also 

and therefore 

Also 

so that 

I 
'’A' 

' tanh® a}tf 

Qci 
tanh loL 

^(A-B) . . . 
v = — / sm 6 cos 0 

AB 

= -- tanh (jd sech wty 

Q<^ ^ y = -j~ sech cot. 

In case (i) the curve described by the centre of gravity does not cross the 

line of the impulse, but in case (ii) the curve is a sinuous one crossing the 

line of the impulse at regular intervals, the points of crossing marking the 

extreme positions of theaxisof the solid in its swing about its mean position. 

8*53. Cylinder, In the two-dimensional motion of an infinitely long 

cylinder in an infinite mass of liquid, the expression for the kinetic energy 

included between two planes perpendicular to the length of the cylinder 

at unit distance apart is 2 T = A w® 4- Bv^ + Qr^, 

with the same notation as in the last article. The motion of the cylinder is 

therefore given by the results of the preceding article. The curves described 

by the centre of the cylinder are to be found in Lamb’s Hydrodynamics^ 

1932, p. 176. 
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8*54. Stability. Let us consider the stability of a solid of revolution 
moving uniformly along its axis of figure. In the equations of 8* 51 we may 
put w = U0 -f u' and regard u\ v, p,q,ra& small, then we get 

Au'=:0, --Aru^y Bw:=^Aqu^y 

Pjp = 0, Qq^(B--A)uQWy = 

Hence Bv + —= 0, 

with similar equations for Wy q and r. 

Therefore the motion is not stable unless A>B, 

For an ellipsoid we have 

and 

so that A = M+^,rpabo~-^, 

similarly B = M+ ^pabc^s-■ 
Po 

Hence we have J > P, provided , where are as defined in7*5. 
And ao>^o requires that a<b; thus it follows that when an oblate 

spheroid moves imifomily along its axis the motion is stable, but for a 

prolate spheroid the motion is unstable. This accords with the observed 

tendency of a body to tiun its flat side or its length across the direction of 
its motion. 

8* 55. Stability increased by Rotation. Now let us suppose that the 

solid of revolution is moving with velocity along its axis and angular 

velocity about its axis. When a slight disturbance takes place we may 

put u~UQ + u\p:=zpQ -f- p' and regards/, v, to, p', q, r as small. The equations 
of motion of 8*51 become 

Au' = 0, Bv~ BpqW —AuqT, Bw — Au^q—Bp^v, 

Pp'=:0, Qq=:(Q-P)p^r^{B-A)u^Wy Qr=: (P - Q) p^q^ {A - B) u^v. 

These give = const., p'=: const., and if wo assume that 

v-XieM\ w:=.A^e^^\ 

we get BiaX^ - Bp^X^^-Au^X^ = 0, 

B'io'X2 ^'^0 ^3 "h Bpq — 0, 

QiaAg + (P - Q)Po^4 + (A - if) Uq Ag = 0, 

QioX^ ~ (P ~ <^) P0 Ag - (A - B) Uo Ai = 0. 

The elimination of A^, Aj, Ag, A4 gives a biquadratic for a, which resolves 
into two quadratics 

B<?or*±P(P~2Q)p0a-{J5(F-C)po2 + A(A~P)V} = O, 

and the condition for real roots, which must be satisfied for small oscilla¬ 
tions, is that 

(P - 2Q)2po* + 40 (F - 4.4 ^ (A P) 0 V 
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A 

should bo positivo, or that P^o® 

should be positive. 

Tliis condition is always satisfied if yl > P; and when B> A the condition 

can bo satisfied by making p^^ large enough. That is, an elongated projoctiU^ 

can bo inad(‘ to inov^o in the dircxdion of its axis by giving it a sufficiently 

great angular velocity. This explains th<? neetissity for the? rifling of guns. 

But Urseli has shown that for some bodies a steady translation can lx? 

made unstable by rotation, lov. cit. p. 195. 

8*56. Steady motion of Solid of Revolution in a Helical Path. 

As in 8*51 when there an? no (?xternal fore(?s W(> have 

Au~ B (rv — gw), Bb■==■ Bpw — .4ru, Bw =^Aqu-~ Bpv, 

Pp = 0, Qq=.{Q-P)pr-^(B-A) uw, Qr=:(P-^Q) pq -f- (A - B) uv. 

If WO make the hypothesis that rv — qw = 0 the equations are satisfied by 

ti ~ const., and -f = const., 

and we have also p = const., and = const. 

Let F, O be the impulsive force and couple that constitute the impulsive 

wrench at any instant; since? there are no forces the axis OZ of this wrench 

is fixed in si)ace. Let O' he the centre of gravity of the body, O'O perp(?ndi- 

cular to OZ and F, G' the force? and couple components of the? impulse 

referred to O' as origin. Then ip { are the eom])on(?nt.s of F and A, /i, r 

those of O', when, ^ ^ ^ 

and A, /x, v=Pp, Qq, Qr, 

Since rv=zqw^ the direction of the motion of O' given by (w, v, tv) is 

coplanar with F and O', i.e. in a }>lane perpendicular 

to 00'. Therefore OO' is of constant length. 

Again, if U denote? th(' velocity of O', so that 

the angle (j> between U and F is given by 

, AiP A B (v^ A w^) . 
cos 0 =-oy—~ const. 

Therefore O' describes a helix round the axis OZ 

of the impulse, the velocity parallel to OZ boiiig 

U cos (j), 

and the plane ZOO' turning round OZ with angular velocity 

U^in^lOO'. 

The axis of the solid of revolution, its direction cosines being (1,0, 0), 

and the instantaneous axis of rotation (p, g, r) are also clearly coplanar with 

Fy O' and make constant angles with OZ, Hence the motion is a steady 

motion. 

8*57. Steady motion of Isotropic Helicoid under no forces. In 

this COSO 
2T==:A {u'^Av^Aw^)AP(p^Aq^Ar^)A2L{upAvqAtvr) 

A PII*4- 2LQUcos 6, 

where U, Ll are the resultant linear and angular velocities and B the angle 

between the direction of U and the axis of H. 
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Representing the impulsive wrench as in the last article, we have for the 
components of F and Q\ 

Tj, l:=A (u, V, w) + L(p, q, r), 

A, fx, V = P (p, q,r) + L {u, v, w). 

Therefore F is the resultant of vectors A U and LQ, and O' is the resultant 
of vectors PO. and LU, 

Hence as in tlio last article the directions of the vectors V and fi must lie 

in the plan.e of P, CJ", i.e. in the plane through O' perpendicular to 00'. As 

before 00' is of constant length, and therefore G' and the angle G'O'F are 

constant and therefore U and LI are constant and make constant angles 
with F. 

As in 8*56 O' describes a helix. 

Also U is the resultant of 

PF ^ LG' 
AP ~ i.2 - j'pTTXs» 

and if the angle FO'G'-cl, O'cos a = (7, and O'sin a = P. 00'. 

Hence the velocity of O' parallel to OZ is 

U cos p = 
_PP 

AP-L^ 
PO'cosa PP-LO 

AP-L^" AP-IA ’ 

where ^ is the angle between IJ and OZ; and the angular velocity about 

P^L§-^ 2-G"8ma _ LF 
'UO' Ob'(AF-L-)~ AP-~L^' 

Hence the pitch of the helix is (LG — PF)ILF. 

AG' LF 
Since H is the resultant completely 

detormitK'd when tlie im[)ulse and the distance of the centre of gravity from 

the impulse are known, and thus the motion is completely determined in 
terms of these data*. 

8*6. Two Spheres. Though the general discussion of the 
motion of two or more solids through a liquid may be regarded as 

beyond the scope of this book, there are some special cases which 
are capable of treatment by fairly simple methods so far as 

approximate results are concerned. The first of these is the motion 

of two spheres, moving (1) in their line of centres, (2) in parallel 
directions at right angles to their line of centres. 

8-61. Two apJieres moving in their line of centres. 

Let At B ho the centres, a, h the radii, c the distance AB and 17, 17' the 

velocities of A along AB and of B along BA. Let (r, ^), (r'. S') be polar 

coordinates of a point P measured as in the figure, 

* For a method of constructing an isotropic helicoid see Kelvin, ‘Hydrokinetic 
solutions and observations’, Phil. Mag. xLii, or Math, and Phys. Papers, iv, p. 73. 

For other cases of motion of an isotropic helicoid see Miss Fawcett, ‘Note on the 
motion of solids in a liquid’, Qwirt, JoumaL xxvi, p. 231. 
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The velocity potential will be of the form 

and the kinetic energy of the liquid will be given by 

t. - o... 2T = Lm + 2MUU'^NU'^ ... 
where as m 8*31 

To find the values of we might use the method of successive images, 

ea^h sphere when alone in the liquid producing the same effect as a doublet; 

but it is simpler to proceed as follows. 

The boundary conditions to be satisfied are 

= — cos 6 over and = 0 over B; 
cT or 

: Cover .4, and - cos 0' over B. 

If the sphere A were alone in the liquid, moving with unit velocity, we 

should have a velocity potential 

which would make —cos 6 over A. 

COS 6 rcosd c —r'cos^' 
JN ow _ ~ ,_,_- — 

»•“ ^ {c»-2r'cco8e'+r'»}J 

= ~,(i+TC08<^+-)- 

Hence, near B, we have 

giving a normal velocity over B = — ^ cos d\ 

This normal velocity might be cancelled by the addition of a velocity 

potential ^ ^os 9' 

and, as above, the value of this near A is 

. , /, . 2rcos^\ 

giving a normal velocity over A = 
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This normal velocity might be cancelled by the addition of a velocity 

potential ^*^,3 g 
= .and 80 on. 

To this order of approximation, i.e. neglecting we have 

and, on A, ^ = oonst. + 1 + 3 - g j cos 0 . .(3), 

while, on B, 
qS 

<f> — const. + ? ^ 6 cos 6'. .(4). 

Hence 11 1 27ra® smOdB 
^ dr 

= npa*(^ 1 + 3 “Y ) I cos® 6 sin BdO 

II 

Similarly and N = ^Trpb^ ^1 + 3 \ .. .(6). 

If WO put and the motion is symmetrical about the plane 

bisecting AB a.t right angles, which may be taken as a fixed boundary. 

Hence for the motion of a sphere at right angles to a fixed plane boundary 

at distance = Jc, the kinetic energy of the liquid being half that just 

obtained is given by / s \ 
2T = f^po»C;»(l + |“, + ...j.(6). 

If m, m' are the masses of the spheres, for the whole kinetic energy in the 

general case we have 

2T = (L + m)U^ + 2MUU' + {N + m') .(7). 

If we now assume that Lagrange’s equations* may be applied to the 

whole system and lot x, x' denote the distances OA, OB, where 0 is an 

origin on the line of centres, we have 

2T=:^(L + m}x^-2Mxx' + {N + m')x'^ .(8), 

and x' — x = c,ao that 

and ^{-Mz + (N+m')£'}-iQfx^-2?^xx' + ^^x'^') = xj 

where X, X' are the forces acting on the spheres in the x direction. 

To a first approximation, assuming that a and b are small compared to 

c, and retaining only the most important terms, we have 

dL ^ dM ^ a^b^ dN . 

* For the justification of this assumption reference may be made to Lamb’s 
Bydrodt^namics, chap, vi and Kelvin and Tait’s Natural Philosophy, §§ 319, 320. 
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(a) If the spheres botVi move with constant velocity the force necessary 

to maintain the motion of A is 

dM dM.., dM.., dM,., 
< ■— — . nr-n'nr ~ — -rnr-- 'rnr ~ x= 

dt 
, • XX = — CX 
dc dc dc 

dM 

Be ^ 

.(11). 

This force is directed towards B and depends only on the velocity of 

so that two spheres projected towards one another would appear to repel 

one another. 

{p) If the spheres perform small oscillations about fixed positions, wo 

may p\it 
= Acospif, 

rr' = c 4- A' cos (j)t 4- c). 

The mean value of X is then the mean value of 

which 

— AA'p^ sin pt sin 4- e). 

AA'p2cos€ .(12). 

The force is therefore repulsive if the difference of phase e is less than a 

quarter period, and attractive^ if more than a (piarter period. 

(y) Let IJ = C7' and 0 = 6 so that the motion is symmetrical about the 

plane bisecting AB right angles, then this plane may be taken as a 

fixed boundary, and wo conclude from (a) that a sphere moving at right 

angles to a fixed plane boundary is repelled from the boundary. 

8* 62. Two spheres moving in parallel directions at right angles to the line 

joining them. 

Let V, F' denote the velocities, and with the same notation, but 

measuring B, 6' as in the figure, the velocity potential is 

F^-fFy, 

where = — cos 0 over A, and = 0 over B; 
dr dr 

0 over Ay and = — cos 0' over B. 
dr dr 

As before, a velocity potential 

would make d<l>Jdr = — cos B over A, 

And, near B, we have 

o^ 
1 »■ ^ = i c3 »■' cos 6', 

47,3 

giving a normal velocity over B= — i cos B\ 

This normal velocity might be cancelled by the addition of a velocity 

potential 

^. = cos fl'; 
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and the value of this near A is 

^a = i-^rcos6>, .. 

giving a normal velocity over ^ ^ cos 6. 

This normal velocity might be cancfjlled by the addition of a velocity 

potential 3f,3a» 
<^3 = -3- cos 0, and so on. 

To this order of approximation, i.c. neglecting we have 

and, on Ay ■^ = ia(l + i“g*)cos0 . .(13), 

while, on By ^-i“36cos0' . .(14). 

Hence if the kinetic f'liergy of tlie liquid bo given by 

2T = L'V^ + 2M'VV'-i-N'V'^ .(15), 

wc have fhS. 

= Tvpa^ ^1 + J ) [q ^ 

similarly 
a^b^ 

M' = -pjj<j>^^dSB = -^P 

N'=-pfj4>'f'dSB = .pb^{l + i^'^ 

.(16). 

If we put V=V' and a — b the motion will be symmetrical about the 

plane bisecting A B at right angles, so that the kinetic energy of the li(phd 

due to the motion of a sphere parallel to a fixed plane boundary at 

distance /i = c/2, being half the kinetic energy in the last ceise, is given by 

2T = !^pa»F*(l + ,-,“3 + ...) .(17). 
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Ileverting to the case of the two spheres, for the whole kinetic energy we 

maywrite 2r=:(L' + m) K» + 2Af'FF'+(Ar' + w') F'* .(18), 

and taking an origin 0 on the line of centres so that if OA = x and OB = x\ 

— x = L\ M't N' are functions of c or x' — Xt and retaining only the 

most important terms, 

dc 

dM' ^ 
c* * 

dN' 

"dc 
:0 ,(19). 

Hence the equation of motion 

dt\bx) dx" 

gives x = -^'vv' 
CC 

= ~ Sttp 
a®63 

VV' .(20) 

as the force in direction AB necessary to maintain the motion of A. It 

follows that two spheres moving in the same direction in parallel lines 

attract one another. 

8*63. Sphere moving in a Liquid with a plane boundary. Tliis 

case which, as we saw in 8*62, can be deduced from the case of two 

spheres, is also capable of simple independent treatment. 

Let the x and y axes be parallel and perpendicular to the wall. Then 

2T=^Px^^Qy^ .(1), 
where P, Q are functions of y only, and the term xy cannot appear 

because changing the sign of x cannot affect the kinetic energy. 

The equations of motion are 

where X, Y are the forces in the directions of x and y. 

If there are no external forces and the sphere is moving at right angles 

to the wall, x = 0 and, since the kinetic energy is constant, therefore 

Gy* = const.(3). 

But from (17) of 8*62 and (6) of 8*61 

(2), 

Q = m+jnpa^(^l + i~J 
(4). 

SO that P and Q both decrease as y increases, therefore y increa;:jes as y 

increases or the sphere has an acceleration from the wall. 

Again, if the sphere moves parallel to the wall, so that y = 0, there must 

be a constraining force ^p 

(5) 

acting away from the wall, so that the sphere is attracted towards the wall. 
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Tills problem was discussed by Stokes*, who obtained results (6) of 8*61 
and (17) of 8*62 by a somewhat similar method. Some results were gi\ en 

by Kelvin and Taitf, and for further information on the subject of the 

motion of two spheres reference may be made to x)apers by W. M. HicksJ, 

R. A. Herman§, and A. B. Basset||, 

EXAMPLES 

1. A homogeneous liquid is contained between two concentric splierical 

rigid envelopes of given masses; these bounding surfaces are set in motion, 

the one with velocity Uy and the other with velocity V, in perpendicular 

directions; find the impulses which must be applied to the envelopes to 

produce the motion, and determine the motion of the fluid at any point. 

(Coll. Exam. 1893.) 

2. The space between two coaxial cylindrical shells of radii o, b is filled 
with incompressible liquid of density p. The outer shell, of radius a, is 

suddenly made to move with velocity U: shew that-the impulsive force X)cr 

unit length necessary to bo applied to the imier cylinder to hold it at rest is 

2npa^b^UI(a^--b^), (Trinity Coll. 1901.) 

3. A uniform sphere is surrounded by a uniform incompressible fluid of 

the same density, initially at rest and extending through all sx^ace. The 

sphere is set in motion by a blow P along a diameti^r. Prove that its 

resulting velocity is JP/Af, where M is its mass. (Trinity Coll. 1909.) 

4. An incompressible perfect fluid of majjs in is contained between two 

rigid concentric spherical envelopes, the outer of radius h and mass Af, the 

inner of radius a and of no mass. The system is started from rest by an 

impulse normal to the outer envelope. Prove that the initial momentum is 

shared between the envelope and the fluid in the ratio of M (2a®+ 6®) to 

nib^, (Trinity Coll. 1904.) 

5. Asphere of radius a is made to describe a circle uniformly in an infinite 

fluidatrestat infinity; find the pressure at any point of the sphere, and show 

that the resultant pressure on it is a force (27r/3) pfi^cw^ towards the centre 

of the circle, whore a is the radius of the sj)here, c the radius of the circles 

described by its centre, w the angular velocity. (Trinity Coll. 1907.) 

6. A solid body is moved in any manner in an imliniited liquid, find the 

motion set up and shew that if the body be moved with unit velocity along 

Oxy the momentum set up parallel to Oy is equal to that set up parallel to 

Ox by moving the body with unit velocity along Oy, Also if the body bo 

turned round Ox with unit angular velocity the momentum generated 

parallel to Oy is equal to the angular momentum generated around Ox by 

moving the body with unit velocity i)arallel to Oy. 

* * On some cases of fluid motion Tram. Camb, Phil. JSoc. viii, or Math, and Phys. 
Papersy i, pp. 47-49. 

t Natural Philosophyy §§ 320, 321. 
i * Motion of Two Spheres in a Fluid*, Phil. Trans. 1880, p. 455. 
§ *On the motion of Two Spheres in Fluid and Allied Problems’, Quart. Journal, 

XXII, p. 204. 
11 ‘On the Motion of Two Spheres in a Liquid’, Proc. L.M.ti. xvni, p. 309. 

RH 14 
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7. A pendulum with an elliptical cylindrical cavity filled with liquid, 

the generating lines of the cylinder being parallel to the axis of suspension, 

performs finite oscillations under gravity. If I be the length of the equi¬ 

valent pendulum, and V the length of the equivalent pendulum when the 

liquid is solidified, find I and l\ and prove that 

1' j— ^ ^ 

M + ma^^'h* 

where M is the mass of the pendulum, m of the liquid, h the distance of the 

centre of gravity of the whole mass from the axis of suspension, and a, b the 

semi-axes of the elliptic cylinder. (M,T. 1878.) 

8. A pendulum, of mass M, with an ellipsoidal cavity (semi-axes a, 6, c) 

filled with liquid of mass m, oscillates about a horizontal axis parallel to the 

c-axis of the ellipsoid; prove that the length of the equivalent simple 

pendulum is _ 6J)a/6 (a* + 6“)}]/(M + m) I, 

where K is the radius of gyration of M about the axis of suspension, d the 

distance of the centre of the ellipsoid and I the distance of the centre of 

gravity of the whole mass from the same axis. (Coll. Exam. 1898.) 

9. In the midst of an infinite mass of homogeneous incompressible 

liquid at rest is a spherical surface of radius a, which is suddenly strained 

into an equal spheroid of small ellipticity. Find the kinetic energy con¬ 

tained between the given surface and an imaginary concentric spherical 

surface of radius c; and shew that if the imaginary surface? were a real 

boundary surface which could not be deformed, the kinetic energy in this 

case would be to that in the former case in the ratio 

c®(3o® + 2c®):2(c®-o*^)*. (M.T. 1878.) 

10. Find the ratio of the kinetic energy of the infinite liquid surrounding 

an oblate spheroid, moving with a given velocity in its equatorial plane, to 

the kinetic energy of the spheroid; and denoting this by P, prove that if the 

spheroid swing as the bob of a pendulmn imder gravity, the distance be¬ 

tween the axis of suspension and the axis of the spheroid being c, the length 

of the simple equivalent pendulum is 

(1-f P)c + ?aVc 
1-a/p ' 

where a is the equatorial radius, p the density of the spheroid and a that of 

thehquid. (M.T. 1879.) 

11. A sphere of radius a immersed in an infinite mass of liquid witli a 

plane boundary is set in motion with velocity V towards the boundary. 

Shew that, if the boundary is at a distance c such that (a/c)^ is negligible, 

the impulsive thrust on the boundary is 27rpa^ V. Also find the momentum 

set up in the liquid. (M.T. 1925.) 

12. A small sphere of radius a is moving with uniform velocity U in 
liquid of density p at rest at an infinite distance, in a direction at right 
angles to an infinite plane boundary. Shew that, when it is at a distance c 
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from the boimdary, the pressure at a point on the boimdary at distance f 

from the centre of the sphere is 

where II is the pressure at an infinite distance, and higher powers of a than 

a* are neglected. (M.T. 1920.) 

13. Shew that for a rigid body moving under no external forces in 

infinite fluid at rest at infinity there are: 

(i) three directions of permanent translation; 

(ii) three permanent screw motions such that the corresponding 

impulsive wrench reduces to a couple. 

Shew further that in general the impulsive wrenches needed to start the 

motions in (i) do not reduce to single forces, but that if the body has a plane 

of symmetry the motions (i) can be started by single impulsive forces and 

the screw motions (ii) consist of pure rotations. (M.T. 1925.) 

14. An elliptic cylindrical shell, the mass of which may be neglected, is 

filled with water, and placed on a horizontal piano very nearly in the 

position of unstable equilibrium with its axis horizontal, and is then let go. 

When it passes through the position of stable equilibrium, find the 

angular velocity of the cylinder (i) when the horizontal piano is perfectly 

smooth, (ii) when it is perfectly rough; and prove that in these two cases 

the squares of tho angular velocities are in the ratio 

(^2 _ ^2j2 4^2 (^2 52^ . ^^2 _ 

2a and 26 being the axes of the cross section of tho cylinder. 

(M.T. 1886.) 

15. A solid ellipsoid of uniform density is set rotating in an infinite 

liquid about one of its axes by a given impulsive couple; find its angular 

velocity. (M.T. 1882.) 

16. A cylinder is moving in an infinite fluid, and the motion is defined by 

u, co; shew how to reduce the Idnetic energy to its simplest form. 

If 2T = Au^ + 2Huv + Bv^ + Kcj^ and there are no forces, prove the 

equation 

Ke+ _ J5)yijiecosd + H(cos® sin® e))l(AB-H^) = 0, 

where J is the resultant momentum (linear). (St John’s Coll. 1895.) 

17. An infinite elliptic cylinder of density a is moving through incom¬ 

pressible fluid of density p that extends to infinity and is at rest there. 

Shew that if a, 6 be the semi-axes and c® = a® — 6®, 

2T = TT (p6® -f aob) {pa^ -f aab) F® + tt lpc*jS + aab (a® + 6®)/4] co®, 

and that at any time | g + ^ ^ ^ ^ 

where C7, V are the velocities of the centre along tho axes and 6 the angle 

turned through by the transverse axis. (Trinity Coll. 1894.) 

14-2 
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18. A prolate spheroid is moving through fluid with velocity u in the 

direction of its axis; shew that the motion is unstable, but that it will be 

stable if the spheroid is at the same time spinning about its axis with 

an angular velocity greater than ^ (0 — »where P and Q are the 

effective inertias of the spheroid along the axis of revolution and a perpen¬ 

dicular axis respectively, and A, B are the effective moments of inertia 

about those axes. (M.T. 1892.) 

19. A solid ellipsoid of density a is placed inside a fixed concentric, con- 

focal and similarly situated ellipsoidal shell and the space between them is 

filled with flxiid of density p. Supposing that the whole matter attracts 

according to the Newtonian Law, and that a is greater than p, shew that 

when the solid ellipsoid is slightly displaced parallel to its greatest axis, 

the time of a small oscillation is given by 

47r® 7rp(g —p) A 

g-hp_pabc_ 

2 a6c(2--A')-~a'6V(2 —A) 

where o, 6, c and a\ b\ c' are the semi-axes of the outer and inner ellipsoids 

and 

■/: ahedX 

(a* + A)5{6» + A)i(c» + A)i’ 

with a similar expression for A'. (M.T. 1881.) 

20. If a thin ellipsoidal shell without mass be filled with water, and set 

in motion about its centre as a fixed point, prove that its subsequent m o tion 

will be determined by three equations of the form 

(6»- c*)* dwx 

~dr 
(6* - c*) + c*aa + - 3o*) 

= L. 

21. If A and B be the forces required to for unit of time in order to 

generate unit velocity perpendicular and parallel respectively to the axis 

of an ellipsoid of revolution in an infinite mass of homogeneous frictionless 

liquid, and if be the couple required to act for unit of time in order to 

generate unit angular velocity about an equatorial axis, prove that the 

kinetic energy T of the ellipsoid and liquid is 

J (Au* Av* + Bw'^ -1- -f- -f 

with Euler’s notation, C being the polar moment of inertia of the ellipsoid. 

Express T in terms of Lagrange’s coordinates a;, y, 2, d, tp; and prove 

that if the axis of 2; be parallel to the impressed impulse F, then 

^ + 0080^=0.,. GBm’‘e^+Ca,tCOBe=E. 

sin* 0^* + Co.,* + F* = 2T, 

where are constants; the last three equations being the same for a 

solid of revolution with a bar of soft iron in its axis, moving about its centre 

in a uniform magnetic field. (M.T. 1877.) 
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22. A rigid body immerBed in a homogeneous incompressible liquid at 

rest extending to infinity is set in motion by an impulsive couple: prove 

that its subsequent motion relative to a certain point O fixed in it is the 

same as if a certain ellipsoid, fixed in it with its centre at O, rolled on a 

fixed plane; and express geometrically the variable velocity of traniilation 

necessary to complete the representation of the actual motion. (Lamb.) 

23. The presence of an infinite liquid increases the apparent inertia of a 

moving sphere by half the mass of the liquid displaced. Shew that this in- 

cree^se is raised in the ratio 1 4- 3a®/8f*: I nearly, if the liquid is bounded by 

an infinite plane perpendicular to the direction of motion, and at a great 

distance f from the centre of the sphere, whose radius is a, 

(Trinity Coll, 1895.) 

24. Two infinite parallel circular cylinders in an infinite fluid are pro¬ 

jected (i) in opposite directions along a line at right angles to their axes, 

(ii) in the same direction perpendicular to this line. Prove that they 

experience in the two cases respectively a mutual repulsion and a mutual 

attraction. (Trinity Coll. 1894.) 

26. A sphere of mass Af, displacing a mass M' of fluid, is projected with 

velocity V normally to an infinite rigid plane with which it is in contact; 

shew that its limiting velocity is 

r ® 1 ”li 
• (Trinity CoU. 1898.) 

26. Find the complete system of images which will represent the 

motion of a spheni perpendicular to an infinite boimding plane; and shew 

that, if the density of the sphere be the same as that of the fluid, the ratio 

of the velocity of the sphere at impact to its velocity at an infinite distance 

from the plane is / ^ l \ i 
(M.T. 1889.) 

27. Find the nature of the interaction between two spheres moving in a 

liquid of infinite extent (i) when the spheres each make small vibrations 

along the line of centres, (ii) when one vibrates and the other is at rest. 

[Take the kinetic energy of the system to be 

where L^m-k- ^npa^ ^1 + ^ , M = 2Trp, 

2V = m' + f,r^»(l 

m, m' are the masses, a, b the radii, and w, v the velocities of the spheres, 

c the distance between their centres, and only the lowest powers of a/c and 

b/c are retained.] 

Mention some experimental evidence of the results obtained. 
(M.T. 1911.) 
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28. (a) Investigate the condition of stability of the motion of an 

elongated solid of revolution with a plane of symmetry at right angles to its 

axis of figure moving parallel to its axis of figure and rotating about that 

axis. 

(6) Prove that, when this condition is satisfied, there are possible two 

states of steady motion in which the velocities of translation and rotation 

are constant and the directions of translation and rotation are in a plane 

through the axis of figure and make constant angles with that axis while 

the plane in question rotates uniformly around the axis. 

(c) Prove that the two modes of simple harmonic oscillation about the 

state of steady motion described in (a) are really steady motions of the 

types described in (6), the angles made with the axis of figure by the 

directions of translation and rotation being small. 
(M.T. 1904.) 



CHAPTER IX 

VORTEX MOTION 

9*1. So far we have confined our attention almost entirely to 

cases involving irrotational motion only. But we saw (4* 1) that 

the most general displacement of a fluid involves rotation of 

which the component angular velocities at a point {x, y, z) are 

where u, v, w are the components of linear velocity at the point. 

We also saw (2-51, 2*6 and 4*24) that if at any instant the 

motion of a fluid mass is irrotational under the action of conserva¬ 

tive forces it remains irrotational for all time. In this chapter we 

shall consider the theory of rotational or vortex motion. The 

theory is due to Helmholtz whose epoch-making paper was 

published in 1858*. It was afterwards developed by Kelvinf, 

Kirchhoff and other writers. 

9'11. It is important to realize at the outset that some 

portions of a fluid mass may possess rotation while others are 

moving irrotationally. 

Lines drawn in the fluid so as at every point to coincide with 

the instantaneous axis of rotation of the corresponding fluid 

element are called vortex lines {Wirbellinien), 

Portions of the fluid bounded by vortex lines drawn through 

every point of an infinitely small closed curve are called vortex 
filaments {Wirbelfadm), or simply vortices, and the boundary 

of a vortex filament is called a vortex tube. 

9*12. The theory will shew that elements of fluid which at 

any time belong to one vortex Mne, however they may be trans¬ 

lated, remain on the same vortex line, or that the vortex lines 

move with the fluid. Also that the product of the section and 

angular velocity of a vortex filament is constant throughout its 

* Crelle*8 Journal, ‘Uebor Integralc der liydrodynaniischen (J«lcichungi;ii 
welcho den Wirl)eIl)cwegungou entsprochen'. A translation by Tait was published 
in Phil. Mug. xxxiir. Fourth Series, p. 485. 

t ‘Vortex Motion’, Trans. R. Soc. Edin. xxv, 1809, p. 217, or Math, and Phys. 
Papers, IV, p. 13. 
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whole length and constant for all time. Hence vortex filaments 
must either form closed curves or have their ends on the bounding 
surface of the fluid. A vortex in perfect fluid is therefore per¬ 
manent and indestructible; and the enunciation of these properties 
by Helmholtz suggested to Lord Kelvin the idea that vortex rings 
are the only true atoms, inasmuch as the generation or destruc¬ 
tion (^f vortex motion in a perfect fluid can only be an act of 
creative power*, a theory long since abandoned. 

9*2. Kelvin’s Proofs. Toprovethepropertiesjustenunciated: 

(1) The 'product of the cross section and angular velocity at any 
point on a vortex filament is constant all along the vortex filament and 
for all time. 

By Stokes’s Theorem (4*2) the circulation round any closed 
curve is equal to 

2 / (U-\-m'q-^nl)dS, 

where 77, ^ are the components of spin, and Z, m, n are direction 
cosines of the normal to an element dS of a surface bounded by 
the curve. If the curve be a reducible circuit drawn 
on the surface of a vortex tube the circulation will 
be zero, because at every point of such a surface 

Let the circuit be A BCDEFGHA as in the figure, 
where FGHA and EDCB are two cross sections of 
the vortex tube. Then since the circulation round A BODE FGHA 
is zero and the contributions of AB, EF are equal and opposite, 

it follows that 

flow round FGHA =Aow round EDCBy 

or, ultimately, 

circulation round A GHA = circulation round BDCB, 

But, as in 4*2, if co denote the angular velocity and a the cross 
section of the vortex tube supposed small, the circulation round 
this section is 2oja, Hence this product is constant for all sections, 
and we shall take it as a measure of the strength of the vortex. 

Again, from 4*23, when the forces have a single-valued 
potential and the density is a function of the pressure the circu¬ 
lation in any closed circuit moving with the fluid is constant for 

♦ ‘On Vortox Atoms’, Phil, Mag. xxxiv, 1867, p. li>, or Math, and Phya, Paptra, 
IV, p. 1. 
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all time. And if we apply this to any circuit embracing the vortex 
it follows that the strength of the vortex is constant for all time. 

It is clear also that the circulation in any circuit is the sum of 
the strengths of the vortices that it embraces. 

(2) The vortex lines move with the fluid. 

It is clear from the formula {l^ -ir mif] nQdS for circu¬ 

lation in a closed circuit, that if the circulation is zero in every 
circuit that can be drawn on a certain surface no vortex lines can 
cut the surface, and any that meet the surface must lie wholly 
upon it, for we must have -f mri ■hn^ = 0 at every point of the 
surface. Consider a surface S composed of vortex lines at time t. 
The circulation in any circuit C on this surface is zero. At time 
^ -f 8^ the particles that formed the surface S now lie on another 
surface S\ and the circuit C moving with the particles now lies 
on S' and the circulation in it is still zero and this being true for all 
such circuits on S', the surface S' must be composed of vortex 
lines. Hence any surface composed of voiiex lines, as it moves 
with the fluid, continues to be composed of vortex lines. The 
intersection of two such surfaces must always be a vortex line and 
so we arrive at the theorem that vortex lines move with the fluid. 

The foregoing proofs are due to Lord Kelvin. The proof given 
by Helmholtz is less satisfactory but we reproduce it here on 
account of its historical interest. 

9*21. Helmholtz’s Proof. Let co denote the resultant syun 
at any point on a vortex line and eoi a small clement of length of 
the vortex line. The y)rojections of this element on the axes are 

hx, €7], .(1). 

The rate at which hx increases as the fluid moves is the differ¬ 
ence in the values of u at the ends of that element. Therefore 

Dhx 

~^Dt '' 

du 

'a* 
/ du ydu\ 

,« from 2-6 (1); 

or 
7) 
Dt 

(8a;-e|) = 0 .(2). 

Helmholtz infers from (2)* that relations (1) continue to be 

* Or Goldstein |K)int8 out that this inference is equivalent to the assumption^ 
that if /'yr) = 0 when /(ir) = 0, then if /(.r) vanishes for some value .Tq of x it is 
identically zero; which is false. 
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true as time advances; or, as the particles composing a vortex 
line move, their join is still the instantaneous axis of rotation, 

which means that ‘each vortex line remains composed of the 

same elements of fluid, and swims forward with them in the 
fluid’. 

Now, regarding the element of length of a vortex line as the 
join of two definite particles or elements of fluid, we have seen that 

17, ^ vary as the projections of this element of length on the 

coordinate axes, hence the resultant angular velocity in a defined 
element varies as the distance between this and its neighbour 

along the axis of rotation. 
Now, regarding the fluid as incompressible, consider a short 

length of a vortex filament. Its volume is constant as it moves 

in the fluid because it is always composed of the same elements 

of fluid, but the angular velocity varies directly as its length, 

therefore the product of the angular velocity and the cross section 
in a portion of vortex filament containing the same element of 

fluid, remains constant during the motion of that element. 

Again from the expression for 77, ^ in terms of v, w we get 

dx^dy^dz 

But JJ{li + mr) + nC) d-S=dxdydz 

= 0; 

where the surface integral extends to any portion of the fluid 

bounded by a surface S, Applying this to the surface of a portion 

of a vortex filament cut off by cross sections of area a, a', the 

integral over the curved surface is zero and the result reduces to 

0X7 = w'a', 

where co' are the angular velocities. 

That is, the product wa is constant throughout the whole 

length of any one vortex filament. 

9*22. Third Prooffrom Cauchy’s Equations. A third proof follows 

very simply from Cauchy’s equations of 2*51, viz. 

p pq da pQ do po 

For, the initial equations of a vortex line are 

da dh dc X 
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and X, y, z being the coordinates at any time of the particle originally at 
a, b, c, , Sx , dx ,, 8x j 

^^ = da^ + ah^+8c‘^ 
\ . dx ^ dx ^ dx 

= from above; 

dx\ 
dc) 

therefore 
dx _dy _^dz 

S ~ V p" 
that is, the moving element whose projections on the axes have become dx^ 
dy, dz is still part of a vortex lino; or the vortex lines move with the fluid. 

Again, if da be the length of the element and co the angular velocity and 

dsQ, a>o their initial values 

ds _dx _ _A dsQ_da_ _ A 

i P* <^0^0 Po 
But if cr, (Tq denote the cross sections of the filament, the mass of the 

element being constant, pada = 

therefore wa = c^o <^0 > strength of the vortex filament is constant with 

regard to the time. That it is constant along the filament can then bo 

proved as before. 

9*3, Rectilinear Vortices. Before going further into the 
general theory of vortex motion we shall consider the case of 

rectilinear vortices in homogeneous liquid, which is capable of 

simple independent treatment. 
Suppose a number of straight parallel vortex filaments either 

in an indefinitely extended mass of liquid, or in a mass bounded 

by two planes perpendicular to the filaments. 
Taking the axis of z parallel to the filaments, we have 

du T dv 
w = 0, -^—0, and ,^ = 0, 

dz dz 

d'V du 
so that = 0, = 0, and 2^ = — g- . 

The equation of the lines of motion is 

vtix—udy^O, 

and it follows from the equation of continuity that vdx—udy is 

a perfect differential dip; hence, as before. 

and 

dip 
u= 

dy 

d*ip dhp 

dip 

+ ^ = 2C <y^ 

and the lines of motion are given hy ip — const. 

(1). 
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Except along the vortex filaments the motion isirrotational and 
J is zero; and the form of the equation for ijj shews that ^ may be 
regarded as the potential at any point of an infinite medium, the 

density of which is zero, except along the vortex filaments, which 
may be regarded as straight gravitating rods of density -~f/27r. 

Hence the x, y differential coefficients of tp are the components 
of the attractions of these rods parallel to the axes*. 

Supposing that only a single vortex filament is in existence at 
the point (a, b) and that dadb is its areal section, we get for the 

velocity components at a point (x, y) at distance r from (a, b) 

dip 

dy 

and v = 
dip 

dx 

2dadb / —V 
r \27r) r 

2dadb / — x —a 

r 
{ 

Idadb y — b 

^dadb x — a 

\2n, 

From this it follows that the resultant velocity q is perpendi¬ 

cular to r, and that tdadb 

nr 

or, if K is the strength of the vortex, 

9 = 
K 

the direction 
single vortex 

of q being in the sense of the rotation And for a 

^ = £:logr .(2). 

We might also obtain (2) from the simpler consideration that 
outside a single vortex, ip being a function of r only, we have 
from (1) 

dr^^r ar”” ’ 

so that ip=G log r; 

and the motion outside the vortex being irrotational there is a 

velocity potential <p=z ^Cd 

But the strength k of the vortex is the circulation or decrease in 
^ in making one turn round the vortex, so that 

2nC=^K 

and ^ = ^logr. 
27r 

♦ The attraction of an inhnitely long thin rod at distance r from itself is 2m/r 
perpendicular to the rod, m being the mass of unit length. 
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The irrotational motion outside the vortex is therefore given by 

%K 
«; = 2^1og2; 

and if there be any number of vortex filaments of strength at 

Cg (= -f ibg), 5=1,2, 3,..then the motion outside the filaments 
is given by • 

^; = sglog{.^o,), 

and the velocity components may be written down as the sums 

of the components due to the separate vortices in the forms 

8 277 r/ 

or deduced from u — iv = 
dw 

dz 

t; = L - ?- 
« 277 ^ 

-2 iicg 1 
27T 2 * 

9*31. In the case of any number of filaments, if u^, denote 
the velocity components of the filament of strength k^, the 

expressions ^ and 

will both vanish, for they consist of pairs of terms of the forms 

^2 ^2 

1 277 r^~ 
and 

3^2 

^^27T 

Hence regarding /c as a mass, the centre of gravity of the 

vortex filaments remains stationary during their motions about 

one another. 
A single rectilinear vortex in an unlimited mass of liquid there¬ 

fore remains stationary; and when such a vortex is in the presence 

of other vortices it has no tendency to move of itself but its 
motion through the liquid is entirely due to the velocities caused 

by the other vortices. 

9*32. Consider the ease of two vortex filaments of strengths 

Kj and of small section at distance a apart. Each will produce a motion of 

the other perpendicular to the line joining them. If they meet the plane 

in .4, the point O that divides AB in the ratio will remain at 

rest and, the velocities of A and B being K^j^ira and Kj27ra respectively, 

the line AB will revolve wdth angular velocity + K2}l2iTa^, the vortices 

describing circles round O. 

If the strengths of the vortices are equal but of opposite sign, say k and 

— K, O is at infinity and the vortices move in parallel directions with tho 

same velocity 
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If rj, rg are the distances of a point P from A, B and 6^, their inclina¬ 

tions to BA, the velocities are Kl27Tri, Kj^Ttr^ at right angles to AP, BP, 
So the velocity along the tangent 

to the circle APB is 

^--sin^j-s^ sin0i = O. 
27rrj * 27rr2 ^ / X 

Hence the stream line through / \ 

P cuts the circle APB ortho- / \ 

gonally; that is the stream lines / 

are the coaxial circles having ^,1 / \ 

P as limiting points. \ ^i//'^K/27rr 
This is also evident from the \ _? 

fact that A ® VTa 

^ = 2^'°8r‘- 

Such a pair of vortices may be ^ 

called a vortex pair. 

The reader will notice an analogy between a vortex filament and an 

electric current. The straight current of strength i produces a magnetic 

field in which the force at distance r is 2i/r at right angles to r and to the 

current. And two equal and opposite parallel currents produce a magnetic 

field in which the lines of force are coaxial circles corresponding to the 

stream lines in the case just considered. 

To return to the case of the vortices, it is clear that there is no flow 

across a plane bisecting AP at right angles so that this might be made a 

rigid boundary; and consequently a singlt) rectilinear vortex parallel to a 

plane boundary and at distance c from it will move parallel to the 

boundary with uniform velocity kAttc. 
The image of such a vortex with regard to a parallel plane is therefore 

an equal vortex symmetrically placed, the rotation of the two being in 

opposite senses. 

The velocity half way between the vortice3S being due to both of them 

is /c/ttc, so the vortex moves parallel to the plane with one quarter of the 

velocity of the liquid at the boundary. 

9* 33. As a further example we may obtain the motion of a vortex 

pair moving directly towards or from a parallel plane boundary or of a 

single vortex in a comer between planes meeting at right angles. The 

figure shews the necessary arrangement of images, and for the velocity of 

the vortex at A {x,y) due to the other three, we have components 

_ K K AB _ K 

“ “ 27r‘ZB ~ 2nAB''AB' ~ 4it ' ’ 

2nAB''AB' in'x(x^ + y^)‘ 

For the path of the vortex A, we have 

x = u and y = v, 

dx dy 
so that 
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whence by integration 

or in polar coordinates r sin 20= 2a; 

y 

which represents a Cotes spiral with asymptotes parallel to the axes. 

Also since xy — yx^ — K/47r, 

the vortices describe t?ie Cotes spiral in the same way as a particle 

under a central force, which can easily be seen to be a repulsion directed 

from the origin and varying as the inverse cube of the distance. 

9-34. A rectilinear vortex witliin a circular cylindcir of liquid will re¬ 

main at rest if it lies along the axis, but not in any parallel position. It 

follows from 9*32 that the imago is an equal and opposite vortex so situated 

that the vortices cut a cross section of the cylinder in inverse points. 

Thus if C be the ccuitre and Ay B a pair of inverse points, we have seen 

that the stream lines due to equal and opposite vortices through A and B 
are coaxial circles having A, 2? as 

limiting points, so the cylinder in 

question will satisfy the condition 

for stream lines. 

The velocities of the vortices are 

both equal to kI'ZttA B so they will 

not rtimain on the same radial 

plane through C, and the motions 

of the liquid inside and outside the cylinder only correspond at the instant 

under consideration. But so far as the motion inside the cylinder goes the 

vortex A describes a circle round G with uniform velocity kI'ZttAB or 

K .CA/27r{c- — CA^), c being the radius of the cylinder. 

In the problem of the vortex B in liquid outside the cylinder, we notice 

that the foregoing solution with the image vortex at A implies a circula¬ 

tion K round the cylinder due to the vortex A ; but we want a solution in 
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which the only circulation is due to the vortex and we can get this by 

suj)erposing the motion due to another vortex — k at 6’. This will make the 

vortex B describe a circle round the cylinder with velocity (counter- 

clockwise) ^_^ ^ 

inA B 2nVB InCB (CB^~ c^) ‘ 

To get the solution of the corresponding problem when there is on 

arbitrary circulation k round the cylinder, we have only to superpose a 

vortex of strength k at C, adding K'l2nCB to the velocity of the vortex B*. 

9*35. For any number of parallel rectilinear vortices in an 
unlimited mass of liquid, we have a stream function 

)/i = 2^1ogr, or + 

where is the strength of the vortex at (.r^ ,y^). 

The motion of any one vortex depends not on itself but on the 

others, for it would remain at rest if no others were present. 

Hence to get the motion of a particular vortex, say , we subtract 
from 0 the term that corresponds to this vortex, then if iff' {x, y) be 

the result, and we find a function x (^i > ^i) such that 

and 
l ^y/i dx^ \c )xl^ 

these are the components of the velocity of the vortex, and 

X (^1 ? 2/i) ^ regarded as a stream function giving the motion 
of the vortex. 

For example, if there be a vortex of strength k at (ii’i, t/j) and the axis of 

a: be a boundary of the liquid, there is an image — k at (Xj, —t/i), and 

•A = 4^ log {(x ~ + {y - yiV) - log {(x - + (y + yi)2}. 

Hence, in this case, 

{x, y)=- {(x -x^y-hly-h y^y}. 

Therefore 
dyi 47ryi dx^ 

so that the stream function for the motion of the vortex is 

or the path of the vortex is given by 

yi = constant, 

as we know from the discussion of 9'32. 

♦ See F. A. Tarleton, ‘On a problem in vortex motion’, Proc. R.LA. Third Series, 
n, p. dl7. 



9-36 CONFORMAL TRANSFORMATION 225 

9*36. Use of Conformal Transformation. The method of 
6-1-6-21 is also applicable when parallel rectilinear vortices 
exist in the liquid; and regarding the problem as one of two- 
dimensional motion, as in 6* 12, if a vortex 11 of strength 
K exists in one liquid at a point whose coordinates are t^i), 
there will be a vortex P of equal strength at the corresponding 
point (.Tj, t/i) of the other liquid; for the strength is —jd(f> taken 
round a small curve surrounding the vortex; and cf) having the 
same value at corresponding points in the two liquids, the 
integral must have the same value when taken round corre¬ 
sponding curves. These vortices however do not necessarily 
continue to move so as to occupy corresponding ])oints; but we 
may deduce the motion of one when we know that of the other. 
Thus, if Tj) denote the stream function of the first motion, 
the path of the vortex 11 will be given by a stream function 

X j ^i) deduced, as in 9*35, by omitting from ip the term 

or the real part of ^ log (/ — /j), 

where t = 

Similarly in the transformed motion there will be a stream 

function x (^i> 2/i) fhe motion of the vortex P obtained from 
ip in the same way by the omission of the term 

477 
log{(j;-z,)2+(y-2/i)2}, 

or the real part of - log {z-~z^). 
’Ztt 

Hence it follows that x ~ X + where x" is such that 

g- -tho real part »f g l„g . 

d . d 
Jnow and we assume that t — ti is expansible in 

powers of 2 - , s(j that 

< - = (~ -'^l) .; 

therefore we require 

the real part of g log 1(*)^ + ■ (r +.j]_, 

H i:, 
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Or of 
tK 

that is, the real part of 

which is 

Hence 

and 

l/diX 
\dzyi/ \dz)^* 

Ik (dH 

47r 

_K ^ 
47r dy^ 

log 

x' = j^log 

dt 

dz i' 

dz 

X (^1.2/i) = X (^i. ’^i) + log 
dt 
dz 

9’ 37. Examples. (i) To find the path of a rectilinear vortex in the angle 

between two planes to which it is parallel. 

Let Ttjn be the angle between the planes. 

The transformation suitable to this case is 

(1); 

or, in polar coordinates, ^ = c (r/c)”, ct> = nO, 

This transforms the i axis (w = 0, a> = 7r) into the straight lines ^=0, 
e— ir/n. 

The stream function due to a vortex IT at » i^i) in liquid bounded by 

the ( axis is, as in 9*35, 

4ir + + 
.(2). 

Therefore the stream function due to a vortex P at (Xi, 2/1) or (r^, in 

liquid bounded by ^ = 0, 7r/n is 

#c , r*"-f ri®” —2r"ri"co8n(^~ ^1) 

^~ 47r r*” H- ri*" — cos n {6^- d^) * 

Again | dtjdz | =^dpldr:=n(rlc)^-'^; 

so that for the path of P 

4n 
logrj"- 

where, as in 9*35, X (fi»’7i) = "~ • 

Therefore x' (^1»2/i) - ~ logr^** sin -f ^ log 

= — log sin , 

neglecting constant terms. 

Hence the path of P is sin = const., 

which is a Cotes spiral. 

♦ This theorem was enunciated by Kouth—'Some Applications of Conjugate 
Functions*, Proe, L,M,8, xn, 1881, p. 83. 
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This agrees with 9*33 for the case n=2. The same problem might be 
solved directly by a series of images provided n is an integer, but this 

restriction is not necessary in the method used above*. 

(ii) There is a rectilinear vortex in liquid fiUing the apcLce between two 

parallel planes. To find the paths of the particles. 

The relation ^-\-iri=z 

or f = e*’*cospi/, 9y = e*’®sinp2/, 

transforms the f axis = 0 into the lines = 0, y = irjp. 
Taking a vortex of strength k- at a suitable point (fj, r^i) with the f axis 

as boundary, we get a corresponding vortex at , y^) between the parallel 

planes y = 0, t/ = nip. 
As before the stream function of the original motion is 

K . ((- 

and we get an expression for the stream function between the parallel 
planes by substituting for f, rj in terms of x, y. Thus if the distance between 
the planes be c and the vortex be midway between them we have p = njc^ 

and yi = c/2, and if we take the y axis through the vortex we also have 

Xj = 0, and therefore = 0 and = 1. 
Hence we got 

g2ira/c rryjo 4- sin tt^/c — 1 _ 
gSirac/c (jQQ* 4* (e*"*/® sin rrylc + 1 

which reduces to cosh nxjc = A sin rryfc and this represents the patlis of the 
particles f. 

An infinite Row of parallel rectilinear Vortices of 
the same Strength /e at a distance a apart. Considering 2n + 1 
vortices, taking the origin at the middle one and the axis of x 
through the centres of their sections 

■o-o-o^—-S-&-c>-&-& 

we have from 9’3 w^^^-logz{z^ — a^) . 
2tt 

or - + .<‘l- 
When n-^Qo for an infinite row, this becomes 

.(2). 
%K ^ . TTZ 

w — ~ log Sin —. 
27t a 

Then, for the velocity components 

dw . cos (it; + iv)sin — 
%K nz %K ^ a 

u-iv= - y = - - - cot -= --. 
dz 2a a 2a , tt . • v - / * v 

sin (a; + iy)sin —ty) 
a a 

* Greenhill, Qtuirt. Jaarnah xv, p. 15, ‘Plano Vortex motion\ 
t For other examples of this methpd and the extension of the method by inversion, 

see Houth, Proc. L.MJ3. xu, p, 81. 

1^-2 
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80 that 

kArmAn street 9*4- 

_ K sinh27ry/a ^ k sin2'7rx/a 

2a cosh 27ryla — cos 2nxla ’ 2a cosh 27ryla — cos 27rx/a 

.(3). 
By considering the effect produced by pairs of vortices at equal 
distances from a given vortex, it follows that the vortices remain 
at rest. 

9*41. A double Line of Vortices. Consider two such lines of vortices 

at a distance b apart, symmetrically placed with regard to the plane mid¬ 

way between them and such that the rotation in the two rows is in opposite 
senses. 

It follows from 9*4 that neither row has any effect in producing velocity 

in itself; and by considering the effect on a chosen vortex of equidistant 

vortices in the other row we see that the resultant velocity is along the 
rows. Its magnitude is obtained from 9*4 (3) by putting x = nay —6, 
or by summing the effects of all the vortices thus 

U = 
K ^ 

27r P -f 

__ K 

2tt 

1 26_ 

6"^6» + a*'^62 + 22a2‘^*", 

= coth 
2a 

nb 

a ' 

9*42, A Kdrmdn Street. This is a double line of v^ortices similar to the 

last save that each vortex is opposite to the point midway between two 
vortices of the opposite row. 

As in 9*41 it is evident tliat the system moves along the rows and that 

the velocity, from 9*4 (3) by putting a; = (n + J) a, y = — 6, or by summing 

thtis, is « K 6 

27r6» + (n+l)»^ 

K f 46 46 46* I 
^ n (46* a* 46* 4- 3*a* 46*T6*a* / 

#c , , it6 
= taim —. 

2a a 
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This arrangement is called after Th. von Karm4n who first discussed the 

stability of such arrangements and pointed out that a double trail of 

vortices of this kind is often formed when a body like a flat plate moves 
broadside through a fluid. This arrangement is under certain conditions 

stable, whereas the single row of 9*4 and the double row of 9*41 are 

unstable. A discussion of the stability with references to papers by von 
Karman, Kelvin and Rosenhead maybe found in Lamb’s 

^•5, Rectilinear Vortex with circular section. We shall consider 

now some cases of vortices with finite cross section. Let the section be a 

circle of radius a, and suppose the spin to be uniform and equal to C 
throughout the whole section, the vortex being rectilinear. 

The equations for the stream function are 

dx^ dy^ ~ 
: 2f, inside the vortex, 

and 
3^ 
dx^ ' dy' 

These are equivalent to 

+ ^ ^ = 0, outside the vortex. 

. 

and av 1 A r „ r-f = 0, when r>a 
dr^ r or 

.(2). 

The complete integral of (2) is 

01ogr-f-Z>, 

and a particular integral of (1) is 

therefore, when r <a, logr -f- R -j- J.(3), 

and, when r>a, ^=C71ogr + L> .(4). 

Since ^ is not to be infinite when r = 0 we must have A = 0. And if the 

motion is continuous at the surface we have ip and the tangential velocity 

d^liJr continuous so that ^ = C log a + D, 

and ^a—Cja. 

Hence neglecting an additive constant we have, when r < a, 

.(5), 

and, when r>tt, ^ = logr/a .(6). 

The velocity is wholly transversal both inside and outside the vortex, 

its values being fr and {o®/r. 

Outside the vortex the motion is irrotational and the velocity potential 

can be found by taking ^ ^ ^ j^g 

for this gives the correct value for Hence we have 

</>= 

a many-valued function as we should expect, the motion being cyclic. If 

K denote the circulation or the strength of the vortex, K = 2na^(, so that 

2jr 
and ^=2-logr, 

as for a thin filament. 

§ 150, 1932. 
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To find the pressure. Outside the vortex we have 

or, since the motion is steady, and q = ^a^jr or #f/277r, 

p U u 

where 11 is the value of p when r is infinite. 

Inside the vortex we have the case of a liquid rotating uniformly with 

angular velocity J, so that 

or 
P P 

where P is the pressure at the centre of the vortex. Since the values of p 

are equal when r = a, therefore 

P = U-K^p/47r^aK 

Hence when r<a 
p _U #c* V* 

p p 47r*a® 87r*a* * 

shewing that if 11 < K^pj^n^a^, there will be a value of r < a for which p 

becomes negative, implying that a cylindrical hollow must exist inside 

the vortex. 

It is possible to have cyclic irrotational motion surrounding a hollow 

cylindrical space. The necessary condition is p = 0 when r = a; that is 

Il = #cV/87r*a*. 

The oscillations of vortices of the forms just considered were discussed 

by Lord Kelvin*. 

9*51. Rankine’s Combined Vortex consists of a circular vortex 

with axis vertical in a mass of liquid moving irrotationally under the 

action of gravity. The kinematical equations are as in the case just con¬ 

sidered, and if o is the radius the 

pressure equations are 

- = const. — o “A-, — gzy when r > a, 
p SttV* ^ 

and 

p 
- = const. 4* Q , . ~ gzy when r < o. 
p OTr’a* 

The free surface has a depression 

or dimple over the top of the vortex 

as shewn in the figure. The equations of the free surface, obtained by 

making p constant, are 

when r>a . .(1), 

when r<a . .(2). 

the constants being arranged to preserve continuity when r=a. 

* 'Vibrations of a columnar Vortex’, Phil. Mag. x, 1880, p. 166, or Math, and 
PAys. Papers, iv, p. 162. 
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Taking the origin in the general level of the free surface, in (1) we can 

put 2 = 0 when r = oo, so that 

0 = 

Then in (2) by putting r = 0 we get the depth of the central depression given 

— 2 = If*/4‘7T*a*^. 

52. Elliptic Section. To shew that a rectilinear vortex whose cross 

section is an ellipse and whose spin is constant can maintain its form 

rotating as if it were a solid cylinder in an infinite liquid*. 

We have seen in 5*35, that if a rigid elliptic cylinder of semi-axes o, h 

rotates with uniform angular velocity w in an infinite mass of liquid the 

stream function for cyclic irrotational motion with circulation k is 

^ = co8 27y + iff/27r.(1). 

In this case k = 27r{a6, where { is the constant spin. 

Inside the vortex we have 
dx* dy^ 

= 2f (2), 

with a boundary condition that the velocity of the liquid normal to the 

boundary is equal to that of the boundary, that is 

tLX vy X y (3). 

Assume that = C (-4^* + -^2/*) . 

then from (2) and (3) we have 

A-f5=l, and Aa*-B6* = ai(a*~6*)/2J .(5). 

The further condition of continuity of the tangential velocity at the 

boundary makes the values of obtaincKl from (1) and (4) the same. 

Putting X = c cosh f cos t;, y = c sinh f sim^ in (4), this gives at the 

boundary 

— Jen (a -f 6)* cos 2tj -f 

= {c* cosh f sinh f {A + 4- (A — B) cos 

for all values of y from 0 to 27r. 

Equating coefficients of cos we get 

— Joi (a -1- 6)* = {c* (A — B) cosh f sinh f, 

but on the boundary a = c cosh f, 6 = c sinh f, and a — 6 = ce“f, therefore 

ah 
From (6) and (6) we find 

Aa = B6 = afe/(a4-6), 

(6). 

and = 

This gives the velocity of rotation of the cylinder as a whole in terms of the 

spin and eccentricity of the section. 

♦ Kirchhoff, Mechanik, p. 261; see also Love, ‘On the Stability of certain Vortex 
Motions’, Proc, xxv 1893. 
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To find the paths of the particles. If x, y are coordinates of a particle of 

the vortex referred to the axes of the cross section 

X — toy = u= ““ — — 2/^ + ^)/^» 

and y-\-cx)X = v = ^=:^2^Ax — xa){a-^b)la. 
ox 

Therefore x^—coyajh and y—wxhja, 

which lead on inh^gration to 

a:= i>a cos (oi^ + c), 2/ = i>6sin (a>i + c), 

so that the paths of the particles of the vortex relative to the boundary are 

similar ellipses, and the period of the relative motion is the same as that of 

the rotation of the cylinder. 

y 9*6. Uniqueness Theorem* If an infinite mass of liquid 
filling all space be at rest at infinity we conclude from 4*6 that 

the liquid must either be at rest everywhere, or that, if in motion, 

its motion cannot be irrotational at every point. 
We shall now prove that in such a liquid at rest at infinity the 

motion is determinate when we know the values of the com- 

ponents of spin 7^, ^ at all points. For if possible let there be two 
sets of values and the velocity components 

each satisfying the equation of continuity and the equations 

dw dv . du dw ^ dv du _ ^ 

dy dz ' dz dx dx dy 

at all points of space and vanishing at infinity. 

Then the differences u' = u^ — U2, v'— w' — — also 
satisfy the equation of continuity and 

dw' 

dy 
etc. 

at all points of space and vanish at infinity. That is, u', v', w' are 

velocity components of irrotational motion of a liquid filling all 
space and vanish at infinity. Hence we must have u' ~v' — w' — 0 
everywhere, and therefore there is only one motion satisfying the 

prescribed conditions. 

A similar argument would prove that the motion of a liquid 

contained in a limited simply-connected region is determinate 

when the motion of tlie boundary and the components of spin are 

known. For a multiply-connected region a knowledge of the 

circulations in the several independent circuits must be included 
in the given conditions. 
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9'61. In general there may be several contributory causes 

that go to produce motion at a point in a fluid; for example, the 
presence of sources and sinks or the motions of boundaries or 

immersed solids or the presence of one or more vortices in a fluid 
result in a general motion of the fluid. The velocities due to the 
several causes may be superposed and it is our purpose now to 

find expressions for the components of velocity u, v, w at any point 
in a liquid due to given vortices, i.e. in terms of given components 

of spin TJ, C 

f 9‘62. To find «, », tv from 5. n* ?• The liquid being in- 
compressible the flow across any two surfaces having the same 

curve for boundary will be the same, and therefore depends only 

on the form of the boundary. If we assume that this flow can be 
represented by a line integral round the boundary, we get an 

equation 

(lu + ?nv-i-nw)djS= I (Fdx-i-Gd^-{-Hdz), 

where F, G, // are components of a certain vector. 

But from 4*2 

J {Fdx + OdyHdz) 

dll = ff!; (f 
JJ I ^2/ \32 dxj \0a; dyj) 

dF 

dz 

dll 

dx ’ 
w — 

dG 

dx 

dF 

dy •(1). 

hence we must have 

_dH _^dG 

^ dy dz 

or as it may be expressed more briefly 

Uy V, i(; = curl {F, G, //). 

It is clear that the values of u, v, w given by (1) satisfy the equa¬ 

tion of continuity; and substituting in the values for f, 77, i we get 

__ 
dy dz 

and similar expressions for 27^, 2^. 
Hence the assumptions of equations (1) will be justified if we 

can find (?, if so as to satisfy the four equations 

dv_ d (dF dG dH\ 

dz dx\dx~^ dy~^ dz ) 
.(2), 

dF dG dll ^ 

dx dy'^ dz 

- 2^, V2(? = ^ 277, Vm = ~ 2? 

.(3), 

.(4). 
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The last equations can be satisfied by assuming F, G, H to be 
potential functions due to distributions of gravitating matter of 
volume densities ^/27t, 1^/2^, respectively. We then have 

. 

for the values of F, O, H at the point (x, y, z), where 

(5) 

r^^{x--xy-^(y-yy+(z-z')\ 

and 7^', are components of spin of the element dx'dy' dz' at 
{x\ y\ z')y and the range of integration may be taken as extending 

throughout the whole liquid, though the integrand is zero at all 

points at which there is no spin. 
To complete the solution we must shew that the expressions (5) 

satisfy (3). 

We have = 
cx 

= 

and integrating by parts 

1 II 11 
Therefore 

dF dO dH 1 rn 
dx'^ dy‘^ dz'^ 2it J J r 

where (I, m, n) are direction cosines of the normal to the element 
dS of the boundary of the liquid. 

Now the vortex filaments are all either closed or end on the 

surface 8 of the liquid, and in the latter case we can always con¬ 
tinue these filaments either on the surface 8 or outside it until 
they return into themselves so that a greater space exists bounded 

by a surface 8\ in which exist only re-entrant vortex filaments. 
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Without loss of generality we may suppose the boundary to be of 
this kind, and then at every point on it either ^ = 77 = ^ = 0, or else 

if-f = 

so that the surface integral in the last equation vanishes. And 
since 0^ 0^ 

vanishes identically at all points of the liquid, as can be seen by 
substituting for f, rj, f in terms of u, v, w, therefore the volume 

integral vanishes also. Hence 

^ dO dH 

dx'^ dy~^ dz 

We have therefore shewn that (3) is the necessary and sufficient 
condition that the expressions (5) for F, H in terms of the spin 
shall give a consistent set of values for the velocity components 

when substituted in (1). But it must be observed that these 

expressions only constitute a particular solution of the equations, 

and that without invalidating the solution we might add to F, 0, 

H respectively three functions of the form dx/bx, dx/by^ bxjbz 
provided = 0. 

It must not be assumed however that there is a possible 
motion corresponding to any arbitrary distribution of spin com¬ 

ponents, for unless the components of velocity u, w and the 
pressure p are continuous they do not in general represent a 

possible state of the liquid. We shall refer later to one possible 
state of discontinuity under the head of vortex sheets. 

'^9*63. Each element of rotating Liquid produces a 
Velocity in every other element of the Liquid Mass, In (1) 
of 9*62 let us substitute from (5) so much of the values of 

F, G, H as are contributed by the element dx'dy'dz' and call the 

resulting components of velocity at (x, y, z) 8u, 8v, 8w, We have 

(x—x') 8tt + (^ — y') Si; + (z — 2') 8m) = 0, Hence 
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80 that the resultant of Su, 8vy 8w is at right angles to r. Also 

Sii + Tj' 8v -f 8w — 0; 

and this resultant is therefore also at right angles to the axis of 
spin at (x', y\ z'). 

H'r' ily' 
Lastly hq^{{huf-\-(hvf^{8wY]^ ...(2), 

where co' is the resultant of and v is the angle between r 
and the axis of spin at (x\ y\z'). 

Hence each rotating element A of liquid implies in each other 
element B of the same liquid mass a velocity whose direction is 
perpendicular to the plane through B and the axis of rotation of 
A, its magnitude being given by the result (2). If the element at A 
be a length hs' of a vortex filament of strength k we have 

oj'dx'dy'dz' = U8s\ 

so that we may write the result 

^ K sin V 86*' 

9*64. The reader familiar with the theory of electromagnetism will 

again n^cogriise the analogy to which reference was made in 9*32. The 

vortices correspond to electric currents and the liquid velocities to 

magnetic force due to the currents. The relations betwotjii C and w, v, w 

are analogous to 

(electric current) = curl (magnetic force); 

the result of 9*63 corresponds to the force on a magnetic polo due to an 

element of an electric current, and in 9*62 the vector (F,Q,H) corresponds 

to the vector potential of magnetic induction. 

9* 65. If the fluid be not incompressible we may write the 
equation of continuity 

du dv dw 
dx dy 0z 

1 Dp 
P Dt' 

But if V be the volume of a small element of fluid its mass pv is 
invariable, so that 

0 = 

D (pv) Dp Dv 

therefore 
du dv dw 
dx dy^ dz 

1 Dv 
V Dt 

= 0, say, 

where 6 denotes the ‘exp^-nsion’ or rate of increase of volume at 
y, z). 
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The expansion will cause extra terms in the expressions for the 
velocities; the expansion of an element dx' dy'dz' being equivalent 

B' 
to a simple source of strength dx' dy' dz' at (x\ y\z'). 

477 

This gives rise to a velocity potential whose value at {x, y, z) is 

dy’dz', by 3-3, 

and the complete expressions for the velocity are 

_ d<f> dH dG 

dx~^ dy dz ’ 

dF_dH 

^ dy^ dz dx ' 

_d<t> da^dF 

dz dx dy* 

> 9*66. Velocity Potential due to a Vortex in incompres¬ 
sible fluid. Considering a single re-entrant vortex filament of 

strength /c, we may write the expressions (1) of 9*63 

8^ = ~ ^J-3 [{y - y') dz' - (2 - 2:') dy'}, etc. 

by putting rj', = a>' (dx'jds', dy'jds'^ dz'/ds'), 

and (jj'dx'dy'dz' = ^Kds'. 

Hence 

where the integration is taken round the filament. 
By Stokes’s Theorem this line integral is equal to a surface in¬ 

tegral over any surface bounded by the filament. Thus if we write 

{Xdx' + Ydy' -f- Zdz'), 

we also have 

K 0Z 

477 JJI (v dz' j )^^[dz' dx' 

But z=o. 7 = II Z = -m 
therefore 

dZ 07 / 0* 02 \ 1 02 1 

dy' Wz'~ -\07^ + r dx'^ r ’ 

dx dZ 02 /i\ dY dX 02 / 1 1 
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and similar expressions for v and w. 

The velocity potential from which u, w are derived is therefore 

, a a a 
'a^+^y+^a* dS' 

/c r r cos ddS' 

iTr]] ” "7^ 
.(1), 

where B is the angle between the normal {I, m, n) to the element 

dS' and the line r joining (x, y, z) and (x\ y\ z'). 

This result may clearly be written 

<^ = /c£i/47r .(2), 

where O is the solid angle subtended at the point {x, y, z) by a 
surface having the vortex filament for edge. 

This potential function is clearly a cyclic quantity increasing 

by the cyclic constant k every time the path of a moving point 
completes a circuit hnked with the 
vortex, for in these circumstances the 
solid angle increases by 47r. It re¬ 

sembles the magnetic potential due to 

an electric current in a closed circuit 
or to a magnetic shell. 

For a single rectilinear vortex we may take 

n = 2(7r-0) 

and ^ =/c (tt —0)/27r, 

making the velocity - d^jrdB^Kj^TTr, as before. 

9* 67. From 3*31 and 9*66 (1) we see that the velocity potential is 

what would be produced by a distribution of doublets over the surface S' 
of strength kI4^tt per unit area with their axes all normal to the surface and 

directed to the same side of the surface. This can easily be understood from 

the fact that the stream lines all thread the vortex cutting across any 

surface bounded by it, and the motion might conceivably be produced by 

a giving out of liquid normally on one side of such a surface and the 

absorption of it at the same rate on the other side, combined with a suitable 

flow parallel to the surface in order to give the stream lines their actual 

directions at each point of the surface. 
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vf9*7. Vortex Sheets. Suppose that a surface exists in a 

fluid over which the normal component of velocity is continuous 
but the tangential component has different values on opposite 

sides of the surface. 
Consider a small circuit consisting of two lines of length ds 

drawn on opposite sides of the surface and having their extremities 

joined by two infinitely shorter lines dn normal to the surface. 

Let the lines ds be in the direction of the relative velocity, which is 
clearly tangential to the surface and of magnitude 

if u, V, w and u\ v\ w' denote the components on opposite sides of 

the surface. 
If q, q* denote the components of velocity in direction ds on 

opposite sides of the surface the circulation in the small circuit is 

{q — q')d8. But q — q' is clearly the relative velocity, so that the 
circulation is also 

{(u — + (v — v')^ -{-(w — w')^]^ ds. 

This may be regarded as due to a stratum of vortices whose 

axes are at right angles to the direction of the relative velocity. 
If oj be the spin at the point considered, the circulation is 

2a)d8dn, so that 

2ojdn = {(u — u')^-h (v — v')^ -j- (w -- , 

and the components of spin 77, ^ are given by 

^ (u — u') -h y (v ~ v') -h ^ (w — w') = 0 

and -f my -4- 71^ = 0, 

where I, m,n are direction cosines of the normal to the surface. 
Here dn is infinitely small and y, i are infinitely great but 

such that the products fdn, ydn, X^dn are finite. 

Thus the surface of discontinuity may be regarded as a surface 

covered with vortex filaments, the spin at any point being given 
by the foregoing expressions and the discontinuity in the 

tangential velocity may be regarded as due to this vortex sheet. 

9*71. Uniform plane Sheet. Consider the case of uniform flow 

parallel to the axis of y with velocity v where z > 0 and v' where 2 < 0. The 

axes of the vortices are then parallel to Ox, and if is the strength of the 

vortex sheet per unit breadth parallel to Oy, positive when the sense is 

that of circulation from Oy towards Oz, then k = v' — v. 

The strip of the vortex sheet of breadth dy at a distance y from Ox will 

produce at the point (0, 0, z) a velocity #cdy/27rr, where r = (y* + z*)i is the 
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distance of the point from tiie strip; and by taking strips equidistant from 

the point it is easy to see that the resultant velocity at the point due to the 

vortex sheet is parallel to yO provided z> 0, and of magnitude 

K 

277- -oD 
(v'-v). 

While for z<0 there is an equal velocity parallel to Oy. 

If now we regard this vortex sheet as superposed upon a uniform flow 

with velocity parallel to Oy through all space, we see that the 

result is two \miform streams with velocities v' respectively on either 

side of the plane xy. 

Looking back now to the case of the infinite’* row of parallel vortices of 

9'4, we see that if in (3) we make y = ± oo we get w = v — 0 and a 

comparison shows that at a groat distance the infinite row of parallel 

vortices is equivalent to a plane vortex sheet of strength k/o per unit 

breadth. 

'i 9‘72. Production of Vorticity. We saw in Chapters V and 

VI that when a solid moves through a fluid the 'lifting force’, in 

the two-dimensional case, depends on the existence of a circula¬ 

tion about the solid. Experience shews that such forces and 

circulations actually exist, and the question arises how does such 

circulation come into being and to what extent is the Kelvin 
Helmholtz theory of the permanence of vortices in accordance 

with observed facts. In the first place it must be observed that 

permarience of irrotatimal motion established in 2*51 and 4*24 

refers not to regions of space but to i)ortions of matter, and that 

the correct inference to be drawn in relation to motion started 

from rest in perfect fluid is not that vorticity cannot arise but 

that it can only occur in sheets, i.e. in the surface of separation 

of definite masses of fluid*. Then it must be remembered that 

actual observations are made with real fluids in which there is 

viscosity, and, as we shall see later, viscosity plays an important 

part in the production of circulation or vorticity. We have had 

occasion to consider several cases of fluid motion involving sur¬ 

faces of discontinuity of tangential velocity, beginning with 3*72 
where it was explained how such a surface comes to be unstable. 

We have now seen that such a surface is a vortex sheet, and 

that the production of such a sheet in perfect fluid is not in¬ 

consistent with the theory. When a stream is obstructed by a 

body like a flat plate across the stream or a bluff body like a 

circular cylinder the surfaces of discontinuity or vortex sheets 

behind the body conimonly roll up on themselves and produce 

* For this observation I am indebted to Dr Goldstein. 
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a Karnian street of more or less concentrated vortices. When 
an aerofoil meets a stream and divides it (in the two-dimensional 
case) the two portions of the stream which pass above and 
below the body meet again behind it; vorticity is produced by 
viscosity in a thin layer of the fluid surrounding the body and 
is shed off behind the body; this vorticity collects into a single 
vortex and moves away from the aerofoil leaving behind it a 
state of steady flow. The region of space which includes the body 
is cyclic and, when the vortex is cast off behind the body, a 
circulation is set up round the body equal and opposite to that 
of the vortex, so that the total circulation in a circuit which 
embraces the body and the vortex remains zero*. 

s/ 9*73. Extension of the Theorem of Kutta and Joukowski. 
It should be remarked that the proof of the theorem of Kutta 
and Joukowski (5*7) involves the hypothesis that there are 
no singularities such as vortices in the fluid surrounding the 
body. We shall shew how the formula for thrust must be 

modified when sources and vortices are present. 
Referring to 5*61 and 5*7, suppose that in the finite part of the 

plane round the cylinder C' there is also an arbitrary distribu¬ 
tion of sources and vortices, giving rise to an additional motion 
represented by 

r S- r = 1 2 
-i;r/l,log(2-«r) + X -Jlog{2-C,.), ^^j’2 

let the velocity of the steady stream at infinity have components 
— I/, — Vy and as before let k denote the circulation about tlui 
cylinder. These additional terms in w give rise to singularities in 

the integrand in 11 ^ \ dz lying between the contours 6'' and (J. 

Hence we cannot proceed from 5* 61 (4)to5*61 (5);butwccan use 
the second theorem in 5*6 in the form 

= 27ri jsum of residues of 
\dzj 

at poles between C' and C 

.(2). 

♦ For further information see Ewald, Posehl and Prandtl, The Physics of Solids 

and Flvidsy 1930, p. 320, and von Karman and Levi-Civita, Vortrdye.. .Hydro- u. 

Aerodynaniik, 1924, papers by J*randtl, Trefftz and VViesclsbergcr. 
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Tlie whole motion about the fixed cylinder C' may be represented 

%K. ^ ^ %K. 
w^{U-iV)z-\- log2: + ?/;o-Sm^log(2;~a^)-f S-^log(;:-cJ 

Ztt Ztt 

so that 
dw iK dwQ w- ^ 

.u-i-tv== , ■=U-iV+- -f- +s~ . ® . 
dz Irtz dz z — a^ lir (z — c^) 

where Wa must be such that , ® -> 0 as I 2 I -> cx). It is clear that 

the poles of | which lie between C' and an infinite circle C 

are at the sources and sinks, and that the residue at is 

sum of all terms on the right of (4) 

^ except that which contains }z->ar 

= 2mj.{Uj. — iVr), where Uj., are the components of velocity at 
omitting the source Wj. in the calculation. 

Similarly at the vortex at Cg the residue is -— 
TT 

where Ug, Vg are defined in the same way. Then from 5*61 (4) and 
from (2) above 

X-iY = i 

dz -f up {sum of residues) 

dz-^TTp\ (u^ — iv^) — S - - {Ug — iVg) 

Substituting from (4) in the last integral and integrating round an 
infinite circle on which | dwjdz j is zero, we get 

C idwV , .... ^ i/cJ 
dz=^ ^up{V-^iV) + 2 

so that 

X — iY = —ipK{U--iV)-\-2uplLm^(Uj, — iv^-\- U — iF) 

— ipI,Kg(Ug‘-iVg+U — iV) .(G)*. 

It is obvious that 5*7 is a particular case of this theorem. 

♦ This generalization is due to M. Lagally, Milnchener Ber, 1921, quoted in 
Handbuch der Physik, vit, p. 88, J. Springer, 1927. 



9*8 KINETIC ENERGY OF VORTICES 243 

^ 9*8. Kinetic Energy of a system of Vortices, The kinetic 
energy of a fluid is T, where 

2T~ P JJJ 4- dxdydz, 

which by 9*65 becomes 

d<l> dF dH 
4- 

dy dz dx ) 
+ 

/ d<f> da dF\]^ , , 
”V3. + ,-.x-aj,-))"*'*■ 

Integrating this by parts we get 

2T= -p cl>V^(f>dxdydz 

4“/) {I (Hv — Gw) 4- rn (Fw~ Hu) 4- n {Gu — Fv)]d8 

4-2/3JJJ {F^’>tGri-^IF^)dxdydz, 

where the surface integrals extend to the whole boundary of 
the liquid and the triple integrals are taken throughout the 

volume. 
If we suppose that the liquid extends to infinity and is at rest 

there and that the vortices are all within a finite distance of the 
origin, then as in 4*6 the first integral vanishes, the second is zero 
because V^<f> = 0, and the third is zero because at points on the 
infinitely distant boundary F, G, H are ultimately of order IjR^, 
and u, V, w of order 1/JS^. Therefore 

T = P JIJ + + HQ dxdydz. 

Substituting the values, of F, t?, H from 9*62 we get 

y = AJJJIII dxdydzdx'dy'dz', 

where each volume integral extends through the whole space 
occupied by the vortices. 

Another form, in which we integrate by filaments, may be 
obtained thus. If da, da' are elements of length of two filaments, 
cr, a their cross sections, ta, ui the corresponding angular velocities 
and € the angle between ds and da\ the elements of volume are 

t6-2 
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ads and ads\ and the integrand is wa>'cose/r, so if we write 
2wa — K and 2oj'a' ~ k\ we get 

477 
ds ds f 

where the integration is along the filaments and the summation 

includes each pair of filaments once. This formula corresponds to 

that obtained by F. Neumann for the energy of electric currents. 

f 9*81. Kinetic Energy Constant. We can also shew that the 
kinetic energy is constant when no extraneous forces act. 

The equations of motion are 

ru («. ^ 
1 /dp dp dp\ 

Multiplying these by v, w and adding we get 

ip + + «’*) = - { 
dp dp dp\ 

u / -\-w ~\ 
ox dy ozj 

If now we multiply by dxdydz and integrate over any region 

we get 

=jy {lu mv -^-nw) pdS, 

dxdydz 

integrated over the boundary of the region. 

Let the boundary extend to infinity, and enclose all the vortices, 
then since ^ 

therefore at a great distance R from the vortices p will be finite 
9*66 and lu + rav-^nw of order 1/^^ while dS is of order 

Hence the expression for DTfDt vanishes and we have 

T — constant. 

/ 9*82, Circular Vortex Rings. We have already seen (9*67) that a 

vortex ring produces the same effect as a sheet of doublets boimded by the 

ring, so that at points whose distance from a circular vortex is great com¬ 

pared with the radius, we might as a first approximation replace the vortex 

ring by a doublet perpendicular to its plane. For more detailed treatment 

we proceed as follows. 

When the vortex lines are circles in planes parallel to the yz plane with 

centres on the axis of a?, we may use Stokes’s stream function and write, in 

the notation of 7*3, \ \ Bth 

mdm* ^'^wBx* 
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then by 4’25 the spin a> at the point (x, w) is given by 

O Ja>= 5“- 
‘ dx 

Let us consider the case of a single circular vortex filament. We may 

transform the expressions for Fy O, Hy namely 

1 1 
dm m {dx^'^ dm^ m dm) 

) of a single circular vo 

for Fy Qy Hy namely 

L I f Jr etc., 2jr 

by taking a as the cross section and ds the length of an element of the 

filament, and putting f', — maty na>, where at is the spin and 

ily my n) are the direction cosines of the vortex line, so that 

dx'dy'dz'^loiods^ ^Klds ^ ^Kdx'y 

K denoting the strength of the vortex. 

Now let the filament have its centre on the x axis and be parallel to the 

plane yz. 

Let (x'y y'y z') be any point Q on the filament, whore 

y'= tts'cos d', z' = m'smd'. 

Lot P be the point (x, z), where 

y^mcos6y z — msin By 

then = (x — x')^ + — 2mm' cos {B—B'), 

We get 

F=o, 
47r J 0 r 47r J 0 r 

as the values at P. 

Hence the vector whose components are F, Gy H lies in a plane parallel 

to yz and its component in the direction m is 

G^cos ^H-Hsin ^ - j — -' dB =0, 
47t J 0 r 

so that the vector is perpendicular to tir as well as to x. If we denote its 

value by Ay we have 

22lHzJD.de' 
in Jo r 

A=:H coa0— Gain $: 
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Remembering that the line integral of this vector roimd any curve 

represents the flow across a surface bounded by the curve, by taking a 

circle of radius w with centre on Ox, we get 

2irmA = flow through the circle = — 27r^ (7*3), 

the flow being from left to right in the figure. 
Therefore 

Kwm' cos(0 — d')dd' ^ — wA = 
4:7r 

/ nr 
” jo {(x — x')2 + tn* -f — 2mtD' cos (d— 

and since the range of integration is round a circle we may clearly write 

€ for B' — B, so that 

"27r coscde -Jir_. 
47r Jo {(a; —x')® + ^2 +tn'® —2mtn'co8€}i 

Putting 
’ (x — x')^ +(to 

and € = IT — 2^ the result reduces to 

where K, E are the complete elliptic integrals of the first and second order 

with modulus h. 

't(9’83. It is clear from 9*63 that at a point P in the plane of the ring 

the velocity due to each element of the ring is perpendicular to the plane, 

hence there can be no radial velocity at any point in the plane of the ring. 

The radius of the ring is therefore constant, for it could not vary without 

causing radial velocity in the particles close to it. 

To find the motion of the ring, we observe that near the ring x = x\ and 

xo^To' nearly, so that 1 nearly, and ^ becomcjs infinitely great. The 

determination of the velocity depends on the form of the section of the 

ring; an exact expression for the case of a circular section was given by 

Lord Kelvin*, but we can obtain approximate results for the velocity in 

the neighbourhood of the ring as follows. 

If h' denote the complementary modulus 

i.'j _ (a:-a=0° + (CT-tp0» 

(x - x')* + (w + !»')* * 

then k' tends to zero as the point (x, w) approaches the ring. 

For small values of k\ i.e. when k is nearly unity, 

K = log 4/Aj' and P = 1, approximately!. 

Hence 

is the principal part of tft when k' is small. 

♦ Phil. Mag. xxxm, Fourth Series, 1807, p. 511; see also Lamb’s Hydrodynamics, 
U63. 

t Cayley’s Elliptic Functions, p. 64, 
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And taking this value for tfi we have 

— — ^ ^ 1 ^ ^ 

^ w dm *” 47rm \ m) 27r m i d 

dm 
logk\ 

But 
m + m' 

(x — x')^ + {m + m')^* 

and, if we take the value for a point on the ring for which m—m' and 

x=ix' + € say, where c is small, being commensurable with the linear dimen¬ 

sions of the section of the ring, we get 

2m'^ 

and 
d , ,, 2m' 

dm €® + 4Tn'*' 

Hence the principal part of the velocity parallel to the axis is 

fc , 8m' 

For a ring of small section this implies a largo velocity and we conclude 

that a thin circular ring will move along its axis with a large approximately 

constant velocity. 

The direction of the velocity is to the side to which the fluid flows tlarough 

the ring. 

For a complete investigation reference may be made to Lamb’s 

Hydrodynamics (loc, ciL), 

U We shall conclude with some observations on the motion of two 

circular vortex rings moving on the same axis, taken from Helmholtz’s 

paper on vortex motion. “We can now see generally how two ring-formed 

vortex-filaments having the same axis would mutually affect each other, 

since each, in addition to its proper motion, has that of its elements of 

fluid as produced by the other. If they have the same direction of rotation 

they travel in the same direction; the foremost widens and travels more 

slowly, the pursuer shrinks and travels faster, till finally if their velocities 

are not too different, it overtakes the first and penetrates it. Then the same 

game goes on in the opposite order, so that the rings pass through each 

other alternately. 

“ If they have equal radii and equal and opposite angular velocities, 

they will approach each other and widen one another; so that finalJy» 

when they are very near each other, their velocity of approach becomes 

smaller and smaller, and their rate of widening faster and faster. If they 

are perfectly symmetrical, the velocity of fluid elements midway betwocm 

them parallel to the axis is zero. Hero then we might imagine a rigid [)lane 

to be inserted, which would not disturb the motion, and so obtain the esuso 

of a vortex ring which encoimters a fixed plane. 

“In addition it may be noticed that it is easy in nature to study these 

motions of circular vortex rings, by drawing rapidly for a short space along 

the surface of a fluid a half-immersed circular disk, or the nearly semi¬ 

circular point of a spoon, and quickly withdrawing it. Tliere remain in the 

fluid half vortex rings whose axis is in the free surface. The free surfaefe 
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forms a bounding plane of the fluid through the axis, and thus there is no 

essential change in the motion. These vortex rings travel on, widen when 

they come to a wall, and are widened or contracted by other vortex rings, 

exactly as we have deduced from theory*.” 

9*9. Steady Motion. When the external forces have a 
potential the general equations of motion are of the form 

'bu du 0Q 1 dp 

p dx ’ 

and similar equations. 
^dp 

du du du du dQ 

~ d?t' 

And if we put 

the foregoing equations may be written 

du 

dV 

Idv du\ 

'""{dx^dy} 
-j-w 

/du dw\ 

\dz dxj 

dD. 

dx 

1 dp 

p dx 

du 

dx 

dv 

dx 

or 

~dx)^ 

.(1), 

and similar equations. 

When the motion is steady we have 

therefore 

du ^ 

ar"’ 
dw 

dt 
= 0; 

dx 

Hence 

^X_ 
dy' 

:2(wi-u0, ^X, 
dz 

■ 2 (urj'-v^). 

and 
9y 9y 9y ^ 

u^^-v^ + w-~=0, 
dx dy dz 

Therefore x = const, represents a surface the normal to which 

at any point is at right angles to both the vortex line and the 
stream line through the point. That is, there exists in the liquid 

a family pf surfaces x = const, each covered by a network of vortex 

lines and stream lines. 
In the special case in which the motion is irrotational, however, 

X is constant throughout the whole liquid. 

* See also a pajKjr by Love, ‘On the motion of paired vortices*, Proc, L.M,8, 
1894, p. 185. 
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If for an instant we take the axis of x normal to the surface 
X== const., we must have t^ = 0, f = 0, and if dv is an element of 

the normal to the surface 

= = = .(2), 

where 6 is the angle between the direction of the velocity q and 

the axis of spin i.e. the angle between the stream line and the 
vortex line. 

Hence we have as the conditions for steady motion that it 
must be possible to draw a family of surfaces in the liquid each 

covered by a network of stream lines and vortex lines and such 

that at every point of a surface qayBinddv is constant, where dv is 

the normal distance between the surface and the next consecutive 
surface of the family*. 

In two-dimensional liquid motion it is obvious that qdv is con¬ 

stant along a stream line, therefore the condition for steady 

motion is that the spin ^ shall be constant along a stream line. 

This will be the case if we put 2^ =/ (ijf), where tfj is the stream 

function and/ an arbitrary constant. 

But 
^ dv du d^tjj d^ijj 

dx dy dx^^ dy^' 

therefore for two-dimensional steady motion we have to satisfy 

dy dy 
dx^ ^ dy"^ 

(3). 

This is cloarly satisfied whenever the stream lines are concentric circles 

with the origin as centre. Another case is where the stream lines are a 

system of similar and similarly situated ellipses or hyperbolas; thus 

^ = I (ax^ 4- 2bxy -f cy^) 

makes = a c, so that equation (3) is satisfied, and the spin ? = i (a 4- c) 

is miiform. 

In like manner a system of equal parabolas having the same axis may be 

seen to satisfy the conditions for stream lines in steady motion. 

n/ 9*91. Steady Motion symmetrical in Planes through an 
Axis. If the motion is symmetrical about the x axis and m 
denotes distance from the axis, we clearly have q. 2'jTmdn constant 

along a stream line, for this represents the flow between two 

* Lamb, ‘On the conditions for Steady Motion of a Fluid’, Proc. L.M.S, ix, p. 91, 

or HydrodynamicSt § 165. 
t Stokes, ‘On the Steady Motion of Incompressible Fluids’, Trans, Camb. Phil, 

Soc. VII, p. 439, or Math, and Phys. Papers^ i, p. 1. 
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consecutive stream surfaces of revolution. But we must also have 

qmdn constant over such a surface from 9*9 (2), because from 
symmetry the vortex rings must have their centres on the x axis 

and their planes perpendicular to it, so that they cut the stream 
lines at right angles. Therefore a>/c7 must be constant along a 
stream line. This is satisfied by making 2a) = mf (^), where / is 
an arbitrary function of Stokes’s stream function Hence from 
9*82 (1) we have 

W 
•(1) 

as the necessary condition. 

An example in which this condition is satisfied is Hill’s 
‘Spherical Vortex’*' 

EXAMPLES 

1. Assuming that, in an infinite unboimded mass of incompressible 

fluid, the circulation in any closed circuit is independent of the time, shew 

that the angular velocity of any element of the fluid moving rotationally 

varies as the length of the element measured in the direction of the axis of 

rotation. (M.T. 1880.) 

2, If u = -"f, V = tv = 0, invt'stigato the nature of the 

motion of the liquid. 

3. When an infinite liquid contains two parallel equal and opposite 

rectilinear vortices at a distance 26, prove that the stream lines relative to 
the vortices are given by the equation 

log + ■ y = 0, 
the origin being the middle point of the join, which is taken for axis of y. 

4. In the last example, if the vortices are of the same strength, and the 

spin is in the same sense in both, shew that the relative stream lines are 

given by j^g ^ ^4 _ 26V* cos 2^) - - constant, 

6 being measured from the join of the vortices, the origin being its middle 
point. 

Shew also that the surfaces of equiprcjssure at any instant are given by 

4- 6* — 26*r* cos 26(r* cos 26 + a*). 
(Coll. Exam. 1913.) 

6. An infinitely long line vortex of strength m, parallel to the axis ofz^ is 

situated in infinite liquid bounded by a rigid wall in the plane y = 0. Prove 

* *0n a Spherical Vortex’, Phil Trans. A, 1894, or see Lamb’s Hydrodynamics. 
§ 165. 
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that, if there be no field of force, the surfaces of equal pressure are 

given by 

{(x - a)2 -f (y - 6)2} {(a? - a)® + (y + fe)®} = O {y® + 6® — (a? — o)*}, 

where (a, h) are the coordinates of the vortex, and C is a parametric 

constant. (Univ. of London, 1909.) 

6. If n rectilinear vortices of ihc^ same strength k are symmetrically 

arranged as generators of a circular cylinder of radius a in an infinite liquid, 

prove that the vortices will move roimd the cylinder uniformly in time 

Sn^a^/{n — 1) K, and find the velocity at any point of the liquid, 

7. When a pair of equal and opposite rectilinear vortices are situated in 

a long circular cylinder at equal distances from its axis, shew that the path 

of each vortex is given by the equation 

(r* sin® $ — 6®) (r® >- a®)® = 4a®6®r* sin* 

6 being measured from the line through the centre perpendicular to the join 

of the vortices. (Greenhill.) 

8. Obtain the distribution of the velocity round a straight vertical 

vortex core in liquid: and find the form of the dimple where the core meets 

the free surface. (St Jolm’s Coll. 1897.) 

9. Find the motion of a straight vortex filament in an infinite region 

boimded by an infinite plane wall to which the filament is parallel, and 

prove that the pressure defect at any point of the wall due to the filament 

is proportional to cos® 6 cos 26, where 6 is the inclination of the plane through 

the filament and the point to the plane tlirough the filament perpendicular 

to the wall, (M.T. 1912.) 

10. If a rectilinear vortex moves parallel to two rigid planes which 

intersect at right angles, prove that on the line of intersection of the planes 

the excess of pressure due to the vortex varies inversely as the square of 

the distance of the vortex from the line of intersection. 
(Univ. of London, 1915.) 

11. If (rj, ^i), (r,, ^j)... be polar coordinates at time ^ of a system of 

rectilinear vortices of strength kj, ...» prove that 

Sifr® = const, and l,Kr^6=(Kirchhoff.) 

12. The space enclosed between the planes x — 0, x = a, ?/ = 0 on the 

positive side of t/ = 0 is filled with uniform incompressible liquid. A recti¬ 

linear vortex parallel to the axis of z has coordinates {x\ y'). Determine 

the velocity at any point of the liquid and shew that the path of the vortex 

is given by 
cot*+ ooth® ^ = constant. (M.T. 1899.) 

a a 

13. An elliptic cylinder is filled with liquid which has molecular rotation 

ci> at every point, and whose particles move in planes perpendicular to the 

axja; prove that the stream lines are similar ellipses described in periodic 

(M.T. 1876.) 
€0 ao 
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14. An infinite row of equidistant rectilinear vortices are at a distance 

a apart. The vortices are of the same numerical strength k but they are 

alternately of opposite signs. Find the complex function that determines 

the velocity potential and stream function. Shew that the vortices remain 

at rest and draw the stream lines. Shew also that, if a be the radius of a 

vortex, the amount of flow between any vortex and the next is 

(ic/tt) log cot (7ra/2a). (M.T. 1925.) 

15. In an incompressible fluid the vorticity at every point is constant in 

magnitude and direction; shew that the components of velocity w, v, w are 

solutions of Laplace’s equation. (Trinity Coll. 1906.) 

16. Prove that, in the steady motion of an incompressible liquid, imder 

the action of conservative forces, we have 

du 

and two more similar equations in v, w. 

Hence shew that if u,VfW are linear functions of ic, y, 2, then 

ft/4-T?v+f«; = 0, 

and that there are two and only two possible cases: 

(i) an irrotational motion with a velocity potential which is any solid 

harmonic of degree two in y, 2, 

(ii) a rotational motion which may, by choice of axes, be reduced to 

the form u=:az-\-(h — ^)y, v = (h + l)x — ay, w^O. 

Find the lines of flow in case (ii); and shew that the motion is periodic if 

> (afl -f ^2). (St John’s Coll. 1902.) 

17. Prove that the kinetic energy of a vortex system of finite dimen¬ 

sions in an infinite liquid at rest at infinity can be expressed in the form 

2p j{u(yl,-z-q)+v(zi-zl) 4- w (x-q — 2/f)} dxdydz. 

18. Prove that a thin cylindrical vortex of strength a, running parallel 

to a plane boundary at distance a will travel with velocity a/^na: and shew 

that a stream of fluid will flow past between the travelling vortex and the 

boundary of total amount ^ length along the 

vortex, when c is the (small) radius of tho cross section of the vortex. 

(M.T. 1916.) 

19. If, with the usual notation, udx -\-vdy + wdz = + Ady where d. A, x 

are functions of a?, y, z and t, prove that the vortex linos at any time are the 

lines of intersection of the surfaces A = const, and x = const. 
(Coll. Exam. 1912.) 

20. Prove that the necessary and sufficient condition that the vortex 

lines may be at right angles to the stream lines is 

fd^ dj> d^\ 
U, Vf w- 

(d^ dj> d^\ 

’ ^ \dx * dy* dz)^ 

where p and <f> are fimctions of y, z, t. 
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21. Prove that in regions remote from a single tliin vortex ring the 

stream lines approximate to the curves r cosec* d — const., where r denotes 

the distance of a point P from the centre O of the ring, and 6 the angle 

which the line OP makes with the axis of the ring, (M.T. ii. 1910.) 

22. Find the motion of the liquid around a closed vortex filament, 

shewing its equivalence to a double sheet of sources and sinks: deduce 

that the image of a circular filament moving in infinite liquid surrounding 

a rigid sphere is another filament; compare the circulations. Describe the 

behaviour of the filament as it approaches the sphere. (M.T. 1911.) 

23. Shew that if the velocity is stationary at a point on a stream line in 

the steady motion of a liquid, the stream line is a geodesic on a member of 

the family of surfaces that contains the stream lines and vortex lines. 
(Greenhill.) 

24. A straight cylindrical vortex column of uniform vorticity f is sur¬ 

rounded by an infinite quantity of fluid moving irrotationally which is at 

rest at infinity, prove that the difference between the kinetic energy in¬ 

cluded botweeix two planes at right angles to the axis of the cylinder and 

separated by unit distance whun the cross section of the cylinder is an 

ellipse and when it is a circle of equal area A is 

n- 2Vab 

where p is the density of the fluid and a and b the semi-axes of the ellipse. 

(M.T. 1887.) 

25. If the velocities at a point in a liquid in motion under a system of 

external forces having a potential be expressed by 

dx dx’ dy dy 
D 

dz^^dz* 

prove that the result of operating with on the identity 

pcx pdy pdz * 

where f are the rotations, gives, after a reduction, 

w; = — -4- 

26. If 

r = — -f Fjj — 

where = d<l>ldXj etc., 

prove that j jj{u^ + w^) dxdy dz taken through any portion of space 

within which <(>, F, G, H and all their differential coefficients are finite and 

continuous, equals 

+ ■P’l’ + + /fi* - dxdydz, 

taken through the same space, together with taken over the 

boundary, where with similar values for F^, 

Jand x is to be found. (DublinUniv. 1911.) 
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27. A liquid extending to infinity moves under the influence of a finite 

system of vortices; find the force and couple resultants of the system of 

impulses which would produce the motion. (Dublin Univ. 1907.) 

28. Shew that every irrotational motion, whether cyclic or aoyclic, of a 

liquid occupying a given I'ogion, can be produced by a proper distribution 

of vortex sheets on the boundaries, and shew how to determine this 

distribution. (Dublin Univ. 1907.) 

29. A liquid, extending to infinity, moves under the influence of a 

sphere composed of circular vortex rings whose planes are perpendicular 

to the axis of x, whoso centres lie on this axis, and in which the molecular 

angular velocity in each ring is proportional to its radius. 

If the components w, v, w of the velocity of the liquid are expressed by 

the equations g, 

By- 

find Ff (J^ H at a point outside the sphere. (Dublin Univ. 1907.) 

30. Shew that the motion of the liquid outside a certain surface sur¬ 

rounding a circular vortex ring the radius of whose core is small compared 

with the radius of its apertinre, is the same as that due to the motion of this 

surface through the liquid with the velocity of translation of the ring. 

Find the ccjuation to this surface and the length of the axis of the ring 

ntercepted by it. (M.T. 1892.) 

31. A cylindi’ical vortex sheet in infinite liquid is such that the vortex 

lines are generators of the cylinder and the vorticity at any point is 2 U sin 0, 

where 6 is the angle measured from a fixed plane through the axis of the 

cylinder. Prove that the vortex sheet moves through the liquid with 

velocity U paralM to the fixed plane. (M.T. 1924.) 

32. When the motion of an infinite liquid is due to a single circular 

vortex ring, in wliich the spin at any point is proportional to the distance 

from the straight axis, and the section is taken to be a circle of radius small 

compared with the radius of the aperture, obtain an expression for the 

velocity at any point of the fluid parallel to the straight axis. 

Prove that the fluid carried forward with the ring is or is not ring-shaped 

according as the ratio of the radius of the section to the radius of the 

aperture is less or greater than a certain fraction, and find an approxima¬ 

tion to this fraction. (M.T. 1897.) 

33. A uniform incompressible perfect liquid extends to infinity and is at 

rest there. Within it is a spherical vortex sheet of radius a with its vortex 

lines arranged in paj:allel circles, on the axis of which is a fixed point C at a 

distance c (< a) from the centre; the strength of the sheet at any point P is 

m sin where ^ is the angle between CF and the axis of the circles. Shew 

that the velocity at a point on the axis at a distcmce r (> a) from the centre 

is 

2m E 
n (n— 1) / 

2n~l \2n~ I 2n+lJ 

ac^ 
(M.T. 1900.) 



CHAPTER X 

WAVES 

10* !• The dynamics of wave motion is of great importance 

in physical investigations, as wave motion constitutes one of the 

principal modes of transmission of energy. The energy received 

from the sun is transmitted by waves in the ether, the energy of 

sound by air waves, the practical applications of electric waves are 

now spread the world over and the theory of waves occupies an 

important place in the field of research into the constitution of 

matter. In the present chapter we shall only consider water 

waves, which, though most familiar, are not the easiest to discuss 

mathematically. 

10'11. The oscillatory nature of Wave Motion. By a 

wave we mean the continuous transference of a particular state or 

form from one part of a medium to another. This does not imply 

the transference of the medium itself from one place to another 

but merely the propagation through it of a particular form, state 

or condition. Thus in water waves, the fact that small bodies 

floating on the water are not borne onwards by the waves is an 

indication that the elevated masses of water are not moving 

forward bodily, and that it is only the unevenness of the surface 

that is moving from place to place. As the waves pass a floating 

body it appears to be carried forwards a small distance on the 

crest of a wave and backwards when in the trough of the wave so 

that on the whole each wave leaves the position of the body very 

little altered. 

The following explanation of how water waves can be main¬ 

tained by small oscillatory movements of each particle of water is 

due to Airy*. 

Let ABCDEFO represent the outline at one instant and abcdefg an 

instant later; we want to shew that the displacement of the contour of the 

surface can be produced by a small oscillatory movement of each particle 

of water. 

Draw vertical lines to the bottom of the water and suppose the particles 

in each vertical line to be moving in the direction of the arrows in the 

♦ Article ‘Waves and Tides', Ency, Metrop, 1845. 
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figure; that is, all particles below the crest of the wave are moving forw^ards, 

all below the hollows are moving backwards, and all below the midway 

points A, C, E, O are for the moment stationary. And suppose the 

velocities of the horizontal motion of the particles in the vertical lines 

intermediate to those drawn in the figure are intermediate to the velocities 

of the particles in the lines drawn in the figure. This supposition will account 

for the motion of the wave or shape. For, take points Bq, near to 

B; Cq, near to C, etc.: draw lines from them to the bottom and con¬ 

sider the horizontal motion of the particles in those lines. Bq and Bj are 

both between the principal point of backward motion B and points of 

rest Ay Cy therefore the particles below Bq and those below B^ will be 

moving backwards and with nearly the same speed, so that the inter¬ 

mediate surface at B will not be .sensibly elevated or depressed inasmuch 

as the vertical boundaries BqBq' and B^Bj' of the included column of 

water will after a short time be at the same distance apart as at present. 

But the particles in the lino Cq' are bet ween a point of rest C and a point 

of backward motion B and therefore are moving backwards, those in the 

line Cl are between a point of rest and a point of forward motion D and 

therefore are moving forwards; consequently the vertical boundaries 

CqCq', Cl Cl of the included column are separating and therefore the 

surface at C will drop and after a short time will be found depressed to c. 

In like manner it will be found that the particles in D^D^' and DiDi are 

moving forwards with nearly the same velocity so that in the intermediate 

part at D there is no sensible alteration of level. But in Eq Eq the particles 

are moving forwards and in Ei Ei backwards resulting in a raising of the 

level from E to e. Pursuing this reasoning it will be evident that the 

continuous horizontal motion of the wave or shape forwards is entirely 

accounted for by the rising of some portions of the surface and the falling 

of others and that these risings and fallings may be considered as the 

effect of small horizontal motions of the water, some forwards and others 

backwards. And as in the progress of the waves, the same particles are 

alternately in the crest and in the hollow of the wave, every particle will 

be alternately moving forwards and backwards and alternately upwards 

and downwards, that is the particles are oscillating while the waves 

advance continually in the same direction. 
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10*12. Mathematical representation of Wave Motion. 
Graphically the equation 

y=f{x-ct) .•^••••(1) 

represents a wave motion, in which a curve of the form y=f (x) 
moves in the positive direction of the x axis with velocity c. For 
if in (1) we increase t by t' and x by ct' we leave the ordinate y 

unaltered. 

A simple harmonic progressive wave is represented by a curve 
of sines moving with definite velocity in the direction of its length. 

Thus the equation t/ = asin(ma:-'n^-h€) .(2) 

represents a wave moving in the positive direction of the x axis 

with velocity n/m, called the velocity of propagation, c say. 
The distance between two consecutive crests of the curve is 27T/m; 
this is called the wave length and denoted by A. The period 
of the wave is 27r/n or A/c, for the wave at time t ~ 27r/n presents 
the same appearance relative to the origin as at time t == 0, each 
crest in this interval moving forward a distance A, i.e. to the 

position occupied at the beginning of the interval by the next 
consecutive crest. 

The maximum value of y, viz. a, is called the amplitude. 
Equation (2) may also be written 

. 27r 
y = as\n.r(x — 

A 
. .(3), 

.(4), or • « y — a sm 27t I ^ — 
. 

where in the latter case r denotes the period A/c. 
The reciprocal of the period is called the frequency; it denotes 

the number of oscillations per second. 

Phase. In equation (2) e represents the phase of the wave 
at the instant from which t is measured. If we compare the 

equations y — a sin {mx — nt), 

and y = a sin {mx 

we see that both represent wave motions having the same ampli¬ 
tude, wave length and period, but that they differ in phase. As 
regards position the one is a distance c/m in advance of the other, 

RH 17 
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or as regards time the one has a start of e/n from the other. 
Strictly speaking the difference of phase is a number e, representing 
radians, but in such a case as we are considering it is not unusual 

to speak of the phase in terms of either distance or time; thus, if 
€ = 7r/2, one wave is one-quarter of a wave length in front of the 

other; or, in terms of time, one is one-quarter of a period ahead 
of the other, and we may say that the phases differ by a quarter 

of a wave length or by a quarter of a period. 

10'13. Standing or Stationary Waves. If two simple 
harmonic progressive waves of the same amplitude, wave length 
and period travel in opposite directions the resulting disturbance 

of the medium is represented by the equation 

y = a sin {m,x — nt)-\~a sin (mx -f nt) 

= 2a sin mx cos nt. 

Such a wave is called a standing or stationary wave. At any 

instant the equation represents a sine curve but the amplitude 

2a cos nt varies continuously. The points of intersection of the 

curve with the x axis are fixed points called nodes. 
In the same way a progressive wave system can be regarded 

as the combination of two systems of standing waves of the same 

amplitude, wave length and period, the crests and troughs of one 
system coinciding with the nodes of the other and their phases 

differing by a quarter period. 
For ity^ — a sin mx cos nt be one of the standing waves the other 

must be a cos mx sin nt, and by combining the two we get 

y — y^±y2~asm (mx ± nt) representing a progressive wave. 

10* 14. We propose to consider waves in incompressible liquid 

under the action of gravity. Such waves in water are generally 

produced by disturbing forces such as wind pressure, by the 

relative motion of a body such as a ship on the water, or by such 
causes as irregularities in the bed of a stream, so that, neglecting 

viscosity, the motion is irrotational. Roughly speaking the cases 

that we shall consider fall into two classes: (1) Long waves in 

shallow water, where the depth of the water is small compared to 

the wave length and the disturbance affects the motion of the 

whole of the liquid; (2) Surface waves, where the wave length may 

be small compared to the depth so that the effects of the dis¬ 

turbance cease to be appreciable below a certain depth. 
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10*2. Long Waves. Let u« consider the case of wa.ves travel¬ 
ling along a straight canal of nniform section. Take the axis of x 
in the direction of the length of the canal and y vertically iy)wards 
and let rj be the elevation of the free surface above the equilibrium 
level at the point whose abscissa is x at time t. If the wave length 
be large in comparison with the mean depth, the vertical accelera¬ 
tion can be neglected in comparison with the horizontal, so that as 
far as vertical forces are concerned we may regard the liquid as in 
equilibrium and take for the pressure at any point the statical 

pressure due to the depth below the free surface. 
Therefore the pressure at a point (x, y) is given by 

p-Po=9piyo+n-y) .(1). 

where y^^ is the ordinate of the undisturbed free surface and Pq is 
the pressure above the liquid supposed constant. Hence we get 

dp dr] 

dx dx 
(2), 

and as this is independent of y, and the horizontal acceleration of 
an element dejjends on the difference of pressure at its ends, i.e. 
dp 

if follows that the horizontal acceleration of all points in 

the same vertical cross section of the canal is the same, and 
consequently that points that are once in a vertical plane are 

always in a vertical plane. 
Considering a small horizontal cylinder PP' of liquid of length 

dx' the difference of pressure at its ends is gp dx'. And if x be 

the abscissa of the vertical plane of particles through P in its 
equilibrium position and ^ the horizontal displacement of this 

plane of particles, ^ ^ ^ (3) 

and the horizontal acceleration is d^^fdt'^. 
If K be the cross section of the cylinder PP\ the mass is Kpdx' 

and the equation of motion is 

pKdx = -gpKdx , 
dx’ 

or 
dy 
dfi'' -9 

dr) 

dx' 
(4). 

17-2 
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If now we suppose the motion to be smafl. and neglect the 
squares of small quantities, we get from (3) and (4) 

drj 

dt^ ^dx 
.(6). 

We have now to form the equation of continuity. Let A be 
the area of the cross section of the canal, and b the breadth at 
the surface. In the position of equilibrium the volume of liquid 

between the planes x and x-\~dx in A dx. At time t the distance 

between the bounding planes of this liquid is dx + dx, and the 

area of the cross section of the liquid is A-hbrj; therefore 

{A+br]) ^x + do^ = A dx. 

Neglecting the product of the small quantities this becomes 

.(6), A ^ -f = 0 
dx 

and we therefore obtain from (5) 

dfi b dx^ . 

To integrate this equation we write 

gAlb = c\ 

and x — ct = Xi, x-^-ct^x^, 

a 0 d ^ d d d 
so that +C-1L--, and ^ - -f---- 

.(7). 

2 

=0, 

reducing equation (7) to the form 

dxjds.^ 
the solution of which is 

^=/(*i)+-f (*2). 

where/, F are arbitrary functions. 

Hence the solution of (7) is 

^=f{x- ct) + F(x + ct) 

representing two waves travelling in opposite directions with 

velocity c = {gA jb)^. 

.(8), 
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If the canal be of rectangular section and depth h the wave 
velocity is (gh)^; i.e. a velocity due to half the depth of the liquid. 

The displacement being given by (8), the elevation rj is given by 

from (6), 

that is, ^7 = “ ^ ^ F' {x-^ ct). 

We should expect the expression for rj to contain two arbitrary 
functions because the elimination of ^ between (5) and (6) shews 
that 7) satisfies the same equation (7) as 

The particle velocity i is given by 

^=r — r/' {x — ct)-{-cF' (xA-ct), 

The meaning of the solution that we have obtained is not that the 
hypothesis of the existence of a Tong wave’ involves a compli¬ 
cated motion represented by arbitrary functions, but that all 
possible motions subject to the limitations we have imposed are 
included in the general solution (8); and the forms of the functions 
/, F to suit any special case must be determined from given initial 
conditions. A discussion of the adaptation of the solution to 
special cases will be given in a later chapter. At present we will 
confine our attention to the determination of the motion of the 
individual particles. 

10-21, Assuming the canal to be of rectangular section it is 
clear that the particles move in planes parallel to the length of 
the canal. A vertical column bounded by two such planes and 
two others at right angles to them remains a vertical column on 
a rectangular base, but the area of this base changes during the 
motion and the height of any particle in the column changes in 
such a way that the volume of the part of the column below the 
particle is unaltered; hence the vertical displacement of any 
particle is proportional to its height above the base. Therefore 
when the motion of a particle at the surface is known the motion 
of any particles in the same vertical line is found by diminishing 
the vertical displacement in a given ratio without altering the 
horizontal displacement. 

To trace the motion of a surface particle when a progressive 
wave passes over it in either direction, we may take 

f =/ (x-d). 
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Then from 10*2 (6), putting A^bh, we have 

or ^ = .(1). 

The particle is at rest until the wave reaches it, then it moves 

forward as well as upward with a velocity proportional to the 

elevation of the wave above the equihbrium level; when the crest 

of the wave reaches the particle the upward motion ceases but 
the horizontal velocity is a maximum, r) then decreases and ^ 

increases less rapidly and as the wave leaves the particle 17 = 0 

so that the particle is at the same height from the bottom as 

before; but ^ = -jrjcdt = — Jbrjcdt and when the wave has passed 

the particle this expression represents the total volume of the 
elevated water divided by the sectional area of the canal. Hence 

the particle is finally deposited in front of its initial position by 
this distance. 

If the wave consists of a single depression instead of an eleva¬ 

tion, everything is the same as before except that the particle 
moves backwards instead of forwards. 

10*22. To recapitulate—^the results of the foregoing Ai’ticles 

have been obtained on the hypothesis that the motions are so 

small that squares and products of ^ and rj can be neglected, and 

that the vertical acceleration can be neglected in comparison with 

the horizontal. We may observe that if we consider the passage 
of a wave consisting of a single elevation of length A and maximum 

elevation rj the time taken to pass a particular particle is A/c, 

where c is the velocity, so that the vertical velocity will be of order 
rjc/X, and the vertical acceleration of order But from 10*21 
(1) the maximum horizontal velocity is crjjh, and taking = gh, we 

get that the ratio of the maximum vertical and horizontal velocities 
is of order A/A, and the vertical acceleration being of order grjhjX^ 

can be neglected if A/A is a small quantity. This shews that waves 

of the type described are propagated only when A/A is small, and 

justifies the application to them of the term Tong waves’. 

The foregoing discussion is based on an article by Stokes*. 

♦ ‘On Waves’, Carnb, and I>ub. Math, Journal, iv, p. 219, or Malh. and Phys, 
Papers, n, p. 222. 
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10-23. Long Waves—general equation. Reverting to 
10*2, if we form the equation of motion for the liquid whicli in 

equilibrium occupies the space between two cross sections at a 

distance dx, x and x + dx being the abscissae in tht‘ undisturbed 

state, and x 4- ^ and x-\-^ + dx + -~^dx the abscissae at time t, of the 

bounding planes, the mass is pA dx and the equation of motion 

pAdx ■l^dx(A + b7)); 

where as before 
dp 
dx -9P 

drj 
dx^ 

so that the equation of motion is 

. 

The equation of continuity ia 

(A + bri) 4- — A dx, 

. 
and the elimination of t] between (1) and (2) gives 

Ad^Pi 

. 

Our former equation is an approximation to this in which the 

squares of small quantities are neglected. Airy’s discussion of this 

equation shews that waves cannot be propagated to infinity 
without change of form. 

10-24. Long Waves—another method. In any case in 

which waves are propagated in one direction only without change 

of form, the problem of finding the velocity of propagation can be 

simplified by imposing on the whole mass of liquid a velocity equal 

and opposite to the velocity of propagation of the waves, the wave 
form having the same relative velocity as before becomes fixed in 

space, and the problem becomes one of steady motion. 
In the case of long waves, neglecting the vertical velocity, let c 

denote the velocity of propagation, and u the small additional 

velocity due to the wave motion at points where the elevation is rj, 

* Airy, ‘Tides and Waves’, Emyc. Meirop, 1845. 
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The equation of continuity is 

{A+b7}){c-\-u) = Ac .(1), 

where A is the area of the cross section and b the breadth at the 
surface. 

If bp denote the excess of pressure due to the wave motion we 
have 

therefore bp = i/oc® ] 1 
(A + b-qf 

^(2Ab + bh^) I 

If Tj be small compared to A/by this reduces to 

bp^ic^lA-gjp-q, 

and if = gA/6 the surface pressure is constant to a first approxi¬ 
mation, so that a free surface is possible. This value of c gives the 

velocity of propagation of a long wave in still water, or the 

velocity of the stream for a stationary long wave. 

Assuming that c* = gA jb and substituting in (3) we get 

Sjp= — 
Sgpbrj^ 

2A 

as the second approximation, shewing that the pressure is defec¬ 
tive at all parts of the wave at which t) is not zero. Hence, unless 

7)^ can be neglected, it is impossible to satisfy the condition of a free 

surface for a stationary long wave; that is, it is impossible for a long 

wave whose height is not small compared to the depth of the water to 

be propagated in still water without change of type. 
From (3) we see that Bp will vanish if 

2g{A + b7^)\ 

2Ab^bh) ’ 

and since 
2g(A+b'qY 9^ (BA + 2b'q) 

2Ab + bS b 2A^bri ’ 

it follows that if rj is positive everywhere the conditions for the 
propagation of the wave are more nearly satisfied by taking a 

value of c greater than {gAjb)^, and if 7^ is negative everywhere a 

value less than {gA jb)^. Hence an elevation in the surface travels 
rather faster than a depression*. 

Lord Rayleigh, ‘On Waves’, Phil, Mag, i, 1876, p. 267 or Set, Papers, i, p. 261. 
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10*25. Energy of a Long Wave. For a wave in a canal of 
rectangular section the potential energy is due to the elevation or 
depression of the water above the mean level, and for a unit 
breadth of the wave the potential energy is therefore 

where r] is the elevation at x and the integration is over the whole 
length of the wave. 

The kinetic energy is ^ph J^^dx 

for the same range of integration. 
For a wave travelling in one direction, we have, as in 10*21 (1), 

and since = therefore the above expressions are equal and 
at any instant the energy of the wave is half potential and half 
kinetic. 

10*26. Examples of the artifice of Steady Motion. 

(i) Long waves at the common surface of two liquids of different densities 

in a horizontal pipe* 

The artifice consists in reversing the velocity of propagation c of the 

waves on the whole mass of liquid. The wave form then becomes fixed in 

space and the liquids move below and above it with general velocity c. 

Let pf p denote the densities, the cross sections 

of the two liquid streams and 6 the breadth of the 

common surface. The problem is to express c in 

terms of these data. If for example the liquids were 

separated by a thin rigid sheet of the prescribed 

wave form, then they might be forced through the 

pipe at any speeds, but we want to find the particular 

speed c at which, if they move, their common surface 

would keep the prescribed form without the aid of 

the material srurface of separation. Then when this velocity is again re¬ 

versed on the whole mass the liquids are stationary save for the wave 

motion. 
Let fi denote the elevation of the common surface due to the wave 

motion, and w, u* the small additional velocities due to the wave motions 

in the two liquids. 

The equations of continuity in the two liquids are 

(A ^hri)(c + u) — Ac 

and (A' - htf) (c+«') = 

or Au -h bcq = 0| 

and .AV —6ci7 = 01 
(1), 
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Also, if 8p, hp' denote increments of pressure close to tlic common 

surface in the two liquids duo to the waves, 

P 

and + J (c -f uy = jc*, 
P 

hence, if wo ignore sui’faco tension so that 8p = hp\ we have 

g{p-p')rj-(p'u'~pu)c .(2). 

Then by eliminating ty, u and u' from (1) and (2) we got 

= .(3)*. 

(ii) A "bore^ or a ^wave' invading a region of still water. 

Consider the case of a steady stream in which there is a transition from a 

uniform velocity u and depth h to a imiform velocity u' and depth h\ 

There is an equation of continuity 

hu~h'u' .(1). 

—^^ 

h' i 

i 

Taking the density as unity and unit breadth of the stream, the mean 

pressures over the two cross sections are \gh are \gW and the total 

pressures are \gh^ and ^gh'^j so that, by considering the change of 

momentum per second, we have 

hu{u — u')=zlg(h'^ — h^) .(2). 
From (1) and (2) we find that 

u^zz^g{h-‘th')h'jh and u'^=^\g{h'\-h')hjh'.(3). 

We now examine how far this is compatible with conservation of 

energy. By considering the energy changes per unit time between the two 

vortical cross sections we have that the pressures on the boundary are 

doing work at the rate 

{gh-u — Igh'hi' = \ghu (h — h') .(4). 

But the centre of gravity of the liquid entering the region is raised by an 

amount J (h' — h), so that the potential energy is increasing at a rate 

\ghu(h'-h) .(5); 

and subtracting (5) from (4) leavas a rate of working 

ghu{h — h').(6) 

available for increasing the kinetic energy. But the kinetic energy leaving 

the region per unit time exceeds that entering it by 

= Ihu (u'2 - u2) 

which from (3) —\gu(h-\-h')^(h — h')lh' .(7). 

♦ Greenhill, ‘Wave Motion in Hydrodynamics’, Amer. J&urn. of Math, ix, 1887. 



10-3 SURFACE WAVES 267 

We now find tiiat expression (6) exceeds (7) by an amount 

igu(h'--hflh' .(8) 

which implies a dissipation of suq^lus energy when hf is greater than 

Now suppose that a velocity u from riglft to left is impressed on the 

whole mass of liquid. We then have the case of a wave invading a region of 

still water. The velocity with which the wave travels is u, and the velocity 

of the liquid particles is w — w' in the direction of propagation. This is posi¬ 

tive or negative according as /i'is greater or less than i.e. according as the 

wave is an elevation or depression. In the case of an elevation or ‘ bore ’ 

expression (8) gives the rate at which energy is dissipated at the transition; 

and since this expression is negative when W is less than h, it follows that 

a depression cannot be propagated without a supply of energy*. 

10*3. Surface Waves. We shall next consider waves due to 
small oscillatory motions which take place at and near the surface 

of an unlimited sheet of water where the depth may be consider¬ 
able compared to the wave length. We no longer neglect the verti¬ 

cal acceleration, but we suppose that the squares of the velocities 

of the particles are negligible. The motion is supposed to be two- 

dimensional, the ridges and hollows of the waves being all parallel 
to one another. The axis of x is taken in the undisturbed surface in 

the direction of propagation of the waves and the axis of y verti¬ 
cally upwards. The motion being such as could be produced from 

rest by natural forces is irrotatioiial and the velocity potential <f> 

has to satisfy the equations 

dx^ dy^ •(1). 

dn 
:0. .(2), throughout the liquid, and 

at a fixed boundary. 

The pressure is given by 

+ .(3). 

The free surface is a surface of equipressure/> = const., therefore 

as in 1’6 (3) dp dp dp 

or writing — for u and for v we have 

dp d(^ dp d<f> dp 

dt dx dx dy dy 
at the free surface. 

= 0 .(4) 

* Rayleigh ‘On the Theory of Ixing Waves and Boros’, Proc, HM. A, xc, 1914 or 
Set, Papers, vi, p. 250. 
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If now we suppose the motion so small that the squares of 
small quantities (e.g. velocities) can be neglected we may neglect 

in (3), and if we also regard the arbitrary function F {i) as 

absorbed in d<l>ldt and then substitute the value of p from (3) in 

(4) we get 92^ d^<f> d,f>/dy> \_ 

dt^ ~dx dxdt dy \dydt ’ 

or, neglecting the second and third terms which are of the same 

order as g®, 32^ ^ 
.(5). 

This condition holds at the free surface. 
If 7} denote the elevation of the free surface at time t above the 

point whose abscissa is x, the equation of the free surface will be 

of the form 7?-/(x,<) = 0, 

and this being a boundary must satisfy the condition 1'6 (3). 

Hence gy gy 

dt^'^dx 

But dfjdt is i), arid dfjdx or dr]ldx is the tangent of the slope of the 

free surface which by hypothesis is small so that the second tenn 
can be neglected and the equation becomes 

. 
at the free surface. 

Hence in a wave motion in which the squares of the velocities 

can be neglected the velocity potential must be a solution of 
Laplace’s equation which makes = 0 as a fixed boundary 

and satisfies (6) and (6) at the free surface of the liquid. 

10*31. Let us apply these conditions to investigate the 
propagation of simple harmonic waves of type 

7]^a&m{mx — nt) .(7) 

at the surface of water of uniform depth A, either of unlimited 

extent or contained in a canal with parallel vertical sides at right 

angle to the ridges and hollows. 

If we assume that there is a solution of the form 

=/ (y) cos {mx — nt) 

and substitute in (1) we obtain 

dy^ 



so that / (t/)=+ -Be-™*', 

and ^ = (^e”**' + -Bc“"*‘')co8{»raa: —ni). 

This value of <f> must satisfy (2), i.e. 3^/0y = 0 when y — —h. 

Hence = Be^ — \C, say, 

so that <f>—Ccoahm{y + h)cos(mx~nt) .(8). 

Again if we substitute this value in the surface condition (6) 

putting y = 0, we get n^^gmtaohmh .(9). 

Now if c( — njm) denote the velocity of propagation and 

A (= 27r/m) denote the wave length, it follows that 

c2 = tanh mh = tanh .(10). 
m 27r A 

The constant C of (8) can be expressed in terms of the amplitude 

a of the wave by substituting from (7) and (8) in (6). Thus putting 

2/ == 0 we have — mC sinh mh, 

so that 

or using (9) 

na coshm(y-f A) 

m sinh mh 

ga coshm(y-f A) 

n cosh mh 

cos {mx — ni), 

cos {mx — nt) (11). 

10’32. The Paths of the Particles. Ifx,y bethe coordinates 

of a particle relative to its mean position {x, y), neglecting the 

squares of small quantities we may write 

X 
a<^ 
dx 

na 
cosh m{y~\-h) 

sinh mh 
sin {yrhx — nt). 

0<A sinhm(v + A) 
y == — — = — m - -— cos {mx — ntu 

dy sinh mh 

Whence, by integrating, we get 

coshm(v4-A) 

"linhmA“ 

_ sinhm(y + A) 

^ ^ sinh mh 

cos {mx — nt). 

sin {mx — nt); 

so that the particle describes the ellipse 

x^/cosh^ m (y + A) + y^/sinh^m (j/ -f A) = a^/sinh^ mh 

about its mean position. For a given particle mx — nt plays the 

part of the eccentric angle in the ellipse; so that the eccentric 
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angle increases at a uniform rate, as in an orbit described under a 
central force varying as the distance. 

The distance between the foci 2a cosech mh is the same for all 

such ellipses, their major axes are horizontal, and both axes 

decrease as the depth of the particle increases, the minor axis 
vanishing when y~—h. 

10*33. Deep Water. If the depth h of the water be suffi> 
ciently great in comparison with A for e to be neglected, then 
in 10*31 we must have J5 = 0, so that we have instead of (8) 

(mx ~ nt) .(8'), 

and instead of (9) n^^gm .(9'), 

or .(10'). 
Ztt 

Also if 7] = a&m(mz — nt) is the free surface we get from (6), 

na=^mA, so that 
, na , ^ 

0 cos {mx — nt), 

or A _ ^5 ^mv cos (mx — nt) 
n (11'). 

Following the method of 10*32 we get in this case for the 

displacement of a particle from its mean position 

X = cos (m.r — nt), y = sin (mx — nt), 

and the path of the particle is a circle 

-f- y2 = a2c27w?/^ 

described with uniform angular velocity n, which in this case is 
equal to (gm)^ or .(ZirglX)^, 

10*34. Wave Length and Wave Velocity. A comparison of 
10*31 (10) and 10*33 (10') shews that in what we have described 

as ' deep water ’ we have taken the factor tanh (Zirh/X) to be unity. 

Now when x — tt then tanhx=l, with an error of less than 

1 per cent., and, for larger values of x, tanh a; is more nearly 

equal to unity. It follows that it is only necessary for the depth 

h to exceed half the wave length for the circumstances to be 

such as we have described as ‘deep water’, and in all such cases 
the wave velocity is given by (10') and is independent of the 

depth. 
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Now reverting to the formula 10*31 (10), let us consider the 
function 

for which 

Since 

y- 
tanha: 

X 
.(1), 

1 , 
y dx 

sinh 2x = 2a: 4- {2x)^/Z ! + ..., 

1 2 

X sinh 2x * 

therefore, for a: > 0, the derivative of y is negative, or y increases 
as X decreases. 

Hence for water of a given depth h, the velocity c of wave 

propagation increases as the wave length A increases; but by 
expanding tanh (2TrA/A) we see that the value of c will not exceed 
{gh)^, which is the value previously found for long waves. 

Also in (1) there is only one value of x corresponding to each 
value of y, therefore there is only one wave length corresponding 

to a given velocity, and every velocity up to {gh)^ is the velocity of 

some wave. 

The supposition of simple harmonic waves is the simplest that 

can be made and since by Fourier’s Theorem functions can be 

expanded in series of sines and cosines ft follows that waves of a 

general type can be regarded as the result of the superposition of 
a number of simple harmonic waves. 

10*35. Standing or Stationary Waves. The velocity poten¬ 
tial for a system of stationary waves can be deduced from 10*31 
by regarding the system as the result of the superposition of two 
such trains of waves as we have just been considering moving in 

opposite directions as explained in 10*13. Thus corresponding 

to a wave profile ^ = a8inmxcosn< .(1) 

nacoshm{y-\-h) . . 
we shall have <p— - smmxsmnt.(2), 

m sinhmh 

or 
ga coshm(y-f-A) 

n cosh mh 
sin mx sin nt (3), 

for <f) clearly satisfies 10*3 (1) and (2), and r) and ^ together satisfy 
(6) of the same article. 

It is not necessary to regard standing waves as a case of 

superposition of progressive waves, we might investigate this 
form for (f> independently, starting with an assumption 

<l>=fiy) sin mx sin nt. 
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and proceeding as in 10-31 we get the same equation for / as 

before, and hence the result follows as in that article. 

For Standing vxives in deep water, as in 10-33, equations (2) and 
(3) above take the forms 

na 
^ sm mx sin nt. 

and 
, ga . 
= e”**' sm mx sin nU 

n 

10* 36. Paths of the Particles in Stationary Waves. With 
the same notation as in 10-32 we have 

co&hm(y-{-h) 

^ 3a; ^ sinh mh 

d(f> _ sinh m(y-\-h) 

dy sinh mh 

so that, by integration 

and y= 

coBmxBinnt, 

• sinwarsin nt, 

and 

Hence 

x = a 

y = a 

co8hm(y + A) 

sinhmA 

sinhm(y-f A) 

cos ma; cos nt, 

sin mxcoB nt. 
sinh mh 

y/x = tanhm{y-^h) tan mx, 

and since this is independent of t the motion of each particle is rec¬ 

tilinear, the direction varying from vertical beneath the crests and 

troughs {mx = (#c 4- ^) ?r), to horizontal beneath the nodes {mx = kit). 

10-37. Stationary Waves in a limited area. We have 
supposed that the liquid is unlimited in the direction of the axis 

of X, so that there is no restriction on the value of m. But if the 

liquid be confined in a canal with closed vertical ends, say at 
X - and x = then there is a restriction on the value of m, for 

as we shall see only waves of a certain length can exist in such a 

canal. The extra condition.is that d<f>ldx^0 when x= and 
x=^\l. Taking the form for <f> in 10-35 (2) we have to satisfy 

cos ma; = 0 at a; = — and x — \l. This requires that ml = (2s 1) w, 

where s is any integer, and then possible wave lengths are in¬ 

cluded in the formula A = 2lj{28 +1). 
Standing waves are really the principal or normal modes of 

free oscillation of (usually) a restricted system, and from this 

point of view the periods are fundamental and they determine 

the possible wave lengths. 
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10*38* The Energy of Progressive Waves. Considering a 
train of progressive waves at the surface of water of depth A, 
given, as in 10*31, by 

7) = a sin {mx — nt) .(1) 

, , ga coBhm(y-\-h) 
and <f> = ^ - -- -—- cos (mx — nt) .(2), 

n cosh mh 

if we calculate the energy of the water between two vertical planes 
parallel to the direction of propagation at unit distance apart, we 
have, for a single wave length, the potential energy 

= \gpa^X\ since A—27r/m. 

The kinetic energy is given by 

and, as in 4*52, this may be transformed to 

integrated along the profile of a wave length, where dn is measured 
along the normal into the water. To the order of small quantities 
we are using this may be written 

= Igpa^ cos^ {mx — nt)dx 
Jo 

= 

Hence it follows that the total energy per wave length is 
igpa^X, and that it is half kinetic and half potential. 

Also considering any length in the water, in direction of the 
wave propagation, which is either an exact number of wave 
lengths or is so long that the energy of a fractional part 
of a wave length may be neglected in comparison with the 
energy of the whole, it follows that it is correct to say that 
the energy of a progressive train of toaves is half kinetic and half 
potentials 

RH i8 
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10-39, The Energy of Stationary Waves may be calcu¬ 
lated in the same way. Thus if we take 

and 

rj=a sin mx cos nt, 

ga coshm(y-hA) 

n cosh mh 
sin mx sin nt. 

as in 10-35, we find for the potential energy of a wave length 

and for the kinetic energy 

T = ^pa^X sin^ nt. 

Hence the total energy per wave length at any time is \gpa^X 
and the amounts of kinetic and potential energy change con¬ 
tinuously with the time. 

10-4. Progressive Waves reduced t6 a case of Steady 

Motion. The method of 10*24 and 10*26, of finding the velocity 
of propagation, namely, imposing on the whole mass a velocity 

equal and opposite to the velocity of propagation of the waves, 

may also be applied to the case of progressive waves considered 
in 10*31. The wave form having the same relative velocity as 
before becomes fixed in space and the problem becomes one of 
steady motion. As the problem is a two-dimensional one it only 

remains to determine suitable expressions for the velocity 

potential and stream function so that the free surface and the 
bottom of the liquid may satisfy the conditions for stream lines. 

Consider the relation 

w = cz^ PGO^mz — iQsmmz, 

or -h = c (x -h iy) + P cos m (x -f- iy) — iQ sin m (x + iy). 

It gives 

and 

^ = cx -F (P cosh my -f Q sinh my) cos mx 

^ = cy — (P sinh my -h Q cosh my) sin mx 
(1). 

These expressions satisfy Laplace’s equation and give the 

general superposed velocity — c. 
For the bottom to be a stream line we must have ifj constant 

when y = —h, BO that — P sinh mh -f Q cosh mh = 0. 

Hence the expressions (1) may be written 

^ = cxH-Acoshm(y-l-A)co8mx | 

^ = —J[sinhm{y-f A)sinmx j 
(2). 



10*41 STEADY MOTION 275 

If the free surface be a simple sine curve r^ — a sin mx, equa¬ 
tions (2) will make this the stream line 0 = 0 provided 

ca —4 sinhmfe = 0 .(3), 

neglecting squares of small quantities. 
Again, the formula for pressure is 

At the free surface this becomes 

= const. 

-f ga sin mx -f {1 — 2ma coth mh sin mx) = const. 

neglecting a^. 

But p is constant at the free surface, therefore the coefficient 
of sin mx must vanish, that is 

g = mc^ coth mh. 

or 
qX ^ , 27rh 

.(4). 

Another way of regarding this problem is as follows. 
Imagine a straight horizontal pipe of rectangular section, the 

upper surface of which has small corrugations of the form 
7] = a sin 27rx/A. Water filling this J)ipe can be made to flow along 
it at any speed, but we have found in (4) the particular speed that 
the water must have if the removal of the corrugated upper 
surface of the pipe would leave the water flowing with the 
corrugations in its surface unaltered. 

We observe that the expression for 0 in (2) is the steady 
motion value, and the expression (11) of 10*31 corresponding 
to the progressive waves can be obtained from (2) and (3) by 
reimposing the velocity c, which amounts to omitting the term 
cx and writing mx — nt for mx. 

10*41. The same onDeep Water. In this case we may take 

0 = ca; + cos mx 

and \}t — cy — Ae^ymimx\ 

with a free surface iq = a sin mx . 

The free surface is the stream line 0 = 0, if 

ca = A .(3), 

so that (l} = cx + cae^y cos mx 

and 0 = cy — cae”*y sin mx 

.(1), 

.(2). 

.(4). 
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The formula for the pressure 

becomes 
i) 1% = const. 

10-41- 

“ + {1 — 2mae^^ sin mx + = const. ...(5), 

If we neglect the last term on the left, this equation may be 
written p 

— + mclfs = const.(6). 
P 

This equation not only gives 

c^ = glm .(7) 

at the free surface (p = const, and 0 = 0), but also shews that, if 
c^ — gjm, the pressure is constant along each stream line. It 

follows that the solution contained in (4) and (7) can be applied 

to the case of any number of hquids of different densities arranged 
one above the other in horizontal strata including the case of 

liquid of continuously varying density since there is no limit to 
the thinness of a stratum, the only Limitations being that the 
upper surface is free and the total depth infinite*. 

10*42, Waves at the Common Surface of two Liquids. 
Suppose a liquid of density p and depth h' to be moving with 

velocity F' over another liquid of density p and depth h moving 

in the same direction with velocity V; the liquids being bounded 
above and below by two fixed horizontal planes. 

Let c be the velocity of propagation of oscillatory waves at 
the common surface in the direction in which the liquids are 

moving. Taking the axis of x in this direction in the undisturbed 

common surface and y vertically upwards, as in the last article, 

let us make the motion steady by superposing on the whole mass 
the velocity ~ c thereby bringing the wave form to rest in space. 

Let 

and 

0= —(F — c)a;-f .4 coshm (y + A) cos mx 

0= — (F —c)3/ —4. sinh m (y + A) sin mx 

relate to the lower liquid, and 

0'= -~(F' —c)x-l-4'coshm(y —A')cosmx| 

and 0'= —(F' —c)y~4'8inhm(y — A') sinmxj 

* See Lamb's HydrodynamicSt § 233, from which this article is taken. 
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relate to the upper. These expressions for ^ and i/r' clearly make 
the boundaries —h, stream lines; and if i7 = asinmx 

gives the displacement of the common surface and the liquids do 

not separate this must be a stream line for both surfaces. We can 
satisfy this condition by taking the stream line to be i/r = = 0, 

— {V -‘0)a — A sinhmA =0' 

— (F' —c)a + ^'sinh mA' = 0, 

which gives 

and 
.(3), 

neglecting the squares of small quantities. 

The expressions for the pressure are 

and 

^ +9y+l 
p 

-T+gy + l 
p 

= const., 

= const. 

At the common surface, neglecting a^, these become 

- -\-ga sin mx + |{ F — c)^ (1 ~ 2am coth mh sin mx) = const., 
P 

p' 
~i + sin mx -f^{F' — 2am coth mA' sin mx) = const., 
P 

a,Yidp=p\ 
Hence we must have 

gr (p — p') = (F — c)2 mp coth mh -f (F' ~ c)^ mp' coth mh' ... (4), 

This equation determines the velocity of propagation c of 

waves of length 27r/m at the common surface of two streams 

whose velocities are F, F'; but it may also be regarded as the 

condition for stationary waves at the common surface of two 

streams whose velocities are F — c and F' — c. 

It should be noticed that in any such case as the above, even 

when F and F' are both zero, the tangential velocities on opposite 

sides of the surface of separation are different so that this surface 

constitutes a vortex sheet. 

10*43. Special Gases, (i) If the liquids arc at rest save for the 

wave motion, the wave velocity is given by 

^2=?_PTP'^.. .(1). 
m/) coth p'coth w/i' 

8ince there is no real value for c when p' > p, this indicates that when 

p' > p the equilibrium position is unstable. 
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(ii) If in addition the depths of the liquid are so large compared to the 

wave length that we may put coth m/t = coth = 1, then 

^2- 9 P-P 
fn p-\- p' 

(2). 

(iii) The foregoing resxilts obtained for incompressible liquids will bo 

applicable to the case of waves propagated along the surface of water 

exposed to the air, provided that in considering the effect of the air we 

neglect terms which, in comparison with those retained, are of the order 

of the ratio of the lengths of the waves considered to th() length of a wave 

of sound of the same period in air. Thus, in (1), making /i' ~ oo we have 

tanh mh |l — (1 tanh mh) — | , approx. 

These results wore obtained by Stokes*. 

(3). 

10*44. It has been shewn by Greenhillf that if the velocities F, F' 

of the currents make angles a, a' with the direction of wave propagation, 

equation (4) of 10*42 only needs modifying by the insertion of F cos a, 

F' cos a' instead of F, F', the components F sin a,. V' sin a' of the currents 

perpendicular to the direction of propagation of the waves having no 

effect upon the determination of c. 

10*45. Upper Surface free. Another case of interest is that 

in which the surface of the upper liquid is free; e.g. a layer of oil 
upon water or of fresh water upon salt water. 

With the notation of 10*42 but assuming the liquids to be at 

rest save for the wave motion, we assume a common velocity of 

wave propagation c at the free surface of the upper liquid and at 

the common surface and reverse this velocity on the whole mass 

so that the motion becomes steady. We may then take 

— {y-^h)^m.mx .(1) 

in the lower liquid, and 

0' = cy —(^coshmy+C'8inhmy)8inmx .(2) 

in the upper. 

The bottom y= — A is then a stream surface «/i = — ch, and if the 

common surface is .(3) 

it is also the stream surface ^ = 0, 

if ca — A sinh mh ~ 01 

and 
1 

ca — JS = 0 J 
.(4). 

Also the free surface .(5) 

♦ ‘On the Theory of Oscillatory Waves’, Trans, Camb. Phil. Soc. viii, p. 441, or 
Math, and Phys, Papers, i, p. 197. 

t ‘Hydromechanics’, Encyc. Bril. 11th edition. 
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is a stream surface = const, if 

c6 — (JScoshmA'-f OsinmA') = 0.(6). 

The equations for the pressure in the lower and upper hquids are 

R [(S)^(I)V-. .(7) 

and 
/ 

^,+gy+\ 
p 1(IT^(I)>-. .(8). 

Substituting from (1) and (2), noting that A, B and C are of 

order a, neglecting squares of small quantities and equating the 

values of p and p' at the common surface, we get 

ga{p — p) — cm {pA cosh mh — pC) = 0 .(9); 

and, using (4) and (6), this gives 

g(p — p) — c^m Ip coth mh -h p coth mh* cosech mh' |... (10). 

Then using the fact that p' is constant at the free surface we get 

gb == cm (B sinh mh' -f C cosh mh'), 

and, from (4) and (6), 

g ~ c^m l^coth mh* — ^ cosech mh*j .(11). 

The elimination of the ratio a:b from (10) and (11) gives the 
equation for c, viz. 

{p coth mh coth mh' + p) 

— chngp (coth mh + coth mh') + (p — p') = 0 ... (12); 

and the ratio of the amplitudes of the waves is given from (11) by 

*= . ..(13). 
a c’^mcoshmh* — g^mhmh' 

From (12) we see that there are two possible velocities of propa 

gation for a given wave length, provided p > p'. 
In the particular case in which the lower liquid is ‘ deep' we put 

cothmA= 1. The roots of (12) are then 

and c^—- - 
m m p coth inh -f p 

the forms being in agreement with the case dealt with in 10-41, 
The ratios of the amplitudes of the upper and lower waves in the 

two cases are / ^ \ 
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10’46. Stability. The motion considered in 10*42 is really a 
case of small oscillations about a state of steady motion. To 
examine the stability of the motion, we have a quadratic equa¬ 

tion (4) for the velocity of wave propagation c and we require that 

the roots of this quadratic should be real. 
The condition for real or imaginary roots in c is 

m^(F/)CothmA-|- Fp'cothmA')^ < m(pcothmA-f p'cothmA') 

X {mpF^cothmA-f m/)'F'2cothmj!t' — y (p —p')}, 

or g(p — p) (p coth mh 4- p' coth mh') 

^ mpp coth mh coth mh' (V — F')^- 

This means that the stream motion is stable or unstable according 

^ f 7 _ ]7'\2 5? P wfe+p coth mh' g{p-/) 
pp'coth mA coth mA' * m 

We remark that if p < p', that is, if the upper liquid is denser 

than the lower, there is instability for all wave lengths. The same 

is true when p = p', that is when two streams of the same liquid 
are flowing with different velocities and a horizontal common 

surface. 

In fact when p = p' and the depths are so great that 

coth mh = coth mh' = 1, 

we get c = i^{{V^V')±i{V-F')}. 

We may consider the case F= V* by first putting F' = F{l-f a) 
and then making a tend to zero. 

The common surface in the steady motion being given by 
77 = a sin mo;, for progressive waves the corresponding form is 

77 = a sin {mx — nt), when 

n = me = |mF {2 + a + ia}. 

Hence ri — amnm{x—Vt — \oi(\ =Fi)F<}, 

and as a tends to zero we may write this 

T] — aBinm(x—Vt) — \amoi{\ ±i) Vtco^m(x—Vt), 

or ri — amim{x—Vt) — bmVtQo^m{x— Vt). 

This shews that the corrugations of the surface increase in height 
indefinitely with t. 

This case is of special interest as it explains the flapping of sails 
and flags. The uniform medium can be regarded as divided by a 

thin membrane on both sides of which the medium moves with 

the same velocity, the motion is unstable and a slight disturbance 
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will result in a larger departure from the steady motion. This and 
other cases were considered by Lord Rayleigh in a paper ‘ On the 

Instability of Jets* 

10’5. Group Velocity, In general when waves are started by 
a local disturbance such as, for example, the dropping of a stone 
into a pond or the motion of a boat through water, the successive 

waves have different lengths and are propagated with different 
velocities. Let us examine the phenomena that arise from the 

simultaneous motion in the same direction over the same water 

of two simple harmonic trains of waves of the same amplitude 
and slightly different wave lengths. 

We may write for the elevation at any point 

7j = a sin (mx — nt)-\-a sin {m'x — n't) 

= 2acos \ {(m — m')x—{n — n') sin \ {{m4- m')x — (w + n') i]. 

If w = m' nearly, {m — m')x varies with x much more slowly 

than does (m -f m') x, so it is convenient at any instant to regard 
the equation as representing a sinuous curve obtained by drawing 

the curve rj = 2asin |((m-f m')x — {n-\-n')t} and multiplying the 
ordinates by cos|{(m--m')a;—(n —Hence the result 

represents a train of waves whose amplitude 

2acos I {(m — m')x—{n — n')t} 

is periodic, varying between 0 and 2a. The profile of this train will 
be a group of sinuosities of amplitude gradually increasing from 

zero to 2a and then decreasing to zero followed by a succession of 
equal groups. The appearance on the water will be that of alternate 
groups of waves separated by intervals of nearly still water. 

The distance between the centres of two successive groups is 
277/(m —m') and the time occupied in moving this distance is 

27Tl(n — n') so that the velocity of propagation of the groups is 

given by n-n' 

m~m'" 

or (i)t. 
* Proc. L.MM. X, 1879, p. 4, or Sci, Pnjyers^ i, p. 361. On the general question of 

stability and instability of a perfect fluid seo a paper by W. M®F. Orr, Proc. R,I,A, 
XXVII, p. 9. 

t The theory of group velocity is generally attributed to Stokes, who set a question 
on it in the Smith’s Prize Examination in I87G, Math, and Phys. Papers^ v, p. 362, 
but the result (1) appears to have l>een obtained first by Hamilton in a paper on 
‘ Researches respecting vibration connected with the Theory of Light’, Proc. BJ.A. i, 
p. 341. For this reference the author is indebted to Professor Sir Joseph Larmor. 
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when the difference of the wave lengths of the original trains is 
small. 

But the velocity of propagation of a single wave is 

n 

therefore 
r, d , , dc 
U = (me) = c + m - . 

dm dm 
.(2); 

or if A be the wave length (27r/m), 

. 
.(3). 

Thus it appears that the group velocity, in general, differs from 
the velocity of propagation of the separate waves. This is in ac¬ 
cordance with the results of observation, for when the eye views 

a group of waves advancing over deep sea water, single waves are 

seen to advance through the group, their amplitudes increasing 

and then dying away as they give place to others. 

In the case of waves on the surffice of water of depth h, we have 

c- = iglm) tanh mh, 

so that C/ = Ic (1 -f 2mh cosech 2mh). 

Hence the ratio of the group velocity to the wave velocity is 

^^siii^^mA’ ^ small compared with the wave length 

this ratio is unity, and as h increases to infinity the ratio decreases 
to i; or the group velocity for deep sea waves is half the wave 

velocity. 

We shall see later that the group phenomenon is not peculiar 
to water waves, but occurs in sound waves where the phenomenon 

is known as ‘beats’. It can exist in all forms of waves. 

10*51. The theory of group velocity has been treated in a more 

general manner by Lord Rayleigh*. We assume that a disturbance 

travelling in one dimension can be resolved by Fourier’s theonjm into 

infinite trains of waves of harmonic type and of various amplitudes and 

wave lengths. Thus the only cause in which wo can expect a simple result is 

that in which a considerable number of consecutive waves are sensibly of a 

given harmonic type, though the wave length and amplitude may vary 

within moderate limits at points whoso distance amounts to a large 

multiple of A. 

* ‘On the Velocity of Light’, Nalure, xxv, p. 52, orj^ci. Pajjcr^f i, [>. 510. 
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Assuming that the complete expression by Fourier’s series involves 

only wave lengths which differ but little from one another, we may write 

r) = ai sin {(m -f x — (n + Sn^) 14- cj 

+ Ojsin{(m*f Smg)a; — (n + Srig) t + 

= sin (mx — nt) cos (x — t 4* ej) 

4- cos (mx — nt) sin (x — 18ni 4- €i). 

Also by hypothesis 
8^1 

8mi' 

Sn-2 
Sm„' 

dn 

dm* 

and the first term in the expression for rj represents a simple train of type 

i^\n {mx — nt) \\^ith varying amplitude SaiCos(a^8mi —^8ni4-€i), and the 

amplitude its(ilf is prt>pagated as a wave with velocity diildm; and similarly 

the second term. Hcmeo we arrive at the idea of groups of waves of a more 

general kind, but the velocity of propagation is given by the same formula 

as in the special case considered in 10*5. 

10-52. Transmission of Energy. We have seen in 10* 38 how 

to calculate the energy of a progressive wave. In a progressive 

wave the wave form advances with a definite velocity but it does 

not follow that this is the rate of transmission of energy, for it is 

the particles of water that possess the energy and there is no 

reason to suppose that they hand on the energy at the same rate 
as the wave form advances. This question was discussed by 

Prof. Osborne Reynolds, in a paper* from which we borrow some 

illustrations: If a number of small balls are suspended by threads 
so that the balls all hang in a row, the threads being of the 

same length; and if the balls be then set swinging in succession in 

planes perpendicular to the row, as by running the finger along 

them, the motion will present the appearance of a series of waves 

propagated from one end of the row to the other, but in reality 

each pendulum swings independently of its neighbour and there 
is no communication of energy. If however the balls are connected 

by an elastic string and any one be given a transverse motion, it 

will communicate its motion to the others, so that now there is a 

transmission of energy and the rate at which the first ball gives up 
energy to the others will clearly depend on the tension of the 
string. 

As another illustration: If a rope be laid out on the ground in 
a straight line with one end fixed and an upward jerk be given to 

the other end, a wriggle will travel along the rope to the other 

end leaving the rope straight and at rest on the ground behind it. 

‘ On the Rate of Rrogression of Groups of Waves and the Rate at which Energy 
is Transmitted by Waves’, Nature, xvi, 1877, p. 34:h 
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This is a case in which the energy is transmitted at the same rate 
as the wave. 

The particular case with which we are concerned, that of 

surface waves on water, is a case intermediate between the two 
just considered; energy is transmitted but at a rate less than the 

wave velocity. 

10-53. Rate of Transmission of Energy in simple 
harmonic Surface Waves. The rate of transmission of energy is 

measured by taking a vertical section of the liquid at right angles 

to the direction of propagation and determining the rate at which 

the pressure on one side of this section is doing work on the liquid 

on the other side. 

Considering liquid of depth A, we have, as in 10*31, 

n 

ga cosh 

cosh mh 
cos (inx—'nt). 

And neglecting squares of small quantities the variable part of 

the pressure is given by 

and the horizontal velocity is — 

Hence the work done in unit time or the energy carried across 

unit width of the section is 

W =-/> dy .(1) 

g^pahn, sin® {mx — nt) 

n i: cosh^mA 

g^pa^m 8in^(ma: —/sinh2mA 

cosh^ m(y-\-h) dy 

n cosh^ mh \ 4m 

and since = gm tanh mh, this may be written 

!)■ 

W^igpa^- 
m 

(1 + 2mh cosech 2mh) sin^ (mx — nt).. .(2), 

We note that in (1) the integral should be taken between the 
limits — h and t), but the range Otorj will only add a term in a® to 

the result. 
The mean value of the expression (2) over a complete period or 

any number of complete periods, or any interval that is so long 

compared to a period that the part corresponding to the frac- 
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tional part of a period can be neglected in comparison with the 

whole, is 
TV 

m (1 ^ cosech 2mA)*. 

Referring to 10*5, since njm = c, this expression for the energy 

transmitted in unit time is equal to 

^gpa^ X group velocity. 

And from 10-38, is the whole energy per unit length at 

any instant. Hence the energy is transmitted at a rate equal to the 

group velocity. 

10-6. Capillary Waves. When surface tension is taken into 
account, the surface conditions ^ = const. (10-3) and p—p' 

(10-42) no longer hold good. They must be replaced by the 

condition that, if T denotes the surface tension or energy per unit 

area due to capillary forces, the difference of the pressures on 

opposite sides of the surface is given by f 

where p and p' are the principal radii of curvature of the surface. 

In the case of two-dimensional waves we have p' = oo, and, if 
7) denote the elevation, l/p— —d^rjjdx^, neglecting squares of 

small quantities. So if 8p, 8p' denote the variable parts of the 

pressure below and above the surface, as in the figure, we have 

T^,+^p-hp'=^0 .(1) 

as the surface condition. 

10-61. Capillary Waves on a canal of Uniform Depth. 
Taking the case considered in 10-31 and 10-4, let us use the 

method of 10-4, reducing the problem to one of steady motion 

Lord Rayleigh, ‘On Progressive Waves’, Proc. L,M,8. ix, 1877, p. 21, or Sci. 
Papers, i, p. 322, or Theory of Sound, i. Appendix, 

t Vide Hydrostatics, Art. 101. 
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by superposing a velocity — c on the whole mass, where c is the 
velocity of propagation. As in 10-4, we have 

\l} — cy--A sinh m{y-\- h) sin mx, 

and for the free surface = a sin mx, 

provided ca — A sinh mh = 0. 

And the variable part of the pressure is given by 

8p 
" 4- ga sin mx -h (1 — 2ma coth mh sin mx) = const. 
P 

But from 10-6 (1), since in this case we regard the air pressure 
as constant, we have 

—T= jTcrm^sin mx. 

Substituting this value in the last equation and equating to zero 
the coefficient of sin mx, we get 

c2 = j ^ 4-^^]tanhmA .(1). 
\m p j 

When h is large compared to the wave length this becomes 

m (2). 

10-62. Capillary Waves at the Common Surface of two 
Liquids. Proceeding as in 10*42 the investigation is the same 
until we arrive at the equations for the pressures on either side of 
the common surface, which may be written 

8p) 

P 
+ ga sin mx — — 2am coth mh sin mx) — const., 

and 

— 4* ga sin mx 4-F' — c)^ (14- 2am coth mh' sin mx) = const., 
P 

d^Ti 
where T-^J^ + 8p-8p'= 0, and rj a sin mx. 

Hence 8p — 8p' = Tam^ sin mx, 

and by eliminating 8^, 8^', we get 

Tm^ + g{p-p) — (V-c)^mpcothmA4-(F'-c)-mp cothmN 
.(1). 

As a special case, if the liquids are so deep compared to the 
wave length that we may put coth mA = coth mA'= 1, and the 
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liquids are undisturbed save for the wave motion, then the 
velocity of propagation Cq is given by 

c/.oi’-i+ll,.(2). 
TTl p-\- p P P 

Again we get the case of the effect of wind on deep water, 
regarding air as incompressible, if we retain F' but put F = 0, (1) 

reducing to ^ + (F' - c)V', 

or c2 —V'c + - F'2 - Co* = 0, 
P+P P+P 

where Cq denotes the velocity of propagation when there is no wind. 

This gives c = Pj"-, ± jco* - .(3). 
P+P ( (p+pn 

This result was obtained by Lord Kelvin*, who considered some special 

cases as follows: P^or a given wave length 2rrjyny the wave velocity c is 

greatest when tlie wind velocity L' = Cq (1 -f p'lp)^> o having then the same 
value as V\ Hence it follows that ‘ with wind of any other speed than that 

of the waves, tht‘ir speed is less. For instance, the wave speed with no 

wind, which is Cq, is less by approximately p'l2p of Cq (i.e. about of c^) 
than the speed when the wind is with the waves and of tlieir spec^d. The 

exj)lanation clearly being that when the air is motionless relatively to the 

w^ave crests and hollows its inertia is not called into play 

From (3) we draw the following conclusions: 

‘(1) When F7c,= (l + ^;)L28.7(l + ,7,f,h 

one of the values of c is zero, that is to say, static corrugations of wave 

length 27r/m, would be equilibrated by wind of velocity Cq (1 + 

But the equilibrium would be unstable. 

(2) When V'lc, = (p + p')l{pp')i = 28-l (1 + ,1^), 

the two values of c are equal. 

(3) When V'lc,>(p + p')l(pp')i, 

both values of c are imaginary, and therefore the wind would blow into 

spin-drift waves of length 27r/m or shorter. 

Looking back to (2), we see that it gives a minimum value for Cq equal to 

pip 

Hence the water with a plane level surface would be unstable, even if air 

were frictionless, when the velocity of the wind exceeds 

2VgT(l-p-V) , 
p7p 

* Letter to Prof. Tait, August 16, 1871. Printed in Math, and Phys. Papers^ iv, 
p. 76, also in Baltimore Lectures^ p. 590. 
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10*63. Ripples. Referring to the case of 10*61 the wave 
velocity c is given by 

m p .(1). 

from which we see that there are in general two values of m 
corresponding to a given value of c; i.e. two different wave lengths 

corresponding to a given wave velocity. 

Also, since (1) can be written 

yfry(T)r-y(f). 
therefore has a unique minimum value 2 ^/(gTjp) corresponding 

to the value m = V(^p/ ^)* We shall denote these special values by 
c„andm„. 

Again the frequency nj27r of the oscillations is given by 

71^ = == gm + Tm^jp .(3). 

It follows that as the wave length 27r/7n decreases from oo to 0 

the frequency w/27r continually increases, but the wave velocity c 

decreases to a minimum value and then increases again; i.e. 

waves cannot be propagated at less than a certain minimum 

velocity in terms of g, T and p. 

Again writing (1) in the form 

^2 — _I_ 

27t Ap (4), 

and putting \f^ = 27Tjni^y it is clear that the product of the roots 

of this quadratic in A is so that corresponding to any value of c 

greater than there are two values of A one greater and the other 

less than A^. Also for large values of A the gravitational term on 
the right of (4) preponderates, and for small values of A the second 

term depending on smface tension is the more effective. Lord 
Kelvin defined a ripple as any wave on water whose length is less 
than the critical value A,,^ or 27T\/{Tlgp), Thus the ripple length 

corresponding to a given velocity is the smaller root of (4). 

At the common surface of two fluids exactly similar considerations 

follow from the consideration of the roots of equation 10*62 (2). 

Kipples may be seen in front of any solid in motion cutting the surface 

of water. If p' denotes the density of air and p that of water, the ripple 

length is the smaller root of the quadratic 

gXp — p' 27rT 
^np-^p' \{p + p') 
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where Cq is the velocity of the solid. ‘The latter may be a sailing-vessel or a 
row-boat, a pole held vertically and carried horizontally, an ivory pencil- 

case, a penknife-blade, either edge or flat side foremost, or (best) a fishing- 

line kept approximately vertical by a lead weight hanging down below 

water, while carried along at about half a mile per hour by a becalmed 

vessel*.’ 

Again the group velocity U is given (10* 5 (3)) by 

dc 
U = c-X 

and from (4) this gives 

U = cU 

dX^ 

9^ 27tT'\ 
1 2n \p 
2 9'A 2nT 

Xp j 

so that U is greater or less than c according as A is less or greater 
than . We have also the limiting values 

t/ = Jc for waves of great length, 

Z7 = |c for the shortest ripples. 

10*7. Waves due to a given Local Disturbance on the 
Surface of Water. We shall consider first a simple case where 
the liquid is limited by vertical planes, distant I apart, parallel to 
the crests of the waves, and suppose that the motion starts from 
rest with a given initial elevation 

’?=/(*)• 

The motion is therefore irrotational and if the liquid were un¬ 
limited in extent there would be no limitation on the lengths of 
the waves but the motion would be the result of the superposition 
of waves of infinite variety of lengths. In this case, as we shall see, 
there is a limitation on the possible wave lengths. If h be the 
depth of the liquid, a suitable solution of Laplace's equation for 
the velocity potential is 

tf>=^Aoo&hm{y-^h)oobmx&innt, where tanhmA, 

making <f> zero when ^ == 0, also when y — —h. But we also require 
that d<f>ldx=^0 when x = 0 and when x~l\ and this makes 
sinOT ml=^an, where a is an integer. 

Again the pressure equation 

* Letter from Lord Kelvin to Prof. Tait, of date August 23, 1871, loc. ciU p. 287. 

RH 19 
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gives initially at the free surface 

10-7- 

= 9V = 9f{^)- 

And the most general expression for ^ is 

0 = 2. Ay cosh- (y + ^)cos . sinw^, 
.s i ^ f' 

and, substituting this value in the last equation, we get 

- snh S7TX ., , 
2. nAg cosh ^ cos y ~ 9f (^)- 

But by Fourier’s Theorem we have 

1 2 
f{^)= I jjiv)dv+ ^ ^ 

Z 87TX 

i^T 
jj (v) cos^~-dv. 

and by equating the coefficients of cos STixjl in the two series we 

nA^ cosh -T 
® I 

s-nh_2g r* 

" ^ Jo 

so that 

f(v)i^OS-ydv, 

Sir (y + h) 

, 2(7 ® I STtX 
(^ = 2-j— cos 

/ u_ 1 I SttH/ L 
n cosh 

f / (v) cos dv sin nt, 
Jo ^ 

where 
SttO ^ . Sirh 

tanh ~ . 

If we require the form of the surface at any subsequent time, 

the relation 7:5 #x 

2 “ snx r* . , SiTV 
gives ^ = 7 2 cos y f(v)cos . dv cos nt, 

^ s ^ 1 ^ J 0 ^ 

10*71. We may now consider the case in which the liquid is 

unlimited in extent, the initial disturbance being of the same 
type as before, that is, given by 

so that we are still dealing with two-dimensional motion. To 

simplify the expressions we shall suppose the depth of the liquid 

to be infinite, then from 10*35 we can write down as a typical 
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solution for a wave of length 27r/m the equations 

sin 
T7= mxcoBnty 
' cos 

_ , g sin 
and 0 = - mx sin nt, 

n cos 

where = gm. 

To obtain general expressions which embrace the superposition 

of all such solutions and give the initial values 

^ = 0, 

we must make use of Fourier’s double integral theorem 
2 /•go /•oo 

f dm f (a)cosm (x — a)da, 
^ J 0 J — CO 

and the required expressions are 

r} = ~\ dm \ / (a) cos cos m (a: —a) da, 
^ J 0 J — CO 

<i = -f dm f /(a)^^^"e”^^cosm(a: —a)da ; 
J 0 J -oo ^ 

for these expressions clearly satisfy all the conditions specified, 

and as an additional verification they make v — — 
virtue of the relation = gm. 

10*72. A similar method may be adopted when the surface is 
initially horizontal but subject to initial impulsive pressure. Thus 
we may suppose that initially 

(f) — F{x) and = 0. 

Then, taking as the typical solution 

sm 
mx COB nt, 

cos 

n sm 
77= ~ mxsmnt, 

g cos 

where = mg, 

we have for the general solution 
J ^00 ^€0 

<^ = - j dm j F (v.) COB nte^^ COB m{x —on) doiy 
^ J 0 J — oo 

J ^CO 
-j dm\ F(a)nsinn^cosm(:^ —a)d(/. 

g'TT Jo J — 00 

19** 
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For a full discussion of these results see Lamb's Hydro¬ 
dynamics, §§238-240 and Lord Kelvin's papers on ‘Deep-Water 

Waves*'. 

10*8. Gerstner’s Trochoidal Waves. An exact solution of 
the equations representing wave motion on the surface of deep 

water was discovered by Gerstner in 1802 and re-discovered by 

Rankine in 1863t, but the motion represented is rotational and 
cannot therefore be brought about by natural causes in friction¬ 

less liquid. 
Consider the equations 

x — a 

y = b 

-f sin K 
K 

- e^^cosK 
K 

(a-fd)) 

I 
{a -f ct) j 

0), 

where the Lagrangian notation is employed, a and b being 
parameters which specify a particular particle whose coordinates 

are x, y at time t, 

1(5 . 
therefore the equation of continuity of 1-4 is satisfied. The 

equations of motion of 2*5, in this case, become 

1 dp dy d^x dx d^y dy 

p da^^ da dt^ da dt^ da' 

I dp dy d^x dx d^y dy 

p db ^ ^ db ^ ~ dr^ db ~dt^ db ' 

or + gy\ = KC^e*^^ sin K (a 
da \p / 

+ (j'^ = K {a-{-ct]. 

If we multiply these equations by da, db, add and integrate 

we get 

- == const, -fj [b-^ cos k (a -i- d) ' 
/> i ^ 

— cosK {a -f ct) -f ...(3). 

* Phil. Mag. June, October 1904, June 1905, January UK)?, or Math, and Phya, 
Papers, iv, pp. 338-456. 

t *On the Exact Form of Waves near the Surface of Deep Water’, Phil, Trans, 
1863, p. 127. 

and 
a /p 

db\p 
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At the free surface the pressure must be constant, which 
requires that ^2 _ ^4) 

Now the periodic form of equations (1) shews that they repre¬ 
sent a wave motion, the waves of length 2.ttIk being propagated 
with velocity c in the negative direction of the x axis; and the 
relation (4) shews that the velocity is what we have previously 
found for deep-water waves. 

If we substitute from (4) in (3) we get 

- = const. ~ ori-h . 
P 

shewing that p is constant when b is constant. 
To shew that the motion is rotational, we have 

(5), 

u — x = cos /c (a -h ct)) 

v = y = ce'^^sinK (a-hct) j 

dv du 

dx dy * 

and 

and the spin is given by 2a} - 

^d(v, y) jdjx, y) du^d{x,-u) jdjx, y) 

d{a,b)l d{a,h) dy 0 (a, 6)/3 (a, 6) ’ 

a {x, y) d {v, y) d (x, u) 

•(6), 

But 
dv 

dx 

therefore 2aj 
d(a,b) d(a,b) d{a,b)' 

and on substituting from (1), (2) and (6) we get 

o) — — I (I — .(7). 

From (1) it is clear that the path of the particle (a, b) is a circle 
of radius 

The curves of equipressure are the paths of the particles when 
the motion is made steady by superposing the velocity — c, that is 
they are given by 

1 h . L 1 h x = a + - sm fca, y = b — cos Ka, 
K K 

or, putting Ka ~ 6, 

X = K-^ 0 -f K~^ sin 0, y = b — k-^ cos 0. 

These equations, for any constant value of 6, represent a 
trochoid traced by a point at distance from the centre of a 
circle of radius which rolls on the under side of the line 
y = 6 -h K-^. Any one such trochoid may be taken to represent a 
possible form of the free surface, the extreme case corresponding 
to 6 = 0 being a cycloid with cusps upwards*. 

♦ For a diagram see Lamb’s Hydrodynamics, § 251. 
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10*9. Miscellaneous Problems. Siatibnary tmves in running imter. 

A stream flowing with uniform velocity over a corrugated bed whose section is a 

sine curve. * 

The waves produced in a stream by obstacles or by inequalities in its bed 

have been discussed at length by Lord Rayleigh* and Lord Kelvinf. 

Taking axes as usual, k^t the bed of the stream be given by 

t/= —h + ks\nmx, 

and let V be the mean velocity. 

The conditions of the problem will be satisfied by the equations 

^ = — Vx-\‘(A cosh my + Bsinhmy) cosma; .(1), 
and — Fy—sinhmy+Rcoshmy)sinma; .(2), 

provided they make the bed a stream line and the free surface a surface of 

constant pressure as well as a stream line. 

The condition that the bed 

y = ^h-^k sin mx 

may be a stream line is that 

— V( — h-\-k sin mx) ~ ^ sinh mh -f B cosh mh) sin mx 

may be constant for all values of x. 

Therefore kV = A sinh mh — B cosh mh.(3). 

If we assume for the free surface 

Tj^asinmx .(4), 

this will be the stream line ^ = 0, provided 

-Fa-B = 0 .(5). 

Again the pressure equation in the steady motion is 

~ + gy + ig*=const.(6), 
P 

and at the free surface p is constant, so that by substitution from (1) and 

(4) in (6), neglecting squares of small quantities, we must have 

- „ go sin ma? 4-FAm sin mic=: const, 
for all values of x, ^ 

Therefore ga -f VAm = 0 .(7), 

and from (3), (6) and (7) we get A, B and a, and the free surface is given by 

^ cosh mh — gjmV^, sinh mh .^ ' 

Taking Jfc to be positive, the multiplier of mnmx in the last expression is 

positive or negative according as F^ is greater or less than (g/m) tanh mh. 

That is, according as F is greater or less than the velocity in still water of 

depth h of waves of the same length 27r/m as the corrugations. In the former 

case the ridges and hollows of the free surface are vertically over the ridges 

and hollows of the bed of the stream, and in the latter case the ridges of the 

free surface are over the hollows of the bed. 

If F* = (g/m) tanh mA the amplitude a cannot be small and the hypo¬ 

thesis on which we have obtained the result (8) no longer holds good. 

♦ ‘The Form of Standing Waves on the surface of Running Water’, Proc. L.M.8. 
XV, p. 69, or Sci. Papers, ii, p. 258. 

t ‘On Stationazy Waves in Flowing Water*, Phil. Mag. Oct. 1886, or Math, and 
Phys. Papers, iv, p. 270. 
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10*91. If water flows along a rectangular canal which consists of two uni- 

form portions of slightly different breadths, vrith a gradiuil transition, the free 

surface will he lower where the canal is narrower, or contrarivnse, according as 

u^ ^ gh, where u is the mean velocity, and h the mean depth, [^The motion is 

supposed to he steady.'] (M.T. 1912.) 
Let A, B denote points on the free surface of the two portions, h+a, 

4* a' the depths, 6 -f 6 + j3' the breadths, and u + v, u + v' the velocities 

in the two portions, b denoting the mean breadth. 

A 

1 ^ _B_ 

A 4- a; h -f- a'j 

From continuity we have 

(A -f a) (6 4- )9) (w 4- = hbu = (h -f a') (^> -1- /8') {u 4- v'). 

Therefore ~'~^(fb ‘ 

If p, p' denote the pressur€5S at A and B 

P—^ ~ 4.0£ - - a') - i {(w 4" -f v')^}. 
P 

But the pressures at A and B on the free surface are equal, therefore 

0 = —{oL'-OL')g — u{v — i/) 

and (a_a')(^8--^)= 

Hence a — a' and — jS' have the same or opposite signs according as 

u^ 5 y i-®- free surface is lower where the canal is narrower or contrari¬ 

wise according as w® $ gh. 

10*92. Canal of Variable Section. With the notation of 10*2, the 

same considerations give an equation of motion 

dt’‘~ ^dx . 
and an equation of continuity 

since A is now a function of x, or 

|.Mf) + 6, = 0 .(2). 

Also, since A and h are functions of x only, (1) may be written 

.<»>. 
so that, by eliminating Af from (2) and (3), we got 

dt' hdx\ 8x) .' ' 
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Example. A canal of uniform depth h and length 21 is widest at the 

midpoint and tapers uniformly to a point at each end.^Shsw that tivo types of 

free oscillation can exist and that their periods 27r/cr are derived from the roots 

of the following equations: 

Jo{l<r(gh)~i}=:0 and {Zor = 0, 

where Jq and represent Bessel Functions of order 0 and 1. (M.T. 1923.) 

In this case (4) becomes ^2 ~ ? cf 
dt^ b dx\ dxj 

and for a harmonic solution rj oc we have 

b dx 

Now witli the origin at one end hoax and fromx = 0 to a; = Z the equation 

becorn€)s 

This is Bessel’s equation of order 0 and has a solution 

rj = CJ^flcx). 

It is clear that there may be oscillations in which rj has equal and opposite 

values at corresponding points in the two halves of the canal and vanishes 

at the centre a; = Z, and for these Jq (kl) = 0 or Jq {la {gh)~i} = 0. And there 

may also be oscillations which are symmetrical about the centre for which 

Brj/dx = 0 at a: = Z. For these Jq' (Id) = 0, but Jf — — , so that 

Ji{ia(sfAri} = 0. 

EXAMPLES 

1. Find the velocity of ocean rollers, 20 yards long from crest to crest, in 

miles per hour. (St John’s Coll. 1901.) 

2. The crests of rollers which are directly following a ship 220 ft. long 

are observed to overtake it at intervals of 16 J seconds and it takes a crest 

6 seconds to i*un along the ship. Find the length of the waves and the 

speed of the ship. {M.T. 1921.) 

3. Find the type of waves that would travel on deep water at 30 knots. 

How much is the velocity of the waves affected by the presence of the 
atmosphere above the water, its density being -0013? 

(St John’s Coll. 1897.) 

4. A fixed buoy in deep water is observed to rise and fall twenty times 

in a minute, prove that the velocity of the waves is about ten and a half 

miles per hour. (Coll. Exam. 1907.) 

6. Shew that when irrotational waves of length A are propagated in 

water of infinite depth, the pressure at any particle of the water is the same 

as it was in the equilibrium position of the particle when the water was at 

rest. (Coll. Exam. 1908.) 
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6* From considerations of dimensions alone shew that the period of 

oscillatory waves in a deep cylindrical tank varies as the square root of the 

diameter and inversely as the square root of the intensity of gravity. 

(M.T. 1879.) 

7. If a horizontal rectangular canal of great depth has two vertical 

barriers at a distance I apart, prove that the periods of oscillation of the 

water are 2^/ttZ/V8g, where 5 is a positive integer; and that corresponding 

to any mode, all the particles of fluid oscillate in straight lines of length 

inversely proportional to exp (sTrzjl), where z is the depth. 

(Coll. Exam. 1906.) 

8. If in the irrotational motion of homogeneous liquid in two dimensions 

under gravity there be a free surface exposed to an atmosphere of constant 

pressure, shew that there must be a surface of equal pressure at which 

^ dy \ dx dx dt ^ dy dy dtj 

{\dxj dx^ dxdydxdy \dy) 

Work out the case (j) ~ h cos ttx!a cosh, tt (y-^h)!a Binpt and give it a 

possible physical realisation; b being so small that its square is negligible. 

(St John’s Coll. 1906.) 

9. When simple harmonic waves of length A are propagated over the 

surface of deep water, prove that, at a point whose depth below the un¬ 

disturbed surface is hy the pressure at the instants when the disturbed 

depth of the point is /i -f bears to the undisturbed pressure at the same 

point the ratio 
l4.^e-2nAA.i^ 

ii 

atmospheric pressure and surface tension being neglected. (M.T. 1913.) 

10. Let a shallow trough be filled with oil and water, and let the depth 

of the water be k and its density a, and the depth of the oil h and its density 

p. Then shew that if g be gravity, and v the velocity of propagation of long 

wavas, v3/g^^^h + k) + i{{h-k)^ + ihkplo}^. 

Note that there may be slipping between the two fluids. (M.T. 1882.) 

11. Two fluids of densities , p^ have a horizontal surface of separation 

but are otherwise imbounded. Shew that when waves of small amplitude 

are propagated at their common surface, the particles of the two fluids 

describe circles about their mean positions; and that at any point of the 

surface of separation where the elevation is the particles on either side 

have a relative velocity ^ncyjX. (Trinity Coll. 1907.) 

12. If a canal of rectangular section contain a depth h of liquid of 

density p on which is superposed a depth h' of liquid of density p\ the free 

surface of the latter being exposed to constant atmospheric pressure, prove 

that the velocities of propagation of waves of length 27r/m are given by 

c® = gujiny where 
p (u coth mh ~ 1) (w coth nth' ~ 1) = /j' (1 — w*). 

(Coll. Exam. 1907.) 
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13. Two-dimensional waves of length 2vrlni are produced at the surface 

of separation of two liquids which are of denaities p, p' (p> p') and depths 

A, h' confined between two fixed horizontal planes. Prove that, if the 

potential energy is reckoned zero in the position of equilibrium, the total 

energy of the lower liquid is to that of the upper in the ratio 

p {(2/0 — p') coth mh -H p' coth mh'}: p' {{p — 2p') coth mh' — p coth mA}. 

(M.T. 1899.) 

14. If there be two liquids in a straight canal of uniform section, of 

densities , a, and depths shew that the velocity c of propagation of 

long waves is given by the equation 

> 
flTa 

where crj > , and it is assumed that the liquids do not mix. 

(St John’s CoU. 1900.) 

15. An open rectangular box of length a contains two liquids of densities 

p, p' and depths A, A' respectively, that of density p bcnng at the bottom. 

Prove that the periods of oscillation when the liquids are slightly disturbed 

so that there is no motion perpendicular to the sides of the box are deter¬ 

mined by equations of the type 

where n is an integer. (M.T. 1906.) 

16. A layer of fluid of density p, and thickness A separates two fluids of 

densities p^ and pj, extending to infinity in opposite directions. If waves 

of length A, large compared with A, be set up in the fluid, shew that their 

velocity of propagation is either 

+ f" P,{p»-Pt) J 
(Trinity Coll. 1906.) 

17. A canal, of infinite length and rectangular section, is of uniform 

depth A and breadth b in one part but changes gradually to uniform depth 

A' and breadth b' in another part. An infinite train of simple harmonic 

waves travelling in one direction only is propagated along the canal. 

Prove that, if a, a' are the heights and 2iT/m, 27r/m' the lengths of the waves 

in the two uniform portions, 

, m tanh mh = m' tanh m'h% 
and 

sech* mh (sinh 2mA 4- 2mA) = a'*6' sech* m'A' (sinli 2m'h' -f 2m'A'). 

(Coll. Exam. 1903.) 

18. Shew that, if the velocity of the wind is j ust great enough to prevent 

the propagation of waves of length A against it, the velocity of propaga¬ 

tion of waves with the wind is 2c {or/( 1-f a)}i, where a is the specific 

gravity of air and c is the wave velocity when no air is present. 

(Coll. Exam. 1897.) 
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19. Find the velocity of straight ripples of length A, on water of density 

surmounted by air of density p\ as maintained by gravity and the surface 

tension t, and if T=81c.g.s. for water, find for what wave length the 

velocity of propagation is least, and also the value of this minimum 

velocity. (St John’s Coll. 1899.) 

20. The velocity of propagation of capillary waves of length 27r/m along 

a uniform canal of depth h is c, and p is the density of the liquid. Shew that, 

if the waves are produced by a distribution of external surface pressure of 

the type Psinm(x-- Vt) travelling with a velocity V greater than c, then 

the form of the surface is given by 

where tanhmhjpm — 

What happens when (i) F = c, (ii) V<ct (M.T. 1930.) 

21. If water of depth h be flowing with velocity proportional to the 

distance from the bottom, V being the velocity of the stream at the surface 

prove that the velocity U of propagation of waves jn the direction of the 

stream is given by 

(C/- V)^->tV(U-V) W^jgh-W* = 0, 

where W is the velocity of propagation in still water. (M.T. 1881.) 

22. A stream of water is running steadily with uniform velocity 17 in a 

horizontal canal of depth h of which the bottom is slightly undulating: 

shew that there will be a depression t/j in the steady free surface, above each 

elevation in the bottom, and vice versa, given by 

(gh 

What happens as approaches and passes the value gh ? Explain the 

general principle of which this is an example. (St Jolm’s Coll. 1899.) 

23. Prove that, if a canal of rectangular section is terminated by two 

rigid vertical walls whose distance apart is 2a, and if the water is initially at 

rest and has its surface plane and inclined at a small angle jS to the length 

of the caned, the altitude rf of the wave at any time t is given by 

8-1 

V 
. Srrx 

sm -^- cos 
2a 

Srrct 

2 a ’ 

where c is the velocity of a wave of length 4a/« on an infinitely long canal, 

and S implies summation for all odd integral values of s. (M.T. 1893.) 

24. Find the possible periods of standing oscillations in a trough of 

depth h and length Z, and shew that, if initially the water be at rest with 

its free surface plane and inclined at a small angle a to the horizontal, the 

velocity potential and the stream function at any time are given by 

j . / _ _ pgsinp,t cos{(2g -h 1) ?r (x-f iy)/l} 
tip (^+1)* .sinh{(2«-f 1)?r/i/Z} ’ 

where pJ2ir is the frequency for the vibration of type s. 

(Trinity Coll. 1908.) 
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25. The free undisturbed surface of a liquid of great depth is the plane 

2/ = 0, and it extends to infinity in both directions of the axis of x. In the 

surface there is a shallow depression, bounded by the planes ± x\a = l-f 2//€, 

due to the presence of a floating body. Everything being at rest, the 

floating body is suddenly remov^ed. Shew that after the lapse of a time i 

the equation to the free surface is 

r (M.T. 1902.) 
OTT j 0 

26. A rectangular trougli containing water of given depth is slightly 

tilted at one end, and then let fall again into the horizontal position: 

find the period of the to-and-fro oscillations of the water that are thus 
sot up. 

Shew that, if the^ tilt is removed suddenly in comparison with this period, 

but without jarring, the surface of the water will assume, at the end of each 

swing, the form of an inclined plane, until friction and other causes modify 

the motion; and also that, if the water is shallow, its surface will at any 

intermediate time be in part horizontal, and in part a plane of constant 

slope. (St Jolm’s Coll. 1896.) 

27. Shew that, if water is flowing with velocity V along a horizontal 

canal of rectangular section and depth A, and the bottom of the canal is 

agitated so that its form is given by acosm(x — where a is small, the 

form of the free surface is given by 

y — a'cosm(x — vt)^ 

where a = a' I cosh mh — sinh mh\, 
( m(V ~v)^ j 

T is the surface tension of the water and p its density. (M.T, 1898.) 

28. The bottom of a straight imiform canal of rectangular section has 

the form 2/ = asin(277-x/A) refeiTed to horizontal and vertical axes Ox and 

Oy through a point O in itself, and is moving with uniform velocity V in the 

direction Ox, a being small. If the mean depth of the liquid in the canal be 

h, find the velocity potential of the wave motion generated, and shew that 

the form of the fre^e surface is given by 

, . , 27rH ,27T(H-h) . 27r(x-Vt) 
2/ = /i -f a smh ^ cosech—-sm — , 

referred to fixed axes originally coinciding with Ox and Oy, H being the 

depth of the liquid corresponding to the free propagation under gravity, 

with velocity V, of waves of length A. (M.T. 1900.) 

29. A stream is running with mean velocity U in the plane xy between 

a horizontal bottom y=^0 and a fixed upper boundary y = h-\-aco&mx, 

where a is small. Find the character of the motion by determining its 

velocity potential or stream function. 

Prove that, if 17® exceeds a critical value ^ tanh mh, the pressure on the 

upper boundary is in excess of the mean in its higher parts and in defect in 

its lower parts: and vice versa. (M.T. 1919.) 
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30. Show how to take accoiint of a variable pressure acting on the 

surface of a uniform canal; and in particular examine the effect of a 

travelling distribution of surface-pressure of the typo 

B cos k (ct — x)i 

where x is the longitudinal coordinate, the canal being supposed infinitely 

long. (M.T. 1911.) 

31. Find, at any time, the form of the free surface of an infinite canal, 

of uniform breadth, and uniform equilibrium depth if the initial condi¬ 

tions are 7/ = a sin kx and ■>) = 0. 

If the variations of pressure on the surface of such a canal are given by 

hmikx&mkv^t^ where b is small, then the form of the surface at any time 

will be 
sin Ar^rsin kv^^t. 

where v is the velocity of propagation of waves of length 27r/A:. 

(Coll. Exam. 1906.) 

32. An estuary extending from = 0 to x — a has at a? a rectangular 

cross section of uniform depth Hx and a breadth Bx, where H and B are 

constants. The estuary meets the open sea at x — a, in which a tidal 

oscillation given by r) = rjQcoa (at+ €) is maintained. Prove that in the 

estuary 

where k^ = 4:a^lglL 

T; = i7oCos(or^-f c) 
\/aJi (k \/x) 

'^xj^Jk\/a)* 
(M.T. 1926.) 

33. A canal of uniform rectangular section and lengt h I is closed at one 

end by a vertical wall, while the oth(*r end communicates with the sea. 

The velocity u may be supposed the same at all depths, but friction pro¬ 

duces a resisting force Kphu per unit area of the bottom, where p is the 

density, h the depth, and k a constant, A liarrnonic oscillation of i)eriod 

27T/cr takes place in the level of the s(m. Show that the motion of the water 

in the canal may be represented by tw o wa ves, one travelling away from 

the sea and one towards it, and that the amplitudes of those waves are 

equal at the landward end, but in the ratio exp 

at the seaward end; where tan a = ^. 
a 

■ seci asin 

(M.T. 1925.) 



CHAPTER XI 

VIBRATIONS OF STRINGS 

11*1. In the last chapter we considered some cases of small 

oscillations of fluids regarded as incompressible. The theory of the 

oscillations oi elastic fluids is also a branch of Hydrodynamics and 

it includes the theory of sound or waves in the atmosphere. The 
theory of sound is too extensive a subject to receive adequate 

treatment in an elementary text-book on hydrodynamics; but 

we propose in this chapter and the following to give a short 
account of some of the elements of the theory of sound waves 

together with the kindred subject of the vibrations of stretched 
strings. 

11* 12. Transverse Vibrations of a Stretched String, By 

transverse vibration we mean a motion in which each point is 

displaced at right angles to the equilibrium position of the string, 

and the slight extension of any element of the string is of the 

second order compared to the displacement. In fact the string is 

regarded as inextensible ‘or rather the elastic modulus of exten¬ 
sion is indefinitely great. The 

very beginnings of a local dis¬ 

turbance of tension will then_^ 

be equalized along the string 

with speed practically infinite’*'’; and we may take it that the 

tension P remains constant along the string and throughout the 

motion. Let the string be of uniform line density p. Take the 

X axis in the equilibrium position of the string, and let y be the 

displacement at the point x at time t. If j/f be the inclination to 
the X axis of the tangent to the string we shall suppose that ^ is 

small. 
The equation of transverse motion of the element 8a: is 

pSxy= — Psin^H-P8in0-f-8(P8in^), 

for the forces acting on the element in the direction of motion are 

the components of the tension at its ends; viz. Psin^ at one 

♦ See a paper * On the Dynamics of Radiation ’ by Sir Joseph Larmor, International 
Congress, 1912, Proceedings, vol. i, where the motion of a string is used as an illustra¬ 
tion. 
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dy hy 
end and Psin^4-8(Psin^) at the other, and 8in^==^ = g“ 

approximately, neglecting (dyjdxY; therefore 

.. PSV 
y^-pdx-- 

If we put P=pc^ we may write the result 

dP dx^ 
.(1). 

This is the same equation as we obtained in the theory of long 
waves in shallow water and as in 10*2 the solution is 

y==f(ct-x)-^F(ct-\-x) .(2), 

where/and F are arbitrary functions. 

If, for the moment, we take F to be zero, we have 

y=f{ct-x) .(3). 

This represents a wave form travelling with velocity c in the posi¬ 

tive direction of the x axis. For, if we increase x and ct by the 
same amount, we leave y unaltered, which means that the dis¬ 
placement which exists at the instant t at the place x will at time 

^ -f T be found at the place x -h cr. 

In the same way the equation 

y = F(ct-^x) .(4) 

represents a wave form travelling with velocity c in the negative 

direction of the x axis. 
Referring again to equation (3) we find by differentiation 

dy dy 

di ^ dx (5), 

which is a relation connecting the velocity at any point with the 
slope of the string. It is obvious that motion might be begun 

with arbitrary velocity and arbitrary slope but unless the two are 

connected by equation (5) the resulting motion cannot be given 
by a relation of the form (3). In the same way a motion repre¬ 

sented by (4) implies a relation 

dt ^ dx 
(6) 

between velocity and slope. 
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The general motion of the string may be regarded as the 
result of the superposition of two such wave systems travelling in 

opposite directions; and in this case the initial values of dyjdt and 

dy/dx may be regarded as composed of two parts which separately 
satisfy equations (5) and (6). 

11-13. Unlimited String with given initial conditions. 

Suppose that, when < == 0, we have 

y=<f>(x) .(1), 

and yz=ip{x) .(2). 

Taking for the general solution 

y=f(ct-x) + F(ct + x) .(3), 
we have, when < = 0, 

<l>(x)^f{^x)-^F{x) .(4), 

and ilf(x) = cf'{ — x) + cF'{x) .(5). 

By integrating the last equation we get 

J t/j(z)dz= -cf{-x)^cF{x).(6); 

and then from (4) and (6) 

/(-x) = ^<^(x)-^J >p{z)dz, 

1 r* 
and = + — I ifi(z)dz-, 

so that y — \{^(x — ct)-\-<f>{x-\-ct)}-^-—\ ilf{z)dz .(7). 

11*14. A given initial Displacement. In the special case 
in which there is no initial velocity but merely an initial displace¬ 

ment, the last result reduces to 

y-=i{<t>(x-ct) + <l>(x + ct)}, 

in which the two component waves resemble the initial form of 
the string but are of half the height at corresponding points. 

The form of the string at any subsequent time may be con¬ 

structed by drawing a curve in which the ordinate of each point 

is half the initial displacement of the point, imagining that two 

such curves initially occupy the same position and then moving 
them in opposite directions along the x axis with velocity c. The 

sum of the ordinates of the two curves at any point at any instant 

will give the displacement of the point at that instant. 
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11*15. Energy. The kinetic energy of any portion of the 
string is given by r 

T = ip\y^dx .(1). 

For the potential energy V it is necessary to calculate the work 
done in the slight extension of the string against the tension P, 

The increase in length in the element hx 

\2 
I dx .(2). 

Now P = pc^, and in either component wave from 11*12 (5) 

and (6) dyjdt^ Tcdyjdx, 

hence in any single progressive wave the kinetic and potential 

energies are equal. 

11*16. String of Limited Length. Suppose that the origin 

is a fixed point on the string. In this case we must have y = 0 when 

X = 0, for all values of t. Hence, in the equation 

y=f(ct-x)-\~F{ct-^x), 

we have 0 =/ {ct) -h F (ct), 

or F(z)^ 

The general solution in this case is therefore 

y=f (ct-x) -/ (ct-hx). 

As applied to the string on the left of the origin this means the 

superposition of an incident wave, represented by the first term, 

travelling towards the origin, and a reflected wave, represented by 
the second term, and travelling away from the origin. The waves 

are similar in shape, their amplitudes being equal in magnitude 

and opposite in sign. 

Let us consider the case of a disturbance represented by 

y=f{ct-x) .(1) 

advancing towards the origin, the disturbance being confined to 

a length I of the string, and suppose the string to be fixed at the 
origin O. Until the head of the disturbance reaches 0 the motion 
is represented completely by (1), but when this instant arrives 

we must take as the equation that represents the motion 

y=/ (ct-x) -f (c^ + x) 

Therefore Hi 

(2). 
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The terms of this equation do not both apply to the same range 
of the string continuously. Thus if ^ = 0 when the head of the 

disturbance reaches 0, then when 0<t<ljc the first term applies 

between x = 0 and x=^ and the second term between x — 0 

and X— —ci. When t^ljc the first term ceases to apply and the 

subsequent motion is represented by 

y--=-f{ct-{-x) .(3) 

alone, or the reflection of the wave is complete. 

When the initial form of the disturbance is given the form of 

the string at any time can be constructed graphically. Thus in 
the accompanying diagram the figures on the left represent the 

components of the displacement at intervals Z/3c before and after 

the head of the disturbance reaches O. They are obtained bjr 
drawing the curve that represents the disturbance with its head 

at O and drawing a similar curve so that the two are anti- 
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symmetrical with regard to O, and then displacing these curves to 
the right and left respectively with velocity c. The resultant form 
of the string, as shewn on the right, is obtained by taking the sum 
of the ordinates of the component waves on the left. 

Later this will be seen to represent also the reflection of a sound 
wave at the closed end of a straight pipe. 

11 • 17. If however the end of the string at the origin is capable 
of free transverse motion—^it might, for example, be attached to a 
ring of negligible mass free to slide on a smooth wire along the 
y axis—^the condition is dyjdx = 0, when a; = 0, for all values of t. 
This follows from the equation of motion of the massless ring 
along the wire, which shews that there can be no component of 
tension along the y axis. 

Taking y=^f(ct-x) 

for the incident wave, and 

y =/ {ct — x)-\-F{ct + x) 

for the complete disturbance, we have 

0 = —/' ici) + F' (ct) 
for all values of t. 

Therefore F' {z) =/' (z)y 

or F(z)=f{z), 

SO that y=f{ct — x) +/ {ct 4* x). 

The reflected wave is therefore exactly the same in form as 
the incident wave, the amplitude being unchanged in sign. 

This case corresponds to the reflection of a sound wave at the 
open end of a straight pipe. 

11-18. String Fixed at both Ends. Let the fixed points be 
at X = 0 and x — l. Then we have 

y =/ {ct -x) + F{ct-^ x)y 

and the condition that y = 0 when a: = 0, for all values of ty makes 
F — --fy SB before. 

Hence y =/ {ct — x)—f{ct-^x). 

Also y = 0 when a; = Z, for all values of Z, so that 

0=/(cZ~Z)-/(cZ-fZ); 

or, putting z for cZ — Z, / (« + 21) = / {z). 
20-2 
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Therefore f (z) is a periodic function with a period 2l in z. 
Hence the motion of the string is periodic with respect to t, 

the period being 2//c, or twice the time taken by a wave to 
travel the length L 

It is otherwise evident that if a disturbance starts from any 
point A of the string, and moves with velocity c in either direction, 

it will after successive reflections at the two ends pass the point 

A again in the same direction with its original amplitude and 
sign in time 2Z/c. 

1119. Plucked String. When the string starts from rest 
with a given displacement, as for example when the string is 

drawn aside at one or more points and then set free, we have 

initially y = <f>(x), say, and y = 0. 

And by substituting in the general solution 

y=f F (ct + x), 

we get (f> (x) =/ (- x) -f (x), 

and 0 = c/' (— x) 4- cF' (x). 

Therefore, by integrating the last equation, 

0^-f{-x)-\-F{x); 

whence / (— x) = (x) = ^<f> (x). 

Hence y — — ct) 4- (x + cZ), 

as might have been written down from 11’14. 
Again y vanishes when x = 0 and when x = Z for all values of Z, 

and 0 = (Z — cZ) 4- ^ (Z 4- ct). 

Therefore 

and, putting cZ = z 4- Z, we have also 

<f>{z + 2l)= = 

Hence we get the following method for constructing the succes- 

sive forms of the string: diaw the curve y — <f>{x) between x = 0 

and x — l and continue it in both directions subject to the fore¬ 

going conditions, i.e. draw a similar curve in the third quadrant 

between x = 0 and x = — Z and then repeat the whole figure in every 

successive space of length 21. Imagine curves of this type to travel 

in both directions with velocity c and take the arithmetic mean 
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of their ordinates at any instant. The resulting curve represents 

the form at that instant of an unlimited string moving in such a 
manner that the points x = 0, ±1, ±21, etc. are at rest, and 

therefore the portion between x — 0 and x — l satisfies all the 
required conditions. See the figure below. 

In the case of a string plucked at one point and then set free 

the string at any instant consists of either two or three straight 

portions, generally three; and the two outer portions are always 

in the directions of the two portions in the initial position, while 

the gradient of the intermediate |)ortion is a mean between the 

gradients of the other two having due regard to sign. Thus the 
figure shews the form of a string of length I, plucked at one point, 

after three intervals of time 113c. 

11-2. Normal Modes of Vibration. The position of a 

system which possesses m degrees of freedom and vibrates about 

a position of staVjle equilibrium can be defined by the values of m 

parameters or coordinates ••• 9m- kinetic energy T is 

given by 2T = a^qj^ + a^q^^++ 2a,2<?i(?2 + • • •: 
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where the a’s are generally functions of the but in small 
vibrations they may be regarded as constants. 

And the potential energy is given by 

2V = + ... + 2c,3(?i^2 + .... 

in the case of fi’ee vibrations, Lagrange’s equations give 

«11?1 + + • • • + + fills'! + Ci2?2 + -. + ClmSm = 0 

and m— 1 similar equations. 

If, to solve these equations, we substitute 

qi = Aj^co8(nf-h€)j 

q^ — A^CiOB 

etc., 

we get m equations of the form 

(Cu - -^l + (fil2- w''«12) -42 + • • • + (film " = <>. 

These m equations give the ratios of the amplitudes Aj^^A^y* A^ 
in terms bf the a’s, the c’s and n. 

If we eliminate A2, ... A^^ from the m equations we get 

a determinantal equation for of the mth degree. Taking any 

one of these values of n, there is a corresponding set of values of 

the coordinates gi, ^2? involving only two arbitrary con¬ 
stants, viz. the absolute value of one of the amplitudes, say A^, 
and the initial phase €. In the corresponding motion the system 

vibrates so that the coordinates q^q^, ••• Sm constant ratios 
to one another. This is called a normal mode of vibration. The 
physical characteristic of a normal mode is that it is periodic with 

regard to the time, and in general the different normal modes have 

different periods. In general there are m such normal modes all 
distinct from one another. These various m normal modes of 

motion each with its arbitrary absolute amplitude and phase may 

be superposed; and the complete solution is given by m equations 

of the form 

== cos (rij < 4- ej) 4- cos (Wg«4- cg) 4*... 4- cos {n^ t + 

and contains 2m arbitrary constants, namely JBg,... B^ and 

€1, cg, ... These are all the arbitrary constants because the 

quantities corresponding to the JB’s in the expressions for the 

other m -1 coordinates are all constant multiples of the JB’s. 

It is shewn in books on Dynamics* that it is possible to choose 

the coordinates of a system so that the expressions for kinetic and 

* Whittaker, Analytical DyTiamica, 1904, § 77. 
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potential energy only contain squares and not products of the g’s 
and the g’s. When the coordinates are so chosen they are called 
the normal coordinates or principal coordinates of the system and 
each normal mode of vibration affects one and only one coordinate. 
For we have 2T = + ..., 

and 2F = c^^q^^ ■\-c^^q^^+ 

so that by Lagrange’s equation we get m equations 

+ = a22?2 + ^22?2 = ^> €>tC., 

and the complete solution is 

q^ — A^QO^{n^t-\-ef)y q^ = A^cos (rig^ + eg), etc., 

where = 

containing as before 2m arbitrary constants A^y ••• 
€iy €2, ... 

11-21. Normal Modes of Vibration of a Finite String. 
Since a string has an infinite number of degrees of freedom it has 
an infinite number of normal modes of vibration. To find modes 
let us assume that the displacement of every point of the string is 
proportional to cos (nt -f e). 

The differential equation to be satisfied is 

(1). 
ax*.^ ’’ 

and if y oc cos {nt -f c), we have y = — n^y, therefore 

3^ n^ _ 

The complete solution of this equation, including the time factor, is 

. nx , nx] 
A cos-h JD sin — 

c c i 
cos (nt + e).(2). 

If the ends of the string are fixed at the points x = 0 and x — l, 
we must have ^ == 0 and sin nljc = 0. 

7tC 2rrC SttC ^ 
Hence n = j , -y , - , etc.(3). 

This gives the infinitely many values of ?i that correspond to the 
different normal modes, and the solution conesponding to the ,sth 
normal mode ma5^ be written 

. STTX 
y — sin ^ cos 

(STTCt \ .(4). 
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The gravest or fundamental note of the string is that for which 
5=1. Its frequency is 

The facts embodied in this formula, namely that the frequency 
varies inversely as the length and the square root of the density 

and directly as the square root of the tension, are known as 

Mersenne's Laws. They are capable of experimental verification 

by fixing one end of a string and then passing the string over two 

edges or ‘bridges’, whose distance apart can be varied and mea¬ 
sured, and suspending a weight from the other end of the string. 

In the next normal mode to the fundamental 5 = 2 and the 

middle point of the string remains at rest throughout the 
motion. In the 5th normal mode of which the frequency is sc 121, 

the (5-1) points ^ jr 2I {s-l)l 
X —~ -, , • • • 

55 5 

are at rest throughout the motion. These points are called nodes', 

the points midway between them are the points of maximum 

amplitude and are called loops. Each segment into which the 
5—1 nodes divide the string vibrates like the fundamental mode 

of a string of length l/s. 
A general vibration of the string is obtained by the super¬ 

position of the several normal modes with amplitudes and phase 

constants chosen to suit whatever may be the given initial con¬ 

ditions. The equation that represents this motion is therefore 

. Sttx I snot \ 
y = sin - j cos I-y- -h € J, 

where Bg and are chosen to suit the initial conditions and the 
summation extends to all integral values of 5. 

n c I iP 

277 

11*22. Two special cases. (1) If the string starts from 
rest at time ^ = 0, then y = 0 when t = 0 for all values of x, so that 

all the e’s are zero, and 
_ „ , SttX STTCt 

y = ZiBg sm cos • 

(2) If the string starts from the equilibrium position at time 
^ = 0, then 2/ = 0 when ^ = 0 for all values of x, so that all the c’s 
are odd multiples of In, and 

snct 

HT' 
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11-23. Plucked String. Let the string be drawn aside 
through a small distance jS at a 

distance b from the end a; = 0 
and then released. 

We have to determine the coefficients in the solution 

. STTX STTCt 
y — llBgsm - - cos - y .(1). 

If i 
The initial values of y are 

y = ^x/b, (0<x<b); and y = P{l — x)l(l — b), {b<x<l). 

Multiply both sides of equation (1) by sin -y- and integrate be¬ 

tween the values 0 and I of x, giving y its proper values in terms of x 
for each part of the range, and taking f = 0. Then, since, when r + s, 

therefore 

. sttx . tttx , 
sm - sm y- dx = 0, 

Jo ^ ^ 

r ^ Bx . Sttx , 
, Sin - dx + 
b I i: 

B(l — x) , STTX - 
— sm V dx 

l — b I =j; 

. STTX 
B^ sin^ dx : 

I 

which gives 

so that y = 

^ 2^/2 . sttI) 

shrMl-bf'^ ' I ’ 
2BP „ 1 . snb . STTX STTCt 

11-24. Energy of a String with Fixed Ends. If the string 
be vibrating in its 5th normal mode we have from 11-21 

. STTX 
y = JS^sin -y cos I 

The kinetic energy T is given by 

T = yj^y’‘dx 

(STTCt \ 

dx 

^2^2^2p [STTCt \ . . 
= —^ B,HvD?y I +e,j .(1). 

And the potential energy, as in 11-15, by 

dyV 

dxj 
dx 

shr-^P 
cos^ 

(SiTCt 

I 
.(2), 

in the same way. 



314 ENERGY 11*24- 

AIso since P=c^p, (11*12), therefore 

= J5® ... .(3) 

gives the whole energy of the vibration in the sih mode. 
Again if the motion be of the general type 

(STTCt . SlTX / 
y = ZiBg sin -y- cos I 

we have 

I +e. 
)• 

. 87TX . 
gSm-y- sin 

(STTCt 

■)}]' dx. 

Now 

and 

j: . a^rx . TttX - 
sin -j- sm y- ax = 0, 

8TTX I 2 — 
“r-2' 

Therefore T=sin® + «»j .(4) 

Similarly we get 

F=^£«®5,®cos2|: 

and 

(STTCt \ 

t+M 

44 

(5) . 

(6) . 

In these results it appears that the whole kinetic energy, con¬ 

taining square terms but no product terms, is the sum of the 

kinetic energy due to each separate normal mode of vibration, 

and similarly in regard to the potential energy, which is of course 

in accordance with the general theory of normal modes as ex¬ 
plained in 11’2. 

11’3. Normal functions and coordinates*. When a vi¬ 
brating system has a finite number (w) of degrees of freedom, 

we saw (11*2) that its position could be specified in terms of 

m normal coordinates each corresponding to a normal mode of 

vibration, and that the kinetic and potential energies contained 

only squares and not products of these normal coordinates. A 
vibrating string has, however, an infinite number of degrees of 

♦ This use of normal coordinates is due to Lord Rayleigh, see Theory of Sound, r, 

§ 128. 
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freedom and therefore infinitely many normal coordinates, and 
when we express the form by the equation 

^ ^ . sttx Isnct 
y = ^ cos I 

the coefficients of sin , for all integral values of s are the normal 
l 

coordinates and the typical one may be denoted by <f>^, so that 

y = I4,sm-j- .(2). 

Taking the <f>'s as the coordinates that determine the position and 
motion of the string we may use Lagrange’s equations. As in 11*24 

we have « ^ 
and F = .(3). 

1 

And if is the force tending to cause a displacement h(f>^ (using 
the word force in a generalized sense) we hqve 

d/m 0T 0F^ 
dt[d<fj *• 

That is 
Y 2 

If we write this equation 

.(5). 

for a particular integral, using D for djdt, we have 

,21. 

LJ-- l -U 
inpl [D — in Z> + m) ® 

= J* - c-*"'J I 
= T--, f* 

inpljo^ ' * 

and adding the complementary function, the complete solution is 

f sin n {I — t' 
Jo 

where the zero suffixes denote values when < = 0. 
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If the impressed force is a single force Y at the point ic = 6, then 

S4),8^,= rSi/, 

so that 
W . «7t6 

.(’)■ 

11 • 31. Examples of use of normal coordinates. Plucked 
String. Taking the case considered in 11*23, <1>^ is zero except 

when ^ = 0, and then its value is ¥ sin^^-, where Y is the force 
l 

by which the string is held. Since the string starts from rest 

(4s)o — ^ and 11*3 (5) gives 
9 / I \ ^ ^ ^xr* 

nH4>s)o = -i^s = -iyBin- 

And at time t we have from (6) 

I 

Ys = \9a)o = ~J^2 ~l~ 

Therefore 
sttx 

2Y^ . 87Tb , 87TX cosnt 
= ~ sm —V- sm “ 

pi 

21Y 

I I 

^ 1 . 87rb . 8TTX STTCt 

== ^ "2 “7“ ~T~ » pTT^C^ 8^ I I I 

which agrees with the result of 11*23, if we note that Y is equal 

to the resolved part of the tensions perpendicular to the x axis; 

that is /R R \ 
r = Pl^ + ^^l, tothe first order of jS 

_ c^plp 

b(l^b)' 

11*32. String set in Motion by an Impulse. Let an 
impulse I be applied at the point x — b. We may regard this as the 

limit of I Fdt'y where F is a force that begins to act when the 
Jo 

string is at rest and ceases to act after a short time r. Then using 

(6) of 11*3, = 0 and (4s)o = ^^^ 

2 f’" 
= —sin ran O.df', 

npl Jo • 
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neglecting the term sin nt' for the range t' = 0 to t' = t since t is 

small. But from 11'3 (7) 
i'sin 

STrh 

I 9 

therefore 
. srrb 

8in ^ j: rdt' = I Bin 
snb 

I ■ 

Hence <f>s 
21 . snb . STTCt 
-am Hin , 
STTCp I L 

and 
2/^1. 87Tb . 87TX . STTCt 

y 2 sin sin “ - sin—- . 
7TCp I 8 I I L 

IV4c. Forced Vibrations of a String. There are two cases 

to be considered; the first, when a given point x — bm given an 

arbitrary transverse periodic motion; the second when a given 

periodic force acts Sutx — b. 
In the first case let the given motion at a: = 6 be represented by 

j/ = ycos (p^-ha). 

We have to satisfy the equation 

dt^~ 

and if we assume that y varies as co8(pf + a), this equation 

becomes pja,/ ^,2 

. 

Now we cannot assume that the same solution will represent 
the form of both portions into which the string is divided at the 
point x~b which is given a forced motion; so we assume that there 

are two distinct solutions of (1) corresponding to the two parts of 
the string, viz. 

when 0<a;<6, cos -f iS sin ^ j cos (pf 

and b<x<l, 

Then we have = 0 when a; = 0, so that ^ — 0, 

and Vi — y cos {pt H- a) when a; = 6, 

so that JSsin-^—y. 
c 

+ a) ...(2), 

+ a) ...(3). 

Hence when 0 < a: < 6, 
Bixipzlc , ^ . 

yi^y % co8(p^ + a) 
' smpb c 

(4). 
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.(5), 

Similarly ^2 = ^ when x = 1,bo that 

(7 cos “ -f 2> sin — = 0.. 
c c 

and ^2 ~ y (P^ when a; = 6, so that 

P^ r. • pb G cos — + Z> sin -- = y 
c c 

Then by solving (6) and (6) for G and D and substituting in (3) 

we find that when b<x<l, 

sin^ {l — x)jc 

.(6). 

2/2 = y: ^cos(_p^ + a) .(7). 
sin^(Z~6)/c 

In the second case, let there be a force F cos {pt + a) at the 
point x = b. We may deduce the solution for this case from the 
last by the consideration that the resultant of the tensions at the 

point must balance the impressed force. 
That is, if P denotes the tension 

i'cos(p^ + a) = P^—^ —at a; = 6. 
cx ox 

Therefore, by differentiating (4) and (7) 

P = 
Pyp sinpljc 

whence we get 

P sinp {l — b)lcBmpxjc 
2/1 = 

c Bmpbjc sinp (Z — 6)/c’ 

COB (jpZ -f- a), 0 < a; < 6 . 

and 2/2 = p 

P p jc Bin pljc 

F sinp6/csinp(Z —a;)/c 

.(8), 

cos(pZ + a), b<x<l ...(9). 
pjc sinpljc 

This is an example of a reciprocal theorem that the motion at x 
when the force acts at 6 is the same as would be the motion at 6 
if the force acted at x. 

We notice that in the first case the motion of either portion of the string 
is independent of the length of the other portion and depends only on the 
forced motion at the point x = 6; also that if p6/c is an integral multiple of 
TT, i.e. ifpl2'iT is a natural frequency for a string of length 6, the amplitude 
in (4) appears to be infinite. This is a case of * resonance ’ in which we have 
a forced oscillation of the same period as free oscillations. In actuality 
the amplitude is not infinite as our equations cease to represent the 
motion when the displacement is other than small, also there are small 
frictional forces which oppose the motion and damp out the free oscilla¬ 
tions. In the second case the same phenomenon of * resonance' occurs 
when pljc is an integral multiple of ir, i.e. when the frequency of the 
appli€»d force is a natural frequency of the whole string. 
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11*41. Vibrations of a String carrying a Load. Let a particle of 
mass M be attached at the point a: = 6. 

If we assume that the motion of the particle M is given by 

2/ = ycos(p/-fa) .(1), 

then the motions of the two parts into wliich it divides the string are 
given by (4) and (7) of 11*4. And the frequency p/2Tr is to be found from 
the equation of motion of M; namely 

at X = 6, P denoting the tension of the string. 
Substituting from (4) and (7) of 11*4 and from (1) above, we get 

—= — P-cotF-cot 
c c c 

P{l-h) 
c 

Therefore 
Bin pi I c 

sinpb/cBmp {l — h)jc (2). 

This equation must be satisfied by and the form of the string at time t is 
then given by (4) and (7) of 11*4, y and a being arbitrary constants depend¬ 
ing on initial conditions. Since those normal modes of motion which have 
a node at a; = 6 could exist without causing the motion of this point, it is 
clear that the presence of M will not affect these normal modes. Thus if M 
be at the middle point of the string, the normal modes of even order are 
imchanged, and we can shew that the frequencies of the odd components 
are diminished. For, in this case 

so that (2) becomes 

or 

6 = i-6= J/, 

TLf ^pl pM= ^ cot^, 

2c 2c’“c*Jlf ""Af’ 

The frequencies of the normal modes concerned are therefore given by 

pll2c = Xi,x^, X,, ..., - 
where ... are the successive roots of the equation 

a: tan a: = 
pi 
M' 

By drawing the cui'ves y = tana; and y=:pllMx it is easily seen that the 
roots lie between zero and n and Jtt, 27r and and so on. 

But the natural frequencies of the unloaded string are given by 

pll2c^^, TT, 2Tr, .^TT, ... (11-21). 

Hence it follows that frequencies of the normal modes of odd order are 
decreased. 

11*42. Finite String with Ends not rigidly Fastened. We will 
consider two cases, namely when one end of the string is attewjhed to a meuss 
M capable of moving transversely, either (i) as a bead on a smooth wire, 
or (ii) under the control of a spring of strength /i, the other end of the string 
being fixed. 
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As solution of 

we take (A COS + B sm ” - 
\ c c ^ 

cos (nf-f c) 

the terminal conditions being 

(i) My = Pdyldx when x = 

and y = 0 when ir = L 

Therefore — n^AM = PB n/c, 

and A cos nljc + B sin nljc = 0; 

, rd nl PI cl 
whence -- — =-= i- 

rd ^ nl 
-- tan -- = 
c c c^M M 

which is the same equation for the frequencies as if the particle were at the 
middle point of a string of length 2Z; as is otherwise obvious. 

(ii) The terminal conditions in this case are 

My + /x2/ = P dyjdx when x = 0, 

and y = 0 when x = L 

Therefore (/n — n^M) A = PBnIc, 

and A cos nljc + B sin nljc = 0; 

whence tan—=-^—\ — — .(^)* 

In either case equation (1) takes the form 

y = CCOH (fit + c) .(4); 

and equations (2) and (3) both have an infinite number of solutions so that 
the motion in general will be given by equating y to the sum of an infinite 
number of terms like (4). 

11*5. Damped Oscillations* If the motion of the string be 

retarded by a force acting on each element of mass and propor¬ 

tional to its velocity, the equation of motion of 11*12 becomes 

= (U 
dt^ f 0x2 di .^ 

If we put y = this reduces to 

0<2 * ^ dx^ .^ 

and we may obtain solutions of this equation to suit particular 

cases. Thus to find the frequency p/27r of waves of length 27r/w, 

if we assume that ^ ^ ^imx zoce^^. 

we get 

where == chn^ — 

+p^z=:^0, 
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And the solution is 

y = cos {(c^m^ — ^ + a}, 

or, rejecting the imaginary part, 

y = ^e'^'^^cos mxGOB {{chn^--^ + a} .(3). 

This represents a vibration whose amplitude diminishes con¬ 
tinuously because of the factor The time 2jK in which the 
amplitude is reduced to e~^ of its former value is called the 
modulus of decay. 

11*51. If the resistance is so small that may be neglected, 
(2) becomes 02^ ^2^ 

the solution of which, as in 11*12, is 

z =f (cl — x) + F (ct + x)y 

and therefore y = (ct — x)-i- F {ct + x).(4). 

Since the functions are arbitrary we may write 

—a:) instead of/(c/-~a;), 

and ^ F {ct + x) instead of F {ct -f x); 

so that y = {ct — x) -f p (^ct + x) .(5) 

is also a solution. 
For example, suppose that the string is of infinite length and 

is subject to a forced motion E cospt at a particular point, which 
we may take to be the origin, the motion will be represented by 

y — cosp{t — xlc) .(6) 

on the positive side of the origin; and by 

y=zEe*^^^^cosp {t-^-xjc) ...(7) 

on the negative side; these equations representing a progressive 
wave whose amplitude decreases in the ratio 1: c as the distance 
from the origin increases by 2c/ic, i.e. at intervals of time 2//c, since 
c is the wave velocity. 

11*6. Reflection and Transmission of Waves. Consider a uniform 
stretched string of great length. Let a train of simple harmonic transverse 

waves travelling along the string encounter a massive particle attached 

to the string at a particular point. There will be a reflected and a trans¬ 

mitted train of waves. 
Let M be the mass of the particle, T the tension of the string, p its line 

density and let c* = I’/p give the velocity of propagation of the waves. 

Rll 21 
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Take the origin at the particle and let the incident wave train, coming 

from the part of the string for which x is negative, be represented by 

2/= ^ cos (ma; — n^)...»(1)* 

For facility in working it is simpler to take this to be the real part of 
^g<(tnx-. n#) jf assume similar expressions A'e* and 

for the displacement in the reflected and transmitted wave, then con¬ 

tinuity requires that the period shall bo the same for all, i.e. n' = ni = n; 

and as the velocity of propagation c has the same numerical value for all 

waves on the string, therefore m' = — m in the reflected wave and m^ — m 
in the transmitted wave. Hence for the total displacements we have 

WUCIIX^O, .(2) 

and when x>0, = .(3)» 

where the ratios of A' and to ^ may be complex numbers. 

For the motion of the particle at the origin we have 

+ where x = 0, 
^ In'-Y* >l"r» 

i.e. — — A' —^i), 

or, since T = c^p and c* = 

MmAx = ip(A-- A' — Ai) .(4). 

Also, when a: = 0, we have i/i = so that 

A + A'=:Ai .(5). 

From (4) and (o) we And that 

__ (6) 
iMm 2p 2p’-iMm .' 

or =Z —' =-.(7) 
tsmc cosc cos € — t sine 

if tan € = Mml2p, 
Hence the reflected and transmitted waves differ both in amplitude and 

phase from the incident wave, these differences being exhibited in the 

formulae ^ sin «. e' and ^ cos €. e‘' .(8). 

By using the method of 11*15 it is easy to shew that the energy per 

wave length of a simple harmonic wave is proport ional to the square of the 

amplitude, and from (7) it is clear that 

so that the energies of the reflected and transmitted waves are together 

equal to the energy of the incident wave. 

11*7. Longitudinal Vibrations. Suppose the string to be 

elastic and stretched and to obey Hooke’s Law. If P, Q are two 

points whose coordinates are x,x-\-hx in the equilibrium position 

and these are displaced to P', Q' where the coordinate of P' is 

a; + ^ then that of Q' is 0* 
a: + 8x+^+^Sa;. 
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If T be the tension at P' and E the modulus of elasticity 

pv-Pp<;>o 

where Pq^o (= unstretched length of PQ. 

Therefore T ^ E ^8:r + hx — Sotq j j Sx^ 

Sx 9| Sx — Sxf. 
+i? . 

oXq ooc 

Now E "x— Tq is the tension in equilibrium. 
OXq 

Also SxISxq is the ratio of the equilibrium stretched length to 
the natural stretched length for the whole string = l/l^ say, and if 
we put EI/Iq ~ E', Bb definite constant for the string in its equili¬ 

brium position, we have 
T = E'l^lV 

Let p be the line density in the equilibrium state and X the 

external impressed force per unit mass at P' acting on the string; 

then the equation of motion of the clement PQ is 

or 
02^ P' 
0^2 dx^ 

4-A^ .(1). 

If there be no impressed force, and we write E' ~pc^ the equation 
takes the form 02^ ^02f 

= c 0^2 .(2). 

This is the same differential equation as for transverse vibrations 

and its solutions may be interpreted in a similar manner when 

applied to the pr(q)agation of longitudinal vibrations, but it is 
important to observe a difference in the form of terminal condi¬ 

tions. Thus, at a fixed end we have ^ = 0, and 0^/0/= (), for all 
values of i. 

If a free end were possible we should have at that end T — 0 and 
therefore d^jdx — O, 

It is to be observed that c is the velocity with which waves 
travel along the string stretched to length I and that 

, W E I 
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But if pq be the line density of the unstretched string then 

pi^PqIq, p] //\2 

and the period 
2/ 

c2 = - 
Po 

is independent of the amount of 

stretching. 
Instead of the equilibrium stretched length x in (2) we might 

use the corresponding unstretched length Xq as independent 
variable, since xjxQ = ljlQ, then (2) becomes 

E d^i 
.(3) 

di^ ~Po 9xo*' 

where = EjpQ. 
The foregoing arguments also apply to the longitudinal 

vibrations of bars. 

Longitudinal waves are icjflocted and transmitted in the same way as 

transverse waves. Thus if the method of 11*6 is applied to solve the same 

problem for longitudinal waves, similar results are obtained. 

11*8. Transverse Oscillations of an inextenslble Chain hanging 
from one End. I..et I bti the length of the chain, 'fake the origin at the 

equilibrium position of the free end and the axis Ox vertically upwards. 

Neglecting the vertical motion the tension at the point 

(x, y) is T = gpx, where p is the lino density supposed 

uniform. The equation of motion of an element Bx at 

(x, y) is 
rt^^y pSxy=-T^^ 

oi/- ^ (t^\ 
^y~dx\c 8x) 

3 / 8m\ .(1). 

To find the normal modes assume that yoce*”‘, so that 

a 
dx (4) -f ^y = 0 .(2), 

where k = n^jg^ 

If we now substitute y = in (2), it is easy to obtain the relation 
0 

between successive coefficients in the series and show that (2) has a 

....} (3), 
solution 

(2!)® (3!)® 

subject to the condition that y = 0 when a:=L 

We may also transform (2) by the substitution a; = iyz**, giving 

. 

Lamb’s Dyivimical Theory of Sounds 1910* § 31. 
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which is Bessel’s Equation of order zero and it has a solution 
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n*z* \ 
22742 •••; 

identical with (3). The series in brackets is denoted by (nz), i.e. Bessel’s 

Function of order zero. Hence when we introduce the time factor we 
have . 

y = Co Jo (^2n^|jcos(n(+€) .(6) 

subject to the condition that y = 0 when rc = Z, so that possible values of n 

are given by the equation ,, 

11 • 9. Transverse Vibrations of a Stretched Membrane. 
We shall suppose the membrane to be perfectly flexible and of 
uniform material and thickness and so stretched that the tension 
at every point is the same in every direction and constant through¬ 
out the motion. If denote this tension, then, as in Hydro¬ 
statics, Art. 101, there is a normal force on an element of area 
dS surrounding a point P equal to 

where p, p' are the principal radii of curvature of the surface at P. 
If X, y, z are the coordinates of this point in the displaced position, 
the xy plane coinciding with the equilibrium position, and the 
displacement is such that squares of dzjdx and dzjdy can be 

neglected, we have ^ j ^2^ 22^ 

p^ p dx^ ^ dy^ ’ 

Hence if m is the mass of unit area 

d^z m^,dS dh dy\ 
dy^] 

where c^= TJm. 
When the membrane is circular it is convenient to change x, y 

into polar coordinates and the equation becomes 

10^2 ^ r dr] 

which is the form suitable for a drum head. 
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The hypothesis z oc reduces the equations to the form 

.(3), 
^ . 

and 
dH \ dz p^ 

-f “ 4- 2 z — 0 . 
r or c/ 

.(4). 

If the membrane be rectangular and bounded by the axes and 

x = a,y — b, a particular integral is clearly 

. mnx . mry 
z — sin sin - cos pt, 

a b 

where +pj, 

and m and n are integers; and the general solution is 

z= 1 Ssm - sin cosp« + ^^_„sinjp<)- 
w._ln=] ® O 

The solution of (4) involves the use of Bessel’s Functions. 

EXAMPLES 

1. Shew that, if a string is of infinite length and the disturbance at time 

« = Oisgivenby ^ = and i, = B(x), 

then V = i{x{^ + <^t) + x{^-f^)) + 2r: 

Prove further, that i f the initial disturbance is confined to a finite portion 

between the points a; = ± a and be such that 17 = 0 and rj=^6(x), then, for any 

time t greater than a/c, there will be a portion of length 2ct — 2a which will 
1 fa 

be straight and parallel to the axis of x and at a distance I 6(z)dz 
Zc J -a 

from it. (Coll. Exam. 1908.) 

2. A stretched string is drawn aside at n — 1 points and let go from rest. 

Shew that generally the string consists of 2n — 1 straight portions; and in 

the case where the two points of trisection are drawn aside equal distances 

in the same direction, draw the shape of the string after throe intervals 

each one-twelfth of a complete oscillation. (M.T. 1896.) 

3. A uniform string is stretched between two points. Shew that if the 

middle point is plucked aside it will move to and fro with a constant 

velocity, and describe the motion of any other point of the string. 

(M.T. 1915.) 

4. A uniform stretched string of length Z, density p and tension d^p is 

initially at rest and the displcwjement of any point at a distance x from one 

end is ^€X (I —x) where € is small, so that the curvature is constant and equal 
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to €. Prove that at any subsequent time t less than 112a it consists of an arc 

of constant curvature c and length I — 2at and two straight pieces, which 

are tangents at the ends of the arc. (Coll. Exam.) 

5. A uniform string whose length is 21 and mass 2lm is stretched at 

tension T between two fixed points, the middle point of the string being 

displaced a small distance 6 perpendicular to the string and then released, 

shew that the subsequent motion of the string, referred to axes through its 

middle point, along and perpendicular to the string, is given by the 

equation 86*^=® 1 
2/= , 2 

■7r2.ro(2r+l)2''^“ 21 

where c is given by the equation me® = T. 

(2r-tl)7rx (2r-}-l)7rc« 
cos --cos - 

21 

(M.T. 1900.) 

6. A string of length Z + is stretched with tension P between two fixed 

points. The length I has mass m per unit of length, the length V has mass m' 

per unit of length. Prove that the possible periods t of transverse vibration 

are given by the equation 

(Coll. Exam. 1898.) 

7. If a slightly elastic string is stretched between two fixed points and 

motion is started by drawing aside tlu’ough a distance b a point on tlio 

string distant one-fifth of the length I of the string from one end, the 

displacement at any instant will be given by the equation 

256 ® / 1 .Tin . nnx mrct\ 

Find the energy of the vibrating string. (Coll. Exam. 1895.) 

8. A stretched string of length I has one end fixed and the other attached 

to a massless ring free to slide on a smooth rod. If the ring is displaced a 

small distance 6 from the position of equilibrium and the system start from 

rest, shew that the displacement at time t of any point of the string at 

distance x from the fixed end is 

86 g (-!)• 
IT® 7 (2s+1)® 

. (2«-fl)TrX (26r-fl)7rCZ 
sin ^-— cos'- 

21 21 

where c is the velocity of transverse vibrations. 

Shew that, if ct < Z, the shape of the string is given by 

y zz bxjl from a: = 0 to Z — cZ, 

y=:h(l^ct)ll beyond. (Trinity Coll. 1905.) 

9. One end of a string of length Z is fixed at A and the other end is 

fastened to the end 13 of a rod BC of length 6 which can turn freely about C\ 

Shew that the period of a principal transverse oscillation is 2nlc^t where 

^ is a root of the equation 

Mf»/3/>-l/6 = fcotZf, 

p being the line density of the string, M the mass of the rod, and c the wave 

velocity for the given tension. (M.T. 1899.) 



328 EXAMPLES 

10. If a stretched string be acted on at two points equidistant from the 

two ends by equal trajisverse forces F, prove that ^ho modes of vibration 

of even order are not excited and the modes of odd order are excited in the 

same way os if a single force 2F had acted at one of the points. 

(M.T. 1895.) 

11. A string is stretched between two given points and a given point of 

the string is (1) drawn aside and then let go, (2) struck by a sharp point; 

shew that the relative intensity of any upper partial tone to the funda¬ 

mental tone is greater in the second case than in the first. (M.T. 1897.) 

12. A stretched cord is held displaced from the natural straight position 

at a number of points, so that it assumes the form of a series of straight 

lines: shew that when it is let go, the form assumed at each instant in the 

ensuing transverse vibration will bo a series of straight lines. 

In the particular case when the two points of trisection of the cord are 

held displaced transversely by equal amounts, compute the ratios in which 

the harmonics of the fundamental enter into the tone of the note emitted 

by the cord when released. (St Jolm’s Coll. 1896.) 

13. A string of length 2a is fixed at the two ends. Tlie left-hand half of 

the string is of uniform density p per unit length, and the right-hand half 

of density p'. Find an equation whose roots are the frequencies of the 

normal modes of vibration of the string, and shew that if 

where m and n are integers having no common factor, tlien the frequencies 

may be put in the form 7V7^ / / 

. 
where may take n -f m values. (M.T. 1933.) 

14. A uniformly stretched string, of which the extremities are fixed, 

starts from rest in the form y = A sin where m is an integer and I the 

distance between the fixed extremities. Prove that, if the resistance of the 

air be taken into account and bo assumed to be 2k times the momentum 

per unit length, the displacement after any time t is 

A 'kt I ^ ■ /A • 2/ = A e”** (cos mt -f sm mt\ sin - , 

where = ^2-^ velocity of waves of transverse 

vibration. (Coll. Exam.) 

15. A uniform string of length 2 {l + l') and line density p is stretched 

between two fixed points; a length 21' in the middle is uniformly wrapped 

with wire so that its line density becomes p'. Prove that, if the tension 

T — c^p — c'^p't the periods of the notes which can be sounded are 27r/p, 

where p satisfies either of the equations 

c'taxi ipl'I c') + cta,n (pi I c)=:0 and tan (pr/c') tan (pZ/c) = c'/c. 

(Coll, Exam. 1901.) 

16. If a stretched string be held at its middle point, drawn aside at a 

point of quadrisection, and released from rest, prove that in the ensuing 

vibration the energy in the harmonic of order r is proportional to 

r“*sin*(r7r/4)8in^(rtr/8). (St John’s Coll. 1908.) 
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17. Find the periods of the normal modes of vibration of a tense string 

fixed at the ends. Prove that the period of the gravest mode is almost 

exactly nine-tenths of that of a simple pendulum whose length is equal to 

the sag in the middle (due to gravity) if the string be horizontal. 

If the string consist of two portions of lengths , O2, and different den¬ 

sities Pi, pg, prove that the periods (27rlp) are determined by the equation 

ki cot kiQi + Ajg cot = 0, 

provided ki^=:p^pilT, k^^p^p^jT^ 

T being the tension. 

Examine the case of p2 = 0, and explain how the resulting period-equa¬ 

tion may be solved graphically. (M.T. 1911.) 

18. A uniform extensible string is stretched, at tension T, between two 

points A and J?, distance I apart; and the wave velocity for small transverse 

vibrations is a. At the middle point a particle of mass m is attached. The 

ends A and B are given small inexorable transverse vibrations, the dis¬ 

placement of each at any time being k sin nuU, Find the corresponding 

forced motion of the particle. (Trinity Coll. 1898.) 

19. The ends of a stretched uniform string, of length Z, are attached to 

small rings without mass which can slide on two parallel rods at right 

angles to the string. The middle point of the string is acted on by the 

transverse force F&inpU Prove that the forced vibration at a distance f 

from either end is given by 
cF pi ^ 

2/= -gp^coseo^^cos^^smpf, 

where c is the wave velocity and T is the tension. (Trinity Coll. 1902.) 

20. Two uniform strings are attached together and stretched in a 

straight line between two fixed points with tension T and carry a particle 

of mass JVf attached at the point of junction. Their line-densities are p and 

p' and their lengths I and l\ Shew that, if T = c*p = c'*p', the periods 

2nln of transverse vibration are given by 

Mn = cp cot ~ + c'p' cot . (Coll. Exam. 1906.) 
c c 

21. An infinitely long tense string has a mass M attached to it at one 

point. The string being initially straight and at rest, a transverse impulse P 

is given to M. Find the form of the string at any subsequent instant, and 

prove that the ultimate displacement of M is P/2pc, where p is the line 

density and c the velocity of transverse waves. (M.T. 1922.) 

22. A transverse force y sinpZ acts at the point of junction of two strings 

of different mass per unit length which are joined at this point and 

stretched between two points at distance I apart, the lengths of the 

strings being b and Z — 6. Prove that, if and Cj be the velocities of trans¬ 

verse waves in the two strings, the displacement of the point of junction of 

the strings at the time t is 

ySinp«/{^ 

where T is the tension. 

Cl Cg Cj 
yi 
r K. 

{Trinity Coll. 1.^96.) 
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23. A long stretched string has a portion (of length Z) in the centre 
whose density is the density of the rest of the^string being p. A train 
of simple harmonic waves approaches this portion from one end; prove 
that the energy in the reflected wave is to the energy in the transmitted 

wave in the ratio (ja»-l)ain»e: V, 

where $=2nllXt the wave-length in the central part being equal to A. 
Shew also that the sum ojf these energies is equal to the energy in the 

incident wave. (St John’s Coll. 1914.) 

24. If the density of a stretched string be m/a:®, where x is measured 
from a point in the line of prolongation of the string, the ends of the string 
being a: = Z^, a: = Zj, shew that the frequency equation is 

4p^/c^=l+{2nrrl(\oglM}\ 

where 0^=: Tim and T is the tension in equilibrium, the vibrations being 
transversal. (M.T. 1906.) 

26. If a string of length Z and tension stretched between two fixed 
points be not imiformbut of line density pj{ 1 -f kx)^, where x is the distance 
from one end, shew that the transverse vibrations are of period 27r/n when 

V 4n® — log (1-f kZ) = 2icK7r, 

where c® = TJpQ and i is a positive integer. Examine the case of t = 0. 
(Coll. Exam. 1898.) 

26. A tight string of length Z hangs in the catenary ^ = c cosh r/c, under 
the action of gravity, from two points, distant Z apart, in the same hori¬ 
zontal line. If gravity be supposed suddenly to cease to act, prove that 
after a time t the form of the string will be given by the equation 

4cZ® 
cosh (L\il sin® irn 

rZ®-fr®c*7r® 

c being very large compared with L 

Binrir 
(!-i) 

cos + c cosh , 
Z 2c 

(Coll. Exam. 1898.) 

27. A particle of moss M is siispended by a string whose mass is m. 
Shew that if the particle be slightly displaced in a vertical direction the 

periods of the vibration are the values of ~ ^ given by the 

equation 2tan2 = ^; Z being the natural length and A the modulus of 

elasticity of the string. (M.T. 1899.) 

28. Investigate the free transverse vibrations of a tense string, taking 
account of the lateral yielding of the supports. Assume that each support 
has inertia M, and is urged towards its equilibrium position by a force 
equal to Mn® times the displacement. Taking the case of the symmetrical 
displacements prove that the periods (^njp) are given by the equation 

;tana:=^ (—ir " 
2m \ c® 

4a;®^, 

where m is the total mass of the string, Z is the length, c is the wave velocity, 
and x:=pll2c. 
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Shew how to solve this equation graphically, and find approximately 

the change of frequency of the gravest mode due to the yielding, on the as- 

smnption that nl/c is relatively negligible and Af/m is large. (M.T. 1923.) 

29. A very long uniform flexible string is stretched in a straight line, 

the tension being T, and the line density m. A portion of the .string of 

length Z, far from the ends, receives a small transvei*se displacement, and is 

released from rest. Describe the ensuing motion, and find an expression 

for the displacement at any point of the string at any subsequent time, the 

given displacement being denoted by/ (x), where 0<x<l. Shew that the 

ratio of the kinetic energy to the potential energy of the string changes in 

time \l(mjT)^ from 0 to 1, and afterwards remains equal to 1. 

A bead of mass M is fastened to the string at a point x = 0, and a train of 

waves in which the displacjement is A sin ^ (x — cf) advances towards the 
A 

bead. Shew that after passing the bead the energy per unit length of the 

waves is diminished in the ratio 

1:1+ (Mn/Xm)^; 

and find the change of phase on passing the bead. (M.T. 1910.) 

30. A uniform string of great length and of line density Ter ^ has one end 

fixed, carries a mass M at a distance a from the fixed end, and is stretched 

with tension T, A train of transverse waves of period 2ttIp is coming along 

the string and is being reflected; prove that the change of pha.se that 

accompanies the reflection at M is 

2 tan'll • (St John’s Coll. 1905.) 

31. A uniform string is of indefinite length, stretching from x~ — oo to 

X = 0, and is at tension T; at its end (x = 0) it is tied to two strings of similar 

make to the first, each at tension which stretch from .r = 0 to x = + oo 

nearly parallel to each other. A harmonic train of waves of transverse 

vibrations perpendicular to the plane of tlie string, is continually ad¬ 

vancing on the first string along the axis of x towards the junction; its 

amplitude is k. Prove that the amplitude of the transmitted trains and 

that of the reflected train are 2(\/2—1)Z: and respectively, 

where the mass of the knot is neglected. (Trinity Coll. 1908.) 

32. If a stretched elastic string is of great length and its end A is 

fastened to one end of an elastic string of different material, whose other 

end B is fixed, shew that if a train of longitudinal waves of period 27r/p 

advances upon A, the reflected train is of equal amplitude. Shew also 

that each portion of the string forms stationary waves, the amplitudes of 

. pi 
the waves in A B and in the rest of the string being in the ratio sm a: sin , 

c 

where m\ c' are the line mass and wave velocity for the portion AB^m^c 

are the corresponding quantities for the rest of the string, I is the length 

AB and 
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33. Longitudinal waves come from infinity along the string (0), are 

transmitted through a string of length I and proceed to infinity along the 

string (1), shew that the amplitude is lessened in the ratio 

where n/27r is the frequency. (St John’s Coll. 1895.) 

34. A stretched string, infinite in both directions, is of density p, when 

undisturbed, and ha^i attached to it a single particle of mass m. The 

velocity of waves of longitudinal displacement in the string is c. An 

infinite harmonic train of such waves, such that the period of the dis- 

plfiwement of each point of the string is 27r/p, impinges on the particle. 

Prove that the train is partly transmitted and partly reflected: that the 

energies per wave length of the incident, the reflected and transmitted 

trains are as + 4p*c2 to m*p* to 4p%*; and that the change of phase of 

the transmitted train is tan”^^^. (Trinity Coll. 1897.) 
Zpc 

35. A stretched string is in equilibrium with its ends fixed; shew that, 

on being slightly disturbed from its position of equilibrium, the potential 

energy of deformation per unit length of stretched string is 

where m is the equilibrium line mass, and a, b the longitudinal and trans¬ 

verse wave velocities. Deduce the equations of vibration. (M.T. 1905.) 

36. A uniform extensible string is stretched with its ends fixed and 

simultaneously executes in a plane free longitudinal motions, which are not 

necessarily small, and transverse vibrations which are small. The co¬ 

ordinates of any point in the string when imdisturbed are (f, 0) and at the 

time t aprove that ^2^_ + A dH 

de'^p^diXeidi! ’ 

where p^ are the imdisturbed tension and line density^ A is the co¬ 

efficient of elasticity and y are assumed to be always small. 

(Trinity CoU. 1903.) 

37. A imiform rod of mass M is freely pivoted at its mid-point, and its 

ends are fastened to the mid-points of two stretched strings, one elastic, the 

other inextensible. There is equilibrium when the rod is vertical, and the 

strings are straight, horizontei and perpendicular to one another. Shew 

that the period 2nlp of a small oscillation of the system satisfies the 

equation 
iMp=^ ^ oot^l'. 

where T, 21, 2ZT/a*, are the tension, length and mass of the inextensible 

string, and E, 21', 21'Ej^^, the modulus, equilibrium length and mass of the 

other. (St John’s Coll. 1903.) 
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38. A uniform extensible string has its two ends fixed, and is stretched 
when in equilibrium to a length li + li. At a distance from one end a ring 
of mass m is attached, which can slide on a smooth hxed rod making an 
angle a with the undisturbed string which is straight. Prove that the 
periods 27r/p of small oscillations of the system are given by 

mp = pb cos* a (cot pljb -f- cot pi Jb) 4- pa sin* a (cot pi Ja + cot plja); 

where p is the density per unit length and a and b are respectively the wave 

velocities of transverse and longitudinal disturbances of the string as thus 
stretched. (Trinity Coll. 1899.) 

39. If a membrane be a rectangle of edges a and b shew that 

. . mirx . niry 
3 = A sin pt sm-sm - y- 

a b 

is a possible form of stationary vibrations, where 

the origin being at a corner, and c being the velocity of propagation of a 
rectilinear disturbance across the membrane. If 6 = a/\/2, shew that there 
are two such modes of vibration of period rjy/\\, r being the period of 

vibration. (Univ. of London, 1911.) 

40. If a stretched membrane be of the shape of a sector of a circle of 
angle 72°, shew how to calculate its natural tones. 

(Univ. of London, 1907.) 



CHAPTER XII * 

SOUND WAVES 

121. A FEW simple appeals to experience shew that sound is 

transmitted by waves in the atmosphere. If a bell is rung under 

the receiver of an air pump from which the air is gradually ex¬ 

hausted the sound becomes fainter and soon ceases to affect the 

organs of the ear; shewing that atmospheric communication is 

necessary between the ear and the disturbance that causes the 

sound. We infer that sound is accompanied by the motion of the 

intervening medium from the fact that a musical note sounded 

on any instrument may produce a vibration, in unison with it* 

in another body not in contact with it. That the motions of the 

medium are small is evident from the fact that sound will travel 

through a dust-laden atmosphere without perceptible motion of 

the dust. 

In this chapter we shall consider the propagation of waves in 

an elastic fluid, confining our attention for the most part to plane 

waves. 

12* 11 • General equations. In considering the propagation 

of sound waves we shall regard the velocities of the elements of 

fluid as so small that their squares may be neglected. In the 

kinetic theory of gases, a mass of gas is regarded as composed of a 

large number of separate molecules moving in different directions 

with velocities which undergo frequent changes owing to the 

collisions of the molecules; but the hypothesis that we now make 

about the magnitude of the velocity of a fluid element in wave 

propagation does not contravene this conception of a gas, because 

what we take to be the velocity of a fluid element in a given direc¬ 

tion is the average velocity in that direction of the molecules com¬ 

posing the element; and there is nothing in the molecular 

hypothesis to prevent this average velocity from being small, 

since molecules may move in opposite directions. 

Neglecting friction, the motion being due to natural causes 

must be irrotational, so that the pressure equation is 

(1). 
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If pq denotes the equilibrium density of a mass of fluid which is 

compressed until its density becomes 

p=Po{l + s), 

8 is called the condensation. 
When the condensation 8 and the velocities u, v, w are small, 

the equation of continuity 

dp dpu dpv dpw 

becomes 

or 

ds du dv dw 

dt dx ~^dy~^ dz 

. 
.(2). 

Again, if 8p denotes the pressure when the density is 
p, Po being the equilibrium pressure, and if we neglect and all 

impressed forces, (1) may be written 

p, . 
But if we assume that p is a function of p we have 

= i)ower of 

or hp^c^p^s, where c^ = (dpldp)Q .(4). 

Hence (3) becomes c^s~^ .(5); 

and by eliminating s between (2) and (4) we get 

.(6). 

12* 12. The simplest case is that in which the wave fronts are 

planes. If we take the x axis perpendicular to the wave fronts the 

last equation reduces to 02^ 02^ 

the solution of which is 
aa:2 .(7), 

(f>=zf {x--ct) + F (x^ct) .(8), 

representing the propagation of independent waves in the positive 

and negative directions with the same velocity c. 
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12*13* The Velocity of Sound. The quantity c of 12*12 
which represents the velocity of propagation of sound waves, 
within the limits of the approximations whicfh led to (6), is clearly 
independent of the form of the waves. It was defined in 12* 11 by 
the relation c® = and it is possible to calculate a numerical 
value when the relation connecting p and p is known. Newton 
adopted Boyle’s Law p — Kp as the basis of his investigation. 
This makes c = ^/k == V(PolPo) = metres per second at 0° C., 
falling short of the result of observation by about one-sixth part*. 
The discrepancy is due to the fact that Boyle’s Law requires the 
compressions and rarefactions to take place isothermally, whereas 
it is a matter of observation that the compression of a gas is 
always accompanied by a rise in temperature. The hypothesis 
that the vibrations are so rapid that there is no time for a gain or 
loss of quantity of heat, i.e. that the relation between p and p is 
the adiabatic one p — leads to a result more in accordance 
with observation. This makes 

C^ = {dpldp)Q^ypJpo .(1), 

and if we take y = L41, we get c = 332 metres per second at 0® C., 
which agrees with the result of experiment. 

12*14. Plane Waves. Instead of using the velocity potential 
we may obtain the equation for plane waves directly in terms of 
the displacement | of a layer of particles whose abscissa is x when 
undisturbed. Thus the stratum which in equilibrium is of density 
po between the planes x and x + hx becomes at time t a stratum of 

^ A 

density p between the planes x + ^ and a? -f- 8x -f- f ^ 8a;, so that, 

from constancy of mass, 

PoSxr=p^8a: + |^8x 

or + .(1). 

The equation of motion of unit area of this stratum is 

/)o8*^=-^8*, 

. 

♦ Rayleigh, Theory of Sound, ii, p. 19, t Hydrostatics, Art. 94, 
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But 

W6(2)become» f _y & g (l+|) ^ ‘. .(3). 

Ttds is an exact equation giving $ in terms of x and t ; but from (1) 
we note that d^jdx— so that if we take the last factor in (3) 
to be unity and use 12*13 (1) we get an equation 

(4) 

which is correct to the same order of smallness as the equation 
12*12 (7), and its solution (10*2) is 

{ct-x) + F{ct + x) .(5). 

12*2. Energy. In a plane progressive wave the energy is half 
kinetic and half potential, 

. 
integrated over the space occupied by the disturbed air when in its 
equilibrium state. 

The potential energy of an element is the work stored up in 
compression, or the work that it would do in expanding from its 
compressed to its equilibrium state. Consider an element which 
in the equilibrium state has volume dv^ and density and in the 
compressed state has density p~pq(1+s) and therefore Volume 
dv = dvQl(l +s). Let this element expand from the compressed 
state. At any stage of the expansion the volume dv' ==dvj{l+s’), 
where s' is the condensation, and an infinitesimal increment in 
this volume is j,, 

S(dv')=- - 

The effective part of the pressure at this stage is 8p 
(12-11); therefore the work done in this small expansion is 

s’ Ss' 
— c^p^dVQ 

C^PqS' 

’(l+sT' 

And as the condensation decreases from a to 0 the work done by 
the element dvg ^.o 

= -c^p^dv.j^ 

= ^ppC^s^dvQ to the second order of s. 
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Hence the potential energy of the whole mass of gas is 

.'•.(2), 

the integration extending over the space occupied by the dis¬ 
turbed air when in its equilibrium state. 

For a plane progressive wave 

^=/ (ot-x) 

so that {ct-x)=—c^ = cs, 12’14 (1), 

and by comparing (1) and (2) it follows that the kinetic and 

potential energies are equal. 

12*21. Intensity of Sound. The rate at which energy is 

transmitted across unit area of a plane parallel to the front of a 

progressive wave may be taken as a measure of the intensity of 
the radiation. 

If W is the energy transmitted in time t then 

For a simple harmonic wave 

^ = A cos 
27T 

T (z — ct) (1), 

where Xis the wave length and c, the wave velocity, is the same 
for all wave lengths. And from 12*11 (4) and 12*14 (1) 

Therefore 

dW 

dt 
A sin {x — ct) 

A A 
Pq +pqC^A-^ sin ^ (x-ct)^ 

+ periodic terms.(2). 

This is the required measure of the intensity, and by integration 
the energy transmitted in any given time is found; and for any 

number of periods or for any interval of time so long that a 
fraction of a period is negligible we have 

W 1 _ ■27r\2 
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This represents the average intensity and it may also be expressed 
in the form W 

.(4), 

where T is the period A/c and is the maximum displacement. 

dx A A 
Again, since 8 = 

27tA . 2tt , . 

sin \ (x — cl), 

the maximum condensation 8^ = 27rA/A, and the average intensity 
may also be written 

= .(5). 

Though these formulae for the rate of transmission of energy 
across a unit of area of the wave front have been obtained for 
plane waves of harmonic type, they will also hold good for all 
harmonic waves at a sufficient distance from the disturbing 
source. 

We note that if the wave be given by a velocity potential 

# ^ 27r, 
fp — A cos . (x — ct) 

A 

the foregoing formula (3) needs slight modification, for since 

^ di' 

A 27r 
therefore ^ = — cos {x — ct) .(6), 

c A 

but formulae (4) and (5) are unaltered. 

12*3. Exact Equation and its solution. Change of type. We may 

obtain the differential equation which gives the actual position of a layer 

at time t in terms of t and the equilibrium position x, by writing t/ = x 4- f 

in 12*14 (3) which takes the form 

y-l 

To solve this equation let 

dt^ dx^ \dx) 

dy_ 

dt '' \dx/^ 

therefore 
“ 

= If (^)\ 
*' \dxj dxdi V \Wj 

(1). 

and by comparing this equation with (1) we get 

.(2). 

22-3 
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Again for a progressive wave with no translation of the medium as a 
whole dyjdt = 0 when p = po y that is when dyjdx = 1; therefore 

A=T2c/(y-l), 

The complete integral of this differential equation is of the form 

y = oa;+ 

provided the constants a, j8 are chosen so as to satisfy (3), that is provided 

j8= T 

Hence the complete integral is 

y = (xa: + ^j{l-a4»-)'>}t + C .(4), 

and the general integral is the result of eliminating a between 

and 0 = xTca~i<*+v)t-(-^'(a) j 

where ^ is an arbitrary function. 
Taking the upper sign, if u denote the velocity y^ we have 

and, eliminating x from (6), 

2/ = - {2 - (y + 1) a* a-v)} + ^ (a) - (a). 

SO that y —{c-f J(y4-l)t4}^ = ^(a) — a^'(a). 

Hence i/~-{c + J{y4-l)tt}<isan arbitrary function of a and therefore of u, 

and conversely u is an arbitrary function of y — {c-f i (y + 1) w}/, and we 

may write «=/[2/-{c+i(y+!)«}<] .(6), 

where / is an arbitrary function. 
This equation was given by Poisson for the special case y= 1*. The 

equation shews that a progressive wave in air cannot be propagated with¬ 
out change of tyj)e. A relation u=f {y^ct) would represent the propaga¬ 
tion of u with uniform velocity c, and relation (6) shews that if we draw 
a curve whose ordinate represents the value of u corresponding to the 
abscissa y at any instant, then the form of the curve at time t later is got 
by moving each point of the original curve a distance {c -f J (y +1) w) ^ in 
the direction of propagation, and as this is a different quantity for the 
difiFerent points of the curve it follows that the curve is continually 
changing shape and a discontinuity will occur as soon as the velocity 
curve has a vertical tangent, after which we cannot infer that the integral 
has a real application. 

* Journal de Vllcole PolyUchnique^ VH, p, 319. 
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12*31. Condition for permanence of type. To find the condition 

that a train of plane waves may be propagated unchanged in type, we 

impose on the whole mass of air a velocity equal and opposite to that of 

propagation so that if the wave form is permanent it becomes stationary 

in space and the motion becomes steady. 

If »Po»Po denote the velocity, pressure and density in the undisturbed 

state of the fluid and u, p, p are the corresponding quantities at a point in 

the wave, the equation of continuity is 

and the pressure equation 
. •— Po ^0 . 
IS 

.(1). 

. 
J p 

.(2). 

If we eliminate u we get j . 
Po p 

.(3); 

so that |=«.%Vp- . .(4). 

or p — const. ~ Wo*Po®/p . .(6)- 

This relation must exist between pressure and density in order that the 

wave may maintain itself. As this relation between the pressure and 

density of the atmosphere is an impossibility a train of waves cannot 

maintain itself unchanged in form. If however the variations in density 

are small, the condition is approximately satisfied by taking = \/{dp/dp)f 

and this hypothesis is the basis of our theory to the order of approximation 

to which it is carried. 

12*4. Vibrations in Tubes. Using ^ to denote displacement 
the general solution for a plane wave is, as in 12*14, 

{ct-x)-\- F (ct + x) .(1). 

If there be affixed barrier at the origin parallel to the wave fronts 
then ^ = 0 when x = 0 for all values of t ] therefore 

0^f{ct) + F{ct), 

or F== —so that i —f {ct—x) —f (ct x) .(2). 

The first term may be regarded as a wave system approaching 

the origin from the left and the second term as the reflected 
system. The two have equal amplitudes, the velocity i is reversed 
in the reflected system, but the condensation s ( — — d^jdx) has its 

sign unchanged. 
Another type of boundary condition is the hypothesis of a 

surface of constant pressure, i.e. Sp = 0, but hp^c^p^s (12*11), 
therefore « == 0, or d^jdx = 0. If this condition holds at the origin 

for all values of t we have 

-/' {ct)-^r{ct)^0. 
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Hence / and F differ only by a constant which we may omit as 
it would merely imply a displacement of thp whole mass; there¬ 

fore in this case (ct-z) -f/ {ct-^x) (3), 

and as before the first term may be taken to represent an incident 
train on the left of the origin and the second term the reflected 

train. The velocity ^ is now reflected unchanged but the conden¬ 
sation 5 (= — d^jdx) has its sign reversed. 

The condition ^ = Ois realized approximately at the open end of 

a tube whose diameter is negligible compared to the wave length. 

12*41. Normal Modes for a uniform straight Tube. The 
equation to be solved is 

a<2 dx^ (1) 

and as in 11*21, to find the normal modes we assume that 

^ oc cos {nt + e), so that ^ ~ and the equation becomes 

3x2^ 

and the complete solution including the time factor is 

^ — cos nxjc -h Bsin nxic) cos (nt-\-€) .(3), 

representing stationary waves, the corresponding progressive 

waves in free air being of length A = 27rc/7i. 

(1) Tube closed at both ends x=^0 and x = L We have ^ = 0 when 

a; = 0 and x = L Therefore 

^=0 and sin7iZ/c = 0. 

Hence nljc = mn, where m is an integer, gives the frequencies of 

the normal modes, and 

® . mnx i 
L i>^sm—^cos 

The frequency of the gravest tone is nj^ir or c/2Z; that is, the 
period 21 jc is twice the time taken for a pulse to travel the length 

of the tube. In any particular normal mode, say the mth, there is 

a series of nodes, or points for which ^ = 0, at intervals Ijm along 
the tube, and a series of loops or points of zero condensation 

(dildx = 0) half-way between the nodes. 

(2) Tube open at both ends. We have — = a = 0 when 

a; = 0 and a: = Z. Therefore 

JS = 0 and 8inwZ/c = 0, 
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so that the frequencies of the normal modes are the same as in 
the last case, and 

^ , mnx 
2- u4^cos —cos 

'niTrct 

~T~ 
The nodes and loops are distributed at the same distances as in the 

closed tube, but in the open tube the ends of the tube are loops. 

(3) TtiAe open at x== I and closed at x = 0. Now we have | = 0 

when x = 0, and — d^jdx = 0 when x^^L Therefore 

^ = 0 and COS rdjc = 0. 

Hence nljc — m7rl2, where m is an odd integer, gives the frequencies 
of the normal modes, and 

00 

The frequency of the gravest mode is now n/27r or c/4j!, so that 
the period 4Z/c is in this case four times the time taken by a pulse 

to travel the length of the tube. In the ^th normal mode the 

nodes will be at distances 2lj{2p — 1) apart and there is of course 

a node at one end of the tube and a loop at the other. 

The period of the gravest mode in each of the foregoing cases 

may also be obtained from the considerations of 12*4 by con¬ 

sidering a pulse of condensation to start from a point P in the 
tube and travel towards the end x4, if ^ is a closed end in the 

reflected wave the sign of s is unaltered and that of i is reversed, 

and the same happens when the reflected wave reaches B, and 

after time 2Z/c the wave is passing P again under the same con¬ 

ditions as at first. A similar argument holds for a tube open at 

both ends. 
For a ‘stopped tube i.e. a tube open at one end A and closed 

at the other B, under similar circumstances, at the reflections at 

A the sign of s is changed and _ 
that of ^ is unchanged and at Bj P _ lA 

the reflections at B the sign of 
s is unchanged and that of ^ reversed, so that it is not until after 

four reflections or an interval 4Z/c that the pulse passes through 

P again under exactly the same conditions as initially. 

Hence in every case the frequency of the gravest mode varies 
inversely as the length of the tube and for a stopped tube the 

gravest mode has half the frequency or is an octave lower than for 

an open or closed tube of the same length. 
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12*42. Since the velocity potential <f> satisfies (1) of 12*41 its 
value is also given by ^ 

(f>^{A cos nxjc + Bsin nxjc) cos (ni + c) 

with the conditions 3<^/3x = 0 at a closed end of the tube and 
d<f}ldt = 0 at an open end, since c^s = d<f>ldL This method of course 

leads to the same results as are obtained in 12*41. 

12*43. Forced Vibrations In a Tube. Let a vibration of given 

frequency n/27r be maintained at one end of a straight tube. The motion 

may be due for example to the inexorable motion of a piston at the origin, 

so that f = C cos (nt + c) when a; = 0. Taking the solution 

i = (A cos fixfo + B sin naj/c) cos (nt -f c) 

we must have ^ = <7, and if the tube be closed at ar = Z, 

0 = (7 cos nljc -f B sin nljc, 

so that cos(nt+€) .(1). 
sinm/c 

But if the tube be open at a? = Z so that d^jdx = 0 at this end, then 

0 = — (7 sin nZ/c + B cos nZ/c, 

and ^ = C —^ ^ .(2)* 
^ cosnZ/c ' ' 

In the first case the amplitude of the displacements is a minimum if 

sin nZ/c= ± 1, i.e. if Z is an odd multiple of nc/2n or JA, and as, in this case, 

a; = Z is a closed end this makes ar = 0 a loop. If Z is an even multiple of JA, 

the amplitude appears to be infinite, but the origin would have to be a node 

which is precluded by the conditions of the forced motion at the origin. 

In the second case, in like manner, if Z is an odd multiple of iTc/2n or JA, 

the amplitude according to (2) is infinite, but if a; = Z were really a loop the 

origin in this case would have to be a node and so the solution again fails. 

In cases in which sin nZ/c or cos nZ/c is small the amplitude will be large, 

and if the tube contains a little fine sand, or lycopodium powder the posi¬ 

tions of the nodes will be rendered visible. This method was usedby Kundt* 

in experiments for comparing the velocity of sound in different gases. 

12*44. Piston controlled by a Spring. As another example let us 

find the frequency equation when the end x = l of the tube is closed and, 

at the end x = 0, there is a piston of mass M controlled by a spring of 

strength fx. 

Assuming that f ae^”^ equation (1) of 12*41 takes the form 

and has a solution cos +B e*"* 

..(1) 

.(2). 

At x = Z we have f = 0, so that 

. wZ , „ . nZ > 
A cos + B sin — = 0, 

c c 

♦ Pogg, Ann, cxxxv, 1868, p. 337. See also Rayleigh’s Theory of Sounds n, 
Art. 260. 



12-5 REFLECTION AND REFRACTION 345 

and (2) may be written f = C sin 

For the motion of the piston, supposed to be of unit area 

Aff-f=-"8^= ~"C*/)5 = c®/)U ata? = 0. 

Therefore (u — Afn*) C sin -- = — c®pC - cos —, 
^ c ’^cc 

and the frequency is given by 

tanni/c=^^-^ .(3)' 

12*45. Sound Waves in a Branching Pipe. A solution may be 

obtained by assuming expressions of the form 

(E cos nx/c + F sin nx/c) e*"* 

for the velocity potential in each branch A, B, C and determining the 

constants so €ls to satisfy the conditions at the junction 0, viz. 

(i) the pressure at O must be 

the same in each branch, i.e. d<l>ldt 

has the same value at 0 for each 

branch; 

(ii) velocity x cross section in 

A = sum of velocity x cross sec¬ 

tion in B and (7. 

These conditions together with the conditions obtained from data as to 

whether the ends of the pipe are open or closed will suffice to give the ratios 

of the constants and an equation for the frequency. 

12*5. Reflection and Refraction of Plane Waves. When a 
train of plane waves reaches the surface of separation of two 

distinct media, there is a reflected and a transmitted train of 
waves. Let the plane yz separate the two media and let the wave 
fronts be oblique to this plane, the 2 axis being taken parallel to 

the line of intersection of the wave fronts with the yz plane. 
Let the x axis be drawn into the first medium and suppose 

c, Cj to be the velocities of sound in the two media. 
The equations for the velocity potentials in the two media are 

\dx^ dyy. 
.(1). 

and 
dt . 

.(2), 

for the first; and 
‘ U*" oj*/. 

.(3). 

and 
dt . 

. 

for the second. 
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The special conditions to be satisfied at the boundary a; = 0 are 

(i) continuity of velocity normal to the bbundary, i.e. 

d<f>ldx=^d(f>Jdx .(5); 

(ii) continuity of pressure, i.e. 8p = 8pi, if these denote the 
small increments of pressure due to the wave motion. 

But Sp — c^p8 and — (12’11), where p, p^ are the 
equilibrium densities of the two media; hence from (2) and (4) we 

must have pd<f>ldt==pid<f>Jdt when x = 0 .(6). 

To represent waves of harmonic type we take for the incident 

^ ^ (ax+6V+a>0 .^ 7 J ^ 

SO that ax + by — const, gives the direction of the wave fronts. 

We may then assume that the reflected and refracted trains 

are represented by ^ 

and <f>i^ A i^ix^ffv+ioO .(9). 

The coefficient of t must be the same in all because all the 
waves must have the same period, and the coefficient of y must 

be the same because an incident, reflected and refracted wave 

front will all have the same trace on the yz plane. 

The velocity potential of the whole motion in the first medium 

is -f and by substituting the values from (7) and (8) in (1) and 

observing that the result must be true for all values of x, y and i 

we get w2 = c2(a2 + 62) = c2(o'® + 62) .(10); 

and in like manner from (3) and (9) 

= + .(11)- 

It follows that a'2 = and we take a* = —a for a reflected wave 

so that the reflected and incident waves are equally inclined to 
the surface of separation. 

Again if 6, 0^ are the angles that the normals to the incident 

and refracted waves make with the x axis, 

Bmd — bjVa^ + b^ and mTid^ = bjVa^-\-b^\ 

and therefore clBind — cjBind^ .(12). 

This is the law of refraction. 

If c> Cj, there will be a real value of 6^ for all angles of incidence 

so that sound can pass at all angles from a rarer to a denser 
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medium. But if > c*, then is imaginary when 9 > sin"^ (c/ci), 
and for such angles of incidence the waves are totally reflected. 

It remains to find the relations between the amplitudes A, A\ 
A^ of the waves, by means of the boundary conditions (5), (6). 

From these wo get a{A-A’) = a.A,] 
' ’ ‘ M.(13). 

and p{A+A')=p-^^Ay^) 

Therefore ^ =4i .(14). 
ap^ -f «! /) dpi ^d^p 2dp 

But n^tan 0^ = 6 = a tan 0 .(15) 

so that (14) may be written 

A _ A' Ai 
p^ cot 61 pj cot 6i 2 

p cot 9 p cot 9 

(16). 

It follows that there is no reflected wave when 

pilp —cot 9Jcot9; 

but from (12) (1-f cot2^i)/(l + cot^^) = c7ci^, 

so that, by eliminating cot , we get 

.m. 
Hence there is a real 9 for which there is no reflected wave if, 

and only if, cjc^ lies between pjp and unity. 

12*51. Energy. The energy transmitted in any time across 
any area of the incident wave must be equal to the energy trans¬ 
mitted in the same time across the corresponding areas of the 
reflected and refracted waves. These three corresponding areas 

are in the ratio cos 9: cos 9: cos 9^, 

and taking the expression for energy transmitted from 12-21 (3) 
and (6), the frequency being the same for all the waves, we have 

cos 9.pA^Jc = cos 9. pA'^jc -h cos 9^. piA^jci, 

or, using c/sin0 = Ci/sin 9^, 
p {A^ — A'^) cot 9 = piAi^ cot 9i. 

This is the energy condition and it can be verified at once by 

using 12-5 (16). 
♦ If in this case we write — taj' for we find a wave travelling along the surface of 

separation with amplitude decreasing exponentially. F. Rayleigh, Theory of Soundy 
n, p. 84. 
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12*52. Impact of Plane Waves on a flexible Membrane. Let the 
membrane of surface density a and uniform tension T separate rtiedia of 

densities p, p^. Take the yz plane to coincide with^the undisturbed mem¬ 

brane and the z axis parallel to the intersection of the wave fronts with 

the membrane^ and draw the x axis into the first medium. 

If, following the line of argument of 12*5, wc assume as the velocity 

potentials of the incident, reflected and refracted waves the expressions 

.(1)^ 

= .(2), 
and  (3), 

we may take for the displacement of the membrane at time t 

f =  (4), 

where a, , 6, w are connected with the velocities of sound in the two media 

as in 12*5. 

From the continuity of normal velocity, we get 

-i = f^(<^ + <^') = ^,whenx==0. 

or ^ cuB=:a(A—A') = aiA2 . 

The equation of motion of the membrane is 

ai=T d^ijdy^ 4- Spi — Bp, when a; = 0 ... 

where Bpi = and 5p = 4 tf>')ldL 

Substituting from (1), (2), (3), (4) we get 

. B{Tb^ —ao}^) = ia}{piAi--p(A+A')}, 

and eliminating B by means of (5), and writing n for b/cj 

4^0““-4i{Oi(Tn* —a) 4= 0 ... 

From (5) and (7) we find 

_A_^_4;;_ 

4 /o — taui (Tn^ — ) ~ «f>i — /> — iooi (Tn* — a) 

which may also be written 

_A _ _ _ 
{{api 4 Oi p)* 4 (Tn* — 

(5) . 

(6) , 

,(7). 

^_41_A . /9) 
{(api —Oip)*4a®c»i®(Tn®~cy)*}ie* 2ap ’ 

where tan c = — aai (Tn* — <r)l(api 4 a^p), 

and tan c' = — ooi (Tn* — a)l(api — p). 

The amplitudes of the incident, reflected and transmitted waves are 
therefore in the ratio 

{{api+Oi p)*+a*<h* (Tn* - «7)»}i: {(apj - ch p)*+a^a,* (Tn* - a)*)^: 2ap; 

while the phases of the reflected and incident waves differ by c'—c and 
those of the transmitted and incident waves differ by c. From (5) it follows 
that the vibrations of the membrane are in the same phase as the trans¬ 
mitted wave, as is otherwise obvious. 
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12*6. Spherical Waves. When there is symmetry about a 

point, the general equation 

dt^ 

takes the form 
2 a0\ 
r dr) ^ 

or 
dHr<l>)^ dHr<l>) 

"0^2 ^ “ 0^2 

which has a general solution 

r<l>=f(ct-r) + F{ct-^r).(2); 

the two terms representing two wave systems one diverging from 

the origin and the other converging on the origin with velocity c. 

The velocity and condensation are given by 

u — — d<f>jdr, and c^s = d<f>ldt .(3). 

In the case of a diverging wave we have 

r<l>=f(ct-r) .(4), 

so that from (3) crs=f {ct — r) .(6). 

This shews that any value of rs is propagated unchanged so that 
the condensation 8 decreases like 1/r as the wave advances. 

In this case the velocity, from (3) and (4), is given by 

+ .(6). 

As the wave spreads outwards the second term in u becomes 
negligible in comparison with the first, and ultimately for large 

values of r, from (5) and (6), = as in a plane wave. 

From (5) and (6) we get 

f (ct — r) = r^ (u — cs) .(7). 

It follows that if the distuibance is confined to a spherical shell 

within and without which there is neither velocity nor condensa¬ 

tion, then / (cf — r) is zero both inside and outside the shell to 

which the disturbance is limited. Hence, if a, j8 are radii less and 
greater than the bounding radii of this shell, we have from (5) 

cj ardr^J /'(c^--'r)d!r=== ~=0. 

This shews that s cannot be of the same sign throughout the 

region occupied by the wave, so that a wave of condensation or 

of rarefaction cannot exist alone. 
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12-61. Given Initial Conditions. Suppose that at time 
/ = 0 the values of u and s are given for all positive values of r and 

represented by Uq and . 

The total flux at any time across a sphere of radius r is 47Tr%, 
and from 12*6 (3) and (2) this is 

47r{/{ct — r)-^F(ct-{-r)} + 47rr{/' (ct — r) — F' (ct + r)}; 

and, if the origin is not a source at which fluid is produced or 

absorbed, this expression must vanish with r. 

Hence we must have f {ct)^F {ct) = 0.(1) 

for all positive values of t. 

Again from 12*6 (3) 24^~ ~ {d<f>ldr)Q, so that from 12-6 (2) 

f(-r) + F{r)=r<j>„^-rjuQdr .(2). 

Also from 12*6 (3) and (2) 

(r^) = c/' {ct -r) + cF' {ct + r), 

so that ctSq =/' { — r)-^F' (r), 

and f { — r) — F{r)^ —c {s^rdr .(3). 

Equations (2) and (3) then determine/for all negative arguments 

and F for all positive arguments, and the form of / for positive 

arguments then follows from (1). The form of F for negative 

arguments is not required. 
Assuming the initial disturbance to be confined to a sphere or a 

spherical shell in open space, it breaks into two parts which 

travel in opposite directions outwards and inwards and the in¬ 
ward wave is continually reflected at the centre. In both waves 

r(f} is propagated with constant velocity c. From (1) we see that 
r<f) vanishes at the origin, so that the case is somewhat similar to 

that of a straight tube with an open end. 

12*62. Harmonic Waves diverging from a Source. If we 
assume that <f>oce^, then 12*6 (1) becomes 

. .(1). 

^4^ in 

rtft = {Ae~ ^ + jBe <= . .(2). so that 
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The first term represents a wave diverging from the origin, and 

in real form we may write 

JL ^ <p = — cos n I 
^ 4rrr (‘-0. 

The flux across a sphere of radius r is 

= A cos nt, if r is small enough, 

.(3). 

ATtr^^ = A jcosTi! 

so that A denotes the maximum rate of introduction of fluid. 

The existence of such a source in unlimited space implies an 
expenditure of energy which can be measured by the average 
rate at which work is done at the surface of a sphere of radius r by 
pressure exerted on the fluid outside the sphere, i.e. by the mean 

value of 
47rr^p 

0^ 
.(4), 

d<f> 
where the pressure + Pq, p denoting equi¬ 

librium pressure and density. 

Substituting from (3) in (4), we find for the mean value 

W = 
pn^A^ 

Sttc 
.(6). 

This result is only valid for an isolated source in free space. 

Thus it has been remarked by Lamb* that the emission of energy 
may be greatly modified by the neighbourhood of an obstacle. 

Thus a simple source near a plane rigid boundary will have an 
equal source as image on the other side of the boundary; the 

result of the reflection as from this image is to double the ampli¬ 

tude at any point, so that the intensity is quadrupled, and the 
emission on one side of the plane is therefore twice that of an 

equal source in free space. 

12*63. Doublets. Such simple sources cannot be realized in 
practice. But a vibrating body such asXhe prong of a tuning fork 

since it produces alternate condensations and rarefactions may be 

considered to be a pair of simple sources in opposite phase at a 

small distance apart, i.e. a dovJbhU 

* Dynamical Theory of Sound, § 7G. 
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If we consider two such simple sources ± ^ at a small distance 
8x apart and put ASx=C, the velocity potential is 

I /* 

where <f> = - - cos n\t — 
^ 4nr \ c 

and dr/dx — — cos 6. 

Hence the velocity potential due to the doublet 

-1 - 4^. ««»”('-0 + 9 )(-■»» 
At a great distance from the doublet this approximates to a 

velocity potential 

. 

Then, as in 12*62, the flux of energy across a unit of area 

/ 3^\ 

and substituting from (1) gives a mean value 

pn^C^coB^d 
327rW” 

The total average rate of emission of energy from a doublet of 

strength C cos nt is therefore 

. 

The effect produced by a vibrating sphere may be represented 

by that of an equivalent doublet'*'. 

12*7. Musical Sounds. Musical sounds as distinct from 
noises possess three main characteristics: (1) pitch, (2) intensity, 

(3) timbre. 
The pitch of a note depends on the rapidity with which the 

successive waves impinge upon the ear, that is on the frequency 

of the vibration or on the wave length. For the velocity of 
propagation is the same for waves of all lengths so that the 

frequency varies inversely as the wave length. A siren is the 

instrument used for experiments on the pitch of sounds. It is 

an apparatus by which air under pressure escapes through a hole 
which has as a shutter a revolving disc pierced with holes at 

♦ Loiub, Dynamical Theory of Sound, § 77. 
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regular intervals. When the disc revolves with sufficient rapidity 
the vibrations caused by the escaping air produce a note of definite 
pitch, and it is found that increasing the frequency of the vibra¬ 
tions raises the pitch of the note. If the frequency of one note 
is double that of another the former is an octave higher than the 
latter. Notes whose frequencies are multiples of that of a given 

note are called its harmonics. 
The intensity of a note depends on the amplitude of the vibra¬ 

tions. The loudness of notes can only be compared when they are 
of approximately the same pitch and then the square of the 
amplitude gives a physical measure of the intensity. 

The timbre of a note is a quality dependent on the method by 
which the note is produced; for example, there is a marked 
difference in quality between notes of the same pitch produced 
from the pianoforte and the violin, this quality is called timbre 
and experiment shews that it is dependent on the form of the 

wave produced*. 

12*71. Beats. When two notes of nearly the same frequency 
are sounded together a phenomenon known as ‘beats’ occurs, 
that is a succession of intervals in which the resultant vibration 
gradually increases to a maximum and then dies away. Let the 
vibrations have equal amplitudes and be in the same phase so 
that the resultant vibration may be represented by 

y = a cos (nt) + a cos (mt), 

where m and n are nearly equal. 

Hence y = 2a cos | {n — m) t cos A (n -f rn) t, 

which may be regarded as a simple harmonic vibration of 
frequency {n -f- ?/i)/477 with am^ditude 2a cos | [n — m) t, and as the 
amplitude varies between 0 and 2a with a period 477/(n-~m) the 
phenomenon will be as described. For example, if two tuning 
forks of frequencies 500 and 501 be equally excited there is a rise 
and fall of sound once a second corresponding to the coincidence 
or opposition of the vibrations. 

12*8. For further information on the subject of the last two 
chapters, reference should be made to Donkin’s Acoustics^ Lord 
Rayleigh’s Theory of Sound and Sir H. Lamb’s Dynamical 
Theory of Sound, 

♦ A paper on ‘The Graphical Recording of Sound Waves ’ was road by D. C. Miller 
at the International Congress, 1012, Proceedings, ii, p. 245. 

RH 23 
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EXAMPLES 

1. Prove that the velocity potential of the one-dimensional motion of a 

gas, for which p = Kp, satisfies the equation 

dt \dt \j^x) j aa; / * 
where djdt denotes different iation at a fixed point. (Trinity Coll. 1897.) 

2. Prove that in a fluid medium in which the pressure {p) and the 

density (p) are connected by an equation p = 0 (p), where <l>' (p) is positive 

and increases when p increases, a plane wave of finite amplitudes cannot be 

propagated indefinitely without the occurrence of discontinuity. 
(M.T. 1897.) 

3. In an organ pipe of length Z, closed at one end, the pressure at the 

other end is made to vary a(;cording to the law hp = Pof^mnt. Find the 

velocity potential of the motion of the air inside. (Trinity Coll. 1897.) 

4. Taking y as 1*41 and the height of the homogemeous atmosphere as 

8000 metres, (ialculate the velocity of sound in air in metres per second. 

Find also the length of an organ pipe which with one end open and the 

other stopped will sound the middle C (frequency 250). 

(Univ. of London, 1911.) 

5. What is the difference between the overtones present in an 8-ft. 

stopped organ pipe and a 16-ft. open pipe? (M.T. 1913.) 

6. Find the length of a stopped pipe with a hmdamental frequency of 

64. Assume the air to be under a pressure of 1 *013 x 10® dynes per sq. cm. 

and to have a density of 1*293 grams per litre, the ratio of the specific 

heats being 1*41. (M.T. 1915.) 

7. Assuming the atmosphere to be in convectiv^e equilibrium (i.e. in 

equilibrium according to the law of pressure p = Kp^) under the action of 

gravity, prove tliat the equation of propagation of sound vertically up¬ 

wards is -^2^ 

0Z2 = 9 |(y- 8x^ ^ dx )• 
where grA (y -> 1 )/y is the ratio of the pressure to the density at the surface of 

the earth and ^ is the displacomtmt at a heiglit x. (Coll. Exam. 1899.) 

8. A tube containing air has one end rigidly closed, and the other end 

stopped by a plug of mass M, which can move without friction in the tube. 

If the length of tube fiUed with air be Z, prove that the periodicity of the free 

vibrations is given by 
tan • — , - j 

c c M 

where c is the velocity of sound in the enclosed air, and M' the mass of the 

air. (Coll. Exam. 1906.) 

9. A tube of unit cross section open at both ends is divided into two 

parts of lengths Z, V by a thin piston of mass M attached to a spring such 
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tha”* ^mlm is its natural period of vibration. When the air waves are taken 

into account prove that the period of vibration is 2xr/n, where 

M (m® — n®) = pen [tan nVjc + tan n?/c]. 

(Coll. Exam. 1907.) 

10. A piston of mass M is supported by a sj^ring of strength Afn®, and 

separates two gases of densities p, p' in a long tube; the area of the section is 

S and c, c' are the velocities of soimd in the two gases. Shew that the free 

oscillations of the piston are given by 

(St John’s Coll. 1910.) 

11. Air is confined in a straight tube of unit section between two pistons, 

one of which is made to vibrate with velocity a cos nctf and the other is of 

mass M and is constrained by a spring of strength p. Shew that the 

velocity potential for the air vibrations is 

a cosn (1 —r + c) 

n sinn(/-t-€) 
cos net, 

where tan nc = ^ distance between the pistons and p 

the density in equilibrium. (M.T. 1903.) 

12. A tube of length I is closed at one end and open at the other, and is 

filled with a gas of mean density p^. A pressure disturbance Ap^sinat is 

maintained at the open end by waves passing outside the tube. Prove 

that the velocity at any point within the tube is 

_ . cos at cos {cr (I —x)/c} 

c cos {aljc) * 

where c® = dpjdp evaluated for p = po and the origin is at the open end. Find 
how the pressure varies at the closed end. 

p]xplain the physical significance of the vanishing of the denominator 

for certain values of a. (M.T. 1929.) 

13. A straight pipe of length I is closed at one end and open at the other. 

Provo that, if the air extend only from the open end to the middle point, 

the other half being occupied by a gas of density p^, then the frequencies of 

the natural modes of the* pipe are the values of p satisfying the equation 

^ Trpl . rrpl , 
tan - tan —^ = p^ cjpc, 

C Cj 

where p is the density of the air, and c, are respectively the velocities of 

sound in air and in the gas. (M.T. 1895.) 

14. In a cylindrical pipve, open at one end, closed at the other, it is found 

experimentally that, when the fimdaroental note is being sounded, the 

pressure at the closed end varies on either side of its mean value by one nth 

of that value. Prove that at the open end the amplitude of vibration of the 

particles of air is 2Z/n7ry, where I is the length of the pipe and y the ratio of 

the specific heats of air at constant pressure and constant volume. 
(Coll. Exam. 1911.) 

a3*a 
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15. A horizontal uniform tube closed at both e^nds and containing air is 

divided into two parts of equal length Z by a tightly fitting piston of mass 

m which can move without friction in the tube. The piston is displaced a 

small distance d from its equilibrium position in the middle of the tube and 

then released, the air being initially in equilibrium. Shew that th(^ motion 

of the piston is made up of harmonic components whose periods (^w/n) are 

given by (nljc) t&>n{nllc) = m'/m, where c is the velocity of pmpagation of 

small disturbances in the enclosed air whose mass is m'. 

Assuming the possibility of the expansion 

/ (x)=:AiCOii(nixjc) + A2COH(n2xjc) +...» O^x^l, 

where , Wj, ... arc the roots of the j)eriod equation, prove that the initial 

condensation in either part of the tube can be expressed in the form 

2d 

■ I 

I 

rifl . fir I 
+ sjn cos 

c c c 

rirX 
—: cos --- 
n^l c 

/■ 

(M.T. 1920.) 

16. A long straight tube of cross section a has at one point a close-fitting 

piston controlled by a spring but otherwise frec^ to move in the tube. The 

mass of the piston is m and its period of oscillation in vacuo would be 

27r/n. The tube is open to the atmosphere at both ends and initially the 

piston and the air are at rest. Prove that, if a velocity u is suddenly given 

to the piston, the displacement of a layer of air at a distance x from the 

piston after a time t is 

k^) - *“) (< - xlc)], 

where k^cpQOLjnif pQ being the equilibrium density of the air and c the 

velocity of sound. (M.T. 1932.) 

17. In a uniform straight tube of length 21 and sectional area co, closed 

at one end, a quantity of gas is imprisoned by a thin movable piston of 

mass M, Under the pressure of the f'xtc^rnal atrnospliere of density p the 

equilibrium po.sition of the piston is at the middle of the tube, and the 

density of the enclosed gas is then a. Prove that the periodic times 2rrlp of 

the oscillations of the piston about its position of equilibrium are given by 

the equation Mpjo} — cacot (pZ/c) — c'p tan^(p^/c'), 

c and c' being the velocities of propagation of sound in the enclosed gtis and 

in the atmosphere respectively. (St John’s Coll. 1900.) 

18. A long straight speaking-tube is obstructed in the midclle by a 

uniform rigid plug with plane ends, of icuigth z and density equal to N 

times that of the air. The plug fits the tube accurately, but is free to move 

in it without friction. Prove that, if sound of wave length A is advancing 

along the tube, the intensity of the sound transmitted beyond the plug 

will be less in the ratio 1:1 -f and its phase retarded by 

{ta,n-^(7rNzlX)-27rzlX}, (M.T. 1901.) 

19. A closed pipe of length 21 contains air whose density Is slightly 

greater than that of the outside air, in the ratio 1 -f c: 1. Evoiything being 



EXAMPLES 357 

at rest, the discs closing the ends of the pipe are suddenly drawn aside. 

Shew that after a time t the velocity potential is 

(-1). 
,=o (2^ + 1)' 

(2s-\-\)ttX . (28-^\)TTCt 
cos ^— sm --— 

21 21 

the origin being taken at the middle of the pipe, and c denoting the velocity 

of sound. (St John’s Coll. 1903.) 

20. A straight pipe of length Z is open at on(i end and the disc closing the 

other end executes small inexorable oscillations, its displacement at any 

time i being A sinpZ. Prove that at any time the kinetic energy of the air 

in the pipe is 

cl c J 
coa^pZ, 

where c is the velocity of sound in air and M is the mass of air contained in 

the pipe. Investigate also the potential energy of the air in the pipe. 

(Trinity Coll. 1900.) 

21. Plane waves of sound represented by <^ = A cos m (x + cZ) impinge 

perpendicularly on a rigid screen and are continuously reflected by it. 

Prove that the increment of the pressure per unit area on the scrcjen lies 

between ± 2Amcpo, where is the density of the air. (Coll. Exam.) 

22. Determine the velocity potential of a plane wave of sound, of 

small amplitude, for all x, Z, given that when Z = 0 

Fluid is contained in a long straight tube closed at one end x = 0. When 

Z = 0 the fluid is everywhere at rest while the condensation a is (constant) 

for values of x between 0 and a and zero elsewhere. Determine a for all 

Xj Z; draw (5, Z) graphs for the values Ja and ija of x, and explain the 

difference betweem them. (M.T. 1933.) 

23. Shew that the form of the equation 

dfl ~ dx^ 
for plane waves of sound in a pipe remains imaltered when the velocity of 

sound c is a function of x. 

Sound waves are set up in a closed pipe of length k in which the absolute 

temperature of the gas varies as the square of the distance x from a point 

at a distance Z outside one end of the pipe. The velocity of sound at this end 

is Cq . Shew that the form of the sound waves in the pipe must be 

f = A '\/x sin log 1 

where 2 ^ i possible frequencies p are the roots of 

p*Za_ nV* 
V '■*’^{log(l + fc/Z)f’ 

where n is any positive integer. Compare these frequencies with those 

when the velocity of sound has the constant value Cq. (M.T. 1924.) 
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24. A long straight pipe of unit sectional area extends to infinity in 

one direction (taken as that of the z axis) and is closed at2;=—?;at2: = 0 

there is a freely movable piston of mass m, on both isides of which tluire is 

air of density p. Waves in which the displacement is given by a sin k(z-^ ct) 

impinge on the positive side of the piston. Shew that if the reflected waves 

are expressed by sin {k (z — ct) + c}, then aj® = n^; also shew that if is 

taken equal to a = cot kI- Km/p. (M.T. 1928.) 

25. If a straight tube of indefinite length be occupied by two different 

gases with the sc3Ction = 0 for surfa(;e of contact; shew that the displace¬ 

ments in an incident wave together with those of the corresponding 

reflected and refracted waves may be represented by 

/(i-x/cj), Af(t-jrxlci), Bf{t~xlc^), 

where A — g2^2 * ^Pi • Pi p2^2» 

and determine the distribution of the primitive energy between the 

reflected and refracted systems. (St John’s Coll. 1906.) 

26. Two plugs, each of mass M, fit closely into a long straight tube, and 

can slide without friction in the tube. They are kept apart by a light spring, 

the tube, except the part between the plugs, being filled with air. A train 

of simple harmonic sound waves of amplitude a impinges on onus of the 

plugs. Shew that the amplitude of the wave transmitted beyond th(3 

other plug is actp/V(a^ -f 1 j {a^ + (1 ~ jS)®}. Here 27ra = M'jM, where M' is 

the mass of air in a length of the tube equal to a wave length of the incident 

wave, and ^ = 2A;/n®A/, where 27r/a is the period of the incidtint wave, and 

kx is the increase in the tlirust of the spring when its length is decreased 

by a:. (M.T. 1931.) 

27. An infinite long straight tube of unit cross section contains gases 

of densities p, p' separated by a smoothly fitting piston of mass M, An 

harmonic train of sound waves of length 2rr/m is incident on the piston in 

the gas of density p. Shew that in transmission beyond the piston the 

amplitude of the waves is changed in the ratio 

2cp; Viicp + c'py + MhnV}, 

and the phase by tan~^ Mnvcl(cp -f c' p'), 

where c, c' are the velocities of sound in the two gases. (M.T. 1930.) 

28. An endless tube of uniform cross section contains two pistons; the 

intervening portions of the tube, of lengths , Zj respectively, containing 

air at atmospheric pressure. If one of the pistons be found to vibrate so 

that its displacement at time Z is X empt, shew that the displacement of 

the other is ^ {cosec {pli/c) 4- cosec (pZg/c)} „ ^ 

c {cot (piijc) 4- cot (pZj/c)}—mp ^ ’ 

where m is the ratio of the mass of the piston to that of the air contained in 

unit length of the tube and c is the velocity of sound in air. 

(Trinity Coll. 1898.) 

29. The period of the fundamental note of a flue pipe, open at one end 

and closed at the other, would be T, if the closed end were rigid. But the 
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barrier at the closed end is replaced by a piston of mass iWT, controlled by a 

strong spring of strength /i. Prove that the period of the fundamental 

note is approximately 

where m is the mass of the air in the pipe and 16m/(fi — 47r W) is assumed 

to be small. (Trinity Coll. 1902.) 

16m 
)■ 

30. Plane soimd waves of length A in a medium of density p impinge 

normally on a plane membrane which separates the medium from anothtir 

of density p'. The membrane is such that a pnjssure difference hp on 

opposite sides of it causes a displacement p, Sp. Show that the phase of the 

transmitted wave differs from those of the incident and reflected waves by 

c*p\ 
cot”^ 27rp { y i: » where c, c' are the wave velocities in the two media 

and A' is the length of the transmitted wave*. 

Compare the amplitudes of the three waves. (M.T. 1925.) 

Stt (. ctf 
31, A train of waves of air, velocity potential = A cos—^-, is 

A 
advancing in a straight pipe infinite in both directions, and at x = 0 im¬ 

pinges on a movable piston of mass M which separates the air of the pipe 

into two portions. Prove that the vc5locity potential of the train of waves 

transmitted to the air beyond the piston is 

A cos 
27re 

A 

2'rT(ci — X €) 
9 

where m is the mass of the air in a wave length of the pipe, and 

cos?f^ = m{n-*M» + m2}-i. (Trinity Coll. 1903.) 
A 

32. A long straight tube, of cross section cu, is obstructed in the middle 

by a piston of mass ilf, whose ends arc plane, fitting the tube aecuiately but 

free to move in it. To the right of the piston is gas of density p, to the left 

gas of density p', and the velocities of propagation of soimd in the gams are 

c and c'. Sound of wave length A is advancing through the tube from the 

right, and undergoes partial reflection at the piston. Shew that the 

intensities of the reflected and incident waves are in the ratio 

,(^Mc 
■^V^pXc' \o>p\c' ) J 

(St John’s Coll. 1901.) 

33. An infinite long straight tube of unit section contains gases of 

densities p and p', at the same pressure p, separated by a piston of mass M 

which can vibrato under the action of a spring of strength p. Sound waves 

of harmonic typo and amplitude A travelling in medium p are incident on 

the piston. Shew that if and A' are the amplitudes of the reflected and 

transmitted waves 

A*: Ai*: A'2 = )“ -f y V • 

(p — n^MY + (m — m'Y: 

where 27r/m, 27r/m' are the wave lengths in the media p and p' and n/m is the 

velocity of the waves in medium p, (M.T. 1898.) 
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34. Plan© waves of sound are travelling normally from a gajs of density 

Pi into one of density p^. Shew that the mean transmission of energy into, 

the latter gas is increased by interposing between the gases a layer of a 

different gas of density pg»provided that pa is intermediate in value between 

Pi and Pa, the ratio of the specific heats having the same value in each gas 
(M.T. 1911.) 

35. Two media of different densities have a {)lane surface of separation, 

one medium extends to infinity and the other is bounded by a rigid plane at 

a distance I from tlieir common plane of separation. Plan© waves of soimd 

travelling in the first medium are refracted into the second medium and, 

after reflection at the rigid boundary and another refraction, emerge into 

the first medium again; prove that the amplitudes of the incident and 

emergent waves are equal, and that there is a loss of phase of amount 

2 tan~^ 
fsin 2a', /27rl cos a'\ ] 

where a and a' are the angles of incidence and refraction at the surface 

separating the two media and A' is the wave length in the second medium. 

(M.T. 1906.) 

36. A train of plane waves of sound of a type given by a velocity 

potential 2,r 
<j> = A sin 

is incident at an angle a on an infinite plane rigid surface. Find the velocity 

potential of the reflected systt^rn of waves, and shew that the pressure on a 

square area in this plane, whose side is 2a, differs from its equilibrium 

value by the quantity g.4 . 2^ sin a ^ 
Sin-r-cos d. 

Sin a A 

where 6 is the phase at the centre of the square, p^ being the mean density 

of the fluid, and the sides of the square being parallel and perpendicular to 

the intersections of the wave fronts and the rigid surface. (M.T. 1900.) 

37. A plane wave of sound of wave length A travelling with velocity V 

in an infinite medium of density p is transmitted through a plane plate of 

thickness I and density p^ in which the velocity of sound is Vi into another 

infinite medium of density pg in which the velocity of soimd is Fj • ^Shew that 

the phase of the transmitted disturbance is the same as that of the original 

disturbance if tan p2 

tan El Pi' 

EE^ + Ei^ 
Ei(E-\-E\y 

where 
_ 27rZ cos $ 

= 2vl (- sin» 0)i/Api, = 2nl (— sin^ 6)i/Xpt, 

6 is the angle of incidence at the first surface of the plate and it is supposed 

that F/F2> F/Fi>sin^. What would be the physical nature, of the dis¬ 

turbance witliin and beyond the plate if F/Fa>sin0> F/Fj? (M.T. 1896.) 

38. In the case of refraction of plane waves of sound at a plane surface 

of separation of two media of densities p, pi, the ratio of the energy trans- 
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mitted per unit time into the second medium through a given area of tlie 

boundary to the energy of tiie train incident per unit time on that area is 

(4/)pi cot a cot ai)/(/>i cot a + p cot a^)^, 

a, oci being the angles of incidence and refraction. (M.T. 1894.) 

39. An infinite plane membrane of imiform surface density a and uni¬ 

form tension 2\ coinciding with the j)lanc xOz, sej)arates two gases of 

densities p and p' in which th<i velocities of propagation of sound are V and 

V\ The infinitesimal motion of the mtmibrane being given by 

y —A cos ni3b sin jjt^ 

shew that the velocity potentials in the gases are 

<l>— — Apn~^e~^^ coi^mxcospt and cj/ ~ Apn'~^e^'^ cosmxcospt 

where m2 —— n'^—p^jV'^ and Tm^lp^ — a + pInApU'^'* 

all the quantities concerned being supposed real. (Coll. Exam. 1898.) 

40. A gas extends everywhere to a distance a from a plane rigid wall and 

i.s separated from a second gas by a light perfectly flexible membrane from 

which the second gas extends to a great distance. vShew that, if , Cg b(^ the 

velocities of sound in th(^ two rra^dia, tht^ displacements perj^cndicular to 

the wall for plane waves of f)eriod 27r/p are rospc^ctively of the form 

ii = A cos {pt + a) sin cosc^c 
Cl Cj 

f2 = ■/! t‘0.s (pt H- a) cos sec 

and determine the necessary value of e. (Coll. Exam. 1903.) 

41. A tube of small uniform section S {md length I has one end closed 

while the other end branches into two tubes of small uniform sections S\ 

S" and lengths l\ 1" respectively with tluur cmds closed. Shew that the 

jieriods of the notes which the air in the tubes can sound are the values of T 

satisfying the equation 
2ttI 2-1x1' 27x1" . 

S tan ^ -f S tan + S tan ™ = 0, 
cT cT cT 

whore c is the velocity of sound in air. (M.T. 1899.) 

42. Determine the periods of the fundam<mtal tone and overtones (i) of 

a conical pipe open at both <Mids, (ii) of an open wedge-sha}>ed pipe whose 

walls are formed of two planes inclined to each other and two other planes 

perpendicular to both of them. (St John’s Coll. 1899.) 

43. A point source of sound of strength C cos nt is at a point O at a 

perpendicular distance h from an infinite rigid plane which is tlu^ only 

boundary of the medium. Shew that at tirnt't the velocity potential at a 

point at distances rj and from O and the image of O in tlu' bountlary is 

£[Ac.,osn(<-’;)+h.o.sn(«-’-*)]. 

and by considering the rate at which encagy is transinitt(?d across the 

surface of a large sj)hore centre O, or otherwists shew that in maintaining 

the source work must bo done at twicer th(‘ rate which would be necessary 

if the medium were unbounded. (M.T, 1934.) 



362 EXAMPLES 

44. An infinite train of divergent waves is set irp by the pulsation of the 
spher ical internal boundary, of radius i? (1 -f asin net), where a is small, in 
an otherwise unlimited mass of uniform fluid. Find Ihe velocity potential 

of the motion, and prove that the mean energy-density at radius r is 

pfc2c2a2i^6{l + 2^V2)/4r4(l + /c2/t:2). (M.T. 1928.) 

45. Explain the characters of the sources of sound which give at a 

distance velocity potentials of the forms 

dmiKit — rjc) ^mYK{t — rjc) 
„ ^ and ^ ~ 

respectively. Which of them would most suitably represent the action of an 
ordinary tuning fork ? 

Explain the alternations of sound and silence that occur when a 

vibrating fork is rotated on its axis near the ear. (St John’s Coll. 1897.) 



CHAPTER XTII 

VISCOSITY 

13*1. Thb Viscosity of a fluid is that property in virtue of 

which it is able to offer resistance to shearing stress. It is a kind 

of molecular frictional resistance. All known fluids whether 

liquid or gaseous possess the pro})erty of viscosity but in greatly 

varying degree. 

There is a distinction between plastic solids and viscous fluids 

which was defined by Maxwell thus: when the smallest stress if 

continued long enough will cause a constantly increasing change 

of form the body must be regarded as a viscous fluid however hard 

it may be; but if the continuous alteration of form is only pro¬ 

duced by stresses exceeding a certain value, the substance is 

called a solid however soft (or plastic) it may be*. 

13‘ 11. Measurement of Viscosity. The method of measur¬ 

ing the effects of viscosity may be illustrated by considering a 

A U B 

C D 

simple example: Suppose that fluid is bounded above and below 

by horizontal planes A B, CD of which the upper has a uniform 

horizontal velocity U while the lower is at rest. 

We assume for the moment that a fluid in contact with a solid 

does not slip on the surface. The fluid between the planes will 

then move in horizontal strata with velocities which decrease as 

we go downwards from U in contact with ABto zero in contact 

with CD, If d be the distance between the planes, the velocity 

gradient (assumed to be uniform) is UJd, and to maintain the 

motion of the plane AB will require a horizontal force propor¬ 

tional to U jd per unit area of AB, If we denote this force per unit 

area by iiUjd, then is called the coefficient of viscosity of 

the fluid under consideration. 

♦ Theory of Heat, p. 303. 
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If we consider any horizontal plane in the fluid, the portions of 
fluid above and below it will exert on one apother a horizontal 

traction jd per unit area; i.e. /x times the velocity gradient. 

And in a more general case, where we do not assume the velocity 
gradient to be uniform, if z be an axis at right angles to the planes 
and u the velocity at any point, the tractive force on either 
portion into which a horizontal plane through the point divides 
the fluid is measured by fiduldz per unit area. 

The foregoing hypothesis of a frictional resistance proportional to the 

relative velocity of the fluid elements was introduced by Newton* in a 

discussion of the circular motion of a fluid ])roduced by a revolving solid 

cylinder, and it has been found to constitute a satisfactory basis for a 

theory which has been froqutjntly tested by experiment. 

13*12. The coefficient of viscosity of a fluid is not a constant, but 
depends in general on pressure and temperature. For gases p, as deduced 

from the kincdJc thi'ory, is independent of the pressure, but increaw>s 

rapidly with incn^ase of temperature. For liquids in general, watt^r 

being an exception, /x increases with the pressure. At temperatures below 

30° the viscosity of water at first decreases with increasing pressure and 

has a minimum value at about 1000 atmospheres. At temperatures above 

30° water behaves like other liquids, i.e. its viscosity increases with 

increase of pressures but for such pressure changes as ordinarily occur 

the clianges in viscosity are small compared with the clianges due to 

varying temperature. 

The physical dimensions of the coefficient of viscosity are given by 

ft X vt'locity/length — force/area, 

or g=:Mb-iT-b 

13*2. Stresses in a Fluid in Motion. The essential distinc¬ 
tion between a real fluid and the ideal perfect fluid of the previous 
chapters is that while the stress across any plane surface in the 
latter is always normal to the surface this is not true of real fluids, 

and when these are in motion tangential components of stress 
always exist unless the rate of deformation is zero. The im¬ 
mediate consequence of the existence of tangential stresses is 

that the theorem of equality of pressure in every direction at a 
point, true for a perfect fluid, no longer exists. We need there¬ 
fore, in the first place, a mode of specifying the components of 

stress at a point in a fluid, and secondly to determine what 

relations exist between these components; and our ultimate 

* Principia Mathematical 2nd edition, 1713, Bk. u, Sec. ix, ‘Hypothesis: 
BeMatentiam, quae oritur ex defectu lubricitatia partium Fluidi, caetcris paribus^ 
proportionalem ease velocitatit qua par tea Fluidi aeparantur ab invicem \ 
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object is to determine what expressions are to enter into the 
equations of motion of a viscous fluid in place of the pressure 

terms dpjdx, dp/dy, dpjdz which occur in the equations of motion 

of a perfect fluid. 

13*21. Definitions. Imagine a small plane surfa(*c, whose area 
we take as the unit, placed in an arbitrary direction at a point P 
in a fluid. The direction of the area may be indicated by a vector h 
at right angles to it. Take any set of rectangular axes Pxyz \ then 

the stress across the surface may be resolved into three rectangular 

components in the directions of the axes and these will be denoted 

Phx^ Phu’ Vhz- 
In this notation the first suffix indicates the direction of the 

j)lane surface {not of the force upon it), and the second suffix 
indicates the direction of the component stress. 

"I'he resultant stress across the surface has of course direction 

cosines proportional to jhiy Phz’ 
Now let a small plane area centred at (a*, ?y, z) be })laced at right 

angles to each of the coordinate axes in turn, then in accordance 
with the above symbolism the components of stress per unit area 
parallel to the axes in the three cases are 

Vxx > Vxy y Pxz > 

Vyx > Pyy > Pyz > 

^i^nd Pzyy Pzzy 

where the components Pzz cloaiiy normal to the 
surfaces on which they act, while the other six symbols denote 

tangential components; e.g. ^ force in the direction y on an 
area perpendicular to x. 

We shall consider the symbols 2>xx^ Vytr Pzz positive 
numbers when they re])rcsent tensions, so that a pressure is to be 

regarded as a negative stress. In a non-viscous fluid we have 

Pxx^Pyy=^Pzz=- -Py 

Pxy ~ Pyx ~ Pxz > pf H • 

13*22. Relations between rectangular components of 
Stress. Consider a small rectangular parallelepiped with its 

centre at {x, y. z) and edges of lengths 8y, 8z parallel to the 

axes. 
In relation to a surface at right angles to the axis of x, the stresses 

per unit area at {x,y,z) are p^^, p^^, The corresponding 
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and the senses in which they act on the fluid in the parallelepiped 
are indicated in the diagram. At the centre of the opposite face 

the corresponding stresses are 

dx 
' ^Pxu^ 

acting on the fluid in the parallelepiped in the opposite senses to 
the former. Proceeding as in 1-3 we may shew that the stresses on 

this pair of opposite faces may be compounded into forces 

acting at (x, y, z) parallel to Ox, Oy, Oz respectively, and couples 

--p^z^xSySz, p^yhxhyhz about Oy, Oz respectively. 

The stresses on the other two pairs of opposite forces may be 
compounded into similar forces at {x, y, z) parallel to the axes, and 

couples -p^^hxhyhz, Py.hxhtjhz 

about Oz, Ox and —pzyhxhySz, 

about Ox, Oy respectively. 
It follows that if, as in 2-1, we write down equations of motion 

for the fluid in the parallelepiped by resolving parallel to the 
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And further if we take moments about lines through (x, y, z) 

parallel to the axes for the kinetic reactions and the forces acting 
on the fluid in the parallelepiped, we get 

{Pyz—Pzy) SxSySz + terms of the fourth degree in Sx, 8y, Sz = 0 

and two similar equations. 

So that on dividing by SxSySz and making the edges shrink to 

zero, we get , and similarly and ^Pyj,; so that 
the nine rectangular components of stress at a point are reduced 
to six. 

We have now to find the connection between these six com¬ 

ponents of stress and the gradients of the velocity of the fluid. 

13-23. Connection between Stresses and Gradients of 
Velocity. It is the relative motion of fluid particles which give 
rise to the tangential stresses just described. The stresses in an 

element of fluid are not affected by its translation or rotation but 

only by its distortion, i,e, by the relative motion of its parts. We 
have seen in 4* 1 that the relative motion can be analysed into 

pure strain and rotation, and the state of stress depends only on the 
state of strain. At every point there is a rate of strain quadric whose 

axes are in the directions in which the lines joining particles are 

undergoing elongation at uniform rates. It follows from con¬ 

siderations of symmetry that the stresses across the axial planes 
of the strain quadric at any point are normal to these planes. We 

may call these the principal stresses at the point and denote 

them by p^, P3. We shall use the principal stresses as a con¬ 
necting link between the six general com])onents of stress and the 

gradients of the velocity. 

Let Px'y'z be the axes of therattM)f strain quadric at P, and let 

be their direction cosines referred 

to any other rectangular axes Pxyz. The velocity components at 

P are u, v, w referred to Pxyz, and u\ v\ w' referred to Px'y'z\ 

with the distinction that while u, v, w are in general all functions 
of X, y and z, yet u' is a function of x' alone, v' a function of y* alone 

and w' a function of z' alone (4-1). 
Then with the notation of 4-1 
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or a = + l^c*; '1 

similarly h = m^a' + m^h' 4- m^c’ 

and c = n^a’ 4- n^h' + n^c\ j 

and, incidentally, a 4- 6 + c = a' 4- 6' + c', 

each side representing the dilatation (1*3). 
Again, from 4*1, 

(0 0 0 \ 

0x' 02') 

02/' 0P' . 0?P' 
== imir/i 4- 22/10 2?2 0^^, + 2m,, 

or /— miiii/i' 4- moU^b' 4- m^n^c'; 

similarly ?7 = ni/ia'4-+ ^3^^' .(2) 

and h^liniia' -{-l^m^^b' + l^m^c\ . 

Now let a plane at right angles to Px cut Px\ Py\ Pz' in Ay By 
C, forming with the coordinate planes Px'y'z' a tetrahedron of 
small dimensions. Let A denote the area ^ 
ABC, then the areas PBC, PC A, PAB ^ 

are A, stresses on /x 
them are the normal stresses / 

Pj^/jA, P2^2^» I y/ 
But the stresses on ABC are / Z.-- 

/ / P A X' 

Pxx^f Vxy^'f Vxz^ j/ 
parallel to Px, Py, Pz. So if we resolve 

in the direction Px for the fhiid in the 
tetrahedron and note that the resolved 
parts of the kinetic reactions and external forces will be of higher 

order of small quantities, we have 

Vxx A Zj A. 4-p2Zg A. Zg 4-p-^Z3 A. Z3, 

or Vxx=^Pi<i^lhh^-^P^h^\ \ 

m. ^ ,4-mo^ / + W3 
^0x “0y 

A-n^v -\-n^w') 

- 

similarly 

and 

Whence 

PyV=^Pl'f^l-^Pz'^t^-^Pz^^^\ .(3) 

Pez =Pini^ + Pi'>h^ + P3'»<i“- * 

Pxx+Pvu-^Pzz=^P\+P2+P^ .W- 
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Thus the sum of the normal stresses across any three perpendi¬ 

cular planes at a point is the same. We denote this sum by — 3p, 

so that p denotes the mean pressure at a point. 

Again, if for the same tetrahedron we resolve parallel to Py, 

we get A = ij, A. m, + 2)ji A. +jJa ^3 A. m3 

or + 

similarly .(5) 

and Pzx=^Pi'>^ih+P2'<^ih + Paf*'sk- ) 

We have thus expressed the six stresses of 13* 22 in terms of the 

principal stresses, but we cannot proceed further without an 

assumption. 

We assume that these principal stresses Pn Pz, Pz diflFer from 

their mean value —p by linear functions of the rates of distortion 

a', b\ c' of the fluid element, and write 

-jp + A(a'-f 6'-f c') + 2/xa'j 

P2^ -jp + ACa'-f 6'-fc')-i-2/x^'i ... 

P3 ~ —p X{a -i-b' -{• c') -{' 2/xc^ j 

.(6). 

SincePi+P2+Ps = ~ ^P> it follows by addition that 

Hence, from (3)«.<i(l), 3A + 2M-0 . .(7). 

jPx»= -p-lp{a + b + c) + 2tjM, 

or 
2 (du dv dw\ ^ du 

Pxx= -P - 3M + ^ + dx ’ 

similarly 
2 (du dv dw\ ^ dv 

Pvv=-p-^p (ax ay ^ az / ^ ay .(8) 

and 
2 (du dv dw\ ^ dw 

^ “ 3 ^ (ax a'y az) "8z', 

Again, since — therefore, from (5), (0) 

and (2) we have 

Similarly 

and 

Py^ = 2/ll -f m^n^c/y 

=w 

_ /du dw\ 
Pzx - Pxz + g- ) 

, Idv du\ 
i’xv - i>|,x - 2M - M +-g-j • 

(9) 

RH 24 
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Thus (8) and (9) express the six components of stress at a 

point in terms of the mean pressure at the pcjint and the gradients 

of velocity. 

13*24. We notice that in the special case to which reference 

was made in 13-1, viz. that of a steady flow with velocity u at 

right angles to the axis of 2, we have v = w = 0, and the tangential 

stress in the direction of flow, from 13*23 (9), is 

p^^ixdujdz, 

so that the symbol /x introduced in 13*23 (6) is what we have 

already defined as the coefiicient of viscosity. 

13*3. Equations of Motion. We now obtain the equations 

of motion in their most general form by substituting in 13*22 (1) 

from 13*23 (8), (9), viz. 

Du 
=pX- 

dp 1 (du dv dw' 

Dt'' dx dy'^ dz^ 

Dv 
-pY- 

dp 1 d , (du dv dw' 
-/d- 

dy 3^ dy\ [dx dy'^ 02, 

Dw 
= pZ- 

dp 1 a. (du dv dw 

^ Di'' ''dz'^ 3^^ 'dz' dy^ 

j + /X 

In the case of incompressible fluid 

du dv __ p. 

dx^ dy^ dz 

and we may write the equations 

Du ^ I dp 

Dt p dx 

Dv 

Di 

Dw 

1 dp 

' pdy 

1 dp 

.(2^ 

Dt p dz 

where v = /x/p is called the kinematic coefficient of viscosity. 

♦ These equations were first obtained by Navier (1822), but the mode of investi¬ 
gation given here follows that of Sir H. Lamb (see Hydrodynamics, §§ 323-328 (1932)) 
and is based upon a paper of Stokes, ‘On the Theories of the Internal Friction of 
Fluids in Motion and of the Equilibrium and Motion of Elastic Solids’, Trans. Camb, 
Phil, 8oc. viu, 1846, or Math, and Fhys. Papers, i, p. 76. 
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13-31. Boundary Conditions. At the surface of separation 
of two fluids, consider an element of a thin stratum whose opposite 
faces are close together but one in each fluid. Since the kinetic 
reactions and the external forces on the element are of higher 
order of small quantities than the stresses on its surface, therefore 
the resultant stresses on opposite sides of the surface of separation 
must be equal and opposite. 

Let A be a vector normal to the surface of separation and 
Z, m, n its direction cosines, and as in 13*23 construct a small 
tetrahedron PABC with the face ABC perpendicular to h and 
the comers A, B, C on Px, Py, Pz; then we find that the stress 

components in one fluid are given by 

Phx=^lPxx + inPvx + 'f>'P,^ I 

Phv = IPxv + ”^Pw + f (1). 
Phx=lPxz + '>npyz + nPxx ) 

with similar expressions for the components Vhy y Phz ^ 
other fluid; and, omitting the eflfects of capillarity, we must have 

Pkx = Phx\ Phv = Phv , Phx^PhJ.(2)- 
We shall assume in what follows that at the surface of separa¬ 

tion of a solid and a fluid no slipping takes place. Different theories 
were put forward by earlier students of the subject allowing for 
the possibility of slip, but strong evidence that in most cases no 
slipping takes place exists in the fact that mathematical results 
based upon this hypothesis are in general accord with calculations 
based upon experiment where such can be made*. 

13*32. Equations of Motion in Cylindrical and Polar Co¬ 

ordinates. As we shall have occasion to use equations of motion and 

stress components in other than rectangular coordinates we proceed to 

obtain the required forms. The transformations may readily bo effected 

by the tensor calculusf, but without assuming the necessary knowledge 

of this subject we proceed as follows: The acceleration components have 

already been found in 1*52; hence for an incompressible fluid we have only 

to calculate the terms in cylindrical and polar coordinates which are to 

take the place of the terms v vV*v, vVhv in the cartesian equations. 

With cylindrical coordinates r, $, z let v^,V0f Vg denote the components of 

velocity and/,.,/^,/, those of acceleration. Then 

ii = r,.cos ^ —v^sin^, v = v,. sin ^ 4-cos 

or u + iv=:^e*^{v^ + iv0) and w=Vg .(1). 

There are exceptional cases and there is a physical explanation based on the 
kinetic theory of gases. On this subject see The Physics of Solids and Fluids^ Ewald, 
Pdschl and Prandtl, 1930, p. 271. 

t See e.g. Handbaeh der Physik, vu, p. 94, J. Springer, Berlin, 1927. 

24-2 
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, -Du . „Dv , 
/, = co80^ + sm0p. /, 

. ^Du Dv 
-sme^+oosej^^ 

Therefore /,= — (cos d'Qhi + sin 6V*v) 1 
or p or I 

and ^+K(-sin^V*M + cosflV*«)J 

where V is the potential of the external forces. 
Now from (1) 

e-i« v* (m + iv) = e-*" W» (®, + w«) = Tv* + ^ ^ - ^2)1 

where, on the right. + i |;. + g 

Whence, by equating real and imaginary parts 

{Vr + iv 

COS 6 V^u + sin 6 Vh) = V*v,. — 

- sin 6 V^u + cos 6 V^v = + 

2 ^0__Vr 
r* ""r* 

2 dVr Vy 

Hence, by taking the acceleration components from 1*52, and sub¬ 

stituting (6) in (3) we have for cylindrical coordinates 

Dt r dr p dr \ 30 r*/ 

Dva VrV0_ sv I dp / 2 g>v ,7. 
Dt^ r ~ Tde prde^ y 80 rV (. 

3F 13p 
H- 

. 
and V* has the value (6). 

Ag€iin with polar coordinates r, 0, let qr^Qe* q^t denote the components 

of velocity and Ff, Fq, F^ those of acceleration. Then by comparing the 

velocities with those in cylindrical coordinates and taking account of the 

different meanings of r, 0 in the two systems, viz. that the former r becomes 

r sin 0, and the former 0 becomes we have 

t>,. = g,.sin04-g^cos0, = v* = g,. cos 0 — sin 0, 

so that V, + iv^ — (g,. + ig^) .(9). 

Also 

i?^^=/,cos0-|-/,.sin0, which from (3) and (6) or (7) ^ 

,CO80V*t..+ 

F^z=: —/,sin0+/,.oos0 

“/«~ ~ram.08A~~prsinOdijt^’'"*■ »•*si 

3^ r® sin* 

r* sin* 0 3^ r* sin* 

r sin 03^ sin 03^ sin* 03^ r*sin*0y/ 
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Now from (9) = 

where, in polars, 

“ '^rr)r^ dS dO- sin* d a<^* 

^cot0 . 2i d 
thenjfore e-*® V* + iv^ 

. , icc 
lVr) = {V^+ + r^de /«) (7r + ig«). 

•(H); 

.(12). 

and by e(|uating real and imaginary parts we got 

cos e -f sin 0 - ^2 - ‘'“2 ^ 3» - ^2 

- sin 6 + cos eV^Vr = V»f/« - </, + and 

...(13). 

Then substituting in (10) and taking the acceleration components from 

1*52 we have for polar coordinates 

+ dv idp 
Dt dr dr 

V r® ” r“ r* sin 0 d<l> J 
i>qj __ ^ , <yrg^ ~ ^ ^ _ 1 

r r rdd prdd 

■v(v'^qo- 

4. -L. ^ 
Dt ^ r ' r" ■ “ 

D 

2 dq^ 2 cos d dq^ 

■ sin*d'^r'-d8~r^s)n*'6l ~d$ 

ay _i 

r sin ffd<^ pr sin dd(j> 

) 

4- ^ 4- ^ ??.A 
sin* 0 r* sin ^ r* sin* 0 d^ > 

where in polai*s 

and V* has the form (11). 

Dy~ at ^ Vae 

a 
rsin Bd<l> 

e<i>J 
.(14), 

13*33. Components of stress in cylindrical and polar co¬ 
ordinates. We shall rn(‘roly state the results in cylindrical coordinates 

as the reader will be able to adapt to cylindrical coordinates the method 

us(m1 below for obtaining the formulae in polars. 

With the notation of 13*32 we have for cylindrical coordinates r, 
d,z: 

ve dvj 
r'^ dr 

...(1). 

For polar coordinates we proceed thus; take a set of rec^tangnlar axes 

Oxyz and let r, be polar coordinates measured in the usual way. Take 

a second set of rectangular axes Ox'y'z' such that the plane x'z' contains 

Oz and makes an angle <j>' with xz, and let the angle zOz' ~ B\ Then the 

direction cosines of the axes Ox^y'z' referred to Oxyz are 

cos 0'cos cos sin -“Sin6>' 

— sin cos <fi\ 0 

sin B' cos <!>', sin 6' sin cos B', 



374 POLAR COORDINATES 13*33- 

And with the notation of 13*32 

u = 9,.8in ^cos^ + g^cos^cos^'-^^sin^'l 

V = sin 6 sin ^ -f qe cos d sin ^ cos ^ I.(2). 

i£? = g^cos^ —g^sin^ J 

And if u\ v\ w' are components of velocity referred to Ox'y'z' we have 
from (2) 

u' = (Qr sin 6 cos cos 6 cos <l>~q^ sin <f>) cos 0' cos 

+ (g^ sin 0 sin ^ -f g^ cos 0 sin ^ -i- g^ cos <j>) cos 6' sin 

— (g^ cos $ — qs sin 6) sin 6' 

v'= — (g,sin^cos^ + g^cosdcos^ —g<^8in^)8in^' 

4-(g^sin^sin^4-gtfCOS^8in44*g^cos^)co8<^' 

w' = (g, sin 6 cos ^ 4- g# cos 6 cos ^ — g^ sin sin 0' cos 4' 

-h (qr sin 6 sin ^ 4- g^ cos 0 sin ^ + g^ cos sin 0' sin if>' 

4- (gr cos ^ — g^ sin 0) cos 0' 

Now we find the required expressions for the stresses from the values of 

Bu'jdx'y etc. when the axes Ox'y'z' are so moved that 0'=0 and 4^ = 

f'hen 
± d __0_ , 

dx' rd0* dy'^ rBm0d<j> ^ dz' dr* 

Hence by differentiating (3) and putting 0'^0 and ^' = 4 differentia¬ 

tion we get 

du' dq^ Or du'_ dq^ g^cot^ d^^^dqp' 

^'^7d0'^r" %'~fsin^a^ ' r ’ dz'^dr 

dv' _ dq^ dv' _ dq^ g- q^cotd 

dy'^rsinddif,^ r ’ 

dv' _dq^ 

dz'’^ dr 
...(4). 

dw'_ dqr ^ q0 dw' _ dq,. ^ q^ 

dx''~'rd0 r’ dy'rsm0d<l> r’ 

dw' ___ dqr I 

Thus we have for the components of stress in polar coordinates 

p„=-p + 2^^ 

P»*-P\rde^rameB^ r J 

(6). 
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13*4. Dissipation of Energy. If T denotes the kinetic energy 
at time ^ of a limited portion of fluid bounded by a surface S. then 

2!r = JJJ*p {u^ dxdydz.(1) 

and following the motion of the same portion of fluid 

I)T CCC / Du Dv Dw\ 

. 
Substituting from the equations of motion of 13*22 (1), we get 

= JJJp (uX -hvY -h wZ) dxdydz 

.<*'■ dx-^ dy + &■', ‘ \dx ' dy ' . 
The first integral represents the rate at which the external 

forces are doing work throughout the mass of the fluid. 
The second integral may be integrated by parts and gives 

- J J (Ipxx + ^^Pux + ff'Pzx) + V (IPru + mpyy + np.y) 

+ {Ipxz + ‘ff^Pyz + '>^Pzz)} 

CCC{Su dw /dv dw\ ) , , , -J// /dv 0w’\ 

(sz^-fyh^ 
+ ... + [ dxdydz 

where I, m, n are the direction cosines of the inward drawn normal 
to dS, By 13*31 (1) the surface integral may be written 

-JJ {UPhx-^n^l,V + '^'Phz)<^S .(i5), 

where the suffix h indicates a normal to dS, and this integral 
represents the rate at which the kinetic energy is being increased 
by the action of the stresses on the boundary of the fluid. 

If in the remaining volume integral we substitute from 
13*23 (8) and (9) we get 

2 rrr/3^ dv dw\^ ^ , 

W) ^ (az) 

du dv 

dx^ dy'^l)z} 

du dv dw\^ 

dx '^dy'^ dz) 

(du dw\^ (dv 

+ (&+ &) +(0i+Sji) }*’“'*'*.'*'• 
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In this expression p denotes, in the case of an elastic fluid, the 
pressure statically corresponding to the density of the fluid at 

Vi and the first integral represents the rate at which the 
various elements of fluid are losing intrinsic energy in consequence 
of internal expansion*. 

The remaining integrals on the whole are negative or at least 

never positive and represent the rate of dissipation of energy in 
consequence of internal friction. This cannot vanish unless 

du dv dw 

dx dy dz ’ 

and 
dw dv ^du dw_^dv 

dy dz dz~^ dx dx^ dy ’ 

i.e. in the notation of 4* 1 unless a==b — c and/= gr = A = 0. 

Since for an incompressible fluid a -f 6 + c = 0 therefore there 

must be dissipation of energy in a liquid unless 

a = 6 = c=/=9r = it = 0 

at every point; i.e. no extension or contraction of linear elements. 
It follows that only when the motion consists of a translation or 
rotation of the mass as a whole can there be no dissipation of 

energyf. 
It follows that in the special case of a liquid the rate of dissipa¬ 

tion of energy is represented by 

dxdydz (7). 

* In the oaae of an elastic fluid, from the equation of continuity 

//A*'<**'*=/1l-p 

= ~ffj ^ p 
where £l=—jpd denotes the intrinsic energy, or the work done by » nnlt mass 

of the fluid againeft external pressure as it passes from its actual Tolume to some 
standard volume. 

t See Stokes ‘On the Effect of the Internal Friction of Fluid on the Motion of 
Pendulums*, Trans, Camb. Phil, Soc, ix, p. 8, or Math, and Phys, Papers, m, p. 69, 
where a detailed discussion of the conclusion is given. 
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13‘5. The Reynolds Number. Experimental work con¬ 

cerning the motion of solid bodies through fluids is usually 

performed with models and it is of importance to know to what 

extent the full-sized body will behave like the model. A like 
consideration arises in connection with the flow of fluid through 

tubes of different diameters. 
If we regard an external field of force as producing a hydro¬ 

static pressure and take p to be the dynamical part of the 

pressure, i.e. the amount by which the total pressure exceeds 

the hydrostatic pressure, then in the equations of motion of a 

fluid, omitting the external field of force and the hydrostatic 

pressure there are three types of forces, viz. (i) the reversed effective 

forces or inertia terms of the type pdujdt or pudujdx, (ii) pressure 

terms dpjdx, etc., and (iii) terms arising from frictional forces of 

the type pd^ujdx^. In order that the flow may be geometrically 

similar in two corresponding motions it is necessary that the 

ratios of the forces represented by these sets of terms shall be 

the same in both motions. Since however the forces (including 

reversed effective forces, as in D’Alembert's Principle) which 

enter into any equation balance one another, it will suffice to 

consider the ratio of two of the types, e.g. (i) and (iii). 
In the case of a body moving through a fluid the velocities are 

all proportional to the velocity of the body, say U; and we can 

choose a length I associated with the body to represent the linear 

scale of measurement. Terms of type (i) are then of dimensions 

pU^jl, and terms of type (iii) are of dimensions and for 

similarity we require that the ratio pU^/l — pUor R = pUllp 

shall be the same in both motions. 

The expression pUl/p or Uljv, where vis the kinematic coeffi¬ 

cient of viscosity is called the Reynolds number, after Osborne 

Reynolds who first investigated the question of similarity*. It 

represents the ratio of the inertia terms to the frictional terms in 

the equation of motion and it is clearly non-dimensional. A 

necessary condition for the dynamical similarity of two fluid 
motions in which the systems are geometrically similar, is that 

they must have the same Reynolds number and the boundary 
conditions must be the same. 

Further, if F represents the component in an assigned direction of the 

force on the body duo to the stresses on its surface, then FlpUH^ is non- 

♦ Phil, Tram, R,S, CLXXiv, 1883, or Scientific Papers, u, p. 51. 
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dimensional and muat therefore depend on a non-dimensional combina¬ 

tion of the data p, U, I, /a, and R is the only such combination so 

that F=pUH*J(R). 

For a particular case a series of values of/ (12) is determined by experiment 

by varying ^ or v as may be convenient. 

The importance of the Reynolds number lies in the fact that it 
gives some indication of the nature of the corresponding fluid 

motion. Thus a small Reynolds number implies that viscosity is 

predominant, and a large number implies that viscosity is small 

or that the effects of inertia outweigh the effects of friction. 
Also it was found by Reynolds* that in the case of flow 

through a tube the steady laminar flow breaks down and the flow 

becomes turbulent when Ullv exceeds a definite limiting value, 

where U denotes the mean velocity of the fluid and I the diameter 
of the tube. It follows that for small values of I the dynamical 

equations represent the actual motion for a wide range of velo¬ 

cities, but if I is large then either U must be small or the viscosity 

large for otherwise the motion will be turbulent. 

The simpler problems of fluid motion which can be considered 

are divided into two classes according as the corresponding 
Reynolds number is small or large. In the former case viscosity 

is predominant and the inertia terms in the equations may be 

regarded as negligible. In the latter case the frictional terms are 

small, and we shall see later that in the case of relative motion of a 

fluid and solid boundaries this means that at a distance from the 
boundaries the frictional terms in the equations are negligible so 

that the conditions there approximal^e to the motion of a ‘ perfect ’ 

fluid, but near the boundaries there is a thin layer of fluid in 

which viscosity is effective and in which the velocity of the fluid 

varies from that of the solid in contact with it to that of the 
frictionless motion outside the layer, and the smaller the vis¬ 

cosity the thinner is this layerf. 

13* 6. We shall next consider some problems of steady motion 

either of such a special kind that the inertia terms vanish identi¬ 

cally or such that the Reynolds number is so small that the inertia 

terms are negligible in comparison with the fnctional terms. 

13-61. Steady Motion between Parallel Planes. Let 

viscous fluid of uniform density p fill the space between parallel 

* Loc. cit, p. 377. 
t L. Prandtl, Verh, d, 3. intern. Math. Ver, Heidelberg, 1904. 
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plane boundaries 2; = 0, 2; = A. Let the former boundary have a 
velocity U in the x direction and the latter be at rest. We assume 

that there is a steady motion with a velocity which at any point 

is denoted by u parallel to x, the components v and w being zero. 
Prom the equation of continuity we must therefore have du/dx = 0, 

and as is clearly independent of y it must be a function of z alone. 

It is now apparent that the inertia terms in the equations of 
motion are all zero. At a distance z from the plane z = 0, there is a 

o 

u 
" dz 

X 

tractive force /jLdujdz per unit area in the plane parallel to the 

boundaries opposing relative motion (13*23 (9)). Considering an 

element of the fluid with faces parallel to the coordinate planes 

and of linear dimensions 8x, 1, 8z, the tractive forces on its faces 

d^u 
parallel to the boundary planes give a resultant 82:80; in the 

X direction, and the resultant of the mean pressures on the faces 
87) 

parallel to yz is — ^ hxhz in the same direction. There being no 

acceleration these forces have a zero sum, so that 

d^u ^ dp 

^ dz^ dx .(1), 

wliich on the hypotheses stated might have been written down 
directly from 13*3 (1). 

Since there is no motion save in the x direction therefore 

dpjdy and dpjdz are zero, and since u is indei)endent of or, (1) shews 

that the pressure gradient dpjdx is a constant. 
Integrating (1) we get 

+B .(2) 

and since u^U when z = 0, and u = 0 when z^h, therefore 

(3). 
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The total flux per unit breadth across a plane perpendicular 

to a; is rh 

l udz = lhU- 
Q 12^ dx 

.(4). 

The tangential stress at any point is 

du 

^ dz 
.(5) 

which gives 
h -- dx 

as the drag per unit area on the boundaries; the drag of the 

boundaries on the fluid is represented by forces equal and op¬ 

posite to these acting in opposite senses, and their resultant 
hdpjdxis of course equal to the pressure difference on two planes 

at right angles to the stream at unit distance apart. 
The expression hUlv may be taken as a Reynolds number in 

this problem, or a like expression with the mean velocity 

instead of U, 

13*611. Theory of Lubrication. It is a familiar fact that parallel 

or nearly parallel surfaces can slide over one another with great ease if a 

film of viscous fluid is maintained between them. The mathematical 

theory is due to O. Re5molds^. A necessary condition is that the opposing 

surfaces should be slightly inclined to one another and that the relative 

motion should tend to drag the fluid from the wider to the narrower part 

of the intervening space. The following discussion is based upon a paper 

by Lord Rayleighf. 

Consider a fixed block with a plane face AB nearly parallel to another 

plane z = 0, which has a uniform velocity U in the x direction. Let the 

block be so wide in the y direction that the problem may be treated as two- 

dimensional. 
Let a, \; 6, and x, h be the coordinates oiA^B and any other point on 

AB, Since the inclination of the plane faces is small, the velocity u at any 

♦ ‘ On the Theory of Lubrication, etc.’, Phil, Trans, cLXXvn, p. 157, 1886, or 
Scientific Papers, n, p. 228. 

t ‘Notes on the Theory of Lubrication’, Phil, Mag. (6), xxxv, p. 1, 1918, or 
Scientific Papers, vi, p. 523. 
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point may be determined as in 13*61; and as the addition of a constant 

pressure throughout the fluid will make no difference to the solution, we 

may for convenience assume that p = 0 beyond the ends of the block. 

The condition of continuity is that the total flux 

. 
must be independent of x. 

Therefore . 

where is the value of h at points of maximum pressure. 

But A(6‘-a) = Ai(6 —rc) + /i-2(a;-~a), 

so that . 

where I is the length of the block. 

Hence, from (2), 
dp _ 6pUl h — hQ 

dh~h^-hi'~W~ . 

and, by integration, ~{^*. 

and wo must now determine and C so that p — 0 when h = and when 

h=zh^ 

This gives 

and 

h^=:^2h,hj(hi + h^) .(6) 

p= 
iSpUl (1h-h)(h--h^) 

.(7). 

It follov/s that p cannot be positive unless i.e. unless the stream 

contracts in the direction of U, 

The total pressure is given by 

I^z=z( pdx^ f * dh 
J a J hi — hi 

'(k- .<*'■ 
wliore k — hi/h^. 

Again from 13*61 (5) the tangential stress on either surface is 

__iiU dp 
(PzJ.-O- ^^dx’ 

so that, using (2) and (3), wo got for the total frictional force 

fh 
■(P.x)t-<,dx 

.'»'■ 

Comparing (8) and (9) wo see that the ratio FjP of the total friction to 

the total load is independent of both p and U, but proportional to h if the 

scale of h is altered. 
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The position of the centre of pressure may be calculated from 

leading to X 
,, 2A; (A; + 2) log A; - 6A:® + 4ifc-f-1 

(ifc®~l)logi-~2'(X--l)® 
(10). 

It has been shewn by Reynolds and Rayleigh that the value of k which 

makes P a maximum is 2*2; that this makes P = 0*1602/iC7/*/^,® and 

P = 0*75/iC7i/A,. 
Since the film of fluid is thin the above arguments would hold good if the 

surfaces were cylindrical instead of plane, provided h is everywhere small 

compared to the radii of curvature. 

Where there is a flow in the direction of y as well as Xf we shall obtain as 

in 13*61 for the total flow in the y direction 

/: vdz^^hV- 

and the equation of continuity is now 

dp 

12/x^ 

1 
dx Jo 

udz-{- /: 

(11), 

d 

dx (*■ £)+ly ('■• I)' (s i“)+1, w).o^r. 
13* 62« Steady Motion in a Tube of Circular Section. Let 

a be the internal radius of the tube and w the velocity along the 

tube at a distance r from the axis Oz. The other components of 

velocity are assumed to be zero so that by reference to the 

equation of continuity dwjdz must be zero, therefore and by 

symmetry it; is a function of r alone. It now appears, from the 

equations of motion in cylindrical coordinates (13*32 (7)), that in 
steady motion the inertia terms are all zero, and the equations, in 

the absence of external forces reduce to 

It follows that the pressure is a function of z alone and that the 

pressure gradient is constant, and equal to -(Px-p^)^ where 
Pi, P2 denote the values of p at the ends of a length I of 

the tube. 
We might also argue directly that since there is no motion at 

right angles to the axis p does not vary over a cross section, and 

* Miohell, Zeits,f. Math, mi, 1905, p. 123. 
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taking the tangential stress along a plane perpendicular to r as 

— (13-33 (1)), the frictional forces on the fluid between 

two cylinders of length 82 and radii r and r + Sr are 

-/X” 277r82 
dr 

and fjL^ 27rrSz + 27rr82^ 8r 
dr \ dr 

and in steady motion the sum of these must be balanced by the 

pressure difference on the plane ends of the fluid mass, viz. 

dp, 

dz 
S2,27rr8r, 

so that 

or 

d 

^ dr 
= r as above 

dz 

Integrating, we get 

{'t)- 

. 

iijxl 
r^Alogr B .(3). 

The velocity along the axis must be finite, so that -4 = 0, and since 

there is no slipping on the tube, w = Q when r = a, therefore 

W = (a2 _ 

The total flux across any section is 

/; 
w,27rrdr = P1-P2 

I SfJL 

.(4). 

.(5). 

The drag on the cylinder is 27Tal ^ j , which is easily shewn 

to be Tra^ (Pi'^P2)y ^ otherwise obvious. The result that 
the flux is proportional to the pressure gradient and to the 

fourth power of the radius of the tube was discovered experi¬ 

mentally by G. Hagen* and was rediscovered independently 

by PoiseuiUet. It is a result .of fundamental importance in 
connection with the law of frictional resistance as it can be con¬ 
firmed by experiment with great accuracy. It also provides a 

method of measuring /x. But as stated in 13-5 it is only in narrow 
tubes that the result is true for aU such velocities as are likely to 

* Pogg. Ann. XLVi, 1839, p. 423. 
t Comptes Rendvs^ xi, xii, 1840~i; Mim. dea Savants J^trvmgers, ix, 1846. 
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occur in experiment. There is a definite Reynolds number which 
determines in every case a critical velocity in relation to the 

viscosity and the diameter of the tube. For smaller velocities the 

flow is ‘stream line ’ or ‘laminar’ but when the critical velocity is 
exceeded the regular stream line character of the motion is 

destroyed, small eddies appear in the fluid and the motion be¬ 
comes ‘turbulent’. Then the relation (5) ceases to be true, and 

instead of the pressure gradient being proportional to the flux it 

is found to be approximately proportional to the square of the 
flux*. 

13*621. Steady Flow between Coaxial Circular Cylinders. With 

the same notation, let the flow take place between two coaxial cylinders 

of radii a, b. Let the inner boundary have a velocity W while the outer is at 

rest. Then in 13*62 (3), we have w=W when r = a, and w = 0 when r = 6, so 

that 
w=W 

log(r/6) Pi-Pi 

log (a/6) 4^ 

Li _ 6Mog(r/a)-a»log(r/6)1 

V log(6/a) / . 

fb 
giving a flux relative to the fixed boundary of j w,2irrdr 

= nW I~ “4 + / Li _ a* _ .. .(2). 
I, log {6/a) / 8/t 1 ( log (6/a) J 

The drag on the cylinders can be calculated as in 13*62. 

13*63. Steady Flow in Tubes of cross section other than Circular. 
If we assume that it; is a function of a;, y but not of z, and that w = v = 0, 

then in steady motion the inertia terms disappear and in the absence of 
external forces the equations 13*3 (1) reduce to 

^ = 0 ^ = 0 
dx ’&u .(1). 

and 
/d^w d^w\ _ 

^ \dx^ ~ dzj 

It follows that in steady flow along a tube the pressure gradient dp/dz 

is constant, and denoting this by — P, the velocity w has to satisfy the 

equation dHu P 

Ti* ^ . 

dHu dhb 
£^-2+^2“ 

with a boundary condition w = 0 on the surface of the tube. If we write 
p 
-(x^ + y^), then ^ has to satisfy the equation 

with a boundary condition ^ ^ (x* 4- 2/*) on the surface of the tube. But 

from 5*1 (3) these are the conditions which have to be satisfied by the 

* The Physics of Solids and Fluids^ Ewald, Poeohl and Prandtl, 1930, p. 277. 
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stream function when a like tube containing frictionless fluid rotates 

about its length with angular velocity i^/2/x. 
This analogy was pointed out by Greenhill *. 

For example in the case of a tube whose cross section is an equilateral 
triangle, by analogy from 5*5 (3) we write 

w = A (x^ — -h B — -h .(3), 

where this expression is to vanish at all points of the boundary. If wo 

determine A and B so as to make x = a part of the boundary, we find that 

w=: — , _ — 3x1/^ -h3a(x^-i- y"^) — 4a®} 
X^a/x 

or w=—~——(x — a){x — \/3y + 2a)(x-{-\/3y + 2a) .(4); 
iza/x 

from which we see that w vanishes on the three sides of an equilateral 

triangle, and since it also satisfif^s (2), it represents the required velocity. 

By evaluating jjwdxdy over the cross section we find that the flux of 

liquid is 
27 Pa* 

20V3 /X * 
f’or an elliptic section by analogy from 5*5 (2) we write 

.(5), w = A(x^ — y^)AB— (x^-^y^) . 
4/x 

and determine A and B so that w vanishes on x^/a® -f = 1. This 

requires that / p ^ / p 

from which we find that 
P ( x- 2/®\ 

^~2/xa2Tia V“a®“6V . 

By evaluating wdxdy over the area of the ellipse we find that the flux 

of fluid is 
7ra®6® P 

a® + 6®' 4^ * 

13-64. Steady Rotatory Motion. liCt a fluid have a steady 
rotation about the axis of z, the angular velocity m being a func¬ 
tion of thedistance r from the axis. Then in the notation of 13*32, 

= 0, = cor and = 0, and, in the absence of external forces, by 
symmetry the mean pressure p is independent of 6, so that the 
equations of motion 13*32 (7) reduce to 

irAJl 
p dr’ 

d^w do) 
and 

dp 

02 
= 0, .(1). 

*0n the Flow of a Viscous Liquid in a Pipe or Channel’, /Vtx:. (1), xiii, 
1881, p. 43. 

RH 25 
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We might also obtain the equation for from the considera¬ 
tion that the only stress in the fluid is the tangential force 

= (13-33 (1)) 

and the moment about the axis of the tangential force on a 
cylinder of radius r is therefore "In^r^dojidr per unit length of 
cylinder. Then since, in the steady motion, the moments on the 
inner and outer surfaces of an annulus must be equal and op¬ 
posite, it follows that the last expression must be constant; i.e. 

this being the integral of the second of equations (1). 

Hence .(3). 

If the fluid has no internal boundary we must have A = 0, since 
the angular velocity cannot become infinite as r -> 0, and therefore 
cu is constant and there is no relative motion. 

But if the fluid is bounded by coaxial cylinders of radii a and 6, 
the second of which, the outer, rotates with angular velocity 
while the inner is at rest, we have a> = 0 when r = a, and a> = n 
when r = 6, so that 

► =f2 
52 1*2 _ ^2 

.(4). 

The couple per unit length on either cylinder is or 

47T/xa“6“ ^ 
52 _ ^2 

(5). 

Experimental work has l)een done on this basis, the couple on 
the inner cylinder being measured by the torsion of a suspending 
wire. 

We have not imposed any limitations on the angular velocity, 
and it has been shewn by Taylor* that the above steady motion 
of a liquid is stable for all speeds of the outer cylinder; and also 
that when the outer cylinder is fixed there is stability for suffi¬ 
ciently small angular velocities of the inner. 

♦ ‘Stability of a Viscous Liquid contained between two Rotating Cylinders’, 
Phil, Trans, A, coxxiu, 1922, p. 280. 
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13* 65. Steady Motion of a Viscous Fluid due to a slowly Rotating 

Sphere. Writing 
u — — wy, V = a>x and w = 

where is a function of r alone (r^ = a:® + 2/^ -f 2^), and neglecting squares of 

velocities, for steady motion equations 13’3 (1) become 

0= - 

0 = 

dp 4 dcoV 

\dr^ r dr ) 

dp , fd^co 4 da>\ 

r dr J 

dp 

"dz 

.(1). 

These are satisfied by const, and 

d^cj 4 dto 

dr^ r dr ' 
0, 

j da> 

dr 
= const. 

-^4.R <X>= 4- X5 (2). 

If the motion is produced by a solid sj)here of radius a rotating with 

angular velocity £I and the fluid extends to infinity and is at rest there, wo 

have 
.(3). o 

And if there is an outer fixed concentric spherical boundary of radius b, 

then _ 
.(4). 

7*3 6‘^ —a® 

The couple on the sphen; may b(^ found from the formulae for the stresses 

in 13*33 (f>). Hero = 0, = 0 and = cor sin 0 and the only stre^ss which 

has a moment about the axis is 

Pri, = ^rsine , 

ndcO 
and its moment is fir^sin^ 6 

dr ’ 

Hence the couple on the sphere of radius a is 

KdrL-' 
27ra^sin0d0= — 

^TT^la^b^ 
b^-a^ .^ 

The same result might be found from the consideration that if N is the 

couple which must be applied to the moving sphere to maintain the 

rotation^ then ^ . 
iVi2 = rate of dissipation of energy. 

It should be noted that the results of this article are of little value for 

experimental purposes because of the necassary limitation about the 

smallness of the velocity. Unless the motion is so slow that the squares of 

velocities arc negligible steady aimular motion is impossible*. 

* Stokes, toe. cit, p. 370. 

25-2 
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13*7. Vorticity in Viscous Fluids. The equations of 
motion 13"3 (1) may be written 

Du _ 

lDi~ 

dQ ,30 ^ 

Dv _ 

1h~ 

Dw 

(1), 

where Q 
dp 

P 

^ „ du dv dw 
and 0 = -5-+2 +-^ • ox By dz 

Proceeding exactly as in 2'6 these equations take the form 

D 

in 
D 

Dt e)= 
pox pay poz p ‘ 

pdx pdy pdz p ^ 
.(2). 

Dt \p) p dx p dy p dz p 

In the case of an incompressible fluid the equations take the 

simpler form 
D^ j.du du ydu _,.N 

Dti ^dv dv y dv 

D^ ^dw dw dw 

.(3). 

As in 9*21 the first three terms on the right of these equations 
represent the rates at which ^^ vary for a given particle, when 
the vortex lines move with the fluid and the strengths of the 

vortices remain constant. 
In any case of slow motion the first three terms on the right of 

each of the equations are negligible and the remaining terms 

exhibit the variations of the vorticity, and the equations are the 
same in form as the equations of the conduction of heat, so by 

analogy vorticity cannot originate in the interior of a viscous 

fluid but must be transmitted from the surface. 
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13-71. Circulation in Viscous Fluids. The conclusion of 
the preceding article may also be reached from considerations 
of the circulation in a circuit moving with the fluid. Thus if I 
denote the circulation, then as in 4*23 

DI 

bt 

D 

bt 
I (udx + vdy + wdz) 
J c 

= j^{^idx + ^dy + ^^dzyjjndu + vdv + wdw). 

The last integral vanishes for a closed circuit, and therefore 

from 13*22 (1) 

DI_ 

bt~ 
(Xdx+Ydy + Zdz) 

dx ^ dy ^ dz ) 
rfx-f 

For a conservative field of force the first integral vanishes and 
from 13*23 (8) and (9) 

DI 

Dt 

-f. 1 

cp 

-f 2 

■[ ]-)• 
d{-p-ye) 

/, 
ira / 8w\ 

C p _dx ix) 
3 ( ('-£)} 

8 
dx 

dy P 
.(1). 

This result was obtained by Jeffreys by the shorter process of 
the tensor calculus. He remarks on the different terms that the 
first vanishes if p is a function of p alone, as in many cases; but if 
there are variations of density not due to pressure, but to tem¬ 
peratures or composition this term will not vanish. The second 
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and fifth terms involve products of the viscosity and the 
divergence, and are probably unimportant in most cases. The 
fourth shews that circulation may arise in a moving fluid in 

which the viscosity varies from place to place. The third term is 
the only one which survives in a uniform incompressible fluid, 

and it shews that in such a fluid changes in circulation depend 

only on the vorticity in the neighbourhood of the contour*. 

In fact when /x and p are constant, the equation reduces to 

DI 

Dt 
V j {^^udx + V^vdy + S/hvdz) 

= .(2), 

shewing the same law of conduction of heat for variations in 

the circulation in a moving circuit. 

13*72. Further Special Cases. Diffusion of Vorticity. 

(i) Laminar Motion or flow in parallel planes. When the motion is not 

steady but uniform in a set of parallel pianos, so that wo miiy take y to =: 0 

and u a function of z only, then the equations of motion 13*3 (1) are 

satisfied by taking p = const, and 

du _ 

dt ” ^ dz^ 
(1). 

This is also the equation for the linear conduction of h(;at and the appro- 

priato solution depends on the initial and boundary conditions. 

Thus, when the fluid extends to infinity on both sides of the plane 2 = 0 

and the initial velocity throughout the fluid is given by w = ±U according 

as 2 is positive or negative, the solution of (1) is 

2U 
U=: 

■yTT 

‘zl2 •J(vi) 

0 
€-^*de (2)t. 

For it can be shewn that the solution of (1) which fits given boundary 

conditions is unique^, and it is easy to verify that (2) satisfies (1), and that 

as 2-> 0, -V ± C/ according as 2 is positive or negative. 

The vorticity is given by 
du U 

dz '\/{'nvt) 
.(3). 

The initial conditions imply the existence of a vortex sheet in the plane 

2 = 0. Equation (3) represents the manner in which the vorticity is diffused 

into the fluid on both sides of the sheet, and (2) enables us to measure the 

decay of velocity, throughout the fluid. 

♦ H. Jeffreys, ‘The Equations of Viscous Motion and the Circulation Theorem’, 
Proc. Camh. Phil Soc. xxiv, 1928, p. 477. 

t Carslaw, Conduction of Heat, 1921, p. 34, where notes will be found on the 
tabular value of the integral (2). 

t Ibid. p. 14. 
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(ii) Periodic Laminar Motion, With the same notation let us suppose 

that the fluid lies on the positive side only of the plane z = 0 and tliat its 

motion is due to the motion of a plane rigid boundary oscillating in the 

plane 2 = 0 with velocity ^ = aco8(n< + €) .(4). 

Taking this as the real part of aeJ the general velocity will now liave 

the time factor <«*+«> so that (1) becomes 

d^u 

dz^ 

%n 
u 

V 

The solution of this equation is 

(5) . 

(6) . 

If the fluid extends to infinity in the positive direction of z, we must have 

^ = 0, and, introducing the time factor in (6) and using (4) to determine 

the value of B, we got ^ 

u — ac .(7) 

and the real part corresponding to (4) is 

v'(.") = S + € .(8). 

This represents a transverse wave of length 27r sjpropagated in the 

z direction with velocity'\/( 2m), but with a rapidly decreasing amplitude, 

in consequence of the ex[)onential factor, the dcjcrease in amplitude in a 

wave length b(‘ing in the ratio ; 1 or as 1:535, so that the motion is 

propagated only a short distance into the fluid. 

The drag of the fluid on the boundary per unit area is measured by 

= pa'\/{ \nv) {cos {nt + c) — sin {nt -f e)} 

= pa'\/(ni/)cos(ne-f €-1-Jtt) . (9)*. 

The foregoing represents the forced oscillations on which any normal 

modes of free oscillations may bo superposed. 

If the fluid were bounded by a rigid plane z = /i, both terms in (G) would 

be required in the solution, with the further condition that a = 0 when 

(iii) Diffusion of vorticit/^ from a line vortex. Let there be initially a 

vortex filament of strength k along the axis of z in an infinite mass of fluid. 

The motion will be in circles about the z axis, the velocity at distance r 

from the axis being a function of r. 

We have therefore w = 0, ^ = 77 = 0, and it is easy to verify by putting 

— (2//r) / (r) and v^{xjr) f(r), (r® = x*-f y*) that in this cose 

so that equations 13*7 (3) reduce to 

* Stokes, loc, cit, p. 370, see also Lamb, Hydrodynamics, 1932, p. 060, 
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or, in terms of r, SC 
8t . 

Tliis corresponds to the radial flow of heat from a line source and the 

solution is 

Swvt 

for it is easy to verify that this satisfies (11), and it makes the circulation 

in a circle of radius r 

= / 2^.2^dr=K{i-e-^l*^^) 
Jo 

and this -> «■ as ^ -v 0. 

Regarded as a function of t the vorticity J at a distance r from the axis 

increases to a maximum Kl27rr^e and then decreases asymptotically to zero. 

The velocity is found by dividing the circulation by 27rr and 

and as t increases from 0 to cn the velocity decreases from #f/27rr to zero. 

13*8. Motion the same in all Planes through an Axis. 
Here it is convenient to use Stokes’s Stream Function i/j as 

defined in 7*3. Since the resultant velocity and vorticity at a 

point are independent of the azimuthal angle (/>, the former lies 

in the meridian plane and the latter is at right angles to the same 

plane (4*25). 
Hence, taking the x axis as the given axis, we may denote the 

components of velocity by 

u, v—Vcos(f>y w—Vsin(f> .(1) 

and the components of vorticity by 

0, 7^=—cosing, f = cticos^ .(2), 

1 f0V 9^ 1 di/j] .(3). where, as in 9-82, 2a> = ^ ^ 

For a motion which is so slow that the squares of velocities 

can be neglected, equations 13*7 (3) reduce to 

9^ 
di 

= vV% 

Now 

dt 

1 a* 02 1 9 
0a:2 tn 0iij ro® 0^' 

= vV2^ 

) 

.(4). 

a>sin< 

or, since co is independent of 

= — sin ^ ^ ^ 
1 0 

0*2 0tD2 10 0tD 
02 

5"ro2 

02 ^ sin <^ / 

m \0x^ ^ dvifi 
A.l] 
w dm) 

m 

mw 

(jj 

.(5). 

♦ Carslaw, Conduction of Hecd^ 1921, p. 152. 
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Ci- -1 1 T-T«» 008^/3® 3* 1 /a\ 

Smlariy ^ 8^) .W' 

92 1 g 

Now if we put o + ^ o'' 
ox^ oxxr w dm 

(-■I) 
tDa) — 0 

we get 
in^* , 

vdt) 

But, from (3), 2moi — Djj>, 

therefore the equation for the stream function is 

.(7). 

.<“>■* 

The operator D may be expressed in polar coordinates r, 6 
where x = r cos 6 and tn = r sin 6 by writing 

02 02 ^ 02 1 ^ 1 ^ 

dx^ dzD^ ”” 0r2 ^ r 0r ^ S0^ * 

and 

so that 

or 

10 10 cot^ 0 

m dm r 0r d'r 

02 l^_^cot!9 0 

^~dr^'''r^w^ >2 30 

32 1-/^2 32 
i)= _ - + * n 

3r2^ r2 3/^2 

...(9; 

.(10), 

where /ascos0. 

In a case of steady motion (8) becomes 

D2^ = 0 .(11). 

This has a solution tp = {I — fi^) f (r) .(12), 

provided that 
/d2 _ 2y 

\dr2 ry 
/(r) = 0.(13). 

The solution of this equation is 

/(r)= - + Br+6V2 + .ffr« .(14), 
r 

so that H ■f jBr + Cr^ + sin^ 6.(1 ^)* 

In the notation of 13’32 the velocity components (7*31) are 

1 
- r^sinO d0 

J 1 0f/i 
and . 

rsinfl0r 

♦ Stokes, loc, cit. p. 376. 
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along and perpendicular to the radius vector; so that a finite 
velocity at infinity requires that the constant jE = 0, and a steady 
flow U at infinity requires that — I'C/r^sin^^, so that 

If the liquid is streaming past a fixed sphere of radius a, the boundary 

conditions require that = 9 and = 0 when r = a, i.e. 

^ + 2?a -f Co® = 0 and — ^ + J5 -f 2Co = 0, 
a a® 

giving A=-iUa\ B=lUa .(17), 

and 4,= -^(7^1-3“ + ^“*^ r»sin»0.(18). 

For a sphere moving with velocity U through a liquid at rest, we reverse 

the velocity U by adding JC/r® sin® 6 to tp and have 

^=i£7ar(l-4“*)sin«fl .(19). 

Hence from (16) 

9r=-iC/cose^“-4“ ) and g«=|I7sine(“ + 4^) ...(20). 

To determine the force exerted on the sphere we might find the components 

of stress from 13* 33 (5) and integrate over the surface of the sphere, but this 

would involve finding ah expression for the variable pressure p*, and it is 

simpler to use the expressions for the velocity gradients in 13*33 (4) and 

evaluate the rate of dissipation of energy (13*4 (7)). 

Thus substituting from (20) in 13*33 (4) and putting g^ = 0, the relevant 

terms are 

dv' 

dx' dy 

dw' du' 

dx' dz' 

- i {7 cos 

-3t78in0°“ 

dw' 

dz' 
i| U cos 6 

(21), 

SO that the dissipation function 13*4 (7) 

= j ^ j cos® 0 + •[ sin® 27rr® sin Odd dr = 

.(22). 
This represents the rate at which the retarding forces are doing work, 

but the body is moving with velocity (7, so that the resultant retarding 

=^67r^LaU .(23). 

This is Stokes’s formulaf for the resistance to the motion of a sphere 

in viscous liquid. It must not be overlooked however that the squares of 

velocities have beeji neglected. Attempts have been made to obtain a 

more complete solution. In particular it has been pointed out by Oseen J 

that if we write ■—t/, v = v f w==w , 
then the term pu ~ which we neglected contains a term ^ which may 

* Evaluated by Stokes, loc, cit. p. 376. f Stokes, loc. cit, 
t ‘Ueber die Stokes’ache Formel, und..Arkiv for malematik, vi, 1910, p. 29. 
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b(> coiriparablo with tcTins roiainod. ProctH;diiig in this way ho obtaiiitHi 

the result / 
6,r^af7(l + g^j^^l) .(24)*. 

Tli(^ formula (23) was employed by Stokes to dot(‘rmino the terminal 

velocity of a sphere falling vertically in a Iluid, by (Hpiating th(^ r(?sistance 

to the t'xcoss of the weight of tht* sphere ovt'i* the force of buoyancy; thus 

^TTfiaU = {a — p) 

whore a is the density of the sphere, so that 

but the result is subject to the limitation stated abovt^ 

13*9. Prandtl’s Boundary Layer. We now return to the 

case mentioned in 13*5 of fluids of vsmall viscosity such as water 
or air, in which motion is a])proximately that of a perfect fluid 

save in the immediate neighbourhood of solid boundaries, wheie it 

is affected by the boundary condition that the fluid clings to the 
boundary. In the case of flow past a solid obstacle there is a 

thin layer of fluid in the immediate neighbourhood of the solid 

in which friction is effective and in which, as explained below, 

vortices are i)roduced; there is also the region containing vortices 
which are thrown off from such a body and constitute its ‘ wake ’; 

and there is a region which cjontains all the remaining fluid and 
in tliis the motion may be regarded as irrotational. 

It must not be assumed however that the solution for a 

‘perfect fluid’ is the limiting form of the solution for a viscous 

fluid when the viscosity tends to zero or K~>oo. The differential 

equations for viscous fluid are of a higher order than for perfect 

fluid and so require more definition in the way of boundary con¬ 

ditions for a complete solution of a particular problem; and there 
is the essential difference in the boundary conditions in the two 

cases, that a perfect fluid slips freely over a solid boundary while 

a viscous fluid clings to the boundary and has no velocity 

relative to it. It has indeed been shewn by JeffreysJ that if we 

assume the existence of a velocity potential and that a fluid has 
no motion relative to a solid in contact with it, then the only 
possible motion is one such that the fluid, the solid and the con¬ 

taining vessel have a single velocity of translation, no solid can 

rotate and a ‘classical fluid’ is more rigid than any solid. 

* See also Lamb’s IhjilrodynamicSj 11)32, § .340. t Stokes, loc. cit. p. 376. 
t Proc, Roy. Soc. A, cxxviii, 1930, p. 376. 



396 THE BOUNDARY LAYER 13-9- 

Prandtrs theory* simplifies problems by considering the 
effects of friction only in a thin layer round solid boundaries and 
treating the rest of the fluid as frictionless, but it assumes that 

the distribution of pressure outside the layer can be ascertained. 
If the layer does not separate from the surface the distribution 
of pressure can be found with fair approximation from the 

assumption of irrotational motion; but otherwise the distribu¬ 

tion of pressure is affected by the ‘wake’, and it cannot be 

found save by experiment. 

13-91. Differential Equations for the Boundary Layer. 
Consider a two-dimensional case, take the x axis along the 
surface, assuming at first that the boundary is rectilinear, 

and let the layer have a small thickness S, Then if we suppose the 
velocity u and its derivative hu\dx to be of order 1 within the 

layer, dujdy is large being of order 1/S, u decreetsing from a finite 

value at the outer boundary of the layer to zero at the solid 
surface. 

From the equation of continuity 

du ^ 
dx^ dy .(1), 

since dujdx is of order 1 so is dvjdy; but v = 0 at the surface of the 

sohd, therefore v will only be of order 8 at the outer boundary of 
the layer. 

Then considering the equations of motion 

/dhi dhi\ 

. 

and 

du du du 1 dp 

dt^'^ dx~^^ dy pdx 

dv dv dv 1 dp Idh) dh) 

di'^'^ dx^'^ dy pdy^^ \dx^ ^ dy^ )■ 
.(3), 

in the bracket on the right of (2) dhildx^ is of order 1 and dhijdy^ 

is of order 1/8^, so the former is negligible compared with the 
latter and the frictional terms in (2) are of order v/S^. If r/8* is 
large the frictional terms preponderate and the terms involving 

squares of velocities are negligible—the case of slow motion. If 

is small, the frictional terms are negligible and we have the 

equation for a perfect fluid. It is only when v is of the same order 

as 8^ that the conditions apply to the case under consideration. 

We therefore conclude that the thickness of the layer is pro¬ 

portional to ^/v. 
♦ Loc. ciU p. 378. 
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Equation (3) then reduces to dpjdy=:0, so that the pressure in 

the boundary layer is a function of x alone. 
Hence we have two equations for u and v in the layer, viz. 

du du du 1 dp d^u 

p 

du dv 

dx ^ dy 
-0 

W 

{^)\ 

and the pressure has the same value through the layer as on its 
external surface and is continuous with its value in the frictionless 

motion outside the layer, so that it may be regarded as a known 

externally applied force in the layer, determined in a case of 

steady motion by Bernoulli’s Equation 

|p?72 = const. .(6), 
where U is the velocity in the irrotational motion, so that 

dp 

dx 
^~pU 

dU 

dx 
(7). 

Similar conditions apply in steady motion when the boundary 

is not rectilinear, provided that its radius of curvature is large 

compared with 8. 
Equations (4) and (5) may then be written 

<1 p ds dn^ 
(8), 

where 8 denotes arc measured along the surface and n distance 

measured in the normal direction, and g, w are the components of 

velocity in the directions 8 and Instead of equation (3) we 

now have an equation connecting the centrifugal force with the 

normal gradient of j), i.e. dpjdn, which in this case is of order I, 
the total change in p across a section of the layer being of 

order Sf. The solution must be such that g = M; = 0 for n = 0, 
and g, w must take their values in the given stream outside the 
layer. 

* See Bairatow on ‘Skin Friction*, Journal of the Royal Aero. Soc. xxix, 1925, 
p. 3. 

f This remark is due to Dr Goldstein. 
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13-92. Karmdn’s Integral Condition. On the hypothesis 
that the effects of friction are confined to a thin layer of fluid 
whose thickness 8 is some function of x, and that in this layer we 

abandon the attempt to determine the actual value of u but 
assume that is a definite function of y which vanishes at the 
rigid boundary and takes the value which belongs to the external 

irrotational motion at the surface y = 8, we can integrate the 
equation 13-91 (4) with regard to y between the limits 0 and 8, 
and by substituting from the equation of continuity we obtain 

where U is the value of ii in the irrotational motion. The term 

[pvu]^ vanishes at the lower limit and is therefore equal to 

TT ^ j TVl 

Substituting in (i) and observing also that the tangential stress 
/X dujdy vanishes at the outer boundary of the layer, the equation 

takes the form 

a 
dt. 

.(2). 
If when considering a stationary state we make any plausible 

hypothesis as to a functional form for u satisfying the boundary 
conditions, then 8 is the only unknown quantity in the equation 
and so a corresponding form for the thickness of the layer as a 

function of x is determined. 
Equation (2) has also boon obtainod by Kdrman* from considerations of 

momentum, thus: let NP, N'P' be two ordinates to the curve y = S (x) at 

a small distance dx apart, and consider the change of momentum which 

takes place in unit time in the area NPP'N'. 

* Zeit8,f, angew. Math, u, Mech, i, 1921, p. 233. 
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The time increase of x momentum is l^llpudy. dx and this must bo 

equal to the x component of apj)liod force plus the gain of momentum by 

flux across the boundaries. Now the amount by which the momentum 

d 
crossing NP exceeds tliat crossing N'P' ^ I dy.dx; and the mass 

of fluid crossing N'P' exceeds that which crosses JVP by ^ / pudy.dx, 

and this must represent the fluid crossing PP' where the velocity parallel 

to X is sensibly U, so that the momentum entering across PP' is 

d u d fS 
^pudy.dx. 

dp 
The applied forces are the pressure excess “ ^ tangential 

stress along N'N, viz. ~ Equating the terms as stated and 

dividing by dx we get equation (2). 

13*93. One of the simplest applications of the boimdary layer theory 

is to the case of a plane plate of finite length imrne^rsed in a steady uniform 

stream of velocity IJ in the direction of the length of the plate. The 

problem was solved by Blasius* who found that the thickness of the 

sheet is proportional to ^/j:, where x is moasunxl from the loading edge, and 

that the tangential drag on either side of the lamina per unit area is 

It was shewn by Lambf that if in 13*92 (2) in steady motion we 
assume that 

u=zU sin 
Try 
28 

we get for the drag per unit area 

a result differing but little from that of Blasius. 

13’94. Generation of Vortices in Fluids of small Vis¬ 
cosity, The existence of the Prandtl layer round a body 
immersed in a stream of fluid of small viscosity affords an 
explanation of the generation of vortices in the fluid. According 

* Zeits.f. Math. u. Phys. lvi, 1908, p. 13. 
t Hydrodynamics, 1932, § 087. 
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to the Helmboltz-Kelvin laws of vortex motion, if an element of 
a perfect fluid is once at rest it can never acquire rotation nor can 
a rotating element ever cease to rotate, bu1&, as we remarked in 

13*9, we cannot regard the perfect fluid solution of problems as 

the limiting case of a real fluid solution in which the viscosity 
tends to zero because of the essential difference in the boundary 
conditions. And we saw, without considerations of viscosity, in 

9’ 72, that a trail of vortices may arise in the wake of a solid with a 

compensating circulation round the solid. But the theory of the 

boundary layer in fluid of small viscosity such as water or air 
greatly simplifies the considerations. The layer is thin and its 
thickness decreases with the viscosity; outside it the motion is 

irrotational and, in a steady state, we have Bernoulli’s Equation 

= const.(1), 

so that . 

and we have seen in 13*91 that these equations govern the 

distribution of pressure in the layer itself, and that in the layer 

the velocity increases normally from zero at the surface of the 
solid to the external value U at the boundary of the layer. 

Again, in the boundary layer, in the notation of 13*91 the 

vorticity is given by j 

where t; = 0 at the boundary of the solid and is only of order 8 at 
the boundary of the layer, while dujdy is large being of order 1/8 

in the layer. Consequently in such a layer friction is active in 

producing vorticity. Such fluid elements as do not enter the 

layer remain without rotatipn and those which enter the layer 

acquire vorticity. Moreover the manner in which the tangential 

velocity u increases along the normal from 0 at the solid face 
to at the outside of the layer depends on the fall of pressure 

only. Assuming U to depend in a definite way upon a, then in 

a case in which U increases with s, we see from (2) that dpjds 

is negative and the fluid in the boundary layer is therefore 

accelerated owing to the falling pressure in the direction of 

motion. The velocity graphs at successive sections of the layer 

will be as in fig. (i), and the particles in the layer will all con¬ 

tinue to move along the surface of the body. On the other 
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hand if U decreases as s increases, then, from (2), dp/ds is 
positive and the particles in the layer are retarded by the 
pressure gradient as well as by friction. When their kinetic 
energy is destroyed their direction of motion is reversed and 
the velocity graphs at successive sections of the layer in this 

case are as in fig. (ii), the flow being forwards near the points 
a and 6 and backwards near d, with an intermediate point c 
at which dujdy = 0, and at such a point the advancing and reced¬ 
ing streams meet and break away from the body throwing off 

vortices. 

To take a concrete case: consider a steady streaming about a 

long circular cylinder. 

In the perfect fluid solution the stream divides at A and unites 
again at O and the stream lines are symmetrical about the 
diametral plane at right angles to AC. The velocity is zero at A 
and C and the pressure there is greatest. The velocity is greatest 

26 RH 
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at B and D and the pressure there is least. There being no friction 
the kinetic energy acquired by particles moving along AB ' ^ 

sufficient to carry them from B to C against the increasing 

pressure. When the upper and lower streams unite again at C 
they have the same velocity and there is no vortex siieet. 

But in the case of real fluid such as water, the layer in which 
friction is effective is very thin, the part of the layer in which 
the pressure distribution is the same as in irrotational motion 

extends at most up to 30"^ from A on either side and round the 
rest of the cylinder the pressure is affected by the wake; owing 
to friction and the pressure gradient the kinetic energy ac¬ 
quired by the particles after passing A is insufficient to carry 

them round the cylinder, back currents set in from C towards 
B and D, and at the points on the surface where the oncoming 

current meets the back currents the layer of vorticity breaks 

away from the surface. The exact position of the break away 

depends on the Reynolds number; for numbers below the 
critical number the points of separation are about 80® from A, 

and for Reynolds numbers above the critical number (turbulent 
or partly turbulent layers) the points of separation lie between 

120® and 130® from A^\ 

13*95. Turbulence. We have several times made reference 
to the fact that the solutions of certain problems only hold good 

for definite ranges of values of the Reynolds number. Thus in the 

case of the flow of viscous fluid through a tube the motion is only 

regular laminar motion provided a certain value of the Reynolds 

number is not exceeded. When the critical value is passed the 
regular motion breaks down and an irregular or turbulent motion 

ensues. Eddies are formed, rapid interchanges of momentuf 

take place and a new theory has to be established. Lack < 

space prevents us from pursuing this branch of the subject. ^, 

13’96. Special Problems. We shall coiicliulo by showing how an 

exact solution has been obtained in one or two special problems. 

Two-Dimensional Flow betweenNon-Parallel Wallsf. Usingpolar 

♦ For these data 1 am indebted to Dr Goldstein. Sec also Prandtl, Journal v} 
the. Royal Aero, Soc. xxxi, 1927, p. 720, containing many photographic reproduc¬ 
tions of experiments, some of wliich may also be found in The Physicft of Solids and 
Fluids^ loc, cit. p. 384. 

f G. Hamel, Jahresb. der deutsch. Math. Verein. xxv, 1910, p. 34. See also 
K. Pohlhauaen, Zeits. f. artgew. Math. u. Mech. i, 1921, p. 266, and v. KdrmAn , 
Vorfroge aus dem Oebiete der Hydro, u, Aerodyn. p. 146, Innsbruck, 1920. 



SPECIAL PBOBLEMS 13-97 403. 

coordinates in two dimensions, the only component of velocity is the 

radial component and, in steady motion, we have from 13*32 (7) 

Vr 
^r_ 
dr ^ 

0 = 

/d^Vr idVr 1 d^r '^r\ 

pdr • ^ r dr r® dff^ ry 

prdS^ \r^ de) . 

(1), 

(2). 

and the equation of continuity ^f4.?r=: 
dr ^ r 

0 (3). 

The last equation is clearly satisfied by 

r^r=f(6) .(4), 

and substituting in (1) and (2) and eliminating p by differentiating the 

equations we get 2//'+v(/" + 4/') = 0 .(6), 

or, on integration, +1' (f" + 4/) = JL .(6). 

The solution of this equation must be subject to the condition that the 

velocity vanishes along the boundary walls, so that/= 0 when $= ±ot say. 

An exact solution can be obtained by the help of elliptic integrals. For 

Reynolds number we may take the mean flux over a circular cross section 

multiplied by the length of that section divided by v—this will be the same 

for all sections. Then for small R the velocity distribution is analogous to 

that between parallel walls. But for large R there are two cases to be 

considered, according as the stream is converging to a sink or diverging 

from a source. In the former case there is a uniform distribution of 

velocity the only defect being close to the walls, i.e. within an angular 

distance proportional to ij^/R. In the latter case the differences of 

velocity are more marked, most of the flow is concentrated in the centre, 

and there is a critical value of R for which dv^jdd vanishes at the walls, 

beyond which value of R there is a backflow along the walls and as R 

increases so does the number of cmguiar regions in which backflow is 

possible. 

13*97. Motion of a Viscous Fluid produced by the Uniform 
Rotation of a Disc. Let the disc lie in the plane 2 = 0 and rotate with 

'uiiform angular velocity w about the z axis. Neglecting edge effects and 

iking the equations of motion in cylindrical coordinates (13* 32 (7)), we put 

v^-rf(z), v^^rg{z) and  (1). 

Substituting in the equations of motion and taking account of the fact 

aat p is clearly a function of z alone, we get 

S. 

.'=)■ 

. 
and the equation of continuity is 

S+2/=0 .(6). 
36-3 
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Equations (2), (3) and (6) determine/, gr, hand (4) determines the pressure* 
The boimdary conditions are 

/(0) = 0, gr(0) = co, /i(0) = o\ 

/(oo) = 0, sr(oo) = 0 J 

As 2 00, ^ (s) tends to a finite limit. In the immediate neighbourhood of 

the disc there will be a radial flow of fluid and this will be compensated by 

an axial flow towards the disc. 

If we change the independent variable to z^ — Z's/(ti}jv) and write 

/ (z) = a>/i (2i), g(z) = wQi (Zj) and h (z) =\/{vo}) (z^) equations (2)^ (3) and 
(5) become 

f + A Ji 9i •(20. 

and 

with boundary conditions 

(3'). 

.(50 

/i(0) = 0, ?i(0) = l. A,(0) = 0 

/i(oo) = 0, gri(oo) = 0 

SO that the equations are now independent of the data of any special 

problem. Since (z^) is the ratio of the angular velocity at a distance 

w) from the disc to the an^lar velocity of the disc, it is clear that 

with increasing angular velocity of the disc and decreasing viscosity 

angular velocity will only exist within a short distance of the disc. And 

the relation h=\/{vw)hi shews that the axial velocity at an infinite 

distance increases with y/(vw). 

If — c as Zi ^ 00, expansions have been obtained for /j, g^, hy in 

powers of e“**i satisfying the differential equations and the conditions at 

infinity, and there are also expansions for Jn gi^hy in powers of Zy which 

satisfy the differential equations and the conditions at 2^ = 0. And the 

constants in the two sets of expansions can be determined so as to make 

9i continuous^. 
The couple on a rotating disc of radius a can be deduced if the effect of 

the finite boundary can be neglected, which will probably be the case if a 

is large compared with the thickness of the boundary layer. 

The tangential stress is by 13*33 (1) 

= p(va>*)irgi'(0); 

and the couple on one side of the disc 

=2nr^g0dr=: lTrpa^(va}^)igy (0). 

♦ See W. G. Cochran, Proc, Cdrnh. Phil, Soe, xxx (1934), p. 366, for the complete 
sohitioD. 
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Or, if we put R:=aUlv = a^oj/v aa the Reynolds number, where U is the 

velocity at the edge of the disc, the couple is 

inpaOrn^g.'miRi. 

The value obtained by Cochran for is —0*616. In the paper to 

which reference is given on the opposite page he indicates an error in an 

earlier solution by v. Karmdn. 

EXAMPLES 

1. Prove that, for liquid filling a closed vessel which is at rest, the rate 

of dissipation of energy due to viscosity is 

where 
dv\ 

dz) 

+ 7,* + £•) dxdydz, 

,7]— , f = is the vorticity. 

If the vessel has the form of a surface of revolution and is rotating about 

its axis (the axis of z) with angular velocity a>, prove that the rate of 

dissipation of energy has an additional term 

2fiaj jj{lDu + mDv) dSt 

d 3 
where D = y -^— x a , and il, m, n) are the direction cosines of the inward 

ox oy 

drawn normal at the element dS of the surface of the vessel. 

(M.T. 1926.) 

2. A circular disc of radius a is at a small distance from a fixed 

parallel plane and con rotate about on axis perpendicular to its plane 

through its centre 0. The space between the disc and the plane is filled 

with viscous liquid. Shew that the traction on the disc gives rise to a 

couple ^nfiwa^lhQ, 

where a> is the angular velocity of the disc. 

If the plane of the disc is inclined at a small angle a to the fixed pleme, 

and it is assumed that the pressure in the film of liquid round the boundary 

of the disc is the atmospheric pressure 11, shew that, to the order a*, the 

pressure in the film is 

3 16 
n + /xaoj (a* - a;* - 2/*) 3/ - ^a*a> (a* - a;® - y*) xy, 

where OXy Oy are axes in the pleuie of the disc such that the thickness of the 

film at the point (x, y) is Aq + ouc. 

Obtain a formtda for the value of the couple to this order of approxima¬ 

tion. (M.T. 1926.) 

3. A thin film of viscous liquid is contained between two long plane 

strips of breadth 2d. One strip is fixed and the other can turn about its 

medial line paredlel to its long edges. The distance between the strips in the 

position in which they are parallel is ^0. Examine the nature of a slow 
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steady motion of the liquid produced by displacing the movable strip 

and shew that, if ^ be tlie small angle between the strips at any time, the 

pressure in the film at a point where the distance bGt^veen tho strips is /i, is 

A 

2hy 
where B are constants determined by the condition that at the edges of 

the film the prosisure is atmospheric. (M.T. 1924.) 

4. One surface (nearly plane) is fixed and another near surface (plane) 

rotates with angular velocity a> about an axis porp)endicular to its plane 

and there is a film of viscous fluid betwc^en them. Prove that the pressure p 

in tho film satisfies the equation 

1 ^3^ 1 eh^3p_ eh 
* lsr> ar )'^ dr Srr'^ Se dd W 

where (r, 6) are polar coordinates in the plane of the film, the origin being 

in the axis of rotation, and h is the thickness of the film. (M.T. 1927.) 

6. A cylindrical shaft with a plane end is made to rotate about its axis 

with angular velocity co, the end of the shaft standing on a fixed plane 

plate from which it is separated by a film of viscous liquid of thickness h, 

and a uniform flow U of fluid is supplied through a perforation in the plate 

in line with the axis of the shaft. Prove that the rate of working necessary 

to maintain the rotation and the supply of lubricant is 

TTf-LOJ* 

~2h (n 

where , r, are the radii of the perforation and the shaft and P is the load 

on the shaft. (Rayleigh.) 

6, A circular disc of radius c is suspended in a horizontal position 

midway between two fixed horizontal pianos by a wire passing through a 

small hole in the upper plane and having its upper end fixed. The apace 

between the pianos contains viscous fluid. The disc is given a slow oscil¬ 

latory motion and it is assumed that tho motion of tho fluid is laminar and 

that variations in pressun^ arc' negligible. Neglecting tho effects at the 

edge of the disc, shew that its equation of motion is of the form 

^ et + lit= 
Give the physical meaning of the constants in the equation. 

Find also the equation of motion of the fluid and the solution which fits 

tho boimdary conditions; and assuming that the motion of the disc is 

represented by ^ = ae-“cos + c), shew that the constants are connected 

by the relations 
r/ * . 72 _2 o. (^o^ + aj3)sinh2aA-f (aa~ZjS)8in2j8A 
I \oj d* Z <7 2#cZ) — ttc u, y ^ cirst, • 

' ^ cosh 2aZi — cos 2j8A 

. ,, . (Za-f<7fl)sin2flA —(aa~Zfl)sinh2(x/i 
27a(«-Z) = ^cV--’ 

where — a® = pZ/^, 2ap = polpf is the distance between the fixed planes 

and p is the density of the fluid. 

What practical use has been made of these results? (Maxwell.) 
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7. Incompressible liquid is flowing steadily through a circular pipe. 

Prove that the mean pressure is constant over the cross section and that 

the rate of flow is ^ \ /q 7 

where , p^ are the pressures over sections at distance I apart. 

In the case of steady flow of compressible fluid, shew that the mass 

which crosses any section per unit time is 

(Pi -Vt) (pi + P2)/16/4Z, 

where and pj are the densities at the two sections at distance I apart. It 

is assumed that the temperatme is constant, and that the gradient of the 

velocity in the direction of the axis may be neglected in comparison with 

its gradient in the direction of a radius. (M.T. 1924.) 

8. Viscous liquid is flowing steadily under pressure through an in¬ 

finitely long rectangular tube whose axis is parallel to the axis of 2. The 

sides a; = 0, x^a are smooth, and the sides 2/ = 0, do not permit of 

slipping of the liquid in contact with them. The pressure gradient main¬ 

taining the motion is suddenly annulled, shew that the total flux across 

any section is Qa^/lOv, where Q is the flux per unit time across a section in 

the initial steady motion. 

® 1 TT® 
In obtaining the above result it may be assumed that L ~ 9^ 

(M.T. 1925.) 

9. Incompressible viscous liquid is moving steadily under pressure 

between planes 2/ = 0, y=:h. The plane y = 0 has a constant velocity U in 

the direction of the axis of cc, and the plane y=:hi8 fixed. The planes are 

porous, and liquid is sucked in uniformly over one and ejected uniformly 

over the others. Shew that a possible solution is given by 

_ (+ Ah)--(U-{- Ah) 

■. 
+ Ay, v=vla. 

where v is the coefficient of viscosity. 

Determine the meanings of the constants A and a. (M.T. 1923.) 

10. A liquid occupying the space between two coaxial circular cylinders 

is acted upon by a force CJr per imit mass, where r is the distance from the 

axis, the lines of force being circles round the axis. Prove that in the 

steady motion the velocity at any point is given by the formula 

1(7 (62 6 

2 p, I r 6* — a* a 

where p is the coefficient of viscosity, and a, 6 are the two radii. 

How could this state of motion bo realised experimentally? 

(M.T. 1895.) 

11. The space between two coaxial cylinders of radii a and 6 is filled 

with viscous fluid, and the cylinders are made to rotate with angular 

velocities a>i, cug. Prove that in steady motion the angular velocity of the 

fluid is given by 2 ,,2 
_a2(6*—r»)cui —62(r2-a*)6i>2 

“ r»(6a-o*) 
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12. Two rigid circular discs of radius a ai'e separated by a thin layer of 

liquid of viscosity fi and initial thickness . At time zero a weight W is 

placed on the upper disc so that the liquid is squeeze^l out at the edges, the 

discs remaining horizontal. Prove that at any instant the pressure ih the 

liquid is proportional to a* — r*, and that the thickness of the layer is given 

I \ 4^ Wt 

i*=5>+3^' 

13. Prove that (pV* — where tL is the stream 
V dtj ^ d{x,y) 

function for a two-dimensional motion of a viscous liquid. 

A circular cylinder of internal radius a can rotate freely without friction 

about its axis. It is filled with viscous liquid and the whole system is 

rotating as if solid about the axis of the cylinder with angular velocity 

wq . The cylinder is instantaneously brought to rest at time f = 0, and then 

immediately released. Shew that the angular velocity of the cylinder at 

< is (fca) 

where is the final angular velocity of the system when it is again rotating 

as if solid, and the values of k are the roots of 

{k^a^ (o>o — 2} Ji {ka) -f kaJ^ (ka) = 0. 
State other necessary conditions. 

It may be assumed that the cylinder is so long that the disturbing effect 

of the plane ends may be neglected. (M.T. 1926.) 

14. Prove that, in the slow steady motion of a viscoxis liquid in two 

dimensions, dX 

where (X, Y) is the impressed force per unit area. 

If the fluid is bounded by the circle r = a, and a concentrated force P 

acts at the origin in the positive direction of x, prove that 

47r/t^ = Prsin B |log^4- ^ ^^ • (Lamb.) 

15. Find the stream function of the motion due to a sphere of radius a 

performing rectilinear oscillations in a viscous liquid, the period of an 

oscillation being 27r/n, and prove that the resultant force at any time on 

the sphere is /I 0 \ / l i \ 

where w is the velocity at that time, M the mass of liquid displaced and 

)8-(n/2^)*. (M.T. 1900.) 

16. A sphere of radius o, surrounded by viscous fluid, is oscillating by 

the torsion of a suspending wire, the angular velocity being 

cu = oiq cos (jpt + c); 

investigate the motion of the fluid. 

Prove that energy is being dissipated by viscosity at the mean rate 

. .34-68a4-6^*a*4-2j3*a8 , 

-l + 2^+2/j*a« - ' 

where a is the radius of the sphere, and jS = (P/»/2/x)i. (M.T. 1902.) 
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17. Shew that, for a plane plate of length I placed lengthwise in a uni¬ 
form stream, the assumption 

u=:Uy(2h-y)l^^ 

in K&rmdn’s Integral Condition 13*92 leads to 

S = v/{30/ia:/pL7}, 

with a frictional resistance 8U^j30}. (KArman.) 

18. A plane solid surface is wotted with viscous liquid and set up 
vertically to drain. If h is the thickness of the liquid layer adhering to it 
at any point, prove that h satisfies the equation 

dh 
V bz"^ * 

where the coordinate z is measured vertically from the upper edge. The 
motion is slow and inertia is neglected. Find a solution of the form 

where A, a, p are constants. 
If the original thickness is H, prove that this solution is approximately 

correct at depth z when a time exceeding 3vzjgH^ has elapsed from the 
start. (M.T. 1929.) 

19. Shew that, at a distance x from the leading edge of a flat plate 
parallel to a stream of unboimded fluid moving outside the boundary 
layer with velocity C7, the tangential stress on the plate is \a 

2o-*= lim2?’'(a 
f->00 

and ) is the solution of the equation 

for which F (0) = F’ (0) = 0, F" (0) = 1. (M.T. 1934.) 
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