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preface: 

This book embodies a course given by the writer for a number of 
years in the Mathematical Laboratory of the Massachusetts Institute 
of Technology. It is designed as an aid in the solution of a large num¬ 
ber of problems which the engineer, as well as the student of engineering, 
meets in his work. 

In the opening chapter, the construction of scales naturally leads to 
a discussion of the principles upon which the construction of various 
slide rules is based. The second chapter develops the principles of a 
network of scales, showing their application to the use of various kinds 
of coordinate paper and to the charting of equations in three variables. 

Engineers have recognized for a long time the value of graphical 
charts in lessening the labor of computation. Among the charts devised 
none are so rapidly constructed nor so easily read as the charts of the 
alignment or nomographic type — a type which has been most fully 
developed by Professor M. d’Ocagnc of Paris. Chapters III, IV, and V 
aim to give a systematic development of the construction of alignment 
charts; the methods are fully illustrated by charts for a large number 
of well-known engineering formulas. It is the writer’s hope that the 
simple mathematical treatment employed in these chapters will serve to 
make the engineering profession more widely acquainted with this time 
and labor saving device. 

Many formulas in the engineering sciences are empirical, and the 
value of many scientific and technical investigations is enhanced by the 
discovery of the laws connecting the results. Chapter VI is concerned 
with the fitting of equations to empirical data. Chapter VII considers 
the case where the data are periodic, as in alternating currents and volt¬ 
ages, sound waves, etc., and gives numerical, graphical, and mechanical 
methods for determining the constants in the equation. 

When empirical formulas cannot be fitted to the experimental data, 
these data may still be efficiently handled for purposes of further 
computation, — interpolation, differentiation, and integration, — by the 
numerical, graphical, and mechanical methods developed in the last 
two chapters. 

Numerous illustrative examples are worked throughout the text, 
and a large number of exercises for the student is given at the end of 
each chapter. The additional charts at the back of the book will serve 
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as an aid in the construction of alignment charts. Bibliographical 

references will be found in the footnotes. 

The writer wishes to express his indebtedness for valuable data to 

the members of the engineering departments of the Massachusetts 

Institute of Technology, and to various mathematical and engineering 

publications. He owes the idea of a Mathematical Laboratory to 

Professor E. T. Whittaker of the University of Edinburgh. He is 

especially indebted to Capt. H. M. Brayton, U. S. A., a former student, 

for his valuable suggestions and for his untiring efforts in designing a 

large number of the alignment charts. Above all he is most grateful to 

his wife for her assistance in the revision of the manuscript and the 

reading of the proof, and for her constant encouragement which has 

greatly lightened the labor of writing the book. 

JOSEPH LIPKA. 
Cambridge, Mass., 

Oct. 13, 1918. 
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Graphical and Mechanical Computation. 

CHAPTER I. 

SCALES AND THE SLIDE RULE. 

I. Definition of a scale. — A graphical scale is a curve or axis on 
which are marked a series of points or strokes corresponding in order to a 

set of numbers arranged in order of magnitude. 

If the distances between successive strokes are equal, the scale is 

said to be uniform (Figs, ia, lb). If the distances between successive 

strokes are unequal, the scale is said to be non-uniform (Fig. Ic). The 

strokes arc drawn as fine as possible, perpendicular to the axis which 

carries the scale. 

Fig. ia. Fig. ib. Fig. ic. 

2. Representation of a function by a scale. — Consider the function 
ti2 of a variable u. Form the table 

w = o i 2 3 4 5 6 7 8 9 10 

u2 = o 1 4 9 16 25 36 49 64 81 100 

and on an axis OX lay off from the origin 0, lengths equal to x = 0.04 u* 
jnches (Fig. 2a); mark at the strokes indicating the end of each segment 

the corresponding value of u. Thus, a stroke marked u is at a distance 

of 0.04 u2 inches from the origin. Fig. 2a is said to represent the function 

u2 by a scale. The length 0.04 inches is chosen arbitrarily in this case to 

represent the unit segment used in laying off the values of u2 on the axis. 

This unit segment is called the scale modulus. 

(u) 

Fig. 2a. 

In general, any function f(u) of a variable u such that each value of 

the variable determines a single value of the function, may be represented 

by a scale. Form the table 

u * Ui u* u% . . . 

f(u) • /(**0 fW) f(u1) • • • 

z 
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and on an axis OX lay off from the origin lengths equal to * = mf{u) 
inches, and mark with the corresponding values of u the strokes indicating 
the end of each segment. Fig. 2b is said to represent the function f{u) 
by a scale. The length m inches is chosen arbitrarily to represent the 
unit segment used in laying off the values of f(u), and it is called the scale 
modulus. The equation x =* mf(u) is called the equation of the scale. 

---------1* 
u, ut u3 u4 

(U) 

Fig. 2b. 

The uniform scale is a special case of this representation when 
f{u) = u. In Fig. 2ct x = mu, where m = 0.5 inches.* 

0/23453733/0 
pm[TriTjtiTT|'nr» jii n|if 11| 1 r rr |> 11 |!t TrpTTTjtmyuTrjrTTrpT i1 |nr t;t mpTn-]rrr? | 

Fig. 2c. 

The logarithmic scale is a special case of this representation when 
f(u) = log u. In Fig. 2d, x = m log u, where m = 12.5 cm.* 

/ _ 2 3 4_5 € 7 3 9 10 
j 1 1 1—1—j—TTT T J I rTTTTTTT^TTTTTTTTTp >TI ITTIT] 1 1 I | " T” J | | 

Fig. 2d. 

The uniform and logarithmic scales are the most important scales for 
our work. 

After we have constructed a scale for f(u) from a table of values of u 
and /(w), we may wish to estimate the value of u corresponding to a stroke 
intermediate between two strokes of the scale, or to estimate on the scale, 
the position of a stroke corresponding to a value of u intermediate be¬ 
tween two values of u in the table. This process of interpolating on the" 
scale is of course very much easier for uniform scales than for non-uniform 
scales. The accuracy of such interpolation evidently depends upon the 
interval between two successive strokes. Experience has shown that 
this interval should not be less than 1 mm. or about jfo in. (very rarely 

need it be as small as this); this may always be done by the choice of a 

proper scale modulus. 
3. Variation of the scale modulus. — By varying the modulus 

m with which a scale for f(u) is constructed, we get a series of scales 
*183 Mif(u)9 x% = nhf(u), Xz = mzf(u), . . . , all representing the same 

• The values of m given in the text are those which were employed originally in the 
construction of the scales; these values do not however refer to the cuts which, in most 
cases, are reductions of the original drawings. 



In Fig. 3a, let OiXx carry the scale xi = mj{u)\ we wish to construct 
the scale X2 = nhf(u). Let 0 be any con¬ 
venient point; join 00i and on this line 
choose 0% such that OO2/OO1 = w2/wi; 
through 02 draw 0%X% parallel to OtXi. If 
A is a point on 0%X 1 marked w', then 0i^4 = 
tnif(u')t and OA will cut 02A'2 in a point B 

such that 0%B/0\A = 002/00i or = — • 
ttti 

and thus 5 will also be 
marked By joining 0 with all the points 
A of the scale 0\X\ we shall thus get the 
points B of the scale 02JV2 so that corresponding points on the same 

*# x. 

•X 

s. 

U* 

_^ 
o, Og 0 

Fig. 3a. 
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transversal through 0 will be marked with the same value of uf and 
the scale on O2X2 will have for its equation x2 = m2f{u). 

The transversals through 0 need not be drawn, but simply their 
points of intersection with 02^2 indicated. If the transversals through 
0 are drawn, then we may get a scale of any required modulus by merely 
drawing a parallel to 0\X\ dividing the segment 00i in the required ratio; 
thus a line midway between 0 and Oi will carry a scale with modulus 

W1/2, a line | of the way from 0 to Oi will carry a scale with modulus 

2 W1/5, etc. 
This principle is illustrated in Figs. 36 and y for uniform and loga¬ 

rithmic scales respectively. If we mark a uniform scale .1, .2, .3,-.. . 
.9, on the base line beginning at 0, then the lines through these points 
parallel to the left-hand scale with modulus m will cut the transversals 
in scales whose moduli are .1 m, .2 m, . . . , .9 m, respectively. It is 
best to make the charts in these figures almost square, and to take m =* 10 
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in. for the uniform scale and m = 25 cm. for the logarithmic scale. The 
chart of uniform scales will then be an amplification of the engineer’s 
or architect’s hexagonal scale, and the chart of logarithmic scales, an 
amplification of the logarithmic slide rule. 

If necessary the scales in either chart may be extended. Note, how¬ 
ever, that in the case of the logarithmic scales, the segment representing 
the interval from u = 1 to w = 10 is of the same length as the segment 
representing the interval from u = 10 to u = 100, or, in general, the 
segment representing the interval from u = ion to u = ion+1. 

It is convenient to draw Figs. 36 and 3c on durable paper. Only the 
primary scale with modulus m, the base line and the transversals need 
be drawn. The paper may then be creased along any parallel to the 
primary scale to give a scale of the required modulus. Charts of this 
nature have been used to assist in constructing a large number of the 
scales and charts that follow, and much time and energy have been 
saved thereby. (Such charts will be found in the back of this book.) 

4. Stationary scales. — A relation between two variables u and v 

of the form v = f(u) may be represented graphically by constructing the 
two scales x = mv and x = mf{u) on opposite sides of the same axis or 
on adjacent or parallel axes with the same modulus and from the same 
origin or with origins in a line perpendicular to the axes. 

If C represents degrees Centigrade and F represents degrees Fahren¬ 
heit, then F—32 = 1.8 C. We construct the uniform scales jc = m (F—32) 
and x = m (1.8 C) on opposite sides of the same axis, and from the same 
origin, i.e., the points marked C = o and F — 32 coincide. In Fig. 4a, 

F o 10 20 30 40 SO 60 70 80 90 100 110 120 130 140 ISO 160 170 780 190 200 Zio' 

C -20 -10 O 10 20 30 40 SO 60 70 80 90 TOO 

Fig. 4a. 

m = 0.02 in.,' so that the equations of our scales are x = 0.02 (F — 32) 
and x = 0.036 C. By means of such a figure, we may immediately con¬ 
vert degrees Centigrade and Fahrenheit into each other. 
' If pressure is expressed as pounds per sq. in., P, and feet of water, 
W, then P = 0.434 W. Draw the uniform scales x = mP and x = 

0 9 2 3 4 S 6 7 Q 9 /O IF 
W l i ... I i_... I ... » 1 1 . 1 i I « 1 1 1 1 » t 1 « I 1 » I 1 i 1 1 1 . . .. 1 .... I .... 1 . Hr-vW hi U-V-lWi wtC, 11 »1 »* H 'i^j 

'l V) 'l 'l 

8 9 90 

Fig. 46. 

m (°*434 W) from the same origin. In Fig. 46, the scale modulus is 1 in., 
so that we have the scales x = P and x = 0.434 W. We may add 
another scale for pressure expressed in inches of mercury, M; thus 
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P = 0.492 Af, and the M scale has for equation x = 0.492 M. By 
means of such a figure (drawn with the aid of chart 36 or a pair of dividers) 
pressure may be read immediately in pounds per sq. in., feet of water, 
or inches of mercury. 

If the relation between the two variables is of the form v = log u, we 
construct the adjacent scales x = mv and x = m log u, If we take 
m = 25 cm., the logarithmic scale will be the sajyie length as that of the 
logarithmic slide rule, and if the uniform scale is divided into 500 parts, 
we can use such a figure to read easily the values of the mantissas of the 
logarithms of all numbers to three decimals, and conversely to read the 
numbers corresponding to given mantissas (Fig. 4c). The slide rule 

0 at az 0.3 a4 as 0.6 a7 as as to 

Fig. 4c. 

contains two such adjacent scales. The chart, Fig. 3c, could be used 
for the same purpose if we construct a uniform scale adjacent to the 
primary logarithmic scale. 

If the relation between the two variables is of the form v = w*, we 
may write this as~ log v = $ log u. Here we construct the adjacent 
scales x = m log v and x = m ($ log «), i.e., two logarithmic scales with 
moduli m and 3 m/5 respectively. We use chart 3c and get Fig. 4d, from 

/ 2 3 4 S 6 7 89 to 20 30 40 50 60 708090100 
Li n i i i i i il iinti.nl_i_1 i I ill l-i-11 lilt i mm i lmimnl_i_1 i 1 i 1 i 1 I 11 111 

y | i l l l r i i i i | i i i i 11 i 111111 mm jiimmq i | i | i | i | i | i i i i i i i i i | 

/ 2 3 4 5 6789 tO 20 

Fig. 4d, 

which we can read v when u lies within the limits I to ioo, or read u when 
v lies within the limits I to 20. 

We may similarly construct two adjacent scales for the relation v = up, 
where p is any positive number. The chart Fig. 3c may conveniently 
be used for this purpose. We may write the relation as log v = p log u, 
and we pick out on the chart the scales x = m log v and x = {pm) log u, 
i.e.t with moduli m and pm. Since the axes carrying these scales are 
parallel with origins in the same perpendicular, any perpendicular to the 
axes will cut out corresponding values of u and v. If p < 1 we may use 
the primary logarithmic scale for the v scale. lfp> i, we write the rela¬ 
tion in the form u = vlfp and proceed similarly. 

If in the relation v ■ up, p is a negative number, say, — q, then 
9 « #-«. If we write 1/ = 10 u~q, we merely shift the position of the deci¬ 
mal point in the value of v; then log v * log 10 — g log u. Construct 
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the adjacent scales x = m log v and x = m (log io — q log u) = m — 
(qm) log u from the same origin; the latter scale is merely the scale 
x * (qm) log u constructed from the point x = m as starting point and 

proceeding to the left. Fig. \e represents the relation v = vr\ con¬ 
structed with the help of chart 3c. 

5. Sliding scales. — Consider two functions f(u) and F(v) and con¬ 
struct their scales x = mf(u) and x = mF(v). If these scales are placed 
adjacent with their origins coinciding or in the same perpendicular to 
the axes (we shall call this the stationary position), then for any pair of 
values u and v opposite each other, we have OA = O'B (Fig. 5a), and 
hence, mf(u) = mF (v), or 

(in the stationary position) f(u) = F(v). (I) 

This relation was illustrated in the examples of Art. 4. 

If now one of the scales is slid along the other scale through any dis¬ 
tance dt then for any pair of values of u and v opposite each other, we 
have OA — O'B = d (Fig. 56), or mf(u) — mF(v) = d, or f(u) — F(v) = 

Fig. 5a. Fig. 56. Fig. 5c. 

d/m = constant, for d and m are independent of the pair of values of u 
and v considered; hence, 

(after sliding) f(u) — F(v) = constant. (II) 

If uu v1 and w* are two pairs of values of «, v opposite each other 
(Fig. 5c), then by (II), we may write 

f(uy) - F(vx) =/(^) - F(v>). (Ill) 

Equations (I) and (II) are the important equations for the construc¬ 
tion of stationary and sliding adjacent scales, illustrating the principles 
upon which the use of slide rules is founded. 
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As an example, consider the scales x = m log u and x = m log v. If 
these are placed adjacent, then, in the stationary position, by (I), log u = 
logv or iu = v, and after sliding, by (II), log u — logv = constant, or 

log ^ = constant, or ^ = constant for any pair of values of u and v opposite 

each other, and — = — for any two pairs of values of u and v opposite 
V\ v2 

each other. Thus if any three of the last four quantities are given, the 

/ 
« L 
¥ 

u-3.7 wj- 5.92 

2 
1 

3 
1 

' y 

!4 5 _Li_1 if ii_ 
739/0 
111 j 

1 
I 

1 
2 

n 1 
! 5 1 1 

1 1 1 m 
5 6 7 3 9 /Oj 

V,- 2.5 vr 4.0 

Fig. 5d. 

fourth quantity may be found at once; thus if «i, Vi, th are given, slide 
the scales until V\ is opposite U\, and read v2 opposite U2. This is illustrated 

-2 7 S»Q2 
in Fig. 5d, where we read — = —— • 

2.5 4.00 
We may perform the same operation by means of a single logarithmic 

scale x = m log u sliding along an unmarked axis (Fig. se). 

u-3.7 u- 5.92 ' 1 * 1 

-r 
2 
-1 r-i- 

3 ' 4 

u-3.7 
1 1 _1_ 

“i—ji—v—r 
5 6 7 3 

u-5.92 
1 __!_._ 

"1 
9 

1 
to 

«t r ^ I ' — 1 1 1 1 
# 2 | 3 1 3 6 7 3 9 !0 j 

• 1 
v-2.5 »£-4.0 

Fig. 54. 

1st position: place the scale x = m log u adjacent to the unmarked 
axis and mark on the latter the values U\ and u*. 

2d position: slide the scale x = m log u until V\ of this scale falls 
opposite U\ of the unmarked axis; then read v2 of the scale opposite U2 of 
the unmarked axis. 

It is evident that simple multiplication and division are special cases 
of the above, for if U\ = 1 or 10, then v% * u% • Vi or 10 Vi, and if 
t^i ■* 1 or 10, then = ujvi or 10 ujvi. 
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6. The logarithmic slide rule.* —This instrument consists of several 
parallel logarithmic scales and one uniform scale, some on the stock of 
the rule and others on the slide. Any two of these scales may be placed 
adjacent by means of a glass runner which has a fine hair line scratched 
on its under side and which is adjusted so that the hair line is always per¬ 
pendicular to the axes (Fig. 6). 

All logarithmic slide rules do not carry the same number of scales. 
The following is a description of the scales and their equations on the 

A 1 2 A I 1 
3 4 5 6 7891 
11 l l l 1 II 

2 4567891 

B > i 
f i 

i2 i rnmy"“ 
) i c ( 

2 3 4 5 6 7 8 9if 
1 1 .1.. 1 -i » vyi - 

D ) 1 1 
2 3 

l 
4 

1 
s 

t 1 hi r r 
6 7 8 9 1 

Fig. 6. 

modern Mannheim standard rule (polyphase or duplex), commonly called 
“ the io-inch rule.” The length of the graduated part of the rule is 25 
cm. and we shall designate this length by tn. The scales are distinguished 
by the letters A, B, C, . . . . We shall use the corresponding small 
letters a, b, c, . . . , to represent numbers on these scales. 

L : x = ml. C : x = m log c. D : x = m log d. 

A : x = ~ log a. B : x == ~ log b. Cl : x = m log ™ • 
& ct 

K : x = — log k. 
3 

tn . 
S : x = — log (100 sin s). T : x = m log (io tan t). 

The C and D scales are graduated so that we can easily read three 
figures in any part of these scales. Rules for the position of the decimal 
point may be given, but in computing it is best to disregard all decimal 
points and to estimate the position of the decimal point in the final result. 

The following are some of the relations which arise through the appli¬ 
cation of the principles of stationary and sliding scales to this type of rule. 
(Other illustrations will be found in the manuals issued by the manu¬ 
facturers.) We shall designate the stationary or initial position by (I) 

* Historical Note. Gunter invented the logarithmic scale and used compasses to 
calculate with it (1620). Oughtred invented the straight logarithmic slide rule, con¬ 
sisting of two rulers each bearing a logarithmic scale, which were slid along each other 
by hand (1630). Rules in which the slide worked between parts of a fixed stock were 
known in England in 1654. Robertson constructed the first runner in 1775. Mann¬ 
heim designed the modern standard slide rule (1850). Roget invented the log-log scale 
in 1815. See F. Cajori's History of the Logarithmic Slide Rule. 
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and the position after sliding by (II). Numbers opposite each other are 
designated by the same subscript. 

(i) L and D: 

(I) / * log d and d = antilog /. (/ is only the mantissa.) 

(2) C and D (or A and B): 

(I) logs = logd, .\ c = d. 

(II) logc — logd = const., = const. 
„ Cl _ C2 

<h~ d*' 

Division . t = y or 5-L 
P y 

I _q . C I or 10 1 other factor 
P y’ " D one factor product 

C divisor 1 or 10 
*’• D dividend j quotient 

(3) D and CI: 

(I) log d = log ™d = — and ci (for finding reciprocals). 
Cl Cl ct 

It is evident that multiplying or dividing d by c is equivalent to 
dividing or multiplying d by ci. If the rule does not contain a Cl 
scale, we may invert the slide so that the C scale slides along the A 
scale, thus transforming the C scale into a CI scale. 

(II) log d — log = const. dXci = const. or d\ X ci\ — d^Xci^. 

(4) D and A (or C and B): 

(I) log d « £ log a, .*. d = Vo and a — (P. 

To find Va, divide a, as in arithmetic, into groups of two figures be¬ 
ginning at the decimal point; the left-hand group may contain only 
one significant figure. Thus, the left-hand groups in 45'.6o', .45'6o', 
.oo'45'6 are said to contain two figures, while the left-hand groups 
in 4'56., 4'.56', .04'56', .oo'o4'56' are said to contain only one signifi¬ 
cant figure. We read a in the first half or second half of the A 
scale according as the left-hand group contains one or two figures. 

(5) D and B (or C and A): 

(I) log d * \ log b, /. d = Vb and b = d2. 

(II) logd — Jlog& — const., -4== const., -—= = -7== and = 
Vb v b\ V62 

(6) D and K: 

(I) logd - \ log k, /. d = <fk and k - 

To find divide k, as in arithmetic, into groups of three figures 
beginning at the decimal point; the left-hand group may contain only 
one or two significant figures. Thus, the left hand groups in 456/, 
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.456', .ooo'456' are said to contain three figures, the left-hand groups 
in 45'.6, .045'6, .ooo'o45'6 are said to contain two figures, while the 
left-hand groups in 4'.56, .O04's6 are said to contain one figure. We 
read k in the first, middle or last third of the K scale according as the 
left-hand group contains one, two or three figures. 

(7) C and K: 

(I) log c = $ log kj .*. c = <Tk and k = c8. 
£ 

(II) log c — $ log k = const.*. m~H/=z = const., 
Cl_Ci 

(8) A and K (or B and K): 

(I) \ log a = £ log k, :. Va = <Tk, or a = 0 and k = a*. 

(9) A and S: 

(I) i log a = £ log (100 sin 5), .\ a = loosing and s = sin“1-^-* 
100 

(II) \ log a — \ log (100 sin s) = const., :. -A- = const, or 
sin s sin si sins2 

The last relation may be used in the solution of oblique triangles. 

To find y = a sin s, we set —5 = 
sin 90 sin 5 

To find y = , we set -A- = 
sin sin s sin 90 

We also note that cos s = sin (90° — s). 

(10) D and T: 

(I) log d = log (10 tan t), .*. d = 10 tan / and / = tan-1 —• 

(II) logd — log (10 tan t) = const., :. = const., or ^ 

To find y = d tan t, set 

d 

d 
tan t 

_= ^ 
tan 450 tan / 
d y 

tan h 

To find y = -—set -■ - - --o- 
tan t tan t tan 450 

We also note that cot / = tan (90° — t). 

d2 

tan k 

7. The solution of algebraic equations on the logarithmic slide rule.— 
The relation between the D and CI scales expressed in Art. 6 (3), viz.: 
that, after sliding, the product of d and ci is the same for all such pairs of 
numbers opposite each other, may be used to assist in the solution of 
algebraic equations of the second and third degrees. Thus if we set 
ci = 1 over d — q, then over any number y on the D scale we shall find 

~ on the CI scale ^since I X q = y X and y2 on the A scale; this is 
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illustrated in the accompanying diagram: CI ® i (Fig. 7). We 

D y q 

may use ci = 10 instead of ci = 1 if necessary, but care must be taken 
in reading the position of the decimal point. 

/ y2 2 
1 1 1 

3 4 5 6 7 8 9 1 
1 1 1 1 1 II I 

2 
1 
'3 4 S 8 7 89 / A 

I I 1 1 1 1 1 1 n 
/I 1-1— 

/ 4 4 

1 .1 
3 8/V 

1 1 
2 / c/ 

/ 3 2 
/II 1 

19 8 7 6 5 
l 1 1 1 1 1 

4 3 2 / 
III I 

Bi 
1 ' r 

Li_i— 

1 1 
2 <1/ 

1 
4 

1 1 I III si 
5 6 7 8 9 /0 

Fig. 7. 

(1) If we slide the runner until the readings on the D and CI scales 

are the same, then y = - or y2 = q and y = db Vg. 

Thus, if y2 = 5, or 3/ = 2 f we have 
CI 2.24 I 

D 2.24 5 
y = ±2.24. 

We also find d — ci = 7.07, but this is V50. 

(2) If we slide the runner until the reading on the D scale plus p 

equals the reading on the CI scale, then y + p = ~ or y2 + py = q. 

5 , CI 4.19 I 
Thus, if y2 + 3? = 5 or y + 3 = we have -77- -77^-y» 

y = I-I9* 
Since the sum of the roots of the equation y2 + py = q is —/>, the 

other root is —4.19. 
A negative root may be found by replacing y by —yi; thus the nega¬ 

tive root of y2 + 3 y = 5 is a positive root of yi2 — 3 yi = 5. 
(3) If we slide the runner until the readings on the A and CI scales 

are the same, then y2 = ~ or y3 = q and y — 

y = i-7i- 

We also find a = ci = 13.6 opposite d = 3.68, but this is ^50. 

We also find a = ci — 63.0 opposite d = 7.94, but this is ^500. 

(4) If we slide the runner until the reading on the A scale plus p equals 

the reading on the CI scale, then y2 + p = j or y8 + py = 2- 

A 2.92 

CI 2.92 I 

D I-7I 5 
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The nature of the roots of this cubic equation are determined as follows: 
2 only i real root; if g is +, root is +; if g is —, root is —. 

=£- -f — g o 3 real roots of which 2 are equal. 
^ 3 real and unequal roots; i root is + and 2 roots are — or I 

root is — and 2 roots are +. 
To find the negative roots, we replace y by — yi, and the positive 

roots of the resulting equation are the negative roots of the original 
equation. 

We also note that the sum of the three roots of the equation y3 + py 
= g is zero. The complete cubic equation z3 + az2 + bz + c = o must 

first be reduced to the form y3 + py = g by the substitution z = y — -• 
3 

To facilitate the comparison of the A and Cl scales, it is well to invert 
the slide so that the C scale is transformed into a Cl scale and slides along 
the A scale. 

Thus, if y3 + 3y = 5ory2 + 3= ~, there is only one positive root 

g2 , P3 25 since — + — = — 
4 27 4 

+ i > o and q is positive. This positive root is found 

by the setting Cl 
A i-33 
Cl 4-33 I 
D I-I53 5 

I-I53- 

Again, if / - *, - » or / - 4 -there are three real roof, since 

<72 p3 64 
~ + i-- = i-~ < o. The positive root is found by the setting 
4 27 27 - 

A 4.9 
Cl 10 O.q 

D 2 2.21 
y = 2.21. 

To find a negative root, replace y by — yu and get — yi3 + 4 yi = 2, 
A 2.8 

; Cl 1.2 l 
D 1.67 2 

2 2 
or yi2 — 4  -, or yi2 H— = 4. We have the set 

yi yi 

yi = 1.67 and y = —1.67. 
To find the third root, we note that the sum of the three roots is zero, 
2.21 — 1.67 + y = o, or y = —0.54. We may also find this root by 

A 0.29 

Cl IO 371 

D 2 0.54 

y! = 0.54 and y = -0.54. 

8. The log-log slide rule. — Suppose we wish to construct a slide 
rule for finding any power (integer or fractional) of a number, i.e., for 

C| « 

finding the value of the expression na = tif'. To find the equations of 
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the required scales we must write this equation in the form (II) or (III) 
of the principle expressed in Art. 5. Taking logarithms, we' get 

log n% = - log or = log and taking logarithms again, we get 

log log «1 — log Cl = log log Th - log c2, or log log n — log c = const. The 
equations of our scales are therefore x = m log log n and * = w log c. 
The initial point of the N scale would Be marked n = 10 (since x = 

m log log 10 = m log 1 =0), and the end point would be marked n = io10 
(since x — m log log io10 = m log 10 = m) if our scale is to be m cm. long. 
The range from n — 10 to n — io10 is not a convenient range for w, so 
that it has been found best to modify the equation of this scale some¬ 
what. An instrument called the log-log rule (Fig. 8) has been constructed 

LL i 
1.01 I.OIS 1.0* 103 too IOS LOO LOT 1.00 L0» LIO 

III IIS 1* ’ MS U I3S 1.4 IS 1.6 M 14 19 Z *.3 0 
| | -t 4-—4-1-1 LL2 

LL j 
4 S l 1 

6 7 8 » 10 
1 1111 

IS 10 
1 1 

30 40 SO 
1 II, 

no *00 soo noo toot soot totto tom 
_j___j-pj—i, T. r ,1 

C 1 rr 
/ 

1 ‘i rr~ Mil 1 
Z 

1 
3 

1 
4 

1 1 111 
5 6 7 3ft 

Fig. 8. 

in which the equation of the n scale is x = m log (100 In ll) (where 
In ll = log, ll and e = 2.71828 . . . , the base of Napierian or natural 
logarithms). The scale is broken into three parallel scales of length 

m = 25 cm.: 

the first, marked LL\ with a range from ll = e°01 ( = 1.01 approx.) 

to ll = e° \ 
the second, marked LLt with a range from ll = e01 to ll = e, 
the third, marked LL3 with a range from ll = e to ll - e10 

(= 22,000 approx.). 

By sliding the adjacent scales x = m log (100 In ll) and x = m log c, we 

have log (100 ln/f) — logc = const., or 1Q° — = const., or v'T/ = const., 
c 

e c - 

or "V'T/! = v'/fe, or ll2 = Z/iCi; hence we have the setting 
LL Ik Ik 
C C2 Cl 

e» 
If we set Ci = 1 or 10 opposite /Zi, we have II2 = Z/i*1 or lit = //11®. Of 
course on the scale x = m log c, c2 and c2/xo have the same position, but 
on the LL scales the decimal point must be left in its original position. 
It is easy to see on which of the three LL scales the result is to be read; 

LL« 2 

thus y = 24-* gives the setting LL<. 22.6 

‘ C 4-5 1 
LL-i 1.366 2 

and y = 20M gives the setting LL% 
c 0-45 1 

V = 1.366* 
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We note above that the smallest value of ll is i.oi. Values of ll 3 
0.99 may at once be replaced by their reciprocals, and the reciprocals of 

the final result taken, since = {jfj* 

The LL and the C scales in their initial position may also be used to 
find directly the natural logarithm of a number, for we have log (100 In ll) 

c 
= log c or In ll = — • 

6 100 
It is evident that compound interest problems are very easily solved 

with the log-log rule. Thus, the amount, A, of the sum of $1.00 placed at 
r per cent interest for n years and compounded q times a year, is given by 

a / i r \ 9 a . , . .. LL A \ 100 q) 
A = 11 i-I ; the required setting is then —7;--— • 

V 100 qj M & C nq I or 10 
Many other illustrations may be found in the manuals published by 

the manufacturers. 
9. Various other straight slide rules. — As another illustration of 

the use of sliding scales, let us construct a slide rule for the expression 

- + -. If we choose for our scales x = m (-) and x = w 110 — -V 
u v \w/ \ vj 

then for any position of our scales we shall have ^ — ^10 — ~j = const. 

or - + - = const., or — + — = — + —. If we choose the modulus, m, 
U V U\ V\ U2 V2 

to be I in., and the total length of our scales to be 10 in., then the range 

-assss S3 3 3 a 

(1 + -^~) 
V 100 q) 

3 S 3333a** n 

of u is from u = oo (x = 0) to u = 0.1 (x = 10), and the range of v is 
from v = 0.1 (x = o) to v = 00 (x = 10). (Fig. 9.) Now if we set 

V2 = 00 opposite = «, we shall have - + — = and we may read off 
u 1 V\ u 

any one of the three quantities U\, Vu u if the other two are known. This 

rule may be used to solve the equation 4“ + “ET “ where R is the com- 
K. 1 xC 2 JtC 

bined electrical resistance of two parallel resistances R\ and 2?*, or to soive 

the equation 4 4 where / is the principal focal distance of a lens 
/: h J 

and/i and/a are conjugate focal distances. 
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A large number of slide rules have been constructed for solving various 
special equations in engineering practice. Among these may be men¬ 
tioned: stadia slide rules for measuring the horizontal distance and ver¬ 
tical height when the rod reading and the elevation of telescope are 
known; NordelPs sewer rule for solving Kutter’s formula for circular 

sewers; Hudson’s horse power computing scale for obtaining the indi¬ 
cated H.P. of an engine (this rule has two slides); Hazen-Williams 
hydraulic rule for finding the velocity of the flow of water through pipes 

(see chart on p. 61). 
/ 

a 

e 
Circular slide rule 

Fig. io. 

io. Curved slide rules. — Divide the angular magnitude about a 
point, viz., 2 it radians, into 1000 equal parts by straight rays drawn 
through the point. Choose one of these rays as initial ray and mark it 
with the number i (for o = log i); mark the ray at the end of 301 parts 
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with the number 2 (for 0.301 = log 2), and the ray at the end of 477 
parts with the number 3 (for 0.477= log 3), etc. Then the angle will be 
divided logarithmically (Fig. 10). The circumference of any circle drawn 
with the point as center will likewise be divided logarithmically, the 
points on the circumference carrying the same numbers as the rays 

through them. 
Designating such a circumference by A, the numbers on it by a, and 

its radius by ra inches, the equation of the scale on A is x = (2 irra) log a, 
i.e., the point marked ai is at a distance of (2 irra) log <ii inches from the ini¬ 
tial point, c=i, measured along the circumference. We now draw a con¬ 
centric circumference, 5, of radius rb, carrying a scale x = (2 rrb) log b 
and so constructed that the plane of the 5-circumference can rotate 
about the center. If in the initial position of the scales, i.e., when the 
numbers a = 1 and b = 1 are on the same ray, a ray cuts out the num¬ 

bers Oi and bu then we have 

log Oi = log bi and ©i = 61. 

log oi — log a2 = log bi — log h. 

(2 7Tr„) log oi = r_a 
(2 irrb) log bi rb ’ 

If, after rotation of the B-scale through any angle, two rays cut the scales 

in Oi, bi and a2, b2, then 

(2 xr») log ai — (2 irra) log g2 _ u 
(2 rrb) log bi — (2 irrb) log b2 rb' 

Oi _02 
bi bi 

Hence the ratio of two numbers on the same ray is constant. This prin¬ 
ciple of rotating circular scales is therefore similar to the principle of sliding 

straight scales. Thus for 

* ay 
Multiplication: y — a*b or j = ^, we set 

A one factor product 
B 1 other factor 

Division: 
y = b 

or 
ay 
■r = -, we set 
b 1 

A dividend quotient 
B divisor 1 

One advantage of such a circular rule lies in the fact that we avoid the 
difficulty of running off the rule, as often happens in setting with the 

straight slide rule. 
In the instrument called “Sexton’s Omnimetre,” which Fig. 10 repro¬ 

duces in part, the .4- and 5-circles have the same radius, about 3 inches, 
so that it is approximately equivalent to a straight rule of 18 inches. A 
ray drawn on a strip of celluloid capable of revolving about the center aids 
in the setting of the scales. The plane of the 5-circle also contains the 
scale x = (4 icre) log c; and for two numbers, b and c, on the same ray, 

we have, in the initial position, 

(4 vrb) log c = rs 

(2 vrb) log b rb 
2 log c 
log b l’ 

b = c* and c — Vb. or 
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It is evident that if c is to vary from I to io, the C scale must consist of 
two concentric circumferences, on one of which c varies from c = i (or 
X = o) to c = Vio (or x = 2 Tre) and on the other from c = VTo to 
c = io (or x = 4 icr€). The C and B scales thus serve for finding squares 
and square roots. We may also combine the C and A scales, and after 
rotation we have ax/ci2 = au/c22. The instrument also contains three 
concentric circumferences for the scale x = (6 im) log k; and a com¬ 
bination with the 5-scale, in the initial position, gives b = k* or k = b. 
The instrument further contains scales for sines, tangents, and versines, 

and a scale of equal parts. 
There are other forms of curved rules. “Lilly’s Improved Spiral 

Rule,” a disk 13 inches in diameter, consists of a spiral logarithmic scale 
and a circular scale of equal parts, and is equivalent to a straight rule 
of about 30 feet long; it gives results correct to 4 figures. “Thacher’s 
Rule” consists of two logarithmic scales one on a cylinder and the other 
on a set of 20 parallel bars external to the cylinder. This is really an 
amplification of the straight slide rule, involving the same principle in 
its use; tfie rule gives four figures correctly and a fifth may be esti¬ 

mated.* 

EXERCISES. 

(Note. For the constructions in Exs. 4-10 use charts of uniform and logarithmic 

scales, Art. 3.) 
1. Construct scales for the function y/u (u = o to u = 100) if m is 1 in., 0.5 in., 

0.2 in., respectively. 
2. Construct scales for the function log u (u « I to u = 10) if m — 5 in., 10 in., 

y in., respectively. 

3. Construct a scale for the function log ~ if m = 10 in. 

4. Construct adjacent scales for converting inches (/) to centimeters (C); we have 

C ® 2.54 I. 
5. Construct adjacent scales for converting cu. ft. per sec. (C) to million gallons per 

hour (G); we have G = 0.0269 C. 
6. Construct three adjacent scales for converting foot-lbs. per sec. (F) into horsepower 

(H.P.) and kilowatts (K); we have H.P, = 1.818 X io”3 Ft and K = 1.356 X 10 * F. 
7. Construct adjacent logarithmic scales for the following: 

(a) v * i; (jb) v = «*; (c) v = Vu\ 

(d) v - («) v - (/)» = «*. 

8. Construct adjacent logarithmufscales for A = - . where D — diameter 

in inches and A area of circle in sq. ft. 

* For descriptions and illustrations of this rule and other rules, see “Methods of 
Calculation, a Handbook of the Exhibition at the Napier Tercentenary Celebration,M 
published by G. Bell & Sons, London. 
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9. Construct adjacent logarithmic scales for h *44 P 
62.5 

, where h 

in ft. and P ® pressure in lbs. per sq. in. for the flow of water. 

pressure head 

10. Construct adjacent logarithmic scales for h = — = where h =* velocity 

head in ft. and v = velocity in ft. per sec. for the flow of water. 
11. Show how to construct a slide rule for the relation V* —— k (cos T — cos *). 
12. Solve by means of the logarithmic slide rule the following equations: 

(a) y* + 3? - 7 - o; (b) y* +y + 5 = o; 
(c) y - >* - 6y + 1 = o; (d) y1 + y* + y - 1 = o; 

W / - 3y* + I - O. 



CHAPTER II. 

NETWORK OF SCALES. CHARTS FOR EQUATIONS 
IN TWO AND THREE VARIABLES. 

ii. Representation of a relation between two variables by means of 
perpendicular scales. — A relation <t> (ft, v) = o between two variables 
u and v may be represented by means of two perpendicular scales instead 
of two adjacent scales. Construct the scales x = mif(u) and y = m^F^v) 
where /(ft) and F(v) are any functions of u and v, on two perpendicular 
axes OX and OF, and through the points marked on these scales draw 
perpendiculars to the axes (Fig. na). Any pair of values of u and v 
that satisfy the equation <f> (u, v) = o will determine a point, viz., the 
intersection of the corresponding perpendiculars to the axes; thus the 
pair of values uu v\ will correspond to the point of intersection of the 
perpendicular to OX through u = U\ and the perpendicular to 0 V through 
v = vi. The locus of all such points is a curve which is said to represent 
the relation <t> (u, v) = o. The rectangular or Cartesian equation of this 
curve referred to the axes OX and 0 Y may be found by solving the equa¬ 
tions of the scales, x = rai/(w) and y = w2F(v), for u and v in terms of 
x and yt and substituting these values in 0 (w, u) = o. 

It is evident that the nature of the locus by which the relation 
4> (w, v) = o is represented, varies with the equations of the scales. If 
possible, it is well to choose the scales so that the Cartesian equation is of 
the first degree in x and y, for then the representing curve will be a straight 
line. 

Having drawn the representing curve, and given a value of w, say ft*, 
we can find the corresponding value of v} say vk, in one of three ways: 

Fig. na. Here a network of perpendiculars to the axes is already 
drawn. Follow the perpendicular through ft* on OX until it cuts the 

20 



Art. 12 SOME ILLUSTRATIONS OF PERPENDICULAR SCALES 2X 

^curve in the point P, and read vk at the foot of the perpendicular from P 
to OF. 

Fig. i lb. On a transparent sheet, draw two perpendicular index lines, 
Iu and intersecting in a point P. Slide the sheet so that the point P 
moves along the curve, keeping the index lines parallel to the axes; then, 
when Iu cuts OX in uk, Iv will cut OF in vk. (It is a simple mechanical 
matter to keep the index lines parallel to the axes.) 

Fig. lie. Draw the scale* = m\f(u) with axis O'X' on a transparent 
strip. Slide the strip.perpendicular to OF until the point uk falls on the 

curve; then at O' read vk. 
In any case, the interpolation of uk and vk on the u and v scales is easily 

done by sight. 
12. Some illustrations of perpendicular scales. — 
(i) Consider the relation v = u2. If we construct two uniform scales 

x = mu and y = mv on OX and 0 F respectively, and draw perpendiculars 
to the axes through the points marked on the scales, we shall have the 
rulings of an ordinary piece of rectangular coordinate paper. (Fig. 12a.) 
Here, v = u2 will be represented by the locus whose Cartesian equation 
is y/m = x2/m2 or *2 = my, a parabola. We plot this curve from a table 
of values of u and v satisfying the equation v = u2. Note that we couldm 

have constructed the scales * = mxu and y = m2v with different moduli 
mi and m2, but the corresponding Cartesian equation m2x2 = m^y still 

represents a parabola. 

10 

9 

8 

7 

6 

5 

4 

3 

2 

/ 

*4 -J -/ -/ 0 / 2 3 4 ° 

Fig. i2a. 

(2) Again, we can represent the relation v = u2 as follows: If we 
construct the scales * = m\U2 and y = tn2v oft OX and OY respectively, 
we shall have the rulings as in Fig. 12&, and our relation will be represented 
by the locus whose Cartesian equation is y/nh = x/m\ or y = mu a 
straight line of slope nh/mu In Fig. 12&, nh = 0.1 in. and m2 = 0.2 in. 
The line may be plotted by means of two sets of values of u and v which 
satisfy v = w2, such as u = o, v = o and u = 2, v =■ 4, or by means of 

Fig. 126. 
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one such set and the slope, 2, of the line. Note that the points on the 
scale x = Wiu2 are marked with 4- and — values of u. 

It is evident that the representation in Fig. 12b is much simpler than 
that in Fig. 12a. In the former, the straight line is much more easily 

constructed and every point on it is definitely determined, while, in the 
latter, the curve between plotted points is only approximated. Of course, 
it is easier to interpolate on the uniform tt-scale in Fig. 12a than on the 
non-uniform tt-scale in Fig. 12&. Furthermore, in Fig. 126, we can pro¬ 
ject the point in which the representing line cuts v = 10 vertically on 
v ~ o and thus draw a second section of the line parallel to the first sec< 

tion, for which v ranges from 10 to 20; this process may again be used to 
get further sections of the line. 

A third representation of the equation v = v? is given in the next 
article. 

(3) Consider the relation v = ae~^u\ We can write this In v = 
—b2u2 + In a (lnv = log«v). If we construct the perpendicular scales 
x = mi#2 and y = m2 In v, our relation will be represented by the straight 

. y b^x . 
line whose equation is — =-(- In a. This line is easily con- 

m2 mi 

structed by means of the points u = o, v — a and u = v = In* 

' Fig. 12c, we have taken a — 6, b — mi = 0.2 in., m2 = 2 in. A table 
of natural logarithms was used to construct the scale on OY. 

13. Logarithmic coordinate paper. — Consider the relation wni« = a, 
where P, q, and a are any numbers. We can write this p log« + 
3 log v = log a. If we construct the perpendicular scales x = m log u 
and y •* m log w and draw the perpendiculars to the axes, we shall 
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have the rulings of a sheet of logarithmic coordinate paper. In Fig. 13, 
m = 25 cm. and u and v vary from 1 to 10. (Logarithmic paper can 
be constructed for larger ranges of the variables and with various 
moduli.) Our relation will be represented by the straight line whose 

Cartesian equation is — x + — y = log a, which may be plotted by means 
mm 

of two pairs of corresponding values of u and v or by means of one pair 

of values and the slope — p/q. A chart can thus be built up for a large 
number of equations in two variables. The following are some examples. 

(1) For the relation v = «2, the representing straight line passes 
through the points u = i, v = I and u = 3, v = 9; this gives the section 
OM in Fig. 13. But since the scale on OY can also serve to represent 
log v for v from 10 to 100, we shall get another section, M'A, which can 
be drawn through u = 4, v = 16 and u = 9, v = 81, or through M' on 
OX vertically below M and parallel to OM. The two sections, OM and 
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M'A, will then represent the relation v = w2, where u varies from i to io 
and v from i to ioo, and hence for all values of u and v since the scale 
x =b m log u, for example, where u varies from iop to iop+1 (p = integer) 
can be made to coincide with the scale x = m log u, wh^re w Varies from 
i to io. The position of the decimal point must be determined .inde¬ 
pendently in each case. In finding u when v is given, divide v into groups 
of two figures each beginning at the decimal point, as in arithmetic (see 
Art. 6 (4)); if the left-hand group contains only one significant figure, use 
the section OM, if it contains two significant figures, use the section M'A ; 
thus when v = 0.64, read u = 0.8, but when v = 0.064, read u = 0.253. 

(2) For the relation v = £ 7rw3, the volume of a sphere in terms of its 
diameter, the representing straight line passes through the point u = 2, 
v = § 7r and has a slope equal to 3; this gives the section BC in Fig. 13. 
We continue this line by projecting C into C' on OX and drawing CD 
parallel to B'C, then projecting D into jO' on OX and drawing D'E parallel 
to C'D} and complete this last section by projecting E into £' on OF and 
drawing E'F parallel to D'E; F will project into the initial point B on 
OX. Our relation is completely represented by these sections for all 
values u and v. In finding u when v is given, divide v into groups of three 
figures each beginning at the decimal point as in arithmetic (see Art. 6 (6)); 
according as the left-hand group contains one, two, or three significant 
figures, use the first, second, or third section, respectively. 

(3) For the relation u • vlAl = 10, where u is the pressure and v is the 
volume of a perfect gas, our first representing section, IIK, passes through 
the point u = 10, v = 1 with slope —1/1.41; the second section, K'L, is 
easily constructed and these two sections will serve for the variation of v 
from 1 to 10. If the sections are continued, later sections will overlap 
the preceding ones. 

14. ’ Semilogarithmic coordinate paper. — Consider the relation 
v = p • qu, where p and q are any numbers. We can write this 
logv = ulogq + log£. If we construct the perpendicular scales x = m\U 
and y = log v, and draw the perpendiculars to the axes, we shall 
have the rulings of a sheet of semilogarithmic coordinate paper. In 
Fig. 14, m\ = m2 = 25 cm. and u varies from o to 1 while v varies from 
0.1 to 1. (Semilogarithmic paper can be constructed for larger ranges 
of the variables and with various moduli.) Our relation will be repre- 

sented by the straight line whose Cartesian equation is — = — log q + 

log p, which can be plotted by means of two pairs of corresponding values 
of u and v, or by means of one pair and the slope m2 log q/mi. The fol¬ 
lowing examples will serve to illustrate the use of semilogarithmic paper. 

(1) The relation v - 0.1 e*lu can be written logv = (2.1 loge) u + 
logo.I, where e is the base of natural logarithms, and is represented 
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by the straight line (section OA in Fig. 14), which passes through the 
points u = o, v = 0.1 and u = 1, n = 0.817. To extend the range of 
our variables we need not extend the chart but merely project A horizon¬ 
tally into A' on OF, draw A'F' parallel to OA, project Ff vertically into 
F" on OX, and draw F"E" parallel to OA; then for OA, u varies from o 
to 1 and v from 0.1 to 0.817, while for A'F' and FnE", u varies from 1 to 2 
and v from 0.817 to 6.668. 

(2) Suppose we wish to find the values of u and v satisfying simul¬ 
taneously the equations v = 0.1 e2 lu and v = 0.6 e~°mu. We represent 
each of these equations by a straight line (Fig. 14). The line represent¬ 
ing the second equation passes through the points u = o, v = 0.6 and 
u = 1, v = 0.332. At the point of intersection of these lines we read the 
required values u = 0.663, v = 0.404. 

(3) To solve the equation v = p • qv or log v = v log q + log p for 
the unknown quantity v, we draw the straight line representing the equa- 
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tion v = p • and run our eyes along this line until we find the point 
where u and v are equal; this is the required value of v. 

Thus to find the solution of v = 0.6 e~0-691 •, we draw the line BC rep¬ 
resenting the equation v = o.6e~°mu and run our eyes along this line 
(watching the u and v scales) to the point D where we read u = v = o 46 
(Fig. 14). 

Again, to find the solution of the equation log v = 0.912 v — i, we 
draw the line OA representing the equation log v = 0.912 u — 1 [this 
equation is equivalent to the equation considered in (1), since 2.1 log e = 
0.912 and log o.l = -1] and run our eyes along this line until we read 
u = v = 0.132. We can find another value of v satisfying the equation 
by running our eyes along the section F"E" until we read u = v = 1.17. 

15. Rectangular coordinate paper — the solution of algebraic equa¬ 
tions of the 2d, 3d, and 4th degrees. — We may. use the rulings of a sheet 
of rectangular coordinate paper to solve graphically algebraic equations 
of the 4th, 3d, and 2d degrees. Let the scales be x = u and y = v where 
the modulus is 1. 

(1) If we draw the parabola y2 = 2 x and the circle (x — A)* + 
(y - k)2 = r2 with center at (A, k) and radius r, the ordinates of their 
points of intersection are found algebraically by eliminating x between 
these two equations and solving the resulting equation for y. From the 
first equation we have x = y2/2, and substituting this in the second equa¬ 

tion we get - hj + (y - k)2 = r2, or 

y* + 4 (1 - A) y2 — 8 ky + 4 (A2 + k2 — r2) = o. 

If we divide this last equation by t*, where t is an arbitrary number, 
we get 

or 

„ where 

z4 + az* + bz + c = o, 

-4 (r — A) 8 A_4 (A2 + A* — r2) 
t2 ’ P ’ c J 

Conversely, the real roots of the equation z* + az2 + bz + c = o are 
found by measuring the ordinates of the points of intersection of the 
parabola y2 = 2 x and the circle with center at 

^ — ~ g* , A = —^ and radius r = \!h2 + k2 — —, 
40 *4 

where t is an arbitrary number, and dividing these ordinates by /. 
The introduction of t allows us to throw the center of the circle to a 
convenient point — always to the right of OY, or as near to or as far 
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from the vertex of the parabola as is convenient — such that the circle 
will not cut the parabola at an angle too acute for accurate reading of 
the ordinates. Note that the one parabola, / = 2*, will serve for find¬ 
ing the real roots of all equations of the fourth degree (Fig. 15). To 
solve the complete equation t^ + /^ + 2t,2 + n» + 5 = o, we first substi- 

Y 

ANALYTIC CHART FOR SOLUTION OF ALGEBRAIC EQUATIONS 

Fig. 15. 

tute v — z — p/A and this equation takes the form z4 + as* + bz + c = o, 
and then proceed as above. 

Example 1. Let us find the real roots of the equation z4 + z —1=0. 
Here a = o, b = 1, c = — 1. Hence h — 1 and k = — $ Is. If we choose 
/ = 2, the center is the point (1, — 1) and the radius is V6 = 2.45. The 
circle (Fig. 15) cuts the parabola in two points whose ordinates are ap¬ 
proximately y = 1.4 and y = — 2.4. Hence z =* y/t = 0.7 and —1.2. 

(2) If c = o in the equation z* + 022 + bz + c = o, this equation 
becomes e1 + 02* + bz = o or z (2* + az + b) = o or z = o and z* + 02 
+ 6*0. One of the roots being zero, the circle will pass through the 
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origin or vertex of the parabola, and the other points of intersection will 
give the real roots of the cubic z3 + az + 6 = o. Hence, the real roots 
of the equation 2? + az + b = o are found by measuring the ordinates 
of the points of intersection of the parabola y2 = 2 x and the circle with 

, 4 — at2 , btz , , 
center at h = I!—-—, k =4 — — (where / is an arbitrary number) and 

passing through the vertex of the parabola, and dividing these ordinates 
by L Note that the one parabola y2 = 2 x will serve for finding the real 
roots of all fourth and third degree equations (Fig. 15). To solve the 

complete equation v3 + pv2 + gv + r = o, we first substitute v = z — - 
3 

and this equation takes the form s3 + az + b = o, and then proceed as 
above. * 

Example 2. Let us find the real roots of the equation s3 — 3s—1=0. 
4 -L *1 t2 *7 t? 1 

Here the center of the circle is at h = ---— = k = — = - if/ = i. 
' 4 4 8 8 

We read s = y = 1.88, - 1.53, - 0.35 (Fig. 15). 
Example 3. Let us find the real roots of the equation ^-3^ + 1;- 

4 = 0. Let z = v + I; then the equation becomes z3—2z — 5 = 0. Here 
the center of the circle (Fig. 15) is at h = 1 + \t2 = 3, k = Z3 = 5, 
if / = 2. We read y = 4.18; hence z = y/t = 2.09, and v = z — 1 = 1.09. 

(3) If we draw the parabola y2 = 2 x and the straight line y = mx + k 
of slope m and y-intercept k, the ordinates of their points of intersection 

2 2 k 
are found from the equation y2-y -\-=0. If we divide this by 

m m 

mt 
t2 (where t is an arbitrary number), we get 

w 
y 2 2 k 

z2 + az + b = o, where 2 = 7, a = — —, 6 = — 
/ m/ mt2 

(f)+s?-o<>r 
Conversely, the 

real roots of the equation z2 + az + b = o are found by measuring the 
ordinates of the points of intersection of the parabola y2 = 2 x and the 

. • 2 bt 
straight line of slope m =-- and y-intercept k =-(where / is 

a£ a 
an arbitrary number), and dividing these ordinates by t. Note that the 
one parabola y2 = 2 x will serve for finding the real roots of all fourth, 
third, and second degree equations (Fig. 15). 

Example 4. Let us find the real roots of the equation z2 — 1.452 — 
22 

5.6 = o. Here the slope of the line is m =-- =-, and its y-in- 
1 -45 * 145 

tercept is k =-—# = — 3.86, if t = 1. We read 2 = y = — 1.75 and 

3.CO. 
16. Representation of a relation between three variables by means 

of perpendicular scales. — An equation in three variables of the form 
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<t>(u, v,w) =0 can be represented graphically by generalizing'the method 
employed in Art. 11 for the representation of an equation in two variables. 
Thus, if we assign to w a value, say wit we shall have <£(«, vf W\) = o, an 
equation in two variables u and v, which can be represented by the 

method of perpendicular scales, x = y = m2/r(t>), as a' curve; 
this curve is marked with the number w\. By assigning to w a succession 
of values, wu uk, wi, ... , we get a series of representing curves, each 
marked with its corresponding value of w. The equation in three vari¬ 
ables is said to be represented by this network of curves. It is evident 
that the same equation <t>(u,v,w) = o can similarly be represented by a 
network of curves found by assigning a succession of values to u (or v) 

and marking each curve with its corresponding value of u (or v). 

Fig. 16a. Fig. 16b. Fig. i 6c. 

Fig. 16a illustrates this representation. Given values of u and v, say 
Uk and Vk, we find the point (z**, Vk) as the point of intersection of the cor¬ 
responding vertical and horizontal lines, and read wk from the curve pass¬ 
ing through this point. If the point (uk, vk) falls between two of the 
curves w, and Wi, we interpolate by sight the required value of Wk between 
Wj and wi. Again, given values of u and w, say uk and Wk, we find the point 
of intersection of the vertical ilk and the curve Wk, and read Vk from the 
horizontal passing through this point. Thus, in Fig. 16a, u = 3, v =4 
give w = 3; u = 3, v = 4.5 give w = 3.3; u = 4, w = 5 give v = 6.6. 

As in Art. n, we may avoid drawing the horizontals and verticals, 
and use a transparent sheet containing two perpendicular index lines, 
Iu and Iv (Fig. 166); thus, if u = 3 and v = 6, slide the sheet keeping the 
index lines parallel to the axes until Iu passes through u = 3 and Iv passes 
through v = 6, and from the w-curve passing through their point of in¬ 
tersection read w = 4. If u = 4 and w = 3.5, slide the sheet keeping Ju 
perpendicular to OX until /w passes through u = 3 and the point of in¬ 
tersection of the index lines lies on the curve w = 3.5, then /» will cut 
OY in 1/ = 4.5. Instead of the two index lines, we may also use a trans¬ 
parent strip carrying the u- (or v-) scale (Fig. 16c) and which slides perpen¬ 
dicular to the v- (or u-) scale; thus, if v = 5 and w = 4, we slide this strip 
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until OX passes through v = 5, and at its intersection with the curve 
w = 4, we read u = 3.7. 

The task of drawing the w-curves is often very greatf and it is therefore 
best, whenever convenient, to choose the scales for u and v so that the repre¬ 
senting w-curves are straight lines. This will not only lessen the labor of 
construction but will evidently increase the accuracy of our charts. 

17. Charts for multiplication and division. — This example will 
illustrate how the choice of scales determines the nature of the represent¬ 
ing curves. 

(1) The equation uv = w can be represented by taking x = mu and 
y = mv for our two perpendicular scales, and drawing the corresponding 

network. The equations of our representing w-curves are of the form 
xy = m2wi a set of rectangular hyperbolas (Fig. 17a) which are quite 
difficult to draw and for which the interpolation is very inaccurate. 

(2) The equation uv = w can be represented by choosing x = mu 
and y = ww/ioforour two perpendicular scales. The equations of our 
representing ^-curves are of the form y = vx/io, a set of radiating straight 
lines of slope v/10. Fig. 176 illustrates this chart, where u and v vary 
from 1 to 10. The values of v are placed at the end of the represent¬ 
ing lines. For saving of space, the values of w are placed at the points 
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where the horizontals cut the line v == 10 and the rulings above this 
diagonal need not be drawn. Of course, the position of the decimal point 
in the value of a variable may be changed with a corresponding change 
in the result. The great disadvantage of this chart is that the v-lines 

mm *! 
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Fig. 17d. 

converge to a point and also cut the horizontals at very small angles, thus 
making the reading quite inaccurate in parts of the chart. This may be 
remedied somewhat by rotating the verticals of the scale x = mu through 
an angle of 450, without changing the nature of the chart. This is illus¬ 
trated in Fig. 17c. In Figs. 17b and 17cs the scale for u can be taken 
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over a range from o to ioo or, in general, from o to io*, similarly for the 
range of v, with corresponding change in the range for w. 

(3) The equation uv = w can be represented by writing it in the 
form log u + log v = log w and choosing x = m log u, y = m log v for 
our two perpendicular scales, i.e., we have the rulings of a sheet of log¬ 
arithmic paper. The equations of our representing ^-curves are of the 
form x + y = m log w, a set of parallel straight lines (Fig. ijd). These 
parallel lines are very easily drawn, for the line w = k} for example, cuts 
w = I (or the y-axis) at v = k, and cuts v = 1 (or the x-axis) at u = k; 
hence the line w = k is a line joining the point on OX marked u = k with 
the point on OF marked v = k. The ranges for u and v may be read from 
iop to iop+1 with corresponding readings in the range for w. 

The methods illustrated in (2) and (3) may be extended to any equa¬ 
tion of the form f(u) • F(v) = </>(w). If we choose x = mj(u) and 
y = mi(t>(w) for our perpendicular scales, then the equations of our repre- 

senting z/-curves have the form y = — F(v) x, a set of radiating lines. 
m 1 

But if we choose x = nti log f(u) and y = m2 fog F(y) for our perpen¬ 
dicular scales, then the equations of our representing w/-curves have the 

x v 
form-f- — = log a set of parallel lines. 

wi\ tn^ 
18. Three-variable charts. Representing curves are straight lines. 

— The following examples illustrate the construction of charts for equa¬ 
tions in three variables, where the perpendicular scales are so chosen 
that the representing curves are straight lines. 

(1) The equation w = 's/aP* can be written 5 log w = log a + 4 log 0, 
and if we choose x — mi log a, y = w2 log ft for our perpendicular scales and 
let mi = m2 = 10, the equations of our representing ^-curves are of the 
form x + 4 y = 50 log w, a set of parallel straight lines. These lines 
have the slope They are most easily constructed by noting that 
when a = P = k, we have* w = k also. We, therefore, draw a system of 
parallel lines through the points a = k, P = k with slope — \ and mark 
these with the corresponding value w = k (Fig. 18a). 

(2) The equation pvlAl = c, for adiabatic expansion of certain gases 
where p = pressure and v = volume, can be written logp + 1.41 logr = 
logc. If we choose x = iologfl,y = 10 lo gp for our perpendicular 
scales, the equations of the representing c-curves have the form y + 1.41 x 
= 10 log c, a set o( parallel straight lines. These lines are easily con¬ 
structed by noting that the slope is —1.41, and that through the point 
v = 1, p = k there passes the line c = k (Fig. 18a). 

4 P 
(3) Consider the equation / = ^5, for the elastic limit of rivet steel, 

where P is the actual load in pounds at the elastic limit, D is the diameter 
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of the bar, and/ is the fiber stress in pounds per square inch. If we choose 
x = m\P, y = mzf for our perpendicular scales, the equations of the repre¬ 

senting Z>-curves have the form y = x, a set of radiating straight 

lines. For Fig. 186, mi = 2 m2, and the lines were constructed by means 

(d) (v) 

Fig. 18a. 

of two points for values of D = 0.71, 0.72, ...» 0.78; thus for the line 
D = 0.75, we have / = 2.26 P, and to construct this line we may use the 
points for which P = 7000,/ = 15,820 and P = 12,000, / = 27,120. 

We should note here that if we had chosen x = WiP, y = m^D for 
our perpendicular scales, the equations of the representing/-curves would 

A Ml. 2 
be y2 = a set of parabolas with a common vertex and a common 

axis; but these are much more difficult to draw than the straight lines 
above. 
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(4) Consider the equation - + - = -, where u and v are the dis- 
vt/ n u v w 

tances of an object and its image from a lens and w is the focal length of 
the lens, or where w is the combined resistance of two resistances « and v 
in parallel. If we choose x = nt/u, y = m/v for our perpendicular scales, 

the representing w-curves have for their equations x + y = m/w, a set 
of parallel straight lines. These lines are easily constructed by noting 
that the line marked w = k joins the point u = k on OX with the point 

v = k on OY (Fig. 18c). 
19. Rectangular chart for the solution of cubic equations. — The 

roots of the cubic equation z3 + pz + q = o depend upon the'values of 
the coefficients p and q; thus the roots are functions of p and q. If we 
choose x = mp, y — mq for our perpendicular scales, the equations of our 
representing z-fcurves have the form y zx jwz3 = o, a set of straight 
lines. In Fig. 19, these straight lines are constructed for values assigned 
to z, viz., z = o, dho.i, ±0.2, . . . , ±1.3, and lying within a square 
bounded by p = ±1 and q = ±1. Each line is constructed by means 
of two points on it. Thus for the straight line marked z = 0.3, we have 
0.027 + 0.3 p + q = o, and to construct this line we may use the points 
for which p = 1, q — —0.327 and p = —i,q — 0.273. 

On this chart we may read the approximate real roots of any cubic 
equation for which p and q lie within the limits — 1 and +1. Thus for 
the equation z* ■+■ 0.6 z — 0.4 = 0 we have p — 0.6 and q = —0.4, and 
we read z = 0.47, interpolating this value of z between the lines marked 
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z = 0.4 and z = 0.5. According as the point (p, q) falls outside of, on 

the boundary of, or within the triangular shaped region on the left, we 

can read one, two, or three values of z, and the corresponding cubic 

equation has one real root only, 3 real roots two of which are equal, or 3 

2 
1 

RECTANGULAR CHART FOR SOLUTION OF CUBIC EQUATION 

Fig. 19. 

distinct real roots.* Thus for the equation z3 — o.8z + o.ii = o we 

have p = —0.8 and q = +0.11, and we read z = —0.96, +0.82, +0.14. 

If the values of p and q lie beyond the limits — 1 and +if the chart 

may still be used. Let z = kz', and the equation z3 + pz + q = o becomes 

#z'8 + pkz' + q = o, or z'3 + ^ z' + Jj = o, or z'3 + pfz' + q[ =* o. 

We may now choose k so that p' and q* lie within the limits — 1 and +1, 

and read the corresponding values of z' from the chart. The roots of the 
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original equation are then z = kz'. Thus to solve the equation z8 + z — 4 

= o, let z = kz', and the equation becomes z'3 + p z' — jp = °; if we 

choose & = 2, we get z'3 + 0.25 z' — 0.5 = o, for which we read 2'= 0.69, 
and hence z = 1.38. 

If the complete cubic equation «3 + an2 + + c = o is given, this 
must first be transformed into the equation z3 + pz + 2 = o by the sub- 

. . a 
stitution u = z- 

In a similar way we may build a rectangular chart for the solution 
of the quadratic equation z2 + pz + = o, or for any trinomial equation 
z*1 + pzn + g = o. 

20. Three-variable charts. Representing curves not straight lines. 
(1) Chart for chimney draft. Extensive researches have been carried 

out by the Mechanical Engineering Department of the Massachusetts 
Institute of Technology to determine an equation expressing the draft 
of a chimney in terms of its height and the temperature of the flue gases. 
No simple relation between these quantities has been found. From the 
experiments performed, it was found that if T\ is the absolute tempera¬ 
ture in degrees Fahrenheit of the flue gases measured 3 feet above the 
center of the flue (the lowest temperature point recorded), H2 is the 
height of the chimney in feet, and T2 is the absolute temperature in de¬ 
grees Fahrenheit of the flue gases at the top of the chimney, then 

T2 = 
Tx _r 

0.32 {Hi - 3) L 

Now if D is the draft in inches of water, with the outside air at a tem¬ 
perature of 70° F., then 

D = 0.192 (0-075 - ^) (Hi - 3). 

If the value of T2 from the first of these equations is substituted in the 
second equation, we shall have an equation in three variables, D, Tu 

and Ht. 
In Fig. 20a, our two perpendicular scales are x = m\T\ and y = trhD, 

where = 200 mt, and the representing 77-curves are drawn for H = 50, 
75, ... , 300 ft. Thus, for a chimney 150 ft. high and for an absolute 
temperature of 1139.5°, we read that the draft is 0.955 in. of water. 

(2) Experimental data involving three variables are often plotted by 
means of a network of curves, and such a chart takes the place of a table 
of double entry. Fig. 20b gives a chart useful in heat flow problems 
where the temperature difference is an important factor. The chart 
gives the difference between the temperature of pure water under various 
gage pressures and the temperature under various vacuums. (Correc¬ 
tions must be applied for solutions.) Let P denote the gage pressure in 
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lbs. per sq. in., T, the temperature difference in degrees Fahrenheit, and 
V, the vacuum in inches. We first construct the perpendicular scales 
x = nhP and y = nttT (in Fig. 20b, wj = 2 mi); then the F-curves are 
constructed by means of a table, part of which is as follows: 

BASCO OH E*T£*NAL Alt* AT 70*F 

Fig. 20a. 

TEMPERATURE DIFFERENCE (T). 

Gage Pressure, 
P 

Vacuum (V) 

25 26 26| 

O 78°.8 

5 93°.9 
zo 106 .0 

IS • 

• * 
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Such a table is constructed with the aid of Peabody’s Steam Tables. 
Thus, a vacuum of 25 in. is equivalent to a barometric pressure of 4.92 in. 
or 4.92 X 0.4912 = 2.42 lbs. per sq. in., and this gives a temperature of 
*33 '21 a gage pressure of 5 lbs. is equivalent to total pressure of 19.7 lbs. 
(adding the atmospheric pressure of 14.7 lbs.), and this gives a tempera- 

Vacuum 

ture of 2270.1; we thus have a temperature difference of 227°.i — I33°.2 
= 93°-9- In this way, we subtract the temperature for a 25-in. vacuum 
from the temperatures at gage pressures of o, 5, 10, . . . lbs., and these 
corresponding values of P and T are plotted giving the curve marked 
P = 25 in. The table is completed for various values of V = 26, 
26$, ... in. and the corresponding curves are drawn. The curve 
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marked "atmospheric” gives the temperature difference for open evap¬ 
oration. 

21. Use of three indices. Hexagonal charts. — In Fig. 21a let 
OX and OF be perpendicular axes and let OZ be the bisector of tbeir 

Fig. 21 c. 

angle. From any point P draw PI\, Pit, Ph perpendicular to OX, O Y 
and OZ respectively, cutting OX in A, OY in B, OZ in C. Let Ph also 
cut OZ in D, and draw AE perpendicular to OD, cutting OZ in E. Then 

OC~OE+ED +DC = OA cos45°+AD cos 450 + DP cos 450 - 0A+PB. 
Vi 



Art. ax HEXAGONAL CHARTS 41 

Thus, if the axes OX, OY, OZ carry the scales x = mf(u), y — tnF(v), 

z = <t>(w) respectively, then the three perpendiculars from any point 

to these axes will cut them so that 

jUw -vm+^m /(»)+n») = *w; 
thus, any equation of this type may be represented by three scales. The 
indices It, It, It may be drawn on a transparent sheet and this sheet is 

moved over the paper keeping the indices perpendicular to the axes. 

Fig. 21c charts the equation - + - = — by this method. 
1 uvw 

We can choose the modulus on OZ the same as the moduli for OX 
and OF by following the construction illustrated in Fig. 216. Here OX 
and OY cut at an angle of 120° and OZ bisects this angle. Join OP and 

let angle COP = a. Then 
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OA = OP cos (6o° + a) = OP (cos 6o° cos a — sin 6o° sin a). 
OB = OP cos (6o° — a) = OP (cos 6o° cos a + sin 6o° sin a). 
0^4 + OB = 2 OP cos 6o° cos a = OP cos a = 00. 

Thus our three scales are a; = y = tnF(v), z = m<t>(w). Fig. 2id 
charts the equation uv = w or log w + log u = log zt; by this method. 

EXERCISES. 

I. Represent the equation v =» uz by a straight line, using natural scales. 
2 Represent the equations (a) 2 m2 -f 3 ^ = 6, (b) «2 — 3 r2 = i, (c) u2 + t/2 = 4 

by straight lines, using natural scales, and find graphically the simultaneous solutions of 
the three equations taken in pairs. 

3. Find graphically the simultaneous solutions of the equations v — 6e~^ and 

v = 10 e ®. _u* 
4. Solve graphically the equation u — 6 e 18. 

5. Construct a sheet of logarithmic coordinate paper and draw on it the straight 
lines representing the relations: 

(a) v = m3; (b) v = w6; (c) v = 
u£ 

(d) C = ttD (circumference of circle); (e) /l = - D2 (area of circle); 
(f) pvUil = 2 (adiabatic expansion of a gas); 4 

(g) ^ = — = T77 (^ = velocity head in ft., v = velocity in ft. per sec. for flow 

of water). 

.6. Construct a sheet of semilogarithmic coordinate paper and draw on it the straight 
lines representing the relations v = 0.2 el-*u and v = 0.85 (i.5)“3M. 

7. Solve graphically the equation u = 0.2 e15M. 

8. Show how to solve for p the equation In (pit) -f- — pv = c, where a, 6, c, Ir, and 

R are known constants, when various values are assigned to v. 

9. Construct charts for the relations V — Trr*h and S = 2 vrh (volume and lateral 
surface of a cylinder) using parallel straight lines only. 

10. Plot the equation y = 2 xn for various values of n, positive and negative, (a) as 
a set of curves, (b) as a set of straight lines. 

II. Plot the equation y = enx for various values of «, positive and negative, (a) as a 
set of curves, (b) as a set of straight lines. 

12. Plot the following experimental data for the relative humidity obtained by a 
dew-point apparatus, using the wet bulb temperature, degrees Fahrenheit, as abscissas 
and the dry bulb temperature, degrees Fahrenheit, as ordinates. 

WET BULB TEMPERATURE (DEG. F.). 

Dry Bulb 
Tempera¬ 

ture 

Relative Humidity 

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

40° 27.2 28.4 29.8 31.0 33 .0 34-0 35.5 36.s 37.0 39.0 40.0 

s°° 32.7 34-7 36.5 38.5 40.7 42.7 44.0 45-5 47.0 48.7 50.0 
60 38.s 41.0 435 46.0 48.5 51.0 53.0 55.0 56.9 58.5 60.0 
70° 44.0 47.2 50.3 53 0 56.0 59.0 61.5 63-5 66.0 68.0 70.0 
80 0 49.0 53-2 57-o 60,5 64.0 67 .0 70.5 72-5 75-0 77.5 80.0 

9°: 54-0 58.8 64.0 68.0 72 .0 76.O 79.0 81.5 84.0 87.5 90.0 
IOO° 58.2 643 70.0 75 0 79-5 84.O 87.5 9° 5 94.0 97.0 100.0 
IIO° 62.0 693 76.0 82.0 87.5 92 .O 96.0 100.0 103.0 106.7 IIO.O 

120° 655 74.0 81.5 85.0 95.0 100.0 105.0 109.0 112.0 116.5 120.0 
130° 69.0 78.6 87.0 95-2 103.0 109.0 112 .0 119.0 122.0 126.0 130.0 
140 ° 71.5 82.5 90.5 102 .0 hi .0 117.0 122 .0 126.7 1313 135.5 140.0 
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13. Construct a chart similar to that of Ex. 12, using the difference between wet and 

dry bulb temperatures as abscissas and the dry bulb temperature as ordinates. Which 

is the better representation, that of Ex. 12 or that of Ex. 13? 

14. From the chart of Ex. 13, with the aid of graphical interpolation, form a table 

giving the relative humidity for dry bulb temperatures of 40°, 50°, . . . , no°, and dif¬ 

ference between wet and dry bulb temperatures of o°, 50, io°, . . . , 450, and draw the 

set of curves for the difference of temperatures using the dry bulb temperature as ordi¬ 

nates and the relative humidity as abscissas. 

15. Plot the curves y — a sin bx for various values of a and b. 

16. The Brake Horsepower of an engine (B.ILP.) with n cylinders of d in. diameter, 

according to the rating of the Association of Automobile Manufacturers, is given by 

B.H.P. = —. Plot the representative curves for n = 2, 4, 6, 8, 12, letting d range 
2.5 

from 1} in. to 5 in., (a) using rectangular coordinate paper, (b) using logarithmic coordi¬ 

nate paper. 

17. The volume, Vt of one pound of superheated steam which has a pressure of P 

lbs. per sq. in. and a temperature of T degrees, is given by (Tumlirz’s formula) 

V — 0.596 — — 0.256 cu. ft. 

Plot representative lines (a) radiating, (b) parallel. 
18. Solve the following equations by means of parabola and circle. (Art. 15.) 

(a) z3 + 3Z - 7 = o; (b) z3 + z + 5 = o; 

(c) z8 — 3Z2 + 1 = o; (d) z4 — 12 z + 7 = o; 

(e) z4 + z - 1 = o; (/) z4 -3Z3 -h 3 = <>• 

19. Solve the following equation by means of the rectangular chart of Art. 19. 

(a) z3 + 3z~7 = 0; (b) z3 + z + 5 = °; 
(c) z3 — z2 — 6z -f 1 = o; (d) z3 -}- z2 + z — 1 *= o. 



CHAPTER III. 

NOMOGRAPHIC OR ALIGNMENT* CHARTS. 

22. — Fundamental principle. — The methods employed in the pre¬ 
ceding chapter for charting equations are very useful in a large number 
of problems in computation, but they have certain disadvantages: (i) 
the labor involved in their construction is great, especially when the rep¬ 
resenting curves are not straight lines; (2) the interpolation must largely 
be made between curves rather than along a scale, and thus accuracy is 
sacrificed; (3) the final charts appear very complex, especially if the 
methods are extended to equations involving more than three variables. 
The methods to be explained in this and the following chapters are appli¬ 
cable to a large number of equations or formulas and possess certain dis¬ 
tinct advantages over the previous method: (1) the chart uses very few 
lines and is thus easily read; (2) interpolation is made along a scale 
rather than between curves, with a corresponding gain in accuracy; 
(3) the labor of construction is very small, thus saving time and energy; 

jl (4) the chart allows us to note instantly 
1 the change in one of the variables due 

■ to changes in the other variables. 

The fundamental principle involved in 
the construction of nomographic or align¬ 
ment charts consists in the representation 
of an equation connecting three variables, 
f(u, v, w) = o, by means of'three scales 
along three curves (or straight lines) in 
such a manner that a straight line cuts 
the three scales in values of u, vt and w 
satisfying the equation. The transversal 
is called an isopleth or index line (Fig. 22). 

We shall now make a study of some of the equations which can be rep¬ 
resented in this way, and of the nature and relations of the scales repre¬ 
senting the variables involved.* 

* The principles underlying the construction of nomographic or alignment charts 

have been most fully developed by M. D’Ocagne in his “TraitS de Nomographie.” 

Further references may be given to “The Construction of Graphical Charts,” by J. B. 

Peddle; “Nomographic Solutions for Formulas of Various Types,” by R. C. Strachan 

(Transactions of the American Society of Civil Engineers, Vol. LXXVIII, p. 1359), and 

to various smaller articles that have appeared from time to time in Engineering Journals. 

44 
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(I) EQUATION OF THE FORM /,(«) +/,(») -/,(») or 

/i(u) •/*(») -/*(»). — THREE PARALLEL SCALES. 

23. Chart for equation (I). — [The second form of equation (I) can 
be brought immediately into the first form by taking logarithms of both 
members; thus, log/i(«) + log/2(n) = log/3(w).] 

Let AX, BY, CZ be three parallel axes with ABC any transversal or 
base line. (Figs. 23a, 23b.) Draw any index line cutting the axes in 

Fig. 230. Fig. 23b. 

the points u, v, w respectively, so that Au — x, Bv = y, Cw = z. How 

are x, y, z related? 
If AC : CB = trti : w2, and if through v and w we draw lines parallel 

to AB, then the triangles uEw and wDv are similar, and Eu : Dw = 

Ew : Dv = AC : CB or x — z : z - y = nh : m- 

x y z 
tthx + tniy = (nt 1 + m) 2 or — + — = — 

y Ml M2 M\M2 

m\ + nh 

Now if AX, BY, CZ carry the scales x = nhfx{u), y = mf-tiv), z = 

■ minH f3(w), respectively, the last equation becomes/i(m) +/2(i») = 
nh -I- nVi 
/s(w), and any index line will cut the axes in three points whose corre¬ 
sponding values u, v, w satisfy this equation. 

We also note that for the equation f\{u) — ft(v) = the scales 
X = Wi/i(m) and y = —mMV) are constructed in opposite directions, as 

in Fig. 23b. 
Hence to chart equation (I) fi(u) +/2(t>) = /sW, proceed as follows: 
(1) Draw two parallel lines (*- and y-axes) any distance apart, and 

on these construct the scales x = mifi(ti) and y = nhftiy), where mx and 
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m2 are arbitrary moduli. The graduations of the u- and v-scales may 
start at any points on the axes. 

(2) Draw a third line (z-axis) parallel to the x- and y-axes, such that 
(distance from *-axis to z-axis) : (distance from z-axis to y-axis) = mi : m2. 

(3) Determine a starting point for the graduations of the w-scale. 
This may be the point C (z = o) cut out by the line from A (x = o) to 
B (y = o). If the range of the variables u and v is such that the points 
A and B do not appear on the scales, a starting point for the w-gradua- 
tions may nevertheless be found by noting that three values of u, v, w 
satisfying equation (1) must be on a straight line; thus, assign values to4 
u and v, say Uq and Vo, and compute the corresponding value of wt say w0, 
from equation (I); mark the point in which the line joining u = Uq and 
v = Vq cuts the z-axis with the value w = w0 and use this last point as a 
starting point for the ^-graduations. 

(4) From the starting point for the ^-graduations, construct the scale 

z = msf3(w) 
m\m<i 

mi + m2 /*(«»)• 

General remarks. — In practice the index lines need not be drawn; a 
straight edge or a transparent sheet of celluloid with a straight line 
scratched on its under side or a thread can serve for reading the chart, 
i.e.y for finding the value of one of the variables when two of them are 
given. The distance between the outside scales and the moduli for these 
scales should, in general, be so chosen that the complete chart is almost 
square. Then any index line will cut the scales at an angle not less than 
450, and its points of intersection with the axes is more easily noted and 
the corresponding interpolation on the scales is more accurate. It is 
rarely necessary to choose the moduli so that the length of the longest 
scale greatly exceeds 10 inches. 

Charts of logarithmic and uniform scales similar to those described 
in Art. 3 have been used in laying off the scales needed in the construction 
of most of the charts which follow. Much time and energy have been 
saved thereby. For greater convenience, the modulus of the primary or 
left-hand scale was taken to be 10 in. instead of 25 cm. 

In laying off the w-scale with the help of these charts, the following 
procedure will increase the accuracy of the construction. Assign two 
or three sets of values to u and v, and compute the corresponding values 
of w; let these be (wo, v0, w0), («i, Vi, Wi), and (u2, v2, w2). Draw the 
index lines (u0, i>0), («i, i>i), and (u2} 1^), and mark the points in which these 
lines cut the z-axis with the corresponding values of w. Fold the chart 
along the scale with modulus m3, and slide this scale along the z-axis until 
the points of the scale numbered w6, wu w2 practically coincide with the 
like-numbered points on the axis. This procedure is especially impor¬ 
tant when the modulus, is quite small. 

The cuts in the text are reductions of the original drawings. 
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24. Chart for multiplication and division. The equation u* v = tv. — 
If we write this equation as log u + log v = log w, we have an equation 
of the form (I). Let u and v range 
from 1 to 10; then w ranges from 1 
to 100. Construct (Fig. 24a), 10 in. 
apart, the parallel scales x = mi log u 
= 10 log u and y = m2 log v = 10 log v. 
Since nh :m2 = I : I, the 2-axis is mid¬ 
way between the x- and y-axes. The 
line joining u = 1 and v = 1 must cut 
the z-axis in w = I, and using this last 
point *as a starting point, construct 

.1 1 mim2 , 
the scale z = 7-;-r w = 5 log w. 

(mi + m2) 0 & Fig. 24a. 

The index line in the completed chart (Fig. 246) gives the reading u = 7, 
v = 3, w = 21. Since the u- and I'-scales are logarithmic scales, we may 

CHART FOR MULTIPLICATION AND DIVISION UV-W 
Fig. 244. 
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read these scales as ranging from io* to io*+1 where p is any integer, 
with a corresponding change in the position of the decimal point in the 
value of w. 

25. Combination chart for various formulas. — As a further illustra¬ 
tion of product formulas of the type (I), fi(u) • }t{v) — ft(w), we shall 
now represent several such formulas in the same chart, with the same 
outer scales but varying inner scale. Our chart (Fig. 25) represents six 
formulas and undoubtedly others could be added. In all cases, if mi and 
ntt are the moduli of the scales on the x- and y-axes, then the modulus of 
the scale on the z-axis is m3 = miwi2/ (wi + m2), and the position of the 
z-axis is determined by the ratio mi : mi. 

(1) u • v = to for multiplication and division. This has already 
been charted in Art. 24. The equations of the scales are 

x = 10 log u, y = 10 log v, z = 5 log w, 

and mi :nn = 1 : 1. The index line gives the reading u = 3, v = 5, 
w = 15. 

(2) v'u • v* = tv occurs in the McMath "run-off” formula. The 
equation can be written log u + 4 log v = 5 log w and hence 

x = mi log u, y = m2 (4 log v), z = m3 (5 log w). 

Let mi = 10 and m2 = 10/4, then m3 = 2, and mi : m3 = 4:1. The 
equations of our scales are 

* = 10 log M, y — 10 log v, z = 10 log w. 

A starting point for the w-scale is found by noting that when u = 1 and 
» = 1 then w = 1, and by aligning these three points. The index line 
gives the reading u = 3, i; = 5, w= 4.5. 

(3) pv1M = c gives the pressure-volume relation of certain gases 
under adiabatic expansion. The equation can be written log p + 1.41 
log v = log c, hence 

x — mi log p, y = tth (1.41 logz), z = m3logc. 

If we choose mx = 10 and nh = 10/1.41, then m% = 4.15 and mi: m* = 
1.41 : 1. The equations of our scales are 

x = 10 log p, y = 10 log v, z = 4.15 log c. 

A starting point for the c-scale is found by noting that when p — 1 and 
v = x then c — 1 and by aligning these three points. The index line 
gives the reading u = 3, v = 5, w — 29. 

(4) V = 0.785 D2H, the volume of a circular cylinder. The equation 
can be written 2 log D + log H = (log V — log 0.785), hence 

x = mi (2 log D), y = tth log H, z = m3 (log V — log 0.785). 

If we choose mi = 5 and m2 = 10, then m% = 3.33 and mi : nh = 1 :2. 
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The equations of our scales are 

x = jo log D, y = 10 log H, z - 3.33 log F, 

where we have discarded the expression —3.33 log 0.785 in the value of z\ 
this may be done since this expression merely helps to determine a start¬ 
ing point for the F-scale; thus the point F = 1 is at a vertical distance 

s = —3*33 log 0.785 from the base line AB of Fig. 23a or 23b. We shall 
however determine a starting point for the F-scale by noting that when 
D = 1 and H = 1, then F = 0.785, and by aligning these three points. 
The index line gives the reading D = 3, H = 5, F = 35. 

(5) ^ = 0.524 D3, the volume of a sphere. The equation can be 
written F = 0.524 D • Z)2 or log D + 2 log £> = log F - log 0.524, hence 

x = mi log£>, y = m2 (2 log £>), z = m3 (log F — log 0.524). 

If we choose mx = 10 and m2 = 5, then m3 = 3.33 and mi : m2 = 2 : I. 
The equations of our scales are 

* = 10 log P, y = 10 log D, z = 3.33 log F, 

where we have discarded the expression —3.33 log 0.524 in the value of 2. 
We find a starting point for the F scale by noting that when D — 1, 
F = 0.524 and we align the three points D = 1, D = 1, and F = 0.524. 

(6) Q = 6.3 D2 VH gives the quantity of water, Qy in cu. ft. per 
second which flows through a pipe having a diameter D ft. when 
under a head H feet. The equation can be written 2 log D + \ log H = 
(log(? —log 6.3). If we choose mi = 5 and m2 = 20, thenm3 = 4 and 

mi : m2 = 1 : 4. The equations of 
our scales are 

x = 10 lo %D, 
y = 10 log#, 

2 = 4 log Q. 

Again we discard the expression — 4 
log 6.3 in the value of z, and find 
a starting point for the Q-scale by 
noting that when D = 1 and H = 1, 
then () = 6.3 and by aligning these 
three points. The index line gives 
the reading D = 3, H = 5, () = 127. 

26. Grashoff’s formula 11? = 0.0165 
^p,0 97 = 0.01296 D2Pi0W for the 
weight, wf of dry saturated steam in 

pounds per second flowing from a reservoir at pressure Pi pounds per sq. 
in. through a standard converging orifice of A sq. in. or circular orifice of 
diameter D in. to a pressure of P% pounds per sq. in., if Pi = 0.6 P*. 
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If we write the equation as 

2 log D -f- 0.97 log Pi = (log w — log 0.01296) 

we have an equation of the form (I). The scales are 

* = mi (2 log D), y = m2 (0.97 log Pi), 2 = m3 (log w - log 0.01296). 

Let D vary from o.I in. to 2.0 in., then logD varies from logo.i = — 1 
to log 2 = 0.301, a range of 1.301; if we choose mx = 5, the equation of 
the D-scale will be x = 10 log D and the scale will be about 13 in. long. 
Let Pi vary from 20 pounds to 300 pounds, then log Pi varies from 
log 20 = 1.301 to log 300 = 2.477, a range of 1.176; if we choose m2 = 
10/0.97, the equation of the P-scale will be y = 10 log P and the scale 
will be about 12 in. long. Then w3 = mim2/(mi + mi) = 3 37. The 
equations of our scales are now 

* = iolog£>, y=iologP, z = 3.37 log w. 

Construct (Fig. 26a) the x- and y-axes 6 in. apart; the s-axis will 
divide this distance in the ratio mx : m2 = 4.85 : 10. We have therefore 
drawn the z-axis at a distance of 1.96 in. from the x-axis and 4.04 in. from 
the y-axis. A starting point for the w-scale is found by aligning D = I, 
Pi = 100, and w — 1.13. The completed chart is given in Fig. 26b. 

T 
27. Tension in belts, = e_oom6/“, and horsepower of belting, 

/y* _ T ) S 
H.P. = — --—.— In the first of these formulas, Ti is the allowable 

33,000 

working stress in pounds per in. of width, or the tension in the tight side 
of the belt; the value of this may be obtained either from the manu¬ 
facturer of the belt or by breaking a piece in a tension machine; a suitable 
factor of safety should be added. 7i may vary from about 50 to 75 for 
single belts and from 100 to 150 for double belts, a is the arc of contact 
in degrees of belt and pulley and may vary from ioo° to 300°. / is the 
coefficient of friction and is assumed (in this chart) to have the value 0.30 
for leather belts on cast-iron pulleys. T2 is the tension in the loose side 
of. the belt in pounds per in. of width. This formula may be written 

log T2 — log Ti = —0.01745 fa log e or log Ti — 0.002274 a = log T2 

which is in the form (I). The scales are 

x *s mi log Tu y = —nh (0.002274 <*)> z = m3 log T2. 

Now log Ti varies from log 50 = 1.6990 to log 150 = 2.1761, a range of 
0.4771; if we choose m\ = 10, the equation of the 7Vscale will be x = 
10 log Ti and the scale will be about 5 in. long. Again, a has a range of 

200; if we choose nh =^q ^ 002274)9 t*ie e(luat^on °* t^le a‘scale will be 
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y = —^ts ot and the scale will be 5 in. long. Then m3 — mmt/(nh + nh) 
= 5.24. The equations of our scales are 

X = 10 log Tu y = a, z = 5.24 log 7V 

iSCb—i 

Construct (Fig. 27a) the x- and y-axes 3.75 in. apart; the 2-axis must 

divide this distance in the ratio nil : m2 = 10 :-7— -r = 10 : 11. 
40 (0.002274) 

We have therefore drawn the 2-axis at a distance of 1.79 in. from the x- 
axis and 1.96 in. from the y-axis. 
A starting point for the T2 scale is 
found by aligning Ti = 80, a = 150, 
and T2 = 36.5. The completed chart 
is given in Fig. 27b, and indicates the 
reading T\ = 80 pounds, a = 150°, 
T2 = 36.5 pounds. 

In the second of the formulas, 5 
is the distance traveled by the belt 
in feet per minute, and may vary 
from 300 to 6000; Ti — T2 is the 
difference in the tensions and may 
vary from 10 to 200; H.P. is the — t79"—-w- 
horsepower which a belt of one inch 
width will transmit; then, knowing 
the horsepower which we wish to 5°m~x ,*“J 
transmit we merely divide to get Fig- 2^a' 
the width of the belt desired. The equation can be written 

log (Ti - r2) + log S = log H.P, + log 33»ooo, 

which has the form (I). The scales are 

x = mi log (Ti — r2), y = m2 log 5, 2 = m3 log H.P. 

36.5 

r—100 

^6/50 

Now log (Ti — T2) varies from log 10 = 1 to log 200 = 2.3010, a range 
of 1.3010; if we choose m\ = 5, the equation of the (7*i — r2)-scale will 
be x = 5 log (7"i — Ti) and the scale will be about 6.5 in. long. Log 5 
varies from log 300 = 2.4771 to log 6000 = 3.7781, a range of 1.3010: if 
we choose nh = 5, the equation of the 5-scale will be y = 5 log 5 and the 
scale will be about 6.5 in. long. Then m3 = minh/inh + m2) = 2.5. 
The equations of our scales are 

x = s log (Ti - T2), y = 5 log 5, 2 = 2.5 log H.P. 

Construct the jc- and y-axes 4 in. apart; the 2-axis must divide this 
distance in the ratio nh : nh = 1 : 1. A starting point for the H.P. scale 
is found by aligning T\ — T2 = 10, 5 = 300, and H.P. = 0.091. The 
completed chart is given in Fig. 27c and indicates the reading T\ — Tt « 

100, 5 = iooo, H.P. = 3.0. 
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(II) EQUATION OF FORM fx(u) + /,(«) + Uw) + • • • = /4(t) 
or fi(u)-f2(v)-f2(w) • • • = /4(t). FOUR OR MORE PAR¬ 
ALLEL SCALES. 

28. Chart for equation (II). — [The second form of equation (II) 
can be brought immediately into the first form by taking logarithms of 
both members; thus log/i(w) + log/2(i>) + logfz(w) + • • • = log/4(/).] 
Equation (II) is merely an extension of equation (I) and the method of 
charting the former is an extension of the method employed in charting 
the latter. 

For definiteness, let us consider the case of four variables and the equa¬ 
tion in the form fi(u) + /2(v) + /8(w) = /*(/)• Let jfi(w) + f2(v) = q. 
This equation is in the form (I) and can therefore be charted by means 

(Ua>^bwa 

Fig. 28a. 

£ 

Fig. 2Sb. 

of three parallel scales, but the g-scale need not be graduated. (Fig. 
28a.) We then have q + fz(w) = /4(/), which is also in the form (I) 
and can therefore be charted by means of three parallel scales one of 
which is the q-scale already constructed. The graduations pf the w-, v-t 
and w-scales may start anywhere along their axes, but a starting point 
for the graduations of the /-scale must be determined by a set of values 
u = «o, v = Vo, w = wq, t = /o satisfying equation (II); thus, join w0 and 
i>o by a straight line and mark its point of intersection with the q-axis; 
join this point with Wo cutting the /-scale in a point which must be marked 
k; this last point is then used as a starting point for constructing the /- 
scale. To read the completed chart we thus use two index lines, one 
joining points on the w- and v-scales, the other joining points on the w- 
and /-scales, intersecting the q-axis in the same point. Fig. 28a illus¬ 
trates the position of the scales. It is thus easy to find the value of any 
one of the four variables when the other three are known. 

The extension of this method to equations of the form (II) containing 
more than four variables is obvious. 
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Considering again the case of four variables, Mu) + f2(v) + fz(w) = 

MO* we can write this in the form fi(u) + Mv) = MO — Mw) = 2 and 
chart each of the equations fi(u) + Mv) ~ 2 and MO “ Mw) = 2 by 
means of three parallel scales, with the 2-scale (which is not graduated) 
in common. Again, to read the chart, we use two index lines, one joining 
points on the u- and i/-scales and the other joining points on the w- and 
/-scales, intersecting the g-axis in the same point. Fig. 28ft illustrates 
the position of the scales in this case. 

29. Chezy formula for the velocity of flow of water in open channels, 
v = c Vrs. — Here, v is the velocity of flow in ft. per sec., r is the hydraulic 
radius in ft. (area divided by wetted perimeter), 5 is the slope of the water 
surface, and c is a coefficient depending on the condition of the channel. 
(See Art. 53 for the construction of a chart computing c by the Bazin 
formula.) 

Let our variables range as follows: s from 0.00005 to 0.01, r from 0.1 
ft. to 20 ft., c from 10 to 250. Writing the equation 

i log s + % log r + log c = log u 

we have an equation of the form (II). Introducing an auxiliary quantity, 

2, we can write 

(1) £ log 5 + £ log r = q and (2) q + log c = log v. 

We now construct a chart for the first of these equations. The scales 

are x = mx Q log s), y = m2 (£ log r), z = tnzq. 

Now log s varies from log 0.00005 = 5.6990 — 10 to log 0.01 = 8.0 — io, 
a range of 2.3010; and if we choose mi = 10, the equation of the 5-scale 
is x = 5 log 5 and the scale will be about 11.5 in. long. Again, log r varies 
from log 0.1 = — 1 to log 20 = 1.3010, a range of 2.3010; and if we choose 
m2 = 10, the equation of the r-scale is y = 5 log r and the scale will be 
about 11.5 in. long. Then m3 = WiW2/(wi + m2) = 5. The equations 
of our scales are 

x = 5 log 5, y = 5 log r, z = 5 q. 

Construct (Fig. 29a) the x- and y-axes at any convenient distance, 
say 8 in. apart; the z-axis must divide this distance in the ratio mi : m2 =* 
1:1, and hence the z-axis is drawn midway between the x- and y-axes. 
The g-scale need not be graduated. 

We continue the construction by charting the second equation. The 

scales are z = mzq, a = W4 log c> b = mz log v. 

We use the same 2-scale as above so that mz = 5. Log c varies from 
log 10 = 1 to log 250 = 2.3979, a range of 1.3979; and if choose m4 = 5, 
the length of the scale will be about 7 in. Then m5 = + w4) =» 
2.5. The equations of our scales are 

z * 52, a « 5 logc, b = 2.5logi/. 
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Construct (Fig. 29a) the a-axis at any convenient distance, say 10 in. 
from the z-axis. The graduations of the c-scale may start anywhere 
along the a-axis; for symmetry, we shall place the scale opposite the middle 
of the scales already constructed. The 6-axis must divide the distance 
between the z- and a-axes in the ratio w3 : m4 = 1 : 1, and it is therefore 
drawn midway between them. We get a starting point for the v-scale 

by making a single com¬ 
putation; thus, when s = 
0.001, r = 1 and c = 100, 
we have v = 3.16; hence, 
join s = 0.001 and r = 1, 
cutting the g-axis in a 
point, and then join this 
point and c = 100, cut¬ 
ting the 6-axis in a point 
which must be marked 
v = 3.16. Starting at this 
last point and proceeding 

001— —20 ' 
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is graduated from v = 0.02 
to v = 100. 

The completed chart is given in Fig. 296. To read the chart we need 
merely remember that the (s, r) and (c} v) index lines must intersect on 
the g-axis. The index lines drawn in Fig. 296 show that when s = 0.001, 
r = 1 ft. and c = 100, then v = 3.16 ft. per sec. 

30. Hazen-Williams formula for the velocity of flow of water in 
pipes, V = C/f063S0 64 (o.ooi)-0 04. — The quantity of water discharged, 
Q = 4'irjR2F. — The first of these formulas has been derived experimen¬ 
tally by Hazen and Williams, who have also constructed a slide rule 
for its solution. * V is the velocity of discharge in ft. per sec. from circular 
pipes or channels flowing full; R is the hydraulic radius in ft. (area of 
cross-section divided by wetted perimeter); 5 is the slope or ratio of rise 
to length of pipe; C is a coefficient depending on the material and the 
condition of the inner surface of the pipe. Williams and Hazen give the 
following table of values for C: 

Brass, block tin, lead, glass.140-150 

Cast iron, very smooth.140-145 

44 44 new, good condition. .. 125-135 

44 41 old, “ “ ...100-125 

Cast iron, old, bad condition.60-100 

Steel pipe, riveted, new.105-115 

44 44 14 old.90-105 

Masonry conduits.110-135 

Replacing (o.oi)”004 by its value 1.318 and expressing R in inches in¬ 
stead of in feet, the formula becomes V = 0.2755 CR^S0**, and this 
can be written as 

0.63 log R + 0.54 log 5 + log C + log 0.2755 = log V 



V R S 

, 29b. 
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which is of the form (II). Let our variables range as follows: R from 0.1 
in. to 20 in., 5 from 0.0001 to 0.05, C from 25 to 200. 

We first construct a chart for 0.63 log R + 0.54 log 5 = q. The 

scales are 

x = mi (0.63 log R), y = m2 (0.54 log 5), 0 = mzq. 

Now logl? varies from logo.i = — 1 to log 20 — 1.3010, a range of 
2.3010; if we choose rrh = 5/0.63, the equation of the R-scale will be 
x = 5 log 2? and the scale will be about 11.5 in. long. Again, log 5 varies) 
from log 0.0001 = 6 — 10 to log 
0.05 = 8.6990 — 10, a range of 
2.6990; if we choose ra2 = 5/0.54, 
the equation of the 5-scale will 
be y = 5 log 5 and the scale will 
be about 13.5 in. long. Then mz 
= wim2/(wi + m2) = 4.27. The 
equations of our scales are 

x = 5 log R, 

y = 5 log 5, 

* = 4-27 a- 

Construct (Fig. 30a) the x- 
and y-axes 11.7 in. apart; the 
z-axis must divide this distance 

in the ratio mi : m2 = — 

= 5.4 : 6.3. We have therefore drawn the 0-axis at a distance of 5.4 
in. from the #-axis and 6.3 in. from the y-axis. The g-scale need not 
be graduated. 

We now continue the construction by charting 

q + log C + log 0.2755 = log V. 
The scales are 

0 = mzq, a = m4 (log C + log 0.2755), b = w6 log V. 

We use the same g-scale as above so that m3 = 4.27. Log C varies from 
log 25 = 1*3979 t° log 200 = 2.3010, a range of 0.9031; if we choose 
m4 = 4.27, the equation of the C-scale will be a = 4.27 log C and the 
scale will be about 4 in. long. Then mh = m3m4/(m3 + m4) = 2.14. The 
equations of our scales are 

0 = 4.27 q, a = 4.27 log C, J = 2.14 log V. 

Construct (Fig. 30a) the a-axis at a distance of 4.8 in. from the 0-axis. 
Although the graduations of the C-scale may start anywhere along the 
a-axis, the C-scale is only about 4 in. long and we shall"get a more sym¬ 
metrical chart by placing the scale opposite the middle of the 5-scale. 

Fig. 30a. 
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The 6-axis must divide the distance between the 0-axis and a-axis in the 
ratio m% : nti = I : i, and is therefore midway between them. We get 
a starting point for the 7-scale by making a single computation, thus, 
when R = 2, S = o.ooi and C = ioo, we have V = 1.02; hence, join R = 2 
and S = 0.001, cutting the 3-axis in a point, and then join this point and 
C = ioq, cutting the 6-axis in a point which must be marked 7 = 1.02, 

X 

—Lftr' 

V 
§ 
1 

roon 
eo~- 
60- 

40- 

20- 

fo d 
6 A Vy 

<o 

I 
t- 

^4 

2 - 

./ - 
00- 

06 - 
04 

02 i 

0/ 

200q 

150 

60 - 70 - 
60 
49 H 
40J 

k. 
53 
o 

S 

» 

Ks 
* 
5 

! 

05 

1 r-04 

-.05 

r-02 

jOJ 
009 
006 
007 

.006 

.005 

004 

V.003 

Key: 
R-S 

R — 

V — C 

Q — V 

\r.002 to 

I 
001 . 

0006 ^ 
J0007 

0004 

heooa 

t*0O2 

HAZENAND W/LL/AMS FORMULA FLOW OF WATER IN PIPES 
V*cRQ6*S°S4OOOI004 Q-AV-47TR2V 

Fig. 306. 

.000k 

We shall now enlarge the usefulness of our chart by adding a scale for 
Q, the quantity discharged in cu. ft. per sec. For circular pipes, we have 
Q = 4 wR?V, where 7 is the velocity of discharge in ft. and R is the hy¬ 
draulic radius (one-fourth of the diameter of the pipe) in ft., or Q = 
0.0873 R2 7, where R is expressed in inches. We write this equation in 
the form 

2 log R + log 7 = (log(? - log 0.0873), 
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and our scales are 

x = nti (2 log R)t b — m<L log F, c = m3 (log Q — log 0.0873). 

As we want to use the P-scale already constructed, we take mi = 5/2, 
and the equation of the scale is * = 5 log R, as above. We also want to 
use the F-scale already constructed and hence take, m2 = 2.14 and get 
b = 2.14 log F, as above. Then m3 = + m2) = 1.15, and the 
equation of the Q-scale is c = 1.15 log Q. In Fig. 30a, the x- and 6-axes 
are 7.8 in. apart. The c-axis must divide this distance in the ratio 
mi : m2 = 2.5 : 2.14; this is accomplished by drawing the c-axis at a dis¬ 
tance of 4.2 in. from the *-axis. We get a starting point for the Q-scale 
by aligning R = 2, F = 1.02, and Q = 0.36. 

Fig. 3ob gives the completed chart. The index lines drawn indicate 
that when R == 2 in., S = 0.001, and C = 100, then F = 1.02 ft. per sec. 
and Q = 0.36 of. ft. per sec. 

31. Indicated horsepower of a steam engine, H.P. = —— 
33,000 

Here, P is the mean effective pressure in pounds per sq. in., L is the 
length of the stroke in ft., A is the area of the piston in sq. in., and N is 
the speed in revolutions per minute. 

This formula is used extensively in steam engine testing practice. 
The pressure, P, is obtained from the indicator card and is equal to its 
area divided by its length. In double-acting steam engines — air com¬ 
pressors, air engines, or water pumps — we have the fluid acting on both 
sides of the piston alternately. Here we must apply the formula to each 
end and add the results in order to get the total power output. 

For purposes of illustration we shall here use the diameter, D, instead 
of the area, and write 

ttPLD2 N 
HP- - (33.°oo) (4) (12) " 0-00000:983 PLOW 

where L is expressed in inches, as is more common. 
We shall divide the charting of this equation into three parts: 

(1) PL = q, (2) D*N = /, (3) H.P. = 0.000001983 qt. 

(1) PL = q can be written logP + logL = logg, which has the 
form (I), and our scales are 

x = mi log P, y = m2 log L, z = m3 log q. 

If P varies from 10 to 200, log P varies from 1 to 2.3010, a range of 1.3010; 
if we choose mi = 10, the P-scale will be about 13 in. long. If L varies 
from 2 to 40, log L varies from 0.3010 to 1.6020, a range of 1.3010; if 
we choose m2 = 10, the L scale will be about 13 in. long. Then m3 = 
Wima/(mi + m2) = 5, and the equations of our scales are 

x = 10 log P, y = 10 log L, 2 = 5 log q. 
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Construct (Fig. 31a) the x- and y-axes 10 in. apart. The s-axis must 
divide this distance in the ratio mi : m2 = 1 : 1 and is therefore drawn 
midway between them, but the g-scale need not be graduated. 

(2) D*N = / can be written 2 log D + log N = log /, which has the 
form (I), and our scales are 

a = w4 (2 logD), b = m6 log iV, c = ra6log /. 

If Z? varies from 2 to 40, log P varies from 0.3010 to 1.6020, a range of 
1.3010; and if we choose ra4 = 5, the equation of the Z>-scale will be a = 
10 log D and the scale will be about 13 in. long. If N varies from 50 to 
1000, log N varies from 1.6990 to 3.0000, a range of 1.3010; and if we 
choose W5 = 10, the iV-scale will be about 13 in. long. Then m« = 

+ mb) = 3.33, and the equations of our scales are 

a = 10 log P, b = iologiV, c = 3.33 log/. 

Construct (Fig. 31a) the a- and &-axes 10 in. apart. Since D and L 
have the same range and their scales have the same modulus, for y = 10 

log L and a = 10 log D, we find 
it convenient to make the a-axis 
coincide with the y-axis, and to 
use one scale for both L and D. 

co 
The c-axis must divide the dis- 

. tance between the a- and b-axes 
| in the ratio m4 : m6 = i : 2, or 

the c-axis is at a distance of 

10 3-33 in. from the a-axis, but the 
/-scale need not be graduated. 

(3) H.P. =^0.000001983 qt can be written log q + log / = (log H.P. 
— log 0.000001983), which has the form (I). Our scales are 

z = wj log 3 = 5 log g, c = mt log t = 3.33 log t, d = in, log H.P., 

where m? = m3mt/(m3 + mt) — 2, and hence d — 2 log H.P. The z- and 
c-axes are 8.33 in. apart and the rf-axis must divide this distance in the 
ratio : m« = 5 :3.33; thus the d-axis must be at a distance of 5 in. from 
the z-axis and must coincide with the y- and a-axes. Thus, one side of 
this triple axis carries the scale for L and D, and the other side, the scale 
for H.P. To get a starting point for the H.P. scale we make a single com¬ 
putation: P = 50, L — 14, D = 8, N = 300 give H.P. — 26.7; hence the 
line joining P = 50 and L — 14 cuts the 3-axis in a point, the line joining 
D — 8 and N = 300 cuts the /-axis in a point, and the line joining these 
two points cuts the d-axis in a point which must be marked H.P. =* 26.7. 

Fig. 316 gives the completed chart, and the index lines indicate that 
when P = 50 pounds per sq. in., L — 14 in., D — 8 in., and N = 300 
revolutions per min., then H.P. * 26.7. 

— S- 

Cl 

Fig. 31a. 



tills § $ 
til.mu lUju111 1 11 t 11 . i - 1, , f, , “H-*- § § is s s 

AWiJ d3d A3d A// (A/) (733d9 

\ 

§ 

* 
cj 

I 
Q: 
* 

2 

\ 
(N-a) 

A 
$ 
LLLL 

$ % $ § 
“PtfW wj? 

I 

S3HOA// A// (7/3J/0djJ,tOA/^WJ V3J3WV/0 A/QlSft/ 
*>, ...*?? 5 £S 5; $ o> p •> «o •*> * 
Ajj'1'' i‘ .Ni.M ■/■ i I ■ni l t . i. ,■ ■ m'i i ,■ i i ' i ,i | 

I 'i § 2 S'® i 
(13dyi3A3Q (d W d3M0d 3Sd0H 

«n 

\ 

\ i 
\ i 
\ i 

i 

i 

o 
£ 

T 

(i-dj 

<*> 
®0 

i 
i 
ii 

ii 
* 
* 

\ 

HON/ '0$U3</'$&7N/(d)3UaSS3M 3AU03JJ3 NV3JV 

r^nr t% s141?1 rrm $ 5 6$ 



64 NOMOGRAPHIC OR ALIGNMENT CHARTS Chap. Ill 

EXERCISES 

Construct charts for the following formulas. The numbers in parenthesis suggest 

limiting values for the variables. These limits may be extended if necessary. Addi¬ 

tional exercises will be found at the end of Chapter V. 
APi IT 

1. w = IPPi. — Rankine’s formula, for the weight, w, in pounds per 

sec. of steam flowing from a reservoir at pressure Pi pounds (20 to 300) per sq. in. 

through an orifice of A sq. in. or of diameter D in. (0.1 to 2.0) to a pressure of P* pounds 

per sq. in., if Pt = 0.6 Pi. 
2. 0 = 3*33 ^ — Francis’ formula for the discharge, Q, in cu. ft. per sec. over a 

rectangular weir b ft. (2 to 15) in width due to a head of H ft. (0.5 to 1.5) over the crest. 
d 

3. L = 2 In - + 0.5. — 5elf-inductance, L, in abhenries per cm. length of one of 

two parallel straight cylindrical wires each r cm. (0.1 to 0.25) in radius, their axes d cm. 

(2.5 to 144) apart, and conducting the same current in opposite directions [distance d 
small compared with length of wires]. 

4. P = 50,210,000 . — Stewart’s formula for the collapsing pressure, P, in 

pounds per sq. in. of Bessemer steel tubing t in. (0.02 to 0.13) in thickness and D in. 

(1 to 6) in external diameter. 

5. Q = | ViTgcbtfl. — Hamilton Smith formula for the discharge, Q, in cu. ft. per 

sec. over a contracted or suppressed weir b ft. (2 to 20) in width due to a head of H ft. 
(0.1 to 1.6) over the crest, if the coefficient of discharge is c (0.580 to 0.660). [g = 32.2.] 

d$ 1 
6. P - 0.196 — /.—Load, P, in pounds supported by a helical compression 

spring; d is the diameter of the wire in inches (0.102 to 0.460 or No. 10 to No. 0000, 

B. S. gage), r is the mean radius of the coil in inches (0.5 to 2.0), / is the fiber stress in 

pounds (30,000 to 80,000). 

7. p — kgW (L + 10 H). — Conveyor-belt calculations; p is the Correct number 

of plies (1 to 15) W is the width of the belt in inches (10 to 60), g is the weight of 

material handled in pounds per cu. ft. (30 to 125), L is the length of the belt in ft. and 

H is the difference in elevation between the head and tail pulleys in ft. (L + 10II: 100 

to 1500), k is a constant depending on the type of drive (k — 1/250,000 for a simple 

drive with bare pulley, k = 1/300,000 for a simple drive with rubber-lagged pulleys, 

k * 1/375,000 for a tandem drive with bare pulleys, k = 1/455,000 for a tandem drive 

with rubber-lagged pulleys). [Charted in Metallurgical and Chemical Engineering, 

Vol. XIV, Jan. 1, 1916.] 
8. W - 15 ir&VD. — Flow of steam through pipes; W is the weight of steam 

passing in pounds per min. (1 to 30,000), d is the inside diameter of the pipe in inches 

(1 to 36), V is the velocity of flow in ft. per sec. (15 to 250), D is the density of the 

steam at the mean pressure (use a steam table and plot D for values of the absolute 

pressure from 1 to 215 pounds per sq. in.) [Charted in Electrical World, Vol. 68, Dec. 

9, 1916.] 

9. p = WOK, where K = 4. — Flow of steam through pipes; p 

is the pressure drop between the ends of the pipe in pounds per sq. in. per 100 ft. of 

pipe (0.01 to 20), and V, d, and D are defined in Ex. 8. [Charted in Electrical World, 

Vol. 68, Dec. 9, 1916.] 
W* 

10. p — 14.72 = 0.0007 -gf H. — Blast-pressure furnace; H is the height of the 

furnace in ft. (50 to 100), D is the bosh diameter in ft. (10 to 25), W is the number of cu. 

ft. of air at 70° F. per minute (5000 to 80,000), p is the blast-pressure in pounds gage (2 to 

25). [Charted in Metallurgical and Chemical Engineering, Vol. XIV, Mar. 15, 1916.] 



CHAPTER IV. 

NOMOGRAPHIC OR ALIGNMENT CHARTS (Continued). 

(HI) EQUATION OF FORM /,(**) -/,(») -f3(w) or 
/i(u) = /2(t>)',(w,) — Z CHART. 

32. Chart for equation (III). — [The second form of equation (HI) 
can be brought immediately into the first form by taking logarithms of 
both members.] The first form of equation (III) is the same as the second 
form of equation (I), but in Art. 23 we used three parallel logarithmic 
scales, while here we shall use three natural scales, two parallel and a 
third oblique to them. 

In Fig. 320, let AX and BY be two parallel axes and AZ any axis 
oblique to these and cutting these in A and B respectively. Draw any 

index line cutting the axes in the points w, v, w so that Au — x, Bv — y, 
Aw — z; note that Au and Bv are oppositely directed. How are x, 
y, and z related? 

Let AB — ft. Then in the similar triangles Auw and Bvw, 

Au : Bv = Aw : wB, or x : y = z : ft - z, or * = y. 

Now if AX and B Y carry the scales * = nhfi(u) and y = mMv), the last 

equation becomes /i(«) = — Mv)> an<^ AZ carries a scale for 

w such that 
mtz 

m1 (ft — z) 
! /s(w) or z 

65 

. nhfi(w) 
* + m 
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the equation becomes/i(«) = f3(v) -f3(w), and any index line will cut the 
axes in three points corresponding to values «, v, w satisfying this equa¬ 
tion. 

Hence, to chart equation (HI) Mu) = f3(w) • f2(v) proceed as follows: 
Draw three axes AX, BY, and AZ, where AX and BY are parallel and 
oppositely directed, and AB is any convenient length, k. With A and 
B as origins, construct on these axes the scales 

x = tnifi(u), y = m3f2{v), 2 = k Mw) 
mf3(w) -(- m% 

Note that for the construction of the w-scale, it is necessary to com¬ 
pute the value of z for every value of w which is to appear on the chart. 
To avoid this computation, proceed as follows: 

On BY, choose a fixed point F at any convenient distance, l, from B 

(Fig. 326), and on AX construct the scale AC = x' = l—f3(w). From 
m 2 

F as center, project the points C on the axis AZ. Let FC cut AZ in w, 
and let Aw = z. Then in the similar triangles ACw and BFw, 

z : k — z = x' : l or s = _**L = k mMw) . 
I + x' Wi/3(w) + nh 

Hence to construct the scale z — k 

lmx 

ntiMw) 
mxf3{w) + jws 

, construct first the scale 

x' = f3(w) on AX, and then project this scale from the fixed point F 

on BY (where BF = l) to the axis AZ marking corresponding points with 
the same value of w. 

This type of chart is illustrated .in the following example. 

33. Tension on bolts with U. S. standard threads, D = 1.24 V/j + 
* J* 

0.088. — Here D is the outside d'ameter of the bolt in inches, L is the 
load on the bolt in pounds, and /, is the tension fiber stress in pounds per 
sq. in 

0.088)4 
If we write the equation as L = /, — 

of the form (HI). The scales are 

* = nixL, y = nhft, 

(1-24)* 
we have an equation 

mf _ ,mi(D — o.o88)4 
" ntt (1.24)* 

Let L vary up to 100,000 pounds; if we choose mx = 0.0001, the equation 
of the L-scale will be x - 0.0001 L and its length will be 10 in. Let ft 
vary up to 100,000 pounds; if we choose nh = 0.0001, the equation of the 
ft-scale will be y = 0.0001 /, and its length will be 10 in. If we choose 
the fixed point or center of projection, F, on the y-axis so that l = 8.3 in., 
then the equations of our scales are 

x - 0.0001 L, y =* 0.0001 ft, 3? ■ 5 4 CD — 0.088)*. 
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If D varies from i in. to 4 in., we compute the corresponding values 

of x' and lay off the scale on the tf-axis. We then project this scale from 

the point F to the 

oblique axis, mark- J* v x7nTio^ao8aF^s 
i n g corresponding 

points with the same 

value of D (Fig. 33a). 

The final chart, 

showing neither the 

point F nor the pro 

jecting lines, is given 

in Fig. 336. On one 

side of the oblique 

ioqooo y'O.0001 fr 

Fig. 33a. 

axis the threads per inch corresponding to the various diameters have been 

given. The index line indicates that when L = 20,000 pounds and ft = 

37,000 pounds per sq. in., then D = 1 in. and there are 8 threads to the inch. 

Similar charts can be built up for various other threads. 

ro.oo(A 

20,000 

30000I 

4Q00<A 

sqoooA 

60.000A 

7Q000 

sqoocA 

sqoocA 

D */. 24 Vjf * 0.088 

TENSION BOLTS WITH C/.S. ST’D THREADS' 

Fig. 33k 
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(IV) EQUATION OF FORM 4rr =TTT~ TWO INTER- 
fiM Mq) 

SECTING INDEX LINES. 

34. Chart for equation (IV).—A large number of equations in¬ 
volving four variables can be written in the form (IV) — such equations as 
fi(u) •f2(v) *Mw) = /4(/) or fi(u) •/*(v) = fziw) •fi(t), etc. Equation 
(IV) is included in the second form of equation (II), but in Art. 28 we used 
logarithmic scales whereas here we shall use natural scales. 

Let AX, BY and AZ, BT be two pairs of parallel axes, where AZ may 
coincide with AX (Fig. 34a) or AZ may make any convenient angle with 

AX (Fig. 34b), and where AB is a common transversal. Through any 
point P on AB draw two index lines cutting the axes in the points u, v, w, 
and q so that An = x, Bv = y, Aw = z, and Bq — t. How are x, y, zy 
and t related? 

From the similar triangles in these figures, we have 

x : y = AP : PB and z : / = AP : PB} x :y = z : t. 

Now if AX, BY, AZ, BT carry the scales 

x = mifi(u), y = nhf2(v), z = m3fz(w), t = mji(q), 

where mi : m2 = mz : w4, the relation becomes/j(w) : f2(v) = fz(w) : /4(<z) 
and two index lines intersecting in a point on AB will cut out values of 
u, v, w, and q satisfying equation (IV). 

Hence, to chart equation (IV) fi(u) : f2(v) =fz(w) : fA(q) proceed as follows: 
Through the ends of a segment AB of any convenient length, draw the 
parallel axes AX and BY and the parallel axes AZ and BT, where AZ 
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may coincide or make any convenient angle with AX. On these axes 
construct the scales 

* = ntiMu), y = nhMv), z = OT3/3 (w), t = *14/4(3) 

where the moduli are arbitrary except for the relation mx : nh = m» : «i4. 
To read the chart, use two 
index lines, one joining u 
and v, and the other join¬ 

ing w and q, and intersect¬ 
ing in a point on AB. 

The following examples 
illustrate this type of chart: 

35. Prony brake or 
electric dynamometer 

2 ttLNW 
formula, H.P. = 33,000 ‘ sketch in Fig. 35a gives the method 

for measuring the power of a rotating shaft. Either the prony brake or 
the electric dynamometer may be used. With such an arrangement the 
power is given by the above formula, where L is the length of brake arm 

in feet, N is the speed of the 
shaft in revolutions per minute, 
and W is the load on scale in 
pounds. 

If we write the equation as 
H.P. W 
~N~ = 526^/L’ we havean ec*ua- 

tion of the form (IV), and our 
scales are 

x = miH.P., y = nhN, 
5260 

z = mzW} t = mC- 

The^ following table exhibits 
the limits of the variables, the 

choice of moduli, and the equations and approximate lengths of .the scales. 

Scale Limits Modulus Equation Length 
H.P. 0 to 80 mi = 0.15 x = 0.15 H.P. 12" 

N 0 to 5000 rth = 0.00225 y = 0.00225 N ill" 
W 0 to 400 m3 = 0.03 z = 0.03 W 12" 

L „ _ ^ m%m$ 
0.5 to 5 mt= -= 0.00045 

17l\ 
, _ 2-37 

4" 

In Flg% 356, the x- and z-axes coincide, so that the H.P.- and IF-scales 
are laid off on opposite sides of the common axis, and starting from the 
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same origin; similarly for the N- and L-scales. The index lines, one 
joining L and W and the other joining N and H.P. intersect on the trans¬ 
versal joining the zero points of the scales. 

The completed chart is given in Fig. 35s, and the index lines show that 
when L = 2 ft., W = 50 pounds, and N 5= 2000 r.p.m., then H.P. = 38. 

36. Deflection of beam fixed at ends and loaded at center. A = 
WL* 1728 
~ ^ . — Here, A is the deflection of beam in inches, W is the total 

load on beam in pounds, L is the length of beam in feet, E is the modulus 
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of elasticity of material in inch units, and I is the moment of inertia in 
inch units. 

We shall take E = 3°i000>000 for steel, so that the equation may be 
A W 

written as — 3,333,000 /’ ^as t*le f°rm (IV), and gives the 

scales 

x = miA, y = tmU, z = m3W, t - w4 (3,333,000) I. 

The following table exhibits the choice of moduli and the equations 
of the scales. 

Scale Limits Modulus Equation Length 
A up to 1.5 mi = 8 

<
 

0
0

 

1! H 12" 
L IO to 35 m2 = 0.000,224 y = 0.000,224 L3 10" 
W up to 300,000 m3 = 0.000,04 z = 0.000,04 W 12" 

I up to 3000 mi =-= 0.000,000,001,12 
nil t = 0.003,735 I 11" 

In Fig. 360, the x- and z-axes 
are perpendicular and so are the 
y- and /-axes. The index lines, 
one joining W and I and the 
other joining A and L inter¬ 
sect on the common transversal 
joining the zero points of the 
scales. 

The complete chart is given in 
Fig. 36b, and the index lines show 
that when W - 130,000 pounds, 
I = 1000 inch units, and L = 25 
ft., then A = 0.61 in. FlG‘ 3<5°’ 

37* Deflection of beams under various methods of loading and sup¬ 

porting. A = ~~~Tyr‘- — Here A is the deflection of the* beam in 192 atl 
inches, W is the total load on beam in pounds, L is the length of beam in 
feet, E is the modulus of elasticity of material in inch units, and I is the 
moment of inertia in inch units; a is a quantity whose value determines 
the method of loading and supporting, thus 

(1) a = 1 —beam fixed at ends and loaded at center; 
(2) a = 2 — “ “ “ “ “ “ uniformly; 

(3) « = A — “ “ “ one end and loaded at other; 
(4) a =* — “ " ..* “ uniformly; 
(5) o = i — “ supported at ends and loaded at center; 
(6) a -1 —.. “ " uniformly. 
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These six cases may be represented by six charts similar to those dis- 
A W 

cussed in Arts. 33 and 36, for the equation can be written ^ = 000 aV 

LENGTH OF BEAM (L) tN FEET 

BB^AM FIXED AT E/yDS -LOADED AT CENTER. 
Fig. 36b. 

which has the form (IV) when a value is assigned to a. In all cases, the 

scales are 

x — mi A, y = m?J2, z = t = m4 (3,333,000) al. 

In cases (1) to (4), the x- and 2-axes are perpendicular, and in cases (5) 
and (6), the x- and z-axes coincide. The scales are arranged so that there 
is only one common transversal joining the zeros of all the scales. In all 
cases the index line joining W and I and the index line joining A and L 
must intersect on the common transversal. 
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Art. 38 SPECIFIC SPEED OF TURBINE AND WATER WHEEL 

The completed chart, Fig. 37, clearly distinguishes the six cases so 
that there is no difficulty in reading it. 

DEFLECT/ON /N /NONES -BEAM FIXED A T ENDS ~L OADED A T CENTER. 

COMB/WA T/O/V CHA RT-DEFLEC T/O/V OF BEAMS. 

Fig. 37. 

Another and more compact method of charting this composite equa¬ 
tion will be given in Art. 43. 

38. Specific speed of turbine and water wheel. N, = ^ ^ 

The formula gives the specific speed of a hydraulic reaction turbine 
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„ X'O.rffs 

and also of a tangential water wheel. Here, N, is the specific speed, H.P. 
is the horsepower, N is the number of revolutions per minute, and H is 

R-etioo Turbin« the head of water on turbine or 
wheel in ft. The formula is ex- 

\ / */ tensively used in Hydraulics 
<k^ \ / / and in water power engineering 

'I ^ ^ \ / / work; the reaction turbine is 
^ — —- *"~4> used when the head is low and 
$ iymm — \ ^ the quantity of water available 
§ )j( is relatively large, the value, of 

Jj /y ^ ^ ^ N, varying from io to ioo, while 
8^« /N/ v 5 | the tangential water wheel is 
a If ? v' * || used when the head is great and, 

/ */ A * ^ as is usual in such cases, the 
/ J_ V ■ 0.0/4 £i_ water limited, the value of N, 

~y-0.005 n varying from 2 to 6. Because 

Fig. 380. cf this difference in the range 

jh.*£>— —\ f 

V % 

Fig. 38a. 

y ■ 0. o/4 Hj 
fio.oos/V 

of N, for the two cases, it is best to construct separate charts. 

If we write the equation as = 
Vh.p. 

, we have an equation of the 

form (IV), and our scales are 

x = miN„ y = nhN, z — mt VH.P., t = mtH^. 

The following tables exhibit the choice of moduli and the equations of the 
scales. 

Scale Limits 

Reaction Turbine 

Modulus Equation Len 

N, 10 to 100 mi = 0.1 X = 0.1 N, 9‘ 
N up to 2000 rrh = 0.005 y = 0.005 N io‘ 
H.P. “ “ 1000 m3 = 0.28 z = 0.28 VhT. 9‘ 

H “ “ 200 
m2m3 

m4 = = 0.014 
m 1 

t = 0.014 h\ io1 

Tangential Water Wheel 

Scale Limits Modulus Equation Length 

N. 2 to 6 mi = 1.7 x = 1.7 N. 7" 
N up to 2000 m2 = 0.00476 y = 0.00476 N 9-5" 
H.P. “ “ 1000 m3 = 0.28 z = 0.28 VH.P. 9" 

H “ “ 2000 
nhmz o mt = -2— = 0.000784 t = 0.000784 Hi 10" 

mi 

Fig. 380 shows the position of the scales. The x- and z-axes coincide 
so that the N,- and H.P.-scales are constructed on opposite sides of the 
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common axis; similarly for the N- and ^-scales. The charts for the re¬ 
action turbine and the tangential water wheel have been combined as 
shown in the diagram, i.e., the axes for the former have been placed per¬ 
pendicular to the axes of the latter, and both charts use the same trans- 

SPEC/F/C SPEEO OP TURBtNE A HD WATER WHEEL. 

Fig. 38k 

versal on which the index lines intersect, one index line joining N9 and N 
and the other joining H.P. and H. 

Fig. 386 gives the completed chart; for the reaction turbine, the index 
lines show that when N = 1000 r.p.m., H = 70 ft., and H.P. = 201, 
then N9 = 70; for the tangential water wheel, the index lines show that 
when N = 1000 H = 700, and H.P. = 275, then N% = 4.6. 
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(V). EQUATION OF FORM Mu) = /2(t>) -/.(u) • /4(t)- 
TWO OR MORE INTERSECTING INDEX LINES. 

39. Charts for equation (V). — A large number of equations involv¬ 
ing three or more variables can be written in the form (V), which is 
similar to the second form of equation (II), but in Art. 28 we used log¬ 
arithmic scales, whereas here we shall use natural scales. Equation (IV) 
is a special case of equation (V) when there are four variables present. 
We shall here consider the cases where equation (V) contains three, five, 
or six variables. The method of charting to be employed is an amplifi¬ 
cation of the method described in Art. 34. 

Case (1). Three variables. Mu) = f2(v) • fz{w). This equation can 
be written as fi(u): Mv) = Mw) : 1, which is of the form (IV); the 
scales are 

x = Wi/i(w), y = W2/2W, Z = t = ra4, 

where mi : m2 = ra3 : w4. Here the g-scale is replaced by a fixed point, 
P, on the y-axis and at a distance w4 from B. The first index line joins u 
and v} the second index line joins w and the fixed point P\ the two lines 
must intersect in a point on AB. (Figs. 34a, 34ft.) 

The fixed point, P, may be used as a center of projection from which 
the w-scale may be projected on the transversal AB. We shall then have 
two parallel scales and a third scale oblique to these, and a single index 
line will cut the scales in values of u, v, and w satisfying the equation. 
This method was employed in charting the formula for the tension on 

bolts in Art. 33. 
An example illustrating case (1) is worked out in Art. 40. 
Case (2). Six variables. fi(u) */4(g) */6(r) = f2(v) */3(w) •/«($). This 

equation can be written as 

/i(«) : /»(») = Mw) : p and p :/4(<z) = Mr) : fa(s). 

Each of these equations has the form (IV) and can therefore be charted 
by the method described in Art. 34. In Fig. 39a, the p-, v-, and r-scales 
lie along a common axis, but the £-scale need not be graduated. To read 
the chart we need two pairs of index lines; the index lines (w, v) and 
(w, p) intersect in a point on AB, and the index lines (p, g) and (r, s) in¬ 

tersect in a point on BC. 
An example illustrating case (2) is worked out in Art. 41. 
Case (3). Five variables. fi(u) • /4(g) • /6(r) = f2(v) • fz(w). This equa¬ 

tion can be written as 

fiM : f2(v) = Mw) : p and p : Mq) = /»to : 1 

and can be considered as a special form of case (2), where the 5 scale 
(Fig. 39a) is replaced by a fixed point through which the fourth index line 
must pass. An illustrative example is worked out in Art. 42. 
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We may also chart the equation/^) : /,(») = ft{w) : p by the method 
described in Art. 34, and the equation p = /4(g) ./s(r) by the first method 
described in Art. 32. The arrangement of the scales is shown in Fig. 39b, 
and this arrangement is more compact than that of Fig. 39a, and em¬ 
ploys only three index lines instead of four. 

In Fig. 39ft, the r-scale lies along the transversal AB and the q- and w- 
scales are carried on the same axis; the index lines (u, v) and (w, p) inter¬ 
sect on the transversal AB, and the third index line aligns p, r, and q. 
An illustrative example will be found in Art. 43. 

40. Twisting moment in a cylindrical shaft, M = 0.196 FD3. — Here 
F is the maximum fiber stress in pounds per sq. in., D is the diameter of 
the shaft in inches, and M is the 
twisting moment in inch pounds. 
If we write the equation as M: 
D3 — F : 5.1 we have an equation 
of the form (V), case (1). Our 
scales are 

x = rttiM, y = rmD*, 

z — tn3F, t = mK (5.1). 

The following table exhibits 
the choice of moduli and the 
equations of the scales: 

Scale Limits 

M up to 190,000 
D 1" to 4" 

F up to 16,000 

Modulus 

nti = 0.00005 
m2 = 0.1 

nti = 0.0005 

Equation Length 
x = 0.00005 M 9.5" 
y - 0.1 Z)8 6.4" 
z — 0.0005 F 8" 
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M- 0.196 F D3 

Fig. 40ft. 
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Now nii — mtfnz/mi = i, hence / = 5.1, and we have a fixed point on the 
y-axis at a distance 5.1 in. from the origin. We construct the Af- and F- 
scales on the same axis from a common origin, and the D-scale and the 
fixed point on a parallel axis. (Fig. 40a.) The two index lines, one join¬ 
ing M and D and the other joining F and the fixed point, must intersect 
on the common transversal joining the zeros of the scales. 

The completed chart is given in Fig. 40b, and the index lines show that 
when F — 12,000 pounds per sq. in. and D = 3 in., then M = 63,500 in. 
pounds. 

41. D’Arcy’s formula for the flow of steam in pipes, P = — 

Here, P is the drop in pressure in pounds per sq. in., that is, the difference 
between the pressure, pi, at the entrance to the pipe and the pressure, 
p2, at the exit of the pipe; B is the weight of steam flowing in pounds per 
minute; L is the length of the pipe in feet; c is a quantity which varies 
with the nature of the inner surface of the pipe; w is the mean density of 
steam, i.ethe average of the density at the entrance and the density at 
the exit of the pipe; d is the diameter of the pipe in inches. This formula 
is extensively used in engineering practice. We usually desire the pres¬ 
sure drop between two points. The chart to be constructed will however 
solve for any one of the six variables involved. 

We have an equation involving six variables of the form (V), case (2) 
and as suggested in Art. 39, we shall separate it into two equations each 
involving four variables, and build up a Z chart for each of these. Taking 
the square root of both members of the equation, we write it 

VLB = VP c VwVP, VLB 

VP 
Vw VP 

i Tc 

and equating both members to an auxiliary quantity, Q, we write 

VP B a Q 
VZ~ Q’ and V3~ i/c' 

We now construct a Z chart for each of these equations, the two charts 
having the 0-axis in common. 

For the first of these equations we have the following table: 

Scale Limits Modulus Equation Length 

P 0 to 25 Mi = 4 x - 4 VP 20" 

L 0 to 1500 m2 = 0.4 y = 0.4 VX 16" 
B 0 to 400 tn 3 = 0.02 z = 0.02 B 8" 

Q 
nhtnz 

mi =-= 0.002 
mi 
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TheP- and 5-scales (Fig. 41a) are placed on the same axis and starting 
from the same origin, and the L- and ^-scales on a parallel axis, but the 
Q-scale is not graduated. 

For the second equation we have the following table: 

Equation Length 

r = 0.06 Vd* . 19": 
5 = 6 Vw 18" 

/-.8O0) 6" 

The w- and 0-scales are placed on the same axis; hence the w- and L- 
scales are on the common 0-axis. The d and c scales are placed on a 

parallel axis (Fig. 41a). 
We use four index lines. The 

(c, w) and (d, 0) lines must inter¬ 
sect on the common transversal 
of the corresponding scales, and 
the (0, B) and (L, P) lines must 
intersect on the common trans¬ 
versal of the corresponding scales 
It is thus a simple matter to find 

the value of any one of the six 
variables when the other five are 
known. Thus, to find the value 
of P when c, w, d, Bt and L are 
known, proceed as follows (Fig. 
41a): join the point of intersec¬ 

tion of (c} w) and the common transversal (a) with dy cutting the 0-axis 
in a point, 0; join the point of intersection of (0, B) and the common 
transversal 03) with L, cutting out the required value of P. 

Fig. 416 gives the completed chart, and the index lines show that 
when c = 40, w = 2, d = 7 in., B — 300 pounds per minute, and 
L = 800 feet, then P = 1.34 pounds per sq. in. 

o TPL 
42. Distributed load on a wooden beam. F — — Here, F is the 

maximum fiber stress in pounds per sq. in.; L is the length of the 
beam in inches; W is the total load on the beam in pounds; B is the 
width of the beam in inches; and H is the height of the beam in inches. 
In construction work, the total load on the beam (depending on the load 
which the floor must support), the allowable fiber stress (depending upon 
the kind and quality of the wood), and the length of the beam, are usu¬ 
ally known; and the width and height of the beam are to be determined. 

Scale Limits Modulus 

Q m4 = 0.002 

d 0 to 10 m6 = 0.06 

V) 0 to 10 m* = 6 

c 30 to 70 
w6We o 

m7 = 2 = 180 
m4 
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tSfiOO 

fixed 

Since we have two unknown quantities we can of course get various com¬ 
binations of these to satisfy the equation. By means of the chart to be 

constructed these combina¬ 
tions of width and height are 
readily seen, and any desired 
combinations may then be 
chosen. 

We have an equation in¬ 
volving five variables of the 
form (V), case (3), and intro¬ 
ducing an auxiliary quantity, 
0, we shall separate it into 
two equations; thus, 

F W , Q IP 
f = -zr and ■% =- 
L Q B 9 

Fig. 420. We now construct a Z chart 

for each of these equations, the two charts having the 0-axis in common. 
For the first of these equations our scales are 

x = miF, y = rrh (L), z = m3W, 2 = m4 (0, 

and we have the following table: 

Scale Limits Modulus Equation Length 

F up to 2000 mi = 0.003 x = 0.003 P 6" 

L up to 40 m2 = 0.3 y = 0.3 L 12" 

W up to 15,000 w3 = 0.0008 z — 0.0008 W 12" 

Q 
m2m3 Q 

THi = - = 0.08 2 
mi 

= 0.08 Q 

The F- and IF-scales are placed on the same axis (Fig. 42a) and starting 
from the same origin, and the L- and ^-scales on a parallel axis, but the 

0-scale is not graduated. 
For the second equation our scales are 

q = w60, r = m6S, $ = mjH2, t = m% (9), 

and we have the following table: 

Scale Limits 

Q 
B up to 10 
H up to 12 

Modulus 

m6 = 0.08 
m6 = 1 

m7 = 0.08 

Equation Length 

g = 0.08 0 
r = 1B 10" 
$ = 0.08#* 11.5" 

w8 
mtfYii 

I t = 9 
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Fig. 4ab. 
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The H- and Q-scales are placed on the same axis (Fig. 420); hence the 
L- and H-scales are on the common Q-axis. The .B-scale is placed on a 
parallel axis, on which there is also a fixed point, /, at a distance of 9.0 in. 
from the origin. 

We use four index lines. The (L, F) and {Q, W) lines must intersect 
on the common transversal of the corresponding scales, and the (B, Q) 

and (/, H) lines must intersect on the common transversal of the corre¬ 
sponding scales. It is thus a simple matter to find the value of any one 
of the five variables when the other four are known. Thus to find the 
value of H when F, L, W, and B are known, proceed as follows: (Fig. 

42a) join the point of intersection of (L, F) and the transversal (0) with 
W, cutting the Q-axis in a point, Q; join the point of intersection of (B, Q) 
and the transversal (a) with the fixed point, /, cutting out the required 
value of H. 

If we wish we can project the iJ-scale on the transversal (a) using 
the fixed point, /, as a center of projection. We can then discard the 
fixed point, /, and the index line through it, for the index line (B, Q) 
will then cut the transversal (a) in the required value of H. Given 
then F, L, and W, we determine the point Q as above, and by rotating 
the index line through Q we can cut out any desired combination of B 
and H. 

The completed chart is given in Fig. 42b, and the index lines show 
that when W — 10,000 pounds, L — 15m., F = 1,200 pounds per sq. in., 
and B = 8 in., then H = 12 in. 

43. Combination chart for six beam deflection formulas. A = 

—•—Here, W is the total load in pounds, L is the length of the 
192 EIP 

beam in feet, I is the moment of inertia in inch units, A is the deflection 
in inches, E is the modulus of elasticity (30,000,000 for steel), and P is a 
factor which determines the method of loading and supporting. Thus 

when the beam is 

(1) fixed at both ends and uniformly loaded, P = Pi = 2; 
(2) fixed at both ends and loaded in center, P = Pt = 1; 

(3) supported at both ends and uniformly loaded, P = P3 = $; 
(4) supported at both ends and loaded in center, P = P4 = J; 

(5) fixed at one end and uniformly loaded, P = Pi = A; 
(6) fixed at one end and loaded at the other, P — Pt = j^. 

The equation thus involves five variables and is of the form (V), case 
(3). We introduce an auxiliary quantity, Q, and separate the equation 

into two equations; thus, 

Q W 
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The first of these equations has already been charted in Art. 36, if we 
write Q for A; indeed Q is the deflection of a beam fixed at both ends and 
loaded in center, i.e.t for P = 1. We shall here use the same method of 
charting and the same scales employed in Art. 36. The scales are 

x = miQ, y = W2L3, 2 = mzW, t = m4 (3>333»°oo) /, 

and the following table exhibits the choice of moduli? 

Scale Limits Modulus Equation Length 
Q mi = 8 x=8Q 
L 10 to 35 m2 = 0.000,224 y = 0.000,224 U 10" 
W up to 200,000 w3 = 0.000,04 2 = 0.000,04 W 8" 

up to 2000 ■ =0.000,000,00112 /=0.003,735 I 7.5^ 

x = miQy r = m2 A, 

The scales are arranged in T~^5 

the form of a rectangle (Fig. \ 
43a); the L- and /-scales start '< 
from one vertex, Bt and the W- 'S. 
and ^-scales start from the op- *2 nSI /<> 
posite vertex, A, but the Q-scale 3 ' * 
is not graduated. The two in- § AxOjV 1 
dex lines, one joining W and I ^ 
and the other joining L and Q \ NV. 
must intersect on the transver- _V 0 

sal AB. 300oJ A 
We now chart the equation FlG’ 

Q = AP by the method described in Art. 32. The scales are 

x = miQ} r = w2A, s = k ——, 
miP + nh 

where the x- and r-axes must be parallel and extend in opposite directions, 
the 5-axis is the transversal through the origins of these axes, and k is the 
distance between the origins. These conditions are met in "Fig. 43a 
(where the x-axis is already constructed) if we make the r-axis coincide 
with the y-axis, and the 5-axis with the transversal from A to B. We 
have drawn AB 13" long, and we choose m2 = 8, hence the equations 
of our scales are (Fig. 43a) 

x = 8Q, r = 8 A, s = 13 

The A- and L-scales are carried on opposite sides of their common 
axis. The six points Pi, P*, . . . , P» of the P scale are easily con¬ 
structed by means of the table 

P: 2 1 i i * * 
s: 8.67" 6.5" 3.7" 2.6" 0.52" 0.2" 
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To find the value of A when I, W, L, and P are known, proceed as fol¬ 
lows: join the point of intersection of (/, W) and the transversal AB with 

COMBINATION CHART - DEFLECTION OF BEAMS. 

Fig. 436. 

L cutting the ()-axis in a point, Q", the line (Q, P) will cut out the re¬ 
quired value of A. 

Fig. 436 gives the completed chart, and the index lines show that 



Art. 45 CHART OF EQUATION (VI) 87 

when I = 1000 inch units, W = 100,000 lbs., L = 25 ft., and P = P3, 
the beam is supported at both ends and uniformly loaded, then A = 1.17 in. 

44. General considerations. — All the equations charted thus far 
can be brought under the general forms 

fi(u) +/2(v) +/3W+ • • • = /4W and fi(u) -f2(v) -/*(w) • • • =/4(0- 

Most of the formulas of engineering can be written in one of these forms. 
We have used various methods of charting these equations, employing 
logarithmic and natural scales. In the case of three variables, the under¬ 

lying principle has been that one index line will cut the scales in three 
values satisfying the equation. In the case of four variables, the under¬ 

lying principle has been that two index lines intersecting on an auxiliary 
axis will cut the scales in four values satisfying the equation; this method 
has been extended to equations involving more than four variables. 

In the remainder of this chapter, we shall chart various forms of the 
above equations by methods requiring the use of parallel or perpendicu¬ 
lar index lines. In Chapter V, we shall consider some equations which 
cannot be brought under either of the above forms, but which may be 
charted by methods requiring the use of parallel or perpendicular index 
lines or by methods involving the construction of curved axes. We shall 
end Chapter V with a brief discussion of various combined methods. 

(VI) EQUATION OF FORM /i(u) :/2(r) = /3(u>) :/4(g). 
PARALLEL OR PERPENDICULAR INDEX LINES. 

45. Chart of equation (VI). — Consider two pairs of intersecting 
axes AX, A Y and BZ, BT so constructed that BZ is either parallel to or 

coincides with AX and BT is either parallel to or coincides with A Y, 
(Figs. 45a, b). Draw two parallel index lines, one meeting AX and A Y, 
and the other meeting BZ and BT in u, v, w, and q respectively, so that 
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Au — x, Av = y, Bw = z, and Bq = t. Then, in the similar triangles 
uAv and wBt, we have x : y = z : t. Hence if AX, A Y, BZ, BT carry 

the scales 

* = «i/i(«), y = nhMv), z - t = m4/4(g), 

respectively, where nti : ntt — m» : m4, then 

x :y = z :t becomes /i(w) : ft(v) = f3(w) :/4(g), 

which is equation (VI), and a pair of parallel index lines, («, v) and (w, q) 
will cut out values of u, v, w, and q satisfying this equation. A pair of 
celluloid triangles will aid in reading the chart. 

Consider again two pairs of intersecting axes AX, AY and BZ, BT 
so constructed that BZ is perpendicular to AX and BT is perpendicular 
to A Y (Figs. 45c, d). Draw two perpendicular index lines, one meeting 

AX and AY and the other meeting BZ and BT in u, v, w, and q re¬ 
spectively, so that Au = x, Av = y, Bw = z, and Bq = t. Then again 
x : y = z : t, and if our axes carry the scales described above, a pair of 
perpendicular index lines, (u, v) and (w, q), will cut out values of u, v, w, 
and 2 satisfying equation (VI). A Jheet of celluloid with two perpen¬ 
dicular lines scratched on its under side will aid in reading the chart. 

If the equation involves only three variables, i.e., fi(u) = ft(v) - fs(w), 
the equation can be written fi(u): fo(v) = f3(w) : 1; here the g-scale is 
replaced by a fixed point through which the second index line must always 
pass. 

It is evident that there are other positions for the axes than those 
illustrated in Figs. 45a, b, c, d that will satisfy the conditions imposed by 

the problem. 
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46. Weight of gas flowing through an orifice, w = . — Here, 

w is the weight of gas in pounds flowing per second, d is the diameter of 
the orifice in inches, v is the velocity of the gas in ft. per sec., and V is the 
specific volume in cu. ft. of the gas in the orifice. 

DISCHARGE OF GAS THROUGH AN ORIFICE. 
IA, Av- ITd2 v 
W° 144 v ~ 576 V 

Fig. 46. 

If we write the equation w :d2 = v : 183.5 V, we have an equation oi 
the form (VI). We shall build up a chart similar to that represented by 
Fig. 456. The scales are 

x = niiw, y = m2d2, z = m3v, t = w4 (183.5 V)* 

and the following table exhibits the choice of moduli: 

Scale Limits Modulus Equation Length 

w 0 to 0.4 mi = 10 X = low 4" 
d 0.2 to 2 m2 — 1 y = cP 4" 
V 0 to 3000 m3 = 0.00135 z = 0.00135 v 4" 

V 0 to 200 
W2W3 

m4 = -= 0.000135 
mi 

t = 0.02475 v 5" 

The (w, d) and (u, V) index lines must be parallel. The chart is given in 
Fig. 46 and the index lines drawn show that when v = 1500 ft. per sec., 
V = 80 cu. ft., and d = 1.6 in., then w = 0.26 pounds per second. 
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47. Armature or field winding from tests, y = ~j~ h.— 
«2 234*5 + *2 

Here R\ and R2 are resistances in ohms and t\ and h are the initial and 
final temperatures Centigrade in an armature or field winding. 

TEMPERATURES IN AN ARMATURE WINDING FROM TESTS 

JL*m gg± £ * f* 
R,~ 234.5 

Fig. 47. 

We have an equation of the form (VI) and we shall build up a chart 
similar to that represented by Fig. 45c. The scales are 

x — titiRu y = ntiRi, z = m% (234.5 + h), t = m\ (234.5 + k), 

and the following table exhibits the choice of moduli: 

Scale Limits Modulus Equation Length 

Ri 0 to 10 WJi = 1 x = Ri 10" 

Rt 0 to 10 nh = 1 y = Rt 10" 

h 0 to 100 m3 = 0.1 z = 23.45 + 0.1 h 10" 

k 0 to 100 mi = = o.r m 1 t = 23.45 + 0.1 k 
• 

10" 
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- We note that the points 4 — o and <2 = 0 are 23.45 in. from the point 
of intersection, B, of the 2- and t-axes, which are respectively perpen¬ 
dicular to the x- and y-axes. But it is a simple matter to arrange the 
axes so that the 4- and 4-scales are within close range of the Ri- and Re¬ 
scales. The (Ri, Re) and (4, 4) index lines must be perpendicular. The 
chart is given in Fig. 47, and the index lines drawn show that when 
4 = 65°, 4 = 33°. and Ri = 3-04 ohms, then i?2 = 2.71 ohms. 

48. Lam# formula for thick hollow cylinders subjected to internal 
D* / 4. p 

pressure. = j — — . — Here, D is the exterior diameter of the cylin¬ 

der in inches, d is the interior diameter of the cylinder in inches, / is the 
fiber stress in pounds per sq. in., and p is the internal pressure in pounds 
per sq. in. The formula is extensively used in the design of thick pump 
and press cylinders. It is also used in ordnance work on big guns, to 
determine what is known as the elastic resistance curve of the steel at 
various sections of the gun from breech to muzzle. 

We have an equation of the form (VI) and we shall build up a chart 
similar to that represented by Fig. 45^. The scales are 

x = wild2, y = nuD2, 2 = w3 (f - p), t = mt (/ + p), 

and the following table exhibits the choice of moduli: 

Scale Limits Modulus Equation Length 
d 2 to 16 mi = 0.03 x = 0.03 d2 7-5" 
D 2 to 20 rrh = 0.02 y — 0.02 D2 8" 
f~P 0 to 10,000 m3 = 0.00075 z = 0.00075 (/ - P) 7-5" 

f + P O tO 20,000 
W2WI3 

1W4 = — = 0.0005 
Wl\ t = 0.0005 (/ + P) 10" 

The (d, D) and (/ — Pi f + P) index lines must be perpendicular. The 
chart is given in Fig. 48, and the index lines drawn show that when / = 
9000 pounds per sq. in., p = 1000 pounds per sq. in., and d = 9 in., then 
D = 10.1 in. 

(VH) EQUATION OF FORM /,(«) -/,(*) -/,(») -/4(q) 
OR fy{u): /,(v) = /,(»): PARALLEL OR 

PERPENDICULAR INDEX LINES 

49. Chart for equation (VII). — The second form of equation (VH) 
can be immediately transformed into the first form by taking logarithms 
of both members of the equation. This second form of equation (VII) 
is the same as equation (VI), but we shall here use logarithmic scales in 
charting it. 
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Consider a pair of parallel axes AX and BY, fa inches apart, and an¬ 
other pair of parallel axes CZ and DT, fa inches apart, parallel to the first 
pair; AB and CD are also parallel. (Fig. 490.) Draw two parallel 
index lines, one intersecting AX and B Y and the other intersecting CZ 

Fig. 490. Fig. 496. 

and DT in u, v, w, and q respectively, so that Au = x, Bv = y, Cw — z, 
Dq = t. Draw vE and qF parallel to AB and CD respectively. Then in 
the similar triangles vEu and qFw, we have x — y : fa = z — t : fa. 
Hence if AX, B Y, CZ, DT carry the scales 

X = y = mifi(v), 
z = m2f3(w), t = nhft(q), 

where mi : fa = mt : fa, then 

x — y : fa = z — t : fa 
becomes 

/i(w) -fi(v) = Mw) -/,(q), 

and a pair of parallel index lines, («, v) and 
(w, q), will cut out values of v, w} and q 
satisfying this equation. 

If CZ and DT are drawn perpendicular 
instead of parallel to Ax and By, and CD 
is perpendicular to A B (Fig. 496), then a 
pair of perpendicular index lines, («, v) and 
(w> q), will cut out values of u, v, 'w, and q satisfying the equation. 

To represent the equation fi(u) — f2(v) = fs(w) +/i(2)i the w- and g- 
scales must be laid off in opposite directions. If the axes are arranged 
in the form of a square, or if the second pair of axes coincide with the first 
pair (Fig. 49c) then k\ = k%\ hence, mi = vh and all four scales have the 
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same modulus. Because of the restriction on the choice of moduli, this type 
of chart is not a very useful one. We shall only give a single illustration. 

Fig. 50. 

fill* 
50. Friction loss in flow of water. H = — Here l is the length 

of pipe in ft., v is the velocity in ft. per sec., d is the internal diameter of 

pipe in ft., H is the lost head in ft. due to friction, / is the friction factor, 

and g = 32.2. 
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If we replace g by 32.2, / by 0.02 (for clean cast-iron pipes) and express 
d in inches, our formula becomes 

tt _ 0.02 Iv2 (12) 268.33 H v2 

2 (32.2) d ’ °r l ~ d’ 

or (log H + log 268.33) — log 1 = 2 log v — log d 

an equation of the form (VII). We shall arrange the axes as in Fig. 49c. 
The scales are 

x = mi (log H + log 268.33), y — mi log /, z = mi (2 log v), t = mi log dt 

The following table exhibits the limits of the variables and the equations 
of the scales? 

Scale Limits Modulus Equation Length 

H 0.5 to 20 mi = 5 x = 5 log H 8" 
l 20 to IOOO mi = 5 y = 5 log l 8" 

V 2 to 10 mi = 5 z = 10 log V 7" 
d 1 to 24 mi = 5 t = 5 log d 7" 

We lay off the /- and d-scales on opposite sides of a common axis and 
the v-scale on a parallel axis; these scales may start anywhere along these 
axes. We disregard the expression mi log 268.33 in laying off the H-scale, 
and determine a starting point for this scale by making a single compu¬ 
tation; thus, when d = 3, / = 250, and v = 5, then H = 7.8, and the 
index line through l = 250 drawn parallel to the index line joining d = 3 
and v = 5 will cut the axis in a point which must be marked with the 
value II = 7.8. Thus the (II, l) index line is always parallel to the 
(v, d) index line. 

The chart is given in Fig. 50, and the index lines drawn show that 
when d = 3 in., / = 250 ft., and v = 5 ft. per sec., then H = 7.8 ft. 

EXERCISES 

Construct charts for the following formulas. The numbers in parenthesis suggest 

limiting values for the variables. These limits may be extended if necessary. Addi¬ 

tional exercises will be found at the end of Chapter V. 

1. B.H.P, — — Brake horse-power of an engine with m cylinders (2 to 12) 
2.5 

of diameter d in. (ij to 5), according to the rating of the Association of Automobile 

Manufacturers. 

2. r9 d'fs. — Shearing strength, r*, in pounds of a rivet d inches in diameter 

(i to J) with an allowable stress in shear of /# pounds per sq. in. (up to 15,000). 

3. Af = 0.098 /D3 — Bending moment, M, in inch-pounds on pins D inches in 

diameter (1 to 8) with an extreme fiber stress of / pounds per sq. in. (10,000 to 30,000). 

[It is better to build two charts, one for D varying from 1 to 3 and another for D vary¬ 

ing from 3 to 8.] 
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4. t = — Thickness, t, in inches cf a pipe of d inches internal diameter (o to 60) 

to withstand a pressure of p pounds per sq. in. (o to 100) with a fiber stress of / pounds 

per sq. in. (o to 15,000). 

5. p = — Approximate formula for flange rivets in a plate girder; h is the 

effective depth of the girder (20 to no), V is the vertical shear in pounds (50,000 to 

275,000), R is the rivet value in pounds (1000 to 20,000), p is the pitch of the rivets in 

Inches (1 to 9). 

6 Af 
6. / = -g—.— Intensity of stress,/, in pounds per sq. in. (750 to 1300) in the outer 

fiber of a rectangular beam, h inches in depth (3 to 20) and b inches in breadth (2 to 16) 

due to a bending moment of M inch-pounds. 

7. H = ■ . — Field intensity, //, in lines per sq. cm. at a point on a line 

through the center and normal to the plane of a circular turn of wire of negligible section 

conducting a current of I abamperes (o to 1000), the radius of the circular turn being 

r cm. (4 to 12) and the distance of the point from the wire being d cm. (4 V2 to 12 V2). 

8. C — — Centrifugal force; w is the weight in pounds (1 to 150), v is the 

velocity in ft. per sec. (1 to 50), r is the radius of the path in ft. (0.1 to 10), g = 32.2, 

C is the centrifugal force in pounds. 

9. P = wh (i-tgA)2 . — Resistance to earth compression; w is the weight of the 

earth in pounds per cu. ft. (o to 130), h is the depth in ft. (o to 15), 0 is the angle of 

repose of the earth (150 to 6o°), P is the ultimate load on the earth in pounds per sq. ft. 

(o to 35.000)- 
10. Apply the methods of this chapter to charting some of the formulas of the 

combination chart, Art. 25. 

11. Apply the methods of this chapter to charting the formulas in Exercises 7, 8, 

and 9, at the end of Chapter III. 



CHAPTER V. 

NOMOGRAPHIC OR ALIGNMENT CHARTS {Continued), 

' (VIH) EQUATION OF FORM /i(u) +/,(») = 4^. PAR- 

ALLEL OR PERPENDICULAR INDEX LINES. 

51. Chart for equation (VIII). — Consider two parallel axes, AX and 
BY, drawn in opposite directions, and two intersecting axes, AZ and AT, 
where AZ coincides with AX and AT coincides with the transversal AB. 
(Fig. 51a.) Draw two parallel index lines, one intersecting AX and BY 
and the other intersecting AZ and AT in u, v, w, and q respectively, s* 

Fig. 510. Fig. 51&. 

that Au = x, Bv = y, Aw = z, i4g = t. Draw BC parallel to these 
index lines, and let AB = & inches. Then in the similar triangles ACB 
and Awq, we have 

AC : = Aw : Aq or * + y : k = s : /. 

Now if AX, BY, AZ, and AT carry the scales 

x = mifi(u), y = Wi/2(tO, 2 = mzfziw), t = m,j4(2), 

where mi : fe = m3 : m4, then 

oc + y : * = s : / becomes /i(w) +/*(v) = /s(w) :/a(2), 
Q2F 
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and any pair of parallel index lines, («, v) and (w, q), will cut the axes in 
values of u, v, w, q satisfying this equation. This type of chart is illus¬ 
trated in Art. 52. 

In Fig. 516, AX and BY are drawn in the same direction, and hence 
AC = * — y, so that this arrangement serves to represent equation (VIII) 
when /i(m) and ft(v) are opposite in sign, or an equation of the form 
f\(«) - /i(») = /s(«0 : Mq). 

In the construction of the chart for equation (VH[), we note the fol¬ 
lowing: (1) The «-, w-, and 3-scales are all laid off from the same origin, 
although we could have constructed AZ parallel to AX and AT parallel 

to AB without affecting the relations of the scales. (2) The u- and v- 
scales are constructed in opposite directions or in the same direction ac¬ 
cording as /i(«) and /»(») have like or unlike signs. (3) The u- and v- 
scales have the sarpe modulus, mu and the moduli and the length of 
the transversal, k, are connected by the relation k = mintt/nti. (4) The 
(«, v) and (w, q) index lines are always parallel. 

If the equation (VIII) has the form fi(u) + ft(v) =/i(«) :/4(g), con¬ 
taining only three variables, it can be charted in a similar manner. Here 
the w-scale coincides with the w-scale, so that the (w, q) index line coin¬ 
cides with the (m, v) index line; hence a single index line cuts the scales 
in values of u, v, and q satisfying the equation. This type is illustrated 
in Art. 53. 

Consider again two parallel axes, AX and BY drawn in the same 
directions, and two intersecting axes DZ and DT, where DZ is perpen¬ 
dicular to AX and DT is perpendicular to the transversal AB (Fig. 51c). 
Draw two perpendicular index lines, one intersecting AX and BY and 
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the other intersecting DZ and DT in u, v, w, and q respectively, so that 

Au = x, Bv = y, Dw = z, Dq = /. Draw BC parallel to the first of these 

index lines. Then the triangles ACB and Dwq are similar (since their 

sides are mutually perpendicular). Hence 

AC : AB = Dw : Dq, or x — y : k = z : t. 

Now if -4JY, BY, DZ, and DT carry the scales 

x = tnji(u), y = nhf2(v), z = mzfz(w), i = m4fA(q)9 

where mi : k = m3 : w4, then 

x- y :k = z:t becomes /i(a) - /2(z>) = /3(w) :f4(q) 

and any pair of perpendicular index lines, (u, v) and (w, q), will cut the 

axes in values of u, v^w, q satisfying this equation. This type is illus¬ 

trated in Art. 54. 

In Fig. 51 d, AX and BY are drawn in opposite directions, and hence 

AC = x + y, so that this arrangement serves to represent equation 

(VHI)Mu) +/2(v) = fz(w) :/4(s). 

w 
52. Moment of inertia of cylinder. 1 — (3 r2 + lx2). — Here, 

12/ 

W is the total weight of a right circular cylinder in pounds, r is the radius 

in inches, h is the height in inches, and I is the moment of inertia in 

pounds-(inch)* units of the cylinder about an axis through its center of 

gravity and perpendicular to the axis of the cylinder. 

Writing the equation as 3 r2 + h2 = 12 I : W, we have an equation 

of form (VHI), and we shall follow Fig. 51a in the construction of the 

chart. Here 

x == mi (3 r2), y = mji2, z = w3 (12 I), t = m4W. 

Choosing k = 15", we have the following table: 

Scale Limits Modulus Equation Length 

r 0 to 25 nti — 0.008 x = 0.024 r* l5" 
h 0 to 40 nti — 0.008 y — 0.008 A* 13" 

J 0 to 6,000,000 m3 = 0.000,000,2 z = 0.000,002,4 114" 

W 0 to 25,000 
mzk 

w4 = — = 0.000,375 
mi 

t = 0.000,375 W 9" 

The (r, h) and (/, W) index lines must always be parallel. Fig. 52 

gives the completed chart, and the index lines drawn show that when 

r = 10 in., h = 30 in., and W = 20,000 pounds, then I =* 20 X io5 lbs.- 

(in.)a units. 





Art. 53 BAZIN’S HYDRAULIC FORMULA IOI 

53. Bazin formula for velocity of flow in open channels, v = c Vrs, 
87 

where c --. — Here, m is the coefficient of roughness, r is the 

o.552 + 
Vr 

hydraulic radius in ft. (area divided by wetted perimeter), 5 is the slope 

of the water surface, and v is the velocity of flow in ft. per sec. 

We shall first build a chart for the coefficient, c. The equation can 

be written 

87 Vr r . m Vr 

c 0.552 0.552 „ 

87 

0.552 Vr + m = 

which is the special form of (VIII) where the w-scale coincides with the 

z*-scale, and hence only one index line is required. Hence 

Choosing k = 15 in., we have the following table: 

Scale Limits Modulus Equation Length 

r 0.2 to 20 mi = 2.7 

r>. 
d

 

II 12" 

m 0.06 to 2 Wi = 2.7 y = 4.89 m 10" 

c IO to 155 

1rj 
hH 

II II •*« 
s t - 0.0952 c 15" 

One index line cuts out values of r, w, and c satisfying the equation. 

Fig. 53 gives the chart for this formula, and the index line drawn shows 

that when r = 4 ft. and m — 1.1, then c = 78.5. 

We can consider the equation v = c Vrs as an equation of the form 

(II), Art. 28, and we can build up a logarithmic chart accordingly. We 

have already constructed such a chart in Art. 29 and Fig. 29b may there¬ 

fore be used to supplement Fig. 53 for a complete solution of our problem. 

In Fig. 29b, the (r, s) and (c, v) index lines must intersect on the g-axis. 

Thus, when r = 4 ft., s = 0.001, and c = 78.5, we read v = 4.96 ft. per sec. 

54. Resistance of riveted steel plate. R = (p - D) tft. — Here, 

R is the resistance of riveted steel plate to tearing between rivet holes 

in pounds, p is the pitch of the rivet in inches, D is the diameter of the 

rivet hole in inches, / is the thickness of the plate in inches, and ft is the 

fiber stress of steel in tension and equals 55,000 pounds per sq. in. The 
formula is used extensively in boiler design and in structural work. 

The equation can be written p — D = , an equation of the 
v 

form (VHI), and we shall follow Fig. 51c in the construction of the chart. 

We have 

x = mip, y = —ntiD, z - m%R/55,000, t — triit. 
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RESISTANCE OF RIVETED STEEL PLATE. 
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Choosing k = io in., we have the following table: 

Scale Limits Modulus Equation Length 

P up to 6 mi = 2 x = 2 p 12" 

D up to 2 nti = 2 y — —2 D 4" 
R up to 200,000 1

 II H-l
 

.O
N

 
C

n z - 0.00003 R 6" 

t up to 1 
mzk 0 

m4 = — = 8.25 
fni 

t' = 8.25 t 8" 

As in Fig. 51c, the p- and D-scales extend in the same direction, and 

the /' axis must be drawn perpendicular to the transversal joining the 

origins of the x- and y-axes. The (p, D) and (R, t) index lines are always 

perpendicular. 

The complete chart is given in Fig. 54, and the index lines drawn show 

that when p = 3 in., D = £ in., and t — \ in., then R = 58,500 pounds. 

OX) EQUATION OF FORM jfa +jfaOR 

7iW+AW+AW+ ~M5)' THREE 
OR MORE CONCURRENT SCALES. 

55. Chart for equation (IX). — Consider three concurrent axes AX, 
A Y, and AZ (Fig. 55a). Let any index line cut these axes in u, v, and w 
respectively, so that Au = x, Av = y, and Aw = z. Through w draw 

x 

Fig. 55&. 

wD parallel to A Y and let AD = Xi. Let the position of AZ be deter¬ 

mined by the ratio AD : Dw = mi: m2. Then, in the similar triangles 

uDw and uAv, we have Dw : Av = Du : Au, or 

m% 
nti 

xi :y X — Xiix, 
mi m* 

or-- 
x y 

mi 

Xi 
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Now if AX carries the scales x = mi/i(w)> x\ = niifz(w) and -4F carries 
the scale y = m2/2(iO, then 

mi m2 
x y 

— becomes 
/i(w) /2(a) /3(w) 

and any index line cuts out values of u, 1/, w satisfying this equation. 
In the construction of the chart for equation (IX) we note the fol¬ 

lowing: (1) The x- and y-axes may make any convenient angle with each 
other and they carry the scales x = nhfi(u) and y = m2/2(i/). (2) The 
2;-axis divides the angle between the x- and y-axes into two angles whose 
sines are in the ratio Wj : m2, i.e.f AD : Dw = mt : m2. (3) The x-axis 
also carries the scale *1 = mi/3(w), and this scale is projected on the z- 
axis by lines parallel to the y-ajcis, the points and their projections being 
marked with the same value of w. 

If mi = m2f then AZ bisects the angle XAY = a (Fig. 556). Then 

Aw : AD = sin (180° — a) : sin or 

• a cl 
2 sin — cos- • <6 Olll - — . 

a sin a 22 ( a\ P, N 
z = Aw --xi --#1 = mi [ 2 cos - J fs(w). 

• a . a \ 2/ 
cm   cm   ' ' sin- 

2 
sin - 

2 

In this case the w-scale may be constructed on AZ, and the scales are 

* = Wi/i(m), y = ntif2(v), z = nh (2 cos /s(w). 

Finally, if we take a = 1200, our scales are simply 

x = mi/i(w), y = vtifi(v), z = m,f3(w). 

The method of charting the second form of equation (IX) is merely an 
extension of the method employed for charting the first form. Consider 
the case of four variables, 

/i(«) yaM ja(w) Mq) 

By introducing an auxiliary variable, 
t, we can write 

/i(«) "*"/2(v) 7 and f3{w) ~ fi(q)' 

We chart each of these equations by 
means of three concurrent scales-with 

a common t-scale which need not be graduated. (Fig. 55c.) Two index 
lines are necessary, one cutting the u- and r-scales and the other the w- 
and ^-scales. The (w, v) and (w, g) index lines must intersect on the t-axis. 
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Equations of the form (IX) are not very common in engineering prac¬ 

tice. We shall only give one illustration. 

56. Focal lengths of a lens. ji + p = jj.— Here, / is theP focal 

distance of the object, F is the focal distance of the image, and p is the 

principal focal length of the lens. 

We shall take our x- and y-axes at an angle of 120°, and the 2-axis as 

the bisector of this angle. Let m\ = 0.5, then the equations of our scales 

are 
x = 0.5 /, y = 0.5 F, z = 0.5 p. 

The completed chart is given by Fig. 56. The index line drawn shows 

that when / = 6 and F = 9, then p = 3.6. 

Fig. 56. 

Another formula which may be charted in the same way is 

-L + i- + JL+ ... 
Ri *2 R 

where R is the circuit resistance of a circuit containing resistances Ru Rt$ 
R*, . . . connected in parallel. 

(X) EQUATION OF THE FORM /.(a) +/2(t>) • /3(u>) =/4(to). 
STRAIGHT AND CURVED SCALES 

57. Chart for equation (X). — (We note that the variable w occurs 

in both members of the equation.) Consider two parallel axes AX and 

BY and a curved axis CZ (Fig. 57). Draw any index line cutting these 

ixes in u, v, and w respectively. Draw wD parallel to AX, cutting AB 
in D, and draw wE and vF parallel to A B, The triangles uEw and wFo 
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are similar, hence Eu : Fw = Ew : Fv = AD : DB. Therefore, if Au - x, 
Bv — y, AD = Zi, Dw = z and AB = fe, we have 

x — z : z — y = Z\ •. k — Z\ or (fe — zi) * + ziy = kz, 

Zi k 
or 

and if 

* + 
k — Z\ 

y = fe — Zi 

* = ntifi(u), y = mth(v), 
Zl mi ... 

7 = — W®, Zl W2 
fez 

= mifA(w), 

this relation becomes /i(w) + ft(v) • /s(w') = 
we get 

_ Wife , 

fe — Zl 

Solving for zA and z 

M\fz(w) + m2 

_ mim2 Mw). 
tniMw) + W2 

Hence to chart equation (X) pro¬ 
ceed as follows: Construct the scales 

# = wi/i(w), y = m2f2(y) on two par¬ 
allel axes and BY extending 
in the same direction. If AB — k 
inches, construct the points of the 
curved scale CZ by assigning values 
to w, and laying off along AB, Z\ = 

mik Mw), and par- 

WiW2 

AD mifz(w) + m2 

allel to AX, z=Dw = q: f\(w), and marking the point thus 

found with the corresponding value of w. Then any index line will cut 
the three scales in values of u, v, and w satisfying equation (X). 

To chart the equation fx(u) - f2(v) • fz(w) = fA(w), we construct the 
scales x = wi/i(w) and y = —m2f2(v) in opposite directions. , 

58. Storm water run-off formula, q + Nq* = P. — This equation 
arises in the storm water run-off formula given by C. B. Buerger, in the 
Trans. Am. Soc. C. E., Vol. LXXVIII, p. 1139, where iVand P are quan¬ 
tities which depend upon the sewer run, the area, and the rainfall, and q 
is the run-off in cu. ft. per sec. per acre. 

If we write the equation P — Nq% = q, we have an equation of the 
form (X), with the scales 

Wife 
ntiP, y = —nhN, Z\ = 

Wig^ -j- W2 

Let P, N, and q vary from o to io, and take wi 

$ z = 
W1W2 

Wi^ + Wi 

Wj = i and fe = 14" 
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Then our scales are 

x = P, y = - N, —2—. 
2* + I 

/\f y/v The axes AX and BY are drawn in opposite 
//° directions, and the length of AB is 14 in. 

// (Fig* 58a). We assign values to g, and on 
/' AB we lay off AD = zit and parallel to AX 
/ we lay off DD' = z and mark the point Df 

f with the value assigned to g. We join the 
points Df by a smooth curve, thus giving a 

1 ' 5 a' curved scale for the variable g. Any index 
line will then cut out values of P, N, and g satisfying the equation. 

The completed chart is given by Fig. 58b, and the index line drawn 
shows that when P = 6 and N = 5, then q = 1 cu. ft. per sec. per acre. 
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59. Francis formu a for a contracted weir. Q = 3.33 (B — 0.2 H) fl?. 
— Here, Q is the quantity of water flowing over weir in cu. ft. per sec., B 
is the width of the weir in ft., and H is the head over the crest of the 

weir in ft. 
If we write the equation Q — 3.33 H%B = —0.666 we have an 

equation of the form (X), with the scales x = mxQ, y = — rm (3.33 J3), zx = 

- ——, 2 =--(0.666JET*). Let B vary from o to 5, H 
miH* + nh mxH^ + m2 
from o to 8, and Q from o to 33. If we choose = 0.3, m2 = 0.6, and 

_ 1 n * 12 0.4 ^ 
k = 12, our scales are x — 0.3 Q, y = —2 B, 21 = —7-, 2  -^- 

#2 + 2 BT* + 2 
The axes AX and B Y are drawn in opposite directions, and the length 

of AB is 12 in. We assign values to H, and on AB we lay off AD = zlt 
and parallel to B Y we lay off DD' = 2, and mark the point thus found 
with the corresponding value of H. We join the points by a smooth 
curve, thus giving a curved scale for the variable H. Any index line 
will then cut the scales in values of B, H} and Q satisfying the equation. 

The completed chart is given in Fig. 59, and the index line drawn shows 
that when B = 3 ft., and H = 1.2 ft., then Q = 12.1 cu. ft. per sec. 

60. The solution of cubic and quadratic equations. — 

to8 + pw + q = o, w2 + pw + q = o, w3 + nw2 + pw + q = 0. 

Let us consider first the cubic equation w3 + pw + q = o. Writing 
the equation as q + pw = we have an equation of the form (X). 

The scales are 

x = miq, y = ffhp, Zl 
kmx 

mxw + m2 
w, 2 = 

WiW2 , 
-7-w*. 
mxw + m2 

If we allow p and q to vary from —10 to +10, and choose mx = m2 = I 

and k = 10", our scales are 

x - 2, ? - Zl 
IOW 

W + I * 
w3 

W + I 

In Fig. 60a, the />- and g:scales are constructed on XX' and FF' 
starting at A and B respectively. Assigning positive values to w, viz., 
w ~ o, 0.1, 0.2, . . . , 10, we compute 21 and 2 and lay off .4Z) = zx and 
DD' = 2, and mark the points, D'y thus found with the corresponding 
values of w. We draw a smooth curve through these points, getting the 
curved axis AZ. Then any index line will cut the three scales in values of 
q, w, and p satisfying the equation, or an index line joining p and q will 
cut the curve in w, a root of the cubic equation. 

We note that the line through A (q = o) and D' (w = w0) will cut 
FF' in E (p = —w02) since these values of q, w, and satisfy the equation 

+ fl 8=5 o. This observation allows us to construct the points of 
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the curved scale as follows: OnAB, we layoff the scalezx = iow/(w+i), 
mark the points with the corresponding value of w, and draw the verticals 
through these points. Let the point D be marked w0 and let DD' be the 
vertical through this point. Then the line joining A (q = o) with 
E (p = —Wo2) will cut DD' in a point of 
the curve which must be marked with the 
value w0. Thus the points of the scale 
are rapidly constructed. Interpolation on 
the w-scale may be made either along 
the curve or, by projection, along AB. 
The complete curve for the cubic is drawn 
in Fig. 60b (curve marked “C”). By 
means of it we can find the positive roots 
of the equation. 

Example I. Solve the equation w3 
+ 2 w — 6 = o. The index line joining 
p —2 and q = —6 cuts the curve in w = 
1.46 (Fig. 60b). 

The negative roots of the equation 
can be gotten by letting w = — w' and 
finding the positive roots of the resulting equation. If p and q lie 
beyond the limits —10 and +10, let w = aw'; the equation becomes 

4) Q 

w'8 + ^ W + ^ = o, or w'3 + p'w' + q' = o; choose a so that p' and q> 

lie within the limits —10 and +10. 
Example 2. Solve the equation w3 — 210 w — 9000 = o. If we 

let w = aw', we get w'3 — w' — = o. Now let a = 10, and 
a1 a6 

we have w'3 — 2.1 w' — 9 = o. The index line joining p = —2.1 and 
q = —9 cuts the curve in w' = 2.42; hence w = 24.2 (Fig. 606). 

We may similarly build an alignment chart for the quadratic equa¬ 
tion w2 + pw + q = o. The method of construction of the curved axis 
for this equation differs from the construction of the curved axis for the 
cubic only in that w2 replaces w3, so that DD' = z = — w2/(w + i)« 
Again we note that the points A (q = o), D' (w = w0), and E (p = — w<>) 
must lie on a straight line, since these values of q, w, and p satisfy the 
equation w2 + pw + q = o. We may use this fact in constructing the 
points of the curve. The complete curve is drawn in Fig. 606 (curve 
marked 11Q”); by means of it we can find the positive roots of the 
equation. 

Example 3. Solve the equation w2 — 5.15 w + 2.42 = 0. The index 
line joining p = —5.15 and q = 2.42 cuts the curve in w = 0.52 and 
w = 4-65. 
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The complete cubic equation w3 + + piv + 2 = o may be trans¬ 
formed into the equation w3 + p'w' + q' = o by the substitution w = 

' w 
«/-, or we may proceed to solve it directly by means of an alignment 

3 
chart. In the construction of the curved axis we have 

AD = Zi = ——r-—, and DDf = z = 
w + i 

+ nw3 
w + 1 ( 

tv3 
W-\- I 

w2 \ 

w+ l) 
In Fig. 60c, let the curve AQ correspond to the quadratic w2 + pw + q = o 
and the curve A Co to the cubic w3 + pw + q = o (where n = o). Then 

DQ= - w + i* £>C0 = - 
w3 

W + I ’ 
DDf = DC0 + n• £>(?. 

Thus starting at C0, we simply lay off, along DZ)', w times the fixed dis¬ 
tance DQ to arrive at the point Cn of the curve corresponding to the com¬ 
plete cubic equation. We thus rapidly lay 
off from'Co in either direction a uniform 
scale with interval equal to DQ, and get 
the points C\, C%, C3, . . . , CL1, C_2, 
C—3, ...» corresponding to the curves 
n = i, 2, 3, . . . , ~i, -2, —3. 
This is done along the various verticals 
and for the values of w for which n = o 
was plotted, and the curves for n = — 10 
to n = 10 are drawn. For intermediate 
values of n we interpolate between two 
curves. 

Fig. 60b gives the complete chart for 
the equation w3 + nw2 + pw + q = o. 
Thus to solve this equation, we draw the index line joining p and 2; 
this cuts the w-curve in the required root. To find negative roots, and 
to find the roots when p and g lie beyond the limits —10 and +10, we 
proceed as in the case of the simple cubic w3 + pw + q = o. 

Example 4. Solve the equation w3 + w2 — 2.1 w — 3.2 =0. The 
index line joining p = —2.1 and q = —3.2 cuts the curve n = 1 in 
w = 1.6. 

Example 5. Solve the equation w3 + 96 w3 + 721.879 w — 7,826.051 
= o (this equation occurs in the problem of the equilibrium of arches). 
If we let w = aw1 = iq w', the equation becomes wfz + 9.6 w'2 + 7.22 wf 
— 7.83 = band the index line joining p — 7.22 and2 = ~7-®3 cuts the 
curve « = 9.6 in w' = 0.59. Hence w = 5.9. 

We can similarly plot alignment charts for any trinomial equation 
+ pwn + g = o and for the fourth degree equation vA + nv? + 

pw + 2 - o. 
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(XI) ADDITIONAL FORMS OF EQUATIONS. COMBINED 
METHODS.* 

61. Chart for equation of form M™>) — This form 
fl{u) f2{v) . Mw) ' 

is a generalization of equation (IX). Consider two intersecting axes AX 
and AY and a curved axis CZ (Fig. 61). Let any transversal cut the 
axes in w, v, and w respectively, and draw wD parallel to A F, so that 
Au = x, Bv = y, AD = x\ and Dw = z. Then in the similar triangles, 
wDw and uAvt we have Dw : .dv = Dw : Au, or 

Now if 

* = niifi(u)t y = 77*2/2(10, 

*' = rnj3(w), 4 = ^-2 /4(w), 
JC 77*1 

or z = m2fz(w) • /4(w), this equa¬ 
tion becomes 

I . M™) I 
Mu)* Mv) Mwy 

Thus, the w-scale is a smooth curve through the points determined by 
xf = mjziw) and z = nhMw) • /«(w) and marked with the corresponding 
values of w. Any index line will cut the scales in values of w, v, w satisfy¬ 
ing the equation. 

62. Chart for equation of form /i(u) + MV) *Mw) = Mq)*— We 
introduce an auxiliary variable / and write 

(1) M*>) • Mw) = i and (2) /i(w) + / = /4fa). 

Equation (1) has the form (III) and may be plotted by the method of 
Art. 32, but the /-scale need not be graduated. Equation (2) has the 
form (I) and may be plotted by the method of Art. 23. The position of 
the scales is illustrated in Fig. 62. The (v, w) and (w, q) index lines must 
intersect on the /-axis. 

63. Chart for equation of form/i(u) *Mq) +MV) *MW) = i* — In¬ 
troducing an auxiliary variable /, we write 

(1) Mu) • Mq) = t and (2) / + Mv) • Mw) = 1. 

Equation (1) has the form (III) and can be plotted by the method of 
Art. 32. Equation (2) is a special case of the form (X), where Mw) “ i» 
and can be plotted by the method of Art. 57. The /-scale is not gradu- 

* These forms, involving three or four variables, occur rarely in engineering practice, 
and are therefore treated very briefly. 
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ated. The position of the scales is illustrated in Fig. 63. The («, q) and 
(», w) index lines must intersect on the /-axis. 

64. Chart for equation of form 

an auxiliary variable /, we write 

SM 
/.(«) =j^r-Introducin8 

(1) and (2) - + = -rrr r • 
L MV /s(«0 

Equation (1) has the form (HI) and may be plotted by the method of 
Art. 32. Equation (2) is of the form (IX) and may be plotted by the 
method of Art. 55. The /-scale is not graduated. Fig. 64 illustrates the 
position of the scales. The («, q) and (v, w) index lines must intersect 
on the /-axis. 

65. Chart for equation of form +'yt^ = 1. — Introducing an 

auxiliary variable /, we write 

fM 1 , Mw) 
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Equation (i) has the form (III) and can be plotted by the method of 
Art. 32. Equation (2) is a special case of the form charted in Art. 61. 
The common /-scale need not be graduated. The position of the scales 
is illustrated in Fig. 65. The (m, g) and (v, w) index lines must intersect 
on the /-axis. 

66. Chart for equation of form /i(u) •f2(q) +/3(v) -/4(tt?) =/6(u>). 
— We introduce a new variable /, and write 

(1) fiMfiiq) = / and (2) t+fa(v)f4(w) =/6(w). 

Equation (1) has the form (HI) and may be charted by the method ot 
Art. 32. Equation (2) has the form (X) and may be charted by the 
method of Art. 57. The /-axis need not be graduated. The position 
of the scales is illustrated in Fig. 63. The (w, q) and (vt w) index lines 
must intersect on the /-axis. 

Fig. 66. Fig. 67. 

An interesting application of this type is given by D’Ocagne.* He 
considers Bazin’s formula! for the velocity of flow of water in open chan¬ 
nels, 

v = c \/rs, where c = -—-- 
0.552 + 

We can combine these equations into one equation, 

v = 87 ^rs or 87 Vs _m_ 0.552 

0.552 + i' ' r VF' 

= , and 
V r v? 

* Trait6 de Nomographie, p. 233. 
J We have charted this formula by means of two charts in Art. 5S« 
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Fig. 66 illustrates the positions of the scales. By placing the w- and s- 
scales on the same axis, we get a very compact chart. The (v, s) and 
(m, r) index lines must intersect on the /-axis. 

67. Chart for equation of form /i(u) -/2(q) + /3(t>) •/4(u>) =Mq) + 
/6(ti?). —We introduce an auxiliary variable /, and write 

(1) fiM • U(?) ~ * = Mq) and (2) /3(t/) /4(w) + t = /6(w)- 

Both equations have the form (X) and can be plotted by the method of 
Art. 57 with a common /-axis, which need not be graduated. Fig. 67. 
illustrates the positions of the scales. The (u, g) and (v, w) index lines 
must intersect on the /-axis. 

EXERCISES 

Construct charts for the following formulas. The numbers in parenthesis suggest 
limiting values for the variables. These limits may be extended if necessary. Addi¬ 
tional exercises will be found at the end of this chapter. 

tcfi 
1. V — (i O2 —Volume of a cask or buoy; d is the diameter of the 

base in ft. (o to 10), D is the diameter of the middle section in ft. (o to 10), II is the 
height in ft. (o to 10), V is the volume in cu. ft. (o to 800). 

2. 0 = 3-33 * [(** + A)3 - A3]. — Francis’ formula for the discharge, Q, in cu. 
ft. per sec. over a rectangular, suppressed weir b ft. in width (2 to 15) due to a head of 
H ft. over the crest (0.5 to 1.5), considering the velocity head h ft. (o to 0.1) due to the 
velocity of approach. 

w 
3. Sp. gr. = 'w~_ — Here, w is the weight in pounds of the solid in air (o to 

ioo), w' is the weight in pounds of the solid in water (o to 95), sp. gr. is the specific 
gravity (o to 20). 

4 / = 
20,000 

1 + 
144IJ 

. — Gordon formula for columns with ends rounded and maxi- 

9000 r8 
mum allowable compression stress of 20,000 pounds per sq. in.; L is the length of the 
column in ft. (10 to 50), r is the radius of gyration in inches (1 to 12),/is the allowable 
stress in pounds per sq. in. (1000 to 20,000). 

5. ^ — Equivalent resistance, R, of a parallel circuit the respec¬ 

tive branches of which have resistances Ri, R2f and R3 ohms (1 to 10) and containing 
no e.m.f. 

6. 3 = v^t — £ gt2. — Distance, s, in feet (—260 to +260) passed over by a body 
projected vertically upwards with an initial velocity of Vo ft. per sec. (— 260 to + 260) 
in t seconds (o to 17); g = 32.2. 

7. V = 0.6490 p — ■■ "■■. — Volume, V, in cu. ft. of one pound of superheated 

steam which has a pressure of P pounds per sq. in. (50 to 250) and a temperature of 
T degrees (280 to 650). 
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MISCELLANEOUS EXERCISES FOR CHAPTERS III, IV, V. 

Construct charts for the following formulas. The numbers in parenthesis suggest 

limiting values for the variables. These limits may be extended if necessary. 

1. = V/W and P** = V/yy. — First intermediate pressure, P\ in pounds 

per sq. in., and second intermediate pressure, P", in pounds per sq. in. of a three stage 

air compressor which compresses air from a pressure of Pi pounds per sq. in. (14.4 to 
15.2) to a pressure of Pj pounds per sq. in. (500 to 3000). 

2. I — — Moment of inertia, 7, in inch units of a right circular cylinder 

about its axis; W is the total weight in pounds (o to 25,000) and r is the radius in inches 
(o to 25). 

3. K - yi 3^ +A* 
■ Radius of gyration, K, of a right circular cylinder about 

an axis through its center of gravity and perpendicular to the axis of the cylinder; r 

is the radius in inches (o to 25), h is the height in inches (o to 40). 

4* &  U ' —-Capacitance, C, in microfarads of two parallel cylinders 
36 In p X io5 

per cm. length; each cylinder r cm. in radius (0.1 to 0.25), their centers separated by a 

distance of d cm. (2.5 to 144), and immersed in a medium of dielectric constant k (Jk — I 
in practical cases). 

T 
5* V’= 0.596 p — 0.256.—Volume, V, in cu. ft. of one pound of superheated 

steam which has a pressure of P pounds per sq. in. (50 to 250) and a temperature of T 
degrees (280 to 650). 

6. B.H.P, = 3.33 (A — 0.6 Va) v7/. — Boiler horse-power, B.H.P. (o to 500) for 

chimney design for power houses; A is the internal area of chimney in sq. ft. (6 to 16), 

H is the height of the chimney in ft. (50 to 150). 
nsffi 

7. H.P. = — '. — Horse-power, 77.P., transmitted by a solid circular shaft of 
32I|000 

diameter d in. (0.1 to 6) at n revolutions per min. (50 to 2500) with a fiber stress in shear 
of s pounds per sq. in. (o to 50,000). 

8. K = i Ac sin A. — Area of a triangle, K, with sides b (o to 10) and c (1 to 10) 
and included angle A (o° to 90°). 

9. d =* 0.013 VD/p. — Piston-rod diameter, dt in inches (1 to 6) of a steam engine; 

D is the piston diameter in inches (12 to 24), l is the length of the stroke in inches (12 to 

60), p is the maximum steam pressure in pounds per sq. in. (80 to 150). 

10. A — Sectional area, .4, in circular mils, of a copper wire for 

which the total annual cost of transmitting energy over a line conducting a constant 

current of 7 abamperes (o to 100) will be a minimum; c is the cost of generated energy 

in dollars per kilowatt hour (0.005 to 0.02), cf is the cost of the bare copper wire in dollars 

per pound (0.15 to 0.35), h is the number of hours per year that the line is in use (4 X 300 

to 24 X 300), p is the annual percentage rate of interest on the capital invested in copper 

(4 to 6). 
W 

11. / * — (*l + A*), — Moment of inertia, J, of a flat rectangular plate about 

a'n axis perpendicular to its plane and passing through the center; W is the total weight 

in pounds (o to 30,000), a is the length in ft. (5 to 25), b is the breadth in ft. (2 to 10). 

12. Ti = B + VEor Ti — 2 B = y. — Bending moment, B, in a circular 

shaft for which the twisting moment is T, and Ti is the twisting moment which would 

give the same effect as B and T acting together. 
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13- P * JTjTf • — Allowable internal pressure, p, in pounds per sq. in. on a hollow 

cylinder of inner radius r inches; i is the thickness of the cylinder in inches, $ is the 

working strength of the, material (20,000 pounds per sq. in. for steel). 

14. ft s ft [1 + a (t2 — tx)].— Resistance, Ro, in ohms (o to 5) of a conductor 

of tt° C. which has a resistance of Rt ohms (o to 5) at tx° C. (20 to 30) and is made of 

a material which has a resistance temperature coefficient of a at t° C. (a = 0.00393 
when t\ = 200 and may be taken as a constant for copper). 

15- Q = 3-3* ^ + 0.007 k — Fteley and Stearns' formula for the discharge, 

(?» in cu. ft. per sec. over a suppressed weir b feet in width (5 to 20) due to a head of H 
feet over the crest (0.1 to 1.6). 

16. D = H tan A, — Depth, D, in ft. (1 to 55,000) to a stratum, where A is the 

dip in degrees (1 to 89), and H is the horizontal distance in ft. (100 to 1,000). 

17. T = H sin A. —Thickness, T, in ft. (1 to 1,000), where A is the dip in degrees 

(i to 90), and H is the horizontal distance in ft. (100 to 1,000). 

18. tan C = tan A sin B. — Projection of dips. C is the dip of the projected 

angle in degrees (0.1 to 89), A is the dip of the bed in degrees (1 to 89), B is the angle 
of projection in degrees (1 to 90). 

19. N — J ifKC. — Explosion formula. N is the number of half-pound blocks 

of T.N.T. (20 to 10,000), R is the radius of rupture in ft. (0.5 to 15.0), K is a constant 

for the material (0.10 to 0.50), C is a constant for tamping (0.1 to’5.0.) 

20. d2 — 8 rh — 4 bt1. — Diameter, dt of the base of a segment of a sphere of radius 
r and height of segment h. 

21. V = v rti1 — 3 — Volume, F, of a segment of a sphere of radius r and 
height of segment h. 

N 
22. T — ——■■— N is the number of teeth (1 to 100) in a spiral gear, a is the angle 

(o° to 8o°) of teeth with axis, T is the number of teeth for which to select cutter (12- 

14, No. 8; 14-17, No. 7; i7r2*> No. 6; 21-26, No. 5; 26-35, No. 4; 35-55, No. 3; 55- 
135, No. 2; 135 up, No. 1). 



CHAPTER VI. 

EMPIRICAL FORMULAS — NON-PERIODIC CURVES. 

68. Experimental data. — In scientific or technical investigations we 
are often concerned with the observation or measurement of two quanti¬ 
ties, such as the distance and the time for a freely falling body, the volume 
of carbon dioxide dissolving in water and the temperature of the water, 
the load and the elongation of a certain wire, the voltage and the current 
of a magnetite arc, etc. The results of a series of measurements of the 
same two quantities under similar conditions are usually presented in the 
form of a table. Thus the following table gives the results of observa¬ 
tions on the pressure p of saturated steam in pounds per sq. in. and the 
volume v in cu. ft. per pound: 

p = io 20 30 40 50 60 
v = 37-^0 19.72 13.48 10.29 8.34 6.62 

We represent these results graphically by plotting on coordinate paper 
the points whose coordinates are the corresponding values of the measured 
quantities and by drawing a smooth curve through or very near these 
points. Fig. 68 gives a graphical representation of the above table, 
where the values of p are laid off as abscissas and the values of v as ordi¬ 
nates and a smooth curve is drawn so as to pass through or very near the 
plotted points. 

120 
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The fact that a smooth curve can be drawn so as to pass very near the 
plotted points leads us to suspect that some relation may exist between 
the measured quantities, which may be represented mathematically by 
the equation of the curve. Since the original measurements, the plotting 
of the points, and the drawing of the curve all involve approximations, 
the equation will represent the true relation between the quantities only 
approximately. Such an equation or formula is known as an empirical 
formula, to distinguish it from the equation or formula which expresses 
a physical, chemical, or biological law. A large number of the formulas 
in the engineering sciences are empirical formulas. Such empirical for¬ 
mulas may then be used for the purpose of interpolation, i.e., for comput¬ 
ing the value of one of the quantities when the value of the other is given 
within the range of values used in determining the formula. 

It is at once evident that any number of curves can be drawn so as to 
pass very near the plotted points, and therefore that any number of 
equations might approximate the data equally well. The nature of the 
experiment may give us a hint as to the form of the equation which will 
best represent the data. Otherwise the problem is more indeterminate. 
If the points appear to lie on or near a straight line, we may assume an 
equation of the first degree, y = a + bx, in the variables. But if the 
points deviate systematically from a straight line, the choice of an equa¬ 
tion is more difficult. Often the form of the curve will suggest the type 
of equation, parabolic, exponential, trigonometric, etc., but in all cases, 
we should choose an equation of as simple a form as possible. Before 
proceeding any further with this choice we may test the correctness of 
the form of the equation by “rectifying” the curve, i.e., by writing the 
assumed equation in the form 

(i) f(y) = cl + bF(x) or (2) y' = a + bx\ 

where y9 = f(y) and xf = F(x), and plotting the points with xf and y9 

as coordinates; if the points of this plot appear to lie on or very near a 
straight line, then this line can be represented by equation (2) and hence 
the original curve by equation (1). We shall use the method of rectifica¬ 
tion quite freely in the work which follows. 

Having chosen a simple form for the approximate equation we now 
proceed to determine the approximate values of the constants or co¬ 
efficients appearing in the equation. The method of approximation 
employed in determining these constants depends upon the desired degree 
of accuracy. We may employ one of three methods: the method of 
selected points, the method of averages, or the method of Least Squares. Of 
these, the first is the simplest and the approximation is close enough 
for a large number of problems arising in technical work; the second re¬ 
quires a little more computation but usually gives closer approximations; 
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while the third gives the best approximate values of the constants but the 
work of determining these values is quite laborious. All three methods 
will be illustrated in some of the problems which follow. 

After the constants have been determined the formula should be 
tested by performing several additional experiments where the variables 
lie within the range of the previous data, and comparing these results 
with those given by the empirical formula. 

We shall now work two illustrative examples to indicate the general 
method of procedure. • 

(I) THE STRAIGHT LINE. 

69. The straight line, y — bx. — The following table gives the results 
of a series of experiments on the determination of the elongation E in 
inches of annealed high carbon steel wii'e of diameter 0.0693 in. and gage 
length 30 in. due to the load W in pounds. 

w E EW IP O ES A* A» A««i 

0 O O O 0 0 0 O O O 

so O.OI30 O.650 2,500 0.0130 0.0131 0.0131 O — I — I 

IOO O.O251 2.510 10,000 0.0260 0.0261 0.0262 ~ 9 — IO — II 

150 0.0387 S 8°S 22,500 0.0390 0.0392 00393 - 3 “ 5 - 6 

200 0.0520 IO.40O 40,000 0.0520 0.0522 0.0524 0 + 2 ~ 4 
225 0.0589 13.253 50,625 0.0585 0.0587 0.0589 + 4 + 2 0 

250 0.0659 16.475 ! 62,500 0.0650 0.0653 0.0655 + 9 + 6 + 4 
260 0.0689 17.914 67,600 0.0676 0.0679 O.0681 +13 + 10 + 8 

2 123s 0-3^5 67.OO7 | 255.725 38 36 34 
2-5-8 = ■ 4.8 45 4 3 

2A2 = s 356 270 254 

The plot. — The data are plotted on a sheet of codrdinate paper about 
10 inches square and ruled in twentieths of an inch or in millimeters. If 
we wish to express the elongation as a function of the load, we plot the 
load on the horizontal axis or as abscissas, if the load as a function of the 
elongation we plot the latter as abscissas. In Fig. 69 we have plotted 
the values of W as abscissas and the values of E as ordinates. The scales 
with which these values are plotted are generally chosen so that the 
length of the axis represents the total range of the corresponding vari¬ 
able, and so that the line or curve is about equally inclined to the two 
axes. There is no advantage in choosing the scale units on the two axes 
equal. Care should be taken not to choose the units either too small or 
too large; for in the former case the precision of the data will not be 
utilized, and in the latter case the deviations from a representative line 
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or curve are likely to be magnified. The drawing of a good plot is evi¬ 
dently a matter of judgment. It is best to mark the plotted points as 
the intersection of two short straight lines, one horizontal and one 
vertical. 

The representative curve and its equation. — We now draw a smooth 
curve passing very near to the points of the plot, so that the deviations 
of the points from the curve are very small, some positive and some 
negative. In^Fig. 69, the points seem to fall approximately on a straight 
line. This should be tested by moving a stretched thread or by sliding 

a sheet of celluloid with a fine line scratched on its under side among the 
points and noting that the points do not deviate systematically from this 
thread or line. Having decided that a straight line will approximate 

the plot, we assume that an equation of the first degree, E = a + bW, will 
approximately represent the relation between the measured quantities. 

In this example we may evidently assume that E = bW since a zero load 

gives a zero elongation. 
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The determination of the constant. — We shall now determine the con¬ 
stant b in the equation E = bW. This may be done in several ways. The 
three methods which are generally employed are as follows: 

I. Method of selected points. — Place the sheet of celluloid on the 
coordinate paper so that the scratched line passes through the point 
W = o, E = o, and then rotate the sheet until a good average position 
among the plotted points is obtained, i.e., until the largest possible num¬ 
ber of points lie either on the line or alternately on opposite sides of the 
line, in such a manner that the points below the line deviate from it by 
approximately the same amount as the points above it. Then note the 
values of W and E corresponding to one other point on this line, prefer¬ 
ably near the farther end of the line. Thus we read W = 250, E = 
0.0650. Substituting these values in the equation E = bW, we have 
0.0650 = 250 b, and hence b = 0.000260, and finally E = 0.000260 W. 
Since the choice of the “best” line is a matter of judgment, its position, 
and hence the value of the constant, will vary with different workers and 
often with the same worker at different times. 

II. Method of averages. — The vertical distances of the plotted points 
from the representative line are called the residuals; these are the differ¬ 
ences between the observed values of E and the values of E calculated 
from the formula, or E — EC} where Ec = bW; some of these residuals 
are positive and others are negative. If we assume that the “best” line 
is that which makes the algebraic sum of the residuals equal to zero, we 
have 

2 (E - bW) = o or HE- bHW = o, 
, , HE 0.3225 , 
hence b = = ——- = 0.000261, 

T>W 1235 

and we may call this an average value of b. By this method it is no 
longer necessary to shift the line among the points so as to get an average 
position. 

III. Method of Least Squares. — In the theory of Least Squares * it is 
shown that the best line or the best value of the constant is that which 
makes the sum of the squares of the differences of the observed and cal¬ 
culated values a minimum, i.e.f 

2 (E — bW)2 — minimum. 

Hence the derivative of this expression with respect to b must equal zero, 
or 

^ 2 (E - bW)2 = 0, or 2 W(E - bW) = o, 

or HWE - bZW2 = o, and b = 
HEW 
HW* 

• See Bartlett’s “The Method of Least Squares,” or any other book on this theory. 
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We form two columns, one giving the values of EW and the other the 
values of W2, and adding these columns, we find 

b = 67.007/255,725 = 0.000262. 

We may now'compare the results obtained by each of the three 
methods. For this purpose we complete the table by computing the 
values of E from the formulas 

I. E = 0.000260 W; II. E = 0.000261 W\ III. E = 0.000262 W. 

These are marked Ec\ Ec11, Ecin, in the table. To discover how closely 
the computed values agree with the observed values we form the residuals 

A1 =[E - Ec\ A11 = E - Ec“ A111 = E - Ecm. 

Disregarding the signs of these residuals, we add them and divide by 
their number, 8, and find the average residual to be 0.00048, 0.00045, 
0.00043, respectively. We also find the sum of the squares of the resid¬ 
uals to be 356, 270, 254, respectively. We may therefore draw the fol¬ 
lowing conclusions: all three methods give good results; the method of 
Least Squares gives the best value of the constant but requires the most 
calculation; the method of averages gives, in general, the next best value 
of the constant and requires but little calculation; the graphical method 
of selected points requires the least calculation but depends upon the 
accuracy of the plot and the fitting of the representative line. 

70. The straight line, y = a + bx. — For measuring the temperature 
coefficient of a copper rod of diameter 0.3667 in. and length 30.55 in., the 
following measurements were made. Here, C is the temperature Centi¬ 
grade and r is the resistance of the rod in microhms. 

c r a rC rc' r," r„m A1 A" A*** 

19.1 76.30 364.81 1.457-33 76.19 76.19 76.26 -|-o.ii -ho.ii +0.04 
25.0 77.80 625.00 1,945.00 77.91 77-92 77.96 —0.11 —0.12 —O.16 
30.1 79 • 75 906.01 2,400.48 79-39 79.41 79-43 +0.36 +0.34 +O.32 
36.0 80.80 1296.00 2,908.80 81.11 81.14 81.13 -0.31 -0.34 -°*33 
40.0 82-35 1600.00 3,294.00 82.27 82.31 82.28 ~ho .08 -fo.04 +0.07 

45-i 83.90 2034.01 3.783.89 83-75 83.80 83.76 +0.15 -ho. 10 +0.14 
50.0 85.10 2500.00 4.255-00 85.18 8524 85.16 —0.08 —0.14 —0.06 

2 245-3 566.00 9325-83 20,044-5° 1.20 1.19 1.12 

24-7 = 0.171 0.170 0.160 
2 A2 = 2852 2869 2646 

The plot (Fig. 70) appears to approximate a straight line, so that we 
shall assume the relation r = a + bC. We shall determine the con¬ 
stants, a and 6, by the three methods. 

I. Method of selected points. — Use a sheet of celluloid to determine 
the approximate position of the best straight line, and note two points 
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on this line; thus, C = 20, r = 76.45, and C = 48, r — 84.60. Substi¬ 
tuting these values in the equation r =■ a + bC, we get 

76.45 = a + 20 6 and 84.60 = a + 48 6, 

from which we determine 

a = 70.63 and b = 0.291, 

so that our relation becomes 
r = 70.63 + 0.291 C. 

10 15 20 25 30 35 40 45 50 
(C> 

Fig. 70. 

II. Method of averages. — Since we have to determine two constants, 
we divide the data into two equal or nearly equal groups, and place the 
sum of the residuals in each group equal to zero, i.e., 

2 (r — a — bC) =0 or 2r = na + 62 C, 

where n is the number of observations in the group. Thus, dividing the 
above data into two groups, the first containing four and the second three 
sets of data, and adding, we get 

314.6$ =4 a + 110.2 b and 251.35 = 3 a + 135.1 b. 
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from which we determine 

a - 70.59 and b — 0.293, 

so that our relation becomes 

r = 70.59 + 0.293 C. 

III. Method of Least Squares. — The best values of the constants are 
those for which the sum of the squares of the residuals is a minimum, i.e., 
L (r — a — bCy = minimum; hence the partial derivatives of this 
expression with respect to a and b must be zero; thus, 

Ya 2 (r - a - bCY = 0, ~^(r-a-bCy = o, 

or 2 [2 (r — a — bC) (-i)] = o, 2 [2 (r — a — bC) (— C)] = o, 

or 2r = an + bZC, 
2 rC = aZC + &2C2, 

where n is the number of observations. We solve these last two equations 
for a and b. (Note that these equations may be formed as follows: 
substitute the observed values of r and C in the assumed relation r = a 
+ bC\ add the n equations thus formed to, get the first of the above 
equations; multiply each of the n equations by the corresponding value 
of C and add the resulting n equations to get the second of the above 
equations.) 

We now compute the values of rC, C2, 2 C, 2rC, and*2 C2, and substi¬ 
tute these in the equations for determining a and b. We thus get 

566.00 = 7 a + 245.3 6, 
20,044.50 = 245.3 a + 9325.83 ft, 

from which we determine 

a = 70.76 and b = 0.288, 

so that our relation becomes 

r = 70.76 + 0.288 C. 

Comparison of results. — We note that the various results agree very 
well with the original data and with each other. We compute the resid¬ 
uals and find that the average residual is smallest by the third method 
and is approximately the same by the first two methods. The computa¬ 
tion necessary in applying the method of Least Squares is very tedious. 
The method of selected points requires the fitting of the best straight line, 
and this becomes quite difficult when the number of plotted points is 
large. We shall therefore use the method of averages in most of the 

illustrative examples which follow. 
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(II) FORMULAS INVOLVING TWO CONSTANTS. 

71. Simple parabolic and hyperbolic curves, y = ax*. — As stated in 
Art. 68, when the plotted points deviate systematically from a straight 
line, a smooth curve is drawn so as to pass very near the points; the shape 
of the curve or a knowledge of the nature of the experiment may give us 
a hint as to the form of the equation which will best represent the data. 

Simple curves which approximate a large number of empirical data 
are the parabolic and hyperbolic curves. The equation of such a curve 
is y = a:c6, parabolic for b positive and hyperbolic for b negative. In 
Fig. 71 a, we have drawn some of these curves for a = 2 and b = — 2, 
— 1, —0.5, 0.25, 0.5, 1.5,2. Note that the parabolic curves all pass 

through the points (o, o) and (i, a) and that as one of the variables 
increases the other increases also. The hyperbolic curves all pass through 
the point (1, a) and have the coordinate axes as asymptotes, and as one 
of the variables increases the other decreases. 

There is a very simple method of verifying whether a set of data can 
be approximated by an equation of the form y = a*6. Taking loga¬ 
rithms of both members of this equation, we get log y = log a + b log x, 
and if xf = log x, yf = log y, this becomes y' = log a + bx\ an equation 
of the first degree in x' and y'; therefore the plot of (#', y') or of (log x, 
log y) must approximate a straight line. Hence, 
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If a set of data can be approximately represented by an equation of the 
form y = a#6, then the plot of {log x} log y) approximates a straight line. 

Instead of plotting (log x, log y) on ordinary coordinate paper, we 
may plot (#, y) directly on logarithmic coordinate paper (see Art. 13)* 
We determine the constants a and b from the equation of the straight 
line by one of the methods described in Art. 70. 

Example. The following table gives the number of grams S of anhy¬ 
drous ammonium chloride which dissolved in 100 grams of water makes 
a saturated solution of 0° absolute temperature. 

(*) 

Fig. 71 b. 

9 5 log# log 5 A1 A» 

273 29.4 2.4362 1.4684 29.7 29.7 -0.3 -0.3 
283 33-3 2.4518 1.5224 33-2 33-2 +0.1 +0.1 
288 35-2 2.4594 1.5465 35-o 35-1 +0.2 +0.1 

293 37-2 2.4669 1-5705 37-0 37-o +0.2 +0.2 

313 45-8 2-4955 I.6609 45-3 45-3 +0.5 +0.5 
333 55-2 2.5224 1.7419 54-9 54-9 +0.3 +0.3 
353 65.6 2 5478 I.8169 65-7 65.8 —0.1 —0.3 
373 77-3 *5717 I.8882 77-9 78.0 —0.6 -0.7 

Z 4-8 « 0.29 O.3O 
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The points (0, S) are plotted in Fig. 716. The curve appears to be 
parabolic, i.e., of the general form illustrated in Fig. 710. We therefore 
plot (log 0, log S) and note that this approximates a straight line, so that 

we may assume 
S = off’ or log 5 = log a + b log 0. 

We shall first determine the constants by the method of selected 
points. We note two points on the line whose coordinates are 

log 0 - 2.445, log 5 = 1.50 and log 0 = 2.555, log S = 1.84, 

hence we have 
1.50 = log a + 2.445 b, 

1.84 = log a + 2.555 b. 

b = 3.09, logo = —6.0550 =-3-9450 — 10, a = 0.000,000,881. 
.-. log S = —6.0550 + 3.09 log 0, or S = 0.000,000,881 0®°*. 

We shall now determine the constants by the method of averages. 
We divided the data into two groups of four sets, and adding, we have 

6.1078 = 4 log a + 9.8143 5, 
7.1079 = 4 log a + 10.1374 b. 

.-. b = 3.09, logo = —6.0546 = 3.9454 — 10, a = 0.000000882. 

.'. log 5 = —6.0546 + 3.09 log 0 or 5 = 0.000000882 0s w. 

We complete the table by computing S, the residuals, and the average 
residual. The agreement between the observed and computed values of 

5 is quite close. 
Example. The following table gives the pressure p in pounds per 

sq. in. of saturated steam corresponding to the volume v in cu. ft. per 
pound. (From Perry’s Elementary Practical Mathematics.) 

V p log V log p Pc A 

53-92 6.86 1.7318 0.8363 6.85 -ho.01 
26.36 14.70 I.4210 1.1673 14.69 -j-0.01 
14.00 28.83 1.1461 1.4599 28.85 —0.02 
6.992 60.40 0.8446 1.7810 60.49 —0.09 
4.260 101.9 0.6314 2.0082 102.1 —0.'2 

2.748 163.3 0.4390 2.2130 163.7 -0.4 
1.853 250.3 0.2679 2.3984 2492 + I.I 

The points (», p) are plotted in Fig. 71c. The curve appears to be 
hyperbolic on comparison with Fig. 71a. Hence we plot (log v, log p) 
and note that this approximates a straight line, so that we may assume 

p = aifi, or log p = log a + b log v. 

We shall use the method of averages to determine the constants a and b. 
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Dividing the data into two groups, the first four and the last three sets, 
and adding, we have 

5.2445 = 4 log a + 5.1435 b, 
6.6196 = 3 log a + 1.3383 b. 

b — —1.0662, logo = 2.6822, a = 481.1. 
.'. log p = 2.6822 — 1.0662 log v, or pvlMt2 = 481.1. 

We now compute p and A and note the close agreement between the 
observed and calculated values. 

{log v) 

Fig. 71 c. 

72. Simple exponential curves, y = oe6*. — Other simple curves that 
approximate a large number of experimental results are the exponential 
or logarithmic curves. The equation of such a curve may be written in 
the form y = oe61, where e is the base of natural logarithms; the form 
y = ab* is sometimes used. In Fig. 720, we have drawn some of these 
curves for a - 1 and b =-2, — 1, -0.5, 0.5, 1, 2. Note that these 
curves all pass through the point (o, a) and have the x-axis for asymptote. 
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1.0\ 

0.5 

There is a very simple method of verifying whether a set of data can 
be approximated by an equation of the form y — aeP*. Taking logarithms 

of both members of this equa¬ 
tion we get log y = log a + 
(b log e) x, and if y' = log y9 

this equation becomes y* = 
log a + (b log e) xt an equation 
of the first degree in x and yf; 
therefore the plot of (x, y') or 
of (xy log y) must approximate 
a straight line. Hence, 

If a set of data can be ap¬ 
proximately represented by an 
equation of the form y = a&x9 

then the plot of (xt log y) ap¬ 
proximates a straight line. 

Insteadof plotting (*, logy) 
on ordinary coordinate paper, 
we may plot (xt y) directly 
on semilogarithmic coordinate 
paper (see Art. 14). The con¬ 
stants a and b are determined 
from the equation of the 

3.0 

2.5 

2.0 

1.5 
(y) 

L 
d z 
L Z 

z 
_1 
r j z7 

z Al 
X 

_ 0 

Z 
A 

r~^ 

5 v —. _ V~e 0.5 x 
X 

* — — 

— 

— 

y = 
Fig. 

(x) 
aebx 

72 a. 
straight line by one of the methods described in Art. 70. 

Example. Chemical experiments by Harcourt and Esson gave the 
results of the following table, where A is the amount of a substance re¬ 
maining in a reacting system after an interval of time t. 

t A log t log A A. A 

2 94-8 0.3010 I.9768 949 —O.I 

5 87.9 0.6990 I.9440 87.7 +0.2 

8 81.3 0.9031 i.9x01 81.0 +O.3 

11 74 9 I.0414 1.8745 74.8 +0.1 

14 68.7 I.1461 1.8370 69.I ~o.4 

17 64.0 1.2304 1.8062 63.8 +0.2 

27 49 3 1.4314 1.6928 49.O +0.3 

3i 44.0 1.4914 1643s 44.1 —0.1 

35 39-1 I.5441 1.5922 39-6 -0.5 

44 31.6 *•6435 1 -4997 31-2 +0.4 

2A -5- 10 = 0.26 

The points (/, A) are plotted in Fig. 72b. This curve appears to be 
exponential, so that we plot (t, log.4) and (log tf A); it is seen that the 
plot of (/, log A) approximates a straight line. We may therefore assume 
an equation of the form 

A =■ a&* or log A - log a + (jb log e) t. 
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(log <) 

We shall use the method of averages to determine the constants. Divid¬ 
ing the data into 2 groups and adding, we get 

9-5424 = 5 log a + 40 (b log e), 
.8.2344 - 5 log a + 154 (6 log e). 

.*. b log e = — 0.0115, logo = 2.0005. 

b = —0.0265, a — 100.1, since log e — 0.4343. 
/. log .4 = 2.0005 — 0.0115*, or A = 100.1 

We now compute the values of A and the residuals, and note the close 
agreement between the observed and the calculated values of A. 
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In Fig. 72c, the points (0, C) and (0, log C) are plotted; the latter 
plot approximates a straight line. We may therefore assume the equa¬ 
tion 

C = aeP, or log C = log a + (b log e) 0. 

We use the method of averages to determine the constants. Omitting 
the first set and dividing the remaining data into two groups of three 
sets, we get 

24.3198 - 30 = 3 log a + 400 (ib log e), 
26.5251 — 30 = 3 log a + 600 (6 log e). 

•\ b log e = 0.0110, log a = 6.6399 ~ 10. 
.% b = 0.0253, a = 0.000436. 

log C = 6.6399 — 10 + 0.0110 0, or C = 0.00436 &•***, 

We now compute the values of C and the residuals and note the re¬ 
markably close agreement between the observed and computed values 
of C. 

73. Parabolic or hyperbolic curve, y = a + bxn (where n is known). — 
In using this equation, it is assumed that from theoretical considerations 
we suspect the value of n. It is evident that 

If a set of data can be approximately represented by an equation of the 
form y = a + bxn, where n is known, then the plot of (xn, y) approximates 
a straight line. 

Example. A small condensing triple expansion steam engine tested 
under seven steady loads, each lasting three hours, gave the following 
results; I is the indicated horse-power, w is the number of pounds of 
steam used per hour per indicated horse-power. (From Perry’s Ele¬ 
mentary Practical Mathematics.) 

I W wl A 

36.8 12.5 460.0 12.6 —o.x 

31.s 12 .9 406.4 12.8 -fo.I 

26.3 I3-I 344.s 130 +0.1 
21.0 13-3 279*3 13*4 —O.I 

15.8 14.1 222.8 14.0 +0.1 
12.6 14.5 182.7 14.6 —0.1 
8.4 16.3 136.9 16.1 +0.2 

ZA 4- 7 = o.xx 

Fig. 73a gives the plot of (/, w). This is not a straight line. But .if 
we plot (/, wl), i.e.t the total weight of steam used per hour instead of 
the weight per indicated horse-power, we find that this plot approximates 
a straight line. Hence, we may assume the linear relation wl = a + bl. 
This relation may also be written w * b + o/7, so that the plot of (i/Z, w) 

also approximates a straight line. We use the method of averages to 
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determine the constants. Dividing the data into two groups, the first 
three and last four sets, and adding, we have 

1210.9 = 3 a + 94.6 6, 
821.7 = 4 a + 57.8 b. 

b = 11.6, a = 37.8. 

wl = 37.8 + 11.6 /, or w = 11.6 + 

We now compute the values of w and the residuals. 

V) 
Fig. 73a. 

Example. For a parachute or flat plate falling in air we have the 
following observations; v is the velocity in ft. per sec. and p is the pressure 
in pounds per sq. in. 

7.87 0.2 61.94 
11.50 0.4 132.2s 
16.40 0.8 268.96 
22.60 1.6 510.76 
32.80 3-2 1075.84 



Am. 74 *37 HYPERBOLIC CURVE, y - 

In Fig* 736, we have plotted (v, p). It is surmised that for low veloci¬ 
ties, the pressure and the square of the velocity are linearly related, i.e., 
p = a, -1- W. We verify this by plotting (v2, p) and noting that this 
approximates a straight line. We use the method of averages to deter- 

(v*) 

Fig. 73b. 

mine the constants. Dividing the data into two groups, the first three 

and the last two sets, and adding, we have 

1.4 = 3 a + 463-I5 b, 
4.8 — 2 a + 1586.60 b. 

b = 0.00303 and a = — o.ooill. 
.\ p = — o.ooill + 0.00303 v2. 

We may with good approximation take a = o, so that p — 0.00303 
the pressure varies directly as the square of the velocity. 

74. Hyperbolic curve, y = JpjTgJ* or “ = a + bx. —This equation 

represents the ordinary hyperbola with asymptotes * = —a/b and y = 
i/b, as illustrated in Fig. 740 for values of a = 0.2, b = 0.2; 0 = 0.1, 
b = 0.2; a = —0.1, b =0.2; a = —0.2, b = 0.2. Quite a large number 
of experimental results may be represented by an equation of this type. 
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The equation may also be written in the form - * b + so that the 
X 

plots (x, and ^ approximate straight lines. Hence, 

If a set of data can be approximately represented by an equation of the 
X X 

form y = —r—r-» °r - = a + bx then the 
' a + bx y 
mates a straight line. 

plot of (x, or of ^approxi- 

Example. From a magnetization or normal induction curve for 
iron we find the following data; H is the number of Gilberts per cm., a 
measure of the field intensity, and B is the number of kilolines per sq. cm., 
a measure of. the flux density. 

H B h/b B, A 

2-5 35 ■n 7 97 
3-0 5.0 8.78 

3-1 K 8.91 

3.8 sgs 0.380 98 +0.2 
7.0 0.560 12.4 +0.1 
95 0.703 13.6 —0.1 

II .3 14.0 0.808 14.0 O 
175 15.0 1.17 151 —0.1 

3*-5 16.0 1.97 16.2 —0.2 
45-0 16.5 2.72 —0.2 
64.0 17.0 3-76 17.0 O 
95 0 17.5 5-43 17-3 +0.2 

2A + 9 — 0.12 

In Fig. 746, (H, B) is plotted. The curve appears to be of the type 
illustrated in Fig. 74a. Furthermore, an important quantity in the 
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X 

a + bx 

theory of magnetization is the reluctivity H/B, and if we plot (H, H/B), 
we note that this plot approximates a straight line for values of H > 3.1. 
(We may similarly introduce the permeability, B/H, and note that the 
plot of (B/H, B) approximates a straight line.) Hence, we assume a 

H 
relation of the form -5 = 0 + bH. Using the method of averages, 

Fio. 746. 

omitting the first three values of H, and dividing the remaining data 
into two groups containing five and four sets respectively, we get the 

equations 
3.621 = 5 a + 49.1 b, 
13.88 = 40 + 235.5 *>. 

.'. b = 0.0560, a = 0.174. 

.-. f- 0,.74 + 0.0560// or »-e,H+"ostlf 

We now compute B and the residuals and note the dose agreement 
between the observed and computed values. 
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(HI) FORMULAS INVOLVING THREE CONSTANTS. 

75. The parabolic or hyperbolic curve, y = ax* + c. — It is often im¬ 
possible to fit a simple equation involving only two constants to a set of 
data. In such cases we may modify our simple equations by the addition 
of a term involving a third constant. Thus the equation y = ax? may be 
modified into y = ax? + c. If b is positive, the latter equation repre¬ 

sents a parabolic curve with 
intercept c on OF; if b is 
negative, the equation rep¬ 
resents a hyperbolic curve 
with asymptote y — c. In 
F'g- 75a> we have sketched the 
curves y = 2 x0-6, y = 2 x°* + 2, 
y — 2 x-0-6, y = 2 x-0-5 + 2 to 
illustrate the relation of the 
simple types to the modified 
types. 

In Art. 71 it was shown 
that if we suspect a relation 
of the form y = ax*, we can 
verify this by observing 
whether the plot of (log x, 
log y) approximates a straight 
line. Now the form y = ax* 

y = ax* + c 

Fig. 75a. 

+ c may be written log (y - c) = log a + b log x, so that the plot of 
(log x, log (y — c)) would approximate a straight line. To make this 
test we shall evidently first have to determine a value of c. We might 
attempt to read the value of c from the original plot of (x, y). In the 
parabolic case we should have to read the intercept of the curve on OF, 
but this may necessitate the extension of the curve beyond the points 
plotted from the given data, a procedure which is not safe in most cases. 
In the hyperbolic case, we should have to estimate the position of the 
asymptote, but this is generally a difficult matter. 

The following procedure will lead to the determination of an approxi¬ 
mate value of c for the equation y = ax* + c. Choose two points (xi, y,) 
and (xj, yt) on the curve sketched to represent the data. Choose a third 

point (x8, yt) on this curve such that x3 = Vx^, and measure the value 
of yt. Then, since the three points are on the curve, their coordinates 
must satisfy the equation of the curve, so that 

yi = axi1 + c, y2 = ox2* + c, yt = axf + c. 
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Now, since #3 = Vxix2, 

therefore #3* = Vxfitf, and a^36 = a*i6 • a*26, 

or 3/3 - C = V^(yi - 0 Ob - c), 

and therefore c = —-—- 
yi + ^2 - 2 y3 

It is evident that the determination of c is partly graphical, for it 
depends upon the reading of the coordinates of three points on the curve 
sketched to represent the data. The curve should be drawn as a smooth 
line lying evenly among the points, i.e.} so that the largest number of the 
plotted points lie on the curve or are distributed alternately on opposite 
sides and very near it. 

Having determined a value for c, we plot (log x, log (y — c)). If this 
plot approximates a straight line, the constants a and b in the equation 
log (y — c) = log a + b log x may then be determined in the ordinary 
way. 

Example. In a magnetite arc, at constant arc length, the voltage F 
consumed by the arc is observed for values of the current i. (From 
Steinmetz, Engineering Mathematics.)# 

i 
r 

V V - 30.4 log O'- 30.4) log i ve A 

0.5 160 129.6 2.1126 9.6990 — 10 158.8 + 1.2 
I 120 89.6 1-9523 0.0000 — 10 120.8 —0.8 
2 94 636 1-8035 0.3010 — 10 94 0 0 
4 75 44.6 1-6493 0.6021 — 10 75-i —0.1 

8 62 316 14997 0.9031 — 10 61.9 +0.1 
12 56 25.6 I.4082 1.0792 — 10 56.0 0 

We plot (i, F) and note that the curve appears hyperbolic with an 
asymptote V =x, and hence we assume an equation of the form F= aib + c. 
To verify this we must first determine a value for c. Choose two points 
on the experimental curve; in Fig. 75b, we read ix = 0.5, Vi_= 160 and 
iz = 12, V2 = 56. Choose a third point such that h = = VZ = 
2.45, and measure F3 = 88. Then 

V\V2 - F32 _ (160) (56) - (88)2 1216 
c " Vi + V2 - 2 Vi 160 + 56-2 (88) 40 “ 3°4’ 

Now compute the values of V — 30.4 and log (V — 30.4) and plot 
(log i, log (F— 30.4)). This last plot approximates a straight line so 
that the choice of the equation F =f aib + c is verified. 

To determine the constants in the equation 

log (F — 30.4) = log a + b log i9 
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we use the method of averages, dividing the data into two groups of three 
sets each, and find 

5.8684 = 3 log a, 

4-5572 = 3 log + 2.5844 b. 
.% b = —0.507, log a = 1.9561, a = 90.4. 

log (V - 30.4) = 1.9561 - 0.507 log i, or V = 30.4 + 90.4r"0** 

Finally, we compute the values of V and the residuals. 

(log 1) 

Fig. 756. 

76. The exponential curve, y = ac6® + c. — The simple exponential 
equation y = a&x may have to be modified into y = ae6* + ^ in order to 
fit a given set of data. In the latter curve, the asymptote is y =* c. 
In Fig. 76a, we have sketched the curves y = 2 £°-1*, y = 2 + i» 
y = 2 e~°lx, y = 2 + 1. 

In Art. 72 it was shown that if we suspect a relation of the form 
y = aePx, we can verify this by observing whether the plot of (x, log y) 
approximates a straight line. Now y = aefi* + c may be written 
log (y — <0 = log a + (6 log e) x} so that the plot of (x, log (y — c)) 
would approximate a straight line. • Evidently we shall first have to 
determine a value for c. We proceed to do this in a manner similar to 
that employed in Art. 75. Choose two points (xi, yi) and (x*, y2) on 
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the curve sketched to represent the data, and then a third point {x», y3) on 
this curve such that = i (*1 + Xt) and measure the value of y». Since 
the three points are on the curve., 

yi = oc6*1 + c, yi = oe*» + c, yt = oe4** + c, 

or log ~~ ~ = (b log e) xu log ya - = (6 log e) x2, log ?LZlf = (& iog e) *3, 
** Ur Q, 

Now, since *3 = 5 (*1 + x2), 

therefore (b log e) x3 = ? [(6 log e) Xi •+• (6 log e) *2], 

- +*•*=*]-* 

Hence y» - c = V(yi - c) (y2 - cj, and c = - ^ ~ y3—•• 
yi + y2 — 2 y3 

If the data are given so that the values of x are equidistant, i.e., so 
that they form an arithmetic progression, we may verify the choice of 
the equation y = ae6* + c and determine the constants a, 6, and c in the 
following manner. Let the constant difference in the values of x equal h. 
If we replace x by x + A, we get yf = oe6**4*) + c, and therefore, for the 
difference in the values of y, 

Ay = y' — y = — ae6* = ae6* (e** — i), 

log Ay = log a — i) + (b log e) x. and 
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This last equation is of the first degree in x and log Ay so that the plot of 
(x, log Ay) is a straight line. To apply this to our data, we form a 
column of successive differences, Ay, of the values of y, and a column of 
the logarithms of these differences, log Ay, and plot (x, log Ay); if the 
equation y = aePx + c approximates the data, then this last plot will 
approximate a straight line. We may then determine b log e and 
log a (fPh — i) and hence a and b in the ordinary way, and finally find an 
average value of c from Sy = aL#* + nc, where n is the number of data. 

Example. In studying the skin effect in a No. oooo solid copper 
conductor of diameter 1.168 cm., Kennelly, Laws, and Pierce found the 
following experimental results; F is the frequency in cycles per second, 
L is the total abhenrys observed. 

F L L — 51,860 log (L - 51,860) L, A 

60 53>9i2 2052 3 -3122 53.952 -40 

306 53.767 1907 3.2804 53.668 +99 
888 53.143 1283 3.1082 53.140 + 3 

1600 52,669 809 2.9079 52,699 -30 

2040 52,499 639 *-8055 52,506 “ 7 
3065 52,215 355 2.5502 52,212 + 3 
395° 52,082 222 2.3464 52,068 +14 
5000 51.965 io5 2.0212 51.972 - 7 

In Fig. 76by the points (F, L) are plotted; the curve appears to be 
exponential with an asymptote L = c. We shall try to fit the equation 
L = a&F + c. First determine an approximate value for c by choosing 
two points on the experimental curve, Fi — 875, Li = 53,140, and F2 — 
5000, L2 = 51,980, and a third point F3 = \ (Fi + F%) = 2938, Lz = 

jr 2^_L 2 
52,250. Then c = j—= 51,860. Now compute (L — 51,860) 

Li 4 L2 - 2 L3 
and log (L — 51,860), and plot (F, log (L — 51,860)); this plot approxi¬ 
mates a straight line, thus verifying the choice of equation. We deter¬ 
mine the constants in the equation log (L — 51,860) = log a + (b log e) F 
by the method of averages. Dividing the data into two groups of four 
sets each and adding, we have 

12.6087 = 4 log a + 2854 b log e, 

9.7233 = 4 log a + 14,055 b log e. 

b\oge = —0.0002576, log a = 3.3360, 

and b = —0.0005931, a = 2168. 

log (L - 51,860) = 3 3360 - 0.0002576 F, 

or L = 51,860 + 2168 ^-0 0005931 ^ 
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We now compute L and the residuals, and note the close agreement 
between the observed and computed values except for the first two values 
of F. If we omit these two values in computing a and b, these constants 
have slightly different values, but the agreement between the observed 
and computed values of L is about the same. 

77. The parabola, y = a + bx + cx2. — The equation of the straight 
line y = a + bx may be modified by the addition of a term of the second 
degree to the form y = a + bx + cx1. This is the equation of the ordi¬ 
nary parabola. We may verify whether this equation fits a set of experi¬ 
mental data by one of the following methods. 
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(1) Choose any point (**, y*) on the experimental curve; then 
y* “ a + bxk + CXI?, and 

y — yk = b(x — xk)+c(x!i — xk2), or 

This last equation is of the first degree in x and 

— — (b + cxk) + cx. 

so that the plot of 

(*■ 

X - Xk 

y-yk 
x — xk 

will approximate a straight line. 

(2) If the values of x are equidistant, i.e.y if they form an arithmetic 
progression, with common difference A, then if we replace x by x + A in 
the equation, we get y' = a + b (x + A) + c (x + A)2 and Ay = y' — y 
= (jbh + ch2) + 2 chx. This last equation is of the first degree in x and 
Ay, so that the plot of (x, Ay) will approximate a straight line. 

Hence, if a set of data may be approximately represented by the equation 

y = a + bx + cx2, then (1) the plot of (x, where (x*, y*) are the 

coordinates of any point on the experimental curve, will approximate a 
straight line, or (2) the plot of (x, Ay), where the Ays are the differences in 
y formed for equidistant values of x, will approximate a straight line. 

The following examples will illustrate the method of determining the 
constants. 

Example. In the following table, 9 is the melting point in degrees 
Centigrade of an alloy of lead and zinc containing x per cent of lead. 
(From Saxelby’s Practical Mathematics.) 

X e *-36.9 9 —181 
e -181 
* “ j6-9 0' A 

87.s 292 50.6 hi 2.20 295 -3 
84.0 283 47.1 102 2.17 28s — 2 
77.8 270 409 89 2.l8 268 +a 
63-7 23S 26.8 54 2 .OI 234 4-i 
46.7 i97 9.8 16 1.63 199 —2 
36.9 181 0 0 182 —1 

In Fig. 77a, we have plotted (*, 6). We shall try to fit an equation 
of the form 6 = a + bx + cx2 to the data. To verify this choice, observe 
that the curve passes through the point ** = 36.9, 9k = 181, and plot the 

points 
/ 6 — 181 \ 

{*' x - 36.9/ 
this last plot approximates a straight line. (In 

plotting the ordinates for the straight line a scale unit ten times as large 
as that used for the ordinates of the experimental curve has been used; 
any further increase in the scale unit would simply magnify the devia- 
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fcions.) We may now assume the relation-7— =a' + b'x, and use 

the method of averages to determine the constants. Dividing the data 
into two groups of three and two sets respectively and adding, we get 

6-55 = 3 <*' + 249-3 b’, 
3.64 = 2 a' + 110.4 b'. 

b' = 0.0130, a' = 1.10. 

" x — 36 9 = 1,10 0 013° x> or 0 = 1414 + 0.620* + 0.0130**. 

We now compute 8 and the residuals. 

Fig. 77a. 

Example. The following table gives the results of the measure¬ 
ments of train resistances; V is the velocity in miles per hour, R is the 
resistance in pounds per ton. (From Armstrong’s Electric Traction.) 
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V R AR V* R, A 

20 55 3-6 400 5-70 —0.20 
40 9-i 5-8 * 1,600 9.08 H“0.02 
60 14.9 7-9 3.600 14.82 4-o.08 
80 22.8 10 *5 6,400 22.86 —0.06 

IOO 33*3 12.7 10,000 33-22 +0.08 
120 46.0 14,400 45.90 4-0.10 

2 420 131.6 36,400 

In Fig. 77b, the plot of (V, R) appears to be a parabola, R = a + bV 
+ c V2. Since the values of V are equidistant, we shall verify our choice 
of equation by a plot of (V, AR); this last plot approximates a straight 
line. We may therefore assume AR — (bh -f- ch2) +2 chV, where h = 20. 

We determine the constants in this last equation by the method of 
averages, using the five sets of values of V and AR. Dividing these data 
into two groups of three and two sets respectively and- adding, we get 

I7-3 = 3 (bh + cW) + 120 (2 ch), 
23.2 = 2 (bh + ch2) + 180 (2 ch). 

2 ch = 0.117, bh + ch2 — 1.08. 
.'. c = 0.0029, b = —0.004. 
•\ R — a — 0.004 V + 0.0029 V*. 
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We determine a by substituting the six sets of values of V and R, and 
summing, thus 

Si? = 6a - 0.0042 F + 0.0029 2F2, 

131.6 = 6 a — 0.004 (42o) + 0.0029 (36,400), 
and therefore a = 4.62. 
Hence, finally, R = 4.62 — 0.004 F + 0.0029 F2. 

We now compute the values of R and the residaals; the agreement 
between the observed and calculated values of R is very close. 

x 
78. The hyperbola, y — + c. — This equation is a modifica- 

tion of the equation y = —. discussed in Art. 74. In the latter 
a bx 

equation, x = o gives y = o, whfte in the former, x = o gives y = c. We 

may verify whether the equation y = + c fits a set of experi¬ 

mental data as follows. Choose any point (xk, yk) on the experimental 

curve; then yk = —^-1~ c, and 
a + bxk 

a (x — xa-) a: — xk t N , b , . , „ 
y _ (a + te) (a + 6**) ’ • °r J=Jk ~ (a + bXk) +a(a + bXk) x‘ 

This last equation is of the first degree in x and *-—, so that the clot 
y - yk v 

of (x, y~—yj will approximate a straight line. ' 

Hence, if a set of data may be approximately represented by the equation 
X / x _ Xk\ 

y = a _j_ fa c> ^ie P^ot °f yx> y~ZT~yj» where (**> Jk) are the coordinates 

of a point on the experimental curve, will approximate a straight line. 

Example. The following table gives the results of experiments on 
the friction between a straw-fiber driver and an iron driven wheel under 
a pressure of 400 pounds; y is the coefficient of friction and x is the slip, 
per cent. (From Goss, Trans. Am. Soc. Mech. Eng., for 1907, p. 1099.) 

y x — 0.65 y ■ 

.129 0 

.217 0.22 

.228 0.23 

.234 0.25 

275 0.28 

.318 0.51 

.400 1.15 

.410 1-47 
•435 2.35 
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In Fig. 78 we have plotted the points (x, y); the experimental curve 

appears to be an hyperbola with an equation of the form y = —?-r- 4- c. 
a + bx 

To verify this we note the point x = 0.65, y = 0.129 on the curve, and 
(X — 0.65 \ 
x» y Q * J. This last plot approximates a straight 

line. We may therefore assume the relation --?:P$. = a + bx, and 
y — 0.129 

0.- 

Vr 

(x) 
Fig. 78. 

we shall determine the constants by the method of averages. As the 
first three points do not lie very near this straight line, we shall use only 
the last five sets of data, and dividing these into two groups of three and 
two sets respectively and adding, we get 

8.87 = 3 a + 3.89 b, 
12.91 = 2 a + 5.12 b. 

b = 2.77, a = —0.64. 
% x 0.65 , x — 0.65 
- y - o 12, “ -0 <i4 + 2 ” * or y- 2.77 *- °<H + 01*» 

If we had used all eight points in determining the constants, we should 
have obtained 

9.12 = 4 a + 3.586, 
19.86 = 40 + 8.08 b. 

= 2.39, a = 0.14. 
x — 0.65 
y — 0.129 

= 0.14 + 2.39 x or 
2-39* + 0.14 

+ 0.129. 
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We have computed both y and yf and note that the agreement with 
the observed values is probably as close as could be expected. 

79. The logarithmic or exponential curve, logy = a + bx + cxa 
or y = aebaD+eMt. These equations are modifications of the logarithmic 
form log y = a + bx and the exponential form y = a&x. The equation 
y = a&*+** may be written log y = log a + (b log e) x + (c log e) x2, and 
so is equivalent to the form log y = a + bx + cx2. This last equation 
is similar in form to the equation y = a + bx + cx2 discussed in Art. 77, 
and the equation may be verified and the constants determined in a 
similar way. 

Hence, if a set of data may be approximately represented by the equation 

logy = a + bx + cx2, then (i) the plot of (x, l°g y ~ y*Y where 
\ Xjg ) 

(**. yk) are the coordinates of a point on the experimental curve, will approxi¬ 
mate a straight line, or (2) the plot of (x, A log y), where the A log y are the 
differences in log y formed for equidistant values of x, will approximate a 
straight line. 

Example. The following table gives the results of Winkelmann’s 
experiments on the rate of cooling of a body in air; 0 is the excess of tem¬ 
perature of the body over the temperature of its surroundings, t seconds 
from the beginning of the experiment. 

t 0 log 0 log 9 — log 118.97 
log0 — log 118.97 

i Oe A 

0 118.97 2.07544 O 118.97 O 
12.1 116.97 2.06808 — O.OO736 —0.000608 Il6.99 —0.02 

258 114.97 2.06059 — O.OI485 —0.000576 114.97 O 
41.7 112.97 2.05296 — 0.02248 -0.000539 112.90 +0.07 

59-7 110.97 2.04520 — O.03024 —0.000507 110.90 +0.07 
82.0 108.97 2.03731 -0.03813 —0.000465 IO8.9O +0.07 

109.0 106.97 2.02926 — 0.04618 —0.000424 107.15 —O.18 

In Fig. 79 we have plotted the points (t, 0). According to Newton’s 
law of cooling, 0 = ce*' or log 0 = a + bt, and so we have also plotted the 
points (/, log 0); this last plot has a slight curvature. We shall therefore 
assume the law in the form log 0 ~ a + bt + cP. To verify this, we 
note the point 4 = o, 0k = 118.97 on the experimental curve, and plot 

the points (t, -°^ ^1 . tj1js pjot approximates a straight 

line, so that we may assume — ——log 118.97 _ j _j_ ct ^Ve use the 
* 

method of averages to determine the constants. Dividing the data into 
two groups of three sets each and adding, we get 

-0.001723 = 3 b + 79.6 c, 
-0.001396 = 36 + 250.7 c. 
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c = 0.000001911, b 
log 0— log 118.97 
—5-T5-— = —0.000625 + 

= —O.OOO625. 

O.OOOOOI9IIt 

or log 6 = 2.07544 ~ 0.000625 t + 0.000001911 P. 
We now compute 6 and the residuals and note the close 

between the observed and calculated values. 
agreement 

(IV) EQUATIONS INVOLVING FOUR OR MORE CONSTANTS. 

80. The additional terms ce*” and cxd. — It is sometimes found that 
a simple equation will represent a part of our data very well and another 
part not at all, i.e., the residuals y0 — yc are very small for one part of 
our data and quite large for another part. Geometrically, this is 
equivalent to saying that the plot of the simple equation coincides 
approximately only with a part of the experimental curve. In such 
cases a modification of the simple equation by the addition of one or 
more terms will often cause the curves to fit approximately throughout. 
Such terms usually have the form cedx or cdx, and added to our simple 
equations give the forms 

y = a -f bx + ce?x, y = a + bx + ex*, 
y = aebx + ceP*, y = ax? + ex?, 

y = oTbx + Ce^' y = rh^ + CXi> etC- 

We shall give a few examples to illustrate some of these cases. 
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81. The equation y = a + bx + ced*. — If a part of the experimental 
curve approximates a straight line, we may fit an equation of the form 
y = a + bx to this part of the curve. The deviation of this straight 
line from the remainder of 
the experimental curve (Fig. 
8ia) will be measured by the 
residuals r = y0 — yc = y — 

(a + bx). We now plot (x, r) 
and study the nature of this 
plot. We may be able to 
represent this plot by means 
of the simple exponential r = 
cedxy where the values of the 
constants c and d are such 
that the value of r is negli¬ 
gible for that part of the plot 
to which the straight line has 
been fitted. The entire ex¬ 
perimental curve can thus be 
represented by cedx = y — (a 
+ bx) or y = a + bx + cedx. 

The equation y = a + bx + c&x may fit an experimental curve 
although no part of the curve is approximately a straight line; this 
means that the values of the term cedx are not negligible for any values 
of x. If the values of x are equidistant, we may verify that this equa¬ 
tion is the correct one to assume by the following method. Let the 
constant difference in the values of x be h. If we replace x by x + h, 
we get 

y' = a + b {x + h) + ced(x+h\ 

and, therefore, for the difference in the values of y, 

Ay = y — y = bh + cedx (edh — i). 

If Ay and Ay' are two successive values of Ay, then 

Ay' = bh + (edk - i), 

and the difference in the values of Ay is 

Hence, 

A2y == Ay' — Ay = ce?x (edh — i)2. 

log A2y = log c (<zdh — i)2 + (d log e) x. 

The last equation is of the first degree in x and log A2y so that the plot 
of (*, logA2y) will approximate a straight line. From this straight 
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line we may determine the constants log c (edh — i)2 and d log e and 
therefore c and d in the usual way. We now write the equation in the 

form y — ce^ = a + bx, and 
from the straight line plot of 
(*, y — ce?x), we determine the 
constants a and b. 

In Fig. 816 we have plotted 
the equations 

r 
*j r ~1 sl 

07 
*/ J 
i 4 / / Y $/ j WA 

A 
- 

W- 

// 7$ 

A p \ 
/ r > 
/ 

x 

? 3 4 5 6 
(x) 

y = a -f* bx + cedx 

Fig. 8ib. 

y = 0.5 -f 

y = 0.5 + x — O.OI e* 

y = 0.5 + x — 0.001 ez9 

y = 0.5 + # + 0.01 e*, 

y = 0.5 + * + 0.001 ex. 

Example. The following 
data are the results of experi¬ 
ments made with a gasometer 
by means of which the amount 
of air which passes into a re¬ 
ceiving tank can be measured; 
x is the vacuum in the tank in 
inches of mercury, y is the 
number of cu. ft. of air per 
minute passing into the tank. 
(Experiments made by W. D. 
Canan at the Mass. Inst, of 
Tech.) 

Z V V' u 1 log r r* V. A 

8 1.17 1.49 0.32 9.5051 — IO O.322 1.17 0 
10 1-37 i-55 0.18 9-2553 ~ 10 O.179 i-37 0 
12 150 1.61 O. II 9.0414 — 10 O.OQQ 1-51 —0.01 
14 1.62 1.67 0.0 s 8.6990 — 10 0.055 1.61 +0.01 

16 1.71 1-73 0.02 O.O3I 1.70 +0.01 
18 1.80 1-79 —0.01 0.017 1.77 +0.03 
20 1.85 1.85 0 0.009 1.84 +0.01 
22 1.91 1 9i 0 0.005 1.90 +0.01 
24 1.96 1.97 0.01 0.003 i-97 —0.01 
26 2.02 2.03 0.01 0.002 2.03 —0.01 
28 2.10 2.09 —0.01 0.001 2.09 +0.01 

In Fig. 81c we note that the plot of (xt y) approximates a straight 
line for values of * > 14, and we shall fit an equation of the form 
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y' — ® + bx to this part of the data. Using the method of averages 
and dividing the data into two groups of four and three sets, we have 

7.27 = 40 + 766, 
6.08 = 3 a + 78 b, 

b = 0.03, a = 1.25 
and y' = 1.25 + 0.03 x. 

Fig. 81c. 

Wow compute the values of y' and the residuals r = y’ — y (by 
taking r = y' — y instead of r = y — y't the residuals are positive and 
easier to handle in the subsequent calculations). Plot (*, r) for values 
of x < 14 and study the nature of this plot; this seems to be a simple 
exponential, r = ce?*\ verify this by plotting (x, log r) and note that 
this plot approximates a straight line. Using the method of averages 
determine the constants in the equation log r = log c + (d log e) x; thus 

8.7604 — 10 = 2 log c + 18 d log e, 
7.7404 — 10 = 2 log c + 26 d log e. 
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/. d log e = 9.8725 - 10 = -0.1275, log s = 0.5277. 

d = - 0.294, c = 3-37- 

/. log r = 0.5277 — 0.1275 x, and r = 3.37 e-”0*294* 

The final equation is 

y = 1.25 + 0.03 a; — 3.37 <r°*294x. 

Now compute y and the residuals, and note the close agreement be¬ 
tween the observed and calculated values. 

82. The equation y = aeba> + ced<*. — A part of the experimental 
curve may be represented by a simple exponential y = aebx, ix.t a part 
of the plot of (x, log y) approximates a straight line. We then study 
the deviations, r = yo — yc = y — of this exponential curve from 
the rest of the experimental curve. The plot of (x, r) may be repre¬ 
sentable by another exponential, r = cedx, where the values of r are 
negligible for that part of the experimental curve to which y = aebx has 
been fitted. The entire curve can then be represented by the equa¬ 
tion y = ad*1 + cedx. 

The equation y = ad*x + ce?x may fit an experimental curve although 
no part of the curve can be approximated by the simple exponential 
y = a&x. If the values of x are equidistant, we may verify that this 
equation is the correct one to assume by the following method. Let 
the constant difference in the values of x be h. Consider three succes¬ 
sive values x, x + h, x + 2 h and their corresponding values y, y\ y". 
We evidently have 

y — adx + ce*x, 

y9 = aeP(x+h) + {#*(*+*) = adxdh + cedxedh, 

yn = ced(x+2A) = adxe2bh + cedxe2dh. 

Now eliminate dx and edx from these three equations by multiplying 
the first equation by eP+W, the second by — (ebh + e?h), and adding the 
results to the third equation. We get 

y" — (dh + e?h) y' + hy = o, 

or — = (&h + edh) 2- - e<~b+d>h 
y y 

This is an equation of the first degree in y'/y and y"/y so that the plot 
of (y'/y, y”/y) will approximate a straight line. From this straight line 
determine the constants eM + e?h and e<-b+d>h, and hence b and d as usual. 
We now write the original equation ye~dx = ae<6-d>* + c. This is a linear 
equation in e(>~i>x and ye~dx so that the plot of (e(b~d)x, ye~dz) would 
approximate a straight line. From this straight line determine the 
values of the constants a and c. 
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In Fig. 82a, we have plotted the equations y — erx, y = e~x + 0.5 e~tx, 
y = e~x — 0.5 <r6z, y = 4. e-21, y = e~x — e~2x. 

Example. The following are the measurements made on a curve 
recorded by an oscillograph representing a change of current i due to a 
change in the conditions of an electric circuit t. (From Steinmetz, 

Engineering Mathematics.) 

t i log i r — i' — i log r re «• A 

0 2.10 O.3222 4-94 2 .84 0-4533 2.8s 2.09 +0.01 

O.I 2.48 0-3945 4-44 I .96 O.2923 1.96 2 .48 0 

0.2 2.66 0.4249 . 3 99 i-33 0.1239 i-34 2.65 +0.01 

0.4 2.58 0.4116 3.22 0.64 9.8062 — IO 0.63 2.59 —0.01 

0.8 2.00 0.3010 2.10 0.10 9 .OOOO — IO 0.14 1.96 +0.04 

1.2 1.36 0133s 1.37 0.01 0.03 1 *34 +0.02 

1.6 0.90 9.9542 -10 0.89 —0.01 0.01 0.88 +0.02 

2.0 0.58 9.7634 -10 0.58 0 0 0.58 O 

2.5 0.34 9.5315 -10 0.34 0 0 o.34 O 

3-o 0.20 9.3010 — 10 0.20 0 0 0.20 O 

In Fig. 82b we note that the right-hand part of the plot of (t, i) appears 
to be exponential. We verify the choice of i' = ae*' by plotting (t, log i) 
and noting that this plot approximates a straight line for values of 
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i > 0.8. We therefore assume log i' = log a + (6 log e) t, and using the 
method of averages for the values of t> 0.8, we have 

9.8511 - 10 = 3 log a + 4.8 b log e, 
8.8325 - 10 = 2 log a + 5.5 b log e. 

.*. 6 log e = 9.5356 — 10 = —0.4644, log a = 0.6934, 
b = - 1.07, a = 4.94, 

and log i' = 0.6934 — 0.4644/, or V = 4.94 c-107'. 

Now find the values of V and the residuals r — V — i; these residuals 
are practically negligible for values of / > 0.8. We plot (/, r) and try 
to fit an equation to this curve. This again appears to be exponen¬ 
tial and we verify this by plotting (/, log r); the plot approximates a 

(l
og

i)
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straight line, except for t = 0.8. We therefore assume r = ce?1 or log r => 
log c + (d log e) t. Using the method of averages for t < 0.8, we have 

0.7456 - 2 log c + 0.1 d log e, 
9.9301 — 10 = 2 log c + 0.6 d log e. 

dloge = —1.6310, log c — 0.4544. 
d = -376, c = 2.85, 

and log r = 0.4544 - 1.6310/, or r = 2.85 erin‘. 
The final equation is 

i = 4-94 1,07! — 2.85 e_376t. 

We now compute i and the residuals and note the very close agree¬ 
ment between the observed and computed values of i. 

83. The polynomial y = a + bx + cx2'+ dx? + • • • . — The equa¬ 
tion y = a + bx + cx2 may be modified by the addition of another 
term into y = a + bx + cx2 + dx3. If the values of x are equidistant, 
we may verify the correctness of the assumption of the last equation 
by the following method. Let the constant difference in the values of 
x be h. Then the successive differences in the values of y are 

Ay = (bh + cli2 + dh3) + (2 ch + 3 dh2) x + 3 dhx2, 
A 2y = (2 ch2 + 6 dh3) + 6 dh2x, 
A3y = 6 dh3. 

Hence the plot of (x, A2y) will approximate a straight line, and the values 
of A3y are approximately constant. From the equation of the straight 
line we may determine the constants c and d, and writing the original 
equation in the form (y - cx2 - dx3) = a + bx, the plot of (x, y -cx2—dx3) 
will approximate a straight line, from which the constants a and b 
may be determined. Another method of determining the constants 
a, b, c, d in the equation y = a + bx -f- cx2 + dx3 consists in selecting 
four points on the experimental curve, substituting their coordinates 
in the equation, and solving the four linear equations thus obtained for 
the values of the four quantities a, b, c, and d. 

In a similar manner the polynomial y = a + bx + cx2 4- • • • + kxn 
may be determined so that the corresponding curve passes through 
« + I points of the experimental curve; it is simply necessary to sub¬ 
stitute the coordinates of these n + 1 points in the equation and to solve 
the n + 1 linear equations for the values of the n + 1 quantities, a, b, 
c, ... ,k. If the values of x are equidistant, we can show that the plot 
of (x, AB-1y) is a straight line and that Any is constant, where AB-1y 
and Any are the (n — i)st and wth order of differences in the values of y. 
Thus, if a sufficient number of terms are taken in the equation of the 
polynomial, this polynomial may be made to represent any set of data 
exactly; but it is not wise to force a fit in this way, since the deter¬ 
mination of a large number of constants is very laborious, and in many 
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In Fig. 83 we have plotted (x, y). We form the successive differences 
and note that the third differences are approximately constant, and 
that the plot of (x, A2y) approximates a straight line (Fig. 83). We 
may therefore assume an equation of the form y = a + bx + cx2 + da?, 
or y = bx + cx2 + dx?> since the curve evidently passes through the 
origin of coordinates. To determine the constants b, c, and df select 
three points on the experimental curve; three such points are (0.2,0.463), 
(0.5, 1.625), and (0.8, 3.776). Substituting these coordinates in the 
equation, we get 

0.463 = 0.2 b + 0.04 c + 0.008 d, 
1.625 = 0.5 b + o. 25 c + 0.125 d, 
3.776 = 0.8 b + 0.64 c + 0.512 d. 

Solving these equations for b, c, and d, we have 

b = 1.989, c = 1.037, d = 2.972 

and hence the equation is 

y = 1.989 a: + 1.037 a;2 + 2.972 a?. 

We now compute the values of y and the residuals. 
84. Two or more equations. — It is sometimes impossible to repre¬ 

sent a set of data by a simple equation involving few constants or even 
by a complex equation involving many constants. In such cases it is 
often convenient to represent a part of the data by one equation and 
another part of the data by another equation. The entire set of data 
will then be represented by two equations, each equation being valid 
for a restricted range of the variables. Thus, Regnault represented the 
relation between the.vapor pressure and the temperature of water by 
three equations, one for the range from — 320 F. to o° F., another for 
the range from o° F. to ioo° F., and a third for the range from ioo° F. 
to 230° F. Later, Rankine, Marks, and others represented the rela¬ 
tion by a single equation. The following example will illustrate the 
representation of a set of data by two simple equations. 

Example. The following data are the results of experiments on the 
collapsing pressure, p in pounds per sq. in. of Bessemer steel lap-welded 
tubes, where d is the outside diameter of the tube in inches and l is the 
thickness of the wall in inches. (Experiments reported by R. T. Stew¬ 
art in the Trans. Am. Soc. of Mech. Eng., Vol. XXVII, p. 730.) 
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It should be noted that a set of corresponding values of t/d and P 
are not the results of a single experiment but the averages of groups 
containing from two to twenty experiments. 

Following the work of Prof. Stewart, we have plotted {t/d, P), Fig. 84, 
and note that the experimental curve approximates a straight line for 
all values of t/d except the first four, i.e.t for values of t/d > 0.023. 

We may therefore assume P = a + b^j. If we use the method of 

selected points to determine the constants a and 6 we may choose the 
points t/d = 0.065, P = 425°» and t/d = 0.030, P = 1215 as lying on 
the straight line; we then have 

4250 = a + 0.065 6, 
1215 = a + 0.0306. 

b = 86,714, a = —1386 

and P = 86,714 — 1386. 

This result agrees with that given by Prof. Stewart. If we use the 
method of averages to determine the constants a and b we divide the 
last 22 sets of data into two groups of 11 each, and get 

12,639 = 11 a + 0.3231 6, 

3°>397 = 11 a + 0.52476. 

/. 6 = 88,085, a = —1438, 

and P = 88,055 ~ 1438. 

In our table we have given the values of P computed from this last 
formula. The values of P computed from the first formula agree very 
closely with these. It is seen that the percentage deviations are in 
general quite small though large in a few cases, varying from 0.2 per 
cent to 10 per cent, which is to be expected from the nature of the 
experiments. 

We now attempt to fit an equation to the first four sets of data. The 

addition of a modifying term of the form c\^j or ce d to the above 

formula is not successful here. We shall therefore follow Prof. Stew¬ 
art’s work and attempt to fit an equation of the parabolic form, P = 

a(s) * ver^y choice by plotting logP^ and observing 

that this plot approximates a straight line. (The fewness of the ex¬ 
periments for values of t/d < 0.023 is a handicap here.) Assuming 

logP = loga + blog\-j)f 
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and using the method of averages, we find 

4-9354 = 2 log a + (6.5053 - 10) b, 
5.4485 = 2logo + (6.6649 ~ 10) b. 

and 

b = 

P 

3.11, a - 80,580,000 
/A8.U 

= 80,580,000 KJ . 

We compute the values of P from this formula. 
The entire set of data have thus been represented by means of two 

simple equations, each valid for a restricted range of the variables.* 

EXERCISES. 

[Note. The exercises which follow are divided into two sets. The type of equation 

that will approximately represent thb empirical data is suggested for each example in 

the first set. For the examples in the second set, the choice of a suitable equation is left 
to the student.] 

I. Temperature coefficient; r is the resistance of a coil of wire in ohms, 0 is the tem¬ 
perature of the coil in degrees Centigrade, [y = a + bx] 

r 10.421 10.939 11.321 H-799 12.242 .12.668 
~0 10.50 29.49 42.70 60.01 75-51 91-05 

2. Galvanometer deflection; D is the deflection in mm., I is the current in micro¬ 
amperes. [y = a + bx] 

D 29.1 48.2 727 92.0 118 140 165 | 199 
I 0.0493 0.0821 0.123 0.154 0.197 0.234 0.274 0.328 

3. Volt-ampere characteristic of 118 volt tungsten lamp; e is the terminal voltage, 1 
is the current, [y = axb] 

e_ 2 4 I 8 1 16 I 25 I 32 50 1 64 I 100 125 

i 0.0245 0.0370 1 0,0570 1 0.08551 0.1125 | 0.1295 0.1715 1 0.2000 1 0.2605 0.2965 

e 150 I 180 I 200 I 218 

i 0.3295 1 0.3635" 10.3865 1 0.4070 

4. Pressure-volume of saturated steam; v is the volume in cu. ft. of 1 pound of 
steam, p is the pressure in pounds per sq. in. [y = axh] 

V 26.43 22.40 19.08 16.32 14.04 12.12 10.51 9-147 7-995 
p 14.70 17-53 20.80 24-54 28.83 33-71 39-25 45-49 52.52 

5. Chemical concentration experiment; x is the concentration of hydrogen ions, y is 

the concentration of undissociated hydrochloric acid, [y = axh) 

X 1.68 1.22 0.784 0.426 0.092 0.047 0.0096 0.0049 0.00098 

y 1.32 0.676 0.216 0.074 0.0085 0.00315 0.00036 0.00014 0.000018 

6. Vibration of a long pendulum; A is the amplitude in inches, / is the time since it 
was set swinging, [y = ae6®] 

t 0 1 2 3 c 4 5 6 
A 10 497 2.47 1.22 0.61 0.30 0.14 

• Prof. Peddle in 11 The Construction of Graphical Charts ” has fitted the equation 

Mi - 0.00274 + 0.0000000011 P* to Prof. Stewart’s data. 
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7« Newton's law of cooling; 6 is the excess of the temperature of the body over the 

temperature of its surroundings, / is the time in seconds since the beginning of the experi¬ 
ment. \y = ae6®] 

t 0 3-45 10.85 19.30 28.80 40.10 53-75 70.95 
e 19.9 18.9 I6.9 14.9 12.9 10.9 8.9 6.9 

8. Barometric pressure; p is the pressure in inches of mercury, h is the height in ft. 
above sea level, [y = aehao] 

h 0 886 2753 4763 6942 10,593 
p 3P 29 27 25 23 20 

9. Electric arc of length 4 mm.; V is the potential difference in volts, i is the current 

in amperes. \y — a + — 1 

i 2.46 2.97 3-45 396 4-97 5-97 6.97 7-97 
V 67.7 65.0 63.0 61.0 5825 56.25 55-10 5430 

10. Speed of a vessel; H.P. is the horse power developed, v is the speed in knots. 
[y = a + bx3] 

V 5 7 | 9 11 12 
H.P. 290 560 I 1144 1810 2300 

11. Hydraulic transmission; H.P. is the horsepower supplied at one end of a line of 

pipes, u is the useful power delivered at the other end. 

H.P. 100 150 200 _250 300 
u 96.5 138 172 196 206 

12. Magnetic characteristic of iron; II is the number of gilberts per cm., a measure 

of the field intensity, B is the number of kilolines per sq. cm., a measure of the flux 

density. [* = jfg;] 

H 8 10 15 20 30 40 T 60 80 
B 130 14.0 154 16.3 17.2 17.8 18.5 18.8 

13. Focal distance of a lens; p is the distance of the object, />' is the distance of its 

image. [.K = 

P 320 240 180 140 120 100 80 60 
P' 21.35 21.80 22.50 23.20 23.80 24.60 26.20 29.00 

14. Pressure-volume in a gas engine; p is the pressure in pounds per sq. in., v is the 
volume in cu. ft. per pound. \y = axb c] 

p 44-7 53-8 73-5 85.8 1132 135-8 
V 703 5-85 4-30 3-50 2.50 1.90 

15. Law of cooling; $ is the temperature of a vessel of cooling water, t is the time In 
minutes since the beginning of observation. \y =5 ae*® + c] 

t 0 1 I 2 3 5 7 10 | 15 1 20 
$ 92.0 ! 85.3 79-5 74-5 67.0 60.5 53-5 I 45 0 1 39.5 
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16. Straw-fibre frictiori at 150 pounds pressure according to Goss’s experiments; y 
is the coefficient of friction for a straw-fibre driver and an iron driven wheel, x is the slip, 

percent. [r=-JL- + c] 

0.153 0.179 0.213 I 0.271 1 0.313 I 0.359 I 0.368 0.381 1 0.386 0.405 
0.56 0.58 1 

X 

0.61 1 

0.411 

0.78 1 

0.432 

0.991 

10.458 

1.101 

10.463 

1.04 

0.465 

1.22 1 

0.473 

1.40 i-75 

y 1.94 2.00 1 2.25 1 2.33 3-15 2.79 

17. Expansion of mercury according to Regnault’s experiments; 7 is the coefficient 
of expansion between o° C. and t° C. [y =* * + bx + ex2] 

0 100 | 150 200 250 300 360 

y 0.00018179 0
 

0
0

 
N

> ►H
 

O
N

 

O.OOOI826I O.OOOI8323 O.OOOI84O3 O.UOOI85OO O.OOOI864I 

18. Velocity of water in Mississippi River; v is the velocity, D is the depth. 
[y = a -f bx + ex2] 

D o 0.1 0.2 1 0.3_ 0.4 0.5 0.6 0.7 0.8 I 0.9 

v 3-19503-2299 3-2532 | 3.2611 3.2516 3.2282 3.1807 3.1266 3-059412.9759 

19. Solution of potassium chromate; s is the weight of potassium chromate which will 

dissolve in 100 parts by weight of water at a temperature of t° C. [log y^a+bx+cx*] 

t 0 10 27.4 42.1 

s 61.5 62.1 66.3 70.3 - 

20. Load-elongation of annealed high carbon steel wire of diameter 0.0693 and gage 

length 30 in.; Wis the load in pounds, E is the elongation in inches, [y^a+bx+ce**] 

W 0 1 50 1 IOO 150 200 225 250 260 280 290 1 I 300 310 

E 0 0
 

b
 

M
 

G
J O
 

0.0251 0.0387 0.0520 O.O589 0.0659 O.O689 O.O746 O
 

b
 

•v
i 

0
0

 r>. 
0

 
0

0
 

O
 

d
 0.0842 

W 320 330 340 350 360 

E 0.0877 0.0916 0.0980 O.IIII 0.1420 

21. Load-elongation of wire of Ex. 20 in hard-drawn condition; W is the load in 
pounds, E is the elongation in inches, [y — a + bx -f- cx*\ 

W 0 100 200 300 400 500 600 700 800 850 900 
E 0 0.0280 0.0562 0.0849 0.1150 0.1471 0.1820 0.2191 0.2628 0.2879 0.3166 

22. Empirical curve, [y = aeha> + ce«*»] 

X 0 0.6 1 0.9 1.2 i-5 1.8 2.1 2.4 3-0 
y 300 1.89 1.27 0.88 0.63 0.46 0-33 0.25 0.18 0.10 

23. Magnetic characteristic of iron; II is the number of gilberts per cm., a measure 

of the field intensity, B is the number of kilolines per sq. cm., a measure of the flux density 

(cf.Ex.ia). [j. = _£_ +ce*»] 

H 
2 1 

4 6 8 10 15 20 30 40 60 | 80 

B 3-o 1 8.4 11.2 130 14.0 154 16.3 17.2 17.8 18.5 18.8 

24. Speed of a vessel; I is the indicated horsepower, v is the speed in knots. 
[y « a + bx -f- ex2 + cfjr] 

| 8 I 9 | 10 11 I 12 I 13 1 14 I 15 I 16 I 17 I 18 

1000 I 1400 I 1900 2500 | 3250 I 4200 I 5400 I 6950 I 8950 |i 1,4501 15,400 

v 
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35. Experiments with a crane; / is the force in pounds which will just overcome a 

weight w. 

w IOO 200 300 400 500 600 700 800 

f 8-5 12.8 17.0 21.4 | 25.6 29.9 34*2 38.5 

36. Copper-nickel thermocouple; t is the temperature in degrees, p is the thermo¬ 

electric power in microvolts. 

t 0 50 IOO 150 200 

p 24 25 26 .26.9 27-5 

37. Law of falling body; s is the distance in cm. fallen by body in t sec. 

t 0.2477 0.4175 0.5533 0.6760 0.7477 
s 30.13 85-26 150.39 223.60 274.20 

38. Loads which cause the failure of long wrought-iron columns with rounded ends; 

P/a is the load in pounds per sq. in., l/r is the ratio of length of column to the least 
radius of gyration of its cross-section. 

l/r 
P/a 

140 180 220 260 300 340 380 420 
12,800 7500 5000 3800 2800 2100 1700 1300 

39. Heat conduction of asbestos; 6 is the temperature in degrees Fahrenheit, C is 
the coefficient of conductivity. 

0 32 212 392 572 752 
C 1.048 1.346 1-451 1.499 1.548 

40. Rubber-covered wires exposed to high external temperatures; C is the maximum 
current in amperes, A is the area of cross-section in sq. in. 

C 3-2 59 9.0 22.0 42.0 68.0 84.0 102.0 
A 0.001810 0.004072 0.007052 0.02227 0.05000 0.09442 0.1250 0.1595 

41. Pressure-volume relation for an air compressor; p is the pressure, v is the volume. 

p 18 21 26.5 33-5 44 62 
V 0.635 0.556 0-475 0-397 0.321 0.243 

42. Power delivered by an electric station; w is the average weight of coal consumed 
per hour per kilowatt delivered, / is the load factor. 

/ 0.25 0.20 0.15 0.10 0.05 
w 2.843 3-012 3-293 3-856 5-545 

43. Temperature at different depths in an artesian well; 0 is the temperature in 
degrees C., d is the depth. 

d 28 66 173 248 298 400 505 548 
e 11.71 12.90 16.40 20.00 22.20 23-75 26.45 27.70 

44. Resistance of copper wire; R is the resistance in ohms per 1000 ft., D is the 
diameter of wire in mils. 

D 289 [ 182 102 57 32 
R 0.126 0.317 I.OIO 3-234 10.26 

45. Hysteresis losses in soft sheet iron subjected to an alternating magnetic flux; 

B is the flux density in kilolines per sq. in., P is the number of watts lost per cu. in. for 
X cycle per sec. 

B 20 40 60 80 . IOO 120 
P 0.0022 0.0067 0.0128 j 0.0202 0.0289 0.0387 
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46. Volt-ampere characteristic of a 60 watt tungsten lamp; V is the number of 

volts, I is the number of milli-amperes. 

V 2 5 10 20 30 40 5° 60 70 80 9° I 100 

I 1 49 80 117 180 1227 272 348 383 414 443 1 473' 

V 110 120 I 1 HO 150 160 170 180 1190 | 200 1 210 1 220 

I 501 52 ^ 1 553~~ 1577 597 618 639 663 1682 1 702 1 722 743 

47. Calibration of base metal pyrometer (40% Ni and 60% Cu); V is the number 

of millivolts, t is the temperature in degrees F. 

V 0 2 4 6 8 10 12 h 16 

t 0 146 255 320 396 475 553 634 714 

48. Tests on drying of twine; t is the drying time in minutes (time of contact of 

twine with hot drum), W is the percentage of total water on bone dry twine at any^ 

time, E is the percentage of total water on bone dry twine at equilibrium, d is the di¬ 

ameter of the twine in ins. 

(a) d = 0.102 ins., E = 18.7%. 

t 0 0.44 0.88 1.31 I 1.75 
W-E 29.5 i5-4 94 5-1 1 31 

(b) d = 0.158, E = 6.2%. 

* 0 1.11 2.23 3-34 445 556 
W-E 30-3 17-4 12.4 8.2 4-9 3-3 



CHAPTER VIT. 

EMPIRICAL FORMULAS — PERIODIC CURVES. 

85. Representation of periodic phenomena. — Periodic phenomena, 
such as alternating electric currents and alternating voltages, valve-gear 
motions, propagation of sound waves, heat waves, tidal observations, 
etc., may be represented graphically by curves composed of a repetition 
of congruent parts at certain intervals. Such a periodic curve may in 
turn be represented analytically by a periodic function of a variable, 
i.e.t by a function such that f(x + k) = f{x), where k is the period. Thus 
the functions sin x and cos x have a period 2 7r, since sin (x + 2 ir) = sin x 
and cos (x + 2 ir) = cos x. Again, the function sin 5 x has a period 
2 71-/5, since sin 5 (x + 2 71-/5) = sin (5 x + 2 tt) = sin 5 x, but the func¬ 
tion sin x + sin 5 x has a period 2 w, since sin (x + 2 7r) + sin 5 (x + 2 tt) 
= sin x + sin 5 x. 

Now, any single-valued periodic function can, in general, be expressed 
by an infinite trigonometric series or Fourier’s series of the form 

y = /(*) = aQ + ai cos x + a2 cos 2 x + • • • + an cos nx + • • • 
+ bi sin x + b2 sin 2 x + • • • + bn sin nx + • • • , 

where the coefficients ak and bk may be determined if the function is 
known. This series has a period 2 7r. But usually the function is un¬ 
known. Thus, in the problems mentioned above, the curve may either 
be drawn by an oscillograph or by other instruments, or the values of the 
ordinates may be given by means of which the curve may be drawn. 
Our problem then is to represent this curve approximately by a series of 
the above form, containing a finite number of terms, and to find the 
approximate values of the coefficients ak and bk. The following sections 
will give some of the methods employed to determine these coefficients. 

86. The fundamental and the harmonics of a trigonometric series. — 
In Fig. 86a we have drawn the curves y = ai cos x, y = bL sin x, and 
y = d\ cos x + bi sin x. 

The maximum height or amplitude of y = ax cos x is ax and the 
period is 2 t. The amplitude of y = bi sin x is b{ and the period is 2 w. 
Now we may write 

y = ai cos x + bi sin x = Va*2 + bi2 f^?J?±=== sin x + —7 a\_^ cos*], 
L Va,2+bi2 vV + V J 

170 
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and letting Va,* + V = ft, = cos<f>u Va/V^ = ^ 

we may write 
y - (Zl 

y = Ci sin (x + <fo), where Ci = vai2 + &12, = tan- y 

Here Ci is the amplitude and <£1 is called the phase. The wave rep¬ 
resented by y — C\ sin (x + <f> 1) is called the fundamental wave and 

y = a,i cos x, y = bi sin x are called its components. 

Fig. 86a. 

Similarly, we may represent y = ak cos kx, y = bk sin kx, 

and y = a* cos fex + 6* sin fex = ck sin (kx'+ <£&)> 

where c* = Va*2 + V and </>* = tan”1 ak/bk. 

The wave represented by y = c* sin (kx + <t>k) is called the feth har¬ 
monic, its amplitude is ckt its phase is <£*, its period is 2 ir/fe, since 

sin ^x + 

and its frequency, or the number of complete waves in the interval 2 tt, 

is k. 
The trigonometric series is often written in the form 

y = Co+^sin (x+<fr) + £2 sin (2 x + <£2) + * • * + cnsin(nx + <t>n) + • • * > 

showing explicitly the expressions for the fundamental wave and the 
successive harmonics. The more complex wave represented by this 
expression may be built up by a combination of the waves represented by 
the various harmonics. Fig. 866 shows how the wave for the equation 

y * 2 sin ^ + sin ^2 x — + I sin ^3 x + > 

Yj + = sin [fex + 2 7r + 4>k] = sin (kx + <£*), 

or 

y - cos x - — cos 2 * + — cos 3 x+ V3 sin * - \ sin 2 x-sin 3 * 
2 4 * 
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is built up as the combination of the fundamental and the second and 
third harmonics, and how the fundamental wave is modified by the addi¬ 
tion of the harmonic waves. 

In the case of alternating currents or voltages, the portion of the wave 
extending from * = 7rtoa; = 27ris merely a repetition below the x-axis 
of the portion of the wave extending from x = o to x = tt; this is illus¬ 

trated in Fig. 86c where the values of 
the ordinate at x = xr + x is minus 
the value of the ordinate at x = xT. 
Since 

sin (k [x + tt] + fa) 

= sin (kx + fa + far) 
= +sin (kx + fa) if k is even 
= —sin (kx + <f>k) if k is odd, 

the series can contain only the odd harmonics and has the form 

y = Co + ci sin (x + fa) + ca sin (3 x + fa) + cB sin (5 x + fa) + • • • 9 
or 

y = Oo + 01 cos x + a3 cos 3 x + a6 cos 5x + • • • 
+ b\ sin x + fa sin 3 x + 65 sin 5 x + • • • . 
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87. 'Determination of the constants when the function is known.— 
If, in the series 

y = /(*) = c0 + 01 cos x + 02 cos 2 *+•••+<*„ cos »*+••♦ 
+ 61 sin * + &2 sin 2 jc + • • • + &» sin »x + • • • , 

we multiply both sides by dx and integrate between the limits o and 2 t, 
we have r» r2» /*2» z*2f 

ydx — a0 / dx + Ci / cos x dx + . . . + c„ / cos wx dx + • • • 
4/0 4/0 4/0 Jr%2r . n* 

sin x dx + • • • + bn I sin nx dx + • • • 
0 Jo 

— 61 COS X 

+ • • . + — 
n 

. -h 
n 

cos nx — . . • 
0 

= 2 7ra0, since all the other terms vanish. 

If we multiply both sides by cos kx dx and integrate between the 
limits o and 2 ir, we have 

r2w P2w ^2ir r 2 

y cos kx dx = a0 I 
[) Jo + a„ r cos fix cos kx dx + 

cos kxdx +•••+ a,k I cos2 kx dx + • • • 

+ bn sin nx cos to dx + • • • 

. elk I , sin 2 kx |2x , 

+"-+T|* + =3nr|. 
, a„ sin (w — k) x sin (« + fe) x 12r 

2 n — k n + k 0 2 I n — k n + k 10 

bn cos (n — k)x , cos (n + k)x 2r 
— — - - -4— - — • • • 

2 n — k n -f- k 0 
= irdk, since all the other terms vanish. 

Similarly, if we multiply both sides by sin kx dx and integrate be¬ 

tween the limits o and 2 7r, we have X2w /*2x P2v 

ysinkxdx = do I sinkxdx+ • • • +an j cos nx sin kx dx + • • • 

Jfiiw C2r 

sin2 kx dx + • • • +bn I sin nx sin kx dx + • • • 
0 Jo 

a01 T. 2r , sin2 to 2,r , 
= — T" COS kx — . . . + — \x-—T  + • • • 

k \ 0 2 I 2 k 0 
_ c„ cos (fe — n) x . cos (k + n) x 2r __ 

2 £ — W fe + M 0 

, b„ sin (n — k)x sin (n + k) x 2w , 

2 n — k w + fe 0 
= vbk, since all the other terms vanish. 
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Collecting our results, we have 

Oo = — f2 ydx, ak = - f2 ycoskxdx, bk = - ( ysinkxdx, 
2tJo it Jo * Jo 

where k = i, 2, 3, .... Each coefficient may thus be independently 
determined and thus each individual harmonic can be calculated without 
calculating the preceding harmonics. 

88. Determination of the constants when the function is unknown. — 
In our problems the function is unknown, and the periodic curve is drawn 
mechanically or a set of ordinates are given by means of which the curve 
may be approximately drawn. We shall represent the curve by a trig¬ 
onometric series with a finite number of terms. We divide the interval 
from jc = otoJC = 27r into n equal intervals and measure the first n 
ordinates; these are represented by the table 

X 
0 

Xo 

2 7T 

n 
X\ 

45 

n \ 
*2 

6 7r 

n 
Xz 

. . . 2 7T 
r — 

n 
Xr 

. . . (»- 1)7 

Xn—\ 

y yo y* yo . . . yr . . . yn-l 

We wish to determine the constants in the equation 

y = a0 + a,i cos x + • • • + dk cos kx + • • • 

+ 61 sin x + • • • + bk sin kx + ■ • • , 

where the number of terms is w, so that the corresponding curve will pass 
through the n points given in the table. Substituting the n sets of values 
of x and y in this equation, we get n linear equations in the a’s and Vs of 
the form 

yT = do + di COS Xr + • • • + dk COS kxr + • • • 

+ bi sin xr + • • • + bk sin kxr + • • • , 

where r takes in succession the values o, 1,2, . . . , n — I. We may 
now solve these n equations for the d's and b’s. 

We shall first state two theorems in Trigonometry concerning the 
sum of the cosines or sines of n angles which are in arithmetic progression, 
viz.: 

2Jcos (a + r(i) = cos a + cos (a + f$) + cos (a + 2 p) + • • • 

. n0 

+ cos (a + [n - 1] 0) --cos f« + Pj, 
sin - ' ' 

0 
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2)sin (a + rff) = sin a + sin (a + 0) + sin (a + 2/3) + 

+ sin (a + [n — i] 0) = -— sin 
sin - 

2 

If we let a = o and fi = / —, these become 
n 

S,2f SI 
cos r/ — = — 

w 

2 7T sin hr l (n — i) tt . . , 
— = -— cos-= o, since sin = o, 

44 /«■ 44 ' f 

V sin rZ — = 
** n 

2 7r sin hr . / (w — i) 7r . . , 
— = -7- sin-= o, since sin hr = O. 
n . hr n ' 

sin — 
n 

* We may prove these theorems as follows: 

By means of the well-known trigonometric identities 

2 cos u sin v = sin (w + v) — sin (w — v), 2 sin m sin v = cos (« — v) — cos (w + ») 

we may write the identities 

2 cos a sin ^ = sin ~ ^ — sin 2 sin a sin ^ = cos (a ^ ~ cos 

2cos (<*+.#) sin- =sin^a-h sin^a + ^y 2 sin (a-f/3)sin| =cos^a-|-^—cos^a+~y 

2cos(a+2j8)sin^ = sin^cK-h^j-sin^a-f-^j- 2sin(a+2/S)sin^=cos^a-f ^J-cos^aH-—j* 

q i ^ ^ ^, j \ o 
2 cos (a-h[»“il/3) sin ^ = sin la-\--—/3j2sin (a+[n — i]/3)sin^ = cos 

-sin (a + ■ 

* = cos 

-cos ^a+ 

Adding, we get Adding, we get 

2 sin | £cos ^ r£) * sin^a+ 2 s*n f 2)sin («+*V?) =cos 

-coa(a+—~fi^ 

= 2 cos [a + 0^ sin ~ 0- -2 sin 0j sin 5p • 

sin— / sin”' / \ 
]^cos(«+f0)»» .2- cos( ot+ —0 j‘ ^)sin (<*+r0) - -|-sin PJ’ 
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for all values of l except 

l = o, when ^cos r^~~ — 2)cos o = n, 

l = n, when 2)cos rZ — = ^ cos 2 rir = n. 

Since xT = r —, we may finally state that 
n 

£cos lxr = o, except when l = o or l = n 

= n, when / = o or / = n. 

^sin lxr = o for all values of l. 

To determine a0 we merely add the n equations, and get 

= na0 + • • • + ak Xcos kxr + • • • + ah ]£sin &xr + • • • 

= na0, since all the other terms vanish. 

To determine ak we multiply each of the n equations by the coefficient 
of ak in that equation, i.e., by cos kxr, and add the n resulting equations; 

we get 

COS kxr = do %COS kxr + • • • + dk ^COS2 kxr + ••• 

+ap ^cos^rcosfexr + • • • + 6p^sin cos kxr + • • • . 

Now, 

^COskXr = o; 

Xcos pxr cos kxr* = | ]j£cos (£ + fe) a:r + § 2) cos (/> — = o; 

2)sin pxr cos \ 2}sin (p + k) xr + \ ]£sin (p — k) xr = o; 

Xcos’ = 2)1 (i + cos 2 £tfr) ^ “ 2COS 2 kXr = ^, if fe 5* £ 

= n, if k = -• 
0 

• We use the trigonometric identities 

2 cos u cos v = cos (« + i>) + cos (« — v). 

2 sin « cos v = sin (u + w) + sin (w — t>). 

2 sin ft sin v = cos (« — v) — cos (ft + »)• 
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Hence, 2}yr cos kxr = ^ a*, except when k = - 

= na*, when jfe = 

To determine t* we multiply each of the n equations by the coefficient 
of bk in that equation, i.e.f by sin kxri and add the n resulting equations; 
we get 

2)yr sin kxr = a0 ]£}sin kxr + • • • ap ^cos pxr sin kxr + • • • 

+ bk 2)sin2 kxr + • • • + bp ^£sin pxr sin kxr + • • • • 

Now, 

2)sin kxr = o; 

2jcos pxr sin kxr* = I 2)sin (* + />) + \ 2ySin (* — £) *r =* o; 

]^sin pxr sin J ]^cos (/> — fe) xr — \ ]^cos (p k) xr - o; 

Ssin2 &Xr = V- (1 — COS 2 kxr) = - ~ - Tcos 2 jfexr = - , if Jfe 5^ - 
*^2 2 2 ^ 2 d 

.r , n = o, if k = -• 

Hence, ^yr sin fcrr = ” 6*. 

Collecting our results, we have finally 

°«= £ Xyr = ^ (y» + + y* + • * * + y»-i). 

On = ^ 2)^r cos “ = ~ COS r7r = ~ fro “ ^1 +>'2 -»+••• - yn-l), 
2 « 7» ’ 7Z- 

2 _ \ 2 
a* = - Xyrcosfexr = - (y0 cos too + yiCostoi + • • • +y„-i cos to„_i), 

7* ^ W 

2 _ i, 2 
ft* = - Xyr sin to, = - (y0 sin kx0 + yi sin toi + • • • + y„_i sin kxn -J. 

* We use the trigonometric identities 

2 COS tt COS V =* COS (W + V) + COS (U — !>). 

2 sin u cos v — sin (w + v) + sin (u — v), 
2 sin u sin v ^ cos (w — v) — cos (u + ri. 
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If n is an even integer, our periodic curve is now represented by the 

equation 
ft 

y = Oo + cti cos x 4* • • • 4* 0* cos kx+ • • • + an cos - x 
2 2 

+ 6isin^+ • • • +Jjfcsinfex+ • • • + bn ^ sin — i^ x. 

The n coefficients are determined as above. Thus — 
a0 is the average value of the n ordinates. 
an is the average value of the n ordinates taken alternately plus and 

2 

minus. 
a,k or bk is twice the average value of the products formed by multiply¬ 

ing each ordinate by the cosine or sine of k times the corresponding value 

of x* 
We note that each coefficient is determined independently of all the 

others. 
If we wished to represent the periodic curve by a Fourier’s series con¬ 

taining n terms, but had measured m ordinates, where m > n, we should 
have to determine the coefficients by the method of least squares. The 
values of the ordinates as computed from this series will agree as closely 
as possible with the values of the measured ordinates. It may be shown 
that the expressions for the coefficients obtained by the method of least 
squares have the same form as those derived above.f 

* We may also derive the values of the coefficients as follows: In Art. 87* we have 

shown that 

J^2 T y cos kx dx = aic cos2 kx dxt 

since all the other terms vanish. 

If we replace the integrals by sums, and take for dx the interval 2 x/n, this becomes 

^yr cos kxr — aic 5*cos2 kxr *= - a*, if k 5* o or k - 

*= tiak, if k — o or k =* 

Hence, ^j?yr = nao, cos ^ xr = no*, yr cos kXr = 2 a*‘ 

Similarly we may show that s*n ^Xr = 2 

t See A Course in Fourier’s Analysis and Periodogram Analysis by G. A. Carse and 

G» Shearer. 
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We shall illustrate the use of the above formulas for the coefficients by 
finding the fifth harmonic in the equation of the periodic curve passing 
through the 12 points given by the following data (Fig. 89). 

X V cos 5 z sin 5 x y cos 5 x y sin 5 x 

0° 9.3 1.000 0.000 9.30 0.00 
30° 15.0 -0.866 0.500 -12.99 7.50 
60° 17.4 0.500 -0.866 8.70 -15.07 
90° 23.0 0.000 1.000 0.00 23.00 

120° 37.0 -0.500 -0.866 -18.50 -32.04 
150° 31.0 0.866 0.500 26.85 15.50 
180° 15.3 -1.000 0.000 -15.30 0.00 
210° 4.0 0.866 -0.500 3.46 - 2.00 
240° - 8.0 -0.500 0.866 4.00 - 6.93 
270° -13.2 0.000 -1.000 0.00 13.20 
300° -14.2 0.500 0.866 - 7.10 -12.30 
330° - 6.0 -0.866 -0.500 5.20 3.00 

S = 3.62 - 6.14 

U6 = A %yr COS 5 Xr = 0.60j b5 = A sil1 5%r== “ I*°2- 

Hence the fifth harmonic is 0.60 cos 5 x — 1.02 sin 5 x. 
It is evident that the labor involved in the direct determination of the 

coefficients by the above formulas is very great. This labor may be 
reduced to a minimum by arranging the work in tabular form. These 
forms follow the methods devised by Runge * for periodic curves in¬ 
volving both even and odd harmonics (Art. 89), and by S. P. Thompson f 
for periodic curves involving only odd harmonics (Art. 90). 

89. Numerical evaluation of the coefficients. Even and odd har¬ 

monics.— 
(I) Six-ordinate scheme. — Given the curve and wishing to determine 

the first three harmonics, i.e.y the 6 coefficients in the equation 

y = a\) "4" fl-i cos x + a2 cos 2 x + a3 cos 3 x + bi sin x + b2 sin 2 x, 

we divide the period from x = o° to x = 360° f into 6 equal parts and 

* Zeit. f. Math. u. Phys., xlviii. 443 (1903), Hi. 117 (1905); Erlauterung des Rech- 

nungsformulars, u.s.w., Braunschweig, 1913. 

t Proc. Phys. Soc., xix, 443, 1905; The Electrician, 5th May, 1905. 

X If the period is taken equal to 2 7r/m instead of 2 x, the representing trigonometric 

series has the form 
y = do + ai cos md + a2 cos 2 md + • • • 

+ bi sin md + bi sin 2 mO + • • • , 

where $ represents abscissas. By the substitution md = x or 6 ® x/m, the series be¬ 

comes 
y ~ a0 + ai cos x + 03 cos 2* + • • • 

+ h sin x + bi sin 2 x + • • • , 

and this has a period 2x. The abscissas from 0 = o to ^ = 2 r/w now become the 

abscissas from x - o to x =* 2 x, and we proceed to determine the coefficients in the 

second series as outlined. Having determined the coefficients, we finally replace x by 
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measure the ordinates at the beginning of each interval; let these be rep¬ 
resented by the following table: 

X o° 60° 120° 

°o 
0
0

 240° 300° 

y yo yi y2 1 yi 1 y« yt 

Here n = 6, and using the formulas on p. 177, we have 

6a0 = yo +yi +^2 +yz +y* +y* 
6 a3 = y0 —yi +yz —ys +y* -ys 
3di =y0coso°+yicos 6o04-y2cosi200+y3cosi8o0+y4cos2400+y5cos3000 
302 =y0coso° +yicosi20°+y2cos2400+y3cos36o0+y4cos48o0+y5cos6oo° 
361 = y0sino° +yisin 6o° +y2sin 120° +y3sin 180° +y4sin240° +y6sin30Oo 

3 b2 = y0sino° +yisin 120° +y2sin240° +y3sin36o° +y4sin48o° +y6sin6oo° 

We arrange the y’s in two rows, 

yo yi y* 
yb y\ 

yo 

Sum v0 Vi v2 Vt 
Diff. Wi w2 

where the v’s are the sums and the tv’s are the differences of the quantities 
standing in the same vertical column; thus, v0 = yo, Vi = yi + y5, wt = yi 

— yb, etc. Since cos 240° = 
now write 

COS 120°, COS 300 0 = cos 6o°, etc. We may 

6 a0 = v0 + Vi + V2 + *>3 

6 as = v0 — Vi + v2 — v3 

3 fll = Vo + ^1 COS 6o° + V2 COS 120° + v3 cos 1800 
3fl2 =^0+^1 cos 120° + V2 COS 240° + V3 cos 360° 
3 bi = Wi sin 6o° + w2 sin 120° 
3 62 = tvi sin 1200 + w2 sin 240° 

We arrange the v’s and tv’s in rows, 

Vo Vi ^1 
V3 V2 Wi 

Sum Po pi ri 
Diff. So Si Sl 

and we now write 

6ao = po pi, 6 as = qo — qi, 

3 — So + i Si» 3 a2 = po — i pif 

3 61 = T ri> 
, V3 

362 = 2 Slm 

Example. Determine the first three harmonics for the following data 
taken from Fig. 866. 
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X o° f 6o° 120° l8o° 240° -V 

y 0.47 1.77 2.20 — 2.20 — 1.64 

O.47 

v 
w 

p 
2 

0.47 

1-77 
-0.49 

2.20 
— 1.64 

0.47 
■2.20 

1.28 
2.26 

1.28 
0.56 

0.56 

3-84 

-1-73 
2.67 

3&i 
Hence, 

6ao = 0.11, 
302 = -2.65, 

a0 = 0.02, ai = 1.01, 
bi = 1.76, 

1.84 
0.72 

6 a3 = 1.95, 

= 5-28, 

-2.20 

-2.20 

g&2 ” —0.88, 
62 = —0.46, 

300° 
-0.49 

2.26 

3-84 
r 6.10 

5 -1.58 

3 <*1 = 3-03. 
3^2 = -1-37- 

03 = 0.33, 

and y = 0.02 + 1 01 cos x —0.88 cos 2 x + 0.33 cos 3 x 
+ 176 sin x —0.46 sin 2 x. 

The equation from which the curve in Fig. 866 was plotted was 

y = 2 sin (^x + +sin|2x-y| + ^sin ^3*+ 

= cosx —0.87 cos 2 x+0.35 cos 3 x + i 73 sin x + 0.50 sin 2 x—0.35 sin3X- 

We observe the close agreement between the two sets of coefficients, 
the small discrepancies being due to the approximate measurements of 
the ordinates for our example. 

(II) Twelve-ordinate scheme. — Given the curve and wishing to deter¬ 
mine the first six harmonics, i.e., the 12 coefficients in the equation 

y = a0 + ai cos x + a2 cos 2 x + cos 3 x + a4 cos 4 x + a5 cos 5 # 
+a6 cos 6 x + 61 sin # + 62 sin 2 # + 63 sin 3 x + 64 sin 4 x + h sin 5 x, 

we divide the interval fr^m x = o to x — 360° into 12 equal parts and 
measure the ordinates at the beginning of each interval; let these be rep¬ 
resented by the following table: 

o° C*>
 

O
 0 6o° 90° 120° 150° 

0 O
 

00 
H4 210° 240° 270° 300° 330° 

y yo 1 yi 1 y? ys yi ys 1 3^6 1 yi ys y» y» yu 

Here n = 12, and the formulas for the coefficients give 

12 a0 = yo + yi + y2 + • • • + yn 

12 a6 = y0 — yi + yi — • : • — yn 

6 ai = y0 cos o° + yi cos 30° + y2 cos 6o° + • • • + yn cos 330° 
6 a2 = yo cos o° + yi cos 6o° + y2 cos 120° + • • • + yn cos 66o° 

6 61 = yo sin o° + yi sin 30* + y« sin 6o° + • • • + yn sin 330° 
6 =* yo sin 0° + yi sin 6o° + y2 sin 120° + • • • + yu sin 66o° 
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If we arrange the y's in two rows 

y» ■ yi ya y» y4 yt yt 
yn yio yi 

Sum Vo Vl V2 Vz ^4 Vz Vz 

Diff. Wi W2 Wz W4 Wz 

and remember that cos 330° = cos 30°, sin 330° = — sin 30°, etc., the 
above equations may be written 

12 do = Vo + Vi + v2 + + Vz 

12 at = Vo — Vi + v2 — • • + Vz 

6 ai = Vo + Vl cos 30° + v2 cos 6o° + • • + Vz cos 1800 
6 d2 = Vo + Vl cos 6o° + v2 cos 120° + • • + Vz cos 360° 

6 bi = Wi sin 30° + Wi sin 6o° + . . + Wz sin 150° 
6 b2 = Wi sin 6o° + W2 sin 120° + • • + Wz sin 300° 

If we now arrange the v’s i and w's in two rows 

Vo Vl Vi Vz Wi W2 Wz 

ve Vz Vi Wz W.t 

Sum Po pi p2 Ps Ti r2 r3 
Diff. 9.0 2i 22 Si *2 

the equations may be written 

12 a0 = q0 + 2i + 22 + 23 
12 a6 = pQ — pi + P2 — pz 
6 ai = q0 + qi cos 30° + q2 cos 6o° 
6 a2 — po + pi cos 6o° + P2 cos 120° + pz cos 180° 

6b\ = ri sin 30° + ^2 sin 6o° + rz sin 90° 
6 62 = Si sin 6o° + s2 sin 120° ** 

Finally, if we arrange the p's, q's, and r’s as follows: 

po Pi 

fa_P* 
Sum lo h 

ri go 
n g% 

Diflf. h k 

the equations become 

12 Oo = lo~\~h* 

6 d\ = q0 + q\ sin 6o° + q2 sin 30°. 

6 Oa = (po—pz) + (P1—P2) sin 30°. 
6 03 = fa. 

6 61 = r\ sin 30° + r2 sin 6o° + r$. 
6 b% = ($1 + s2) sin 6o°. 

12 do = lo — fl. 

6 o5 = go ~ 2i sin 6o° + g2 sin 30°. 
6 o4 = (/>o+ £3) — (pi + P2) sin 30( 
6 63 = t\. 
6 65 = f\ sin 30° — r2 sin 6o° + r* 
6 = ($i — $2) sin 6o°. 
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We may now arrange the above scheme in a computing form as fol¬ 
lows: 

Ordinates ?<> yi 
yn 

yo 
yw 

y» 
y9 

y* 
y* 

ys 
yi 

y® 

Sum Vo Vi V'2 Vz Vi Vb Vs 
Diff. W] Vh Wz Wi Wb 

Vo Vi V2 Vz Wi W2 Wz 

Va Vb Vi wh Wi 

Sum po pi pi p* Ti r2 r% 
Diff. 2o 21 2* Si S2 

Po pi r\ ffo 

po rz & 
Sum lo h Diff. h h 

Multipliers of the quan- 
titles in the same 

horizontal rows be foie Cosine terms | Sine terms 

these are entered 

sin 30° = 0.5 qi — pz Pi ri 
sin 60° = 0 866 Qi r2 Si S2 
sin 90° = 1.0 Qo Po —Pa tz u u rs tl 

Sum of 1st column 
Sum of 2d column 

Sum 6 fli 6 02 6 a8 12 o0 6 ft, 6 b2 6 63 
Difference 6 a6 6 a4 12 o .i 665 664 

Checks: yo = ciq Qi #2 *4“ £3 #4 ”1” “4" 

yi - yn = (61 + h) + V3 (bt + 64) + 2 hi. 
Result: y — a0 + fli cos x + n2 cos 2 x + • • • + a6 cos 6 * 

+ bi sin * + bi sin 2 x + • • ♦ + bt sin 5 x. 
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Example. In the periodic curve of Fig. 89, the interval from x = o° 
to x = 360° is divided into 12 equal parts and the ordinates y0 to yn are 
measured. 

X 0° 30° 6o° 90° 120° H
H

 

C
n O

 0
 

180° 210° 240° I 27°° 300° 330° 
V 9-3 150 174 23.0 370 1 3i-o | 15-3 4.0 — 8.0 -13-2 -14.2 — 6.0 

We shall determine the first six harmonics by the above scheme. 

Ordinates 9.3 15-0 
— 6.0 

174 
—14.2 ■ 

230 37-o 
-13.2 —8.0 

310 15.3 
4.0 

Sum (v) 9-3 9.0 3-2 9.8 29.0 35-o 15-3 
Diff. (w) 21.0 31-6 36.2 45.0 27.0 

9-3 9.0 3-2 9-8 21.0 316 36.2 

15-3 350 29.0 27.O 45-0 
um (p) 24.6 44.0 32.2 9.8 0) 48.0 76.6 362 

>iff. (2) —6.0 - -26.0 — 25.8 (s) — 6.0 -134 

24.6 44.0 48.1 —6.0 
32.2 9.8 36.2 -25.8 

Sum (l) 56.8 53-8 Diff. (t) 11.9 19.8 

Multipliers Cosine terms Sine terms 

0.5 -12 9 -16.1 22 0 24 0 
0.866 -22.5 66 3 -5.2 —116 
to -6.0 24.6 -9.8 19.8 56.8 53.8 36.2 11.9 

Sum of 1st col. -18.9 8.5- 56.8 60.2 - 5.2 
Sum of 2d col. -22.5 12.2 53.8 66 3 -11.6 

Sum -41.4 = 6 a, 20 7 = 6 a2 19.8 110 6 = 12 a0 126.5 = 6 6, -16.8 = 6 b2 11 9 
Diff. • 3 6=6 aB -3.7 = 6 a4 =6 a3 3.0=12 -6 1 = 6 66 6 4=6 6* =6 6, 

ai=—6.90, a2 = 345, <*3 = 3.30, ^ = 9.22, 61 = 21.08, 62= -2.80, 63= 1.98, 

a6 = o.6o, a4 = —0.62, ac = 0.25, 65= —102, 64= 1*07. 

Check: 9.3 = 9.22 - 6.90 + 3.45 + 3.30 - 0.62 + 0.60 + 0.25 = 9.30. 
21.0 = (21.08 — 1.02) + 1.732 ( — 2.80 + 1.07) + 2X1.98) =21.02. 

Result: * 

y = 9.22 — 6.90 cos x + 3.45 cos 2 x + 3.30 cos 3 x — 0.62 cos 4 x 
+ 0.60 cos 5 x + 0.25 cos 6 x + 21.08 sin x — 2.80 sin 2 x 
+ 1.98 sin 3 x + 1.07 sin 4 x — 1.02 sin 5 x, 

or 
y = 9.22 + 22.18 sin (x — 18.120) — 4.44 sin (2 x — 50.93°) 

+ 3.85 sin (3 x + 59-04°) + 1-24 sin (4 x - 30.09°) 
— 1.18 sin (5 x — 30.47°) — 0.25 sin (6 x — 90°). 

• The coefficients of the fifth harmonic agree with those found by the direct process 
in Art. 88. The time and labor spent in the computation of all six harmonics by means 
of the above computing form is much less than that spent in the determination of the 
fifth harmonic alone by the direct process in Art. 88. 
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The last result was obtained by using the relations 

a* cos kx + bk sin kx = c* sin (kx + <£&), 

where Ck = V a*2 + bk2 and fy = tan-1^- 
bk 

(III) Twenty-jour-ordinate scheme. — Given the curve and wishing to 
find the first 12 harmonics, i.s., the 24 coefficients in the equation 

y = a0 + a\ cos x + a2 cos 2 x +•••+ ai2 cos 12 x 
+ bi sin x + b2 sin 2 x + * * * + bn sin 11 x} 

we divide the interval from x = o° to x = 360° into 24 equal parts and 
measure the ordinates at the beginning of each interval; let these be repre¬ 
sented by the following table: 

X 0° 15° 30° 45° . . . 330° 345° 
y yo yi i y2 y% . . . y22 ^23 

If we use the same method as that employed in deriving the 12-ordi¬ 
nate scheme, we shall arrive at the following 24-ordinate computing form. 
This form is self-explanatory. 

Ordinates yo yi 

y23 

yo 

' yni 

. . . yn yw 

Sum Vo Vi v2 . . . V11 V12 

Diff. Wi w2 . . . Wll 

Vo Vi . . v6 Vo Wi W2 . . . Wo Wo 

Vi2 011 • • V7 W11 U)\0 . . . w7 

Sum po pi .. pb p* ri r2 . . Tb H 

Diff. g0 Si . S5 Si $2 • • So 

Po Pi P* pi Si S2 So 

Po ps p\ So Si 

Sum Zo li k h h k2 k» 

Diff. m0 m\ mi tti n2 

k li So - S4 = to T\ + r» - n = Ux 

1, h Si — So ~ S6 = h t2 

N
 

II 1 

go Zi 

Multipliers Cosine terms Sine terms 

sin 30° = 0.5 m2 — It h h 
sin 60° = 0.866 mx k2 n 1 na 
sin 90° = 1.0 00 0i m0 'lo —h mo m2 ks h fa 

Sum 24 (Iq 12 0/2 12 a4 12 b2 12 64 
Difference 24 flu 12 ciio 12 08 12 06 12 610 12 6s 12 bo 
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Multipliers Cosine terms Sine terms 

sin 15° = 0.259 Q6 Qi ri r* 
sin 30° = 0.5 Qi q* r* r% 
sin 45° = 0.707 <2* ti -q* rs Ui —rs 
sin 60° = 0.866 <1* -q* U —r4 
sin 75° = 0.966 qi q& r6 n 
sin 90° = 1.0 <lo to qo r« Ui u 
Sum of 1st col. * 
Sum of 2d col. * 

Sum 12 ax 12 as 12 afi 12 bi 12 6s 12 6» 
Difference 12 an 12 Og 12 a7 12 6n 12 6s 12 67 

Checks: y0 = a0 + 0i + + . . . + flu* 

\ (yi ^23) = 0.259 (bi + in) + \{b2 + &10) + 0.707 (&3 + b9) 
”j" 0.866 (64 -f- bg) -f- 0.966 (&g -J- 67) -f- b$. 

Result: 

y = a0 + ai cosx + a2 cos2x + . . . + ai2cos 12 # 

+ &i sin x + &2 sin 2 x + . . . + in sin 11 x, 
or y = c0 + ci sin (x + <f>i) + c2sin (2x + </>2) + • • • +ri2sin (12 * + 

We shall now pass on to the evaluation of the coefficients when only 

the odd harmonics are present.* 

90. Numerical evaluation of the coefficients. Odd harmonics only. — 
Most problems in alternating currents and voltages present waves where 

the second half-period is merely a repetition below the axis of the first 

half-period; the axis or zero line is chosen midway between the highest 

and lowest points of the wave (Fig. 86c). We have shown in Art. 86 that, 

in such cases, the trigonometric series contains only the odd harmonics. 

Furthermore, since the sum of the ordinates over the entire period is 

evidently zero, then a0 = - Vy = o, and the series does not contain the 

constant term a0. Again, since 

cos k (x + 7r) = cos (kx + kir) = — cos kx, when k is odd, 

sin k (x + 7r) = sin (kx + kir) = — sin kx, when k is odd, 

and yx-hr = “O'*. yx+* cos k (x + tt) = yx cos kx, 

and ^y cos kx has the same value over the second half-period as over the 

* T. R. Running, Empirical Formulas, p. 74, gives similar schemes with 8, 10, 16, 
and 20 ordinates, for waves having even and odd harmonics. H. O. Taylor, in the 
Physical Review, N. S., Vol. VI (1915), p. 303, gives a somewhat different scheme with 
24 ordinates for waves having even and odd harmonics. A very convenient computing 
form for the above scheme with 24 ordinates has been devised by E. T. Whittaker for 
use in his mathematical laboratory at the University of Edinburgh; see Carse and 
Shearer, ibid., p. 22. 
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first half. Hence in finding the coefficients we need merely carry the 

summation over the first half-period; thus, 

Ok — ~ £y cos kx, bk = ^ X? sin kx> 

where k is odd, x and y are measured in the first half-period only, and « 
is the number of intervals into which the half-period is divided. 

(I) Odd harmonics up to the fifth.—Given the curve and wishing to 

determine the coefficients in the equation 

y=ai cos a:+®3 cos 3 x-\-a3 cos 5 xfi-b\ sin *+63 sin 3 xfi-bi sin 5 x, 

we choose the origin where the wave crosses the axis, so that when x0 = o, 
y0 = o, divide the half-period into 6 equal parts, and measure the 5 ordi¬ 

nates yu y2, y3, y4, ys- Thus we have 

X O
 0 6o° 90° 120° 150° 

y yi yi ?3 yi ys 

For the coefficients we have the following equations: 

3 Oi = yi cos 30° + y2 cos 6o° + y* cos 96° + y4 cos 120° + y6 cos 150°. 
3 a3 = yi cos 90° + y2 cos 18o° + y3 cos 270° + y4 cos 360° + y5 cos 450°. 
3 05 = yi cos 150° + yt cos 300° + y3 cos 450° + y4 cos 600° + y6 cos 750°. 
3 bi = yi sin 30° + y2 sin 6o° + >'3 sin 90° + y4 sin 120° + ys sin 150°. 
3 b3 = y\ sin 90° + y2 sin 1800 + y3 sin 270° + y4 sin 360° + y6 sin 450°. 
3 bi = yi sin 150° + y2 sin 300° + y3 sin 450° + y4 sin 6oo° + y5 sin 750°. 

Simplifying and replacing the trigonometric functions by their values 

in terms of sin 30° and sin 6o°, we may write 

3 ai = (y2 - y*) sin 30° + (yi - y6) sin 6o°. 

3 a3 = -(yt- yi) sin 90°. 
3 as = (y2 - y4) sin 30° - (yi - y6) sin 6o°. 
3 61 = (yi + y6) sin 30° + (y2 + y4) sin 6o° + y3 sin 90°. 

3 b3 = (yi - y3 + ys) sin 90°. 
3 65 = (yi + yt) sin 30° - (y2 + y4) sin 6o° + y3 sin 90°. 

We may conveniently arrange the work in the following computing 

form: 

yi yt yt ■ 

y» y* 
Sum si St s3 
Diff. di dt 

Checks: o = Oi + a» + ot* 
y* == — 6j + bf. 

Result: 
y »b oi cos * + Oj cos 3 * + ®t cos 5 x + b\ sin x + sin 3 x 4" ^1 sin 5 *• 
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The following example will illustrate the rapidity with which the co¬ 
efficients may be determined. 

Example. We wish to analyze the symmetric wave of Fig. 90a, i.e.f 
to find the coefficients of the 1st, 3d, and 5th harmonics. Choose the 
a;-axis midway between the highest and lowest points of the wave, and 

the origin at the point where the wave crosses this axis in the positive 
direction. Then divide the half-period into 6 equal parts and measure 
the ordinates yi, . . . , y5. These are given in the following table: 

X 30° 6o° 90° 120° 150° 
y 10.7 2.8 20.5 26.5 16.6 

We arrange the work in the above computing form. 

10.7 2.8 20.5 
16.6 26.5 

Sum (5) 27.3 29.3 20.5 
Diff. (d) -5.9 -23.7 

Multipliers Corine terms Sine terms 

0.5 
0.866 
1.0 

-11.85 
-5.11 

23.7 

13.65 
25.37 

20.5 27.3 20.5 
Sum of 1st col. 
Sum of 2d col. 

-11.85 
-5.11 

34.15 
25.37 

27.3 
20.5 

Sum 
Diff. 

-16.96 
-6.74 

23.7 59.52 
8.78 6.8 

Divide by 3 

§
8

 
lO

 <N
 

1 
1 

II 
II *o 

a
 
e

 

as=7.9 6i = 19.84 
&,= 2.93 b, = 2.27 

Check: oi + a» + a6 = —5.65 + 7.90 — 2.25 = o. 

bi - bz + 65 = 19-84 - 2.27 + 2.93 = 20.5 = yt. 
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Result: 

y = — 5.65 cos x + 7.90 cos 3 x — 2.25 cos 5 x 
+ 19.84 sin x + 2.27 sin 3 x + 2.93 sin 5 x. 

(II) Odd harmonics up to the eleventh.—Given a symmetric curve and 
wishing to determine the coefficients in the equation 

y = «i cos x + a3 cos 3 *+•••+ an cos 11 # 
+ bi sin * + bn sin 3 x + ■ • • + bn sin 11 x, 

we choose the origin at the point where the wave crosses the axis, so that 
yo = 0, divide the half-period into 12 equal parts, and measure the 11 
ordinates yi, y2.yu- Thus we have 

X 15° 0
 0
 

45° • . . 165° 
y yi 1 y2 1 y* . . . yn 

For the coefficients we have the following equations: 

6 Oi = cos 150 + y2 cos 30° + • • • + yn cos 165°. 
6 o3 = yi cos 450 + y2 cos 90° + • • • + yn cos 4950. 

6 bi = Vi sin 150 + y2 sin 30° + • • • + yn sin 165°. 
6 b3 = yi sin 450 + y2 sin 90° + • • • + yn sin 4950. 

If we arrange the ordinates in two rows, 

yi yi yi yi 
yu yio y9 y» 

Sum 52 s2 Si 
Diff. di d2 dz dt 

yi 
yr 
56 

dz 

y« 

St 

dt 

replace the trigonometric functions by their values in terms of the sines 

of I5°i 3°°i 45°, 60°, 750, 90°, and collect terms, we may write 

6 Oi = 
6 an = 
6 o5 = 
6 07 = 
6 bi- 

6611 = 

6bt - 
6 67 = 
6fla = 
6 a9 = 

6 bt- 

6b» = 

d6sin I5°+<Zi sin 30°+d3 sin 45°+<f2 sin 6o° +di sin 750. 
—dssin l5°+d4 sin 30°—d3 sin 45°+^ sin 6o°—di sin 750. 

di sin 15°+d4 sin 30°—d3 sin 45°—d2 sin 6o°+J6 sin 750. 
—di sin 150 -\-di sin 30°+d3 sin 45°—d2 sin 6o°—d3 sin 750. 

Si sin 15°+* sin 30°+53 sin 45°+54 sin 6o°+5s sin 75°+5» sin 90°. 
5i sin 150 — s2 sin 30°+53 sin 450 —s4 sin 6o°+55 sin 750 —56sin 90°. 

St sin 150+52 sin30°—s3 sin45°—54 sin6o°+5i sin 750+58sin90°. 
St sin 150—52 sin 300—53 sin45°+54 sin6o°+51 sin 750—5»sin90°. 

(di — d3 — dt) sin 450 — d4sin90°. 
— (di — d3 — dt) sin 450 — d4sin 90°. 

(5i + 53 — st) sin 450 + (53 - si) sin 90®. 
(51 + ss — s6) sin 450 — (53 — J4)sin90‘’. 
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We may conveniently arrange the work in the following computing 
form: 

yi y2 yt yi yt y» Si + Si - II 2
 

yn yio y» y* yt *2 ~ S% = r* 
Sum ■ Si St St st St d\ — dz — 

<*> II 

Diff. di dt dt dt dt 

Multipliers Cosine terms Sine terms 

sin 15° = 0.259 di di Si Si 

sin 30° = 0.5 di di St s% 
sin 45° = 0.707 dt Ci -d. s» ri —st 
sin 60° = 0.866 dt -dt Si -Si 

sin 75° = 0.966 di dt Si Si 

sin 90° = 1.0 -di Si r? Si 

Sum of 1st col. 
Sum of 2d col. 

Sum 6 ai 6 as 6 a5 661 6 6, 6 bi 
Diff. 6 an 6 a9 6 (i7 6 6n 6 bo 6b7 

Checks: d\ -f- #3 ~f" 05 H" 09 + d\\ — o, 
bi — 63 + 65 ■“ ^7 + bg — = y®. 

Result: y = ai cosx + a3 cos 3 x + • • • + 0ncosnx 

+ sin x + 63 sin 3 x + • • • + bn sin in:. 

Fig. 90b. 

Example. Fig. 90b represents a half-period of an e.m.f. wave whose 
frequency is 60 cycles. We wish to find the odd harmonics up to the nth 
order. Choose the x-axis midway between the highest and lowest points 
of the complete wave and the origin at the point where the wave crosses 
the x-axis in the positive direction. Divide the half-period into 12 equal 
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parts and measure the ordinates yu y% • • • t yu» These are given in 
the following table: 

X 15° G-
> O
 0 

45° 60° 75° 90° 105° 120° 135° 150° 165° 
y 4 1 21 | 19 27 29 33 46 | 38 50 30 33 

We arrange the work in the above computing form. 

4 21 

33 30 

19 27 2C 

50 38 4« 

> 33 
> 

37 + 69 

51 - 33 
- 75 = 31 = ri 

18 = r% 
Sums (5) 
Diff. (d) 

37 51 
-29- 9- 

69 65 75 

31-11-17 
; 33 -29 + 31 +17 = 19 = *1 

Multipliers Cosine terms i Sine terms 

0.259 
0.5 

-4.4 
-5.5 

-7.5 
-5.5 

9.6 
25.5 

19.4 
25.5 

0.707 
0.866 
0.966 

-21.9 
-7.8 

-28.0 

13.4 21.9 
7.8 

-16.4 

48.8 
56.3 

72.5 

21.9 -48.8 
-56.3 

35.7 
1.0 11.0 33.0 18.0 33.0 

Sum 1st col. -13.3 11.0 2.3 130.9 21.9 6.3 
Sum 2d col. -54.3 13.4 -2.0 114.8 18.0 2.2 

Sura -67.6 24.4 0.3 245.7 39.9 - 8.5 
Diff. 41.0 -2.4 4.3 16.1 3.9 4.1 

Divide by 6 a! =—11.27 a3= 4.07 06 = 0.05 bi =40.95 63 = 6 65 65 = 1.42 
(in = 6.83 a3 = —0.40 07 = 0.72 611= 2.68 6,=0.65 67=0.68 

Check: 

0i+a3+ • * • +0n= -11.27+4.07 + 0.05+0.72-0.40 + 6.83 = 0, 
&1-63+ • • • -fin = 40.95-6.65+ 1.42-0.68+0.65-2.68 = 33.01 =y6. 

Result: 
y = —11.27 cos x + 4.07 cos3 x + 0.05 cos5 x + 0.72 cos 7 x — 0.40 cos 9 x 

+ 6.83 cos 11 x + 40.95 sin x + 6.65 sin 3 x + 1.42 sin 5 x 
+ 0.68 sin 7 x + 0.65 sin 9 x + 2.68 sin 11 x. 

(Ill) Odd harmonics up to the seventeenth. — Given a symmetric curve 
and wishing to determine the coefficients in the equation 

y = a\ cos x + 03 cos 3 x + • • • + an cos 17 x 
+ fii sin x + fi3 sin 3 x + • • • + fin sin 17 x, 

we choose the origin at the point where the wave crosses the axis, so that 
y0 = o, divide the half-period into 18 equal parts, and measure the 17 

ordinates yif y2, . . . , yn- Thus we have 

X IO° 20° 30° • • • 170° 

y y\ yt • • • yn 

If we use the same method as that employed in deriving the 11-ordi- 
nate scheme, we shall arrive at the following 17-ordinate computing form. 

This form is self-explanatory. 
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yi 

yn 
y* 
yn yn 

y4 

yn 

y* 
yn 

3>6 
yn 

yi - 
yn 

y* 
yio 

y$ 

Sum Si S2 Sz Si Si Si S7 Si s2 

Diff. di A dz di di di d7 di 

Si S2 sz n <U di -di - ei 

S5 Si -s9 — rz -di — dg ez 

-S7 ~~s$ —dg d7 

Sum n r2 rz u ei e2 ez ei 

Multipliers Cosine terms Sine terms 

sin 10° = 0.1737 -d2 da Si — Si — Sa 
sin 20° = 0.3420 d-, —di di S2 -Sa — Si 
sin 30° = 0.5000 da Ci da dz Ss 7*1 Sa -Sa 
Bin 40° = 0.6428 di di — di Sa Si s2 
sin 50° = 0.7660 da d* — d2 Sa Si Si 
sin 60° = 0.8660 dz e2 -d3 -d3 Sa 7*2 — sa Sa 
sin 70° = 0.9397 d2 -da -di Si -s6 Si 

sin 80° = 0.9848 d, di da Si Si — Sa 
sin 90° = 1.0000 e3 Ci S 9 7*3 S9 — *!» r4 
Sum of 1st col. 
Sum of 2d col. 

Sum 9 ai 9 a3 9 a6 9 a7 9 a9 9 b, 9 b3 9 bz 9 67 9 5» 
Diff. 9 an 9 au 9 a13 9 a,. 9 6,7 9 5,5 9 6,. 9 bu 

Check: + a3 + + * ■ • + au = o, 
bi — £3 + ~ • • • + bn = yg. 

Result: y = ax cos x + a3 cos 3 x + • • • + an cos 17 x 
m + bi sin x + 63 sin 3 x + • • • + bi7 sin 11 x. 

Similar computing forms may be constructed for symmetrical waves 
containing odd harmonics up to the seventh, ninth, etc., orders. 

91. Numerical evaluation of the coefficients. Averaging selected 
ordinates.* — We are to determine the coefficients in the trigonometric 
series 

y = a0 + ai cos x + ^2 cos 2 x + • • • + a* cos kx + • • • 
+ bi sin x + b2 sin 2 x + • • • + bh sin kx + • • • . 

Let an and bn represent the coefficients of any harmonic. We divide 
the period 2 ir into n equal intervals of width 2 ir/n and measure the ordi¬ 
nates at the beginning of these intervals. We have the table 

X Xo Xi X2 Xr . . . Xn-1 

y yo yi y» yr 
. . . yn-i 

* These methods have been developed by J. Fischer-Hinnen, Elekrotechnische 

Zeitschrift, May 9, 1901, and S. P. Thompson, Proc. of the Phys. Soc. of London, 

Vol. XXIII, 1911, p. 334. See, also, a description of the Fischer-Hinnen method by 

P. M. Lincoln, The Electric Journal, Vol. 5, 1908, p. 386. 
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Substituting these pairs of values in our series, we have n equations 
of the form 

yr = do + CLi cos Xr + 02 COS 2 Xr + • • • + COS kxr + • • • 

+ bi sin xr + b2 sin 2 xr + • • • + br sin kxr + • • • , 

where r takes in succession the values o, 1, 2, 3, . . . , n — 1.; adding 
these n equations, we get 

5)yr — wa0+ai2}cos*r+ • • • +a*2}cos fo:r+ • • • • • , 

where the summation is carried from r = otor = w— 1. 

If we let ft = k — in the expressions for ^ cos (a + r/3) and 

£ sin(a + rfi) derived in the note on p. 175, these become 

2cos(a+*r^) 

Xsin{a+kr^) 

sin kir 
sin (kir/n) 

__ sin kir 
sin (kir/n) 

f k (n—i) w\ 
C0T+ n ) 

. / k(n— i)tt\ 
sm[a+—^—) 

=0, 

=0, 

since sin for = o, 

since sin for = o* 

except when k is a multiple of n, for then both sin for and sin (for/ri) are 
equal to zero and the fractional expression becomes indeterminate But 
when k is a multiple of n, 

^cos+ kr = 2)cos (a + multiple of 2 x) = cos a = n cos a. 

]^sin + kr = 2)sin (« + multiple of 2tt) = ]^sina = n sin a. 

Hence we may state 

£cos + kr = o, except when k = w, 2 n, 3 w, . . . 

= w cos a, when k = «, 2 w, 3 «. 

]£sin^a + = o, except when k = w, 2 w, 3 n, . . • 

= m sin a, when fe = w, 2 w, 3 w, . . . • 

2 7T 
(1) If we start our intervals at Xq = o, then xr = r —, and 

2jcos focr = Scos(o + = o, except when k = », 2 n, 3n% . . • 

= n cos o = n, when & = w, 2 n, 3 n, • • . • 

2)sin fccr = Ssin + fer ^ = o, for all values of k. 

J/y, = woo + »<*„ + tuhn + • • • * n (ao + a» + as„ + ain + • • • ). 
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(2) If we start our intervals at xa = —, then + r — and 
ft It ft 

2}cos kxTf = 2)cos^ife^ = 0 excePt when k = n, 2 n, 3 », . . . 

kTr\ = n when k = 2nt An, 6n, . . . 
= ncos—1 , , 

w [= —n when & = n, 3», 5», . . • 

2^sin ft*/ = 5)sin^fe ~ + kr = o for all values of JSj. 

2>/ = woo — ftan + nct2 n — wa3 n + • • • 

= ft (a0 — an + 02n — n + &4n —••')• 

Subtracting the second set of ordinates, yf, from the first set, y, we 
have 

^yr- ^,y/= ^£,(yr-y/) = yo-yo'+yi-yi+y2-yz+ • • • +yn-i—y'n-i 

= 2 W (an + a3n + fl5n +**•)» 

or an+a3n+®5n+ • • • =* (yo — yo'+yi — yi + • • • +3'n-l—yn-l)« 
2 W 

The first set of n ordinates start at x = o and are at intervals of 2 7r/n, 
and the second set of n ordinates, start at x = 1vfn and are at intervals of 
2 tt/w; thus, the period from jc = otox = 27ris divided into 2 w equal 
parts each of width 7r/w (Fig. 91a). Hence, 

i/, starting at x = o, we measure 2 w ordinates at intervals of 1v/n, the 
average of these ordinates taken alternately plus and minus is equal to the 
sum of the amplitudes of the nth, 3 nth, 5 nth, . . . cosine components. 

Fig. 91a. 

Thus, to determine the sum of. the amplitudes of the 5th, 15th, 25th, 
. . . cosine components, merely average the 10 ordinates, taken alter¬ 
nately plus and minus, at intervals of 180° -r 5 = 36°, or at o°, 36°, 72°, 
. . . , 3240 (Fig. 91c); therefore 

<h + flu + <hi + • • • ■* (yo — ys® + yn — yio% + ym — yu0 +y*w 
— ym + ym — 
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If the 15th, 25th, . . . harmonics are not present, then 

a5 = iV (> — ^36 + yn — ^10i + 3^144 — ^180 + ^2ie — 3^252 + ?288 ~ y^u)- 

(3) Similarly, if we start our intervals at x0 = — , then xr = — + r—. 
2 n 2» n 

and 

£cos £cos | k ^ = o for all values of k, 

^sin kxr = 5}sin^& + kr~^J = o except when i = », 2 n, 3 n, . . . 

~ n when = », 5 w, 9 w, . . . 
= n sin — = o when k = 2 w, 4 n. 6 n, . . . 

2 w ' T ' ’ 
1= —n when k = 3 w, 7 », 11 w, . . . 

* Wao“hw6n W&3n-f-w65n— • • • s=w(ao4“Jn — b$n-\-bon — &7n* * * ). 

(4) Again, if we start our intervals at *</ = “- + —, then 
2 n n 

5/ = — + r —, and 
2 n n 

£co.s kxT' = + kr2^j = o for all values of ife, 

^sinH/= 2)sin^^+^r^j= o except when i = w, 2 », 3 w, . . . 

, = — w when k= n, 5 n, 9 n, . . . 
= nsin-—= owhenA = 2«,4», 6m,. . . 

[= # when k w, 7m, ii m, . . . 

.*• ^y/ = nao-nbn+nb3n-nbin+ • • • = w (a0 - &»+&3n - &5„+Z>7»— • • • )• 

Subtracting the second set of ordinates, y', from the first set, y, we 
have 

X> - XV=s ~ V) = y» - V + yi - V + • • • + y»-i - y'n-i 

— 2 « (&» ■“ &3n + fan — &7n + • • • ), 

or bn—bzn+bsn-b7n+ • • • = ~~ (yo-yo'+yi-yi'+ • • * +yn-i-y'n-i). 
2 w 

The first set of n ordinates start at x = 7r/2 w and are at intervals of 
7T 7T 

2 t/w, and the second set of n ordinates start at * =-h - and are at 
' 2 n n 

intervals of 2 v/n; thus the period from x = x/2 n to x — 2ir + t/2 m 

is divided into 2 n equal parts each of width ~ Hence, 

If, starting at x = x/2 n, we measure 2 n ordinates at intervals of v/n, 
the average of thesz ordinates taken alternately plus and minus is equal to the 
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sum of the amplitudes, taken alternately plus and minusf of the nth, 3 nth, 
5 nth, . . . sine components. 

Thus to determine the sum of the amplitudes, taken alternately 
plus and minus, of the 5th, 15th, 25th, . . . sine components, merely 
average the 10 ordinates taken alternately plus and minus, at intervals 
of 1800 -f- 5 = 36°, starting at x = 180° ~ 10 = 180, i.e., at x = 180, 
540, 90°, . . ., 3420 (Fig. 91c); therefore 

65 — £>16 + i>25 * * * = T*T5 (^18 ~ 3*54 +^90”” ^126 + ^162 ~ ^198 + ^234 

^270 + ^306 ~ y342). 

If the 15th, 25th, . . . harmonics are not present, then 

^6 = (yis “ + ygo “ ym + ym — ym + y234* — 3*270 + 3*300 ~~ 3*342)* 

We may also note that the set of 2 n ordinates measured for deter¬ 
mining the b’s lie midway between the set of 2 n ordinates measured for 
determining the a’s, so that to determine any desired harmonic we 
actually measure 4 n ordinates, starting at x = o and at intervals of 
71-/2 n. We use the 1st, 3d, 5th, ... of these ordinates for determining 
a, and the 2d, 4th, 6th, ... of these ordinates for determining b. 

If the higher harmonics are present, these must be evaluated first. 
The absolute term a0 is obtained from the relation 

yo = 00* + CL\ + a<i + 03 + • • • • 

We shall now illustrate the methods developed by an example. 
Example. Given the periodic wave of Fig. 89 and assuming that no 

higher harmonics than the 6th are present, we are to determine the co¬ 
efficients in the equation 

y = a0 + ai cos x + a2 cos 2 x + • • • + a6 cos 6 x 
+ bi sin x + b2 sin 2 x + • • • + b6 sin 6 x. 

To determine a6 and b6 measure 12 ordinates at intervals of 30° be¬ 
ginning at x = o° and x = 150 respectively (Fig. 91 b)\ then 

Fig. 91 b. 
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c# — fa (yo — yxt + yto — y»o + • • • + ym — ym) 
= * (9-3 - 15-0 + 174 ~ 23.0 + 37-0 -310 + 15.3 - 4.0 - 8.0 + 13.2 

— 14.2 + 6.0) = 0.25. 

bt = fa (yis - y*5 + jk — yios + • • • + ym — y34s) 

= tV (13-0 - 16.0 + 19.5 - 31.0 + 35.3 - 23.8 + 10.5 + 5.7 - 10.0 
+ 14.5 - 11.0 - 0.5) = 0.52. 

To determine ab and bb measure 10 ordinates at intervals of 36°, 
beginning at x = o° and x = 180 respectively (Fig. 91c) then 

05 = to (yo — you + yn — ym + • • • + y™ — y™) 
= TV (9-3-15-3 + 18.8-32.8+33.0-15.3-1.0+9.5-15.0+8.4) 
= —0.04. 

bb — fa (yi8 — y&t + ^90 — ym + • • • + ym — >'342) 

= fa (13-8-16.8+23.0-36.8+25.5-9.0-7.7+13.4-13.2+1.5) 

= —0.63. 
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To determine 04 and £>4 measure 8 ordinates at intervals of 450, be¬ 
ginning at x = o° and x = 22respectively (Fig. 91 d); then 

at = | (y0 — y*s 4 y«o — ym 4 • • • 4 >'270 — y» 15) 
= i (9-3 - 16.0 4 23.0 - 35.3 4 15 3 + 57 ~ 13-3 + n-o)= -0.03. 

bt = | (ya.6 — yn.h 4 ym.s — • • • 4 ym.s — ^337.6) 

= J (14 5 “ l8-° + 35-o “ 27 7 + 77 4 8.8 - 14.7 4 3.0) = 1.08. 

To determine a3 and b» measure 6 ordinates at intervals of 6o°, be¬ 
ginning at x = o and * = 30° respectively (Fig. 91ft); then 

a3 — \ (yo — ye0 4 ym — yiso 4 ym — ym) 
= £ (9-3 - 174 4 37-0 - 15-3 - 8.0 + 14.2) = 3.30. 

bi = 5 (>'30 — ye0 4 >130 — >’210 + >'270 — >330) 
= £ (15.0 - 23.0 + 31.0 - 4.0 - 13.2 + 6.0) = 1.97. 

To determine a2 and b2 measure 4 ordinates at intervals of 90°, 
beginning at x = o° and x = 450 respectively (Fig. 91ft); then 

02 4* <ie= J (yo — yeo 4 yiso y27<>) = £ (9-3 23.0 15-3 4 13-2) — 37®> 

a2 = 345- 

b2 — b2 = \ (yee — y«5 4 ym y3is) = £ (16.0 — 35-3 5741i.o) = — 3-5°» 
.*. b2 = -2.98. 

To determine Oi and 61 measure 2 ordinates at intervals of 1800, 
beginning at x = o° and x = 90° respectively (Fig. 916); then 

o» 4 03 4 05 = Hyo - yiso) = 1(9-3 - 15-3) = -3-00, ai = —6.26. 

61 - b3 4 h = § (y*> - yjvo) = 2 (23.0 4 13-2) = 18.10, h = 20.60. 

To determine a0 we have 

oo 4 ai 4 02 4 ®3 4 04 4 05 4 a» — yo — 9-3. °o = 8.63. 

Result: 

y = 8.63 — 6.26 cos x 4 345 cos 2 x 4 3-3° cos 3 * — 0.03 cos 4 x 
— 0.04 cos 5 x 4 0.25 cos 6x4 20.60 sin x — 2.98 sin 2 x 
4 1 -97 sin 3 x 4 1 -o8 sin 4 x — 0.63 sin 5 x 4 0.52 sin 6 x. 

This result agrees quite closely with that of Art. 89, p. 184; the differ¬ 
ences in the values of the coefficients are due to the fact that by the 
method of Art. 89 only the ordinates at o°, 30°, 6o°, . . . , 330° are used, 
whereas by the method of this Art. a large number of intermediate ordi¬ 
nates are used. If the curve is drawn by some mechanical instrument, 
the present method will evidently give better approximations to the 
values of the coefficients; but the labor involved in using the computing 
form on p. 183 is much less than that used in measuring the selected 

ordinates above. 
92. Numerical evaluation of the coefficients. Averaging selected 

ordinates. Odd harmonics only. — If the axis is chosen midway between 
the highest and lowest points of the wave and the second half-period is 
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merely a repetition below the axis of the first half-period, then only the 
odd harmonics are present. If the ordinates at x = xr and x = xr + v 
are designated by yr and yr+T respectively, then yr+w = — yr. In the 
method of averaging selected ordinates, the 2 n ordinates are spaced at 
intervals of x/w and are taken alternately plus and minus; then yr+T is 
at a distance x = n (x/n), or n intervals, from yr, and since n is odd, yr+* 

will occur in the summation with sign opposite to that with which yr 
occurs, so that, e.g. 

&n + CLzn + • • • = 

^ (yo - yi + • • • ± y, • • • - y0+* + yi-Hr' -•••=? yr+r • • • ) 

= (2 yo — 2 yi + • • • ± 2 y, • • • ) 

= ^6'o-y+-i-±y, •••)• 

Hence we need merely divide the half-period into n equal intervals and 
average n ordinates. We may therefore restate our rules for determining 
the coefficients if the wave contains odd harmonics only. 

If\ starting at x = o, we measure n ordinates at intervals of ir/n, the 
average of these ordinates taken alternately plus and minus is equal to the 
sum of the amplitudes of the nth, 3 nth, 5 nth, . . . cosine components. 

If, starting at x = 71-/2 n, we measure n ordinates at intervals of ir/n, the 
average of these ordinates taken alternately plus and minus is equal to the 
sum of the amplitudes, taken alternately plus and minus, of the nth, 3 nth9 

5 nth, . . . sine components. 

Furthermore, a0 = o since the sum of the ordinates over the entire period 
is zero. 
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Fig. 92. 

Example. Assuming that the symmetric wave of Fig. 92 contains no 
higher harmonics than the 5th, we are to determine the 1st, 3d, and 5th 
harmonics. Applying the above rules we have 
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at = i (3o — 3^36 + yn — ym + 3144) 
= J (o - 8.6 4* 6.3 - 27.7 + 19.0) = -2.20. 

65 = liy\*-yu+yw-ym+ym)= i (11.3-2.7+20.5-25.5+10.7) = 2.86. 
as = % (yo - 360 + 3120) = Ho - 2.8 + 26.5) = 7.90. 
&s = i (330 - 390 + 3150) = 3 (10.7 - 20.5 + 16.6) = 2.27. 
01 + az + ab = i (30) = o, .*. a! = -5.70. 
61 - 63 + &5 = { (3m) = 20.5, bi = +19.91. 

Result: 
y = — 5.70 cos # + 7.90 cos 3 x — 2.20 cos 5 # 

+ 19.91 sin x + 2.27 sin 3 x + 2.86 sin 5 x. 

We may compare this resuft with that obtained for the same curve 
by the use of the computing form on p. 187. 

If only the 1st and 3d harmonics had been present in the above wave, 
we should have 

a* = | (30 - 3eo + 3120); *3 = H3so ~ 390 + 3ibo) ; 
cli + as = 30 = o; b\ — 63 = 3/90. 

If all the odd harmonics up to the ninth had been present in the above 
wave, we should have 

#9 = i (30 — 320 + 340 — 3eo + 380 ~ 3100 + 3120 — 3140 + 3i6o); 

£9 = i (y 10 ~ 330 + 350 — 370 + 390 — 3no + 3i3o — 3150 + 3no); 

(I7 — i (yo — 325.71 + 351.43 — 377.14 + 3l02.86 ~ 3l28.57 + 3l54.2g) l 

b? = \ (312.86 “ 338-57 + 364.29 390 + 3ll5.7l 3l41.43 + 3l67.u) \ 

ah = J (30 ~ 336 + 372 - 3108 + 3l4l) ; &5 = 5 (3« “ 3&4 + 390 — 3126 + 3l62) 5 

dz + 09 = ^ (30 360 + 3«o) 1 bs — b9 = -3 (330 — 390 + 3150); 
di + az + a5 + di + &9 — 3o = o; bi — 63 + b-0 — b7 + b9 = 390. 

Similar schedules may be formed for determining the odd harmonics 
up to any order. 

93. Graphical evaluation of the coefficients. — Various graphical 
methods have been devised for finding the values of the coefficients in 
the Fourier’s series, but these are less accurate and much more laborious 
than the arithmetic ones. The graphical methods, while interesting, are 
of little practical value in rapidly analyzing a periodic curve, so that we 
shall describe here only one of these methods — the Ashworth-Harrison 
method.* 

If, for example, we divide the complete period into 12 equal intervals 
and measure the 12 ordinates, we shall have the table 

X 0° 30° 60° 

0 0 O
N

 120° 150° 1800 210° 240O 270° 300° 330° 

y \ yo 3i 32 1 y* 3* 36 y-i \ yo yo 310 3u 

* Electrician, lxvii, p. 288, 1911; Engineering, lxxxi, p. 201, 1906. Other methods 

are briefly mentioned and further references are given in Modern Instruments and 

Methods of Calculation, a handbook of the Napier Tercentenary Celebration. 
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We have already shown (p. 181) that 

6 di = 2)Vrcos xr = yo tos o° + yi cos 30° + • • • + yn cos 330°, 

6 61 = sin #r = y0 sin o° + yi sin 30° + . . . + yn sin 330°. 

It is evident that if we consider the y’s as a set of co-planar forces 
radiating from a common center at angles o°, 30°, 6o°, . . . , the sum of 

the horizontal components is equal 
to 6 a\ and the sum of the vertical 
components is 6 61. To facilitate the 
finding of these sums we may draw 
the polygon of forces, starting at a 
point 0 and laying off in succession 
the ordinates, each making an angle 
of 30° with the preceding, as in Fig. 
93a (proper regard must be had for 
the signs of the ordinates). The 
polygon of forces may be constructed 
rapidly by means of a protractor 
carrying an ordinary measuring scale 
along the diameter. Then, OA, the 
projection of the resultant OP on the 
horizontal, is equal to 6 cq, and OB, 
the projection of the resultant OP on 
the vertical, is equal to 6 61. Further¬ 
more, if we write a\ cos# + 61 sin x 
= ci sin (x + <£i), then the length 
of OP is 6 Ci and the angle FOB is 0i. In Fig. 93a we have made the 
construction for the determination of Oi, 61, C\, and <j> 1 for the periodic 
curve drawn in Fig. 89 using the table of ordinates on p. 184. We find 

OA = 6ax = —41.4, OB = 661 = 126.0, OP = 6 Ci = 134, 

Z POB — <f>i — —18.i°; 

hence 

di = —6.9, bi = 21.0, Ci = 22.3, <t> 1 = — 18.I0. 

These results agree very closely with those obtained on p. 184. 
We may find (h and 62 by laying off in succession the ordinates, each 

making an angle of 6o° with the preceding; we proceed similarly in finding 
the other coefficients. A separate diagram must be drawn for each pair 

of coefficients. 
More generally, if we divide the complete period into n equal intervals 

of width 2 ir/ti and measure the n ordinates, then (p. 177) 
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^ Ok = y,yr cos kxr = y0 COS O+Jl cos k(-) + • • • +}>„_! cos k —I-T, 
2 ^ \n) n 

2)yr sin foe, = y0sino+yi sin A f-2—)+ • • • +y„-i sin k - (?LZ±}l.. 
2 \n J w 

Hence, if we construct the polygon of co-planar forces by starting at a 

point O and laying off in succession the ordinates, each making an angle 

2 kir/n with the preceding, then OA, 

the projection of the resultant OP 

on the horizontal, is equal to nak/2, 

and OB, the projection of the result¬ 
ant OP on the vertical, is equal to 

nbk/2, except when k = o or k = n/2, 

when we get the values naQ, nb0t 

naflj2, respectively. Further¬ 
more, the length of OP is n/2 (or n) 

times the amplitude ck and the angle between OP and OB gives the phase 
<t>k of the complete harmonic ck sin (kx + </>*). 

Example. Analyze graphically the periodic curve in Fig. 86b. 

As in the example on p. 181, we shall find the first three harmonics 
from the data 

Here 

* 0° 6o° 120° 1800 240° 300° 

y 0.47 i-77 2.20 — 2.20 — 1.64 -0.49 

6 a0 = = y0 + yi + ■ • ■ + y& = 0.11; Go = 0.02. 
6 a3 = = yo - y i + • • • -y* = 195; = 0-33- 
3«i = = OA (Fig. 936) — 3-09; Gi 1.03. 
3 b\ ■■ = OB (Fig. 93b) = 5-35; bi = 1.78. 

3 5 = OP (Fig. 93b) = 6.25; Cl = 2.08, 4>i = 3°° 
3 = = OA (Fig. 93c) = - -2.6 7; G2 = —0.89. 

3 bi ■- = OB (Fig. 93c) = - -1-35; b. = -0.45. 

3 c* = = OP (Fig. 93c) = 3.00; C‘2 = 1.00, <f> 2 = — 6o°. 
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Result: 
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y = 0.02 + 1.03 cos x — 0.89 cos 2 x + 0.33 cos 3 x 

+ 1.78 sin x — 0.45 sin 2 x 

= 0.02 + 2.08 sin (x + 3°°) + sin (2 x — 6o°) — 0.33sin (35c — 90°). 

Note the close agreement of this result with that obtained by the 
arithmetic method on p. 181. 

94. Mechanical evaluation of the coefficients. Harmonic analyzers. 
— A very large number of machines have been constructed for finding 

the coefficients in Fourier’s series by mechanical means. These instru¬ 

ments are called harmonic analyzers. The machines have done useful 

work where a large number of curves are to be analyzed. Among these 

analyzers we may mention that of Lord Kelvin,* * * § Iienrici,t Sharp,J Yule,§ 

Michelson and Stratton, || Boucherot,1f Mader,** * * §§ and Westinghouse.ft 
We shall briefly describe the principles upon which the construction 

of two of these instruments depend.tj 

The harmonic analyzer of TJenrici. This is one of a number of ma¬ 

chines which use an integrating wheel like that attached to a planimeter 

or integrator §§ to evaluate the integrals occurring in the general expres¬ 

sions for the coefficients 

I C2* I f‘2ir 1 f2* 
a0 = — / y dx, ak = - I y cos kx dx, bk = - / y sin kx dx 

2 7T 0 TT tj0 7T wo 

given on p. 174. 

If the curve in Fig. 94a represents a complete period of the curve to 

be analyzed, then evidently 

J* y dx = area OABCDBO; 

so that, if the tracing point of a planimeter is allowed to follow the curve 

OABCDBO, the integrating wheel will give the reading 2 tta0, from which 

a0 may be computed. 

* Proc. Roy. Soc., xxvii, 1878, p. 371; Kelvin and Tait’s Natural Philosophy, 

t Phil. Mag., xxxviii, 1894, p. 110. 

X Phil. Mag., xxxviii, 1894, p. 121. 

§ Phil. Mag., xxxix, 1895, P- 367i The Electrician, March 22, 1895. 

|| Phil. Mag., xlv, 1898, p. 85. 

Morin, Les Appareils d'lntegration, 1913, p. 179. 

** Elektrotech. Zeit., xxxvi, 1909; Phys. Zeit., xi, 1910, p. 354. 

ft The Electric Journal, xi, 1914, p. 91. 

Brief descriptions of all but the last of these may be found in Modern Instruments 

and Methods of Calculation, a handbook of the Napier Tercentenary Celebration, 1914. 

§§ For the principle of the planimeter and integrator, see pp. 246, 250. 
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Integrating by parts, we may write 

=lf y 
i n* . 

= - I VSl 
7T,/o ' 

cos kxdx — 
kir 

y sin kx 

vsmkxdx — — j^ycoskx 

i ri* i w* 
r- I sinkxdy= —rr- I sinkxdy, 
ittJq RirJo 

T P27T J P2lr 

J cos kxdy= J cos kxdy. 
o 

Now if the planimcter carries two 
integrating wheels whose axes make at 

each instant angles kx and 7r/2 — kx 
with the y-axis, and the point of inter¬ 
section of these axes is capable of 
moving parallel to the y-axis, then as 
the tracer point passes around the 

boundary OABCDBO, these wheels give readings proportional to 

J sin kx dy and j'sin — kx'j dy = J cos kx dy, 

from which the values of ak and bk can be found. 
In one form of the instrument the curve is drawn on a horizontal 

cylinder with the y-axis as one of the elements. A mechanism is attached 
to a carriage which moves along a rail parallel to the axis, by means of 
which a tracer point follows the curve while the cylinder rotates; the 
mechanism allows the axes of the integrating wheels to be turned through 
an angle kx while the cylinder ro¬ 

tates through an angle .t. Coradi, 
the Swiss manufacturer, has per¬ 
fected the instrument so that sever¬ 
al pairs of coefficients may be read 

with a single tracing of the curve. 

The Westinghouse harmonic analyzer.—This machine, constructed 
by the Westinghouse Electric and Mfg. Co., is particularly useful in 
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analyzing the alternating voltage and current curves represented by a 
polar or circular oscillogram. 

Fig. 946 gives one period of a periodic curve drawn on rectangular 

coordinate paper. In Fig. 94c, the same curve is represented on polar 

coordinate paper. This is done by constructing a circle of any convenient 

radius, called the zero line or reference circle and locating any point P 

by the angle 0 — x and the radial distance r — y from the zero line. Thus 

the points marked P, A, and B in Figs. 94b and 94c are corresponding 

points. If only the odd harmonics are present, the second half-period 

of the curve in Fig. 94b will be a repetition below the x-axis of the first 

half-period; in this case, the diameters at all angles of the curve in Fig. 94c 

will be equal, and equal to the diameter of the reference circle. The re¬ 
lation between r and 0, 

r = f(0) = <2i cos 0 + 02 cos 2 0 + • • • ak cos kd -f- • • • 

+ bi sin 0 + b2 sin 2 6 + • • • -f-/^sin&0+ • • • , 

is the function to be analyzed. This is done as follows. 

The circular record of the periodic curve, drawn by hand from the 

rectangular record or directly by the circular oscillograph,* is transferred 

the curve. In the initial position the template M (Fig. 94^) is secured 

on a turntable T so that the axis d = o lies under the transverse cross-bar 

B. The turntable is set on a carriage D which slides on the rails L. The 

* The Electric Journal, xi, 1914, p. 262. 
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carriage is given an oscillatory motion by the motion of a crank-pin P 

(Figs. 94e, 94/) attached to a rotating gear G and sliding in a transverse 
slot 5 on the bottom of the carriage. The carriage thus has a simple 
harmonic motion whose amplitude is the crank-pin radius R. By means 

of a crank and a simple arrangement of gears, the carriage makes k com¬ 

plete oscillations while the template makes one revolution, when deter¬ 

mining the Jfeth harmonic. 

The cross-bar B is attached to the oscillating carriage; this bar carries 

a pin C held in contact with the edge of the template by means of springs, 

so that the bar has a transverse motion as the template revolves. Re¬ 
ferred to a pair of axes xx and yy, the motion of the end of the bar, 

(I(*,y), may be said to consist of two components, viz., the transverse 

motion of the bar, x = r = f{d), the function to be analyzed, and the 

simple harmonic motion of the carriage, 

(1) y = R sin kO or (2) y = R sin (kd — = —R cos kd, 

according as the carriage is started with the slot 5 in the dotted position 
of Fig. 94e or of Fig. 94/. A planimeter is attached with its tracing point 

at <?. This point then describes compound Lissajous figures whose areas 

A1 and A2 may be read from the integrating wheel of the planimeter. 

Now from (1), ~ = Rk cos kd and from (2) ~ — Rk sin kd, hence 

Jr»2ir fiir Hi 
xdy = / rRk cos kd dd = Rk I 

0 ' Jo Jo Jr»2* * ['2* r2* 
xdy = I rRk sin kd dd = Rk I 

0 Jo Jo 

using the formulas for a* and bk on p. 174. 

Therefore dk 
Au 
Rk 7r’ 

bk = 
Rk 7T 

r cos kO dd = Rk Trak, 

r sin kd dd — Rkirbkt 

Gears are provided to analyze for all even and odd harmonics from I 

to 50, and the shifting of the gears is a very simple matter. 
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EXERCISES. 

I. Sketch the periodic curves 

y = 2 cos x; y = cos 2 x; y = 2 cos x + cos 2 x.1 

2. Sketch the periodic curves 

y — I -f sin x; y = — \ sin 2 x; y = l sin 3 x; 

y = 1 + sin x — J sin 2 x + J sin 3 x. 

3. Sketch the periodic curves 

y = 2 sin (x - 40.50); y = sin (2 x + 72-3°); y = 2 sin (3 x - 90°); 

y = 2 sin (x - 40.50) + sin (2 x + 72.30) + J sin (3 x — 90°). 

4. Sketch the periodic curve 

y = cos x + 0.4 cos 3x-f 0.5 sin x — 0.5 sin 3 x. 

5. Sketch the periodic curve 

y — cos x + 0.4 cos 3 x — 0.2 cos 5 x + 0.5 sin x — 0.5 sin 3 x — 0.3 sin 5 x. 

6. By use of the formulas on p. 177 and the direct method illustrated on p. 179, 

determine the coefficients of the third and fourth harmonics of the periodic curve in 

Fig. 89; use the table of ordinates on p. 179. 

7. Determine the first three harmonics jf the periodic curve given by the following 

data; use the computing form on p. 180. 

X o° I 6o° 120° 180° 

0 O
 

Cl 3°o° 

y -0.85 1 0.95 O.72 2-75 1 -1-37 1 —2.20 

8. Determine the first six harmonics of the periodic curve given by the following 

data; use the computing form on p. 183. 

X o° O
i 0
 0 0
 

0
 0 

9°° 1 I 20° I 5°° 1800 210° 240° 270° 300° 

y -18 1 -39 1 -39 i -8 22 22 11 to 14 12 IS 

330” 
— I 

9. Determine the first twelve harmonics of the periodic curve given by the following 

data; use the computing form on p. 185. (The curve is a graphical representation of the 

diurnal variation of the atmospheric electric potential gradient at Edinburgh during the 

year 1912.) 

X 1 °° 1 i.5l 3Q° 45° 6o° 75\ 90° io5!_ 
120° J35°_ 150° I6_5L 

y I-181 -30 -39 -41 “39 —32 -8 | II 22 24 22 20 

X 180° 195° 210° 1 225° 240° 255° 270° 285° 

0
 

' 

S
i 

c
^
l 315° 04

 
o»

 
0

 0
 

345° 

y 11 3 !° | 16 12 12 18 " 1 *5 9 1 -I -7 

10. Devise computing forms for determining the even and odd harmonic coefficients 

using 8 and 16 ordinates respectively. 

11. Determine the odd harmonics up to the fifth for the symmetric periodic curve 

given by the following data; use the computing form on p. 187. 

X I °° __30°_ 6o° 9Q° 120° | I500 

y 1 0 676 660 940 IOO4 554 

12. Determine the odd harmonics up to the fifth for the symmetric periodic curve 

from which the following measurements were taken; use the computing form on p. 187. 

X o° 04
 

c
 0 6o° _90°_ 120° 150° 

y 0 1 4 1 9-5 9 3 2 
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13. Determine the odd harmonics up to the eleventh for the symmetric periodic 

curve from which the following measurements were taken; use the computing form on 

p. 190. 

X 0° 15° 3Q° 45° 6o° 75° 9Q° I05° 120° 135° 150° 165° 

y 0 14 33 52 60 40 27 30 15 18 6 

14. Determine the odd harmonics up to the seventeenth for the symmetric periodic 

curve from which the following measurements were taken; use the computing form on 

p. 192. 

X 0° IO° K) O 0 

4-*
 

0
 0 

50° 6o° 70° 8o° 90° I 100° 110° 

y 0 5 ! 1 9 1 21 20 21 27 30 1 29 33 42 44 

120° 13Q° 140° 15Q° 1603 170° 

~w\ 46 45 30 3i 29 

15. Determine the first three harmonics for the periodic curve from which the fol¬ 

lowing measurements were taken; use the method of selected ordinates in Art. 91; 

assume that all higher harmonics are absent. 

X 0° 30° 45° _ 60 ° _9?L 120° 1 135° 150° 180” 210° j 225° 

y 10.0 5*° 5-3 7.2 6.0 — 6.8 -10.9 -8.9 10.0 18.5 1 10.7 

X 3<x> ! 315 I 330 

y -17-3 “4-7 51 

270° 

-25T9 

16 Determine the first tjjrcc harmonics for the periodic curve drawn in Fig. 866; 

use the method of selected ordinates in Art. 91. 

17. Determine the first six harmonics for the periodic curve drawn in Fig. 89; use 

the method of selected ordinates in Art. 91; assume that all higher harmonics are 

absent. 

18. Determine the first and third harmonics for the symmetric periodic curve given 

by the following data; use the method of selected ordinates in Art. 92; assume that all 

higher harmonics are absent 

1 °° |_32l_ 6o° 

0 ©
 

0
 120° 150° 

1 0 62.9 66.5 ! 22.4 | I4.9 33-3 

19. Assuming that the harmonics higher than the fifth are negligible, determine the 

odd harmonics of the symmetric periodic curve from which the following measurements 

were taken; use the method of selected ordinates in Art. 92. 

X o° 

y 0 ( 
30° 6o°_ 

‘660 
9° 
940 

120 

1004 

J50 _ 

554 

X o° 1 180 1 36° 

0 •j- 
10 j 72° 90° 1080 126° 1440 162° 

y 0 470 j 719 l 678 1 702 940 1086 920 639 375 

20. Use the method of selected ordinates in Art. 92 to determine the ninth harmonic 

of the curve given by the table in Ex. 14. 

21. Analyze graphically the curve in Ex, 7, 



CHAPTER VIII. 

INTERPOLATION. 

95. Graphical Interpolation. — Having found the empirical formula 

connecting two measured quantities we may use this in the process of 

interpolation, i.e.} in computing the value of one of the quantities when 

the other is given within the range of values used in the determination of 

the formula. It is the purpose of this chapter to give some methods 

whereby interpolation may be performed when the empirical formula is 

inconvenient for computation or when such a formula cannot be found. 

Let the following table represent a set of corresponding values of two 

quantities 

.r Xo X\ X'l Xz • . • Xn 

y J yo y\ y-i y$ . . . yn 

where y is a known or an unknown function of x. Our problem is to find 

the value of y = yk for a value of x = Xk between x0 and xn. 

A simple graphical method consists in plotting the values of x and y 

as coordinates, drawing a smooth curve through or very near the plotted 

points, and measuring the ordinate yk of the curve for the abscissa Xk. 

The value of y/c thus obtained may be sufficiently accurate for the purpose 

in hand. Thus from the curve in Fig. 72b, we read t = 10, A = 77.0, and 

t — 30, A = 45.0. If we use the empirical formula derived on p. 133, 

A = 100.1 <r0 0-65 b or log A = 2.0005 — 0.0115/, 

we compute / = 10, A — 76.8 and t = 30, A = 45*2. By comparison 

with the table on p. 132 we note that the measured values of A for t = 10 

and t = 30 agree about as closely with the computed values as the neigh¬ 

boring observed values agree with their corresponding computed values. 

Here, the last significant figures in the values of A were used in construct¬ 

ing the plot. 
On the other hand, in Fig. 71c, we read v = 40, p = 10.00, whereas 

the empirical formula on p. 131 gives v = 40, p =-9.42. The residual 

is 0.58, much larger than the residuals in the table on p. 130 for neighbor¬ 

ing values of v. Here, the plot was constructed without using the last 

significant figures in the values of the quantities. It is of no advantage 

to construct a larger plot since the curve between plotted points is all 

the more indefinite. 
209 
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For most problems the arithmetic or algebraic methods to be explained 

in the following sections give much bettei results. 
96. Successive differences and the construction of tables. — Given a 

series of equidistant values of x and their corresponding values of y, 

X 
x0 Xi X2 X3 ... Xn 
Xo Xo + h Xo + 2 h •Vo + 3 h Xo + nh 

y yo yi y* V* . . . y»> 

we define the various orders of differences of y as follows: 

1st difference = A1: a0 = yi — yo, <21 = y2 — yu • • • » 0»-i = y» — y»-ij 
2d difference = A2: 60 = a\ — a0, 61 = — fli, . . . , 6„_2 = an-2 — tfn-ij 

3d difference = A3: cQ = bi — 60, c\ = 62 — 61, • • • » cn-3= 671-3— 671-2; 

feth difference = Ak: k0 = j 1 — j0, &i = J2 — Ji, . • . . 

These may be tabulated as follows: 

X y A* A2 A3 A< A* 

Xo = Xo yo 
do 

Xi = Xo -j- h yi 
at 

fco 

Co 

x% = Xo + 2 h yi 
a2 

bl 
Ci 

do 

*3 * *o + 3 h y» 
a3 

hi 

ko 

Xi = Xi 4 h ^4 

• 

h 

Xft l = x0 + (n — i) y»-i 

# 

#w—1 

Xn = jc0 + w/t yn 

where a quantity in any column of differences is written between two 

quantities in the preceding column and is equal to the lower one of these 

minus the upper one. 
We may apply the above definitions in the formation of the differences 

of y when y = f(x); thus, 
Ay = f(x + h) - f(x) = A/0); A2y = A/0 + h) - A/0) = A-/0); 

etc. E.g., if 

y = x2 — 2 x + 2, Ay = [(* + A)2 — 2 (as + h) + 2] - [x2 - 2 x + 2] 

= 2 hx + (h2 — 2 /t); 
A2y = [2 /z O + h) + (h2 — 2h)] — [2 hx + (h2 — 2 A)] 

= 2 h2. 

We note that A2y = 2 h2, so that the second differences are constant for 

all values of x. 
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Similarly, if y = xn where n is a positive integer, 

A y = (x + &)w — xn = #n + nxn~~]h + -~xn~2h2 + • 
L? 

= nxn~lh + —-x~—~xn~2h2 + • • • + hn; 

— xn 

A2y 

i* 

= £«(* + h)"~lh + - —— (x + h)n~2h2 + 
ll ] 

— nx*~lh + #n 2h2 + • • • J 
— n (n — 1) xn~2h2 + • • • , 

A3y = n (n — 1) (n — 2) xn~3h3 + 

Any= n (n — 1) (n — 2) . . . 3 • 2 • I hn = |nft"; 

hence the nth differences of xn, where n is a positive integer, are constant, 

and hence the rath differences of any polynomial of the nth degree 

Axn + Bxn~l + Cxn~2 + • • • + Kx + L, 

where n is a positive integer, are constant. If in forming the differences 

of a function some order of differences, say the nth, becomes approxi¬ 

mately constant, then we may say that the function can be represented 

approximately by a polynomial of the nth degree, where n is a positive 

integer. 
The formation of the differences for various functions is illustrated 

in thd following tables: 

(1) y = x3 (2) y = x3 

X y A* A* A* X y A* A* 

I 1 
7 

5.16 137-39 
4-03 

0.08 2 8 
19 

12 
6 

5-21 141.42 
4.II 

0.08 
3 27 18 

6 
5.26 145-53 

4.19 37 0.08 4 64 24 5-3i 149.72 
4.27 61 6 

0.08 
5 125 

9i 
30 

6 
5-36 153-99 

4-35 
0.08 6 216 36 

6 
5-41 158.34 

443 127 
0.08 7 343 42 546 162.77 

4.5i 169 6 
167.28 8 512 

217 
48 5-51 

4.60 
0.09 

9 729 5-56 171.88 
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(3) y = Vx (4) y = 

X y A1 

20 2.7144 

445 
21 27589 

43i 
22 2.8020 

419 

23 2.8439 
406 

24 2.8845 

395 

25 2.9240 

X y A1 

611 8.4856 

46 
612 8.4902 

46 

613 8.4948 

46 
614 8.4994 

46 

615 8.5040 

46 
616 8.5086 

(5) Train-resistance (6) Speed of a vessel 

V 
speed in 

mi. per hr. 

R 
icsist. in lbs. 

per ton 
A1 A* 

V 
speed in 

knots per hr. 
. 1 A' horse-power A» A» 

20 5-5 8 1,000 

3-6 400 

40 9.1 2.2 9 1,400 IOO 

5* 500 O 
60 14.9 2.1 10 1,900 IOO 

7.9 600 50 
80 22.8 2.4 11 2,500 150 

10.5 750 50 
IOO 33-3 2.2 12 3,250 200 

12.7 950 50 
120 46.0 13 4,200 250 

1200 IOO 

14 5.400 350 
1550 IOO 

15 6.950 450 
2000 50 

16 8,950 500 

2500 

17 11,450 

17) y = log * (8) y = log sin x 

* 1 
y A» X 1 y A* A* A3 

2.6990 

2.6998 

2.7007 

2.7016 

2.7024 

27033 

2.7042 

8.2419-10 

8.3088-10 

8.3668-10 

8.4179-10 

8.4637-10 

8.5050-10 

8.5428-10 

In the above tables we note the following: 

In (1), y = x* and A3 is constant. 

In (2), y = xz and A2 is constant since we have carried the work to two 

decimal places and A3 does not sensibly affect the second decimal place. 
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If the computation had been carried to six decimal places, A2 would not 
be constant but A3 would be. 

In (3), A2 is approximately constant, so that if we desire to work to 

four decimal places, y/ x could be represented by a polynomial of the 
second degree within the given range of values of x. 

In (4), A1 is approximately constant so that v'x could be represented 
by an equivalent polynomial of the first degree. 

In (5) and (6), A2 and A3 are approximately constant, so that R may 

be approximately represented by a polynomial of the second degree in V, 

and I by a polynomial of the third degree in V. 

In (7), log x may be approximately represented by a polynomial of the 

first degree, and in (8), log sin x by a polynomial of the third degree 
within the given range of values of x. 

In general, it is evident that we may stop the process of finding suc¬ 

cessive differences much sooner the smaller the number of digits required 

and the smaller the constant interval h. We should stop immediately if 

the differences become irregular. 

The formation of differences is often valuable where a function is to 

be tabulated for a set of values of the variable. Thus, suppose we wish 

to form a table for y = ttx2/^, expressing the area of a circle in terms of 

the diameter, for equidistant values of x. Since we have a polynomial 

of the second degree, A2y is constant, and if h = 1 and the work is to be 

carried to 4 decimal places, we need merely compute the values of y for 

x = I, 2, 3 and form the corresponding differences; proceeding back¬ 

wards, we repeat the value of A2y = 1.5708, add this to Ay = 3.9270 and 

get 5.4978, add this to 7.0686 and get 12.5664, which is the value of y for 

x = 4. We proceed in the same manner to get the values of y for suc¬ 

cessive values of x. 

X V = 7rxV4 A1 A2 

I 0.7854 
2.3562 

2 31416 
3.9270 

1.5708 

3 7.0086 
54978 

1.5708 

4 12.5664 
7.0686 

1.5708 

5 19.6350 

X y = ttx2/4 A1 

69 373928 
109.17 

70 3848.45 
no.74 

71 3959-19 
X12.31 

72 4071-50 
113.88 

73 4185-38 

For larger values of x where we wish to work to two decimal places 

only, we take A2y = 1.57 and proceed as above. 
Suppose we wish to tabulate the function y = x3. Here A3 is con¬ 

stant so that we merely compute the part of the accompanying table in 

heavy type. Then we extend the column for A3 by inserting 6’s, extend 

the columns for A2 and A1 by simple additions and subtractions, and thus 

determine the values of x3 for all integral values of x. 
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* I y = *8 

— I —I 

o o 

i i 

2 8 

3 

4 

5 

6 

27 

64 

125 

216 

A1 A* A* 

I 

I 

7 

19 

37 

6i 

91 

o 

6 

12 

18 

24 

30 

6 

6 

6 

6 

6 

The same procedure may be followed in the construction of a table for 

a function where a certain order of differences is only approximately con¬ 

stant. Thus, in forming table (4) of cube roots, we note that for that 

portion of the table Ay is approximately 0.0046 so that we can find the 

values of \Tx by simple additions; we must check the work by direct 

computation every few values in order to find when A2y changes its value. 

97. Newton’s interpolation formula. — We shall now express the 

value of y for any value of .r. From the definitions of successive differ¬ 

ences we have 

yi = yo + ao; ys = yi + ^1 = (yo + do) + (do + W = yo + 2 ao + bo; 
y3 = y2 + = (yo + 2 a0 + b0) + (do + 2 bo + Cq) = y0 + 3 do + 3 b0 + 

yi = yz + a3 = (yo + 3 ao + 3 ^0 + c0) + (a0 + 3 ^0 + 3 co + do) 

= yo + 4 00 + 6 60 + 4 + do; 

We note that the coefficients are those of the binomial expansion, and 

this suggests that 

n (ft — 1) 7 , n (n — 1) (n — 2) 
■t.+-g yn = yo + na0 + ■Co + (I) 

where n is a positive integer. If this equation is true, then, replacing y 

by a, the first difference, we may also write 

n (m — 1) . n (n — i) (n — 2) 

¥~'c‘ +-5 

.*. y„+i = y. + = yo + (« + l) flo + —— + nj ba 

an = Oo + nb0 + ■do + 

+ 
n (n — 1) (n — 2) . n (n — 1) 

+ 
* - 1)1 
12 JCo 

, / , •, , (n+i)n, .(n + i)n(n — i) . 
— Vo + (» + 1) Oo H-^-bo H ^ Co + 
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where the coefficients are again those of the binomial expansion with n 

replaced by n + 1. Thus we have shown that if equation (I) is true for 

any positive integral value of «, it is true for the next larger integral value. 

But we have shown (I) to be true when n = 4, therefore it is true when 

n = 5; since it is true for n = 5, therefore it is true for n = 6; etc. Hence 
(I) is true for all positive integral values of n. 

Now if some order of differences, say the &th order, is constant, i.e.% 

Aky = ko, then y is a polynomial of the kth degree in n, and equation (I) 
may be written 

A + Bn + CV + • • • + Ln* = y0 + na0 + —— b0 + . . . 

, n(n - 1) . . . (n- k + 1) t + g K 

The right member of this equation is also a polynomial of the kth degree 

in w, and since these polynomials are equal for all positive integral values 

of n {i.e.y for more than k values of n), they must be equal for all values of 

n, integral, fractional, positive, and negative. 

Hence if the kth order of differences is constant, we have 

n (n — 1) n (n — 1) (n - 2) 
yn = yo + na0 H-r--b0 H-----c0 + 

+ 

U 
n (n — 1) . . . (m — k + 1) 

'.".. 

ko (N) 

for all values of n. This fundamental formula of interpolation is known 

as Newton's interpolation formula. In this formula, y0 is any one of the 

tabulated values of y and the differences are those which occur in a line 

through y0 and parallel to the upper side of the triangle in the tabular 

scheme on p. 210. 

Newton’s formula is approximately true for the more frequent case 

where the differences of some order are approximately constant; all the 

more so if n < 1. We can always arrange to have n < 1; for if we wish 

to find the value of y — Y for x = Xt where X lies between the tabular 

values Xi and 1, we use Newton’s formula with yi and the correspond- 
X — X' 

ing differences ait biy . . . , so that X = + nh and n = —^—- < I.* 

The values of the binomial coefficients occurring in the formula have 

been tabulated for values of n between o and 1 at intervals of o.oi.f 

Let us now apply Newton’s formula to the illustrative difference- 

tables (1) to (8). 

* The ordinary interpolation formula of proportional parts disregards all differences 

higher than the first, so that y = y0 + wa0, where n = (X — xQ)/h. This simple formula 

will often give the desired degree of accuracy if the interval h can be made small enough, 

t See H. L. Rice, Theory and Method of Interpolation. 
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(i) To compute (3.4)15; yo~27> h-i, n = (3.4 — 3)/i =0.4; 

(3.4)--*7+<°.4) (37)+ (°-4) (7°'6) (34) + (6) 

= 39-304- 

(3) To compute ^23.5; y0 = 2.8439, h = 1, n =(23.5 - 23V1 = 0.5; 

/. ^2375 = 2.8439 + \ (0.0406) + | (0.0011) = 2.8643. 

If we use the ordinary interpolation formula of proportional parts, 

^23.5 = 2.8439 + ^ (0.0406) = 2.8642, which would be correct to 

three decimals only. 

(4) To compute ^612.25; > = 8.4902, h= 1, n = (612.25-6i2)/i = \; 

v/6i2.25 = 8.4902 + l (0.0046) = 8.4914. 

(5) To compute R when V=65; R0= 14.9,ft = 20, n — (65 — 6o)/20 = J-; 

R = 14.9 + \ (7.9) - Tt'V (24) = 

(7) To compute log 501.3; > = 2.6998, // = 1, « = (501.3 — 5oi)/i =0.3; 

log 501.3 = 2.6998 + 0.3 (0.0009) = 2.7001. 

(8) To compute log sin i° 16'; > = 8.3088 — 10, h = 10', n = 

(i° 16' — i° io')/io' = 0.6; 

.\ log sin i° 16' = (8.3088 — 10) + 0.6 (0.0580) — 0.12 ( — 0.0069) 

+ 0.056 (0.0016) = 8.3445 — 10, correct to 4 decimals. 

If we use the ordinary formula of proportional parts, we have 

(og sin i° 16' = 8.3088 — 10 + 0.6 (0.0580) = 8.3436 — 10, correct to 2 

decimals only. 
If the value of x for which we wish to determine the'value of y is near 

the end of the table we may not have all the required differences. To 

take care of this case Newton's formula is slightly modified. If we 

invert the scries of values of x in the tabular scheme on p. 210, and form 

the differences, we have 

X y A» A* A3 

Xn yn 
— an-i 

Xn-l yn-1 

Xi yi 
—az 

Xz y* 
— 0,2 

bz 
— Ci 

Xz y* 
— CLi 

h 

— Co 
Xi yi bo 

Xq i yo 
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Starting at y4 and applying Newton’s formula, we get 

yn = y± + ft (— 03) H-^-77—- 62 + 
n{n- \)u , n (n - 1) (n - 2) + . . . 

-*-«<* + 2^—-^ 4, - "(«■-Cl + 

Comparing the result with the scheme on p. 210, we note that the differ¬ 

ences are those which occur along a line parallel to the lower side of the 

triangle in that scheme. Here y4 is any value of y, and if X lies between 
Xi and *3, then X = x4 — nh, and n = (x4 — X)/h. 

Example. To compute ^24.8. In table (3), y4 = 2.9240, h — 1, 
n = (25 — 24.8)/i = 0.2; 

.\ >^24.8 = 2.9240 — 0.2 (0.0395) -^(_0 0on) = 2.9162. 

If a series of corresponding numerical values of two quantities are 

given, we may use Newton’s formula for finding the polynomial which 

will represent this series of values exactly or approximately. For this 

purpose we replace n by (x — x0)/h. 

Thus, in table (1), h = 1, .r0 = 1, n = x — 1; 

, , . . (x— 1) (x — 2) x (x— 1) (x — 2) (x—3) , , 
y = 1 + (x - 1) 7 + -v--- 12+ - .--v-r- ' v .•6 = x3. 

L? (3 

In table (5), h = 20, V0 = 20, n = ——= — — 1; 

U-‘)3'6 +-1?-2-- J? = 5'5 + U“ 

= 4.1 + 0.015 V + 0.00275 T2. 

The values of R computed by this formula agree quite closely with those 

in the table. 

In table (6), h = I, Vo = io, n = V — io; 

I = 1900 + (V — 10) 600 + 
(V — 10) (V — 11) 

150 

+ (V -jo) (F- II)(F - 12) 5o 

= —6850 + 2042 V — 200 V2 + 8^ V3. 

The values of I computed by this formula agree quite closely with those 

in the table; thus, V = 12 gives I = 3254. 

Various formulas of interpolation similar to Newton’s have been de¬ 

rived which are very convenient in certain problems. Among these 

may be mentioned the formulas of Stirling, Gauss, and Bessel.* 

* For an account of these formulas, see H. L. Rice, Theory and Practice of Interpola¬ 

tion, and D. Gibb, Interpolation and Numerical Integration. 
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98. Lagrange’s formula of interpolation. — Newton’s formula is 

applicable only when the values of x are equidistant. When this is not 

the case, we may use a formula known as Lagrange’s formula. Given 
the following table of values of x and y, 

X I qi &2 d\ ah . . . an 

y 1 yi yz y^ ^5 . . . yn 

we are to find an expression for y corresponding to a value of x lying be¬ 

tween a\ and q„. We take for y an expression of the (n — i)st degree in 

x containing n constants, and determine these n constants by requiring 

the n sets of values of x and y to satisfy the equation. But instead of 

assuming the form y = A + Bx + Cx2 +•••-(- Nxn~l, we may assume 
the equivalent form 

y = A (x — q2) (x — a3) (x — <z4) . . . (.t* — a„) 

+ B (x — ai) (x — a3) (x — a4) . . . (x — q„) 

+ C (x — 01) (.x — a2) (x — a4) ... (x — a„) 

+ ........ 
+ N (x — a 1) (x — a2) (x — a3) . . . (x — a„_ 1), 

where the n terms in the right member of the equation lack the factors 
(:c — aO, (x — a2), ... (x — an) respectively. 

Since (ai, ji) is to satisfy this equation, 

>’i = A (01 - a2) (ai - a3) (ai - a4) . . . (ax - an), 

since all the other terms contain the factor (a4 — «!) and therefore vanish. 
Similarly, 

y2 = B (a2 - ai) (o2 - a3) (a2 - a4) . . . (a2 - an), 

yz = C (a3 - ai) (a3 - a2) (a3 - a4) . . . (a3 - an), 

Hence, j 
yn= N (a„ - aj) (an - a2) (a„ - a3) . . . (a„ - an-x). 

(01 - a2) (a! - a3) (ax - a.t) . . . (a4 - a„) ’ 

~ (02 — «i) («2 — a3) (a2 — a4) . . . (o2 — an) ’ etC-’ 
and, finally, 

(x—a2) (jc-ffl3) . . . (s-q,,) _j_ (y-qQ (a:-a3) . . . (*-g„) 

^(01 —J2) (ai —g3) . . . (qi— q„) (ch — at) (an—a3) . . . (a2—an) 

4. . . . -f y ~ a<) i.x — a2) . . . {x - qn-i) 
■y" (q„ - qi) (q„ - q2) . . . (q„ - q„_!)' 

y=y\ 

We note that in the term containing y*, the numerator of the fraction 

lacks the factor (x — q*) and the denominator lacks the corresponding 

factor (q* — q*). Lagrange’s formula is in convenient form for logarith¬ 
mic computation. 



A*T. 99 INVERSE INTERPOLATION 219 

Example. In the table on p. 132 we have 

t 14 17 3i 35 
A 68.7 64.0 44.0 39-1 

and we are to find the value of A when / = 27. Using Lagrange’s formula, 

, _ _ (27-17) (27-31) (27-35) , (27-14) (27-31) (27-35) 

7 (14-17) (14-31) (14-35) + 4 (17-14) (17-31) (17-35) 

, ., -(27-14) (27-17) (27-35) , „ . (27-14) (27-17) (27-31) 

44 (31-14) (31-17) (31-35) i_39' (35-14) (35-17) (35-31) 
= -20.5 + 35.2 + 48.0 - 13.4 = 49.3, 

which agrees exactly with the observed value. 

Example. In the table on p. 157 we have 

t 0.1 0.2 0.4 0.8 

i 2.48 2.66 2.58 2.00 

and we are to find the value of i when t = 0.3. Using only the values 

t = 0.2 and t = 0.4, 

i = 2.66 (°-3 - 04) + 2 5g (o-3 - 0.2) = 1.33 + 1.29 = 2.62. 
(0.2 — 0.4) ' (0.4 — 0.2) 

Using all four values of /, i = 2.68. Using the empirical equation 

i = 4.94 e_107( — 2.85 e~37fil (on p. 159), we get i = 2.66. 

Gauss’s interpolation formula for periodic functions. —-When the data 

are periodic we may find the empirical equation as a trigonometric series 

by the method of Chapter VII and use this equation for purposes of in¬ 

terpolation, or we may use an equivalent equation given by Gauss: 

___ sin \ (jc — of) sin j- (x — a3) . . . sin j (,v — an) 

y ~ yi sin \ (oi — a2) sin \ (ai — a3) . . . sin \ (ai — a„) 

, s'n 2 (-y ~ s*n h (-y ~ Q3) • • • sin ^ (x — an) 
sin I (a2 — 01) sin | (a2 — a3) . . . sin 5 (a2 — a„) 

+. 
It is evident that y - y 1 when x = au y = y2 when x = a2, etc., so that 

the equation is satisfied by the corresponding values of x and y. 

99. Inverse interpolation. — Given the table 

X Xq Xi *2 X3 . . . Xn 

y yo yi yi yo . . . yn 

we may wish to find the value of x corresponding to a given value of y. 

If the values of x are equidistant we may use Newton’s interpolation 

formula. Here we know y», yo, Oo. bo, Co, , and substituting these 

values in the formula we have an equation which is to be solved for n. 

If only the first order of differences are taken into account, then 

yn = y0 + nao, and n — —-—, the ordinary formula for inverse inter- 
Oq 

polation by proportional parts. 
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Example. In table (7), given log* - 2.7003, to find x. 
2.7003 — 2.6098 

” = -0,0009-= °'56’ and x = x0 + Tih = 501 + 0.56 (1) = 501.56. 

If only the first and second differences are taken into account, then 
. n (n — 1) , 

yn — yo + na0 ---Do, a quadratic equation which can easily be 

solved for n. 

Example. In table (5), given R = 27.3, to find V. 

Here 27.3 = 22.8 + n (10.5) + —— (2.2), 

or 1.1 h2 + 9.4 « - 4.5 = o; 

hence n = T\ = 0.455 and x = V0 + nh = 80 + (0.455) 20 = 89.1. 

The empirical formula R = 4.62 — 0.004 V + 0.0029 U2 on p. 149 

gives V = 89.1, R = 27.3. 

But if the third and higher orders of differences have to be taken into 

account, the method would require the solution of equations of the third 

and higher degrees. In such cases as well as in the case where the values 

of .r are not equidistant, we may use Lagrange’s formula and merely in¬ 
terchange x and y; i.e., 

„ _ Y (y - (y - a3) . . . (y - at) (y - a3) . . 
1 (a, -a2)W- a3) . . . + * (a, -<*)&- a3) . +- 

Example. In table (8), given log sin x = 8.3850 — 10, to find x. 
Using only the following values, 

log sin x 8.3088 — 10 

we have 
70 

8.3668 - 

80' 
10 j 8.4179 10 

90' 

* = 70' (°-°l82) (-0-0329) , g / (0-0762) (-0.0329) 
(-0.0580) (-0.1091) "r (0.0580) (-0.0511) 

4. on' (0-0762) (O.OI82) 

} (o.I09l)(0.O5Il) 

= 70' (-0.0946) + 80' (0.846) + 90' (0.249) 

= 8347' = 1° 23.47'. 

We may also use a method of successive approximations as follows: 
From Newton’s formula we write 

n = yo 
Oo + h (w — 1) + g (n — 1) (n — 2) c0 + • • • 

Applying this to the above example, and taking only the first differences 
-nto account, we get as a first approximation, 

_ y - yo = (8.3850 - 10) - (8.3668 - 10) _ 182 

cm 0.0511 511 
= 0.356. 
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Taking also second differences into account and introducing the value of 

tii for n in the denominator, we get as a second approximation, 

_ __y ZL?0__ __ 0.0182 _ 182 _ 
2 «o + 2 in 1 ““ 1) b0 0.0511 + 0.0017 ~ 528 °‘^5* 

We may continue in this way approximating more and more closely to the 

value of n. In this example it will be unnecessary to carry the work to 
third differences since A3 is negligible. Hence 

n = 0.345, and x = x0 + nh = i° 20' + (0.345) (io') = i° 23.45'. 

We may check this by direct interpolation. Here 

y0 = 8.3668 — io, h = 10', and n = 0.34.5; 
hence, 

y = 8.3668 - 10 + 0.345 (0.0511) - 0.113 (-0.0053) = 8.3850 -10. 

Example. Find the real root of the equation x? + 5 x — 1 =0 

We form a table of differences of the function y — x* -L- 5 x — i. 

X y 

— 2 -19 

— I -7 

O — 1 

I 5 

2 17 

3 4i 

The root lies between x — o and x 

when y = o. Using the method 

At A^ A3 

12 

-6 
6 6 

o 
6 6 

6 
12 6 

12 

24 

= 1, and we are to find the value of x 

f successive approximations we have 

n 1 = 

n2 = 

n3 = 

n\ = 

y — yo o + 1 1 - 
___________ 0.1667, 

y — y0 _ 1 _ 2 _ Q 

Go + 5 («i — i) io 6 + 5 (g — 1) 6 7 2 

y - yo _ 1 
flo+ H”2 — i) io + £ («2 — 1) («2 - 2) Co 6- V + U 249 

y-y0 _ 1 

= “ = OI968, 

Oo + 2 («3 — i) io + 6 («3 — 0 («3 — 2) Co 6 — 2.4096 + 1.4483 

I 

5-0387 

Hence, 

From the table 

= 0.1985. 

x — x0 + nh = 0.1985. 

x 0.1985 0.19845 0.1984 

y 0.00032 0.00006 — O.OOOI9 

we note that x — 0.1984 is the root correct to 4 decimals. 
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EXERCISES 

1. Tabulate the values and differences of the following functions; ft is the common 

interval. 
(a) x2, from x = 5 to x = 12 when ft = 1; and from x » 3 to x — 3*1 when ft — 0.01. 

(b) Vx, from x = 1 to x = 10, when ft = 1, and from x = 563 to x = 570 when 

ft = 1. 

(c) I f from x — 60 to x = 70 when ft = 1, and from a: = 260 to x = 262 when 

A = 0.2. 
_n3 

(d) , - (volume of a sphere), from D = 1 to D = 1.8 when ft = o.l. 
6 

(e) logx, to 4 decimals, from x = 356 to x = 362 when ft == 1. 

(f) tan x, to 4 decimals, from x =32° to x = 330 when ft = 10'. 

(g) log cos x, to 4 decimals, from x = 88° 10' to x = 89° 20' when ft = io'. 

(h) Pt to 4 decimals, from x = 0.8 to x = 0.9 when ft = 0.01. 

(i) i (a — sin a), to 4 decimals (area of a segment of a circle subtending a central 

angle «, in radians) from a = 250 to a — 320 when ft = i°. 

2. Tabulate the differences for the following experimental results and indicate for 

each case the degree of the polynomial that would best express the relation between the 

variables. 

(a) 5 = stress in lbs. per sq. in. in steel wire used for winding guns, E = elongation 

in inches per inch. 

5 10,000 | 20,000 | 30,000 40,000 50,000 60,000 70,000 | 80,000 

E 0.00019 | 0.00057 | O.OOO94 O.OOI34 0.00173 0.00210 0.00256 ] 0.00297 

(b) Q = cu. ft. of water per sec. flowing over a Thomson gauge notch; II — ft. of head. 

II \ 1.2 1.4 1.6 1.8 2.0 

~'Q I 4.2 6.1 8.5 11-5 14.9 ~ 

(c) P/a = load in lbs. per sq. in. which causes the failure of long wrought-iron 

columns with round ends, l/r — ratio of length of column to least radius of gyration of 

its cross-section. 

Ur 140 18. 220 260 300 340 380 420 

P/a 12,800 7500 5000 3800 2800 2100 1700 1300 

(d) e = volts, p = kilowatts in a core-loss curve for an electric motor. 

e 40 60 80 100 | 120 140 160 

p 0.63 1.36 2.18 3.00 3-93 ~ 6.22 8-59 

(e) A — amplitude of vibration in inches of a long pendulum, t — time in mia. 

since it was set swinging. 

0 1 2 1 3 4 5 6 

A 1 10 4.97 2.47 1.22 0.61 0.30 0.14 

(/) V = potential difference in volts, A = current in amperes in an electric circuit. 

A 2.97 3-97 4-97 5-97 6.97 797 
V 65.0 61.0 58.25 56.25 55*1 54-3 

Ci) 

X 1.1 3 1 5 [ 7 _)_9_ I_l!_ 1 13 
” y 1 1 642 8.50 1 n.03 1 1403 1 17-53 1 31.55 | 26.12 
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(h) 
* 0 0.3 0.6 0.9 1.2 i-5 1.8 2.1 2.4 2.7 

y 300 1.89 1.27" 0.88 0.63 0.46 0*33 0.25 0.18 0.05 

3. By the method of differences explained in Art. 96, extend the tabulation of the 

functions in Exs. 1 a, b, d, e, h, i, for several values of the variables beyond the range 

of values for which the tables were constructed. 

4. Apply Newton’s interpolation formula to the tables in Ex. 1. 

(a) In Ex. 1 a, find x- when x — 7.3 and x = 3.056. 

(b) In Ex. 1 b, find y/x when x — 566.2. 

(c) In Ex. 1 d, find wD3jC> when D — 1.452. 

(d) In Ex. 1 e, find log x when x — 361.4. 

(e) In Ex. 1 g, find log cos x when x — 88° 43'. 

5. Apply Newton’s interpolation formula to the tables in Ex. 2. 

(a) In Ex. 2 a, find li when S — 42,000. 

(b) In Ex. 2 b, find Q when II — 1.7, and compare with the value given by the em¬ 

pirical formula (J = 2.672 IP 4\ 

(c) In Ex. 2 c, find P{a when I 'r = 327, and compare with the value given by the 

empirical formula P/a = 417,000,000 (//r)21 

(d) In Ex. 2 f, find V when A = 4.07. 

(e) In Ex. 2 g, find y when x — 6. 

(f) In Ex. 2 h, find y when x ~ 1.3 and x = 2.46. 

6. In the following table (taken from p. 129) 

0 -I- 
288 293 .j_313_ 333 

•V 1 35-2 “ 37-2 45-^ 55-2 

5 is the number of grams of anhydrous ammonium chloride which dissolved in 100 grams 

of water makes a saturated solution of 0° absolute temperature. Use Lagrange’s formula 

of interpolation to find S when 0 = 300°, using (1) only two values of 0, (2) three values 

of 0, (3) all four values of 0. Compare the results with the value'given by the empirical 

formula S = 0.000000882 6rm. 

7. In the following table (taken from p. 141) 

V 
J_j 2 | 4 (_8_ 
120 ! 94 | 75 6 2 

i is the current and V is the voltage consumed by a magnetite arc. Use Lagrange’s 

formula to find V when i = 3, and compare the result with the value given by the 

empirical formula V — 30.4 + 90.4 

8. LTse the methods of inverse interpolation (Art. 99) in the following: 

(a) In Ex. 1 a, find .v when .y2 = 39 and when x2 = 9.34. 

(b) In Ex. 1 e, find .y when log .v = 2.5542. 

(c) In Ex. 1 g, find x when log cos x — 8.3946 — 10. 

(d) In Ex. 2 a, find N when E = 0.00192. 

(e) In Ex. 2 c, find l r when P/a ~ 4000. 

(f) In Ex. 2 g, find x when y — 15.25. 

9. Approximate to the real roots of the equations: 

(a) jc3 — 2 x + 3 = o. 

(b) x* — 4 .r + 2 =0. 

(c) ex -j- x2 — 4 = o. 

(d) 10 log x — x — 2 =0. 

(e) sin x + x2 — 1.5 = o. 



CHAPTER IX. 

APPROXIMATE INTEGRATION AND DIFFERENTIATION. 

ioo. The necessity for approximate methods. -In a large number 

of engineering problems it is necessary to determine the value of the 
f'b 

definite integral, / /(.v) dx. Geometrically, this integral represents the 

area bounded by the curve y = /(.v), the .r-axis, and the ordinates x = a 

and .r = b. Physically, it may represent the work done by an engine, 

the velocity acquired by a moving body, the pressure on an immersed 

surface, etc. If f(x) is analytically known, the above integral may be 

evaluated by the methods of the Integral Calculus. But if we merely 

know a set of values of f(x) for various values of .v, or if the curve is drawn 

mechanically, e.g., an indicator diagram or oscillograph, or even where the 

function is analytically known but the integration cannot be performed 

by the elementary methods of the Integral Calculus — in all these cases, 

the integral must be evaluated by approximate methods — numerical, 

graphical, or mechanical. The planimeter is ordinarily used in measuring 

the area enclosed by an indicator diagram and in certain problems in 

Naval Architecture; such approximations often have the desired degree 

of accuracy. Where a higher degree of accuracy is required or where a 

planimeter is not available numerical methods must be used. 

In certain problems it becomes necessary to determine the value of 

the derivativ Geometrically, this represents the slope of the curve 

y = f(x) at any point. Physically, it arises in problems in which the 

velocity and acceleration are to be found when the distance is given as a 

function of the time, in problems involving maximum and minimum 

values and rates of change of various physical quantities, etc. To 

evaluate the derivative we may use the methods of the Differential Cal¬ 

culus if the function is analytically known. Otherwise we arc forced to 

use approximate methods — numerical, graphical, or mechanical. 

It is our purpose, in the following sections, to develop some of the 

numerical, graphical, and mechanical methods used in approximate in¬ 

tegration and differentiation. 

ioi. Rectangular, Trapezoidal, Simpson’s, and Durand’s rules. — 
Suppose we wish to find the approximate area bounded by the curve 

y f(x), the x-axis, and the ordinates x = x0 and x = xn (Fig. ioi). 
224 
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We divide the interval from x = x0 to x = xn into n equal intervals of 

width h, and measure the (n + 1) ordinates y0y y 1, ^2, . . . , yn-1, yn- 
(1) Rectangular rule. — If, starting at we draw segments parallel 

to the x-axis through the points P0, P1, P2, - • • , Pn-u the area enclosed 

by the rectangles thus formed is given by 

Ar = h (y0 + yi + + * • * + yn-1). 

If, starting at Pny we draw segments parallel to the x-axis through the 

points Pni Pu-1, . . . , Pi, P1, the area enclosed by the rectangles thus 
formed is given by 

An “ h (vi + V2 + }’:i + * * * + yn)• 

It is evident that the smaller the interval //, th^bettcr the approxima¬ 
tion to the required area. 

(2) Trapezoidal rule. — If the chords P^PU Pi Pa, . . . , Pn-iPn are 

drawn, then the area enclosed by the trapezoids thus formed is 

^ (V:^»(v’‘.•1 -) 
= h [2 O'o + y*i) + )\ + \'2 + * * • + yn~ 1]. 

This expression for the area is the average of the two expressions given 

by the rectangular rules. It is evident that the smaller the interval h 

and the flatter the curve, the better the approximation to the required 

area. If the curve is steep at either end or anywhere within the interval, 

the rule may be modified by subdividing the smaller interval into 2 

or 4 parts; thus, subdividing the steep interval between xn_i and xn in 
Fig. 101 
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(3) Simpson's rule. — Let us pass arcs of parabolas through the points 

P0P1P2, P2P3P4, . . . , Pn-2P>i-iPn- Let the equation of the parabola 
through PqPiPz be y = ax2 + bx + c. Then the area bounded by the 

parabola, the x-axis, and the ordinates x = xq and x = x2 is 

A = J (ax2 + bx + c) dx — 
•Jxq 

ax5 bx2 
3- + -+,v! = a (.v23 — -Vo3) + | (x2~ — Xo2) 

) J ^ 

+ c (x2 — Xo) = ° [2 a (.v22 + x2x0 + Xo2) + 3 b (X2 + Xo) + 6 c\. 
* 

Now, y0 = ax02 + bx0 + c, y2 = ax22 + bx2 + c, h = '2 —-:~»4 

+ /u-| + c = a + b --) + c, 

and we may easily verify that 

A - \ h (yo + 4 X! + y2). 

If we have an even number of intervals and apply this formula to the 

successive areas under the parabolic arcs, we get 

As = 3 A (jO + 4 Jl+>,2) + 3 A (>'2 + 4 >3+Xl) +**•+! A(^n-2 + 4 ^n-l+jO 

= 3 A (jo + 4 J'l + 2 J'2 + 4 V3 + 2 + * • * +2 Vn-2 + 4 >*-1 + >») 

= '3 *[(Vo + yn)+4 (Vl+J’3 + >,0+ ’ * * +>'n-l)+2 (V-> + >'l + >'ti + * * * + >'*-•>)]• 

To apply Simpson’s rule we must divide the interval into an even 

number of parts, and the required area is approximately equal to the 

sum of the extreme ordinates, plus four times the sum of the ordinates 

with odd subscripts, plus twice the sum of the ordinates with even sub¬ 

scripts, all multiplied by one-third the common distance between the 

ordinates. 

(4) Durand's rule * — If we have an even number of parts and apply 

Simpson’s rule to the interval from xi to x„_i and the Trapezoidal rule to 

the end intervals, 

A = h [(| y0 + 2 >'0 + Q yi + ?\ y* + f y* + • • • 

+ § y~-3 + i yn-2 + I y»-0 + (2 yn-1 + \ yn)]- 

Applying Simpson’s rule to the entire interval from x0 to xn, 

A=h [3 yo + i yi + § y2 + i y3 + • • • + i yn~3 + ! y*-2 + j yn-i + 3 yn]- 

Adding, 

22I = A [# y0 ++3 yi +2y2 + 2x3 + . . . +23V-3 + 2xn_o +Vy»-i + ffyn]. 

* Given by Prof. Durand in Engineering News, Jan., 1894. 
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Hence, 

Ad = h [A (yo + y») + (yi + yn-0 + y* + yi + • • • + yn-2] 
= h [0.4 (y0 + yn) + 1.1 (yi + yn-0 + y2 + y3 + • • • + y„-2]. 

Collecting our rules, we have 

(1) Ag = h (yo ■+■ yi + y2 + • • • + yn-i). 

or Ar'= A(yi + y2 + ys+ • • • +y»). 

(2) At = h [Hyo + y«) + yi + y2 + • • • + y„-i]. 
(3) = I h [(yo + y») + 4 (yi + ^3 + ys + • • • + y»-0 

+ 2 (y2 + y* + y« + • • • + yn-2)]. 
(4) Ad = h [0.4 (y0 + y«) + 1.1 (yi + y«-i) + y2 + y3 + • • • + y«-2]. 

102. Applications of approximate rules. — We shall give some ex¬ 

amples illustrating the application of these rules. J-io 
This is equivalent to finding the area 

2 x 
between the curve y = l/x, the x-axis, and the ordinates x — 2 and 

x = 10. If we divide the interval into 8 parts, then h = 1; we have the 

table » 

X 2 3 4 _5 __ 6 7 8 i 9 IO 

y 1 
'i 
2 

1 
3 

i 
4 

1 1 
6 1 i 1 i A 

Ar = 1 (i + 3 + 4 + ‘ ' 

Ar = I (3 + 4 + !. + • • • 

At = I [2 (2 + A) + 3 + 

+ J) = 1.8290; 
+ ,'0) = 1.4290; 

• • +.',] = 1.6290; 

= 3 [(2 + A) + 4 (3 + i + } + ») + 2 (4 + J + a)] = 1.6109; 
Ad — 1 [o-4 (2 + A) + i-i (3 + ») + 4 + h + • • ’ + |] — 1-6134. jr*'o fix 10 

- = In x = In 10 — In 2 = In 5 = 1.6094. 
2 X 2 

We note that Simpson's rule gives the best approximation (within 

0.1 % of the true value), with Durand’s next. 

If we take h = 

At = + A- + *+ ~7“ + * * * +-Vl= 1.6144; 
2\_2\2 IO/ 5/2 3 7/2 I9/2J 

As ~ 6 .(2 + To) +_4 (5/2 + 7?2 + ’ + 19/2) 

+2(H+-" A)]” 1-6096- 
6096. 

Thus the Trapezoidal rule with 16 ordinates does not give the accuracy 

given by Simpson’s rule with 8 ordinates. 

2. Area. — The half-ordinates in feet of the mid-ship section of a 

vessel are 

12.5, 12.8, 12.9, 13.0, 13.0, 12.8, 12.4, 11.8, 10.4, 6.8, 0.5, 

and the ordinates are 2 feet apart; find the area of the whole section. 
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\At = 2\\ (12.5 + 0.5) + 12.8 + • • • + 6.8] = 224.8; 

$ = f [(12.5 + 0.5) -f 4 (I2-8 + 13-0 + 12.8 + 11.8 + 6.8) 

+ 2 (12.9 + 13.0 + 12.4 + 10.4)] = 226.1. 

Hence, AT = 449.6 sq. ft., As - 452.2 sq. ft. 

3. Work. — Given the following data for steam 

V | 2 4 6 8 IO 

~p~\ 68.7 313 19.8 14-3 H-3 

where v is the volume in cu. ft. per pound and p is the pressure in pounds 
per sq. in.; find the work done by the piston. Xio 

pdv; this is equivalent to finding the area under the curve 

obtained by plotting (v, p). 

WT = 2 [-J- (68.7 + 11.3) + 31.3 + 19-8 + I4-3] = 210.80; 

Ws = ! [(68.7 + 11.3) + 4 (3i-3 + 14-3) + 2 (19.8)] = 201.33. 

By the methods of Chapter VI we find the empirical formula con¬ 
necting v and p to be pv1-12 = 148, and hence, 

/MO /MO 

W = J pdv = 148 J v~1A2dv = 148 
v~°n 

— 0.12 = 199-31- 

This last value differs from the value given by Simpson’s rule by about i%. 

4. Mean effective pressure. Indicator diagram. Fig. 102a is a re¬ 

production of an indicator diagram; to find the mean effective pressure. 

The mean effective pressure P is the area of the diagram divided by 

the length of the diagram, since the area represents the effective area of 

the piston in sq. in. and the length represents the length of the stroke in ft. 

Since the total area enclosed by the curve is the difference between the 

area bounded by a horizontal axis, the end ordinates, and the upper part 

of the curve, and the area bounded by the same straight lines and the 

lower part of the curve, we need merely measure the lengths of the ordi¬ 

nates within the curve. The diagram is 3.5 ins. long. We divide the 

interval into 8 parts; then h = T7*, and we measure the ordinates 

o, 0.40, 0.63, 0.91, 0.98, 1.00, 0.92, 0.74, o. 1.00, 
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Ar = r7n fo.40 + 0.63 + • • • + 0.74] = 2.44; 

As = *7g [4 (0.40 + 0.91 + 1.00 + 0.74) + 2 (0.63 + 0.98 + 0.92)] = 2.52. 

Hence, 
p = As = +52 

3-5 3-5 
0.72. 

We divide the interval into 14 parts; then h = \, and we measure the 

ordinates 1 

0, 0.30, 0.42, 0.54, 0.68, 0.88, 0.96, 0.98, 1.00, 1.02, 0.97, 0.89, 0.78, 0.64, o. 

At= i [0.30 + 0.42 + • • • + 0.64] = 2.52. 
■<4,s = tV [4(0.30+0.54+ • • • +0.64)+2 (0.42+0.68+ • • • +0.78)1 = 2.55. 

Hcnce, /’ - £ • - 0-73. 

We note that with 9 ordinates has the same value as At with 15 

ordinates. 
5. Velocity. — Given a weight of 1000 _ 

tons sliding down a 1% grade (Fig. 102/;) 

with a frictional resistance of 10 lbs. per ton 

at all speeds. The total resistance is 30,000 

lbs. (a frictional resistance of 10,000 lbs. and 

a grade resistance of 20,000 lbs.). Let the following table express the 

accelerated force F as a function of the time t in seconds: 

jo(y 

Fig. 1026. 

t \ 0 100 ! 200 | 300 400 [ 500 I 600 700 800 900 I 1000 
F j 2 0,000 | 19,000 16, oooj 11,000 5000! — 10001 — 5000 -8500 — 11,000 —13,000] -15,000 

Find the velocity acquired by the body in 1000 seconds. 
2,000,000 1,000,000 

Since 

therefore, 

F = m X a, and 

F 16.1 F 

m = 

g 16.1 

m 1,000,000 
dv rioo° 

; and -y. = a, hence, v = | adt. 
dt J 0 

We form a table for the acceleration a. 

/ 0 I 100 | 200 300 1400 500 | 600 | 700 I 800 900 IOOO 

a 0.322 j 0.306 j 0.258 0.177 i 0.081 — 0.016 | — 0.081 j -0.137 j -O.I77 — 0.209 — 0.242 

Here, h = ioo, so that 

vt= 100(1(0.322—0.242)+ (0.306+0.258+ • • • —0.209)] = 24.2 ft. per sec. 
Vs = [(0-322 — 0.242) + 4 (0.306 + 0.177 — 0.016 — 0.137 — 0.209) 

+ 2 (0.258 + 0.081 — 0.081 — 0.177)] = 24.2 ft. per sec. 

6. Volume. — If Sz is the area of a cross-section of a solid made by a 
plane perpendicular to the x-axis, then the volume of the solid included 

between the planes x0 and is In order to integrate, 

we must know the analytical expression for Sz as a function of x. 

Otherwise we employ the approximate formulas; the values of Sx are the 
ordinates and h is the common distance between the cutting planes. 
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A buoy is in the form of a solid of revolution with its axis vertical, 

and D is the diameter in ft. at a depth p ft. below the surface of the water. 

p O 0.3 0.6 0.9 1.2 i-5 1.8 
D 6.00 5-90 5.80 5-55 525 4.70 4.20 
D2 36.00 34.81 3364 30.80 2756 22.09 17.64 

Find the weight of water displaced by the buoy (i cu. ft. of sea water 
weighs 64.11 lbs.). 

- D2 dp, and h = 0.3, 
0 4 

hence, Fs= ^7 [(36.00 + 17.64) + 4 (34.81 + 30.80 + 22.09) 
3 4 

+ 2 (33 64 + 27.56)] = 41.38 cu. ft., 

and the weight of water displaced = 2652.87 lbs. 

The areas in sq. ft. of the sections of a ship below the load-water plane 
and 3 ft. apart are 

7500, 7150, 6640, 5680, 4225, 2430, 260, 

where the load-water plane has an area of 7500 sq. ft. Find the dis¬ 

placement in tons (35 cu. ft. of sea water weigh 1 ton). 

FV = 3 [5 (75°°+260) + (7150+6640 + 5680+4225 +2430) ] = 90,015 cu. ft. 

Fs=f[(7500+26o)+4(7150+5680+2430)+2(6640+4225)] = 90,53001. ft. 

Hence, the displacement is 2572 tons by the Trapezoidal rule and 2587 

tons by Simpson’s rule. 

7. Moment of inertia. — The moments of inertia of an area about the 

axes are 

Jx = / i y3 dx, Jv = / x2y dx. 
J To X 0 

The evaluation of these integrals is equivalent to finding the areas under 

the curves with y3 or x2y as ordinates and x as abscissas. 

The half-ordinates in ft. of the mid-ship section of a vessel are 

12.5, 12.8, 12.9, 13.0, 13.0, 12.8, 12.4, 11.8, 10.4, 6.8, 0.5, 

and the ordinates are 2 ft. apart. Find the moment of inertia of the 

entire section about the axis. 
P20 

Here, Jz = 2 J £ y3 dx, h = 2, and the values of y5 are 

i953*i. 20972, 2146.7, 2197.0, 2197.0, 2097.2, 1906.6, 1643.0, 1124.9, 314.4, 0.1, 

and applying Simpson’s rule, 

Jx = ! (!) [(1953-1 + 0.1) + 4 (2097.2 + • • • + 314.4) 
+ 2 (2146.7 + • • • + 1124.9)] = 22,266.1. 
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8. Pressure and center of pressure. — The pressure on a plane area 

perpendicular to the surface of the liquid, between depths xQ and xnj is 

p = w I xy dx, where w is the weight of the liquid per unit volume, y is 

the width of the area at a depth x beneath the surface. The depth of 

J n x2y dx 

the center of pressure of such an area is given by x = ---All 

I xy dx 
! 

these integrals can be evaluated approximately. 

9. Center of gravity. — The coordinates of the center of gravity of an 

area are 

j xy dx 
Moment about OY - J £- y2 dx 

J y dx 
Area ’ ^ 

« 

j y dx 

Moment about OX 

Area 

The half-ordinates in ft. of the mid-ship section of a vessel are 

12.5, 12.8, 12.9, 13.0, 13.0, 12.8, 12.4, 11.8, 10.4, 6.8, 0.5, 

and the ordinates are 2 ft. apart. Find the center of gravity of the 
section. 

x = 
Moment about OY 

Area 

and applying Simpson’s rule to the table, 

X 0 2 .. 4_ 6 8 xo 12 14 16 | 18 20 

12.5 1278 12.9 13.0 13-0 ~I2.8~ 12.4 11.8 J IO-4 6.8 yjL 
xy O 25-6 51.6 78.0 104.0 128.0 148.8 165.2 1 166.4 122.4 10.0 

= 5 [(0 + io.o)+4 (25.6 + • • • + 122.4)+2 (51.6 + * • * +166.4)] 

= 2018.9. 

As = § [(12.5 + 0.5) + 4 (12.8 + • • • + 6.8)+2 (12.9 + • • • +10.4)] 
- 226.1. 

Hence, 
2018.9 

226.1 
8.93 ft. 

103. General formula for approximate integration. — We may derive 

a general formula for approximate integration by integrating any of the 
formulas of interpolation. Thus, Newton’s formula (p. 215), 

y. = yo + na0 + 
n (n — 1) 

bo + + n (n — 1) (n - k + 1) 

l* 
<Qi 
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where x = x0 + nh, is true for all values of n if some order o£ differences 
is constant or approximately constant. Multiplying by dn and inte¬ 

grating term by term between the limits o and n, we have 

Xn -S Pn Pn U Pn 

yndn = y0J dn + a0 J n dn + ^ J n (n — i) dr 

+ilXw (w ~_ + 

Since x = x0 + nh, therefore, n = x—~-X° and dn = ydx. Hence, 
ft n 

I> ■h h"+?*>+(f - ?)|+(t - "■+”!) g 

\5 2^3 J /[4 V6 4 3 

Thus, if the differences after some order, as the &th, are negligible, we 

may use this formula to get the approximate area between the curve, the 

x-axis, and the ordinates x — x0 and x = x„. The process is equivalent to 

approximating the equation of the curve by a polynomial of the kth 

degree. The differences a0y b0, c0, . . . are those which occur in a line 

through y0 parallel to the upper side of the triangle in the scheme on p. 210. 

Similar integration formulas can be derived from the other interpolation 

formulas. 

If the interval from x0 to xn is large, it is well to divide this into smaller 

intervals, apply the formula to each of the smaller intervals, and add the 

results. In this way we may derive the formulas of Art. ioi and similar 

formulas as special cases of the above general formula. 

Let us first note that by means of the rule for the formation of the 

successive differences of a function (p. 210) we may express the differences 

do, b0, c0, . . . in terms of y0, yu y^ • • • • Thus, 

do = yi - yo, 

bo = 01 - a0 = (y2 - yi) - (yx - y0) = y2 - 2 y, + y0, 

c0 = bi - b0 = [(y3 - 2y2 + y1) - (y2 - 2yk -f y0)] = Js - 3 3*2 + 33'i_3'o, 

do — y\ ~ 4 4" 6 y2 — 4 yi + yo, 
«o = yb — 5 y* + 10 3's - 10 y2 + 5 yi - y0, 

L L , k(k-l) 
*8 = 3'*- kyk-i + —~—- yk-2 - ■ ■ ■ 

where the coefficients in the right members of these equations are the 

binomial coefficients, taken alternately plus and minus. 
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(1) Let n — I and b0, c0t . . . all zero, i.e., approximate the curve 

(Fig. 1010) from Xo to *1 by a straight line, y = A + Bx. Then 

J' 'ydx = h [y0 + $Oo] = h [y0 + h (yi ~ >)] = h]^— 

Applying this result to each interval and adding, we get the Trapezoidal 

rule: 

At = / "ydx = h [$ Cy0 + y») + yi + yi 4- • • • + yn-i]. 
J To 

(2) Let n — 2 and c0, d0, . . . all zero, i.e., approximate the curve 

(Fig. 101a) from #0 to x2 by a parabola, y = A + Bx + Cx2. Then 

j' ydx = h [2y0 + 2o0 + ^0] =h[2y0 + 2 (yi — y0) + 3 (y2 — 2 yi + y0)] 
To 

= - [yo + 4Jl + Vi]- 

Applying this result to an even number of intervals, two at a time, and 

adding, we get Simpson’s rule: 

)] As= f nydx = ^[(yo+yn)+4(yi+y3-\-+yn-i)+2(y2+yiH-hyn-i 
•J la 3 

(3) Let n — 3 and d0, c0, . . . all zero, i.e., approximate the curve 

(Fig. iota) from ar0 to X3 by a parabola of the 3d degree, y = A + Bx + 

Cx2 + Dx3. Then 

Jydx = h [3 y0+? a0+| &o+f Co] = /t[3y0+! (^i—>o) + * (y2 —2yi+y0) 
To 

+ 8 (ya - 3 y-i + 3 yi - yo)] = 5 h [y0 + 3 yi + 3 y2 + yj]. 

Applying this result to n intervals, where n is a multiple of 3, and adding, 

we get Simpson's three-eighths rule: 

As = f 'ydx = % h [y0+2 (y3+y6+y9 + • • 0+3 (yi+y2+y4+ys + • • 01- 
To 

(4) Let n = 6 and the differences beyond the 6th order negligible, 

i.e.y approximate the curve (Fig. ioia) from x0 to x& by a parabola of the 

6th degree, y — A + Bx + Cx2 + • * • + IIx*. Then 

f ydx = h [6 y0 + 18 a0 + 27 60 + 24 c0 + Vo* do + ^ $ 6q + -fife /oj. 
•Jx0 

Substituting the values of Oo, bo./o in terms of the y’s and re¬ 

placing t*jV /o by /o, thus neglecting ri<j /o which will be fairly small, we 

get Weddle's rule: 

Aw = I 'ydx = tV h [y0 + 5 yi + y* + 6ys + y* + 5 y* + y«]. 
To 

We may apply this rule to n intervals where n is a multiple of 6. 
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Jr2,Bdx —. 
2 X 

We divide the interval into 6 equal parts, so that h = o.i. From the 

table 

X 2 2.1 2.2 2-3 2-4 2-5 2.6 

1 1 I I I I I 
y 2 2! 2.2 2^3 24 2-5 2.6 

At " ai [i G+s) + — + ~ 
2.1 2, 

[ , I . I , 

■2 2-3 ' 2-4 2-5_ 
= O.2624493; 

* - t[e *;,)+ • (;,+h • ;,)i - —644; 
^=I<-)B+3(-y+3(2y+2(i)+3^4) 

+ 3(2y+j'6]=0'2623645: 

^^-^(0'{5 + 5(^) + i^+<i(iL,) + 2,4+5(5L5) + 2L6]-<>^3643. 

Jr-*dx i i26 
— = In x\ — In 2.6 — In 2 = In 1.3=0.2623637. 

2 x I I2 

At agrees with A to 4 decimals, while A$, A$\ and Aw agr£e about 
equally well with A to 6 decimals. 

104. Numerical differentiation.—We are to find the slope of the 

curve y = f(x) at any point when the curve is drawn or a table of values 

of equidistant ordinates are given, i.e., we are to find when the analyti¬ 

cal form of the function is unknown. Graphically, we must construct 

the tangent line to the curve at the given point. The exact or even 

approximate construction of the tangent line to a curve (except for the 

parabola) is difficult and inaccurate.* 

We may derive an expression for ^ by differentiating Newton’s in¬ 

terpolation formula. Newton’s formula 

yn = yo + nao + —^-- bo + • • • d--—----1—- ko, 

is true for all values of n if some order of differences, as the Ath, is con¬ 

stant or approximately constant. 

Since x = x0 + nA, therefore, dx = hdn, and ^ ~ • 
ax ax2 A2 d»2 

* See Art. 106 on graphical differentiation. 
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Hence, 

<fce = ^[°0+(2 w~ I)^ + (3 w2-6»+2)^ + (4n3-l8n2+22 w-6)gH-J, 

S = p[&0 + (n “ x)co + (6”2 “ i8n+n)^ + • • 

The values of these coefficients are tabulated for values of n between 

O and 1 at intervals of 0.01.* 
For the tabulated values x0, X\t . . . y xn, we have n = o, so that for 

these values of x we have the simpler formulas 

Tx = }\_ao~l2ba + \Ca~\do + * ■ } 

dd^==w[bo~Co+I^do+ ' ' ' ]* 

If the value of x for which is required is near the end of the table, 

we may use similar formulas derived from the modified Newton’s formula 

for end-interpolation (p. 217). 

Example. Find ~ and ~ for x = 3 and x = 3.3 from table (1) on 

p. 211 and check the results by differentiating y = x3. 

Since x = 3 is a tabulated value we apply the second set of formulas: 

dy 
dx 

37 - j(24)+^w] = 27; g = [24 - 61 = 18. 

From y = xr9 
dy 
dx = 3*2 = 27, 

dry _ 

dx2 
6x = 18. 

For x = 3.3 we apply the first set of formulas, where ao = 37> bo = 24, 

c0 = 6, n = 0.3. Then 

^ = [37 + ( - 0.4) + (0.47) §] = 32.67; § = [24 + (- 0.7) 6] = 19.8. 

dv d?v 
From y = x3, -£ = 3 x2 = 32.67, ~ = 6 x = 19.8. 

Example. Rate of change.—The following table gives the results of ob¬ 

servation; 0 is the observed temperature in degrees Centigrade of a vessel 

of cooling water, t is the time in minutes from the beginning of observation. 

t 0 I 2 3 4 5 
0 92.0 85.3 79-5 74-5 70.2 67.0 

To find the approximate rate of cooling when t = 1 and / = 2.5. 

* See Rice, Theory and Practice of Interpolation. 
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From the table of differences 

o 

1 

2 

3 

4 

5 

A* A* A3 

92.0 

85.3 

79-5 

74.5 

70.2 

67.0 

-6.7 

-5.8 

-5-0 

“4-3 

3*2 

0.9 

0.8 

0.7 

1.1 

—0.1 

—0.1 

0.4 

when / = 1, n — o and — 5.8 — ~ (0.8) + ~ ( — 0.1) J = —6.23; 

when t = 2.5, n = 0.5 and™ = -5.0 + o + (- 0.25) = “5-o*. 

Example. Maximum and minimum. — The following table gives the 

results of measurements made on a magnetization curve of iron; B is the 

number of kilolines per sq. cm., /x is the permeability (Fig. 104). 

O I 2 ! 3 ^4 5 6 I 7 8 
1 9 10 11 12 i 13 I 

M 370 570 730 865 985 1090 1175.1245 1295 1330 1340 1320 1250 1120 j 

14 15 
725 

To find the maximum permeability. In Fig. 104 the maximum perme¬ 

ability appears to be in the neighborhood of B == 10. We therefore tabu¬ 

late the differences of /x in the neighborhood of B = 10. 

B A1 A* A* 

9 
10 

11 
12 

13 

1330 
1340 
1320 

1250 

1120 

10 

— 20 

- 70 

-130 

“3° 

“50 
-60 

— 20 

— IO 
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For values of B between 2? = 9 and B = 10, we have 

= [IO+(2n-I)(- y) +(3«2-6n+2)^- —jj = |(n-6»-6»2). 

For a maximum, — = o, hence 6»2 + 6» — ii = o, and n = 0.94. 

Therefore, B = J50 + nh = 9.94. 

We find the corresponding value of by the interpolation formula, 

M = 1330 + (0.94) (10) + (0.0282) (-30) + (0.0100) (-20) = 1340. 

If we take account of A1 and A2 only, we get 

= io + (2w - o, or n = | = 0.83, and 5 = 9.83. 

Then m = 1330 + (0.83) (10) + (0.0275) (-30) = 1337-5- 

105. Graphical integration. — Let us find the value of the definite Jr'b 

f(x)dx or the area under the curve y = f(x) by graphical 
a 

methods. We draw the curve y = f(x) (Fig. 105a) and along the ordinate 

at P (x, y) erect the ordinate yf whose value is a measure of the area under 

the curve y = f{x) from the initial point A (x = a) to the point P, i.c., 

V' = f f(x) dx. Thus for every point P (.r, y) we have a corresponding 

point Pf (jc, y'). The curve traced by the point Pr (marked I in the 

figure) is called the integral curve and the curve traced by the point P 

(marked A in the figure) is called the derivative curve. Evidently, if P 

and Q are two points on the A-curve and Pf and Qf are their correspond¬ 

ing points on the /-curve, the difference of the ordinates of P' and Q\ 

y" — y', is a measure of the area under the arc PQ. 

The practical construction of the integral curve consists of the follow¬ 

ing steps (Fig. 1056). 

(1) Divide the interval from x0 to xn into n equal or unequal intervals 

and erect the ordinates y0» yu . • • . }V 
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(2) Measure the areas x0A0AiXi = yx9, XoAqA2x2 = y2', ...» 
XqAqAnxn = yn'. These areas may be found by means of a planimeter 
or by the construction of the mean ordinates. Thus, the area x0A0AiXi 

is equal to the area of a rectangle whose base is *0*1 and whose altitude 

is the mean ordinate mx within that area. Similarly, the area XiAiA2Xi 

is equal to the area of a rectangle whose base is xxx2 and whose altitude is 

the mean ordinate m2 within that area. Estimate the mean ordinates 

ffiu m2, mz, . . . , mn within the successive .sections. Then 

yi = mi (*0*0, y% = yi + rn2 (*i*2), y* = y2' + m (*2*3), . . . , 

yn yn —1 “f“ mn 

If the intervals are all equal, i.e., .r0*i = *i*2 = . . . = #n_i*» = A*, 

then y9 = HwA.r. (We shall later give a more exact construction for the 
mean ordinate.) 

(3) At xu x2, *3| ...,*„ erect or¬ 

dinates *i/Jlf x2B>, . . . , *nJ5n equal 

respectively to y/, y2, . . . , yn', and 

draw a smooth curve through the points 

Bo, B1, Bo, ...» Bn. This last curve 

will approximate the required integral 

curve. 

Example. Construct the integral 

curve of the straight line* y — 1 — x be¬ 

tween * = o and * = 2. (Fig. 105c.) 

Divide the interval from * = o to x = 2 

into 10 equal parts and erect the ordinates 

given in the table; here, A* = 0.2. 

X y m wAt v# = ZmSx 

0 

O 2 

O.4 

0.6 

0.8 

1.0 

1.2 

1 4 
1.6 

t .8 

2.0 

1 

0.8 

0.6 

0.4 

0.2 

0 

—0.2 

“0.4 
— 0.6 

— 0.8 

— 1.0 

m
 

m
 

0
0

0
0

0
0

0
0

0
0

 

M
i
l
l

 

0.18 

0.14 

0.10 

0.06 

O . 02 

— 0.02 

— 0.06 

— O. IO 

— O . 14 

-O.18 

O 

0.18 

0.32 
O.42 

O.48 

O . 50 

O.48 

0.42 

0.32 
0.18 

O 

It is evident that the mean ordinate in each section is merely one-half 

the sum of the end ordinates, so that the values of m are easily found. 

Erect the ordinates y9 and draw a smooth curve through the ends of the 

ordinates. The curve will approximate the parabola y9 — f (1 — x) dx 
Jo 

- * - * *2. 
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Example. The following table gives the accelerations a of a body 

sliding down an inclined plane at various times l, in seconds. To find 

the velocity and distance traversed at any time, if the initial velocity 

and initial distance are zero. 

/ 1 0 IOO 200 300 400 500 600 700 800 | 900 IOOO 

a | 0.3201 0.304 0.250 0.1 76 O.080 — 0.016 — 0.080 -0.136, -0.1761 — 0.208 — O.24O 

Since v = j a dt and s = J'v dt, the time-velocity curve is the integral 

curve of the time-acceleration curve, and the time-distance curve is in 

turn the integral curve of the time-velocity curve. 

In Fig. 105d, we have plotted t as abscissas and a as ordinates. The 

units chosen are I in. = 100 sec., and 1 in. = 0.16 ft. per sec. per sec. 

/ a avg. ace. atn (lmll v = Zatn\l | avg. vel. rm v mAt 5 - 2;>mA/ 

O 

IOO 

200 

300 

400 

500 

60C 

700 

800 

900 

IOOO 

O.320 

O.304 i 

O . 256 

O.I76 

O.080 

— O.Olfi 

—0.cSo 

— 0.136 

— 0.176 

—0.208 

—0.240 

O . 3 I 2 

0.280 

0.216 

O. 128 

0.03 2 

— O.048 

— O. 108 

— O . 156 

-0.192 

— O.224 

31.2 

28.0 

21.6 

12.8 

3 2 

— 4.8 

-10.8 

-15.6 

— 19.2 

— 22.4 

O 

59-2 
80.8 

93 -6 

96.8 

92 .0 

81.2 

65.6 

46.4 

24.0 

15.6 

45-2 
70.0 

87.2 

95-2 
94.4 

86.6 

73-4 
56.0 

35-2 

1560 

4520 
7000 

8720 

9520 
9440 
8660 

7340 
5600 

3520 

O 

1,560 

6,080 

13,080 

21,800 

31.320 
40,760 

49.420 
56,760 

62,360 

65,880 
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In each interval of ioo sec. we have estimated the mean acceleration 

as the average of the accelerations at the beginning and end of the in¬ 

terval; thus, in the first interval, am = £ (0.320 + 0.304) = 0.312. This 

is equivalent to replacing the arcs of the curve by their chords or to find¬ 

ing the area by the trapezoidal rule. Since the initial velocity is zero, 

the (/, v) curve joins t = o, v = o with t = 100, v = 31.2, etc. We have 

drawn the (/, v) curve with a unit of 1 in. = 20 ft. sec. 

In each interval of 100 sec. we have estimated the mean velocity as the 

average of the velocities at the beginning and end of the interval; thus in 

the first interval, vm = ^ (o + 31.2) = 15.6. Since the initial distance 

is zero, the (/, s) curve is drawn through the points / = o, s = o, / = ioo, 

5 = 1560, etc. The unit chosen is I in. = 10,000 ft. 

The tables for v and s give the velocity and distance at the end of each 

ioo seconds, and we may interpolate graphically or numerically for the 

velocity and distance at any time between t = o and / = 1000. 

In the foregoing discussion the accuracy of the construction of the 

integral curve depends largely upon the construction of the mean ordi¬ 

nates in the successive intervals. If the intervals are very small, we may 

get the required degree of accuracy by replacing 

the arcs by their chords and taking for the mean 

ordinate the average of the end ordinates. 

The approximation of the mean ordinate 

for the arc A0AX (Fig. 1052) is equivalent to 

finding a point M on the arc such that the area 

under the horizontal C0Ci through M is equal 

to the area under the zivcAqAi or such that the 

shaded areas A0C0M and A\C\M are equal. By means of a strip of cellu¬ 

loid and with a little practice the eye will find the position of M quite 

accurately, for the eye is very sensitive to differences in small areas. 

We may draw the integral curve by a purely graphical process. Let 

us first consider the case when the derivative curve is the straight line 

AB parallel to the .r-axis (Fig. 105/). Choose a fixed point 5 at any con¬ 

venient distance a to the left of O. Extend AB to the point K on the y- 

axis and draw SK. Through Af (the projection of A on the #-axis) draw 

a line parallel to SK cutting the vertical through B in B'. Then, the 

oblique line A'B' is the integral curve of the horizontal line AB, For, if 

P and Pf are two corresponding points, then 

y' : A'Q = yo : a, or yf = ~ (y0 X A'Q) = — X (area under AP). 
CL CL 

Similarly, for another horizontal CD, with C and B in the same verti¬ 

cal line, extend CD to the point L on the y-axis and draw SL\ through B,f 

draw a line parallel to SL cutting the vertical through D in C"; then, the 

oblique line B"C" is the integral curve of the horizontal CD. Finally* 

Fig. i05f. 
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draw B'C' parallel to B"C" or to SL; then the broken oblique line A'B'C 
is the integral curve of the broken horizontal line ABCD. 

Consider, now, any curve. Divide the interval from *0 to xn into n 
parts and erect the ordinates (Fig. 105#). Through A0, Au At, . . . , 

draw short horizontal lines. Cut the arc A0A1 by a vertical line making 

the small areas bounded by this vertical, the arc, and the horizontals 

through A0 and Au equal. Proceed similarly for the succeeding arcs. 

Then construct the integral curve of the stepped line by the method 

explained above. Choose a point 5 at a convenient distance a to the left 

of O and join 5 with the points C0, Cit C2.in which the extended 

horizontals cut the y-axis. Then, starting at Bo, draw a line through Bo 
parallel to SCo until it cuts the first vertical; through this point draw a 

line parallel to SCi until it cuts the second vertical, etc. The points 

where the resulting broken line cuts the ordinates at A0, Ai, At, . . . , 

i.e., the points B0, Bu Bit . . . , are points on the required integral curve; 

for at each of the points A0, Au A2, . . . , the area under the curve from 
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on each side of the vertical, the ra. c. p. is found by drawing AoE parallel 

to B$B7 and reading OE = 42.0 c-p on the candle-power scale, since 

OE 

a 

X;B7 — Xf>Bb 

X&X7 
or OE = 

area under A*>A7 
base 

= m. s. c. p. 

Similarly the m. s. c. p. of the section above a horizontal plane 

through the lamp is measured by OF = 37.0 c-p, and the m. s. c. p. of 

the section below a horizontal plane through the lamp is measured by 

OG = 29.5 c-p. 

106. Graphical differentiation. — If the integral curve yf = /(x) is 

given we may construct the derivative curve y = ~ by using the prin¬ 

ciple that the ordinate of the derivative curve 

at any point P (x, y) (Fig. 106a) is equal to 

the slope of the integral curve or of the 

tangent line P'T at the corresponding point 

P'(*,/). 
The practical construction of the deriva¬ 

tive curve consists of the following steps: 
(1) Divide the interval from xQ to xn (Fig. 

106b) into n parts and erect the ordinates 

Jo', yi, yj, ...» y* • (2) Construct the 
tangents at B0, B1, B*, ... 9 Bn and measure their slopes. (3) At x0, 

Xu ... 9 xn erect ordinates Xo^4o = jo, X1A1 = yu • . • , xnAn — yn, where 

the y’s are proportional to the corresponding slopes, and draw a smooth 

curve through the points AQl Alf Au . . . , An. This curve will ap 

proximate the required derivative curve. 
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Example. The following table gives the pressure p in pounds per 

sq. in. of saturated steam at temperature 0° F. Construct the curve 

showing the rate of change of pressure with respect to the temperature, 

dp/dO. 

$ P Ap Ad Ap/AO 

302.7 70 
5 4-7 I .06 

307.4 
311.8 

75 
80 5 44 1.14 

316.0 85 
5 
5 

4.2 

4.0 

1.19 

I . 25 
320.0 90 

5 3 -9 1.28 
323-9 
327.6 

3311 

334-5 
337-8 

95 
100 

io5 
110 

115 

5 
5 
5 
5 

3-7 
3*5 
3-4 
3-3 

i-35 
1 43 
1 -47 
1-52 

In the above table we have approximated dp/dO by Ap/&0, i.e., we 

have replaced the (0, p) curve by a series of chords, and the slopes of the 

tangents by the slopes of these chords. We then plotted (0, A/>/A0) and 

joined the points by a smooth curve (Fig. 106c). 

J20 

Fig. 106c. 

It is evident that the difficulty in the construction of the derivative 

curve lies in the construction of the tangent line to the integral curve. 

The direction of the tangent line at any point is not very well defined by 

the curve. As a rule it is better to draw a tangent of a given direction 

and then mark its point of contact than to mark a point of contact and 

then try to draw the tangent at this point. A strip of celluloid on the 

under side of which are 2 black dots about 2 m.m. apart may be moved 

over the paper so that the two dots coincide with points on the integral 

curve and so that the secant line which they determine is practically 

identical with the tangent line. If the arc AB (Fig. io6d) is approxi- 
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Fig. \of.d. 

mately the arc of a parabola, we have a more accurate construction of the 
tangent; the line joining the middle points M and Mf of two parallel 
chords A13 and A'B' intersects the curve in P, the point of contact, 
and the tangent PT is parallel to the chord AB. 

We may also draw the derivative 

curve by purely graphical methodf 
The process is the reverse of t.y 
process described for constructin 
the integral curve (Art. 105). Le* 

Bo, B\, B2, . . . be the points of 
contact of tangent lines to the in¬ 

tegral curve (Fig. 105^)- Choose a 
fixed point S at a convenient dis¬ 
tance a to the left of the y-axis and 
draw the lines SCq, SC 1, SC2, . . . , 

parallel respectively to the tangent lines at Bo, By, B2, .... Project 
the points G, Ch C2, ...» horizontally on the ordinates at B0, Bu 
B2y . . . , cutting these ordinates in d0, Ay, A2, .... The points 

A0, Ay, Ao, . . . , are then points on the required derivative curve, 
since B0A0 + a = slope of SCo = slope of tangent at Bo, etc. We may , 
now join the points A0, Ay, A2, . • • by a smooth curve, or we may get.e 
greater accuracy by using the stepped line of horizontals and verticals. 

Thus, we draw the horizontals through the points Ao, Ay, A2, . . . , aid 
the verticals through the points of intersection of consecutive tangents 

to the integral curve. The arcs /lg-li, AyA«, . . . , are now drawn so 
that the areas bounded by each arc, the horizontals, and the vertical, 

are equal. 
107. Mechanical integration.* The planimeter. — Tfyis^ is an in¬ 

strument for measuring areas. Consider a line PQ of fijxtd length l 
moving in any manner whatever in the plane of the paf^r* J^ht motion 
of the line at any instant may be thought of as a motiotiw translation 
combined with a motion of rotation. Suppose the line PQ sweeps out 
the elementary area PQQ'P' = dS (Fig. 107a). This may be broken up 
into a motion of translation of PQ to P"Q' and a motion of rotation 

from PnQf to P'Q'. If dn is the perpendicular distance between the 
parallel positions PQ and P'Q' and dcj> is the angle between P"Q' and 

P'Q', then 

dS — I dn + \ l2 d<(>. 

* For descriptions and discussions of various mechanical integrators see: Abdank* 

Abakanowicz, Les Integra plies (Paris, Gauthier-Villars); Henrici, Report on PLanimeters 

(Brit. Assoc. Ann. Rep., 1894, p. 496); Shaw, Mechanical Integrators (Proc. Ii>st. Civ. 

Engs., 1885, p. 75); Instruments and Methods of Calculation (London, G. Bell & Sons); 

Dyck’s Catalogue; Morin's Les Appareils d'Integration. 
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Now if PQ carries a rolling wheel W, called the integrating wheel, whose 

a.\»* is parallel to PQ (Fig. 1076), then, while PQ moves to the parallel 

po&iuon P"Q\ any point on the circumference of this wheel receives a 

displacement dn, and while P"Q' rotates to the position PfQ\ this point 

receives a displacement a d<f>, where a is the distance from Q to the plane 

P' 

Fig. 107a. Fig. iojb. 

of the wheel. So that, as PQ sweeps out the elementary area dS, any 

point on the circumference of the wheel receives a displacement 

ds = dn + a d</>. 

Therefore, dS = Ids — ald<j> + \ l2d<f>. 

Hence the total area swept out by PQ is 

Fig. 107c. 

Now, if PQ comes back to its original position without turning com¬ 

pletely around, then the total angle of rotation J d(j> = o, so that 

5 = Is, 

where 5 is the total displacement of any point on the circumference of the 

integrating wheel. 

But if PQ comes back to its original position after turning completely 
around, then 

S = Is — 2 7ral + 7r/2. 
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The most common type of planimeter is the Amsler polar planimeter * 
(Fig. 107c). Here, Fig. 107d, by means of a guiding arm OQ, called the 

polar arm. one end Q of the tracer arm PQ is constrained to move in a 

circle while the other end P is guided around a closed curve c-c-c- . . . 

which bounds the area to be measured. Then the area Q'P'PP"Q"QQ' 

is swept out twice but in opposite directions and the corresponding dis¬ 

placements of the integrating wheel cancel, so that the final displacement 

gives only the required area c-c-c- .... The circumference of the 

wheel is graduated so that one revolution corresponds to a certain definite 

number of square units of area. 

The ordinary planimeter used for measuring indicator diagrams Ml 
/ = 4 in. and the cij^unference of the wheel is 2.5 in.; hence one revolu¬ 

tion corresponds t<flPn-2% =-10 sq. in. The wheel is graduated into 10 

parts, each of these parts again into 10 parts, and a vernier scale allows 

us to divide each of the smaller divisions into 10 parts, so that the area 

can be read to the nearest hundredth of a sq. in. The indicator diagram 

on p. 228 gives a planimeter reading of 2.55 sq. in., which agrees with the 

result found by Simpson’s rule with 15 ordinates. 

The polar planimeters used in the work in Naval Architecture usually 

have a tracer arm of length 8 in., and a wheel of circumference 2.5 in., so 

that one revolution corresponds to 20 sq. in., thus giving a larger range 

for the tracing point. If the area to be measured is quite large, it may be 

split up into parts and the area of each part measured; or the area may 

be re-drawn on a smaller scale and the reading of the wheel multiplied 

by the area-scale of the drawing.f 

* This instrument was first put on the market by Amsler in 1854* 
t If PQ (Fig. 107 d) turns completely around, the required area is S + 7T (OQ)*. 
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* If very accurate results are required, account must be taken of several 

errors. (1) The axis of the integrating wheel may not be parallel to the 

tracer arm PQ. This error can be partly eliminated by taking the mean 

of two readings, one with the pole 0 to the left of the tracer arm, the other 

with the pole to the right* (Fig. 107^). 

This cannot be done with the ordinary 

Amsler planimeter because the tracer 

arm is mounted above the polar arm, 

but can be done with any of the Coradi 

or Ott compensation planimeters; one 

of these instruments is illustrated in 

Fig. 107/. (2) The integrating wheel Q 

may slip; some of this slipping may be 

due to the irregularities of the paper 

and has been obviated by the use of 

disc planimeters, in which the recording 

wheel works on a revolving disc instead 

of on the surface of the paper. 

Various types of linear planimeters have been constructed. These 

differ from the polar planimeters in that one end of the tracer arm is 

Fig. 107/. 

constrained to move in a straight line instead of in a circle. Planimeters 

of the linear type form part of the integrators described in Art. 108. 

Various other types of planimeters 

\ have been constructed, which do not 

1 have an integrating wheel. One of the 

1 best known of these is that of Prytz, 

1 also known as the hatchet planim- 

1 eter.f In this form of the instrument 

O'-j-J (Fig. io7g) the end Q forms a knife- 

® P io p edge so that Q can only move freely 

along the line PQ. When P traces the 

given curve, Q will describe a curve such that PQ is always tangent to it. 

* For a proof of this statement, see Instruments and Methods of Calculation, p. 196. 
f For the theory of this instrument, see F. W. Hill, Phil. Mag., xxxviii, 1894, p. 265. 
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Prytz starts the instrument with the point P approximately at the 

center of gravity G of the area to be measured, moves P along the radius 

vector to the curve, completely around the curve, and back along the 

same radius vector to G. The required area is then given approximately 

by P<t>, where / is the length PQ and <f> is the angle between the initial 

and final positions of the line PQ. 

108. Integrators. — The Amsler integrator is practically an extension 

of the linear planimeter. In the latter instrument, the end Q of the tracer 

arm PQ of constant length /, is constrained to move in a straight line X'X, 

while the tracing point P describes a circuit of the curve. If the axis of 

the integrating wheel attached to PQ makes a variable angle ma with 

X'X (Fig. io8a)*at each instant, the point P will have for ordinate 

ym = l sin ma, and the area described by P will be j l sin ma dx. On 

the other hand, the area described by P is equal to l times the displace¬ 

ment of any point on the circumference of the integrating wheel; hence 

/sin ma dx is equal to the displacement of a point on the circumference of 

an integrating wheel whose axis makes an angle ma with X'X. 

x' 

Fig. io8<z. Fig. 1086. 

Now, given a curve c-c-c- . . . (Fig. io8i), 

Area = J yd:c = J*l sin a dx = / J*sin a dx. 

Moment of area i 
J y2 dx — ~ J'l2 sin2 a dx = ^ J(i — cos 2 a) dx 

about X'X ~ 2 

II 
-
M

'S
 

j* dx — ^ J sin (90° — 2 a) dx 

= — ^ j*\sin (90° — 2 a) dx, since J dx = 0, 

the arm PQ returning to its original position when P makes a complete 

circuit of the curve. 

Moment of inertia 

of area about X'X 
i Jy3 — P sin3 adx — ^J(^ sin a — ^sin 3 a/jdx 

sin a dx ~~ sin 3 a dx. 
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(9°° — 2 a) dx, and J sin 3 a dx, and hence 

the area, moment, and moment of inertia can be measured by three in¬ 

tegrating wheels whose axes at any instant make angles a, 90° — 2 a, 
and 3 a, respectively, with X'X. 

The Amsler 2,-wheel integrator (Fig. 108c) consists of an arm PQ and 

3 integrating wheels A, M, and I. The instrument is guided by a carriage 

which rolls in a straight groove in a steel bar; this bar may be set at a 

proper distance from the hinge of the tracer arm by the aid of trams. The 

line X'X, which passes through the points of the trams and under the 

hinge, is the axis about which the moment and moment of inertia are 

measured. The radius of the disk containing the Af-wheel is one-half 

the radius, and the radius of the disk containing the /-wheel is one-third 

the radius of the circular disk D to which they are geared. Therefore, 

the axis of the Af-wheel turns through twice, and the axis of the /-wheel 

turns through three times the angle through which the tracer arm PQ or 

the axis of the A-wheel swings from the axis X'X., 
The integrating wheels are set so that in the initial position, i.e., when 

P lies on X'X, the axes of the A- and /-wheels are parallel to X'X while 

the axis of the Af-wheel is perpendicular to X'X. Then, when the tracer 

arm PQ makes an angle a with X'X, the axes of the A-, M-, and /-wheels 

make angles a, 90° — 2 a, and 3 a, respectively, with X'X. Further¬ 

more, the graduations of the Af-wheel are marked so that these gradua¬ 

tions move backward while the graduations on the other wheels move 
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forward. Hence, when P has completed the circuit, and if a, w, and i are 

the displacements of points on the circumferences of the A-, M-, and I- 

wheels, respectively, we have 

p .PI*. 
Area = la; Moment = - m; Moment of Inertia = - a — — i. 

4 412 

The wheels are graduated from 1 to 10 so that a reading of 5, for 

example, means 5/10 of a revolution. The constants by which these 

readings are multiplied depend upon the length of the tracing arm and 
the circumferences of the integrating wheels. In the ordinary instru¬ 

ment, / = 8 in. and the circumferences of the A-, M-, and /-wheels are 

CA = 2.5 in., CM = 2.5 in., Cj = 2.34375 in. 

Thus, to find the 

area, a must be multiplied by 8 X 2.5 = 20; 

moment, m 
82 

“ ~ X 2.5 40; 

moment of inertia} a 

and i 

83 
“ -7 X 2.5 = 320, 

4 
83 

11 — x 2.34375 = 100. 

Finally, if ah a2, mu m2, and i\, i2 are the initial and final readings of 

the A-, M-, and /-wheels, we have 

Area = 20 (a2 — a{); Moment — 40 (nu — mx); 

Moment of Inertia — 320 (a2 — 0i) — 100 (i2 — ii). 

109, The integraph.—This is a machine which draws the integral 

curve, yf — >> dx, of the curve y — f(x). The most familiar type of 

such machines is the one invented by Abdank-Abakanowicz in 1878. 

The theory of its construction is very simple. A diagram of the machine 

is given in Fig. 109a. The machine is set to travel along the base line of 

the curve to be integrated, and two non-slipping wheels, IT, ensure that 

the motion continues along this axis. The scale-bar slides along the main 

frame as the tracing point P, at the end of the bar, describes the curve 

y = f(x) to be integrated. The radial-bar turns about the point Q which 

is at a constant distance a from the main frame. The motion of the re¬ 

cording pen at Pi is always parallel to the plane of a small, sharp-edged, 

non-slipping wheel w, and by means of the parallel frame-work ABCD, 

the plane of the wheel w is maintained parallel to the radial bar [since w 

is set perpendicular to AB which is parallel and equal to CD throughout 

the motion, and the radial bar is set perpendicular to CD). As the point 

P describes the curve y = /(x), the angle 6 between the radial-bar and the 
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axis, and consequently the angle 6 between the plane of the wheel and the 

axis, are constantly changing, and the recording pen at Pi draws a curve 
with ordinate y' such that its slope 

and therefore, 

dyf _ 

dx 
tan 0 y fix) 

a a 

X area ORP, 

so that the curve drawn by Pi is the integral curve of the curve traced 
by P. 

If we now set the machine so that the point P traces the integral curve, 

then the recording pen Pi will draw its integral curve 

dx^ dx = 

We may thus draw the successive integral curves y', y", y'", .... Fig. 

109ft gives the integral curves connected with the curve of loads of the 

shaft of a Westinghouse-Rateau Turbine. The curve of loads is repre¬ 

sented by the broken line in the figure. By successive integration we get 

the shear curve, the bending moment curve, the slope curve, and the 

deflection curve. The distance marked “offset ” is the distance 00i in 

Fig. 109a. 

Jy'dx = f(f: 
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no. Mechanical differentiation. The Differentiator.—This is a 

machine which draws the derivative curve y' = ^ of the curve y = /(*). 

Since the ordinate of the derivative curve is equal to the slope of the in¬ 

tegral curve, it is necessary to construct the tangent lines at a series of 

points of the integral curve. We have already mentioned (Art. 106) the 

use of a strip of celluloid with two black dots on its under side to deter¬ 

mine the direction of the tangent. This scheme is used in a differentiating 

machine constructed by J. E. Murray.* In a differentiating machine 

recently constructed by A. Elmendorf.f a silver mirror is used for de¬ 

termining the tangent. The mirror is placed across the curve so that 

the curve and its image form a continuous unbroken line, for then the 

surface of the mirror will be exactly normal to the curve, and a perpen¬ 

dicular to this at the point of intersection of the mirror and the curve will 

give the direction of the tangent line. If the surface of the mirror de- 

Proc. Roy. Soc. of Edinburgh, May, 1904. 
Scientific American Supplement, Feb. 12, 1916. 
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viates even slightly from the normal, a break will occur at the point where 

the image and curve join. It is claimed that with a little practice a re¬ 

markable degree of accuracy can be obtained in setting the mirror. 

Fig. no gives a diagram illustrating the working of this machine. 

The tracing point P follows the curve y = fix) so that the curve and its 

image in the mirror MP form a continuous unbroken line; then the arm 

PT, which is set perpendicular to the mirror, will take the direction of the 

tangent line to the curve. The link PR, of fixed length a, is free to move 

horizontally in the slot X'X' of the carriage C. The vertical bar SU 

passes through R and is constrained to move horizontally by heavy rollers. 

The point Q slides out along the tangent bar PT and also vertically in the 

bar SU, carrying with it the bar QP'. If we choose for the x-axis a 

line XX whose distance from X'X' is equal to QP', then the point P' 

will draw a curve whose ordinate is equal to y' = RQ. But RQ/a is 

the slope of the tangent PT, hence, y' — a X and the curve drawn 

by P' is the derivative curve of the curve traced by P. 

The machine is especially useful for differentiating deflection-time 

curves to obtain velocity-time curves, and by a second differentiation, 

acceleration-time curves. It is also helpful in solving many other 

problems. 

EXERCISES. 

Apply the approximate rules of integration (Art. ioi) to the following examples: 

/• i -0 dx 
1. Evaluate I —, when h — o.i, and when h — 0.05, and compare the results with 

•'0.2 X 

the values obtained by integration. 

2. Evaluate sin x dx, when h = ^ , and when /z=“, and compare the results 

with the values obtained by integration. 

3. The arc of a quadrant of an ellipse whose eccentricity is 0.5 is given by 
TC 

XVr — 0.25 sin2 <f> dxf>. Evaluate the integral when h = 90. 

dx J*3 dx 
, , when h = 0.5. 

V r1 — x 4- 1 + 
5. The semi-ordinates in ft. of the deck plan of a ship are 

3, 16.6, 25.5, 28.6, 29.8, 30, 29.8, 29.5, 28.5, 

these measurements are 28 ft. apart. Find the area of the deck. 

6. Given the following data for superheated steam 

10 

24.2, 6.8; 

V 2 4 6 8 

p~ 105 42.7 25-3 16.7 

Find the work done. 
13 
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7. The length of an indicator diagram is 3.6 in. The widths of the diagram, 0.3 in. 

apart, are 

o, 0.40, 0.52, 0.63, 0.72, 0.93, 0.99, 1.00, 1.00, 1.00, 1.00, 0.97, o. 

Find the mean effective pressure. 

8. The length of an indicator diagram is 3.2 in. The widths of the diagram, 0.2 in. 
apart, are 

1.00, 1.68, 1.62, 1.00, 0.64, 0.48, 0.36, 0.26, o. 

Find the mean effective pressure. 

9. The speed of a car is v miles per hour at a time t seconds from rest; 

/ 0 5 10 15 20 25 30 
V 0 37 • 7-5 10.9 13.0 137 14 

Find the distance traversed in 30 seconds. 

10. s is the specific heat of a body at temperature 0° C. 

0 0 2 4 6 8 10 12 
s 1.00664 1.00543 1.00435 1.00331 1.00233 1.00149 1.00078 

Find the total heat required to raise the temperature of a gram of water from o° C. to 

120 C. (total heat == f 2 s do). 
«/ d\ 

11. The areas in sq. ft. of the sections of a ship above the keel and two feet apart are 

2690, 3635, 4320, 4900, 5400. 

Find the total displacement in tons. 

12. A reservoir is in the form of a volume of revolution and D is the diameter in ft. 

at a depth of p feet beneath the surface of the water. 

p O 16 32 48 64 1 80 96 
D I IO 105 IOO 86 66 1 48“~ 27 

Find the number of gallons of water the reservoir holds when full. 

13. A plane board is immersed vertically in water. The widths of the board in ft. 

parallel to the surface of the water and at depths £ ft. apart are 

4°. 3-6. 3-0, 1.7, 1.3, 1.0, 0.8, 0.6, 0.1. 

Find the pressure on the board and the depth of the center of pressure when the surface 

of the water is level with the top of the board. 

14. The half-ordinates in ft. of the mid-ship section of a vessel at intervals 2 ft. 

apart are 

12.2, 12.5, 12.6, 12.7, 12.7, 12.5, 12.1, 11.5, 10.1, 6.5, 0.2. 

Find the position of the center of gravity of the section. 

15. The shape of a quarter-section of a hollow pillar is given by the following table. 

The axes of x and y are the shortest and longest diameters. 

x in. 0 0.25 0-5° 075 1.00 1-25 1 50 1 75 2.00 2.25 2.50 275 3.00 325 3-50 

0 
out¬ 
side 

yi in. 
6 5-95 5*90 5-83 576 5-64 548 5.22 4.99 4.68 4-35 3-88 3-25 2.34 

in¬ 
side 

yi in. 
5 4.90 

00 
r>. 
■4

" 465 445 4.22 3.80 340 2.77 2.08 

« 

0 
* 

Find the moments of inertia of the section about the x- and y- axes. 
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16. Apply the formulas for numerical differentiation (p. 235) to table (2) y = x* on 

dy d v 
p. 211, and find and ^ when x — 5.31 and x = 5.33. Check the results by actual 

differentiation. 

17. Apply the formulas for numerical differentiation (p. 235) to table (8) y = log sin x 

on p. 212, and find and ^ when x = i° 20' and x = i° 24'. Check the results by 

actual differentiation. 

18. In the following table, s is the distance in ft. which the projectile of a gun travels 

along the bore in / sec. 

s 0 1 1 2 1 3 4 5 6 7 8 9 10 

T 0 0.0360 i 0.0490; 0.0598 0.0695 0.0785 0.087 r 0.0953 0.1032 0.1109 0.1184 

Find the velocity v = ™ = 1 
at / 

/dt 

ds 
, and the acceleration a = when 5 3? 

5 ft. 
19. Use the data given in Ex. 6 to find the rate of change of the pressure with re¬ 

spect to the volume, dpjdv, when v = 4 and v = 5. 

20. Use the data given in Ex. 9 to find the acceleration, a = , when / = 10 and 

t = 12. 

21. Find the minimum value of the polynomial which has the values 

__ 4  6 
11 27 

22. The following table gives the results of measurements made on a normal in¬ 

duction curve for transformer steel; B is the number of kilolines per sq. cm.; n is the per¬ 

meability. 

B I 1 2 1 1 3 4 5 6 7 8 _9_ ... ,o 1 .. »J 12 

u 625 i 0
 

00 1 1035 1210 1350 1465 1520 1480 1430 1370 i 1280 i 1130 

Find the maximum permeability. 

23. Construct the integral curve of the parabola y = x — $ x- as x varies from o to 2. 

24. Construct the integral curve of the sine wave y = 2 sin 2 jc as x varies from o to t. 

25. The following table gives the accelerations a of a body sliding down an inclined 

plane for various distances s in ft. 

S I 0 100 200 1 300 | 400 1 500 600 | 700 ] 

a '0.320 0.304 0.256 0.176 j 0.080 — 0.016 — 0.080 -0.136 

800 900 

-0.208 

1000 

-0.240 

Use the method employed in the illustrative example on p. 239 for drawing the integral 

curves and determining the velocity, v = V*/ a dst and the time, t = for any 

distance, if v = o and t = o when 5 = 0. 

26. The following table gives the accelerations a of a body at various velocities v in 

ft. per sec. 

V 0 1 2 3 _4_ 5 
a 0.405 0.360 0.283 0.179 6.069 0.013 

Draw the integral curves to determine the time, t = dv, and the distance, s = 

for any velocity, if t = o and s = o when t; « o. 
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27. In the following table 

0 I 4 6 8 II-5 15 19 20 

38,000 38,500 38,500 35,500 27,500 19,000 15,700 11,000 3850 

P is the resultant pressure in pounds on the piston of a steam engine at distances s inches 

from the beginning of the stroke. Draw the integral curve to find the work done as the 

piston moves forward. ^Work = J*P ds?j 

28. A car weighs 10 tons. It is drawn by a pull of P lbs.; t is the time in seconds 

since starting. 

t 0 2 5 8 10 13 16 19 22 

P 1020 980 882 720 702 650 713 722 805 

If the retarding friction is constant and equal to 410 lbs., draw the integral curve to find 

the speed of the car at any time. ^Momentum = J~(P — 410) 

29. In the following table 

t 0.00490 0.00598 0.00695 0.00785 0.00871 0.00953 0.01032 0.01109 

V "869 987 1 1074 1142 1195 1242 1277 1309 1335 

* v is the velocity of projection in ft. per sec. in the bore of a gun at time / sec. from the 

beginning of the explosion. If 5 = 2 ft. when t = 0.00490 sec., draw the integral curve 

to show the relation between the distance and the time. 

30. A beam 10 ft. long is loaded as in the following table, where w is the weight per 

unit length at distances x ft. from the free end. 

X 0 I 2 3_ 4 5 6 7 8 9 10 

w 2 2-5 3 7 5-5 7-7 9-7 11.2 12.2 11.8 10.2 7.2 

Draw integral curves to show (1) the shearing force, s — ^w dx and (2) the bending 

moment ,M=f s dx. 

31. The following table gives the measurements for every 150 of the intensity of 

illumination of a lamp. 

Angle 0° 0 I 15 30 45 1 75 90 105 120 135 150 165 180 

op 605 88.0 99-5 86.5,50.0 31.0 29.0! 2 ;.o 28.0 20.0 15.0 13.0 12.5 

Apply the method of the illustrative example on p. 242 to find the m.s.c.p. for various 

sections of the lamp. 

32. In the following table 

/ 0 10 20 30 40 50 60 70 80 ] 90 100 

5 0 1 I5b "608 1308 2180 3132 4076 4942 5676 6236 6588 

s is the distance in ft. traversed by a body weighing 2000 lbs. in t sec. Draw the deriva¬ 

tive curves to show the velocity and acceleration at any time. Also draw the curve 

showing the relation between the kinetic energy and the force. 

33. The observed temperature 0 in degrees Centigrade of a vessel of cooling watei 

at time / in min. from the beginning of observation are given in the following table: 

/ 0 I 2 3 5 7 10 
l ^ 

20 

0 92.0 853 79-5 74-5 67.0 60.5 1 53-5 1 45-o ! 39-5 

Draw the derivative curve to show the rate of cooling at any time. 





INDEX, 

Adiabatic expansion formula, 48 

chart for, 33, 49 

Alignment or nomographic charts (see 

also Charts, alignment or nomo¬ 

graphic) 

fundamental principle of, 44 

with curved scales, 106 

with four or more parallel scales, 55 

with parallel or perpendicular index 

lines, 87, 91, 97 

with three or more concurrent scales, 104 

with three parallel scales, 45 

with two intersecting index lines, 68 

with two or more intersecting index 

lines, 76 

with two parallel scales and one inter¬ 

secting scale, 65 

Approximate differentiation, 224 

Approximate integration, 224 

Area, 
by approximate integration rules, 227 

by planimeter, 246 

Armature or field winding formula, 90 

chart for, 90 

Bazin formula, 101 

chart for, 102, 116 

Center of gravity, by approximate inte¬ 

gration rules, 231 

Chart, alignment or nomographic, for 

adiabatic expansion, 49 

armature or field winding, 90 

Bazin formula, 102, 116 

Chezy formula for flow of water, 58 

D’Arcy’s formula for flow of steam, 81 

deflection of beams, 72, 73, 86 

discharge of gas through an orifice, 89 

distributed load on a wooden beam, 83 

focal length of a lens, 106 

Francis formula for a contracted weir, 

109 

friction loss in pipes, 94 

Chart, Grasshoff's formula, 51 

Hazen-Williams formula, 60 

horsepower of belting, 54 

indicated horsepower of a steam en¬ 

gine, 63 

Lame formula for thick hollow cylin¬ 

ders, 92 v 

McMath “run-off,” formula, 49 

moment of inertia of cylinder, 100 

multiplication and division, 47 

prony brake, 70 

resistance of riveted steel plate, 103 

solution of quadratic and cubic equa¬ 

tions, 112 

specific speed of turbine and water 

wheel, 75 

storm water run-off formula, 108 

tension in belts, 54 

tension on bolts, 67 

twisting moment in a cylindrical shaft, 

78 
volume of circular cylinder, 49 

volume of sphere, 49 

Charts, hexagonal, 40 

Chart with network of scales, for 

adiabatic expansion, 33 

chimney draft, 38 

elastic limit of rivet steel, 34 

equations in three variables, 28 

equations in two variables, 20 

multiplication and division, 30, 31 

solution of cubic equation, 36 

temperature difference, 39 

Chezy formula for flow of water, 56 

chart for, 58 

Chimney draft formula, 37 

chart for, 38 

Coefficients in trigonometric series evalu 

ated, 

by six-ordinate scheme, 179 

by twelve-ordinate scheme, 181 

by twenty-four-ordinate scheme, 185 

for even and odd harmonics, 179 



INDEX xii 

Coefficients in trigonometric series evalu¬ 

ated, 

for odd harmonics only, 186 

for odd harmonics up to the fifth, 187 

for odd harmonics up to the eleventh, 

189 

for odd harmonics up to the seventeenth, 

191 
graphically, 200 

mechanically, 203 

numerically, 179, 186, 192, 198 

Constants in empirical formulas deter¬ 

mined by 

method of averages, 124, 126 

method of least squares, 124, 127 

method of selected points, 124, 125 

Coordinate paper, 

logarithmic, 22 

rectangular, 21 

semilogarithmic, 24 

D’Arcy’s formula for flow of steam, 79 

chart for, 81 

Deflection of beams, 70, 71, 84 

chart for, 72, 73, 86 

Differences, 210 

Differentiation, approximate, 224 

graphical, 244 

mechanical, 255 

numerical, 234 

Differentiator, 255 

Discharge of gas through an orifice, 89 

chart for, 89 

Distributed load on a wooden beam, 80 

chart for, 83 

Durand’s rule, 226 

Elastic limit of rivet steel, 32 

chart for, 34 

Empirical formulas, 

determination of constants in, 124, 125, 

I73’ 174 
for non-periodic curves, 120 

for periodic curves, 170 

involving 2 constants, 128 

involving 3 constants, 140 

involving 4 or more constants, 152 

Equations, solutions of (see Solutions of 

algebraic equations) 

Experimental data, 120, 170 

Exponential curves, 131, 142, 151, 153, 

156 

Focal length of a lens, 

chart for, 35, 40, 106 

slide rule for, 15 

Fourier’s series, 170 

Francis formula for a contracted weir, HO 

chart for, 109 

Friction loss in pipes, 94 

chart for, 94 

Fundamental of trigonometric series, 170 

Gauss’s interpolation formula, 219 

Graphical differentiation, 244 

Graphical evaluation of coefficients, 200 

Graphical integration, 237 

Graphical interpolation, 209 

Grasshoff’s formula, 50 

chart for, 51 

Harmonic analyzers, 203 

Harmonics of trigonometric series, 170 

Hazen-Williams formula, 57 

chart for, 60 

Hexagonal charts, 40 

Horsepower of belting, 52 

chart for, 54 

Hyperbola, 149 

Hyperbolic curves, 128, 135, 137, 140 

Index line, 44 

Indicated horsepower of steam engine, 6l 

chart for, 63 

Integraph, 252 

Integration, approximate, 224 

applications of, 227 

by Durand’s rule, 226 

by rectangular rule, 225 

by Simpson’s rule, 226, 233 

by trapezoidal rule, 225 

by Weddle’s rule, 233 

general formula for, 231 

graphical, 237 

mechanical, 246 

Integrators, 250 

Interpolation, 209 

Gauss’s formula for, 219 

graphical, 209 

inverse, 219 

Lagrange’s formula for, 218 

Newton’s formula for, 214, 217 

Isopleth, 44 

Lagrange’s interpolation formula, 218 
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Lam6 formula for thick hollow cylinders, 

91 
chart for, 92 

Least Squares, method of, 124, 127 

Logarithmic coordinate paper, 22 

Logarithmic curve, 151 

Logarithmic scale^ * 

Maxima and minima by approximate 

differentiation formulas, 236 

McMath “run-off" formula, 48 

chart for, 49 

Mean effective pressure by approximate 

integration rules, 228 

Mechanical differentiation, 255 

Mechanical integration, 246 

Moment, by integrator, 250 

Moment of inertia, 

by approximate integration rules, 230 

by integrator, 250 

Moment of inertia of cylinder, 99 

chart for, 100 

Multiplication and division, charts for, 

30, 31, 41, 47 

Newton’s interpolation formula, 214, 217 

Nomographic or alignment charts (see 

Alignment or nomographic charts) 

Numerical evaluation of coefficients, 179, 

186, 192, 198 

Numerical differentiation, 234 

Numerical integration, 224 

Numerical interpolation, 215 

Parabola, 145 

Parabolic curves, 128, 135, 140 

Periodic phenomena, representation of, 

170 

Planimeter, 

Amsler polar* 248 

compensation, 249 

linear, 249 

principle of, 246 

Polynomial, 159 

Pressure and center of pressure, by 

approximate integration rules, 231 

Prony brake, 69 

chart for, 70 

Rates of change, by approximate differ¬ 

entiation formulas, 235 

Rectangular coordinate paper, 21 

Rectangular rule, 225 

Resistance of riveted steel plate, 101 

chart for, 103 

Scale, 

definition of, I 

equation of, 2 

logarithmic, 2 

representation of, 1 

Scale modulus, 2 

Scales, 

network of, 20 

perpendicular, 20 

sliding, 7 

stationary, 5 

Semilogarithmic coordinate paper, 24 

Simpson’s rule, 226, 233 

Slide rule, 

circular, 16 

for electrical resistances, 15 

for focal length of lens, 15 

Lilly's spiral, 18 

logarithmic, 9 

log-log, 13 

Sexton’s omnimctre, 17 

Thacher’s cylindrical, 18 

Solutions of algebraic equations, 

by means of parabola and circle, 26 

by means of rectangular chart, 35 

by means of alignment chart, no 

by method of inverse interpolation, 221 

on the logarithmic slide rule, 11 

Specific speed of turbine and water wheel* 

73 
chart for, 75 

Storm water run-off formula, 107 

chart for, 108 

Straight line, 122, 125 

Tables, construction of, 213 

Temperature difference, 37 

chart for, 39 

Tension in belts, 52 

chart for, 54 

Tension on bolts, 66 

chart for, 67 

Trapezoidal rule, 225 

Trigonometric series, 170 

determination of constants in, 173, 174 

Twisting moment in a cylindrical shaft, 77 

chart for, 78 



XIV INDEX 

Velocity, by approximate integration rules, 

229 

Volume, by approximate integration rules, 

229 

Volume of circular cylinder, 48 

chart for, 49 

Volume of sphere, 50 

chart for, 49 

Weddle’s rule, 233 

Work, by approximate integration rules, 
228 








