

GRAPHICAL AND MECHANICAL COMPUTATION

WORKS OF
 THE LATE JOSEPH LIPKA
 PUBLISHED aY
 JOHN WILEY \& SONS, INC.

Graphical and Mechanical Computation

An aid in the solution of a large number of probloma which the ongineer, as well as the student of engincoring, meets in his work. ix +264 pages. 6 by 91. 207 figures, 2 charts. Cloth.

Also publiahed in two parts

Part I. Alignment Charts. xiv +119 pages. 6 by 94. 130 figures, 2 charts. Cloth. Part 11. Experimental Data. Pagea 120 to 250.6 by 94. 77 figures. Cloth.
By IIUDSON, LIPKA, LUTHER and PEABODY
The Engineers' Manual
By Ralph G. Hudson, S. B.. I'rofessor of Electrical Enginecring. Massachusetts Institute of Technology, assisted by the late Joscph Lipka. Ph.D. Howatd B. Luther, S. B., Dipl. Ing., Professor of Civil Engincering, Uuiveraity of Cincinnati, and Doan Y'pabody, Jr., S. B. Associate Professor of Structural Design, Massachusetta Institute of Technology:
A cortsolidation of the more commonly used formulan of engineering, oach arranged with a statement of its application. Second edition. iv + 340 puren. 5! by 71. 238 figures. Flexible binding.
By R. G. hUDSON and JOSEPII LIPKA
A Manual of Mathematics
By Ralph G. Hudson, S.B., and the lato Joarph Lipka, Ph. D.
A collection of msthematical tilbles anif formulas novering the aubjects mont arnerally used by engineers and by students of mathematica, and arranged for guick referenne. iii +135 pages. 5 by 78. 95 figuras. Flexible binding.
\triangle Table of Integrals
By Ralph G. Hudson, S.B., and the late Joecph Lipka, Mh. B .
Contains a Table of Derivatives, Table of Integrale, Natural Logarithms, Trigonometric and Hyperbolic Functions. 24 pages. 5 by $7 \frac{1}{2}$. Papar.

GRAPHICAL AND MECHANICAL COMPUTATION

BY
JOSEPH LIPKA, Рн.D.
Late Associate Professor of Mathematics in the
Massachusetts Institute of Technology

NEW YORK
JOHN WILEY \& SONS, Inc.
London: CHAPMAN \& HALL, Limited

Copyright, 1918,

BY
JOSEPH LIPKA

PREFACE

This book embodies a course given by the writer for a number of years in the Mathematical Laboratory of the Massachusetts Institute of Technology. It is designed as an aid in the solution of a large number of problems which the engineer, as well as the student of engincering, meets in his work.

In the opening chapter, the construction of scales naturally leads to a discussion of the principles upon which the construction of various slide rules is based. The second chapter develops the principles of a network of scales, showing their application to the use of various kinds of coördinate paper and to the charting of equations in three variables.

Engineers have recognized for a long time the value of graphical charts in lessening the labor of computation. Among the charts devised none are so rapidly constructed nor so easily read as the charts of the alignment or nomographic type ---a type which has been most fully developed by Professor M. d'()cagne of Paris. Chapters III, IV, and V aim to give a systematic development of the construction of alignment charts; the methods are fully illustrated by charts for a large number of well-known engineering formulas. It is the writer's hope that the simple mathematical treatment employed in these chapters will serve to make the enginecring profession more widely acquainted with this time and labor saving device.

Many formulas in the engincering sciences are empirical, and the value of many scientific and technical investigations is enhanced by the discovery of the laws connecting the results. Chapter VI is concerned with the fitting of equations to empirical data. Chapter VII considers the case where the data are periodic, as in alternating currents and voltages, sound waves, etc., and gives numerical, graphical, and mechanical methods for determining the constants in the equation.

When empirical formulas cannot be fitted to the experimental data, these data may still be efficiently handled for purposes of further computation, - interpolation, differentiation, and integration, - by the numerical, graphical, and mechanical methods developed in the last two chapters.

Numerous illustrative examples are worked throughout the text, and a large number of exercises for the student is given at the end of each chapter. The additional charts at the back of the book will serve
as an aid in the construction of alignment charts. Bibliographical references will be found in the footnotes.

The writer wishes to express his indebtedness for valuable data to the members of the engineering departments of the Massachusetts Institute of Technology, and to various mathematical and engineering publications. He owes the idea of a Mathematical Laboratory to Professor E. T. Whittaker of the University of Edinburgh. He is especially indebted to Capt. H. M. Brayton, U. S. A., a former student, for his valuable suggestions and for his untiring efforts in designing a large number of the alignment charts. Above all he is most grateful to his wife for her assistance in the revision of the manuscript and the reading of the proof, and for her constant encouragement which has greatly lightened the labor of writing the book.

JOSEPH LIPKA.
Саmbridge, Mass., Oct. 13, 1918.

CONTENTS.

CHAPTER I.

SCALES AND THE SLBE RULE.

Ain. Page

1. Definition of a scale I
2. Representation of a function by a scale 1
3. Variation of the scale modulus 2
4. Stationary scales. 5
5. Sliding scales 7
6. The logarithmic slide rule 9
7. The solution of algebraic equations on the logarithmic slide rule II
8. The log-log slide rule 13
9. Various other straight slide rules 15
10. Curved slide rules. 16
Exercises 18
CHAPTER II.
NETWORK OF SCALES. CHARTS FOR EQUATIONS IN TWO AND THREE VARIABLES.
11. Representation of a relation between two variables by means of perpen- dicular scales 20
12. Some illustrations of perpendicular scales 21
13. Logarithmic coördinate paper 22
14. Semilogarithmic coördinate paper 24
15. Rectangular coördinate paper - the solution of algebraic equations of the 2nd, 3 rd, and 4 th degrees 26
16. Representation of a relation between three variables by means of perpen- dicular scales 28
17. Charts for multiplication and division 30
18. Three-variable charts. Representing curves are straight lines 32
19. Rectangular chart for the solution of cubic equations 35
20. Three-variable charts. Representing curves are not straight lines 37
21. Use of three indices. Hexagonal charts 40
Exercises 42
CHAPTER III,
NOMOGRAPHIC OR ALIGNMENT CHARTS.
22. Fundamental principle 44
(1) Equation of form $f_{1}(u)+f_{2}(v)=f_{3}(w)$ or $f_{1}(u) \cdot f_{2}(v)=f_{3}(w)$ - Three parallel scales 45-54
23. Chart for equation (I) 45
24. Chart for multiplication and division 47
Art.25. Combination chart for various formulas48
25. Grasshoff's formula for the weight of dry saturated steam 50
26. Tension in belts and horsepower of belting 52
(II) Equation of form
$f_{1}(u)+f_{2}(v)+f_{3}(w)+\cdots=f_{4}(t)$ or $f_{1}(u) \cdot f_{2}(v) \cdot f_{3}(w) \ldots=f_{4}(t)$

- Four or more parallel scales 55-63

28. Chart for equation (II) 55
29. Chezy formula for the velocity of flow of water in open channels. 56
30. Hazen-Williams formula for the velocity of flow of water in pipes 57
31. Indicated horsepower of a steam engine 61
Exercises 64
CIIAPTER IV.
NOMOGRAPHIC OR ALIGNMENT CHARTS (Continued).
(III) Equation of form $f_{1}(u)=f_{2}(v) \cdot f_{3}(w)$ or $f_{1}(u)=f_{2}(v)^{f_{1}(w)}$ - Z chart 65-67
32. Chart for equation (III) 65
33. Tension on bolts with U. S. standard threads 66
(IV) Equation of form $\frac{f_{1}(u)}{f_{2}(v)}=\frac{f_{3}(q u)}{f_{4}(q)}$ - Two intersecting index lines. 68-75
34. Chart for equation (IV) 68
35. Prony brake or electric dynamometer formula 69
36. Deflection of beam fixed at ends and loaded at center 70
37. Deflection of beams under various methods of loading and supporting. 71
38. Specific speed of turbine and water wheel 73
(V) Equation of form $f_{1}(u)=f_{2}(v) \cdot f_{5}(w) \cdot f_{6}(t) \ldots$ - Two or more inter- secting index lines. 76-87
39. Chart for equation (V) 76
40. Twisting moment in a cylindrical shaft 77
41. D'Arcy's formula for the flow of steam in pipes 79
42. Distributed load on a wooden beam 80
43. Combination chart for six beam deflection formulas 84
44. General considerations 87
(VI) Equation of form $\frac{f_{1}(u)}{f_{2}(v)}=\frac{f_{3}(w)}{f_{4}(\bar{q})}$-Parallel or perpendicular index lines 87-91
45. Chart for equation (VI) 87
46. Weight of gas flowing through an orifice 89
47. Armature or field winding from tests. 90
48. Lamé formulá for thick hollow cylinders subjected to internal pressure. 91
(VII) Equation of form $f_{1}(u)-f_{2}(v)=f_{3}(w)-f_{4}(q)$ or $f_{1}(u): f_{2}(v)$ $=f_{3}(w): f_{4}(q)$ - Parallel or perpendicular index lines. 91-95
49. Chart for equation (VII) 9!
50. Friction loss in flow of water 94
Exercises 95

CHAPTER V.

NOMOGRAPHIC OR ALIGNMENT CHARTS (Continued).

Ast (VIII) Equation of form $f_{1}(u)+f_{2}(v)=\frac{f_{3}(w)}{f_{4}(q)}$ - Parallel or perpendicular index lines. 97-104
51. Chart for equation (VIII) 97
52. Moment of inertia of cylinder 99
53. Bazin formula for velocity of flow in open channels 101
54. Resistance of riveted steel plate 101
(IX) Equation of form
$\frac{1}{f_{1}(u)}+\frac{1}{f_{2}(v)}=\frac{1}{f_{2}(w)}$ or $\frac{1}{f_{1}(u)}+\frac{1}{f_{2}(v)}+\frac{1}{f_{3}(w)}+\cdots=\frac{1}{f_{1}(q)}-$
Three or more concurrent scales 104-106
55. Chart for equation (IX) 104
56. Focal length of a lens 106
(X) Equation of form $f_{1}(u)+f_{2}(v) \cdot f_{3}(w)=f_{4}(w)$-Straight and curved scales. 106-113
57. Chart for equation (X) 106
58. Storm water run-off formula 107
59. Francis formula for a contracted weir 110
60. The solution of cubic and quadratic equations 110
(XI) Additional forms of equations. Combined methods 114-117
61. Chart for equation of form $\frac{1}{f_{1}(u)}+\frac{\left.f_{1}(u)^{\prime}\right)}{f_{2}(v)}=\frac{1}{f_{2}(w)}$ 114
62. Chart for equation of form $f_{1}(u)+f_{2}(v) \cdot f_{3}(v y)=f_{4}(q)$ 114
63. Chart for equation of form $f_{1}(u) \cdot f_{1}(q)+f_{2}(v) \cdot f_{3}(i v)=1$ 114
64. Chart for equation of form $\frac{f_{1}(q)}{f_{1}(u)}+\frac{1}{f_{2}(v)}=\frac{1}{f_{2}(w)}$ 115
65. Chart for equation of form $\frac{f_{1}(q)}{f_{1}(u)}+\frac{f_{3}(v)}{f_{2}(v)}=1$ 115
66. Chart for equation of form $\left.f_{1}(u) \cdot f_{2}(q)+f_{s}(v) \cdot f_{v}(u)\right)=f_{6}(w)$ 116
67. Chart for equation of form $f_{1}(u) \cdot f_{2}(q)+f_{3}(v) \cdot f_{6}(w)=f_{6}(q)+f_{6}(w)$ 117
Exercises 117
Miscellaneous exercises for Chapters III, IV, V 118
CHAPTER VI.
EMPIRICAL FORMCLAS - NON-PERIODIC CURVES.
68. Experimental data. 120
(I) The straight line. 122-127
69. The straight line, $y=b x$ 122
70. The straight line, $y=a+b x$ 125
Akr.
Page
(II) Formulas involving two constants 128-139
71. Simple parabolic and hyperbolic curves, $y=a x^{b}$. 128
72. Simple exponential curves, $y=a e^{b x}$ 13 I
73. Parabolic or hyperbolic curve, $y=a+b x^{n}$ (where n is known) 135
74. Hyperbolic curve, $y=\frac{x}{a+b x}$, or $\frac{x}{y}=a+b x$ 137
(III) Formulas involving three constants. 140-152
75. The parabolic or hyperbolic curve, $y=a x^{b}+c$ 140
76. The exponential curve, $y=a e^{b x}+c$ 148
77. The parabola, $y=a+b x+c x^{2}$ 145
78. The hyperbola, $y=\frac{x}{a+b x}+c$ 149
79. The logarithmic or exponential curve, $\log y=a+b x+c x^{2}$ or $y=a e^{b x+c x^{2}}$. 151
(IV) Equations involving four or more constants 152-164
80. The additional terms $c e^{d x}$ and $c x^{d}$ 152
81. The cquation $y=a+b x+c e^{d x}$ 153
82. The equation $y=a c^{b x}+c c^{d x}$ 156
83. The polynomial $y=a+b x+c x^{2}+d x^{3}+$ 159
84. Two or more equations 161
Exercises 164
CHAPTER VII.
EMPIRICAL FORMULAS - PERIODIC CURVES.
85. Representation of periorlic phenomena 170
86. The fundamental and the harmonics of a trigonometric serics. 170
87. Determination of the constants when the function is known 173
88. Determination of the constants when the function is unknown 174
89. Numerical evaluation of the coefficients. Even and odd harmonics 179
90. Numerical evaluation of the coefficients. Odd harmonics only 186
91. Numerical evaluation of the coefficients. Averaging selected ordinates 192
92. Numerical evaluation of the coefficients. Averaging selected ordinates. Odd harmonics only 198
93. Graphical evaluation of the coefficients 200
94. Mechanical evaluation of the cocfficients. Harmonic analyzers. 203
Exercises 207
CHAPTER VIII.
INTERPOLATION.
95. Graphical interpolation 209
96. Successive differences and the construction of tables. 210
97. Newton's interpolation formula 214
98. Lagrange's formula of interpolation. 218
99. Inverse interpolation 210
Exercises 222
CHAPTER IX.
APPROXIMATE INTEGRATION AND DIFFERENTIATION.
Art. Page
100. The necessity for approximate methods. 224
101. Rectangular, trapezoidal, Simpson's, and Durand's rules 224
102. Applications of approximate rules 227
103. General formula for approximate integration 231
104. Numerical differentiation 234
105. Graphical integration 237
106. Graphical differentiation 244
107. Mechanical integration. The planimeter 246
108. Integrators 250
109. The integraph 252
1io. Mechanical differentiation. The differentiator 255
Exercises. 256

Graphical and Mechanical Computation.

CHAPTER I.

SCALES AND THE SLIDE RULE.

1. Definition of a scale. - A graphical scale is a curve or axis on which are marked a series of points or strokes corresponding in order to a set of numbers arranged in order of magnitude.

If the distances between successive strokes are equal, the scale is said to be uniform (Figs. $1 a, 1 b$). If the distances between successive strokes are unequal, the scale is said to be non-uniform (Fig. ic). The strokes are drawn as fine as possible, perpendicular to the axis which carries the scale.

Fig. $1 a$.

Fig. $1 b$.

Fig. ic.
2. Representation of a function by a scale. - Consider the function u^{2} of a variable u. Form the table

$$
\begin{array}{lllllrrrrrrr}
u=0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
u^{2}=0 & 1 & 4 & 9 & 16 & 25 & 36 & 49 & 64 & 81 & 100
\end{array}
$$

and on an axis $O X$ lay off from the origin O, lengths equal to $x=0.04 u^{2}$ inches (Fig. 2a); mark at the strokes indicating the end of each segment the corresponding value of u. Thus, a stroke marked u is at a distance of $0.04 u^{2}$ inches from the origin. Fig. $2 a$ is said to represent the function u^{2} by a scale. The length 0.04 inches is chosen arbitrarily in this case to represent the unit segment used in laying off the values of u^{2} on the axis. This unit segment is called the scale modulus.

Fig. $2 a$.
In general, any function $f(u)$ of a variable u such that each value of the variable determines a single value of the function, may be represented by a scale. Form the table

$$
\begin{array}{rlll}
u= & u_{1} & u_{2} & u_{3} \cdot \cdots \\
f(u)= & f\left(u_{1}\right) & f\left(u_{2}\right) & f\left(u_{3}\right) \cdot \cdots
\end{array}
$$

and on an axis $O X$ lay off from the origin lengths equal to $x=m f(u)$ inches, and mark with the corresponding values of u the strokes indicating the end of each segment. Fig. $2 b$ is said to represent the function $f(u)$ by a scale. The length m inches is chosen arbitrarily to represent the unit segment used in laying off the values of $f(u)$, and it is called the scale modulus. The equation $x=m f(u)$ is called the equation of the scale.

Fig. $2 b$.
The uniform scale is a special case of this representation when $f(u)=u$. In Fig. $2 c, x=m u$, where $m=0.5$ inches.*

Fig. $2 c$.
The logarithmic scale is a special case of this representation when $f(u)=\log u$. In Fig. $2 d, x=m \log u$, where $m=12.5 \mathrm{~cm}$.*

Fig. $2 d$.
The uniform and logarithmic scales are the most important scales for our work.

After we have constructed a scale for $f(u)$ from a table of values of u and $f(u)$, we may wish to estimate the value of u corresponding to a stroke intermediate between two strokes of the scale, or to estimate on the scale. the position of a stroke corresponding to a value of u intermediate between two values of u in the table. This process of interpolating on the scale is of course very much easier for uniform scales than for non-uniform scales. The accuracy of such interpolation evidently depends upon the interval between two successive strokes. Experience has shown that this interval should not be less than 1 mm . or about if in. (very rarely need it be as small as this); this may always be done by the choice of a proper scale modulus.
3. Variation of the scale modulus. - By varying the modulus m with which a scale for $f(u)$ is constructed, we get a series of scales $x_{1}=m_{1} f(u), x_{2}=m_{2} f(u), x_{3}=m_{3} f(u), \ldots$, all representing the same

[^0]In Fig. $3 a$, let $O_{1} X_{1}$ carry the scale $x_{1}=m_{1} f(u)$; we wish to construct the scale $x_{2}=m_{2} f(u)$. Let O be any convenient point; join $O O_{1}$ and on this line choose O_{2} such that $0 O_{2} / O O_{1}=m_{2} / m_{1}$; through O_{2} draw $O_{2} X_{2}$ parallel to $O_{1} X_{1}$. If A is a point on $O_{1} X_{1}$ marked u^{\prime}, then $O_{1} A=$ $m_{1} f\left(u^{\prime}\right)$, and $O A$ will cut $O_{2} X_{2}$ in a point B such that $O_{2} B / O_{1} A=O O_{2} / O O_{1}$ or $O_{2} B=\frac{m_{2}}{m_{1}}$. $m_{1} f\left(u^{\prime}\right)=m_{2} f\left(u^{\prime}\right)$, and thus B will also be marked u^{\prime}. By joining O with all the points A of the scale $O_{1} X_{1}$ we shall thus get the

Fig. 3 a. points B of the scale $O_{2} X_{2}$ so that corresponding points on the same

Fig. 3 b.
transversal through O will be marked with the same value of u, and the scale on $\mathrm{O}_{2} \mathrm{X}_{2}$ will have for its equation $x_{2}=m_{2} f(u)$.

The transversals through O need not be drawn, but simply their points of intersection with $\mathrm{O}_{2} \mathrm{X}_{2}$ indicated. If the transversals through O are drawn, then we may get a scale of any required modulus by merely drawing a parallel to $O_{1} X_{1}$ dividing the segment $O O_{1}$ in the required ratio; thus a line midway between O and O_{1} will carry a scale with modulus

Fig. 3c. ${ }^{\text { }}$
$m_{1} / 2$, a line ${ }^{\circ}$ of the way from O to O_{1} will carry a scale with modulus $2 m_{1} / 5$, etc.

This principle is illustrated in Figs. $3 b$ and $3 c$ for uniform and logarithmic scales respectively. If we mark a uniform scale .1, .2, .3, . . .9 , on the base line beginning at O, then the lines through these points parallel to the left-hand scale with modulus m will cut the transversals in scales whose moduli are .i $m, .2 m, \ldots, .9 m$, respectively. It is best to make the charts in these figures almost square. and to take $m=10$
in. for the uniform scale and $m=25 \mathrm{~cm}$. for the logarithmic scale. The chart of uniform scales will then be an amplification of the engineer's or architect's hexagonal scale, and the chart of logarithmic scales, an amplification of the logarithmic slide rule.

If necessary the scales in either chart may be extended. Note, however, that in the case of the logarithmic scales, the segment representing the interval from $u=1$ to $u=10$ is of the same length as the segment representing the interval from $u=10$ to $u=100$, or, in general, the segment representing the interval from $u=10^{n}$ to $u=10^{n+1}$.

It is convenient to draw Figs. $3 b$ and $3 c$ on durable paper. Only the primary scale with modulus m, the base line and the transversals need be drawn. The paper may then be creased along any parallel to the primary scale to give a scale of the required modulus. Charts of this nature have been used to assist in constructing a large number of the scales and charts that follow, and much time and energy have been saved thereby. (Such charts will be found in the back of this book.)
4. Stationary scales. - A relation between two variables u and v of the form $v=f(u)$ may be represented graphically by constructing the two scales $x=m v$ and $x=m f(u)$ on opposite sides of the same axis or on adjacent or parallel axes with the same modulus and from the same origin or with origins in a line perpendicular to the axes.

If C represents degrees Centigrade and F represents degrees Fahrenheit, then $F-32=1.8 C$. We construct the uniform scales $x=m(F-32)$ and $x=m$ (r.8C) on opposite sides of the same axis, and from the same origin, i.e., the points marked $C=0$ and $F=32$ coincide. In Fig. $4 a$,

Fig. $4 a$.
$m=0.02$ in., so that the equations of our scales are $x=0.02(F-32)$ and $x=0.036 C$. By means of such a figure, we may immediately convert degrees Centigrade and Fahrenheit into each other.

- If pressure is expressed as pounds per sq. in., P, and feet of water, W, then $P=0.434 W$. Draw the uniform scales $x=m P$ and $x=$

Fig. $4 b$.
m ($0.434 W$) from the same origin. In Fig. $4 b$, the scale modulus is I in., so that we have the scales $x=P$ and $x=0.434 W$. We may add another scale for pressure expressed in inches of mercury, M; thus
$P=0.492 M$, and the M scale has for equation $x=0.492 M$. By means of such a figure (drawn with the aid of chart $3 b$ or a pair of dividers) pressure may be read immediately in pounds per sq. in., feet of water, or inches of mercury.

If the relation between the two variables is of the form $v=\log u$, we construct the adjacent scales $x=m v$ and $x=m \log u$. If we take $m=25 \mathrm{~cm}$., the logarithmic scale will be the same length as that of the logarithmic slide rule, and if the uniform scale is divided into 500 parts, we can use such a figure to read easily the values of the mantissas of the logarithms of all numbers to three decimals, and conversely to read the numbers corresponding to given mantissas (Fig. 4c). The slide rule

Fig. 4 c.
contains two such adjacent scales. The chart, Fig. 3c, could be used for the same purpose if we construct a uniform scale adjacent to the primary logarithmic scale.

If the relation between the two variables is of the form $v=u^{\frac{7}{7}}$, we may write this as $\log v=\frac{3}{8} \log u$. Here we construct the adjacent scales $x=m \log v$ and $x=m\left(\frac{3}{3} \log u\right)$, i.e., two logarithmic scales with moduli m and $3 m / 5$ respectively. We use chart $3 c$ and get Fig. $4 d$, from

which we can read v when u lies within the limits I to 100 , or read u when v lies within the limits I to 20 .

We may similarly construct two adjacent scales for the relation $v=u^{\boldsymbol{p}}$, where p is any positive number. The chart Fig. $3 c$ may conveniently be used for this purpose. We may write the relation as $\log v=p \log u$, and we pick out on the chart the scales $x=m \log v$ and $x=(p m) \log u$, i.e., with moduli m and $p m$. Since the axes carrying these scales are parallel with origins in the same perpendicular, any perpendicular to the axes will cut out corresponding values of u and v. If $p<\mathrm{I}$ we may use the primary logarithmic scale for the v scale. If $p>1$, we write the relation in the form $u=v^{1 / p}$ and proceed similarly.

If in the relation $v=u^{p}, p$ is a negative number, say, $-q$, then $v=u^{-\varepsilon}$. If we write $v=10 u^{-q}$, we merely shift the position of the decimal point in the value of v; then $\log v=\log 10-q \log u$. Construct
the adjacent scalcs $x=m \log v$ and $x=m(\log 10-q \log u)=m-$ ($q m$) $\log u$ from the same origin; the latter scale is merely the scale $x=(q m) \log u$ constructed from the point $x=m$ as starting point and

proceeding to the left. Fig. $4 e$ represents the relation $v=u^{-\frac{1}{2}}$ constructed with the help of chart $3 c$.
5. Sliding scales. - Consider two functions $f(u)$ and $F(v)$ and construct their scales $x=m f(u)$ and $x=m F(v)$. If these scales are placed adjacent with their origins coinciding or in the same perpendicular to the axes (we shall call this the stationary position), then for any pair of values u and v opposite each other, we have $O A=O^{\prime} B$ (Fig. $5 a$), and hence, $m f(u)=m F(v)$, or
(in the stationary position) $f(u)=F(v)$.
This relation was illustrated in the examples of Art. 4.
If now one of the scales is slid along the other scale through any distance d, then for any pair of values of u and v opposite each other, we have $O A-O^{\prime} B=d$ (Fig. $5 b$), or $m f(u)-m F(v)=d$, or $f(u)-F(v)=$

Fig. 5 a.

Fig. 5b.

Fig. 5 .
$d / m=$ constant, for d and m are independent of the pair of values of u and v considered; hence,
(after sliding)

$$
\begin{equation*}
f(u)-F(v)=\text { constant } . \tag{II}
\end{equation*}
$$

If u_{1}, v_{1} and u_{2}, v_{2} are two pairs of values of u, v opposite each other (Fig. $5 c$), then by (II), we may write

$$
\begin{equation*}
f\left(u_{1}\right)-F\left(v_{1}\right)=f\left(u_{2}\right)-F\left(v_{2}\right) \tag{III}
\end{equation*}
$$

Equations (I) and (II) are the important equations for the construction of stationary and sliding adjacent scales, illustrating the principles upon which the use of slide rules is founded.

As an example, consider the scales $x=m \log u$ and $x=m \log v$. If these are placed adjacent, then, in the stationary position, by (I), $\log u=$ $\log v$ or $u=v$, and after sliding, by (II), $\log u-\log v=$ constant, or $\log \frac{u}{v}=$ constant, or $\frac{u}{v}=$ constant for any pair of values of u and v opposite each other, and $\frac{u_{1}}{v_{1}}=\frac{u_{2}}{v_{2}}$ for any two pairs of values of u and v opposite each other. Thus if any three of the last four quantities are given, the

Fig. 5d.
fourth quantity may be found at once; thus if u_{1}, v_{1}, u_{2} are given, slide the scales until v_{1} is opposite u_{1}, and read v_{2} opposite u_{2}. This is illustrated in Fig. $5 d$, where we read $\frac{3.7}{2.5}=\frac{5.92}{4.00}$.

We may perform the same operation by means of a single logarithmic scale $x=m \log u$ sliding along an unmarked axis (Fig. 5e).

Fig. 5 .
Ist position: place the scale $x=m \log u$ adjacent to the unmarked axis and mark on the latter the values u_{1} and u_{2}.

2d position: slide the scale $x=m \log u$ until v_{1} of this scale falls opposite u_{1} of the unmarked axis; then read v_{2} of the scale opposite u_{2} of the unmarked axis.

It is evident that simple multiplication and division are special cases of the above, for if $u_{1}=1$ or 10 , then $v_{2}=u_{2} \cdot v_{1}$ or $10 u_{2} \cdot v_{1}$, and if $v_{3}=1$ or 10, then $u_{2}=u_{1} / v_{1}$ or $10 u_{1} / v_{1}$.
6. The logarithmic slide rule.* - This instrument consists of several parallel logarithmic scales and one uniform scale, some on the stock of the rule and others on the slide. Any two of these scales may be placed adjacent by means of a glass runner which has a fine hair line scratched on its under side and which is adjusted so that the hair line is always perpendicular to the axes (Fig. 6).

All logarithmic slide rules do not carry the same number of scales. The following is a description of the scales and their equations on the

Fig. 6.
modern Mannheim standard rule (polyphase or duplex), commonly called "the io-inch rule." The length of the graduated part of the rule is 25 cm . and we shall designate this length by m. The scales are distinguished by the letters A, B, C, \ldots We shall use the corresponding small letters a, b, c, \ldots, , to represent numbers on these scales.

$$
\begin{array}{lll}
L: x=m l . & C: x=m \log c . & D: x=m \log d . \\
A: x=\frac{m}{2} \log a . & B: x=\frac{m}{2} \log b . & C I: x=m \log \frac{10}{c i} \\
K: x=\frac{m}{3} \log k . & S: x=\frac{m}{2} \log (100 \sin s) . & T: x=m \log (10 \tan t) .
\end{array}
$$

The C and D scales are graduated so that we can easily read three figures in any part of these scales. Rules for the position of the decimal point may be given, but in computing it is best to disregard all decimal points and to estimate the position of the decimal point in the final result.

The following are some of the relations which arise through the application of the principles of stationary and sliding scales to this type of rule. (Other illustrations will be found in the manuals issued by the manufacturers.) We shall designate the stationary or initial position by (I)

[^1]and the position after sliding by (II). Numbers opposite each other are designated by the same subscript.
(1) L and D :
(I) $l=\log d$ and $d=$ antilog l. (l is only the mantissa.)
(2) C and D (or A and B):
(I) $\log c=\log d, \quad \therefore \quad c=d$.
(II) $\log c-\log d=$ const., $\quad \therefore \quad \frac{c}{d}=$ const. or $\quad \frac{c_{1}}{d_{1}}=\frac{c_{2}}{d_{2}}$.

Multiplication: $p \times q=y$ or $\frac{1}{p}=\frac{q}{y}, \therefore \frac{C}{D}\left|\frac{1 \text { or } 10}{\text { one factor }}\right| \frac{\text { other factor }}{\text { product }}$.
Division: $\frac{p}{q}=y$ or $\frac{q}{p}=\frac{1}{y}, \quad \therefore \frac{C}{D}\left|\frac{\text { divisor }}{\text { dividend }}\right| \frac{1 \text { or } 10}{\text { quotient }}$.
(3) D and $C I$:
(I) $\log d=\log \frac{10}{c i}, \quad \therefore \quad d=\frac{10}{c i}$ and $c i=\frac{10}{d}$ (for finding reciprocals). It is evident that multiplying or dividing d by c is equivalent to dividing or multiplying d by $c i$. If the rule does not contain a $C I$ scale, we may invert the slide so that the C scale slides along the A scale, thus transforming the C scale into a $C I$ scale.
(II) $\log d-\log \frac{10}{c i}=$ const. $\therefore d \times c i=$ const. or $d_{1} \times c i_{1}=\dot{d}_{2} \times c i_{2}$.
(4) D and A (or C and B):
(I) $\log d=\frac{1}{2} \log a, \quad \therefore \quad d=\sqrt{a}$ and $a=d^{2}$.

To find \sqrt{a}, divide a, as in arithmetic, into groups of two figures beginning at the decimal point; the left-hand group may contain only one significant figure. Thus, the left-hand groups in $45^{\prime} .60^{\prime}, .45^{\prime} 60^{\prime}$, $.00^{\prime} 45^{\prime} 6$ are said to contain two figures, while the left-hand groups in $4^{\prime} 56 ., 4^{\prime} .56^{\prime}, .04^{\prime} 56^{\prime}, .00^{\prime} 04^{\prime} 56^{\prime}$ are said to contain only one significant figure. We read a in the first half or second half of the A scale according as the left-hand group contains one or two figures.
(5) D and B (or C and A):
(I) $\log d=\frac{1}{2} \log b, \quad \therefore \quad d=\sqrt{b}$ and $b=d^{2}$.
(II) $\log d-\frac{1}{2} \log b=$ const., $\therefore \frac{d}{\sqrt{b}}=$ const., $\therefore \frac{d_{1}}{\sqrt{b_{1}}}=\frac{d_{2}}{\sqrt{b_{2}}}$ and $\frac{d_{1}^{2}}{b_{1}}=\frac{d_{2}^{2}}{b_{2}}$.
(6) D and K :
(I) $\log d=\frac{1}{3} \log k, \quad \therefore \quad d=\sqrt[3]{k}$ and $k=d^{3}$.

To find $\sqrt[3]{k}$, divide k, as in arithmetic, into groups of three figures beginning at the decimal point; the left-hand group may contain only one or two significant figures. Thus, the left hand groups in 456.',
$.456^{\prime}, .000^{\prime} 456^{\prime}$ are said to contain three figures, the left-hand groups in $45^{\prime} .6, .045^{\prime} 6, .000^{\prime} 045^{\prime} 6$ are said to contain two figures, while the left-hand groups in $4^{\prime} \cdot 56, .004^{\prime} 56$ are said to contain one figure. We read k in the first, middle or last third of the K scale according as the left-hand group contains one, two or three figures.
(7) C and K :
(I) $\log c=\frac{1}{3} \log k_{1} \quad \therefore \quad c=\sqrt[3]{k}$ and $k=c^{3}$.
(II) $\log c-\frac{1}{3} \log k=$ const., $\quad \therefore \quad \frac{c}{\sqrt[3]{k}}=$ const., $\quad \therefore \quad \frac{c_{1}}{\sqrt[3]{k_{1}}}=\frac{c_{2}}{\sqrt[3]{k_{2}}}$.
(8) A and K (or B and K):
(I) $\frac{1}{2} \log a=\frac{1}{3} \log k, \quad \therefore \quad \sqrt{a}=\sqrt[3]{k}, \quad$ or $\quad a=k^{\frac{3}{3}}$ and $k=a^{\frac{3}{2}}$.
(9) A and S :
(I) $\frac{1}{2} \log a=\frac{1}{2} \log (100 \sin s), \quad \therefore \quad a=100 \sin s$ and $s=\sin ^{-1} \frac{a}{100}$.
(II) $\frac{1}{2} \log a-\frac{1}{2} \log (100 \sin s)=$ const., $\therefore \frac{a}{\sin s}=$ const. or $\frac{a_{1}}{\sin s_{1}}=\frac{a_{2}}{\sin s_{2}}$.

The last relation may be used in the solution of oblique triangles.
To find $y=a \sin s$, we set $\frac{a}{\sin 90^{\circ}}=\frac{y}{\sin s}$.
To find $y=\frac{a}{\sin s}$, we set $\frac{a}{\sin s}=\frac{y}{\sin 90^{\circ}}$.
We also note that $\cos s=\sin \left(90^{\circ}-s\right)$.
(10) D and T :
(I) $\log d=\log ($ Io $\tan t), \quad \therefore \quad d=10 \tan t$ and $t=\tan ^{-1} \frac{d}{10}$.
(II) $\log d-\log (\mathrm{IO} \tan t)=$ const., $\therefore \frac{d}{\tan t}=$ const., or $\frac{d_{1}}{\tan t_{1}}=\frac{d_{2}}{\tan t_{2}}$.

To find $y=d \tan t$, set $\frac{d}{\tan 45^{\circ}}=\frac{y}{\tan t}$.
To find $y=\frac{d}{\tan t}$, set $\frac{d}{\tan t}=\frac{y}{\tan 45^{\circ}}$.
We also note that $\cot t=\tan \left(90^{\circ}-t\right)$.
7. The solution of algebraic equations on the logarithmic slide rule. The relation between the D and $C I$ scales expressed in Art. 6 (3), viz.: that, after sliding, the product of d and $c i$ is the same for all such pairs of numbers opposite each other, may be used to assist in the solution of algebraic equations of the second and third degrees. Thus if we set $c i=1$ over $d=q$, then over any number y on the D scale we shall find $\frac{q}{y}$ on the $C I$ scale $\left(\right.$ since $\left.I \times g=y \times \frac{q}{y}\right)$ and y^{2} on the A scale; this is

illustrated in the accompanying diagram: | $\frac{A}{C I}$ | $\frac{y^{2}}{q}$ | $-\frac{1}{y}$ |
| :---: | :---: | :---: |
| D | $\frac{1}{y}$ | (Fig. 7). We | may use $c i=10$ instead of $c i=1$ if necessary, but care must be taken in reading the position of the decimal point.

Fig. 7.
(1) If we slide the runner until the readings on the D and $C I$ scales are the same, then $y=\frac{q}{y}$ or $y^{2}=q$ and $y= \pm \sqrt{q}$.

Thus, if $y^{2}=5$, or $y=\frac{5}{y}$, we have $\frac{C I}{D}\left|\frac{2.24}{2.24}\right| \frac{1}{5}, \quad \therefore \quad y= \pm 2.24$.
We also find $d=c i=7.07$, but this is $\sqrt{50}$.
(2) If we slide the runner until the reading on the D scale plus p equals the reading on the $C I$ scale, then $y+p=\frac{q}{y}$ or $y^{2}+p y=q$.

Thus, if $y^{2}+3 y=5$ or $y+3=\frac{5}{y}$, we have $\frac{C I}{D}\left|\frac{4.19}{\text { I.19 }}\right| \frac{\mathrm{I}}{5}, \quad \therefore$ $y=1.19$.

Since the sum of the roots of the equation $y^{2}+p y=q$ is $-p$, the other root is -4.19 .

A negative root may be found by replacing y by $-y_{1}$; thus the negative root of $y^{2}+3 y=5$ is a positive root of $y_{1}{ }^{2}-3 y_{1}=5$.
(3) If we slide the runner until the readings on the A and $C I$ scales are the same, then $y^{2}=\frac{q}{y}$ or $y^{3}=q$ and $y=\sqrt[3]{q}$.

Thus if $y^{3}=5$ or $y^{2}=\frac{5}{y}$, we have $\frac{A}{\frac{C I}{D}} \left\lvert\, \frac{2.92}{2.92 \quad 1} 1.71 \quad \therefore \quad y=1.71\right.$.
We also find $a=c i=13.6$ opposite $d=3.68$, but this is $\sqrt[3]{50}$.
We also find $a=c i=63.0$ opposite $d=7.94$, but this is $\sqrt[3]{500}$.
(4) If we slide the runner until the reading on the A scale plus p equals the reading on the $C I$ scale, then $y^{2}+p=\frac{q}{y}$ or $y^{8}+p y=q$.

The nature of the roots of this cubic equation are determined as follows: $\frac{q^{2}}{4}+\frac{p^{3}}{27} \supseteqq \circ\left\{\begin{array}{l}\text { only i real root; if } g \text { is }+, \text { root is }+; \text { if } g \text { is }-, \text { root is }-. \\ 3 \text { real roots of which } 2 \text { are equal. } \\ 3 \text { real and unequal roots; } 1 \text { root is }+ \text { and } 2 \text { roots are }- \text { or } 1\end{array}\right.$ root is - and 2 roots are + .
To find the negative roots, we replace y by $-y_{1}$, and the positive roots of the resulting equation are the negative roots of the original equation.

We also note that the sum of the three roots of the equation $y^{3}+p y$ $=q$ is zero. The complete cubic equation $z^{3}+a z^{2}+b z+c=0$ must first be reduced to the form $y^{3}+p y=q$ by the substitution $z=y-\frac{a}{3}$. To facilitate the comparison of the A and $C I$ scales, it is well to invert the slide so that the C scale is transformed into a $C I$ scale and slides along the A scale.

Thus, if $y^{3}+3 y=5$ or $y^{2}+3=\frac{5}{y}$, there is only one positive root since $\frac{q^{2}}{4}+\frac{p^{3}}{27}=\frac{25}{4}+1>0$ and q is positive. This positive root is found by the setting $\frac{A}{C I}\left|\frac{\mathrm{I} .33}{\frac{4.33}{D}}\right| \frac{\mathrm{I} .153}{\frac{\mathrm{I}}{5}}, \quad \therefore \quad y=$ I.I53.

Again, if $y^{3}-4 y=2$ or $y^{2}-4=\frac{2}{y}$, there are three real roots, since $\frac{q^{2}}{4}+\frac{p^{3}}{27}=1-\frac{64}{27}<0$. The positive root is found by the setting

$$
\frac{A}{C I}\left|\frac{10}{D}\right| \frac{4.9}{0.9}, \quad \therefore \quad y=2.2 \mathrm{I} .
$$

To find a negative root, replace y by $-y_{1}$, and get $-y_{1}{ }^{3}+4 y_{1}=2$, or $y_{1}{ }^{2}-4=-\frac{2}{y_{1}}$, or $y_{1}{ }^{2}+\frac{2}{y_{1}}=4$. We have the setting $\frac{A}{\frac{C I}{D}} \left\lvert\, \frac{2.8}{\frac{1.2}{} \quad 1} \begin{aligned} & \text { I. } 67 \\ & 2\end{aligned}\right.$, $\therefore \quad y_{1}=1.67$ and $y=-1.67$.

To find the third root, we note that the sum of the three roots is zero, $\therefore 2.21-\mathrm{I} .67+y=0$, or $y=-0.54$. We may also find this root by

8. The $\log -\log$ slide rule. - Suppose we wish to construct a slide rule for finding any power (integer or fractional) of a number, i.e., for finding the value of the expression $n_{2}=n_{1}{ }^{\frac{c_{2}}{c_{1}}}$. To find the equations of
the required scales we must write this equation in the form (II) or (III) of the principle expressed in Art. 5. Taking logarithms, we get $\log n_{2}=\frac{c_{2}}{c_{1}} \log n_{1}$, or $\frac{\log n_{1}}{c_{1}}=\frac{\log n_{2}}{c_{2}}$, and taking logarithms again, we get $\log \log n_{1}-\log c_{1}=\log \log n_{2}-\log c_{2}$, or $\log \log n-\log c=$ const. The equations of our scales are therefore $x=m \log \log n$ and $x=m \log c$. The initial point of the N scale would be marked $n=10$ (since $x=$ $m \log \log 10=m \log 1=0$), and the end point would be marked $n=10^{10}$ (since $x=m \log \log 10^{10}=m \log 10=m$) if our scale is to be $m \mathrm{~cm}$. long. The range from $n=10$ to $n=10^{10}$ is not a convenient range for n, so that it has been found best to modify the equation of this scale somewhat. An instrument called the log-log rule (Fig. 8) has been constructed

Fig. 8.
in which the equation of the n scale is $x=m \log$ ($100 \ln l l$) (where $\ln l l=\log _{e} l l$ and $e=2.71828 \ldots$, the base of Napierian or natural logarithms). The scale is broken into three parallel scales of length $m=25 \mathrm{~cm}$.:
the first, marked $L L_{1}$ with a range from $l l=e^{0.01}$ ($=$ I. 01 approx.) to $l l=e^{0.1}$,
the second, marked $L L_{2}$ with a range from $l l=e^{0.1}$ to $l l=e$,
the third, marked $L L_{3}$ with a range from $l l=e$ to $l l=e^{10}$ ($=22,000$ approx.).
By sliding the adjacent scales $x=m \log (100 \ln l l)$ and $x=m \log c$, we have $\log (100 \ln l l)-\log c=$ const., or $\frac{100 \ln l l}{c}=$ const., or $\sqrt[\circ]{l l}=$ const., or $\sqrt[\boldsymbol{o}_{1}]{l l_{1}}=\sqrt[o_{2}]{l_{2}}$, or $l_{2}=l l_{1} \frac{c_{1}}{c_{1}}$; hence we have the setting $\frac{L L}{C} \left\lvert\, \frac{l l_{2}}{c_{2}} l_{1} c_{1}\right.$. If we set $c_{1}=1$ or 10 opposite $l l_{1}$, we have $l_{2}=l l_{1}^{c_{2}}$ or $l l_{2}=l l_{1}{ }^{\frac{c_{2}}{10}}$. Of course on the scale $x=m \log c, c_{2}$ and c_{2} / 10 have the same position, but on the $L L$ scales the decimal point must be left in its original position. It is easy to see on which of the three $L L$ scales the result is to be read; thus $y=2^{4.5}$ gives the setting $\left.\frac{L L_{?}}{\frac{L L_{3}}{C}} \right\rvert\, \frac{2}{2.6 \cdot}, \quad \therefore \quad y=22.6$ and $y=2^{0.45}$ gives the setting $\left.\frac{L L_{2}}{\frac{L L_{3}}{C}} \right\rvert\, \frac{1.3662}{0.45 \mathrm{I}}, \therefore \quad y=1.366$.

We note above that the smallest value of $l l$ is $\mathrm{I} . \mathrm{oI}$. Values of $l l \equiv$ 0.99 may at once be replaced by their reciprocals, and the reciprocals of the final result taken, since $\frac{1}{l l_{2}}=\left(\frac{1}{l_{1}}\right)^{a_{2}}$.

The $L L$ and the C scales in their initial position may also be used to find directly the natural logarithm of a number, for we have \log ($100 \ln l l$) $=\log c$ or $\ln l l=\frac{c}{100}$.

It is evident that compound interest problems are very easily solved with the log-log rule. Thus, the amount, A, of the sum of $\$ 1.00$ placed at r per cent interest for n years and compounded q times a year, is given by $A=\left(\mathrm{I}+\frac{r}{100 q}\right)^{n q}$; the required setting is then $\frac{L L}{C}\left|\frac{A}{n q}\right| \frac{\left(\mathrm{I}+\frac{r}{100 q}\right)}{\mathrm{I} \text { or } 10}$.

Many other illustrations may be found in the manuals published by the manufacturers.
9. Various other straight slide rules. - As ånother illustration of the use of sliding scales, let us construct a slide rule for the expression $\frac{1}{u}+\frac{1}{v}$. If we choose for our scales $x=m\left(\frac{1}{u}\right)$ and $x=m\left(10-\frac{1}{v}\right)$, then for any position of our scales we shall have $\frac{1}{u}-\left(10-\frac{1}{v}\right)=$ const. or $\frac{1}{u}+\frac{1}{v}=$ const., or $\frac{1}{u_{1}}+\frac{1}{v_{1}}=\frac{1}{u_{2}}+\frac{1}{v_{2}}$. If we choose the modulus, m, to be I in., and the total length of our scales to be io in., then the range

Fig. 9.
of u is from $u=\infty(x=0)$ to $u=0.1(x=10)$, and the range of v is from $v=0.1(x=0)$ to $v=\infty(x=10)$. (Fig. 9.) Now if we set $v_{2}=\infty$ opposite $u_{2}=u$, we shall have $\frac{1}{u_{1}}+\frac{1}{v_{1}}=\frac{1}{u}$, and we may read off any one of the three quantities u_{1}, v_{1}, u if the other two are known. This rule may be used to solve the equation $\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{1}{R}$, where R is the combined electrical resistance of two parallel resistances R_{1} and R_{2}, or to soive the equation $\frac{1}{f_{2}}+\frac{\mathbf{1}}{f_{2}}=\frac{1}{f}$, where f is the principal focal distance of a lens and f_{1} and f_{2} are conjugate focal distances.

A large number of slide rules have been constructed for solving various special equations in engineering practice. Among these may be mentioned: stadia slide rules for measuring the horizontal distance and vertical height when the rod reading and the elevation of telescope are known; Nordell's sewer rule for solving Kutter's formula for circular sewers; Hudson's horse power computing scale for obtaining the indicated H.P. of an engine (this rule has two slides); Hazen-Williams hydraulic rule for finding the velocity of the flow of water through pipes (see chart on p. 6I).

CIRCULAR SLIDE RULE Fig. 10.
10. Curved slide rules. - Divide the angular magnitude about a point, viz., 2π radians, into 1000 equal parts by straight rays drawn through the point. Choose one of these rays as initial ray and mark it with the number $1($ for $0=\log 1)$; mark the ray at the end of 301 parts
with the number $2($ for $0.301=\log 2)$, and the ray at the end of 477 parts with the number 3 (for $0.477=\log 3$), etc. Then the angle will be divided logarithmically (Fig. 1o). The circumference of any circle drawn with the point as center will likewise be divided logarithmically, the points on the circumference carrying the same numbers as the rays through them.

Designating such a circumference by A, the numbers on it by a, and its radius by r_{a} inches, the equation of the scale on A is $x=\left(2 \pi r_{a}\right) \log a$, i.e., the point marked a_{1} is at a distance of $\left(2 \pi r_{a}\right) \log a_{1}$ inches from the initial point, $a=1$, measured along the circumference. We now draw a concentric circumference, B, of radius r_{b}, carrying a scale $x=\left(2 \pi r_{b}\right) \log b$ and so constructed that the plane of the B-circumference can rotate about the center. If in the initial position of the scales, i.e., when the numbers $a=\mathrm{I}$ and $b=\mathrm{I}$ are on the same ray, a ray cuts out the numbers a_{1} and b_{1}, then we have

$$
\frac{\left(2 \pi r_{a}\right) \log a_{1}}{\left(2 \pi r_{b}\right) \log b_{1}}=\frac{r_{a}}{r_{b}}, \quad \therefore \quad \log a_{1}=\log b_{1} \text { and } a_{1}=b_{1} .
$$

If, after rotation of the B-scale through any angle, two rays cut the scales in a_{1}, b_{1} and a_{2}, b_{2}, then

$$
\begin{aligned}
\frac{\left(2 \pi r_{a}\right) \log a_{1}-\left(2 \pi r_{a}\right) \log a_{2}}{\left(2 \pi r_{b}\right) \log b_{1}-\left(2 \pi r_{b}\right) \log b_{2}} & =\frac{r_{a}}{r_{b}}, \quad \therefore \quad \log a_{1}-\log a_{2}=\log b_{1}-\log b_{2} . \\
\therefore \quad \frac{a_{1}}{b_{1}} & =\frac{a_{2}}{b_{2}} .
\end{aligned}
$$

Hence the ratio of two numbers on the same ray is constant. This principle of rotating circular scales is therefore similar to the principle of sliding straight scales. Thus for
Multiplication: $y=\stackrel{*}{a} \cdot b$ or $\frac{a}{\mathrm{I}}=\frac{y}{b}$, we set $\frac{A}{B}\left|\frac{\text { one factor }}{\mathbf{I}}\right| \frac{\text { product }}{\text { other factor }}$.
Division: $\quad y=\frac{a}{b} \quad$ or $\quad \frac{a}{b}=\frac{y}{I}$, we set $\frac{A}{B}\left|\frac{\text { dividend }}{\text { divisor }}\right| \frac{\text { quotient }}{I}$.
One advantage of such a circular rule lies in the fact that we avoid the difficulty of running off the rule, as often happens in setting with the straight slide rule.

In the instrument called "Sexton's Omnimetre," which Fig. io reproduces in part, the A - and B-circles have the same radius, about 3 inches, so that it is approximately equivalent to a straight rule of 18 inches. A ray drawn on a strip of celluloid capable of revolving about the center aids in the setting of the scales. The plane of the B-circle also contains the scale $x=\left(4 \pi r_{c}\right) \log c$; and for two numbers, b and c, on the same ray, we have, in the initial position,

$$
\frac{\left(4 \pi r_{b}\right) \log c}{\left(2 \pi r_{b}\right) \log b}=\frac{r_{c}}{r_{b}}, \quad \text { or } \quad \frac{2 \log c}{\log b}=1, \quad \therefore \quad b=c^{2} \text { and } c=\sqrt{\bar{b}} .
$$

It is evident that if c is to vary from I to 10 , the C scale must consist of two concentric circumferences, on one of which c varies from $c=1$ (or $x=0$) to $c=\sqrt{10}$ ($\operatorname{or} x=2 \pi r_{c}$) and on the other from $c=\sqrt{10}$ to $c=10$ (or $x=4 \pi r_{c}$). The C and B scales thus serve for finding squares and square roots. We may also combine the C and A scales, and after rotation we have $a_{1} / c_{1}{ }^{2}=a_{2} / c_{2}{ }^{2}$. The instrument also contains three concentric circumferences for the scale $x=\left(6 \pi r_{k}\right) \log k$; and a combination with the B-scale, in the initial position, gives $b=k^{3}$ or $k=\sqrt[3]{b}$. The instrument further contains scales for sines, tangents, and versines, and a scale of equal parts.

There are other forms of curved rules. "Lilly's Improved Spiral Rule," a disk 13 inches in diameter, consists of a spiral logarithmic scale and a circular scale of equal parts, and is equivalent to a straight rule of about 30 feet long; it gives results correct to 4 figures. "Thacher's Rule" consists of two logarithmic scales one on a cylinder and the other on a set of 20 parallel bars external to the cylinder. This is really an amplification of the straight slide rule, involving the same principle in its use; the rule gives four figures correctly and a fifth may be estimated.*

EXERCISES.

(Note. For the constructions in Exs. 4-10 use charts of uniform and logarithmic scales, Art. 3.)

1. Construct scales for the function $\sqrt{u}(u=0$ to $u=100)$ if m is I in., 0.5 in , 0.2 in., respectively.
2. Construct scales for the function $\log u(u=1$ to $u=10)$ if $m=5 \mathrm{in}$., 10 in , 10 in ., respectively.
3. Construct a scale for the function $\log \frac{10}{u}$ if $m=10 \mathrm{in}$.
4. Construct adjacent scales for converting inches (I) to centimeters (C); we have $C=2.54$.
5. Construct adjacent scales for converting cu. ft. per sec. (C) to million gallons per hour (G); we have $G=0.0269 C$.
6. Construct three adjacent scales for converting foot-lbs. per sec. (F) into horsepower (H.P.) and kilowatts (K); we have H.P. $=1.818 \times 10^{-3} F$, and $K=1.356 \times 10^{-3} \mathrm{~F}$.
7. Construct adjacent logarithmic scales for the following:
(a) $v=\frac{1}{u}$;
(b) $v=u^{2}$;
(c) $v=\sqrt[2]{u}$;
(d) $v=\frac{1}{u^{2}}$;
(e) $v=u^{-t}$;
(f) $v=u^{i}$.
8. Construct adjacent logarithmic scales for $A=\frac{\pi D^{2}}{4 \times 144}$, where $D=$ diameter in inches and $A=$ area of circle in sq. ft .

* For descriptions and illustrations of this rule and other rules, see "Methods of Calculation, a Handbook of the Exhibition at the Napier Tercentenary Celebration," published by G. Bell \& Sons, London.

9. Construct adjacent logarithmic scales for $h=\frac{144 P}{62.5}$, where $h=$ pressure head in ft . and $P=$ pressure in lbs. per sq. in. for the flow of water.
10. Construct adjacent logarithmic scales for $h=\frac{v^{2}}{2 g}=\frac{v^{2}}{64 \cdot 4}$, where $h=$ velocity head in ft . and $\boldsymbol{v}=$ velocity in ft . per sec. for the flow of water.
11. Show how to construct a slide rule for the relation $V^{2}-v^{2}=k(\cos T-\cos t)$.
12. Solve by means of the logarithmic slide rule the following equations:
(a) $y^{2}+3 y-7=0$;
(b) $y^{3}+y+5=0$;
(c) $y^{3}-y^{2}-6 y+1=0$;
(d) $y^{3}+y^{2}+y-1=0$;
(e) $y^{4}-3 y^{4}+1=0$.

CHAPTER II.

INETWORK OF SCALES. CHARTS FOR EQUATIONS IN TWO AND THREE VARIABLES.

11. Representation of a relation between two variables by means of perpendicular scales. - A relation $\phi(u, v)=0$ between two variables u and v may be represented by means of two perpendicular scales instead of two adjacent scales. Construct the scales $x=m_{1} f(u)$ and $y=m_{2} F(v)$ where $f(u)$ and $F(v)$ are any functions of u and v, on two perpendicular axes $O X$ and $O Y$, and through the points marked on these scales draw perpendiculars to the axes (Fig. iI a). Any pair of values of u and v that satisfy the equation $\phi(u, v)=0$ will determine a point, viz., the intersection of the corresponding perpendiculars to the axes; thus the pair of values u_{1}, v_{1} will correspond to the point of intersection of the perpendicular to $O X$ through $u=u_{1}$ and the perpendicular to $O Y$ through $v=v_{1}$. The locus of all such points is a curve which is said to represent the relation $\phi(u, v)=0$. The rectangular or Cartesian equation of this curve referred to the axes $O X$ and $O Y$ may be found by solving the equations of the scales, $x=m_{1} f(u)$ and $y=m_{2} F(v)$, for u and v in terms of x and y, and substituting these values in $\phi(u, v)=0$.

Fig. IIa.

Fig. inb.

Fig. inc.

It is evident that the nature of the locus by which the relation $\phi(u, v)=0$ is represented, varies with the equations of the scales. If possible, it is well to choose the scales so that the Cartesian equation is of the first degree in x and y, for then the representing curve will be a straight line.

Having drawn the representing curve, and given a value of u, say u_{k}, we can find the corresponding value of v, say v_{k}, in one of three ways:

Fig. in a. Here a network of perpendiculars to the axes is already drawn. Follow the perpendicular through u_{k} on $O X$ until it cuts the
curve in the point P, and read v_{k} at the foot of the perpendicular from P to $O Y$.

Fig. I Ib. On a transparent sheet, draw two perpendicular index lines, I_{u} and I_{v}, intersecting in a point P. Slide the sheet so that the point P moves along the curve, keeping the index lines parallel to the axes; then, when I_{u} cuts $O X$ in u_{k}, I_{v} will cut $O Y$ in v_{h}. (It is a simple mechanical matter to keep the index lines parallel to the axes.)

Fig. IIc. Draw the scale $x=m_{1} f(u)$ with axis $O^{\prime} X^{\prime}$ on a transparent strip. Slide the strip.perpendicular to $O Y$ until the point u_{k} falls on the curve; then at O^{\prime} read v_{k}.

In any case, the interpolation of u_{k} and v_{k} on the u and v scales is easily done by sight.
12. Some illustrations of perpendicular scales. -
(1) Consider the relation $v=u^{2}$. If we construct two uniform scales $x=m u$ and $y=m v$ on $O X$ and $O Y$ respectively, and draw perpendiculars to the axes through the points marked on the scales, we shall have the rulings of an ordinary piece of rectangular coördinate paper. (Fig. 12a.) Here, $v=u^{2}$ will be represented by the locus whose Cartesian equation is $y / m=x^{2} / m^{2}$ or $x^{2}=m y$, a parabola. We plot this curve from a table of values of u and v satisfying the equation $v=u^{2}$. Note that we could have constructed the scales $x=m_{1} u$ and $y=m_{2} v$ with different moduli m_{1} and m_{2}, but the corresponding Cartesian equation $m_{2} x^{2}=m_{1}{ }^{2} y$ still represents a parabola.

Fig. $12 a$.

Fig. i2b.
(2) Again, we can represent the relation $v=u^{2}$ as follows: If we construct the scales $x=m_{1} u^{2}$ and $y=m_{2} v$ on $O X$ and $O Y$ respectively, we shall have the rulings as in Fig. 12b, and our relation will be represented by the locus whose Cartesian equation is $y . / m_{2}=x / m_{1}$ or $y=m_{2} x / m_{1}$, a straight line of slope m_{2} / m_{1}. In Fig. $12 b, m_{1}=0.1 \mathrm{in}$. and $m_{2}=0.2 \mathrm{in}$. The line may be plotted by means of two sets of values of u and v which satisfy $v=u^{2}$, such as $u=0, v=0$ and $u=2, v=4$, or by means of,
one such set and the slope, 2 , of the line. Note that the points on the scale $x=m_{1} u^{2}$ are marked with + and - values of u.

It is evident that the representation in Fig. $12 b$ is much simpler than that in Fig. 12a. In the former, the straight line is much more easily constructed and every point on it is definitely determined, while, in the latter, the curve between plotted points is only approximated. Of course, it is easier to interpolate on the uniform u-scale in Fig. 12a than on the non-uniform u-scale in Fig. 12b. Furthermore, in Fig. 12b, we can project the point in which the representing line cuts $v=10$ vertically on $y=0$ and thus draw a second section of the line parallel to the first sec-

Fig. $12 c$.
tion, for which v ranges from to to 20; this process may again be used to get further sections of the line.

A third representation of the equation $v=u^{2}$ is given in the next article.
(3) Consider the relation $v=a e^{-6 w^{2}}$. We can write this $\ln v=$ $-b^{2} u^{2}+\ln a\left(\ln v=\log _{6} v\right)$. If we construct the perpendicular scales $x=m_{1} u^{2}$ and $y=m_{2} \ln v$, our relation will be represented by the straight line whose equation is $\frac{y}{m_{2}}=-\frac{b^{2} x}{m_{1}}+\ln a$. This line is easily constructed by means of the points $u=0, v=a$ and $u=\frac{1}{b}, v=\frac{a}{e}$. In ${ }^{-}$ ' Fig. 12c, we have taken $a=6, b=\frac{1}{2}, m_{1}=0.2$ in., $m_{2}=2$ in. A table of natural logarithms was used to construct the scale on OY.
13. Logarithmic coördinate paper. - Consider the relation $u^{p} v_{q}=a$, where p, q, and a are any numbers. We can write this $p \log u+$ $q \log v=\log a$. If we construct the perpendicular scales $x=m \log u$ and $y=m \log v$ and draw the perpendiculars to the axes, we shall
have the rulings of a sheet of logarithmic coördinate paper. In Fig. 13, $m=25 \mathrm{~cm}$. and u and v vary from I to 10 . (Logarithmic paper can be constructed for larger ranges of the variables and with various moduli.) Our relation will be represented by the straight line whose Cartesian equation is $\frac{p}{m} x+\frac{q}{m} y=\log a$, which may be plotted by means of two pairs of corresponding values of u and v or by means of one pair

Fig. 13.
of values and the slope $-p / q$. A chart can thus be built up for a large number of equations in two variables. The following are some examples.
(I) For the relation $v=u^{2}$, the representing straight line passes through the points $u=\mathrm{I}, v=\mathrm{I}$ and $u=3, v=9$; this gives the section $O M$ in Fig. 13. But since the scale on $O Y$ can also serve to represent $\log v$ for v from io to 100 , we shall get another section, $M^{\prime} A$, which can be drawn through $u=4, v=16$ and $u=9, v=8 \mathrm{I}$, or through M^{\prime} on $O X$ vertically below M and parallel to $O M$. The two sections, $O M$ and
$M^{\prime} A$, will then represent the relation $v=u u^{2}$, where u varies from I to 10 and v from I to 100, and hence for all values of u and v since the scale $x=m \log u$, for example, where u varies from 10^{p} to 10^{p+1} ($p=$ integer) can be made to coincide with the scale $x=m \log u$, whęre u varies from I to ro. The position of the decimal point must be determined independently in each case. In finding u when v is given, divide v into groups of two figures each beginning at the decimal point, as in arithmetic (see Art. 6 (4)); if the left-hand group contains only one significant figure, use the section $O M$, if it contains two significant figures, use the section $M^{\prime} A$; thus when $v=0.64$, read $u=0.8$, but when $v=0.064$, read $u=0.253$.
(2) For the relation $v=\frac{1}{6} \pi u^{3}$, the volume of a sphere in terms of its diameter, the representing straight line passes through the point $u=2$, $v=\frac{6}{3} \pi$ and has a slope equal to 3 ; this gives the section $B C$ in Fig. i3. We continue this line by projecting C into C^{\prime} on $O X$ and drawing $C^{\prime} D$ parallel to $B^{\prime} C$, then projecting D into D^{\prime} on $O X$ and drawing $D^{\prime} E$ parallel to $C^{\prime} D$, and complete this last section by projecting E into E^{\prime} on $O Y$ and drawing $E^{\prime} F$ parallel to $D^{\prime} E ; F$ will project into the initial point B on $O X$. Our relation is completely represented by these sections for all values u and v. In finding u when v is given, divide v into groups of three figures each beginning at the decimal point as in arithmetic (see Art. 6 (6)); according as the left-hand group contains one, two, or three significant figures, use the first, second, or third section, respectively.
(3) For the relation $u \cdot v^{1.41}=10$, where u is the pressure and v is the volume of a perfect gas, our first representing section, $H K$, passes through the point $u=10, v=1$ with slope $-1 / 1.41$; the second section, $K^{\prime} L$, is easily constructed and these two sections will serve for the variation of v from I to io. If the sections are continued, later sections will overlap the preceding ones.
14. Semilogarithmic coördinate paper. - Consider the relation $v=p \cdot q^{u}$, where p and q are any numbers. We can write this $\log v=u \log q+\log p$. If we construct the perpendicular scales $x=m_{1} u$ and $y=m_{2} \log v$, and draw the perpendiculars to the axes, we shall have the rulings of a sheet of semilogarithmic coördinate paper. In Fig. $14, m_{1}=m_{2}=25 \mathrm{~cm}$. and u varies from 0 to 1 while v varies from O.I to I. (Semilogarithmic paper can be constructed for larger ranges of the variables and with various moduli.) Our relation will be represented by the straight line whose Cartesian equation is $\frac{y}{m_{2}}=\frac{x}{m_{1}} \log q+$ $\log p$, which can be plotted by means of two pairs of corresponding values of u and v, or by means of one pair and the slope $m_{2} \log q / m_{1}$. The following examples will serve to illustrate the use of semilogarithmic paper.
(1) The relation $v=0.1 e^{2.1 u}$ can be written $\log v=(2.1 \log e) u+$ $\log 0.1$, where e is the base of natural logarithms, and is represented
by the straight line (section $O A$ in Fig. 14), which passes through the points $u=0, v=0.1$ and $u=1, v=0.817$. To extend the range of our variables we need not extend the chart but merely project A horizontally into A^{\prime} on $O Y$, draw $A^{\prime} F^{\prime}$ parallel to $O A$, project F^{\prime} vertically into $F^{\prime \prime}$ on $O X$, and draw $F^{\prime \prime} E^{\prime \prime}$ parallel to $O A$; then for $O A, u$ varies from o to I and v from 0.1 to 0.817 , while for $A^{\prime} F^{\prime}$ and $F^{\prime \prime} E^{\prime \prime}, u$ varies from I to 2 and v from 0.817 to 6.668 .

Fig. 14.
(2) Suppose we wish to find the values of u and v satisfying simultaneously the equations $v=0.1 e^{2.1 u}$ and $v=0.6 e^{-0.591 u}$. We represent each of these equations by a straight line (Fig. 14). The line representing the second equation passes through the points $u=0, v=0.6$ and $u=\mathrm{I}, v=0.332$. At the point of intersection of these lines we read the required values $u=0.663, v=0.404$.
(3) To solve the equation $v=p \cdot q^{v}$ or $\log v=v \log q+\log p$ for the unknown quantity v, we draw the straight line representing the equa-
tion $v=p \cdot q^{u}$, and run our eyes along this line until we find the point where u and v are equal; this is the required value of v.

Thus to find the solution of $v=0.6 e^{-0.591 v}$, we draw the line $B C$ representing the equation $v=0.6 e^{-0.591 u}$ and run our eyes along this line (watching the u and v scales) to the point D where we read $u=v=0.46$ (Fig. 14).

Again, to find the solution of the equation $\log v=0.912 v-\mathrm{I}$, we draw the line $O A$ representing the equation $\log v=0.912 u-\mathrm{I}$ [this equation is equivalent to the equation considered in (1), since 2.I $\log e=$ 0.912 and $\log 0.1=-1$] and run our eyes along this line until we read $u=v=0.132$. We can find another value of v satisfying the equation by running our eyes along the section $F^{\prime \prime} E^{\prime \prime}$ until we read $u=v=1.17$.
15. Rectangular coördinate paper - the solution of algebraic equations of the 2d, 3d, and 4th degrees. - We may.use the rulings of a sheet of rectangular coördinate paper to solve graphically algebraic equations of the 4 th, 3 d , and 2 d degrees. Let the scales be $x=u$ and $y=v$ where the modulus is I.
(I) If we draw the parabola $y^{2}=2 x$ and the circle $(x-h)^{2}+$ $(y-k)^{2}=r^{2}$ with center at (h, k) and radius r, the ordinates of their points of intersection are found algebraically by eliminating x between these two equations and solving the resulting equation for y. From the first equation we have $x=y^{2} / 2$, and substituting this in the second equation we get $\left(\frac{y^{2}}{2}-h\right)^{2}+(y-k)^{2}=r^{2}$, or

$$
y^{4}+4(\mathrm{I}-h) y^{2}-8 k y+4\left(h^{2}+k^{2}-r^{2}\right)=0 .
$$

If we divide this last equation by t^{4}, where t is an arbitrary number, we get

$$
\left(\frac{y}{t}\right)^{4}+\frac{4(\mathrm{I}-h)}{t^{2}}\left(\frac{y}{t}\right)^{2}-\frac{8 k}{t^{3}}\left(\frac{y}{t}\right)+\frac{4\left(h^{2}+k^{2}-r^{2}\right)}{t^{4}}=0,
$$

or

$$
z^{4}+a z^{2}+b z+c=0
$$

where

$$
z=\frac{y}{v}, a=\frac{4(\mathrm{I}-h)}{t^{2}}, b=-\frac{8 k}{t^{3}}, c=\frac{4\left(h^{2}+k^{2}-r^{2}\right)}{t^{4}} .
$$

Conversely, the real roots of the equation $z^{4}+a z^{2}+b z+c=0$ are found by measuring the ordinates of the points of intersection of the parabola $y^{2}=2 x$ and the circle with center at

$$
h=\frac{4-a t^{2}}{4}, k=-\frac{b t^{3}}{8} \text { and radius } r=\sqrt{h^{2}+k^{2}-\frac{c t^{4}}{4}}
$$

where t is an arbitrary number, and dividing these ordinates by t. The introduction of t allows us to throw the center of the circle to a convenient point - always to the right of $O Y$, or as near to or as far
from the vertex of the parabola as is convenient - such that the circle will not cut the parabola at an angle too acute for accurate reading of the ordinates. Note that the one parabola, $y^{2}=2 x$, will serve for finding the real roots of all equations of the fourth degree (Fig. 15). To solve the complete equation $v^{4}+p v^{3}+q v^{2}+r v+s=0$, we first substi-

aNALYTIC CHART FOR SOLUTION OF ALGEBRAIC EQUATIONS
Fig. 15.
tute $\eta=z-p / 4$ and this equation takes the form $z^{f}+a z^{2}+b z+c=0$, and then proceed as above.

Example 1. Let us find the real roots of the equation $z^{4}+z-1=0$. Here $a=0, b=\mathrm{I}, c=-\mathrm{I}$. Hence $h=\mathrm{I}$ and $k=-\frac{1}{8} b^{3}$. If we choose $t=2$, the center is the point $(1,-1)$ and the radius is $\sqrt{6}=2.45$. The circle (Fig. 15) cuts the parabola in two points whose ordinates are approximately $y=1.4$ and $y=-2.4$. Hence $z=y / t=0.7$ and -1.2.
(2) If $c=0$ in the equation $z^{4}+a z^{2}+b z+c=0$, this equation becomes $z^{4}+a z^{2}+b z=0$ or $z\left(z^{3}+a z+b\right)=0$ or $z=0$ and $z^{3}+a z$ $+b=0$. One of the roots being zero, the circle will pass through the
origin or vertex of the parabola, and the other points of intersection will give the real roots of the cubic $z^{3}+a z+b=0$. Hence, the real roots of the equation $z^{3}+a z+b=0$ are found by measuring the ordinates of the points of intersection of the parabola $y^{2}=2 x$ and the circle with center at $h=\frac{4-a t^{2}}{4}, k=-\frac{b t^{3}}{8}$ (where t is an arbitrary number) and passing through the vertex of the parabola, and dividing these ordinates by t. Note that the one parabola $y^{2}=2 x$ will serve for finding the real roots of all fourth and third degree equations (Fig. 15). To solve the complete equation $v^{3}+p v^{2}+q v+r=0$, we first substitute $v=z-\frac{p}{3}$ and this equation takes the form $z^{3}+a z+b=0$, and then proceed as above.

Example 2. Let us find the real roots of the equation $z^{3}-3 z-1=0$. Here the center of the circle is at $h=\frac{4+3 t^{2}}{4}=\frac{7}{4}, k=\frac{t^{3}}{8}=\frac{1}{8}$ if $t=1$. We read $z=y=1.88,-\mathrm{I} .53,-0.35$ (Fig. 15).

Example 3. Let us find the real roots of the equation $v^{3}-3 v^{2}+v-$ $4=0$. Let $z=v+1$; then the equation becomes $z^{3}-2 z-5=0$. Here the center of the circle (Fig. 15) is at $h=1+\frac{1}{2} t^{2}=3, k=\frac{5}{8} t^{3}=5$, if $t=2$. We read $y=4.18$; hence $z=y / t=2.09$, and $v=z-\mathrm{I}=\mathrm{I} .09$.
(3) If we draw the parabola $y^{2}=2 x$ and the straight line $y=m x+k$ of slope m and y-intercept k, the ordinates of their points of intersection are found from the equation $y^{2}-\frac{2}{m} y+\frac{2 k}{m}=0$. If we divide this by t^{2} (where t is an arbitrary number), we get $\left(\frac{y}{t}\right)^{2}-\frac{2}{m t}\left(\frac{y}{t}\right)+\frac{2 k}{m t^{2}}=0$ or $z^{2}+a z+b=0$, where $z=\frac{y}{t}, a=-\frac{2}{m t}, b=\frac{2 k}{m t^{2}}$. Conversely, the real roots of the equation $z^{2}+a z+b=0$ are found by measuring the ordinates of the points of intersection of the parabola $y^{2}=2 x$ and the straight line of slope $m=-\frac{2}{a t}$ and y-intercept $k=-\frac{b t}{a}$ (where t is an arbitrary number), and dividing these ordinates by t. Note that the one parabola $y^{2}=2 x$ will serve for finding the real roots of all fourth, third, and second degree equations (Fig. I5).

Example 4. Let us find the real roots of the equation $z^{2}-1.45 z-$ $5.6=0$. Here the slope of the llne is $m=\frac{2}{1.45 t}=\frac{2}{1.45}$, and its y-intercept is $k=-\frac{5.6}{1.45 t^{2}}=-3.86$, if $t=\mathrm{I}$. We read $z=y=-\mathrm{I} .75$ and 3.20.
16. Representation of a relation between three variables by means of perpendicular scales. - An equation in three variables of the form
$\phi(u, v, w)=0$ can be represented graphically by generalizing the method employed in Art. II for the representation of an equation in two variables. Thus, if we assign to w a value, say w_{1}, we shall have $\phi\left(u, v, w_{1}\right)=0$, an equation in two variables u and v, which can be represented by the method of perpendicular scales, $x=m_{1} f(u), y=m_{2} F(v)$, as a curve; this curve is marked with the number w_{1}. By assigning to w a succession of values, $w_{1}, w_{2}, w_{3}, \ldots$, we get a series of representing curves, each marked with its corresponding value of w. The equation in three variables is said to be represented by this network of curves. It is evident that the same equation $\phi(u, v, w)=0$ can similarly be represented by a network of curves found by assigning a succession of values to u (or v) and marking each curve with its corresponding value of u (or v).

Fig. I $6 a$ illustrates this representation. Given values of u and v, say u_{k} and v_{k}, we find the point (u_{k}, v_{k}) as the point of intersection of the corresponding vertical and horizontal lines, and read w_{k} from the curve passing through this point. If the point (u_{k}, v_{k}) falls between two of the curves w_{i} and w_{l}, we interpolate by sight the required value of w_{k} between w_{j} and w_{l}. Again, given values of u and w, say u_{k} and w_{k}, we find the point of intersection of the vertical u_{k} and the curve w_{k}, and read v_{k} from the horizontal passing through this point. Thus, in Fig. 16a, $u=3, v=4$ give $w=3 ; u=3, v=4.5$ give $w=3.3 ; u=4, w=5$ give $v=6.6$.

As in Art. 1I, we may avoid drawing the horizontals and verticals, and use a transparent sheet containing two perpendicular index lines, I_{u} and I_{v} (Fig. $16 b$); thus, if $u=3$ and $v=6$, slide the sheet keeping the index lines parallel to the axes until I_{u} passes through $u=3$ and I_{v} passes through $v=6$, and from the w-curve passing through their point of intersection read $w=4$. If $u=4$ and $w=3 \cdot 5$, slide the sheet keeping I_{u} perpendicular to $O X$ until I_{u} passes through $u=3$ and the point of intersection of the index lines lies on the curve $w=3.5$, then I_{v} will cut $O Y$ in $v=4.5$. Instead of the two index lines, we may also use a transparent strip carrying the u - (or v-) scale (Fig. $16 c$) and which slides perpendicular to the v - (or u-) scale; thus, if $v=5$ and $w=4$, we slide this strip
until $O X$ passes through $v=5$, and at its intersection with the curve $w=4$, we read $u=3.7$.

The task of drawing the w-curves is often very great, and it is therefore best, whenever convenient, to choose the scales for u and v so that the representing w-curves are straight lines. This will not only lessen the labor of construction but will evidently increase the accuracy of our charts.
17. Charts for multiplication and division. - This example will illustrate how the choice of scales determines the nature of the representing curves.
(I) The equation $u v=w$ can be represented by taking $x=m u$ and $\boldsymbol{y}=\boldsymbol{m} v$ for our two perpendicular scales, and drawing the corresponding

Fig. $17 a$.
network. The equations of our representing w-curves are of the form $x y=m^{2} w$, a set of rectangular hyperbolas (Fig. 17a) which are quite difficult to draw and for which the interpolation is very inaccurate.
(2) The equation $u v=w$ can be represented by choosing $x=m u$ and $y=m w /$ Io for our two perpendicular scales. The equations of our representing v-curves are of the form $y=v x / \mathrm{Io}$, a set of radiating straight lines of slope $v / 10$. Fig. $17 b$ illustrates this chart, where u and v vary from 1 to 10 . The values of v are placed at the end of the representing lines. For saving of space, the values of w are placed at the points
where the horizontals cut the line $v=10$ and the rulings above this diagonal need not be drawn. Of course, the position of the decimal point in the value of a variable may be changed with a corresponding change in the result. The great disadvantage of this chart is that the v-lines

Fig. $17 b$.

Fig. $17 c$.

Fig. $17 d$.
converge to a point and also cut the horizontals at very small angles, thus making the reading quite inaccurate in parts of the chart. This may be remedied somewhat by rotating the verticals of the scale $x=m u$ through an angle of 45°, without changing the nature of the chart. This is illustrated in Fig. 17c. In Figs. $17 b$ and $17 c$, the scale for u can be taken
over a range from 0 to 100 or, in general, from 0 to 10^{k}, similarly for the range of v, with corresponding change in the range for w.
(3) The equation $u v=w$ can be represented by writing it in the form $\log u+\log v=\log w$ and choosing $x=m \log u, y=m \log v$ for our two perpendicular scales, i.e., we have the rulings of a sheet of logarithmic paper. The equations of our representing w-curves are of the form $x+y=m \log w$, a set of parallel straight lines (Fig. 17d). These parallel lines are very easily drawn, for the line $w=k$, for example, cuts $u=\mathrm{I}$ (or the y-axis) at $v=k$, and cuts $v=\mathrm{I}$ (or the x-axis) at $u=k$; hence the line $w=k$ is a line joining the point on $O X$ marked $u=k$ with the point on $O Y$ marked $v=k$. The ranges for u and v may be read from 10^{p} to 10^{p+1} with corresponding readings in the range for w.

The methods illustrated in (2) and (3) may be extended to any equation of the form $f(u) \cdot F(v)=\phi(w)$. If we choose $x=m_{1} f(u)$ and $y=m_{3} \phi(w)$ for our perpendicular scales, then the equations of our representing v-curves have the form $y=\frac{m_{3}}{m_{1}} F(v) x$, a set of radiating lines. But if we choose $x=m_{1} \log f(u)$ and $y=m_{2} \log F(v)$ for our perpendicular scales, then the equations of our representing w-curves have the form $\frac{x}{m_{1}}+\frac{y}{m_{2}}=\log \phi(w)$, a set of parallel lines.
18. Three-variable charts. Representing curves are straight lines. - The following examples illustrate the construction of charts for equations in three variables, where the perpendicular scales are so chosen that the representing curves are straight lines.
(1) The equation $w=\sqrt[5]{\alpha \beta^{4}}$ can be written $5 \log w=\log \alpha+4 \log \beta$, and if we choose $x=m_{1} \log \alpha, y=m_{2} \log \beta$ for our perpendicular scales and let $m_{1}=m_{2}=10$, the equations of our representing w-curves are of the form $x+4 y=50 \log w$, a set of parallel straight lines. These lines have the slope $-\frac{1}{4}$. They are most easily constructed by noting that when $\alpha=\beta=k$, we have $w=k$ also. We, therefore, draw a system of parallel lines through the points $\alpha=k, \beta=k$ with slope $-\frac{1}{4}$ and mark these with the corresponding value $w=k$ (Fig. $18 a$).
(2) The equation $p v^{1.41}=c$, for adiabatic expansion of certain gases where $p=$ pressure and $v=$ volume, can be written $\log p+\mathrm{I} .4 \mathrm{I} \log v=$ $\log c$. If we choose $x=10 \log v, y=10 \log p$ for our perpendicular scales, the equations of the representing c-curves have the form $y+\mathrm{I} .4 \mathrm{I} x$ $=\mathrm{IO} \log c$, a set of parallel straight lines. These lines are easily constructed by noting that the slope is -1.41 , and that through the point $v=\mathrm{I}, \mathrm{p}=k$ there passes the line $c=k$ (Fig. $18 a$).
(3) Consider the equation $f=\frac{4 P}{\pi D^{2}}$, for the elastic limit of rivet steel, where P is the actual load in pounds at the elastic limit, D is the diameter
of the bar, and f is the fiber stress in pounds per square inch. If we choose $x=m_{1} P, y=m_{2} f$ for our perpendicular scales, the equations of the representing D-curves have the form $y=\frac{4 m_{2}}{\pi m_{1} D^{2}} x$, a set of radiating straigh \dagger lines. For Fig. $18 b, m_{1}=2 m_{2}$, and the lines were constructed by means

Fig. $18 a$.
of two points for values of $D=0.71,0.72, \ldots, 0.78$; thus for the line $D=0.75$, we have $f=2.26 P$, and to construct this line we may use the points for which $P=7000, f=15,820$ and $P=12,000, f=27,120$.

We should note here that if we had chosen $x=m_{1} P, y=m_{2} D$ for our perpendicular scales, the equations of the representing f-curves would be $y^{2}=\frac{4 m_{2}{ }^{2}}{\pi m_{1} f} x$, a set of parabolas with a common vertex and a common axis; but these are much more difficult to draw than the straight lines above.

Fig. 186.
(4) Consider the equation $\frac{1}{u}+\frac{1}{v}=\frac{1}{w}$, where u and v are the distances of an object and its image from a lens and w is the focal length of the lens, or where w is the combined resistance of two resistances u and v in parallel. If we choose $x=m / u, y=m / v$ for our perpendicular scales,

Fig. $18 c$.
the representing w-curves have for their equations $x+y=m / w$, a set of parallel straight lines. These lines are easily constructed by noting that the line marked $w=k$ joins the point $u=k$ on $O X$ with the point $v=k$ on $O Y$ (Fig. 18c).
19. Rectangular chart for the solution of cubic equations. - The roots of the cubic equation $z^{3}+p z+q=0$ depend upon the values of the coefficients p and q; thus the roots are functions of p and q. If we choose $x=m p, y=m q$ for our perpendicular scales, the equations of our representing z-curves have the form $y+z x+m z^{3}=0$, a set of straight lines. In Fig. 19, these straight lines are constructed for values assigned to z, viz., $z=0, \pm 0.1, \pm 0.2, \ldots, \pm 1.3$, and lying within a square bounded by $p= \pm \mathrm{r}$ and $q= \pm \mathrm{r}$. Each line is constructed by means of two points on it. Thus for the straight line marked $z=0.3$, we have $0.027+0.3 p+q=0$, and to construct this line we may use the points for which $p=1, q=-0.327$ and $p=-1, q=0.273$.

On this chart we may read the approximate real roots of any cubic equation for which p and q lie within the limits -1 and $+r$. Thus for the equation $z^{s}+0.6 z-0.4=0$ we have $p=0.6$ and $q=-0.4$, and we read $z=0.47$, interpolating this value of z between the lines marked
$z=0.4$ and $z=0.5$. According as the point (p, q) falls outside of, on the boundary of, or within the triangular shaped region on the left, we can read one, two, or three values of z, and the corresponding cubic equation has one real root only, 3 real roots two of which are equal, or 3

rectangular chart for solution of cubic equation
Fig. 19.
distinct real roots.* Thus for the equation $z^{3}-0.8 z+0.11=0$ we have $p=-0.8$ and $q=+0.1 \mathrm{I}$, and we read $z=-0.96,+0.82,+0.14$.

If the values of p and q lie beyond the limits -1 and +1 , the chart may still be used. Let $z=k z^{\prime}$, and the equation $z^{3}+p z+q=0$ becomes $k^{3} z^{\prime 3}+p k z^{\prime}+q=0$, or $z^{\prime 3}+\frac{p}{k^{2}} z^{\prime}+\frac{q}{k^{3}}=0$, or $z^{\prime 3}+p^{\prime} z^{\prime}+q^{\prime}=0$. We may now choose k so that p^{\prime} and q^{\prime} lie within the limits -I and +I , and read the corresponding values of z^{\prime} from the chart. The roots of the

* The point (p, q) lies without, on the boundary of, or within the triangular shaped region according as $\frac{q^{2}}{4}+\frac{p^{2}}{27} \geqslant 0$.
original equation are then $z=k z^{\prime}$. Thus to solve the equation $z^{3}+z-4$ $=0$, let $z=k z^{\prime}$, and the equation becomes $z^{\prime 3}+\frac{1}{k^{2}} z^{\prime}-\frac{4}{k^{3}}=0$; if we choose $k=2$, we get $z^{\prime 3}+0.25 z^{\prime}-0.5=0$, for which we read $z^{\prime}=0.69$, and hence $z=1.38$.

If the complete cubic equation $u^{3}+a u^{2}+b u+c=0$ is given, this must first be transformed into the equation $z^{3}+p z+q=0$ by the substitution $u=z-\frac{a}{3}$.

In a similar way we may build a rectangular chart for the solution of the quadratic equation $z^{2}+p z+q=0$, or for any trinomial equation $z^{m}+p z^{n}+q=0$.
20. Three-variable charts. Representing curves not straight lines.
(1) Chart for chimney draft. Extensive researches have been carried out by the Mechanical Engineering Department of the Massachusetts. Institute of Technology to determine an equation expressing the draft of a chimney in terms of its height and the temperature of the flue gases. No simple relation between these quantities has been found. From the experiments performed, it was found that if T_{1} is the absolute temperature in degrees Fahrenheit of the flue gases measured 3 feet above the center of the flue (the lowest temperature point recorded), H_{2} is the height of the chimney in feet, and T_{2} is the absolute temperature in degrees Fahrenheit of the flue gases at the top of the chimney, then

$$
T_{2}=\frac{T_{1}}{0.32\left(H_{2}-3\right)}\left[\left(\frac{H_{2}}{3}\right)^{0.98}-\mathrm{I}\right] .
$$

Now if D is the draft in inches of water, with the outside air at a temperature of $70^{\circ} \mathrm{F}$., then

$$
D=0.192\left(0.075-\frac{41.2}{T_{2}}\right)\left(H_{2}-3\right)
$$

If the value of T_{2} from the first of these equations is substituted in the second equation, we shall have an equation in three variables, D, T_{1}, and H_{2}.

In Fig. 20a, our two perpendicular scales are $x=m_{1} T_{1}$ and $y=m_{2} D$, where $m_{1}=200 m_{2}$, and the representing H-curves are drawn for $H=50$, 75, . . . , 300 ft . Thus, for a chimney 150 ft . high and for an absolute temperature of $\mathrm{II} 39.5^{\circ}$, we read that the draft is 0.955 in . of water.
(2) Experimental data involving three variables are often plotted by means of a network of curves, and such a chart takes the place of a table of double entry. Fig. $20 b$ gives a chart useful in heat flow problems where the temperature difference is an important factor. The chart gives the difference between the temperature of pure water under various gage pressures and the temperature under various vacuums. (Corrections must be applied for solutions.) Let P denote the gage pressure in
lbs. per sq. in., T, the temperature difference in degrees Fahrenheit, and V, the vacuum in inches. We first construct the perpendicular scales $x=m_{1} P$ and $y=m_{2} \Gamma^{\prime}$ (in Fig. 20b, $m_{1}=2 m_{2}$); then the V-curves are constructed by means of a table, part of which is as follows:

QASED ON EXTERNAL A/RAT $70^{\circ} \mathrm{F}$
Fig. $20 a$.
TEMPERATURE DIFFERENCE (T).

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Gage Pressure,} \& \multicolumn{4}{|c|}{Vacuum (V)}

\hline \& 25 \& 26 \& ${ }^{261}$ \&

\hline - \& $78^{\circ} .8$ \& - \& - \&

\hline 5 \& 93

106 \& - \& - \&

\hline 15 \& 106 \& $\stackrel{\square}{-}$ \& $\stackrel{\square}{-}$ \&

\hline - \& - \& - \& - \&

\hline
\end{tabular}

Such a table is constructed with the aid of Peabody's Steam Tables. - Thus, a vacuum of 25 in . is equivalent to a barometric pressure of 4.92 in . or $4.92 \times 0.4912=2.42 \mathrm{lbs}$. per sq. in., and this gives a temperature of $133^{\circ} .2$; a gage pressure of 5 lbs . is equivalent to total pressure of 19.7 lbs . (adding the atmospheric pressure of 14.7 lbs .), and this gives a tempera-

Fig. $20 b$.
ture of $227^{\circ} .1$; we thus have a temperature difference of $227^{\circ} .1$ - $133^{\circ} .2$ $=93^{\circ} .9$. In this way, we subtract the temperature for a $25-\mathrm{in}$. vacuum from the temperatures at gage pressures of $0,5,10, \ldots$ lbs., and these corresponding values of P and T are plotted giving the curve marked $V=25 \mathrm{in}$. The table is completed for various values of $V=26$, $26 \frac{1}{2}, \ldots$ in. and the corresponding curves are drawn. The curve
marked "atmospheric" gives the temperature difference for open evaporation.
21. Use of three indices. Hexagonal charts. - In Fig. $21 a$ let $O X$ and $O Y$ be perpendicular axes and let $O Z$ be the bisector of their

Fig. $21 a$.

Fig. $21 b$.

Fig. 2 ic.
angle. From any point P draw $P I_{1}, P I_{2}, P I_{3}$ perpendicular to $O X, O Y$ and $O Z$ respectively, cutting $O X$ in $A, O Y$ in $B, O Z$ in C. Let $P I_{1}$ also cut $O Z$ in D, and draw $A E$ perpendicular to $O D$, cutting $O Z$ in E. Then $O C=O E+E D+D C=O A \cos 45^{\circ}+A D \cos 45^{\circ}+D P \cos 45^{\circ}=\frac{O A+O B}{\sqrt{e}}$.

Thus, if the axes $O X, O Y, O Z$ carry the scales $x=m f(u), y=m F(v)$, $z=\frac{m}{\sqrt{2}} \phi(w)$ respectively, then the three perpendiculars from any point to these axes will cut them so that

$$
\frac{m}{\sqrt{2}} \phi(w)=\frac{m f(u)+m F(v)}{\sqrt{2}} \text { or } f(u)+F(v)=\phi(w) ;
$$

thus, any equation of this type may be represented by three scales. The indices I_{1}, I_{2}, I_{3} may be drawn on a transparent sheet and this sheet is

Fig. 2 Id.
moved over the paper keeping the indices perpendicular to the axes. Fig. $21 c$ charts the equation $\frac{1}{u}+\frac{1}{v}=\frac{1}{w}$ by this method.

We can choose the modulus on $O Z$ the same as the moduli for $O X$ and $O Y$ by following the construction illustrated in Fig. 21b. Here $O X$ and $O Y$ cut at an angle of 120° and $O Z$ bisects this angle. Join $O P$ and let angle $C O P=\alpha$. Then

$$
\begin{aligned}
& O A=O P \cos \left(60^{\circ}+\alpha\right)=O P\left(\cos 60^{\circ} \cos \alpha-\sin 60^{\circ} \sin \alpha\right) . \\
& O B=O P \cos \left(60^{\circ}-\alpha\right)=O P\left(\cos 60^{\circ} \cos \alpha+\sin 60^{\circ} \sin \alpha\right) . \\
\therefore \quad & O A+O B=2 O P \cos 60^{\circ} \cos \alpha=O P \cos \alpha=O C .
\end{aligned}
$$

Thus our three scales are $x=m f(u), y=m F(v), z=m \phi(w)$. Fig. 21 d charts the equation $u v=w$ or $\log u+\log v=\log w$ by this method.

EXERCISES.

I. Represent the equation $v=u^{3}$ by a straight line, using natural scales.

2 Represent the equations (a) $2 u^{2}+3 v^{2}=6$, (b) $u^{2}-3 v^{2}=1$, (c) $u^{2}+v^{2}=4$ by straight lines, using natural scales, and find graphically the simultaneous solutions of the three equations taken in pairs.
3. Find graphically the simultaneous solutions of the equations $v=6 e^{-\frac{u^{2}}{16}}$ and $v=10 e^{-\frac{u^{2}}{9}}$.
4. Solve graphically the equation $u=6 e^{-\frac{u^{2}}{10}}$.
5. Construct a sheet of logarithmic coördinate paper and draw on it the straight lines representing the relations:
(a) $v=u^{3}$;
(b) $v=u^{5}$;
(c) $v=\frac{1}{u^{2}}$;
(d) $C=\pi D$ (circumference of circle);
(e) $A=\frac{\pi}{4} D^{2}$ (area of circle);
gas):
(f) $p^{21.41}=2$ (adiabatic expansion of a gas);
(g) $h=\frac{v^{2}}{2 g}=\frac{v^{2}}{64.4}$ of water). $h=$ velocity head in ft ., $v=$ velocity in ft . per sec. for flow
6. Construct a sheet of semilogarithmic coördinate paper and draw on it the straight lines representing the relations $v=0.2 e^{1.5 u}$ and $v=0.85(\mathrm{I} .5)^{-3 u}$.
7. Solve graphically the equation $u=0.2 e^{1.5 u}$.
8. Show how to solve for p the equation $\ln \left(p v^{k}\right)+\frac{b}{a R} p v=c$, where a, b, c, k, and \boldsymbol{R} are known constants, when various values are assigned to \boldsymbol{v}.
9. Construct charts for the relations $V=\pi r^{2} h$ and $S=2 \pi r h$ (volume and lateral surface of a cylinder) using parallel straight lines only.
10. Plot the equation $y=2 x^{n}$ for various values of n, positive and negative, (a) as a set of curves, (b) as a set of straight lines.
II. Plot the equation $y=e^{n x}$ for various values of n, positive and negative, (a) as a set of curves, (b) as a set of straight lines.
12. Plot the following experimental data for the relative humidity obtained by a dew-point apparatus, using the wet bulb temperature, degrees Fahrenheit, as abscissas and the dry bulb temperature, degrees Fahrenheit, as ordinates.

WET BULB TEMPERATURE (DEG. F.).

$\begin{gathered} \text { Dry Bulb } \\ \text { Tempera- } \\ \text { ture } \end{gathered}$	Relative Humidity										
	\bigcirc	10\%	20\%	30\%	40\%	50\%	60\%	70\%	80\%	90\%	100\%
40°	27.2	28.4	29.8	31.0	33.0	34.0	$35 \cdot 5$	36.5	37.0	39.0	40.0
50°	32.7	34.7	36.5	38.5	40.7	42.7	44.0	45.5	47.0	48.7	50.0
60°	38.5	41.0	43.5	46.0	48.5	51.0	53.0	55.0	56.0	58.5	60.0
70°	44.0	47.2	50.3	53.0	56.0	59.0	6 r .5	63.5	66.0	68.0	70.0
80°	49.0	53.2	57.0	60.5	64.0	67.0	70.5	72.5	75.0	77.5	80.0
90°	54.0	58.8	64.0	68.0	72.0	76.0	79.0	8 8 .5	84.0	87.5	90.0
100°	58.2	64.3	70.0	75.0	79.5	84.0	87.5	90.5	94.0	97.0	100.0
110°	62.0	69.3	76.0	82.0	87.5	92.0	96.0	100.0	103.0	106.7	110.0
120°	65.5	74.0	8 I .5	85.0	95.0	100.0	105.0	109.0	I12.0	116.5	120.0
130°	69.0	78.6	87.0	95.2	103.0	109.0	II2.0	119.0	122.0	126.0	130.0
140°	71.5	82.5	90.5	102.0	III. 0	117.0	122.0	126.7	131.3	135.5	140.0

13. Construct a chart similar to that of Ex. 12, using the difference between wet and dry bulb temperatures as abscissas and the dry bulb temperature as ordinates. Which is the better representation, that of Ex. 12 or that of Ex. 13?
14. From the chart of Ex. 13, with the aid of graphical interpolation, form a table giving the relative humidity for dry bulb temperatures of $40^{\circ}, 50^{\circ}, \ldots, 110^{\circ}$, and difference between wet and dry bulb temperatures of $0^{\circ}, 5^{\circ}, 10^{\circ}, \ldots, 45^{\circ}$, and draw the set of curves for the difference of temperatures using the dry bulb temperature as ordinates and the relative humidity as abscissas.
15. Plot the curves $y=a \sin b x$ for various values of a and b.
16. The Brake Horsepower of an engine (B.H.P.) with n cylinders of d in. diameter, according to the rating of the Association of Automobile Manufacturers, is given by B.H.P. $=\frac{d^{2} n}{2.5}$. Plot the representative curves for $n=2,4,6,8,12$, letting d range from ${ }^{\frac{3}{4}}$ in. to 5 in., (a) using rectangular coördinate paper, (b) using logarithmic coördinate paper.
17. The volume, V, of one pound of superheated steam which has a pressure of P lbs. per sq. in. and a temperature of T degrees, is given by (Tumlirz's formula)

$$
V=0.596 \frac{T}{P}-0.256 \mathrm{cu} . \mathrm{ft}
$$

Plot representative lines (a) radiating, (b) parallel.
18. Solve the following equations by means of parabola and circle. (Art. 15.)
(a) $z^{3}+3 z-7=0$;
(b) $z^{3}+z+5=0 ;$
(c) $z^{3}-3 z^{2}+1=0$;
(d) $z^{4}-12 z+7=0$;
(e) $z^{4}+z-1=0$;
(f) $z^{4}-3 z^{3}+3=0$.
19. Solve the following equation by means of the rectangular chart of Art. 19.
(a) $z^{3}+3 z-7=0$;
(b) $z^{3}+z+5=0 ;$
(c) $z^{3}-z^{2}-6 z+1=0$;
(d) $z^{8}+z^{2}+z-1=0$.

CHAPTER III.

NOMOGRAPHIC OR ALIGNMENT•CHARTS.

22. Fundamental principle. - The methods employed in the preceding chapter for charting equations are very useful in a large number of problems in computation, but they have certain disadvantages: (I) the laber involved in their construction is great, especially when the representing curves are not straight lines; (2) the interpolation must largely be made between curves rather than along a scale, and thus accuracy is sacrificed; (3) the final charts appear very complex, especially if the methods are extended to equations involving more than three variables. The methods to be explained in this and the following chapters are applicable to a large number of equations or formulas and possess certain distinct advantages over the previous method: (I) the chart uses very few lines and is thus easily read; (2) interpolation is made along a scale rather than between curves, with a corresponding gain in accuracy; (3) the labor of construction is very small, thus saving time and energy;

Fig. 22. (4) the chart allows us to note instantly the change in one of the variables due to changes in the other variables.

The fundamental principle involved in the construction of nomographic or alignment charts consists in the representation of an equation connecting three variables, $f(u, v, w)=0$, by means of ${ }^{\text {th }}$ three scales along three curves (or straight lines) in such a manner that a straight line cuts the three scales in values of u, v, and w satisfying the equation. The transversal is called an isopleth or index line (Fig. 22).
We shall now make a study of some of the equations which can be represented in this way, and of the nature and relations of the scales representing the variables involved.*

[^2](I) EQUATION OF THE FORM $f_{1}(u)+f_{2}(v)=f_{3}(w)$ or $f_{1}(u) \cdot f_{2}(v)=f_{3}(w)$. - THREE PARALLEL SCALES.
23. Chart for equation (I). - [The second form of equation (I) can be brought immediately into the first form by taking logarithms of both members; thus, $\log f_{1}(u)+\log f_{2}(v)=\log f_{3}(w)$.]

Let $A X, B Y, C Z$ be three parallel axes with $A B C$ any transversal or base line. (Figs. 23a, 23b.) Draw any index line cutting the axes in

Fig. $23 a$.

Fig. 23 b.
the points u, v, w respectively, so that $A u=x, B v=y, C w=z$. How are x, y, z related?

If $A C: C B=m_{1}: m_{2}$, and if through v and w we draw lines parallel to $A B$, then the triangles $u E w$ and $w D v$ are similar, and $E u: D w=$ $E w: D v=A C: C B \quad$ or $\quad x-z: z-y=m_{1}: m_{2}$.

$$
\therefore \quad m_{2} x+m_{1} y=\left(m_{1}+m_{2}\right) z \quad \text { or } \quad \frac{x}{m_{1}}+\frac{y}{m_{2}}=\frac{z}{\frac{m_{1} m_{2}}{m_{1}+m_{2}}}
$$

Now if $A X, B Y, C Z$ carry the scales $x=m_{1} f_{1}(u), y=m_{2} f_{2}(v), z=$ $\frac{m_{1} m_{2}}{m_{1}+m_{2}} f_{3}(w)$, respectively, the last equation becomes $f_{1}(u)+f_{2}(v)=$ $f_{3}(w)$, and any index line will cut the axes in three points whose corresponding values u, v, w satisfy this equation.

We also note that for the equation $f_{1}(u)-f_{2}(v)=f_{3}(w)$, the scales $x=m_{1} f_{1}(u)$ and $y=-m_{2} f_{2}(v)$ are constructed in opposite directions, as in Fig. $23 b$.

Hence to chart equation (I) $f_{1}(u)+f_{2}(v)=f_{3}(w)$, proceed as follows:
(I) Draw two parallel lines (x - and y-axes) any distance apart, and on these construct the scales $x=m_{1} f_{1}(u)$ and $y=m_{2} f_{2}(v)$, where m_{1} and
m_{2} are arbitrary moduli. The graduations of the u - and v-scales may start at any points on the axes.
(2) Draw a third line (z-axis) parallel to the x - and y-axes, such that (distance from x-axis to z-axis) : (distance from z-axis to y-axis) $=m_{1}: m_{2}$.
(3) Determine a starting point for the graduations of the w-scale. This may be the point $C(z=0)$ cut out by the line from $A(x=0)$ to $B(y=0)$. If the range of the variables u and v is such that the points A and B do not appear on the scales, a starting point for the w-graduations may nevertheless be found by noting that three values of u, v, w satisfying equation (1) must be on a straight line; thus, assign values to ${ }^{*}$ u and v, say u_{0} and v_{0}, and compute the corresponding value of w, say w_{0}, from cquation (I); mark the point in which the line joining $u=u_{0}$ and $v=v_{0}$ cuts the z-axis with the value $w=w_{0}$ and use this last point as a starting point for the w-graduations.
(4) From the starting point for the w-graduations, construct the scale

$$
z=m_{3} f_{3}(v)=\frac{m_{1} m_{2}}{m_{1}+m_{2}} f_{3}(w) .
$$

General remarks. - In practice the index lines need not be drawn; a straight edge or a transparent sheet of celluloid with a straight line scratched on its under side or a thread can serve for reading the chart, i.e., for finding the value of one of the variables when two of them are given. The distance between the outside scales and the moduli for these scales should, in general, be so chosen that the complete chart is almost square. Then any index line will cut the scales at an angle not less than 45°, and its points of intersection with the axes is more easily noted and the corresponding interpolation on the scales is more accurate. It is rarely necessary to choose the moduli so that the length of the longest scale greatly exceeds 10 inches.

Charts of logarithmic and uniform scales similar to those described in Art. 3 have been used in laying off the scales needed in the construction of most of the charts which follow. Much time and energy have been saved thereby. For greater convenience, the modulus of the primary or left-hand scale was taken to be 10 in . instead of 25 cm .

In laying off the w-scale with the help of these charts, the following procedure will increase the accuracy of the construction. Assign two or three sets of values to u and v, and compute the corresponding values of w; let these be $\left(u_{0}, v_{0}, w_{0}\right),\left(u_{1}, v_{1}, w_{1}\right)$, and ($\left.u_{2}, v_{2}, w_{2}\right)$. Draw the index lines $\left(u_{0}, v_{0}\right),\left(u_{1}, v_{1}\right)$, and $\left(u_{2}, v_{2}\right)$, and mark the points in which these lines cut the z-axis with the corresponding values of w. Fold the chart along the scale with modulus m_{3}, and slide this scale along the z-axis until the points of the scale numbered w_{0}, w_{1}, w_{2} practically coincide with the like-numbered points on the axis. This procedure is especially important when the modulus, m_{3}, is quite small.

The cuts in the text are reductions of the original drawings.
24. Chart for multiplication and division. The equation $u \cdot v=\boldsymbol{v}$. If we write this equation as $\log u+\log v=\log w$, we have an equation of the form (\mathbf{I}). Let u and v range from 1 to 10 ; then w ranges from I to 100. Construct (Fig. 24a), io in. apart, the parallel scales $x=m_{1} \log u$ $=10 \log u$ and $y=m_{2} \log v=10 \log v$. Since $m_{1}: m_{2}=1: 1$, the z-axis is midway between the x - and y-axes. The line joining $u=\mathrm{I}$ and $v=\mathrm{I}$ must cut the z-axis in $w=1$, and using this last point as a starting point, construct the scale $z=\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)} w=5 \log w$.

The index line in the completed chart (Fig. 24b) gives the reading $u=7$, $v=3, w=2 \mathrm{I}$. Since the u - and v-scales are logarithmic scales, we may

CHART FOR MULTIPLICATION AND DIVISION UV=W
Fig. $24 b$.
read these scales as ranging from 10^{p} to 10^{p+1} where p is any integer, with a corresponding change in the position of the decimal point in the value of w.
25. Combination chart for various formulas. - As a further illustration of product formulas of the type (I), $f_{1}(u) \cdot f_{2}(v)=f_{3}(w)$, we shall now represent several such formulas in the same chart, with the same outer scales but varying inner scale. Our chart (Fig. 25) represents six formulas and undoubtedly others could be added. In all cases, if m_{1} and m_{2} are the moduli of the scales on the x - and y-axes, then the modulus of the scale on the z-axis is $m_{3}=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$, and the position of the z-axis is determined by the ratio $m_{1}: m_{2}$.
(I) $\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{w}$ for multiplication and division. This has adready been charted in Art. 24. The equations of the scales are

$$
x=10 \log u, \quad y=10 \log v, \quad z=5 \log w,
$$

and $m_{1}: m_{2}=1: 1$. The index line gives the reading $u=3, v=5$, $w=15$.
(2) $\sqrt[5]{\boldsymbol{u} \cdot \boldsymbol{v}^{4}}=\boldsymbol{w}$ occurs in the McMath "run-off" formula. The equation can be written $\log u+4 \log v=5 \log w$ and hence

$$
x=m_{1} \log u, \quad y=m_{2}(4 \log v), \quad z=m_{3}(5 \log w) .
$$

Let $m_{1}=10$ and $m_{2}=10 / 4$, then $m_{3}=2$, and $m_{1}: m_{2}=4: 1$. The equations of our scales are

$$
x=10 \log u, \quad y=10 \log v, \quad z=10 \log w .
$$

A starting point for the w-scale is found by noting that when $u=1$ and $v=1$ then $w=1$, and by aligning these three points. The index line gives the reading $u=3, v=5, w \cdot=4.5$.
(3) $\boldsymbol{p} \boldsymbol{v}^{1.41}=\boldsymbol{c}$ gives the pressure-volume relation of certain gases ander adiabatic expansion. The equation can be written $\log p+1.41$ $\log v=\log c$, hence

$$
x=m_{1} \log p, \quad y=m_{2}(1.4 \mathrm{I} \log v), \quad z=m_{3} \log c .
$$

If we choose $m_{1}=10$ and $m_{2}=10 / \mathrm{I} .4 \mathrm{I}$, then $m_{3}=4.15$ and $m_{1}: m_{2}=$ 1.41: I. The equations of our scales are

$$
x=10 \log p, \quad y=10 \log v, \quad z=4.15 \log c .
$$

A starting point for the c-scale is found by noting that when $p=1$ and $v=1$ then $c=1$ and by aligning these three points. The index line gives the reading $u=3, v=5, w=29$.
(4) $\boldsymbol{V}=0.785 \boldsymbol{D}^{2} \boldsymbol{H}$, the volume of a circular cylinder. The equation can be written $2 \log D+\log H=(\log V-\log 0.785)$, hence

$$
x=m_{1}(2 \log D), \quad y=m_{2} \log H, \quad z=m_{3}(\log V-\log 0.785) .
$$

If we choose $m_{1}=5$ and $m_{2}=10$, then $m_{3}=3.33$ and $m_{1}: m_{2}=1: 2$.

The equations of our scales are

$$
x=\mathrm{I} 0 \log D, \quad y=10 \log H, \quad z=3.33 \log V
$$

where we have discarded the expression $-3.33 \log 0.785$ in the value of z; this may be done since this expression merely helps to determine a starting point for the V-scale; thus the point $V=I$ is at a vertical distance $z=-3.33 \log 0.785$ from the base line $A B$ of Fig. $23 a$ or $23 b$. We shall however determine a starting point for the V-scale by noting that when $D=1$ and $H=1$, then $V=0.785$, and by aligning these three points. The index line gives the reading $D=3, H=5, V=35$.
(5) $V=0.524 D^{3}$, the volume of a sphere. The equation can be written $V=0.524 D \cdot D^{2}$ or $\log D+2 \log D=\log V-\log 0.524$, hence

$$
x=m_{1} \log D, \quad \dot{y}=m_{2}(2 \log D), \quad z=m_{3}(\log V-\log 0.524)
$$

If we choose $m_{1}=10$ and $m_{2}=5$, then $m_{3}=3.33$ and $m_{1}: m_{2}=2: 1$. The equations of our scales are

$$
x=10 \log D, \quad y=10 \log D, \quad z=3.33 \log V
$$

where we have discarded the expression - $3.33 \log 0.524$ in the value of z. We find a starting point for the V scale by noting that when $D=1$, $V=0.524$ and we align the three points $D=\mathrm{I}, D=\mathrm{I}$, and $V=0.524$.
(6) $\boldsymbol{Q}=6.3 \boldsymbol{D}^{2} \sqrt{\boldsymbol{H}}$ gives the quantity of water, Q, in cu. ft. per second which flows through a pipe having a diameter $D \mathrm{ft}$. when under a head H feet. The equation can be written $2 \log D+\frac{1}{2} \log H=$ $(\log Q-\log 6.3)$. If we choose $m_{1}=5$ and $m_{2}=20$, then $m_{3}=4$ and

Fig. $26 a$.
$m_{1}: m_{2}=1: 4$. The equations of our scales are

$$
\begin{aligned}
& x=\text { ı } \log D \\
& y=\text { ıo } \log H \\
& z=4 \log Q .
\end{aligned}
$$

Again we discard the expression -4 $\log 6.3$ in the value of z, and find a starting point for the Q-scale by noting that when $D=1$ and $H=1$, then $Q=6.3$ and by aligning these three points. The index line gives the reading $D=3, H=5, Q=127$.
26. Grashoff's formula $w=0.0165$ $A P_{1}{ }^{0.97}=0.01296 D^{2} P_{1}{ }^{0.97}$ for the weight, w, of dry saturated steam in pounds per second flowing from a reservoir at pressure P_{1} pounds per sq. in. through a standard converging orifice of A sq. in. or circular orifice of diameter D in. to a pressure of P_{2} pounds per sq. in., if $P_{1} \equiv 0.6 P_{2}$.

Fig. $26 b$.

If we write the equation as

$$
2 \log D+0.97 \log P_{1}=(\log w-\log 0.01296)
$$

we have an equation of the form (I). The scales are

$$
x=m_{1}(2 \log D), \quad y=m_{2}\left(0.97 \log P_{1}\right), \quad z=m_{3}(\log w-\log 0.01296)
$$

Let D vary from 0.1 in . to 2.0 in ., then $\log D$ varies from $\log 0.1=-1$ to $\log 2=0.301$, a range of I .301 ; if we choose $m_{1}=5$, the equation of the D-scale will be $x=10 \log D$ and the scale will be about 13 in. long. Let P_{1} vary from 20 pounds to 300 pounds, then $\log P_{1}$ varies from $\log 20=1.301$ to $\log 300=2.477$, a range of 1.176 ; if we choose $m_{2}=$ 10/0.97, the equation of the P-scale will be $y=10 \log P$ and the scale will be about 12 in . long. Then $m_{3}=m_{1} m_{2} /\left(m_{1}+m_{2}\right)=3.37$. The equations of our scales are now

$$
x=10 \log D, \quad y=10 \log P, \quad z=3.37 \log w
$$

Construct (Fig. 26a) the x - and y-axes 6 in. apart; the z-axis will divide this distance in the ratio $m_{1}: m_{2}=4.85:$ Iо. We have therefore drawn the z-axis at a distance of 1.96 in. from the x-axis and 4.04 in. from the y-axis. A starting point for the w-scale is found by aligning $D=1$, $P_{1}=100$, and $w=$ I.I3. The completed chart is given in Fig. $26 b$.
27. Tension in belts, $\frac{T_{2}}{T_{1}}=e^{-0.01745 \alpha}$, and horsepower of belting, H.P. $=\frac{\left(T_{1}-T_{2}\right) S}{33,000}$. - In the first of these formulas, T_{1} is the allowable working stress in pounds per in. of width, or the tension in the tight side of the belt; the value of this may be obtained either from the manufacturer of the belt or by breaking a piece in a tension machine; a suitable factor of safety should be added. T_{1} may vary from about 50 to 75 for single belts and from 100 to 150 for double belts. α is the arc of contact in degrees of belt and pulley and may vary from 100° to 300°. f is the coefficient of friction and is assumed (in this chart) to have the value 0.30 for leather belts on cast-iron pulleys. T_{2} is the tension in the loose side of. the belt in pounds per in. of width. This formula may be written

$$
\log T_{2}-\log T_{1}=-0.01745 f \alpha \log e \quad \text { or } \quad \log T_{1}-0.002274 \alpha=\log T_{2}
$$

which is in the form (I). The scales are

$$
x=m_{1} \log T_{1}, \quad y=-m_{2}(0.002274 \alpha), \quad z=\dot{m}_{3} \log T_{2}
$$

Now $\log T_{1}$ varies from $\log 50=1.6990$ to $\log 150=2.1761$, a range of 0.477 I ; if we choose $m_{1}=10$, the equation of the T_{1}-scale will be $x=$ Io $\log T_{1}$ and the scale will be about 5 in. long. Again, α has a range of 200; if we choose $m_{2}=\frac{1}{40(0.002274)}$, the equation of the α-scale will be
$y=-\frac{1}{4} \frac{1}{6} \alpha$ and the scale will be 5 in . long. Then $m_{3}=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ $=5.24$. The equations of our scales are

$$
x=10 \log T_{1}, \quad y=-\frac{1}{40} \alpha, \quad z=5.24 \log T_{2} .
$$

Construct (Fig. 27a) the x - and y-axes 3.75 in . apart; the z-axis must divide this distance in the ratio $m_{1}: m_{2}=10: \frac{1}{40(0.002274)}=10: 11$. We have therefore drawn the z-axis at a distance of 1.79 in . from the x axis and I .96 in . from the y-axis. A starting point for the T_{2} scale is found by aligning $T_{1}=80, \alpha=150$, and $T_{2}=36.5$. The completed chart is given in Fig. 27b, and indicates the reading $T_{1}=80$ pounds, $\alpha=150^{\circ}$, $T_{2}=36.5$ pounds.

In the second of the formulas, S is the distance traveled by the belt in feet per minute, and may vary from 300 to $6000 ; T_{1}-T_{2}$ is the difference in the tensions and may vary from to to 200; H.P. is the horsepower which a belt of one inch width will transmit; then, knowing the horsepower which we wish to transmit we merely divide to get

Fig. $27 a$. the width of the belt desired. The equation can be written

$$
\log \left(T_{1}-T_{2}\right)+\log S=\log H . P .+\log 33,000,
$$

which has the form (\mathbf{I}). The scales are

$$
x=m_{1} \log \left(T_{1}-T_{2}\right), \quad y=m_{2} \log S, \quad z=m_{3} \log H . P .
$$

Now $\log \left(T_{1}-T_{2}\right)$ varies from $\log 10=1$ to $\log 200=2.3010$, a range of 1.3010; if we choose $m_{1}=5$, the equation of the ($T_{1}-T_{2}$)-scale will be $x=5 \log \left(T_{1}-T_{2}\right)$ and the scale will be about 6.5 in . long. Log S varies from $\log 300=2.477$ I to $\log 6000=3.778 \mathrm{I}$, a range of I .3010: if we choose $m_{2}=5$, the equation of the S-scale will be $y=5 \log S$ and the scale will be about 6.5 in . long. Then $m_{3}=m_{1} m_{2} /\left(m_{1}+m_{2}\right)=2.5$. The equations of our scales are

$$
x=5 \log \left(T_{1}-T_{2}\right), \quad y=5 \log S, \quad z=2.5 \log H . P .
$$

Construct the x - and y-axes 4 in . apart; the z-axis must divide this distance in the ratio $m_{1}: m_{2}=1: 1$. A starting point for the H.P. scale is found by aligning $T_{1}-T_{2}=10, S=300$, and $H . P .=0.091$. The completed chart is given in Fig. $27 c$ and indicates the reading $T_{1}-T_{2}=$ $100, S=1000, H . P .=3.0$.

[^3]Sヨヨy9ヨaN／（b）ノOV1NOD JO O甘V
Figs．27b， $27 c$.

(II) EQUATION OF FORM $f_{1}(u)+f_{2}(v)+f_{3}(w)+\cdots=f_{4}(t)$ or $f_{1}(u) \cdot f_{2}(v) \cdot f_{3}(w) \cdots=f_{4}(t)$. FOUR OR MORE PARALLEL SCALES.
28. Chart for equation (II). - [The second form of equation (II) can be brought immediately into the first form by taking logarithms of both members; thus $\log f_{1}(u)+\log f_{2}(v)+\log f_{3}(w)+\cdots=\log f_{4}(t)$.] Equation (II) is merely an extension of equation (I) and the method of charting the former is an extension of the method employed in charting the latter.

For definiteness, let us consider the case of four variables and the equation in the form $f_{1}(u)+f_{2}(v)+f_{3}(w)=f_{4}(t)$. Let $f_{1}(u)+f_{2}(v)=q$. This equation is in the form (I) and can therefore be charted by means

of three parallel scales, but the q-scale need not be graduated. (Fig. 28a.) We then have $q+f_{3}(w)=f_{4}(t)$, which is also in the form (I) and can therefore be charted by means of three parallel scales one of which is the q-scale already constructed. The graduations of the u-, v-, and w-scales may start anywhere along their axes, but a starting point for the graduations of the t-scale must be determined by a set of values $u=u_{0}, v=v_{0}, w=w_{0}, t=t_{0}$ satisfying equation (II); thus, join u_{0} and v_{0} by a straight line and mark its point of intersection with the q-axis; join this point with w_{0} cutting the t-scale in a point which must be marked t_{0}; this last point is then used as a starting point for constructing the t scale. To read the completed chart we thus use two index lines, one joining points on the u - and v-scales, the other joining points on the w and t-scales, intersecting the q-axis in the same point. Fig. $28 a$ illustrates the position of the scales. It is thus easy to find the value of any one of the four variables when the other three are known.

The extension of this method to equations of the form (II) containing more than four variables is obvious.

Considering again the case of four variables, $f_{1}(u)+f_{2}(v)+f_{3}(w)=$ $f_{4}(t)$, we can write this in the form $f_{1}(u)+f_{2}(v)=f_{4}(t)-f_{3}(w)=q$ and chart each of the equations $f_{1}(u)+f_{2}(v)=q$ and $f_{4}(t)-f_{3}(w)=q$ by means of three parallel scales, with the q-scale (which is not graduated) in common. Again, to read the chart, we use two index lines, one joining points on the u - and v-scales and the other joining points on the w-and t-scales, intersecting the q-axis in the same point. Fig. $28 b$ illustrates the position of the scales in this case.
29. Chezy formula for the velocity of flow of water in open channels, $\boldsymbol{v}=\boldsymbol{c} \sqrt{\boldsymbol{r} s}$. - Here, v is the velocity of flow in ft . per sec., r is the hydraulic radius in ft . (area divided by wetted perimeter), s is the slope of the water surface, and c is a coefficient depending on the condition of the channel. (See Art. 53 for the construction of a chart computing c by the Bazin formula.)

Let our variables range as follows: s from 0.00005 to $0.01, r$ from 0.1 ft . to 20 ft ., c from io to 250 . Writing the equation

$$
\frac{1}{2} \log s+\frac{1}{2} \log r+\log c=\log v
$$

we have an equation of the form (II). Introducing an auxiliary quantity, q, we can write

$$
\text { (1) } \frac{1}{2} \log s+\frac{1}{2} \log r=q \quad \text { and (2) } q+\log c=\log v \text {. }
$$

We now construct a chart for the first of these equations. The scales are

$$
x=m_{1}\left(\frac{1}{2} \log s\right), \quad y=m_{2}\left(\frac{1}{2} \log r\right), \quad z=m_{3} q .
$$

Now $\log s$ varies from $\log 0.00005=5.6990-10$ to $\log 0.01=8.0-10$, a range of 2.3010 ; and if we choose $m_{1}=10$, the equation of the s-scale is $x=5 \log s$ and the scale will be about II. 5 in. long. Again, $\log r$ varies from $\log 0.1=-1$ to $\log 20=1.3010$, a range of 2.3010 ; and if we choose $m_{2}=10$, the equation of the r-scale is $y=5 \log r$ and the scale will be about 11.5 in. long. Then $m_{3}=m_{1} m_{2} /\left(m_{1}+m_{2}\right)=5$. The equations of our scales are

$$
x=5 \log s, \quad y=5 \log r, \quad z=5 q .
$$

Construct (Fig. 29a) the x - and y-axes at any convenient distance, say 8 in . apart; the z-axis must divide this distance in the ratio $m_{1}: m_{2}=$ $\mathrm{I}: \mathrm{I}$, and hence the z-axis is drawn midway between the x - and y-axes. The q-scale need not be graduated.

We continue the construction by charting the second equation. The scales are $\quad z=m_{3} q, \quad a=m_{4} \log c, \quad b=m_{5} \log v$.
We use the same q-scale as above so that $m_{3}=5$. $\log c$ varies from $\log 10=1$ to $\log 250=2.3979$, a range of $\mathrm{I} .3979 ;$ and if choose $m_{4}=5$, the length of the scale will be about 7 in . Then $m_{5}=m_{3} m_{4} /\left(m_{3}+m_{4}\right)=$ e.5. The equations of our scales are

$$
z=5 \mathrm{~g}, \quad a=5 \log c, \quad b=2.5 \log v .
$$

Construct (Fig. 29a) the a-axis at any convenient distance, say 10 in. from the z-axis. The graduations of the c-scale may start anywhere along the a-axis; for symmetry, we shall place the scale opposite the middle of the scales already constructed. The b-axis must divide the distance between the z - and a-axes in the ratio $m_{3}: m_{4}=1: 1$, and it is therefore drawn midway between them. We get a starting point for the v-scale by making a single computation; thus, when $s=$ 0.001, $r=\mathrm{I}$ and $c=100$, we have $v=3.16$; hence, join $s=0.001$ and $r=1$, cutting the q-axis in a point, and then join this point and $c=100$, cutting the b-axis in a point which must be marked $v=3.16$. Starting at this last point and proceeding along the axis, the v-scale is graduated from $v=0.02$ to $v=100$.

Fig. $29 a$.

The completed chart is given in Fig. 29b. To read the chart we need merely remember that the (s, r) and (c, v) index lines must intersect on the q-axis. The index lines drawn in Fig. 29b show that when $s=0.001$, $r=\mathrm{Ift}$. and $c=100$, then $v=3.16 \mathrm{ft}$. per sec.
30. Hazen-Williams formula for the velocity of flow of water in pipes, $\boldsymbol{V}=\boldsymbol{C R}^{0.63} \mathbf{S}^{0.64}(0.001)^{-0.04}$. - The quantity of water discharged, $\boldsymbol{Q}=4 \boldsymbol{\pi} \boldsymbol{R}^{2} \boldsymbol{V}$. - The first of these formulas has been derived experimentally by Hazen and Williams, who have also constructed a slide rule for its solution. ${ }^{`} V$ is the velocity of discharge in ft . per sec. from circular pipes or channels flowing full; R is the hydraulic radius in ft . (area of cross-section divided by wetted perimeter); S is the slope or ratio of rise to length of pipe; C is a coefficient depending on the material and the condition of the inner surface of the pipe. Williams and Hazen give the following table of values for C :
Brass, block tin, lead, glass.140-150 Cast iron, old, bad condition..... 60-100
Cast iron, very smooth.140-145 Steel pipe, riveted, new. 105-115
"" " new, good condition...125-135 " " " old.......... 90-105
" " old, " " ...100-125 Masonry conduits.....................10-135
Replacing (0.01) ${ }^{-0.04}$ by its value I .318 and expressing R in inches instead of in feet, the formula becomes $V=0.2755 C R^{0.63} 5^{0.54}$, and this can be written as

$$
0.63 \log R+0.54 \log S+\log C+\log 0.2755=\log V
$$

Fig. $29 b$.
which is of the form (II). Let our variables range as follows: R from o.I in. to 20 in., S from 0.0001 to $0.05, C$ from 25 to 200.

We first construct a chart for $0.63 \log R+0.54 \log S=q$. The scales are

$$
x=m_{1}(0.63 \log R), \quad y=m_{2}(0.54 \log S), \quad z=m_{3} q .
$$

Now $\log R$ varies from $\log 0.1=-1$ to $\log 20=1.3010$, a range of 2.3010; if we choose $m_{1}=5 / 0.63$, the equation of the R-scale will be $x=5 \log R$ and the scale will be about in. 5 in. long. Again, $\log S$ varies from $\log 0.0001=6-10$ to \log $0.05=8.6990-10$, a range of 2.6990; if we choose $m_{2}=5 / 0.54$, the equation of the S-scale will be $y=5 \log S$ and the scale will be about 13.5 in . long. Then m_{3} $=m_{1} m_{2} /\left(m_{1}+m_{2}\right)=4.27$. The equations of our scales are

$$
\begin{aligned}
& x=5 \log R, \\
& y=5 \log S, \\
& z=4.27 q .
\end{aligned}
$$

Construct (Fig. 30a) the x and y-axes 11.7 in . apart; the z-axis must divide this distance in the ratio $m_{1}: m_{2}=\frac{5}{0.63}: \frac{5}{0.54}$

Fig. $30 a$.
$=5.4: 6.3$. We have therefore drawn the z-axis at a distance of 5.4 in. from the x-axis and 6.3 in . from the y-axis. The g-scale need not be graduated.

We now continue the construction by charting -
The scales are

$$
q+\log C+\log 0.2755=\log V
$$

$$
z=m_{3} q, \quad a=m_{4}(\log C+\log 0.2755), \quad b=m_{5} \log V .
$$

We use the same q-scale as above so that $m_{3}=4.27$. Log C varies from $\log 25=1.3979$ to $\log 200=2.3010$, a range of 0.903 I ; if we choose $m_{4}=4.27$, the equation of the C-scale will be $a=4.27 \log C$ and the scale will be about 4 in . long. Then $m_{5}=m_{3} m_{4} /\left(m_{3}+m_{4}\right)=2.14$. The equations of our scales are

$$
z=4.27 q, \quad a=4.27 \log C, \quad b=2.14 \log V
$$

Construct (Fig. 30a) the a-axis at a distance of 4.8 in . from the z-axis. Although the graduations of the C-scale may start anywhere along the a-axis, the C-scale is only about 4 in . long and we shall get a more symmetrical chart by placing the scale opposite the middle of the S-scale.

The b-axis must divide the distance between the z-axis and a-axis in the ratio $m_{3}: m_{4}=1: 1$, and is therefore midway between them. We get a starting point for the V-scale by making a single computation, thus, when $R=2, S=0.001$ and $C=100$, we have $V=1.02$; hence, join $R=2$ and $S=0.001$, cutting the q-axis in a point, and then join this point and $C=100$, cutting the b-axis in a point which must be marked $V=\mathbf{1 . 0 2}$.

HAZEN AND WILLIAMS FORMULA FLOW OF WATER IN PIPES $V=C R^{0.5} S^{6.54} 0.001004 Q-A V=4 \pi R^{2} V$.

Fig. $30 b$.
We shall now enlarge the usefulness of our chart by adding a scale for Q, the quantity discharged in cu. ft. per sec. For circular pipes, we have $Q=4 \pi R^{2} V$, where V is the velocity of discharge in ft . and R is the hydraulic radius (one-fourth of the diameter of the pipe) in ft ., or $Q=$ $0.0873 R^{2} V$, where R is expressed in inches. We write this equation in the form

$$
2 \log R+\log V=(\log Q-\log 0.0873)
$$

and our scales are

$$
x=m_{1}(2 \log R), \quad b=m_{2} \log V, \quad c=m_{3}(\log Q-\log 0.0873)
$$

A's we want to use the R-scale already constructed, we take $m_{1}=5 / 2$, and the equation of the scale is $x=5 \log R$, as above. We also want to use the V-scale already constructed and hence take, $m_{2}=2.14$ and get $b=2.14 \log V$, as above. Then $m_{3}=m_{1} m_{2} /\left(m_{1}+m_{2}\right)=1.15$, and the equation of the Q-scale is $c=1.15 \log Q$. In Fig. $30 a$, the x - and b-axes are 7.8 in . apart. The c-axis must divide this distance in the ratio $m_{1}: m_{2}=2.5: 2.14$; this is accomplished by drawing the c-axis at a distance of 4.2 in. from the x-axis. We get a starting point for the Q-scale by aligning $R=2, V=1.02$, and $Q=0.36$.

Fig. $30 b$ gives the completed chart. The index lines drawn indicate that when $R=2 \mathrm{in}$., $S=0.00 \mathrm{I}$, and $C=100$, then $V=1.02 \mathrm{ft}$. per sec. and $Q=0.36$ cư. ft . per sec.

3I. Indicated horsepower of a steam engine, H.P. $=\frac{P L A N}{33,000}$. Here, P is the mean effective pressure in pounds per sq. in., L is the length of the stroke in ft ., A is the area of the piston in sq. in., and N is the speed in revolutions per minute.

This formula is used extensively in steam engine testing practice. The pressure, P, is obtained from the indicator card and is equal to its area divided by its length. In double-acting steam engines - air compressors, air engines, or water pumps - we have the fluid acting on both sides of the piston alternately. Here we must apply the formula to each end and add the results in order to get the total power output.

For purposes of illustration we shall here use the diameter, D, instead of the area, and write

$$
H . P .=\frac{\pi P L D^{2} N}{(33,000)(4)(12)}=0.000001983 P L D^{2} N
$$

where L is expressed in inches, as is more common.
We shall divide the charting of this equation into three parts:
(1) $P L=q$,
(2) $D^{2} N=t$,
(3) H.P. $=0.000001983 q t$.
(1) $P L=q$ can be written $\log P+\log L=\log q$, which has the form (I), and our scales are

$$
x=m_{1} \log P, \quad y=m_{2} \log L, \quad z=m_{3} \log g
$$

If P varies from io to 200, $\log P$ varies from I to 2.3010, a range of 1.3010 ; if we choose $m_{1}=10$, the P-scale will be about 13 in. long. If L varies from 2 to 40, $\log L$ varies from 0.3010 to 1.6020 , a range of 1.3010 ; if we choose $m_{2}=10$, the L scale will be about 13 in. long. Then $m_{3}=$ $m_{1} m_{2} /\left(m_{1}+m_{2}\right)=5$, and the equations of our scales are

$$
x=10 \log P, \quad y=10 \log L, \quad z=5 \log g
$$

Construct (Fig. 31a) the x - and y-axes io in. apart. The z-axis must divide this distance in the ratio $m_{1}: m_{2}=1: 1$ and is therefore drawn midway between them, but the q-scale need not be graduated.
(2) $D^{2} N=t$ can be written $2 \log D+\log N=\log t$, which has the form (I), and our scales are

$$
a=m_{4}(2 \log D), \quad b=m_{5} \log N, \quad c=m_{\mathrm{t}} \log t .
$$

If D varies from 2 to $40, \log D$ varies from 0.3010 to $\mathbf{1}$.6020, a range of 1.3010; and if we choose $m_{4}=5$, the equation of the D-scale will be $a=$ $10 \log D$ and the scale will be about I_{3} in. long. If N varies from 50 to $1000, \log N$ varies from 1.6990 to 3.0000 , a range of 1.3010 ; and if we choose $m_{5}=10$, the N-scale will be about 13 in . long. Then $m_{6}=$ $m_{1} m_{5} /\left(m_{4}+m_{5}\right)=3.33$, and the equations of our scales are

$$
a=10 \log D, \quad b=10 \log N, \quad c=3.33 \log t .
$$

Construct (Fig. 31a) the a - and b-axes 10 in . apart. Since D and L have the same range and their scales have the same modulus, for $y=10$

Fig. 3 ia. $\log L$ and $a=$ o $0 \log D$, we find it convenient to make the a-axis coincide with the y-axis, and to use one scale for both L and D. The c-axis must divide the distance between the a - and b-axes in the ratio $m_{4}: m_{5}=1: 2$, or the c-axis is at a distance of 3.33 in. from the a-axis, but the t-scale need not be graduated.
(3) H.P. $=0.000001983 q t$ can be written $\log q+\log t=(\log H . P$.
$-\log 0.000001983$), which has the form (I). Our scales are

$$
z=m_{3} \log q=5 \log q, \quad c=m_{6} \log t=3.33 \log t, \quad d=m_{7} \log H . P .,
$$

where $m_{7}=m_{3} m_{6} /\left(m_{3}+m_{6}\right)=2$, and hence $d=2 \log H . P$. The z - and c-axes are 8.33 in . apart and the d-axis must divide this distance in the ratio $m_{3}: m_{6}=5: 3.33$; thus the d-axis must be at a distance of 5 in . from the z-axis and must coincide with the y - and a-axes. Thus, one side of this triple axis carries the scale for L and D, and the other side, the scale for H.P. To get a starting point for the H.P. scale we make a single computation: $P=50, L=14, D=8, N=300$ give $H . P .=26.7$; hence the line joining $P=50$ and $L=14$ cuts the q-axis in a point, the line joining. $D=8$ and $N=300$ cuts the t-axis in a point, and the line joining these two points cuts the d-axis in a point which must be marked $H . P .=26.7$.

Fig. $31 b$ gives the completed chart, and the index lines indicate that when $P=50$ pounds per sq. in., $L=14 \mathrm{in}$., $D=8 \mathrm{in}$., and $N=300$ revolutions per min., then H.P. $=26.7$.

EXERCISES

Construct chărts for the following formulas. The numbers in parenthesis suggest limiting values for the variables. These limits may be extended if necessary. Additional exercises will be found at the end of Chapter V.
I. $W=\frac{A P_{1}}{70}=\frac{\pi}{280} D^{2} P_{1}$. - Rankine's formula, for the weight, w, in pounds per sec. of steam flowing from a reservoir at pressure P_{1} pounds (20 to 300) per sq. in. through an orifice of $A \mathrm{sq}$. in. or of diameter $D \mathrm{in}$. (0.1 to 2.0) to a pressure of P_{2} pounds per sq. in., if $P_{2} \leqq 0.6 P_{1}$.
2. $Q=3.33 b^{H}$. - Francis' formula for the discharge, Q, in cu. ft. per sec. over a rectangular weir $b \mathrm{ft}$. (2 to 15) in width due to a head of $H \mathrm{ft}$. (0.5 to I .5) over the crest.
3. $L=2 \ln \frac{\boldsymbol{d}}{\boldsymbol{r}}+0.5$. - Eelf-inductance, L, in abhenries per cm . length of one of two parallel straight cylindrical wires each $r \mathrm{~cm}$. (0.1 to 0.25) in radius, their axes $d \mathrm{~cm}$. (2.5 to 144) apart, and conducting the same current in opposite directions [distance d small compared with length of wires].
4. $P=50,210,000\left(\frac{t}{D}\right)^{3}$. - Stewart's formula for the collapsing pressure, P, in pounds per sq. in. of Bessemer steel tubing t in. (0.02 to 0.13) in thickness and D in. (I to 6) in external diameter.
5. $Q=\frac{3}{3} \sqrt{2 g} c b H^{2}$. - Hamilton Smith formula for the discharge, Q, in cu. ft . per sec. over a contracted or suppressed weir $b \mathrm{ft}$. (2 to 20) in width due to a head of $H \mathrm{ft}$. (0.I to 1.6) over the crest, if the coefficient of discharge is c (0.580 to 0.660). [$g=32.2$.]
6. $P=0.196 \frac{d^{3}}{\boldsymbol{r}} \boldsymbol{f}$.-Load, P, in pounds supported by a helical compression spring; d is the diameter of the wire in inches (0.102 to 0.460 or No. 10 to No. 0000, B. S. gage), r is the mean radius of the coil in inches (0.5 to 2.0), f is the fiber stress in pounds (30,000 to 80,000).
7. $\boldsymbol{p}=\boldsymbol{k g} W(\boldsymbol{L}+10 \boldsymbol{H})$. - Conveyor-belt calculations; p is the correct number of plies (1 to 15) W is the width of the belt in inches (io to 60), g is the weight of material handled in pounds per $\mathrm{cu} . \mathrm{ft}$. (30 to 125), L is the length of the belt in ft . and H is the difference in elevation between the head and tail pulleys in ft . ($L+10 H: 100$ to 1500), k is a constant depending on the type of drive ($k=1 / 250,000$ for a simple drive with bare pulley, $k=1 / 300,000$ for a simple drive with rubber-lagged pulleys, $k=1 / 375,000$ for a tandem drive with bare pulleys, $k=1 / 455,000$ for a tandem drive with rubber-lagged pulleys). [Charted in Metallurgical and Chemical Engineering, Vol. XIV, Jan. I, 1916.]
8. $W=15 \pi d^{2} V D$. - Flow of steam through pipes; W is the weight of steam passing in pounds per min. (1 to 30,000), d is the inside diameter of the pipe in inches ($\frac{3}{2}$ to 36), V is the velocity of flow in ft. per sec. (15 to 250), D is the density of the steam at the mean pressure (use a steam table and plot D for values of the absolute pressure from I to 215 pounds per sq. in.) [Charted in Electrical World, Vol. 68, Dec. 9, 1916.]
9. $p=V^{2} D K$, where $K=\frac{0.0014}{d}\left(1+\frac{3.6}{d}\right) \cdot$-Flow of steam through pipes; p is the pressure drop between the ends of the pipe in pounds per sq. in. per 100 ft . of pipe (0.01 to 20), and V, d, and D are defined in Ex. 8. [Charted in Electrical World, Vol. 68, Dec. 9, 1916.]
10. $p^{2}-14.7^{2}=0.0007 \frac{W^{2}}{D^{2}} \boldsymbol{H}$. - Blast-pressure furnace; H is the height of the furnace in ft . (50 to 100), D is the bosh diameter in ft . (I 0 to 25), W is the number of cu . ft . of air at $70^{\circ} \mathrm{F}$. per minute (5000 to 80,000), p is the blast-pressure in pounds gage (2 to 25). [Charted in Metallurgical and Chemical Engineering, Vol. XIV, Mar. 15, 1916.]

CHAPTER IV.

NOMOGRAPHIC OR ALIGNMENT CHARTS (Continued).

(III) EQUATION OF FORM $f_{1}(u)=f_{2}(v) \cdot f_{3}(w)$ or

$$
f_{1}(u)=f_{2}(v)^{f_{1}(u)}-Z \text { CHART. }
$$

32. Chart for equation (III). - [The second form of equation (III) can be brought immediately into the first form by taking logarithms of both members.] The first form of equation (III) is the same as the second form of equation (I), but in Art. 23 we used three parallel logarithmic scales, while here we shall use three natural scales, two parallel and a third oblique to them.

In Fig. $32 a$, let $A X$ and $B Y$ be two parallel axes and $A Z$ any axis oblique to these and cutting these in A and B respectively. Draw any

Fig. $32 a$.

Fig. $32 b$.
index line cutting the axes in the points u, v, w so that $A u=x, B v=y$, $A w=z$; note that $A u$ and $B v$ are oppositely directed. How are x, y, and z related?

Let $A B=k$. Then in the similar triangles $A u w$ and $B v w$,

$$
A u: B v=A w: w B, \quad \text { or } \quad x: y=z: k-z, \text { or } x=\frac{z}{k-z} y .
$$

Now if $A X$ and $B Y$ carry the scales $x=m_{1} f_{1}(u)$ and $y=m_{2} f_{2}(v)$, the last equation becomes $f_{1}(u)=\frac{m_{2} z}{m_{1}(k-z)} f_{2}(v)$, and if $A Z$ carries a scale for w such that

$$
\frac{m_{2} z}{m_{1}(k-z)}=f_{3}(w) \quad{\underset{6}{5}}_{\text {or }} \quad z=k \frac{m_{1} f_{3}(w)}{m_{1} f_{3}(w)+m_{3}},
$$

the equation becomes $f_{1}(u)=f_{2}(v) \cdot f_{3}(w)$, and any index line will cut the axes in three points corresponding to values u, v, w satisfying this equation.

Hence, to chart equation (III) $f_{1}(u)=f_{3}(w) \cdot f_{2}(v)$ proceed as follows: Draw three axes $A X, B Y$, and $A Z$, where $A X$ and $B Y$ are parallel and oppositely directed, and $A B$ is any convenient length, k. With A and B as origins, construct on these axes the scales

$$
x=m_{1} f_{1}(u), \quad y=m_{2} f_{2}(v), \quad z=k \frac{m_{1} f_{3}(w)}{m_{1} f_{3}(w)+m_{2}}
$$

Note that for the construction of the w-scale, it is necessary to compute the value of z for every value of w which is to appear on the chart. To avoid this computation, proceed as follows:

On $B Y$, choose a fixed point F at any convenient distance, l, from B (Fig. $3^{2} b$), and on $A X$ construct the scale $A C=x^{\prime}=l \frac{m_{1}}{m_{2}} f_{3}(w)$. From F as center, project the points C on the axis $A Z$. Let $F C$ cut $A Z$ in w, and let $A w=z$. Then in the similar triangles $A C w$ and $B F w$,

$$
z: k-z=x^{\prime}: l \quad \text { or } \quad z=\frac{k x^{\prime}}{l+x^{\prime}}=k \frac{m_{1} f_{3}(w)}{m_{1} f_{3}(w)+m_{2}}
$$

Hence to construct the scale $z=k \frac{m_{1} f_{3}(w)}{m_{1} f_{3}(w)+m_{2}}$, construct first the scale $x^{\prime}=\frac{l m_{1}}{m_{2}} f_{3}(w)$ on $A X$, and then project this scale from the fixed point F on $B Y$ (where $B F=l$) to the axis $A Z$ marking corresponding points with the same value of w.

This type of chart is illustrated in the following example.
33. Tension on bolts with U.S. standard threads, $D=1.24 \sqrt{\frac{L}{f_{i}}}+$ 0.088. - Here D is the outside diameter of the bolt in inches, L is the load on the bolt in pounds, and f_{t} is the tension fiber stress in pounds per sq. in.

If we write the equation as $L=f_{t} \frac{(D-0.088)^{2}}{(1.24)^{2}}$ we have an equation of the form (III). The scales are

$$
x=m_{1} L, \quad y=m_{2} f_{t}, \quad x^{\prime}=l \frac{m_{1}}{m_{2}} \frac{(D-0.088)^{2}}{(\mathrm{I} .24)^{2}}
$$

Let L vary up to 100,000 pounds; if we choose $m_{1}=0.0001$, the equation of the L-scale will be $x=0.0001 L$ and its length will be io in. Let $f_{\text {, }}$ vary up to 100,000 pounds; if we choose $m_{2}=0.0001$, the equation of the f_{t}-scale will be $y=0.0001 f_{t}$ and its length will be io in. If we choose the fixed point or center of projection, F, on the y-axis so that $l=8.3 \mathrm{in}$., then the equations of our scales are

$$
x=0.0001 L, \quad y=0.0001 f_{b}, \quad x^{\prime}=5.4(D-0.088)^{2} .
$$

If D varies from $\frac{1}{4}$ in. to 4 in ., we compute the corresponding values of x^{\prime} and lay off the scale on the x-axis. We then project this scale from the point F to the oblique axis, marking corresponding points with the same value of D (Fig. 33a).

The final chart, showing neither the point F nor the pro jecting lines, is given in Fig. $33 b$. On one side of the oblique

Fig. $33 a$. axis the threads per inch corresponding to the various diameters have been given. The index line indicates that when $L=20,000$ pounds and $f_{t}=$ 37,000 pounds per sq. in., then $D=\mathrm{I}$ in. and there are 8 threads to the inch. Similar charts can be built up for various other threads.

Fig. 33 b.
(IV) EQUATION OF FORM $\frac{f_{1}(u)}{f_{2}(v)}=\frac{f_{3}(w)}{f_{1}(\boldsymbol{q})}$-TWO INTERSECTING INDEX LINES.
34. Chart for equation (IV). - A large number of equations involving four variables can be written in the form (IV) - such equations as $f_{1}(u) \cdot f_{2}(v) \cdot f_{3}(w)=f_{4}(t)$ or $f_{1}(u) \cdot f_{2}(v)=f_{3}(w) \cdot f_{4}(t)$, etc. Equation (IV) is included in the second form of equation (II), but in Art. 28 we used logarithmic scales whereas here we shall use natural scales.

Let $A X, B Y$ and $A Z, B T$ be two pairs of parallel axes, where $A Z$ may coincide with $A X$ (Fig. 34 a) or $A Z$ may make any convenient angle with

Fig. $34 a$.

Fig. $34 b$.
$A X$ (Fig. 34b), and where $A B$ is a common transversal. Through any point P on $A B$ draw two index lines cutting the axes in the points u, v, w, and q so that $A u=x, B v=y, A w=z$, and $B q=t$. How are x, y, z, and t related?

From the similar triangles in these figures, we have

$$
x: y=A P: P B \quad \text { and } \quad z: t=A P: P B, \quad \therefore \quad x: y=z: t .
$$

Now if $A X, B Y, A Z, B T$ carry the scales

$$
x=m_{1} f_{1}(u), \quad y=m_{2} f_{2}(v), \quad z=m_{3} f_{3}(w), \quad t=m_{4} f_{4}(q),
$$

where $m_{1}: m_{2}=m_{3}: m_{4}$, the relation becomes $f_{1}(u): f_{2}(v)=f_{3}(w): f_{4}(q)$ and two index lines intersecting in a point on $A B$ will cut out values of u, v, w, and q satisfying equation (IV).

Hence, to chart equation (IV) $f_{1}(u): f_{2}(v)=f_{3}(w): f_{4}(q)$ proceed as follows: Through the ends of a segment $A B$ of any convenient length, draw the parallel axes $A X$ and $B Y$ and the parallel axes $A Z$ and $B T$, where $A Z$
may coincide or make any convenient angle with $A X$. On these axes construct the scales

$$
x=m_{1} f_{1}(u), \quad y=m_{2} f_{2}(v), \quad z=m_{3} f_{3}(w), \quad t=m_{4} f_{4}(q)
$$

where the moduli are arbitrary except for the relation $m_{1}: m_{2}=m_{3}: m_{4}$. To read the chart, use two index lines, one joining u and v, and the other joining w and q, and intersecting in a point on $A B$.

The following examples illustrate this type of chart:
35. Prony brake or electric dynamometer

Fig. 35 a. formula, H.P. $=\frac{2 \pi L N W}{33,000}$. The sketch in Fig. $35 a$ gives the method for measuring the power of a rotating shaft. Either the prony brake or the electric dynamometer may be used. With such an arrangement the power is given by the above formula, where L is the length of brake arm

Fig. 35 b. in fect, N is the speed of the shaft in revolutions per minute, and W is the load on scale in pounds.

If we write the equation as $\frac{H . P .}{N}=\frac{W}{5260 / L}$, we have an equation of the form (IV), and our scales are

$$
\begin{array}{rlrl}
x & =m_{1} H . P ., & y & =m_{2} N, \\
z & =m_{3} W, & t=m_{4} \frac{5260}{L} .
\end{array}
$$

The following table exhibits the limits of the variables, the choice of moduli, and the equations and approximate lengths of the scales.

Scale	Limits	Modulus	Equation	Length
H.P.	- to 80	$m_{1}=0.15$	$x=0.15$ H.P.	$12^{\prime \prime}$
N	o to 5000	$m_{2}=0.00225$	$y=0.00225 N$	$11{ }^{\prime \prime}$
W	O to 400	$m_{3}=0.03$	$z=0.03 \mathrm{~W}$	$12^{\prime \prime}$
L	0.5 to 5	$m_{4}=\frac{m_{2} m_{3}}{m_{1}}=$	$t=\frac{2.37}{L}$	4 "

In Flg. 35b, the x - and z-axes coincide, so that the $H . P$.- and W-scales are laid off on opposite sides of the common axis, and starting from the
same origin; similarly for the N - and L-scales. The index lines, one joining L and W and the other joining N and $H . P$. intersect on the transversal joining the zero points of the scales.

The completed chart is given in Fig. 35c, and the index lines show that when $L=2 \mathrm{ft}$., $W=50$ pounds, and $N=2000$ r.p.m., then $H . P .=38$.

36. Deflection of beam fixed at ends and loaded at center. $\Delta=$ $\frac{W L^{3} 1728}{192 E I}$. - Here, Δ is the deflection of beam in inches, W is the total load on beam in pounds, L is the length of beam in feet, E is the modulus
of elasticity of material in inch units, and I is the moment of inertia in inch units.

We shall take $E=30,000,000$ for steel, so that the equation may be written as $\frac{\Delta}{L^{2}}=\frac{W}{3,333,000 I}$, which has the form (IV), and gives the scales

$$
x=m_{1} \Delta, \quad y=m_{2} L^{3}, \quad z=m_{3} W, \quad t=m_{4}(3,333,000) \dot{I} .
$$

The following table exhibits the choice of moduli and the equations of the scales.

Scale Limits Modulus Equation Length

Δ	up to 1.5	$m_{1}=8$	$x=8 \Delta$	$12^{\prime \prime}$
L	Io to 35	$m_{2}=0.000,224$	$y=0.000,224 L^{3}$	$10^{\prime \prime}$
W	up to 300,000	$m_{3}=0.000,04$	$z=0.000,04 W$	$12^{\prime \prime}$
I	up to 3000	$m_{4}=\frac{m_{2} m_{3}}{m_{1}}=0.000,000,001,12$	$t=0.003,735 I$	II ${ }^{\prime \prime}$

In Fig. $36 a$, the x - and z-axes are perpendicular and so are the y - and t-axes. The index lines, one joining W and I and the other joining Δ and L intersect on the common transversal joining the zero points of the scales.

The complete chart is given in Fig. 36b, and the index lines show that when $W=130,000$ pounds, $I=1000$ inch units, and $L=25$ ft ., then $\Delta=0.6 \mathrm{I}$ in.

Fig. $36 a$.
37. Deflection of beams under various methods of loading and supporting. $\Delta=\frac{W L^{3} 1728}{192 a E I}$. - Here Δ is the deflection of the beam in inches, W is the total load on beam in pounds, L is the length of beam in feet, E is the modulus of elasticity of material in inch units, and I is the moment of inertia in inch units; a is a quantity whose value determines the method of loading and supporting, thus
(1) $a=1$ - beam fixed at ends and loaded at center;
(2) $a=2$ - " " " " " uniformly;
(3) $a=\frac{1}{8}$ - " " one end and loaded at other;
(4) $a=\frac{1}{8 x}$ - " ". " " u uniformly;
(5) $a=\frac{3}{4}-"$ supported at ends and loaded at center;
(6) $a=\frac{2}{}$ - " " " " " uniformly.

These six cases may be represented by six charts similar to those discussed in Arts. 35 and 36 , for the equation can be written $\frac{\Delta}{L^{3}}=\frac{W}{3,333,000 a I}$,

BRAM FIXED ATENDS-LOADED AT CENTER.
Fig. $36 b$.
which has the form (IV) when a value is assigned to a. In all cases, the scales are

$$
x=m_{1} \Delta, \quad y=m_{2} L^{3}, \quad z=m_{3} W, \quad t=m_{4}(3,333,000) a I .
$$

In cases (1) to (4), the x - and z-axes are perpendicular, and in cases (5) and (6), the x - and z-axes coincide. The scales are arranged so that there is only one common transversal joining the zeros of all the scales. In all cases the index line joining W and I and the index line joining Δ and L must intersect on the common transversal.

The completed chart, Fig. 37, clearly distinguishes the six cases so that there is no difficulty in reading it.

Fig. 37.
Another and more compact method of charting this composite equation will be given in Art. 43.
38. Specific speed of turbine and water wheel. $N_{s}=\frac{N \sqrt{H \cdot P} .}{H^{\frac{t}{4}}}$. The formula gives the specific speed of a hydraulic reaction turbine
and also of a tangential water wheel. Here, N_{0} is the specific speed, H.P. is the horsepower, N is the number of revolutions per minute, and H is

Fig. $38 a$. the head of water on turbine or wheel in ft . The formula is extensively used in Hydraulics and in water power engineering work; the reaction turbine is used when the head is low and the quantity of water available is relatively large, the value of $N_{\text {s }}$ varying from 10 to 100 , while the tangential water wheel is used when the head is great and, as is usual in such cases, the water limited, the value of N_{s} varying from 2 to 6 . Because of this difference in the range of N_{d} for the two cases, it is best to construct separate charts.

If we write the equation as $\frac{N_{t}}{N}=\frac{\sqrt{H . P}}{H^{\frac{1}{2}}}$, we have an equation of the form (IV), and our scales are

$$
x=m_{1} N_{4}, \quad y=m_{2} N, \quad z=m_{3} \sqrt{H . P .}, \quad t=m_{4} H^{\frac{y}{t}} .
$$

The following tables exhibit the choice of moduli and the equations of the scales.

Reaction Turbine

Scale	Limits	Modulus	Equation	Length
N_{0}	10 to 100	$m_{1}=0.1$	$x=0.1 N_{8}$	$9^{\prime \prime}$
N	up to 2000	$m_{2}=0.005$	$y=0.005 N$	$10^{\prime \prime}$
$H . P$.	" " 1000	$m_{3}=0.28$	$z=0.28 \sqrt{H . P .}$	$9^{\prime \prime}$
H	" " 200	$m_{4}=\frac{m_{2} m_{3}}{m_{1}}=0.014$	$t=0.014 H^{4}$	$10^{\prime \prime}$

Tangential Water Wheel

Scale	Limits	Modulus	Equation	Length
N.	2 to 6	$m_{1}=1.7$	$x=1.7 \mathrm{~N}$,	$7{ }^{\prime \prime}$
N	up to 2000	$m_{2}=0.00476$	$y=0.00476 \mathrm{~N}$	9.5"
H.P.	" " 1000	$m_{3}=0.28$	$z=0.28 \sqrt{H . P}$.	$9{ }^{\prime \prime}$
H	2000	$m_{4}=\frac{m_{2} m_{3}}{m_{1}}=0.000784$	$t=0.000784 H^{\text {t }}$	$10^{\prime \prime}$

Fig. $38 a$ shows the position of the scales. The x - and z-axes coincide so that the N_{0} - and H.P.-scales are constructed on opposite sides of the common axis; similarly for the N - and H-scales. The charts for the reaction turbine and the tangential water wheel have been combined as shown in the diagram, i.e., the axes for the former have been placed perpendicular to the axes of the latter, and both charts use the same trans-

Fig. 386.
versal on which the index lines intersect, one index line joining N_{c} and N and the other joining H.P. and H.

Fig. $38 b$ gives the completed chart; for the reaction turbine, the index lines show that when $N=1000 \mathrm{r} . \mathrm{p} . \mathrm{m} ., H=70 \mathrm{ft}$., and $H . P .=20 \mathrm{r}$, then $N_{s}=70$; for the tangential water wheel, the index lines show that when $N=1000$ r.p.m., $H=700$, and $H . P .=275$, then $N_{s}=4.6$.

(V). EQUATION OF FORM $f_{1}(u)=f_{2}(v) \cdot f_{3}(w) \cdot f_{4}(t) \ldots$. .

 TWO OR MORE INTERSECTING INDEX LINES.39. Charts for equation (V). - A large number of equations involving three or more variables can be written in the form (V), which is similar to the second form of equation (II), but in Art. 28 we used logarithmic scales, whereas here we shall use natural scales. Equation (IV) is a special case of equation (V) when there are four variables present. We shall here consider the cases where equation (V) contains three, five, or six variables. The method of charting to be employed is an amplification of the method described in Art. 34.

Case (I). Three variables. $f_{1}(u)=f_{2}(v) \cdot f_{3}(w)$. This equation can be written as $f_{1}(u): f_{2}(v)=f_{3}(w): 1$, which is of the form (IV); the scales are

$$
x=m_{1} f_{1}(u), \quad y=m_{2} f_{2}(v), \quad z=m_{3} f_{3}(w), \quad t=m_{4},
$$

where $m_{1}: m_{2}=m_{3}: m_{4}$. Here the q-scale is replaced by a fixed point, P, on the y-axis and at a distance m_{4} from B. The first index line joins u and v, the second index line joins w and the fixed point P; the two lines must intersect in a point on $A B$. (Figs. 34a, 34b.)

The fixed point, P, may be used as a center of projection from which the w-scale may be projected on the transversal $A B$. We shall then have two parallel scales and a third scale oblique to these, and a single index line will cut the scales in values of u, v, and w satisfying the equation. This method was employed in charting the formula for the tension on bolts in Art. 33.

An example illustrating case (I) is worked out in Art. 40.
Case (2). Six variables. $f_{1}(u) \cdot f_{4}(q) \cdot f_{5}(r)=f_{2}(v) \cdot f_{3}(w) \cdot f_{6}(s)$. This equation can be written as

$$
f_{1}(u): f_{2}(v)=f_{3}(w): p \quad \text { and } p: f_{4}(q)=f_{6}(r): f_{6}(s) .
$$

Each of these equations has the form (IV) and can therefore be charted by the method described in Art. 34. In Fig. 39a, the p-, v-, and r-scales lie along a common axis, but the p-scale need not be graduated. To read the chart we need two pairs of index lines; the index lines (u, v) and (w, p) intersect in a point on $A B$, and the index lines (p, q) and (r, s) intersect in a point on $B C$.

An example illustrating case (2) is worked out in Art. 4r.
Case (3). Five variables. $f_{1}(u) \cdot f_{4}(q) \cdot f_{6}(r)=f_{2}(v) \cdot f_{3}(w)$. This equation can be written as

$$
f_{1}(u): f_{2}(v)=f_{3}(w): p \quad \text { and } p: f_{4}(q)=f_{6}(r): \mathbf{I}
$$

and can be considered as a special form of case (2), where the s scale (Fig. 39a) is replaced by a fixed point through which the fourth index line must pass. An illustrative example is worked out in Art. 42.

We may also chart the equation $f_{1}(u): f_{2}(v)=f_{3}(w): p$ by the method described in Art. 34, and the equation $p=f_{4}(q) \cdot f_{5}(r)$ by the first method described in Art. 32. The arrangement of the scales is shown in Fig. 39b, and this arrangement is more compact than that of Fig. 39a, and employs only three index lines instead of four.

Fig. 39a.

Fig. $39 b$.

In Fig. 39b, the r-scale lies along the transversal $A B$ and the q - and w scales are carried on the same axis; the index lines (u, v) and (w, p) intersect on the transversal $A B$, and the third index line aligns p, r, and q. An illustrative example will be found in Art. 43.
40. Twisting moment in a cylindrical shaft, $M=0.196$ FD 3. - Here F is the maximum fiber stress in pounds per sq. in., D is the diameter of the shaft in inches, and M is the twisting moment in inch pounds. If we write the equation as M : $D^{3}=F: 5.1$ we have an equation of the form (V), case (I). Our scales are

$$
\begin{array}{rlrl}
x & =m_{1} M, & y & =m_{2} D^{3}, \\
z & =m_{3} F, & t=m_{4}(5 . \mathrm{I}) .
\end{array}
$$

The following table exhibits the choice of moduli and the equations of the scales:

Scale	Limits	Modulus	Equation	Length
M	up to 190,000	$m_{1}=0.00005$	$x=0.00005 M$	$9.5^{\prime \prime}$
D	$\mathbf{I}^{\prime \prime}$ to $4^{\prime \prime}$	$m_{2}=0.1$	$y=0.1 D^{3}$	$64^{\prime \prime}$
F	up to 16,000	$m_{3}=0.0005$	$z=0.0005 F$	$8^{\prime \prime}$

TWISTING MOMENT IN CYLINDRICAL SHAFTS $M=0.196 \mathcal{F}^{3}$
Fig. 40b.

Now $m_{4}=m_{2} m_{3} / m_{1}=1$, hence $t=5.1$, and we have a fixed point on the y-axis at a distance 5.1 in. from the origin. We construct the M - and F scales on the same axis from a common origin, and the D-scale and the fixed point on a parallel axis. (Fig. 40a.) The two index lines, one joining M and D and the other joining F and the fixed point, must intersect on the common transversal joining the zeros of the scales.

The completed chart is given in Fig. 4ob, and the index lines show that when $F=12,000$ pounds per sq. in. and $D=3 \mathrm{in}$., then $M=63,500 \mathrm{in}$. pounds.
41. D'Arcy's formula for the flow of steam in pipes, $P=\frac{B^{2} L}{c^{2} w d^{5}}$ Here, P is the drop in pressure in pounds per sq. in., that is, the difference between the pressure, p_{1}, at the entrance to the pipe and the pressure, p_{2}, at the exit of the pipe; B is the weight of steam flowing in pounds per minute; L is the length of the pipe in feet; c is a quantity which varies with the nature of the inner surface of the pipe; w is the mean density of steam, i.e., the average of the density at the entrance and the density at the exit of the pipe; d is the diameter of the pipe in inches. This formula is extensively used in engineering practice. We usually desire the pressure drop between two points. The chart to be constructed will however solve for any one of the six variables involved.

We have an equation involving six variables of the form (V), case (2) and as suggested in Art. 39, we shall separate it into two equations each involving four variables, and build up a Z chart for each of these. Taking the square root of both members of the equation, we write it

$$
\sqrt{L} B=\sqrt{P} c \sqrt{w} \sqrt{d^{5}}, \quad \text { or } \quad \frac{\sqrt{L} B}{\sqrt{P}}=\frac{\sqrt{w} \sqrt{d^{5}}}{\mathrm{I} / c}
$$

and equating both members to an auxiliary quantity, Q, we write

$$
\frac{\sqrt{P}}{\sqrt{L}}=\frac{B}{Q}, \quad \text { and } \quad \frac{Q}{\sqrt{d^{b}}}=\frac{\sqrt{w}}{I / c} .
$$

We now construct a Z chart for each of these equations, the two charts having the Q-axis in common.

For the first of these equations we have the following table:

Scale	Limits	Modulus	Equation	Length
P	0 to 25	$m_{1}=4$	$x=4 \sqrt{P}$	$20^{\prime \prime}$
L	o to 1500	$m_{2}=0.4$	$y=0.4 \sqrt{L}$	$16^{\prime \prime}$
B	0 to 400	$m_{3}=0.02$	$z=0.02 B$	$8^{\prime \prime}$
Q		$m_{4}=\frac{m_{2} m_{3}}{m_{1}}=0.002$		

The P - and B-scales (Fig. 41 a) are placed on the same axis and starting from the same origin, and the L - and Q-scales on a parallel axis, but the Q-scale is not graduated.

For the second equation we have the following table:

Scale	Limits	Modulus	Equation	Length
Q		$m_{4}=0.002$		
d	0 to 10	$m_{5}=0.06$	$\Gamma=0.06 \sqrt{d^{5}}$.	$19^{\prime \prime}$
w	0 to 10	$m_{6}=6$	$s=6 \sqrt{w}$	$18^{\prime \prime}$
c	30 to 70	$m_{7}=\frac{m_{5} m_{6}}{m_{4}}=180$	$t=180\left(\frac{1}{c}\right)$	$6^{\prime \prime}$

The w - and Q-scales are placed on the same axis; hence the w - and L scales are on the common Q-axis. The d and c scales are placed on a

Fig. $41 a$. parallel axis (Fig. 41a).

We use four index lines. The (c, w) and (d, Q) lines must intersect on the common transversal of the corresponding scales, and the (Q, B) and (L, P) lines must intersect on the common transversal of the corresponding scales. It is thus a simple matter to find the value of any one of the six variables when the other five are known. Thus, to find the value of P when c, w, d, B, and L are known, proceed as follows (Fig. 41a): join the point of intersection of (c, w) and the common transversal (α) with d, cutting the Q-axis in a point, Q; join the point of intersection of (Q, B) and the common transversal (β) with L, cutting out the required value of P.

Fig. $4 \mathrm{I} b$ gives the completed chart, and the index lines show that when $c=40, w=2, d=7 \mathrm{in} ., B=300$ pounds per minute, and $L=800$ feet, then $P=1.34$ pounds per sq. in.
42. Distributed load on a wooden beam. $\boldsymbol{F}=\frac{9 \boldsymbol{W L}}{\boldsymbol{B H}}$. - Here, F is the maximum fiber stress in pounds per sq. in.; L is the length of the beam in inches; W is the total load on the beam in pounds; B is the width of the beam in inches; and H is the height of the beam in inches. In construction work, the total load on the beam (depending on the load which the floor must support), the allowable fiber stress (depending upon the kind and quality of the wood), and the length of the beam, are usually known; and the width and height of the beam are to be determined.

Fig. $4 \mathrm{I} b$.

Since we have two unknown quantities we can of course get various combinations of these to satisfy the equation. By means of the chart to be

Fig. $42 a$. constructed these combinations of width and height are readily seen, and any desired combinations may then be chosen.

We have an equation involving five variables of the form (V), case (3), and introducing an auxiliary quantity, Q, we shall separate it into two equations; thus,

$$
\frac{F}{L}=\frac{W}{Q} \quad \text { and } \quad \frac{Q}{B}=\frac{H^{2}}{9}
$$

We now construct a Z chart for each of these equations, the two charts having the Q-axis in common.

For the first of these equations our scales are

$$
x=m_{1} F, \quad y=m_{2}(L), \quad z=m_{3} W, \quad q=m_{4}(Q)
$$

and we have the following table:
Sçale
Limits
Modulus
Equation Length

F	up to 2000	$m_{1}=0.003$	$x=0.003 F$	$6^{\prime \prime}$
L	up to 40	$m_{2}=0.3$	$y=0.3 L$	$12^{\prime \prime}$
W	up to 15,000	$m_{3}=0.0008$	$z=0.0008 W$	12 $^{\prime \prime}$
Q		$m_{4}=\frac{m_{2} m_{3}}{m_{1}}=0.08$	$g=0.08 Q$	

The F - and W-scales are placed on the same axis (Fig. 42a) and starting from the same origin, and the L - and Q-scales on a parallel axis, but the Q-scale is not graduated.

For the second equation our scales are

$$
q=m_{5} Q, \quad r=m_{0} B, \quad s=m_{7} H^{2}, \quad t=m_{8}(9)
$$

and we have the following table:

Scale
Q
B
Limits

H
$\begin{array}{ll}Q & \\ B & \text { up to } 10 \\ H & \text { up to } 12\end{array}$

Modulus

$$
\begin{aligned}
& m_{5}=0.08 \\
& m_{6}=1 \\
& m_{7}=0.08
\end{aligned}
$$

$$
m_{\mathrm{B}}=\frac{m_{\mathrm{b}} m_{7}}{m_{\mathrm{b}}}=\mathbf{I}
$$

Equation
$g=0.08 Q$
$\mathrm{r}=\mathrm{I} B$
$s=0.08 H^{2}$

$$
t=9
$$

Length
$10^{\prime \prime}$
11.5"

Art. 4

DISTRIBUTED LOAD ON A WOODEN BEAM-F- $\frac{9 W L}{B H^{2}}$

Fig. $42 b$.

The H - and Q-scales are placed on the same axis (Fig. 42a); hence the L - and H-scales are on the common Q-axis. The B-scale is placed on a parallel axis, on which there is also a fixed point, f, at a distance of 9.0 in . from the origin.

We use four index lines. The (L, F) and (Q, W) lines must intersect on the common transversal of the corresponding scales, and the (B, Q) and (f, H) lines must intersect on the common transversal of the corresponding scales. It is thus a simple matter to find the value of any one of the five variables when the other four are known. Thus to find the value of H when F, L, W, and B are known, proceed as follows: (Fig. 42a) join the point of intersection of (L, F) and the transversal (β) with W, cutting the Q-axis in a point, Q; join the point of intersection of (B, Q) and the transversal (α) with the fixed point, f, cutting out the required value of H.

If we wish we can project the H-scale on the transversal (α) using the fixed point, f, as a center of projection. We can then discard the fixed point, f, and the index line through it, for the index line (B, Q) will then cut the transversal (α) in the required value of H. Given then F, L, and W, we determine the point Q as above, and by rotating the index line through Q we can cut out any desired combination of B and H.

The completed chart is given in Fig. 42b, and the index lines show that when $W=10,000$ pounds, $L=15$ in., $F=1,200$ pounds per sq. in., and $B=8 \mathrm{in}$., then $H=12 \mathrm{in}$.
43. Combination chart for six beam deflection formulas. $\Delta=$ $\frac{1728 W L^{3}}{192 E I P}$.-Here, W is the total load in pounds, L is the length of the beam in feet, I is the moment of inertia in inch units, Δ is the deflection in inches, E is the modulus of elasticity ($30,000,000$ for steel), and P is a factor which determines the method of loading and supporting. Thus when the beam is
(1) fixed at both ends and uniformly loaded, $\quad P=P_{1}=2$;
(2) fixed at both ends and loaded in center, $P=P_{2}=1 ;$
(3) supported at both ends and uniformly loaded, $P=P_{3}=\frac{2}{8} ;$
(4) supported at both ends and loaded in center,
$P=P_{4}=\frac{1}{4} ;$
(5) fixed at one end and uniformly loaded,
$P=P_{5}=\frac{1}{24} ;$
(6) fixed at one end and loaded at the other, $\quad P=P_{6}=\delta_{8}$.

The equation thus involves five variables and is of the form (V), case (3). We introduce an auxiliary quantity, Q, and separate the equation into two equations; thus,

$$
\frac{Q}{L^{3}}=\frac{W}{3,333,000 I} \quad \text { and } \quad Q=\Delta P
$$

The first of these equations has already been charted in Art. 36, if we write Q for Δ; indeed Q is the deflection of a beam fixed at both ends and loaded in center, i.e., for $P=\mathrm{I}$. We shall here use the same method of charting and the same scales employed in Art. 36. The scales are

$$
x=m_{1} Q, \quad y=m_{2} L^{3}, \quad z=m_{3} W, \quad t=m_{4}(3,333,000) I,
$$

and the following table exhibits the choice of modul:

Scale	Limits	Modulus	Equation	Length
Q		$m_{1}=8$	$x=8 Q$	
L	ro to 35	$m_{2}=0.000,224$	$y=0.000,224 L^{3}$	$\mathbf{1 0}^{\prime \prime}$
W	up to 200,000	$m_{3}=0.000,04$	$z=0.000,04$	$8^{\prime \prime}$

I up to $2000 \quad m_{4}=\frac{m_{2} m_{3}}{m_{4}}=0.000,000,00112 \quad t=0.003,735$ I $7.5^{\prime \prime}$,
The scales are arranged in the form of a rectangle (Fig. $43 a$); the L - and I-scales start from one vertex, B, and the W and Q-scales start from the opposite vertex, A, but the Q-scale is not graduated. The two index lines, one joining W and I and the other joining L and Q must intersect on the transversal $A B$.

We now chart the equation
 $Q=\Delta P$ by the method described in Art. 32. The scales are

$$
x=m_{1} Q, \quad r=m_{2} \Delta, \quad s=k \frac{m_{1} P}{m_{1} P+m_{2}},
$$

where the x - and r-axes must be parallel and extend in opposite directions, the s-axis is the transversal through the origins of these axes, and k is the distance between the origins. These conditions are met in Fig. $43 a$ (where the x-axis is already constructed) if we make the r-axis coincide with the y-axis, and the s-axis with the transversal from A to B. We have drawn $A B 13^{\prime \prime}$ long, and we choose $m_{2}=8$, hence the equations of our scales are (Fig. 43a)

$$
x=8 Q, \quad r=8 \Delta, \quad s=13 \frac{P}{P+1} .
$$

The Δ - and L-scales are carried on opposite sides of their common axis. The six points $P_{1}, P_{2}, \ldots, P_{6}$ of the P scale are easily constructed by means of the table

$P:$	2	1	$\frac{?}{2}$	$\frac{3}{\prime \prime}$	$\frac{1}{2}$	
$s:$	$8.67^{\prime \prime}$	$6.5^{\prime \prime}$	$3.7^{\prime \prime}$	$2.6^{\prime \prime}$	$0.52^{\prime \prime}$	$0.2^{\prime \prime}$

To find the value of Δ when I, W, L, and P are known, proceed as follows: join the point of intersection of (I, W) and the transversal $A B$ with

COMBINATION CHART - DEFLECTION OF BEAMS.
Fig. 43 b.
L cutting the Q-axis in a point, Q; the line (Q, P) will cut out the required value of Δ.

Fig. $43 b$ gives the completed chart, and the index lines show that
when $I=1000$ inch units, $W=100,000 \mathrm{lbs} ., L^{-}=25 \mathrm{ft}$., and $P=P_{3}$, i.e., the beam is supported at both ends and uniformly loaded, then $\Delta=1.17 \mathrm{in}$.
44. General considerations. - All the equations charted thus far can be brought under the general forms
$f_{1}(u)+f_{2}(v)+f_{3}(w)+\cdots=f_{4}(t)$ and $f_{1}(u) \cdot f_{2}(v) \cdot f_{3}(w) \cdots=f_{4}(t)$.
Most of the formulas of engineering can be written in one of these forms. We have used various methods of charting these equations, employing logarithmic and natural scales. In the case of three variables, the underlying principle has been that one index line will cut the scales in three values satisfying the equation. In the case of four variables, the underlying principle has been that two index lines intersecting on an auxiliary axis will cut the scales in four values satisfying the equation; this method has been extended to equations involving more than four variables.

In the remainder of this chapter, we shall chart various forms of the above equations by methods requiring the use of parallel or perpendicular index lines. In Chapter V, we shall consider some equations which cannot be brought under either of the above forms, but which may be charted by methods requiring the use of parallel or perpendicular index lines or by methods involving the construction of curved axes. We shall end Chapter V with a brief discussion of various combined methods.
(VI) EQUATION OF FORM $f_{1}(u): f_{2}(v)=f_{3}(w): f_{4}(q)$. PARALLEL OR PERPENDICULAR INDEX LINES.
45. Chart of equation (VI). - Consider two pairs of intersecting axes $A X, A Y$ and $B Z, B T$ so constructed that $B Z$ is either parallel to or

Fig. $45 a$.

Fig. $45 b$.
coincides with $A X$ and $B T$ is either parallel to or coincides with $A Y$, (Figs. 45a, b). Draw two parallel index lines, one meeting $A X$ and $A Y$, and the other meeting $B Z$ and $B T$ in u, v, w, and q respectively, so that
$A u=x, A v=y, B w=z$, and $B q=t$. Then, in the similar triangles $u A v$ and $w B t$, we have $x: y=z: t$. Hence if $A X, A Y, B Z, B T$ carry the scales

$$
x=m_{1} f_{1}(u), \quad y=m_{2} f_{2}(v), \quad z=m_{3} f_{8}(w), \quad t=m_{4} f_{4}(q)
$$

respectively, where $m_{1}: m_{2}=m_{3}: m_{4}$, then

$$
x: y=z: t \text { becomes } f_{1}(u): f_{2}(v)=f_{3}(w): f_{4}(q)
$$

which is equation (VI), and a pair of parallel index lines, (u, v) and (w, q) will cut out values of u, v, w, and q satisfying this equation. A pair of celluloid triangles will aid in reading the chart.

Consider again two pairs of intersecting axes $A X, A Y$ and $B Z, B T$ so constructed that $B Z$ is perpendicular to $A X$ and $B T$ is perpendicular to $A Y$ (Figs. 45c, d). Draw two perpendicular index lines, one meeting

Fig. 45 .

Fig. 45d.
$A X$ and $A Y$ and the other meeting $B Z$ and $B T$ in u, v, w, and g respectively, so that $A u=x, A v=y, B w=z$, and $B q=t$. Then again $x: y=z: t$, and if our axes carry the scales described above, a pair of perpendicular index lines, (u, v) and (w, q), will cut out values of u, v, w, and g satisfying equation (VI). A sheet of celluloid with two perpendicular lines scratched on its under side will aid in reading the chart.

If the equation involves only three variables, i.e., $f_{1}(u)=f_{2}(v) \cdot f_{3}(w)$, the equation can be written $f_{1}(u): f_{2}(v)=f_{3}(w): I$; here the q-scale is replaced by a fixed point through which the second index line must always pass.

It is evident that there are other positions for the axes than those illustrated in Figs. 45a, b, c, d that will satisfy the conditions imposed by the problem.
46. Weight of gas flowing through an orifice. $w=\frac{\pi d^{2} v}{576 \mathrm{~V}}$. - Here, w is the weight of gas in pounds flowing per second, d is the diameter of the orifice in inches, v is the velocity of the gas in ft . per sec., and V is the specific volume in cu. ft . of the gas in the orifice.

dIscharge of gas through an orifice.

$$
w=\frac{A V}{144 V}=\frac{\pi d^{2} V}{576 V} .
$$

Fig. 46.
If we write the equation $w: d^{2}=v: 183.5 \mathrm{~V}$, we have an equation or the form (VI). We shall build up a chart similar to that represented by Fig. 45b. The scales are

$$
x=m_{1} w, \quad y=m_{2} d^{2}, \quad z=m_{3} v, \quad t=m_{4}(183.5 V),
$$

and the following table exhibits the choice of moduli:

Scale	Limits	Modulus	Equation	Length	
w	0 to 0.4	$m_{1}=10$	$x=10 w$	$4^{\prime \prime}$	
d	0.2 to 2	$m_{2}=1$	$y=d^{2}$	$4^{\prime \prime}$	
v	0	to 3000	$m_{3}=0.00135$	$z=0.00135 v$	$4^{\prime \prime}$
V	0	to 200	$m_{4}=\frac{m_{2} m_{3}}{m_{1}}=0.000135$	$t=0.02475 V$	$5^{\prime \prime}$

The (w, d) and (v, V) index lines must be parallel. The chart is given in Fig. 46 and the index lines drawn show that when $v=1500 \mathrm{ft}$. per sec., $V=80 \mathrm{cu} . \mathrm{ft}$., and $d=1.6 \mathrm{in}$., then $w=0.26$ pounds per second.
47. Armature or field winding from tests. $\frac{R_{1}}{R_{2}}=\frac{234.5+t_{1}}{234.5+t_{2}}$. Here R_{1} and R_{2} are resistances in ohms and t_{1} and t_{2} are the initial and final temperatures Centigrade in an armature or field winding.

TEMPERATURES IN AN ARMATURE WINDINO FROM TESTS $\frac{R_{f_{2}}}{R_{1}}=\frac{234.5+R_{2}}{234.5+R_{1}}$

Fig. 47.
We have an equation of the form (VI) and we shall build up a chart similar to that represented by Fig. 45c. The scales are $x=m_{1} R_{1}, \quad y=m_{2} R_{2}, \quad z=m_{3}\left(234.5+t_{1}\right), \quad t=m_{4}\left(234.5+t_{2}\right)$, and the following table exhibits the choice of moduli:

Scale	Limits	Modulus	Equation	Length
R_{1}	o to 10	$m_{1}=1$	$x=R_{1}$	$1{ }^{\prime \prime}$
R_{2}	0 to 10	$m_{2}=1$	$y=R_{2}$	$10^{\prime \prime}$
t_{1}	0 to 100	$m_{3}=0.1$	$z=23.45+0.1 t_{1}$	$10^{\prime \prime}$
t_{2}	c to 100	$m_{4}=\frac{m_{2} m_{3}}{m_{1}}=0.1$	$t=23.45+0.1 t_{2}$	$10^{\prime \prime}$

We note that the points $t_{1}=0$ and $t_{2}=0$ are 23.45 in. from the point of intersection, B, of the z - and t-axes, which are respectively perpendicular to the x - and y-axes. But it is a simple matter to arrange the axes so that the t_{1} - and t_{2}-scales are within close range of the R_{1} - and R_{2} scales. The (R_{1}, R_{2}) and (t_{1}, t_{2}) index lines must be perpendicular. The chart is given in Fig. 47, and the index lines drawn show that when $t_{1}=65^{\circ}, t_{2}=33^{\circ}$, and $R_{1}=3.04 \mathrm{ohms}$, then $R_{2}=2.71 \mathrm{ohms}$.
48. Lamé formula for thick hollow cylinders subjected to internal pressure. $\frac{\boldsymbol{D}^{2}}{\boldsymbol{d}^{2}}=\frac{\boldsymbol{f}+\boldsymbol{p}}{\boldsymbol{f}-\boldsymbol{p}}$. - Here, D is the exterior diameter of the cylinder in inches, d is the interior diameter of the cylinder in inches, f is the fiber stress in pounds per sq. in., and p is the internal pressure in pounds per sq. in. The formula is extensively used in the design of thick pump and press cylinders. It is also used in ordnance work on big guns, to determine what is known as the elastic resistance curve of the steel at various sections of the gun from breech to muzzle.

We have an equation of the form (VI) and we shall build up a chart similar to that represented by Fig. 45d. The scales are

$$
x=m_{1} d^{2}, \quad y=m_{2} D^{2}, \quad z=m_{3}(f-p), \quad t=m_{4}(f+p),
$$

and the following table exhibits the choice of moduli:

Scale	Limits	Modulus	Equation	Length
d	2 to 16	$m_{1}=0.03$	$x=0.03 d^{2}$	$7.5^{\prime \prime}$
D	2 to 20	$m_{2}=0.02$	$y=0.02 D^{2}$	$8^{\prime \prime}$
$f-p$	o to 10,000	$m_{3}=0.00075$	$z=0.00075(f-p)$	$7.5^{\prime \prime}$
$f+p$	o to 20,000	$m_{4}=\frac{m_{2} m_{3}}{m_{1}}=0.0005$	$t=0.0005(f+p)$	$10^{\prime \prime}$

The (d, D) and ($f-p, f+p$) index lines must be perpendicular. The chart is given in Fig. 48, and the index lines drawn show that when $f=$ 9000 pounds per sq. in., $p=1000$ pounds per sq. in., and $d=9$ in., then $D=10.1$ in.
(VII) EQUATION OF FORM $f_{1}(u)-f_{2}(v)=f_{3}(w)-f_{4}(q)$

$$
\text { OR } f_{1}(u): f_{2}(v)=f_{3}(w): f_{4}(q) \text {. PARALLEL OR }
$$ PERPENDICULAR INDEX LINES

49. Chart for equation (VII). - The second form of equation (VII) can be immediately transformed into the first form by taking logarithms of both members of the equation. This second form of equation (VII) is the same as equation (VI), but we shall here use logarithmic scales in charting it.

 Fig. 48.

Consider a pair of parallel axes $A X$ and $B Y, k_{1}$ inches apart, and another pair of parallel axes $C Z$ and $D T, k_{2}$ inches apart, parallel to the first pair; $A B$ and $C D$ are also parallel. (Fig. 49a.) Draw two parallel index lines, one intersecting $A X$ and $B Y$ and the other intersecting $C Z$

Fig. $49 a$.

Fig. $49 b$.
and $D T$ in u, v, w, and q respectively, so that $A u=x, B v=y, C w=z$, $D q=t$. Draw $v E$ and $q F$ parallel to $A B$ and $C D$ respectively. Then in the similar triangles $v E u$ and $q F w$, we have $x-y: k_{1}=z-t: k_{2}$. Hence if $A X, B Y, C Z, D T$ carry the scales

$$
\begin{array}{ll}
x=m_{1} f_{1}(u), & y=m_{1} f_{2}(v), \\
z=m_{2} f_{3}(w), & t=m_{2} f_{4}(q),
\end{array}
$$

where $m_{1}: k_{1}=m_{2}: k_{2}$, then

$$
x-y: k_{1}=z-t: k_{2}
$$

becomes

$$
f_{1}(u)-f_{2}(v)=f_{3}(w)-f_{4}(q),
$$

and a pair of parallel index lines, (u, v) and (w, q), will cut out values of u, v, w, and q satisfying this equation.

If $C Z$ and $D T$ are drawn perpendicular instead of parallel to $A x$ and $B y$, and $C D$ is perpendicular to $A B$ (Fig. 49b), then a pair of perpendicular index lines, (u, v) and

Fig. $49 c$. (w, q), will cut out values of $u, v, \quad w$, and q satisfying the equation.

To represent the equation $f_{1}(u)-f_{2}(v)=f_{3}(w)+f_{4}(q)$, the w - and q scales must be laid off in opposite directions. If the axes are arranged in the form of a square, or if the second pair of axes coincide with the first pair (Fig. 49c) then $k_{1}=k_{3}$; hence, $m_{1}=m_{2}$ and all four scales have the
same modulus. Because of the restriction on the choice of moduli, this type of chart is not a very useful one. We shall only give a single illustration.
 LOSTHEAD $=\frac{\Gamma / v^{2}}{2^{\prime} d^{g}}$

Fig. 50.
50. Friction loss in flow of water. $H=\frac{f l v^{2}}{2 d g}$. - Here l is the length of pipe in ft ., v is the velocity in ft . per sec., d is the internal diameter of pipe in ft ., H is the lost head in ft . due to friction, f is the friction factor, and $g=32.2$.

Art. 50
If we replace g by $32.2, f$ by 0.02 (for clean cast-iron pipes) and express d in inches, our formula becomes

$$
H=\frac{0.02 l v^{2}(12)}{2(32.2) d}, \quad \text { or } \quad \frac{268.33 H}{l}=\frac{v^{2}}{d}
$$

or

$$
(\log H+\log 268.33)-\log l=2 \log v-\log d
$$

an equation of the form (VII). We shall arrange the axes as in Fig. 49 c. The scales are
$x=m_{1}(\log H+\log 268.33), \quad y=m_{1} \log l, \quad z=m_{1}(2 \log v), \quad t=m_{1} \log d$.
The following table exhibits the limits of the variables and the equations of the scales:

Scale	Limits	Modulus	Equation	Length
H	0.5 to 20	$m_{1}=5$	$x=5 \log H$	$8^{\prime \prime}$
l	20 to 1000	$m_{1}=5$	$y=5 \log l$	$8^{\prime \prime}$
v	2 to 10	$m_{1}=5$	$z=10 \log v$	$7^{\prime \prime}$
d	1 to 24	$m_{1}=5$	$t=5 \log d$	$7^{\prime \prime}$

We lay off the l - and d-scales on opposite sides of a common axis and the v-scale on a parallel axis; these scales may start anywhere along these axes. We disregard the expression $m_{1} \log 268.33$ in laying off the H-scale, and determine a starting point for this scale by making a single computation; thus, when $d=3, l=250$, and $v=5$, then $H=7.8$, and the index line through $l=250$ drawn parallel to the index line joining $d=3$ and $v=5$ will cut the axis in a point which must be marked with the value $H=7.8$. Thus the (H, l) index line is always parallel to the (v, d) index line.

The chart is given in Fig. 50, and the index lines drawn show that when $d=3$ in., $l=250 \mathrm{ft}$., and $v=5 \mathrm{ft}$. per sec., then $H=7.8 \mathrm{ft}$.

EXERCISES

Construct charts for the following formulas. The numbers in parenthesis suggest limiting values for the variables. These limits may be extended if necessary. Additional exercises will be found at the end of Chapter V.
I. B.H.P. $=\frac{d^{2} m}{2.5} .-$ Brake horse-power of an engine with m cylinders (2 to 12) of diameter d in. (18 to 5), according to the rating of the Association of Automobile Manufacturers.
2. $r_{d}=\frac{\pi}{4} \cdot \boldsymbol{d} \cdot f_{s}$. - Shearing strength, r_{s}, in pounds of a rivet d inches in diameter ($\frac{1}{6}$ to $\frac{8}{3}$) with an allowable stress in shear of f_{s} pounds per sq. in. (up to 15,000).
3. $M=0.098 \mathrm{fD}^{3}$ - Bending moment, M, in inch-pounds on pins D inches in diameter (I to 8) with an extreme fiber stress of f pounds per sq. in. ($\mathrm{I} 0,000$ to 30,000). [It is better to build two charts, one for D varying from I to 3 and another for D varying from 3 to 8.]
4. $t=\frac{p d}{2 f}$. - Thickness, t, in inches $\mathrm{C}\{$ a pipe of d inches internal diameter (o to 60) to withstand a pressure of p pounds per sq. in. (o to 100) with a fiber stress of f pounds per sq. in. (o to 15,000).
5. $p=\frac{\boldsymbol{R} \boldsymbol{h}}{\boldsymbol{V}}$. - Approximate formula for flange rivets in a plate girder; h is the effective depth of the girder (20 to 110), V is the vertical shear in pounds (50,000 to 275,000), R is the rivet value in pounds (1000 to 20,000), p is the pitch of the rivets in inches (I to 9).
6. $t=\frac{6 M}{b \boldsymbol{h}^{2}}$. - Intensity of stress, f, in pounds per sq. in. (750 to I 300) in the outer fiber of a rectangular beam, h inches in depth (3 to 20) and b inches in breadth (2 to 16) due to a bending moment of M inch-pounds.
7. $H=\frac{2 \pi / r^{2}}{d^{3}}$. - Field intensity, H, in lines per sq. cm. at a point on a line through the center and normal to the plane of a circular turn of wire of negligible section conducting a current of I abamperes (o to 1000), the radius of the circular turn being $r \mathrm{~cm}$. (4 to 12) and the distance of the point from the wire being $d \mathrm{~cm} .(4 \sqrt{2}$ to $12 \sqrt{2})$.
8. $C=\frac{W V^{2}}{\boldsymbol{r g}}$. -Centrifugal force; w is the weight in pounds (i to 150), v is the velocity in ft . per sec. (I to 50), r is the radius of the path in ft . (0.1 to 10), $g=32.2$, C is the centrifugal force in pounds.
9. $P=w h\left(\frac{I+\sin \phi}{I-\sin \phi}\right)^{2}$.-Resistance to earth compression; w is the weight of the earth in pounds per cu. ft . (o to 130), h is the depth in ft . (o to 15), ϕ is the angle of repose of the earth $\left(15^{\circ}\right.$ to $\left.60^{\circ}\right), P$ is the ultimate load on the earth in pounds per sq. ft . (0 to 35,000).
10. Apply the methods of this chapter to charting some of the formulas of the combination chart, Art. 25.
11. Apply the methods of this chapter to charting the formulas in Exercises 7, 8, and 9, at the end of Chapter III.

CHAPTER V.

NOMOGRAPHIC OR ALIGNMENT CHARTS (Continued).

(VIII) EQUATION OF FORM $f_{1}(u)+f_{2}(v)=\frac{f_{3}(w)}{f_{4}(q)}$. PAR-

ALLEL OR PERPENDICULAR INDEX LINES.
51. Chart for equation (VIII). - Consider two parallel axes, $A X$ and $B Y$, drawn in opposite directions, and two intersecting axes, $A Z$ and $A T$, where $A Z$ coincides with $A X$ and $A T$ coincides with the transversal $A B$. (Fig. 51a.) Draw two parallel index lines, one intersecting $A X$ and $B Y$ and the other intersecting $A Z$ and $A T$ in u, v, w, and g respectively, sa

Fig. 51a.

Fig. 5 Ib.
that $A u=x, B v=y, A w=z, A q=t$. Draw $B C$ parallel to these index lines, and let $A B=k$ inches. Then in the similar triangles $A C B$ and $A w q$, we have

$$
A C: A B=A w: A q \quad \text { or } \quad x+y: k=z: t .
$$

Now if $A X, B Y, A Z$, and $A T$ carry the scales

$$
x=m_{1} f_{1}(u), \quad y=m_{1} f_{2}(v), \quad z=m_{3} f_{3}(w), \quad t=m_{1} f_{1}(q),
$$

where $m_{1}: k=m_{3}: m_{4}$, then

$$
x+y: k=z: t \text { becomes } f_{1}(u)+f_{2}(v)=f_{3}(w): f_{4}(q),
$$

and any pair of parallel index lines, (u, v) and (w, q), will cut the axes in values of u, v, w, q satisfying this equation. This type of chart is illustrated in Art. 52.

In Fig. 5Ib, $A X$ and $B Y$ are drawn in the same direction, and hence $A C=x-y$, so that this arrangement serves to represent equation (VIII) when $f_{1}(u)$ and $f_{2}(v)$ are opposite in sign, or an equation of the form $f_{1}(u)-f_{2}(v)=f_{3}(w): f_{4}(q)$.

In the construction of the chart for equation (VIII), we note the following: (1) The u-, w-, and q-scales are all laid off from the same origin, although we could have constructed $A Z$ parallel to $A X$ and $A T$ parallel

Fig. 5 ic.

Fig. 5id $^{\text {d }}$
to $A B$ without affecting the relations of the scales. (2) The u - and v scales are constructed in opposite directions or in the same direction according as $f_{1}(u)$ and $f_{2}(v)$ have like or unlike signs. (3) The u - and v scales have the same modulus, m_{1}, and the moduli and the length of the transversal, k, are connected by the relation $k=m_{1} m_{4} / m_{3}$. (4) The (u, v) and (w, q) index lines are always parallel.

If the equation (VIII) has the form $f_{1}(u)+f_{2}(v)=f_{1}(u): f_{4}(q)$, containing only three variatles, it can be charted in a similar manner. Here the w-scale coincides with the u-scale, so that the (w, q) index line coincides with the (u, v) index line; hence a single index line cuts the scales in values of u, v, and q satisfying the equation. This type is illustrated in Art. 53.

Consider again two parallel axes, $A X$ and $B Y$ drawn in the same directions, and two intersecting axes $D Z$ and $D T$, where $D Z$ is perpendicular to $A X$ and $D T$ is perpendicular to the transversal $A B$ (Fig. 5Ic). Draw two perpendicular index lines, one intersecting $A X$ and $B Y$ and
the other intersecting $D Z$ and $D T$ in u, v, w, and q respectively, so that $A u=x, B v=y, D w=z, D q=t$. Draw $B C$ parallel to the first of these index lines. Then the triangles $A C B$ and $D w q$ are similar (since their sides are mutually perpendicular). Hence

$$
A C: A B=D w: D q, \quad \text { or } \quad x-y: k=z: t .
$$

Now if $A X, B Y, D Z$, and $D T$ carry the scales

$$
x=m_{1} f_{1}(u), \quad y=m_{1} f_{2}(v), \quad z=m_{3} f_{3}(w), \quad t=m_{4} f_{4}(q)
$$

where $m_{1}: k=m_{3}: m_{4}$, then

$$
x-y: k=z: t \text { becomes } f_{1}(u)-f_{2}(v)=f_{3}(w): f_{4}(q)
$$

and any pair of perpendicular index lines, (u, v) and (w, q), will cut the axes in values of $u, v_{r} w, q$ satisfying this equation. This type is illustrated in Art. 54.

In Fig. ${ }^{1} 1 d, A X$ and $B Y$ are drawn in opposite directions, and hence $A C=x+y$, so that this arrangement serves to represent equation (VIII) $f_{1}(u)+f_{2}(v)=f_{3}(w): f_{4}(q)$.
52. Moment of inertia of cylinder. $\bar{i}=\frac{W}{12}\left(3 r^{2}+h^{2}\right)$. - Here, W is the total weight of a right circular cylinder in pounds, r is the radius in inches, h is the height in inches, and I is the moment of inertia in pounds-(inch) ${ }^{2}$ units of the cylinder about an axis through its center of gravity and perpendicular to the axis of the cylinder.

Writing the equation as $3 r^{2}+h^{2}=12 I: W$, we have an equation of form (VIII), and we shall follow Fig. $51 a$ in the construction of the chart. Here

$$
x=m_{1}\left(3 r^{2}\right), \quad y=m_{1} h^{2}, \quad z=m_{3}(12 I), \quad t=m_{4} W
$$

Choosing $k=\mathrm{I} 5^{\prime \prime}$, we have the following table:

Scale	Limits	Modulus	Equation	Length
r	0 to 25	$m_{1}=0.008$	$x=0.024 r^{2}$	$15^{\prime \prime}$
h	0 to 40	$m_{1}=0.008$	$y=0.008 h^{2}$	$13^{\prime \prime}$
I	0 to $6,000,000$	$m_{3}=0.000,000,2$	$z=0.000,002,4 I 14^{\prime \prime}$	
\dot{W}	0 to 25,000	$m_{4}=\frac{m_{3} k}{m_{1}}=0.000,375$	$t=0.000,375 W$	$9^{\prime \prime}$

The (r, h) and (I, W) index lines must always be parallel. Fig. 52 gives the completed chart, and the index lines drawn show that when $r=10 \mathrm{in} ., h=30 \mathrm{in}$., and $W=20,000$ pounds, then $I=20 \times 10^{5} \mathrm{lbs} .-$ (in.) ${ }^{2}$ units.

MOMENTOFINERTIA OF RIGHT CIRCULAR CYLINDER. $I=\frac{H}{12}\left(3 r^{2}+h^{2}\right)$
Fig. 52.
53. Bazin formula for velocity of flow in open channels. $v=c \sqrt{r s}$, where $c=\frac{87}{0.552+\frac{m}{\sqrt{r}}} \cdot$ - Here, m is the coefficient of roughness, r is the hydraulic radius in ft . (area divided by wetted perimeter), s is the slope of the water surface, and v is the velocity of flow in ft . per sec .

We shall first build a chart for the coefficient, c. The equation can be written

$$
0.552 \sqrt{r}+m=\frac{87 \sqrt{r}}{c}, \text { or } \sqrt{r}+\frac{m}{0.55^{2}}=\frac{\sqrt{r}}{\frac{0.552}{87} c},
$$

which is the special form of (VIII) where the w-scale coincides with the u-scale, and hence only one index line is required. Hence

$$
x=m_{1} \sqrt{r}, \quad y=m_{1}\left(\frac{m}{0.552}\right), \quad z=m_{1} \sqrt{r}, \quad t=m_{4}\left(\frac{0.552 c}{87}\right) .
$$

Choosing $k=15$ in., we have the following table:

Scale	Limits	Modulus	Equation	Length
r	0.2 to 20	$m_{1}=2.7$	$x=2.7 \sqrt{r}$	$\mathbf{1 2 ~}^{\prime \prime}$
m	0.06 to 2	$m_{1}=2.7$	$y=4.89 m$	$\mathbf{1 0}^{\prime \prime}$
c	10 to 155	$m_{4}=k=15$	$t=0.0952 \mathrm{c}$	$15^{\prime \prime}$

One index line cuts out values of r, m, and c satisfying the equation. Fig. 53 gives the chart for this formula, and the index line drawn shows that when $r=4 \mathrm{ft}$. and $m=1 . \mathrm{I}$, then $c=78.5$.

We can consider the equation $v=c \sqrt{r s}$ as an equation of the form (II), Art. 28, and we can build up a logarithmic chart accordingly. We have already constructed such a chart in Art. 29 and Fig. 296 may therefore be used to supplement Fig. 53 for a complete solution of our problem. In Fig. 29b, the (r, s) and (c, v) index lines must intersect on the q-axis. Thus, when $r=4 \mathrm{ft}$., $s=0.001$, and $c=78.5$, we read $v=4.96 \mathrm{ft}$. per sec.
54. Resistance of riveted steel plate. $R=(p-D) t f_{t .}$ - Here, R is the resistance of riveted steel plate to tearing between rivet holes in pounds, p is the pitch of the rivet in inches, D is the diameter of the rivet hole in inches, t is the thickness of the plate in inches, and f_{t} is the fiber stress of steel in tension and equals 55,000 pounds per sq. in. The formula is used extensively in boiler design and in structural work.

The equation can be written $p-D=\frac{R / 55,000}{t}$, an equation of the form (VIII), and we shall follow Fig. 5Ic in the construction of the chart. We have

$$
x=m_{1} p, \quad y=-m_{1} D, \quad z=m_{3} R / 55,000, \quad t^{\prime}=m_{4} t
$$

COEFFICIENT IN BAZIN'S:HYDRAULIC FORMULA

$$
c=\frac{87}{0.552+m}
$$

102 Fig. 53.

Fig. 54.

Choosing $k=10$ in., we have the following table:

Scale	Limits	Modulus	Equation	Length
p	up to 6	$m_{1}=2$	$x=2 p$	I2' $^{\prime \prime}$
D	up to 2	$m_{1}=2$	$y=-2 D$	$4^{\prime \prime}$
R	up to 200,000	$m_{3}=1.65$	$z=0.00003 R$	$6^{\prime \prime}$
t	up to I	$m_{4}=\frac{m_{3} k}{m_{1}}=8.25$	$t^{\prime}=8.25 t$	$8^{\prime \prime}$

As in Fig. 5Ic, the p - and D-scales extend in the same direction, and the t^{\prime} axis must be drawn perpendicular to the transversal joining the origins of the x - and y-axes. The (p, D) and (R, t) index lines are always perpendicular.

The complete chart is given in Fig. 54, and the index lines drawn show that when $p=3$ in., $D=\frac{7}{8}$ in., and $t=\frac{1}{2}$ in., then $R=58,500$ pounds.
(IX) EQUATION OF FORM $\frac{I}{f_{1}(u)}+\frac{I}{f_{2}(v)}=\frac{I}{f_{3}(w)}$ OR

$$
\frac{I}{f_{1}(u)}+\frac{1}{f_{2}(v)}+\frac{1}{f_{3}(w)}+\cdots=\frac{1}{f_{4}(q)} . \quad \text { THREE }
$$

OR MORE CONCURRENT SCALES.
55. Chart for equation (IX). - Consider three concurrent axes $A X$, $A Y$, and $A Z$ (Fig. 55a). Let any index line cut these axes in u, v, and w respectively, so that $A u=x, A v=y$, and $A w=z$. Through w draw

Fig. 55a.

Fig. 55b.
$w D$ parallel to $A Y$ and let $A D=x_{1}$. Let the position of $A Z$ be determined by the ratio $A D: D w=m_{1}: m_{2}$. Then, in the similar triangles $u D w$ and $u A v$, we have $D w: A v=D u: A u$, or

$$
\frac{m_{2}}{m_{1}} x_{1}: y=x-x_{1}: x, \quad \text { or } \quad \frac{m_{1}}{x}+\frac{m_{2}}{y}=\frac{m_{1}}{x_{1}}
$$

Now if $A X$ carries the scales $x=m_{1} f_{1}(u), x_{1}=m_{1} f_{3}(w)$ and $A Y$ carries the scale $y=m_{2} f_{2}(v)$, then

$$
\frac{m_{1}}{x}+\frac{m_{2}}{y}=\frac{m_{1}}{x_{1}} \quad \text { becomes } \quad \frac{\mathrm{I}}{f_{1}(u)}+\frac{1}{f_{2}(v)}=\frac{\mathrm{I}}{f_{3}(w)}
$$

and any index line cuts out values of u, v, w satisfying this equation.
In the construction of the chart for equation (IX) we note the following: (I) The x - and y-axes may make any convenient angle with each other and they carry the scales $x=m_{1} f_{1}(u)$ and $y=m_{2} f_{2}(v)$. (2) The z-axis divides the angle between the x - and y-axes into two angles whose sines are in the ratio $m_{1}: m_{2}$, i.e., $A D: D w=m_{1}: m_{2}$. (3) The x-axis also carries the scale $x_{1}=m_{1} f_{3}(w)$, and this scale is projected on the z axis by lines parallel to the y-axis, the points and their projections being marked with the same value of w.

If $m_{1}=m_{2}$, then $A Z$ bisects the angle $X A Y=\alpha$ (Fig. 55b). Then $A w: A D=\sin \left(180^{\circ}-\alpha\right): \sin \frac{\alpha}{2}$, or

$$
z=A w=\frac{\sin \alpha}{\sin \frac{\alpha}{2}} x_{1}=\frac{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{\sin \frac{\alpha}{2}} x_{1}=m_{1}\left(2 \cos \frac{\alpha}{2}\right) f_{3}(w)
$$

In this case the w-scale may be constructed on $A Z$, and the scales are

$$
x=m_{1} f_{1}(u), \quad y=m_{1} f_{2}(v), \quad z=m_{1}\left(2 \cos \frac{\alpha}{2}\right) f_{3}(w) .
$$

Finally, if we take $\alpha=120^{\circ}$, our scales are simply

$$
x=m_{1} f_{1}(u), \quad y=m_{1} f_{2}(v), \quad z=m_{1} f_{3}(w)
$$

The method of charting the second form of equation (IX) is merely an extension of the method employed for charting the first form. Consider the case of four variables,

$$
\frac{\mathbf{I}}{f_{1}(u)}+\frac{\mathbf{I}}{f_{2}(v)}+\frac{\mathbf{I}}{f_{3}(w)}=\frac{\mathbf{I}}{f_{4}(q)} .
$$

By introducing an auxiliary variable, t, we can write
$\frac{\mathrm{I}}{f_{1}(u)}+\frac{\mathrm{I}}{f_{2}(v)}=\frac{\mathbf{I}}{t}$ and $\frac{\mathbf{I}}{t}+\frac{\mathrm{I}}{f_{3}(w)}=\frac{\mathbf{I}}{f_{4}(q)}$.
We chart each of these equations by means of three concurrent scales with

Fig. 55c. a common t-scale which need not be graduated. (Fig. 55c.) Two index lines are necessary, one cutting the u - and v-scales and the other the w. and g-scales. The (u, v) and (w, q) index lines must intersect on the t-axis.

Equations of the form (IX) are not very common in engineering practice. We shall only give one illustration.
56. Focal lengths of a lens. $\frac{1}{f}+\frac{1}{\boldsymbol{F}}=\frac{1}{p}$. - Here, f is the focal distance of the object, F is the focal distance of the image, and p is the principal focal length of the lens.

We shall take our x - and y-axes at an angle of 120°, and the z-axis as the bisector of this angle. Let $m_{1}=0.5$, then the equations of our scales are

$$
x=0.5 f, \quad y=0.5 F, \quad z=0.5 p
$$

The completed chart is given by Fig. 56. The index line drawn shows that when $f=6$ and $F=9$, then $p=3.6$.

Fig. 56.
Another formula which may be charted in the same way is

$$
\frac{\mathrm{I}}{R_{1}}+\frac{\mathrm{I}}{R_{2}}+\frac{\mathrm{I}}{R_{3}}+\cdots=\frac{\mathrm{I}}{R}
$$

where R is the circuit resistance of a circuit containing resistances $R_{1}, R_{\mathbf{2}}$, R_{3}, . . connected in parallel.
(X) EQUATION OF THE FORM $f_{1}(u)+f_{2}(v) \cdot f_{3}(w)=f_{4}(w)$. STRAIGHT AND CURVED SCALES
57. Chart for equation (X). - (We note that the variable w occurs in both members of the equation.) Consider two parallel axes $A X$ and $B Y$ and a curved axis $C Z$ (Fig. 57). Draw any index line cutting these wxes in u, v, and w respectively. Draw $w D$ parallel to $A X$, cutting $A B$ in D, and draw $w E$ and $v F$ parallel to $A B$. The triangles $u E w$ and $w F_{0}$
are similar, hence $E u: F w=E w: F v=A D: D B$. Therefore, if $A u=x$, $B v=y, A D=z_{1}, D w=z$ and $A B=k$, we have

$$
\begin{gathered}
x-z: z-y=z_{1}: k-z_{1} \text { or }\left(k-z_{1}\right) x+z_{1} y=k z \\
x+\frac{z_{1}}{k-z_{1}} y=\frac{k}{k-z_{1}} z
\end{gathered}
$$

and if
$x=m_{1} f_{1}(u), \quad y=m_{2} f_{2}(v), \quad \frac{z_{1}}{k-z_{1}}=\frac{m_{1}}{m_{2}} f_{3}(w), \quad \frac{k z}{k-z_{1}}=m_{1} f_{4}(w)$,
this relation becomes $f_{1}(u)+f_{2}(v) \cdot f_{3}(w)=f_{4}(v)$. Solving for z_{1} and z we get

$$
\begin{aligned}
z_{1} & =\frac{m_{1} k}{m_{1} f_{3}(w)+m_{2}} f_{3}(w), \\
z & =\frac{m_{1} m_{2}}{m_{1} f_{3}(w)+m_{2}} f_{4}(w)
\end{aligned}
$$

Hence to chart equation (X) proceed as follows: Construct the scales $x=m_{1} f_{1}(u), y=m_{2} f_{2}(v)$ on two parallel axes $A X$ and $B Y$ extending in the same direction. If $A B=k$ inches, construct the points of the curved scale $C Z$ by assigning values to w, and laying off along $A B, z_{1}=$ $A D=\frac{m_{1} k}{m_{1} f_{3}(w)+m_{2}} f_{3}(w)$, and par-

Fig. 57.
allel to $A X, z=D w=\frac{m_{1} m_{2}}{m_{1} f_{3}(w)+m_{2}} f_{4}(w)$, and marking the point thus found with the corresponding value of w. Then any index line will cut the three scales in values of u, v, and w satisfying equation (X).

To chart the equation $f_{1}(u)-f_{2}(v) \cdot f_{3}(w)=f_{4}(w)$, we construct the scales $x=m_{1} f_{1}(u)$ and $y=-m_{2} f_{2}(v)$ in opposite directions.
58. Storm water run-off formula. $q+N q^{\frac{4}{3}}=P$. - This equation arises in the storm water run-off formula given by C. B. Buerger, in the Trans. Am. Soc. C. E., Vol. LXXVIII, p. II39, where N and P are quantities which depend upon the sewer run, the area, and the rainfall, and q is the run-off in cu. ft . per sec. per acre.

If we write the equation $P-N q^{\frac{1}{5}}=q$, we have an equation of the form (X), with the scales

$$
x=m_{1} P, \quad y=-m_{2} N, \quad z_{1}=\frac{m_{1} k}{m_{1} q^{\frac{4}{3}}+m_{2}} q^{\frac{4}{3}}, \quad z=\frac{m_{1} m_{2}}{m_{1} q^{\frac{4}{3}}+m_{2}} g .
$$

Let P, N, and q vary from 0 to 10, and take $m_{1}=m_{2}=1$ and $k=14^{\prime \prime}$

Fig. $58 a$.

Then our scales are
$x=P, \quad y=-N, \quad z_{1}=\frac{14 q^{\frac{4}{3}}}{q^{\frac{4}{3}}+1}, \quad z=\frac{q}{q^{\frac{4}{3}}+1}$.
The axes $A X$ and $B Y$ are drawn in opposite directions, and the length of $A B$ is 14 in . (Fig. 58a). We assign values to q, and on $A B$ we lay off $A D=z_{1}$, and parallel to $A X$ we lay off $D D^{\prime}=z$ and mark the point D^{\prime} with the value assigned to q. We join the points D^{\prime} by a smooth curve, thus giving a curved scale for the variable q. Any index line will then cut out values of P, N, and q satisfying the equation.

The completed chart is given by Fig. $58 b$, and the index line drawn shows that when $P=6$ and $N=5$, then $q=1 \mathrm{cu} . \mathrm{ft}$. per sec. per acre.

Fig. 59.
59. Francis formu a for a contracted weir. $\quad Q=3.33(B-0.2 H) H^{2}$. - Here, Q is the quantity of water flowing over weir in cu. ft. per sec., B is the width of the weir in ft ., and H is the head over the crest of the weir in ft .

If we write the equation $Q-3.33 H^{\frac{3}{2}} B=-0.666 H^{\frac{5}{2}}$ we have ats equation of the form (X), with the scales $x=m_{1} Q, y=-m_{2}(3.33 B), z_{1}=$ $\frac{m_{1} k H^{\frac{1}{2}}}{m_{1} H^{\frac{1}{2}}+m_{2}}, z=-\frac{m_{1} m_{2}}{m_{1} H^{\frac{y}{2}}+m_{2}}\left(0.666 H^{\frac{1}{2}}\right)$. Let B vary from o to $5, H$ from 0 . to 8 , and Q from o to 33. If we choose $m_{1}=0.3, m_{2}=0.6$, and $k=12$, our scales are $x=0.3 Q, y=-2 B, z_{1}=\frac{12 H^{\frac{1}{2}}}{H^{\frac{3}{2}}+2}, z=-\frac{0.4 H^{\frac{1}{2}}}{H^{\frac{1}{2}}+2}$.

The axes $A X$ and $B Y$ are drawn in opposite directions, and the length of $A B$ is 12 in . We assign values to H, and on $A B$ we lay off $A D=z_{1}$, and parallel to $B Y$ we lay off $D D^{\prime}=z$, and mark the point thus found with the corresponding value of H. We join the points by a smooth curve, thus giving a curved scale for the variable H. Any index line will then cut the scales in values of B, H, and Q satisfying the equation.

The completed chart is given in Fig. 59, and the index line drawn shows that when $B=3 \mathrm{ft}$., and $H=1.2 \mathrm{ft}$., then $Q=12.1 \mathrm{cu} . \mathrm{ft}$. per sec.
60. The solution of cubic and quadratic equations. -

$$
w^{3}+p w+q=0, \quad w^{2}+p w+q=0, \quad w^{3}+n w^{2}+p w+q=0 .
$$

Let us consider first the cubic equation $w^{3}+p w+q=0$. Writing the equation as $q+p w=-w^{3}$, we have an equation of the form (\mathbf{X}). The scales are

$$
x=m_{1} q, \quad y=m_{2} p, \quad z_{1}=\frac{k m_{1}}{m_{1} w+m_{2}} w, \quad z=-\frac{m_{1} m_{2}}{m_{1} w+m_{2}} w^{3} .
$$

If we allow p and q to vary from - 10 to +10 , and choose $m_{1}=m_{2}=1$ and $k=10^{\prime \prime}$, our scales are

$$
x=q, \quad y=p, \quad z_{1}=\frac{10}{w+1}, \quad z=-\frac{w^{3}}{w+1} .
$$

In Fig. $60 a$, the p - and q-scales are constructed on $X X^{\prime}$ and $Y Y^{\prime}$ starting at A and B respectively. Assigning positive values to w, viz., $w=0,0.1,0.2, \ldots$, io, we compute z_{1} and z and lay off $A D=z_{1}$ and $D D^{\prime}=z$, and mark the points, D^{\prime}, thus found with the corresponding values of w. We draw a smooth curve through these points, getting the curved axis $A Z$. Then any index line will cut the three scales in values of q, w, and p satisfying the equation, or an index line joining p and q will cut the curve in w, a root of the cubic equation.

We note that the line through $A(q=0)$ and $D^{\prime}\left(w=w_{0}\right)$ will cut $Y Y^{\prime}$ in $E\left(p=-w_{0}{ }^{2}\right)$ since these values of q, w, and p satisfy the equation $w^{2}+p w+q=0$. This observation allows us to construct the points of
the curved scale as follows: On $A B$, we lay off the scale $z_{1}=10 w /(w+1)$, mark the points with the corresponding value of w, and draw the verticals through these points. Let the point D be marked w_{0} and let $D D^{\prime}$ be the vertical through this point. Then the line joining $A(q=0)$ with $E\left(p=-w_{0}^{2}\right)$ will cut $D D^{\prime}$ in a point of the curve which must be marked with the value w_{0}. Thus the points of the scale are rapidly constructed. Interpolation on the w-scale may be made either along the curve or, by projection, along $A B$. The complete curve for the cubic is drawn in Fig. 60b (curve marked " C "). By means of it we can find the positive roots of the equation.

Example 1. Solve the equation w^{3} $+2 w-6=0$. The index line joining $p=2$ and $q=-6$ cuts the curve in $w=$ I. 46 (Fig. 60b).

The negative roots of the equation can be gotten by letting $w=-w^{\prime}$ and

Fig. 60a. finding the positive roots of the resulting equation. If p and q lie beyond the limits -10 and +10 , let $w=a w$; the equation becomes $w^{\prime 3}+\frac{p}{a^{2}} w^{\prime}+\frac{q}{a^{3}}=0$, or $w^{\prime 3}+p^{\prime} w^{\prime}+q^{\prime}=0$; choose a so that p^{\prime} and q^{\prime} lie within the limits -10 and +10 .

Example 2. Solve the equation $w^{3}-210 w-9000=0$. If we let $w=a w^{\prime}$, we get $w^{\prime 3}-\frac{210}{a^{2}} w^{\prime}-\frac{9000}{a^{3}}=0$. Now let $a=10$, and we have $w^{\prime 3}-2.1 w^{\prime}-9=0$. The index line joining $p=-2.1$ and $g=-9$ cuts the curve in $w^{\prime}=2.42$; hence $w=24.2$ (Fig. $60 b$).

We may similarly build an alignment chart for the quadratic equation $w^{2}+p w+q=0$. The method of construction of the curved axis for this equation differs from the construction of the curved axis for the cubic only in that w^{2} replaces w^{3}, so that $D D^{\prime}=z=-w^{2} /(w+1)$. Again we note that the points $A(q=0), D^{\prime}\left(w=w_{0}\right)$, and $E\left(p=-w_{0}\right)$ must lie on a straight line, since these values of q, w, and p satisfy the equation $w^{2}+p w+q=0$. We may use this fact in constructing the points of the curve. The complete curve is drawn in Fig. $60 b$ (curve marked " Q "); by means of it we can find the positive roots of the equation.

Example 3. Solve the equation $w^{2}-5.15 w+2.42=0$. The index line joining $p=-5.15$ and $q=2.42$ cuts the curve in $w=0.52$ and $w=4.65$.

The complete cubic equation $w^{3}+n w^{2}+p w+q=0$ may be transformed into the equation $w^{3}+p^{\prime} w^{\prime}+q^{\prime}=0$ by the substitution $w=$ $w^{\prime}-\frac{n}{3}$, or we may proceed to solve it directly by means of an alignment chart. In the construction of the curved axis we have
$A D=z_{1}=\frac{10 w}{w+\mathrm{I}}$, and $D D^{\prime}=z=-\frac{w^{3}+n w^{2}}{w+\mathrm{I}}=\left(-\frac{w^{3}}{w+\mathrm{I}}\right)+n\left(-\frac{w^{2}}{w+\mathrm{I}}\right)$.
In Fig. $60 c$, let the curve $A Q$ correspond to the quadratic $w^{2}+p w+q=0$ and the curve $A C_{0}$ to the cubic $w^{3}+p w+q=0$ (where $n=0$). Then

$$
D Q=-\frac{w^{2}}{w+1}, \quad D C_{0}=-\frac{w^{3}}{w+\mathbf{1}}, \quad \therefore \quad D D^{\prime}=D C_{0}+n \cdot D Q .
$$

Thus starting at C_{0}, we simply lay off, along $D D^{\prime}, n$ times the fixed distance $D Q$ to arrive at the point C_{n} of the curve corresponding to the complete cubic equation. We thus rapidly lay off from ${ }^{\cdot} C_{0}$ in either direction a uniform scale with interval equal to $D Q$, and get the points $C_{1}, C_{2}, C_{3}, \ldots, C_{-1}, C_{-2}$, C_{-3}, \ldots, corresponding to the curves $n=1,2,3, \ldots,-1,-2,-3, \ldots$. This is done along the various verticals and for the values of w for which $n=0$ was plotted, and the curves for $n=-10$ to $n=10$ are drawn. For intermediate values of n we interpolate between two curves.

Fig. $60 b$ gives the complete chart for the equation $w^{3}+n w^{2}+p w+q=0$.

Fig. 60c. Thus to solve this equation, we draw the index line joining p and q; this cuts the n-curve in the required root. To find negative roots, and to find the roots when p and q lie beyond the limits -10 and +10 , we proceed as in the case of the simple cubic $w^{3}+p w+q=0$.

Example 4. Solve the equation $w^{3}+w^{2}-2.1 w-3.2=0$. The index line joining $p=-2.1$ and $g=-3.2$ cuts the curve $n=\mathrm{I}$ in $w=1.6$.

Example 5. Solve the equation $w^{3}+96 w^{2}+721.879 w-7,826.051$ $=0$ (this equation occurs in the problem of the equilibrium of arches). If we let $w=a w^{\prime}=1 Q w^{\prime}$, the equation becomes $w^{\prime 3}+9.6 w^{\prime 2}+7.22 w^{\prime}$ $-7.83=0$ and the index line joining $p=7.22$ and $q=-7.83$ cuts the curve $n=9.6$ in $w^{\prime}=0.59$. Hence $w=5.9$.

We can similarly plot alignment charts for any trinomial equation $w^{m}+p w^{n}+q=0$ and for the fourth degree equation $w^{4}+n w^{2}+$ $p w+g=0$.

(XI) ADDITIONAL FORMS OF EQUATIONS. COMBINED METHODS.*

61. Chart for equation of form $\frac{1}{f_{1}(u)}+\frac{f_{4}(w)}{f_{2}(v)}=\frac{1}{f_{3}(w)}$. -This form is a generalization of equation (IX). Consider two intersecting axes $A X$ and $A Y$ and a curved axis $C Z$ (Fig. 61). Let any transversal cut the axes in u, v, and w respectively, and draw $w D$ parallel to $A Y$, so that $A u=x, B v=y, A D=x^{\prime}$, and $D w=z$. Then in the similar triangles, $u D w$ and $u A v$, we have $D w: A v=D u: A u$, or

Fig. 6I.

$$
z: y=x-x^{\prime}: x, \quad \therefore \frac{1}{x}+\frac{z / x^{\prime}}{y}=\frac{1}{x^{\prime}} .
$$

Now if

$$
\begin{aligned}
x & =m_{1} f_{1}(u), \quad y=m_{2} f_{2}(v), \\
x^{\prime} & =m_{1} f_{3}(w), \quad \frac{z}{x^{\prime}}=\frac{m_{2}}{m_{1}} f_{4}(w), \\
\text { or } \quad z & =m_{2} f_{3}(w) \cdot f_{4}(w), \quad \text { this equa- }
\end{aligned}
$$ tion becomes

$$
\frac{\mathrm{I}}{f_{1}(u)}+\frac{f_{4}(w)}{f_{2}(v)}=\frac{1}{f_{3}(w)} .
$$

Thus, the w-scale is a smooth curve through the points determined by $x^{\prime}=m_{1} f_{3}(w)$ and $z=m_{2} f_{3}(w) \cdot f_{4}(w)$ and marked with the corresponding values of w. Any index line will cut the scales in values of u, v, w satisfying the equation.
62. Chart for equation of form $f_{1}(u)+f_{2}(v) \cdot f_{3}(w)=f_{1}(q)$. - We introduce an auxiliary variable t and write

$$
\text { (1) } f_{2}(v) \cdot f_{3}(w)=t \quad \text { and } \quad(2) f_{1}(u)+t=f_{4}(q) .
$$

Equation (I) has the form (III) and may be plotted by the method of Art. 32, but the t-scale need not be graduated. Equation (2) has the form (I) and may be plotted by the method of Art. 23. The position of the scales is illustrated in Fig. 62. The (v, w) and (u, q) index lines must intersect on the t-axis.
63. Chart for equation of form $f_{1}(u) \cdot f_{4}(q)+f_{2}(v) \cdot f_{3}(w)=$ I. -Introducing an auxiliary variable t, we write

$$
\text { (1) } f_{1}(u) \cdot f_{4}(q)=t \text { and (2) } t+f_{2}(v) \cdot f_{3}(w)=\mathrm{I}
$$

Equation (I) has the form (III) and can be plotted by the method of Art. 32. Equation (2) is a special case of the form (X), where $f_{4}(w)=1$, and can be plotted by the method of Art. 57. The t-scale is not gradu-

[^4]ated. The position of the scales is illustrated in Fig. 63. The (u, q) and (v, w) index lines must intersect on the t-axis.

Fig. 62.

Fig. 63.
64. Chart for equation of form $\frac{f_{4}(q)}{f_{1}(u)}+\frac{1}{f_{2}(v)}=\frac{1}{f_{3}(w)}$. - Introducing an auxiliary variable t, we write
(I) $\frac{f_{1}(u)}{f_{4}(q)}=t$ and
(2) $\frac{\mathbf{I}}{t}+\frac{\mathrm{I}}{f_{2}(v)}=\frac{\mathrm{I}}{f_{3}(w)}$.

Equation (I) has the form (III) and may be plotted by the method of Art. 32. Equation (2) is of the form (IX) and may be plotted by the method of Art. 55. The t-scale is not graduated. Fig. 64 illustrates the position of the scales. The (u, \underline{q}) and (v, w) index lines must intersect on the t-axis.

Fig. 64.

Fig. 65.
65. Chart for equation of form $\frac{f_{4}(q)}{f_{1}(u)}+\frac{f_{3}(w)}{f_{2}(v)}=$ I. - Introducing an auxiliary variable t, we write

$$
\text { (1) } \frac{f_{1}(u)}{f_{4}(\underline{q})}=t \quad \text { and } \quad \text { (2) } \frac{1}{t}+\frac{f_{3}(w)}{f_{2}(v)}=\mathrm{I} \text {. }
$$

Equation (I) has the form (III) and can be plotted by the method of Art. 32. Equation (2) is a special case of the form charted in Art. 6r. The common t-scale need not be graduated. The position of the scales is illustrated in Fig. 65. The (u, q) and (v, w) index lines must intersect on the t-axis.
66. Chart for equation of form $f_{1}(u) \cdot f_{2}(q)+f_{3}(v) \cdot f_{4}(w)=f_{6}(w)$. - We introduce a new variable t, and write
(I) $f_{1}(u) f_{2}(q)=t$ and
(2) $t+f_{3}(v) f_{4}(w)=f_{5}(w)$.

Equation (I) has the form (III) and may be charted by the method ot Art. 32. Equation (2) has the form (X) and may be charted by the method of Art. 57. The t-axis need not be graduated. The position of the scales is illustrated in Fig. 63. The (u, q) and (v, w) index lines must intersect on the t-axis.

Fig. 66.

Fig. 67.

An interesting application of this type is given by D'Ocagne.* He considers Bazin's formula \dagger for the velocity of flow of water in open channels,

$$
v=c \sqrt{r s}, \text { where } c=\frac{87}{0.552+\frac{m}{\sqrt{r}}} .
$$

We can combine these equations into one equation,

Here

$$
v=\frac{87 \sqrt{r s}}{0.552+\frac{m}{\sqrt{r}}}, \quad \text { or } \quad \frac{87 \sqrt{s}}{v}-\frac{m}{r}=\frac{0.552}{\sqrt{r}} .
$$

$$
\frac{87 \sqrt{s}}{v}=t \quad \text { and } \quad t-\frac{m}{r}=\frac{0.552}{\sqrt{r}} .
$$

Fig. 66 illustrates the positions of the scales. By placing the m - and s scales on the same axis, we get a very compact chart. The (v, s) and (m, r) index lines must intersect on the t-axis.
67. Chart for equation of form $f_{1}(u) \cdot f_{2}(q)+f_{3}(v) \cdot f_{4}(w)=f_{5}(q)+$ $\boldsymbol{f}_{6}(\boldsymbol{w})$. - We introduce an auxiliary variable t, and write
(I) $f_{1}(u) \cdot f_{2}(q)-t=f_{5}(\bar{q})$ and
(2) $f_{3}(v) f_{4}(w)+t=f_{6}(w)$.

Both equations have the form (\mathbf{X}) and can be plotted by the method of Art. 57 with a common t-axis, which need not be graduated. Fig. 67. illustrates the positions of the scales. The (u, q) and (v, w) index lines must intersect on the t-axis.

EXERCISES

Construct charts for the following formulas. The numbers in parenthesis suggest limiting values for the variables. These limits may be extended if necessary. Additional exercises will be found at the end of this chapter.
I. $V=\frac{\pi \boldsymbol{H}}{9}\left(\frac{5}{4} \boldsymbol{D}^{2}+d^{2}\right)$. - Volume of a cask or buoy; d is the diameter of the base in ft . (o to ro), D is the diameter of the middle section in ft . (o to Io), $I I$ is the height in ft . (o to Io), V is the volume in cu . ft . (o to 800).
2. $\boldsymbol{Q}=3.33 \boldsymbol{b}\left[(\boldsymbol{H}+\boldsymbol{h})^{\text {2 }}-\boldsymbol{h}^{\text {² }}\right]$. - Francis' formula for the discharge, Q, in cu. ft . per sec. over a rectangular, suppressed weir $b \mathrm{ft}$. in width (2 to 15) due to a head of $H \mathrm{ft}$. over the crest (0.5 to I .5), considering the velocity head $h \mathrm{ft}$. (o to o.I) due to the velocity of approach.
3. Sp. gr. $=\frac{\boldsymbol{W}}{\boldsymbol{W}-\boldsymbol{w}^{\prime}}$ - Here, w is the weight in pounds of the solid in air (o to 100), w^{\prime} is the weight in pounds of the solid in water (o to 95), sp. gr. is the specific gravity (o to 20).
4. $f=\frac{20,000}{I+\frac{144 L^{2}}{9000 r^{2}}}$. - Gordon formula for columns with ends rounded and maximum allowable compression stress of 20,000 pounds per sq. in.; L is the length of the column in ft . (IO to 50), r is the radius of gyration in inches (I to 12), f is the allowable stress in pounds per sq. in. (IO00 to 20,000).
5. $\frac{\mathbf{I}}{\boldsymbol{R}}=\frac{\mathbf{I}}{\boldsymbol{R}_{\mathbf{1}}}+\frac{\mathbf{I}}{\boldsymbol{R}_{\mathbf{2}}}+\frac{\mathbf{I}}{\boldsymbol{R}_{\mathbf{3}}}$. - Equivalent resistance, R, of a parallel circuit the respective branches of which have resistances R_{1}, R_{2}, and R_{3} ohms (I to Io) and containing no e.m.f.
6. $s=v_{0} t-\frac{1}{2} g t^{2}$. - Distance, s, in feet $(-260$ to +260$)$ passed over by a body projected vertically upwards with an initial velocity of $v_{0} \mathrm{ft}$. per sec. (-260 to +260) in t seconds (o to 17); $g=32.2$.
7. $V=0.6490 \frac{T}{\boldsymbol{P}}-\frac{22.58}{\boldsymbol{p}^{\mathbf{t}}}$. - Volume, V, in cu. ft. of one pound of superheated steam which has a pressure of P pounds per sq. in. (50 to 250) and a temperature of T degrees (280 to 650).

MISCELLANEOUS EXERCISES FOR CHAPTERS III, IV, V.

Construct charts for the following formulas. The numbers in parenthesis suggest limiting values for the variables. These limits may be extended if necessary.

1. $\boldsymbol{P}^{\prime}=\sqrt[3]{\boldsymbol{P}_{1}^{2} P_{2}}$ and $\boldsymbol{P}^{\prime \prime}=\sqrt[3]{\boldsymbol{P}_{1} P_{2}^{2}}$. - First intermediate pressure, P^{\prime}, in pounds per sq. in., and second intermediate pressure, $P^{\prime \prime}$, in pounds per sq. in. of a three stage air compressor which compresses air from a pressure of P_{1} pounds per sq. in. (14.4 to 15.2) to a pressure of P_{2} pounds per sq. in. (500 to 3000).
2. $I=\frac{1}{2} \cdot W r^{2}$. - Moment of inertia, I, in inch units of a right circular cylinder about its axis; W is the total weight in pounds (o to 25,000) and r is the radius in inches (o to 25).
3. $K=\sqrt{\frac{3 r^{2}+h^{2}}{12}}$. Radius of gyration, K, of a right circular cylinder about an axis through its center of gravity and perpendicular to the axis of the cylinder; r is the radius in inches (o to 25), h is the height in inches (o to 40).
4. $\boldsymbol{C}=\frac{\boldsymbol{k}}{36 \ln \frac{d}{\boldsymbol{r}} \times 10^{5}}$. - Capacitance, C, in microfarads of two parallel cylinders per cm. length; each cylinder $r \mathrm{~cm}$. in radius (0.1 to 0.25), their centers separated by a distance of $d \mathrm{~cm}$. (2.5 to 144), and immersed in a medium of dielectric constant $k(k=1$ in practical cases).
5. $\boldsymbol{V}=0.596 \frac{\boldsymbol{T}}{\boldsymbol{P}}-0.256$. - Volume, V, in cu . ft . of one pound of superheated steam which has a pressure of P pounds per sq. in. (50 to 250) and a temperature of T degrees (280 to 650).
6. B.H.P. $=3.33(\boldsymbol{A}-0.6 \sqrt{\boldsymbol{A}}) \sqrt{\boldsymbol{H}}$. - Boiler horse-power, B.H.P. (o to 500) for chimney design for power houses; A is the internal area of chimney in sq. ft . (6 to 16), H is the height of the chimney in ft . (50 to 150).
7. H.P. $=\frac{\boldsymbol{n s} d^{3}}{321,000} \cdot$ - Horse-power, H.P., transmitted by a solid circular shaft of diameter d in. (o.I to 6) at n revolutions per min. (50 to 2500) with a fiber stress in shear of s pounds per sq. in. (o to 50,000).
8. $K=\frac{1}{2} b c \sin A$. - Area of a triangle, K, with sides b (o to 10) and c (I to 10) and included angle $A\left(0^{\circ}\right.$ to $\left.90^{\circ}\right)$.
9. $d=0.013 \sqrt{D I p}$. - Piston-rod diameter, d, in inches (1 to 6) of a steam engine; D is the piston diameter in inches (12 to 24), l is the length of the stroke in inches (12 to 60), p is the maximum steam pressure in pounds per sq. in. (80 to 150).
10. $A=593$ I $\sqrt{\frac{\boldsymbol{C h}}{\boldsymbol{C}^{\prime} \boldsymbol{P}}}$ - Sectional area, A, in circular mils, of a copper wire for which the total annual cost of transmitting energy over a line conducting a constant current of I abamperes (o to 100) will be a minimum; c is the cost of generated energy in dollars per kilowatt hour (0.005 to 0.02), c^{\prime} is the cost of the bare copper wire in dollars per pound (0.15 to 0.35), h is the number of hours per year that the line is in use (4×300 to 24×300), p is the annual percentage rate of interest on the capital invested in copper (4 to 6).
II. $I=\frac{W}{12}\left(a^{2}+b^{2}\right)$ - Moment of inertia, I, of a flat rectangular plate about an axis perpendicular to its plane and passing through the center; W is the total weight in pounds (0 to 30,000), a is the length in ft . (5 to 25), b is the breadth in ft . (2 to 10).
11. $T_{1}=B+\sqrt{B^{2}+T^{2}}$ or $T_{1}-2 B=\frac{T^{2}}{T_{1}}$. Bending moment, B, in a circular shaft for which the twisting moment is T, and T_{1} is the twisting moment which would give the same effect as B and T acting together.
12. $p=\frac{s t}{r+\boldsymbol{t}}$. - Allowable internal pressure, p, in pounds per sq. in. on a hollow cylinder of inner radius r inches; t is the thickness of the cylinder in inches, s is the working strength of the material (20,000 pounds per sq. in. for steel).
13. $\boldsymbol{R}_{2}=\boldsymbol{R}_{1}\left[1+a\left(\boldsymbol{t}_{2}-\boldsymbol{t}_{1}\right)\right]$. - Resistance, R_{2}, in ohms (o to 5) of a conductor of $t_{2}^{\circ} \mathrm{C}$. which has a resistance of R_{1} ohms (o to 5) at $t_{1}{ }^{\circ} \mathrm{C}$. (20 to 30) and is made of a material which has a resistance temperature coefficient of α at $t_{1}{ }^{\circ} \mathrm{C}$. $(\boldsymbol{\alpha}=0.00393$ when $t_{1}=20^{\circ}$ and may be taken as a constant for copper).
14. $Q=3.3 \mathrm{I} \mathrm{bH}^{\boldsymbol{i}}+0.007 \mathrm{~b}$. - Fteley and Stearns' formula for the discharge, Q, in cu. ft. per sec. over a suppressed weir b feet in width (5 to 20) due to a head of H feet over the crest (o.I to 1.6).
15. $D=H \tan A$. - Depth, D, in ft. (i to 55,000) to a stratum, where A is the dip in degrees (x to 89), and H is the horizontal distance in ft . (100 to $\mathrm{I}, 000$).
16. $T=H \sin A$. -Thickncss, T, in ft . (I to $\mathrm{I}, 000$), where A is the dip in degrees (I to 90), and H is the horizontal distance in ft . (IOO to $\mathrm{I}, 000$).
17. $\boldsymbol{\operatorname { t a n }} \boldsymbol{C}=\boldsymbol{\operatorname { t a n }} \boldsymbol{A} \sin B .-$ Projection of dips. C is the dip of the projected angle in degrees (o.I to 89), A is the dip of the bed in degrees (1 to 89), B is the angle of projection in degrecs (r to 90).
18. $N=\frac{5}{4} R^{3} K C$. - Explosion formula. $\quad N$ is the number of half-pound blocks of T.N.T. (20 to 10,000), R is the radius of rupture in ft . (0.5 to 15.0), K is a constant for the material (0.10 to 0.50), C is a constant for tamping (0.1 to 5.0.)
19. $d^{2}=8 \boldsymbol{r h}-4 \boldsymbol{h}^{2}$. - Diameter, d, of the base of a segment of a sphere of radius r and height of segment h.
20. $V=\pi r \boldsymbol{h}^{2}-\frac{\pi}{3} \boldsymbol{h}^{\mathbf{2}}$. - Volume, V, of a segment of a sphere of radius r and height of segment h.
21. $T=\frac{N}{\boldsymbol{\operatorname { c o s }}^{3} \alpha}$. $-N$ is the number of teeth (I to 100) in a spiral gear, a is the angle (0° to 80°) of teeth with axis, T is the number of teeth for which to select cutter (1214, No. 8; 14-17, No. 7; 17-21, No. 6; 21-26, No. 5; 26-35, No. 4; 35-55, No. 3; 55135, No. 2; 335 up, No. 1).

CHAPTER VI.

EMPIRICAL FORMULAS - NON-PERIODIC CURVES.

68. Experimental data. - In scientific or technical investigations we are often concerned with the observation or measurement of two quantities, such as the distance and the time for a freely falling body, the volume of carbon dioxide dissolving in water and the temperature of the water, the load and the elongation of a certain wire, the voltage and the current of a magnetite arc, etc. The results of a series of measurements of the same two quantities under similar conditions are usually presented in the form of a table. Thus the following table gives the results of observations on the pressure p of saturated steam in pounds per sq. in. and the volume v in cu. ft. per pound:

$p=$	10	20	30	40	50	60
$v=$	37.80	19.72	13.48	10.29	8.34	6.62

Fig. 68.
We represent these results graphically by plotting on coördinate paper the points whose coördinates are the corresponding values of the measured quantities and by drawing a smooth curve through or very near these points. Fig. 68 gives a graphical representation of the above table, where the values of p are laid off as abscissas and the values of v as ordinates and a smooth curve is drawn so as to pass through or very near the plotted points.

The fact that a smooth curve can be drawn so as to pass very near the plotted points leads us to suspect that some relation may exist between the measured quantities, which may be represented mathematically by the equation of the curve. Since the original measurements, the plotting of the points, and the drawing of the curve all involve approximations, the equation will represent the true relation between the quantities only approximately. Such an equation or formula is known as an empirical formula, to distinguish it from the equation or formula which expresses a physical, chemical, or biological law. A large number of the formulas in the engineering sciences are empirical formulas. Such empirical formulas may then be used for the purpose of interpolation, i.e., for computing the value of one of the quantities when the value of the other is given within the range of values used in determining the formula.

It is at once evident that any number of curves can be drawn so as to pass very near the plotted points, and therefore that any number of equations might approximate the data equally well. The nature of the experiment may give us a hint as to the form of the equation which will best represent the data. Otherwise the problem is more indeterminate. If the points appear to lie on or near a straight line, we may assume an equation of the first degree, $y=a+b x$, in the variables. But if the points deviate systematically from a straight line, the choice of an equation is more difficult. Often the form of the curve will suggest the type of equation, parabolic, exponential, trigonometric, etc., but in all cases, we should choose an equation of as simple a form as possible. Before proceeding any further with this choice we may test the correctness of the form of the equation by "rectifying" the curve, i.e., by writing the assumed equation in the form

$$
\text { (1) } f(y)=a+b F(x) \quad \text { or } \quad \text { (2) } y^{\prime}=a+b x^{\prime} \text {, }
$$

where $y^{\prime}=f(y)$ and $x^{\prime}=F(x)$, and plotting the points with x^{\prime} and y^{\prime} as coördinates; if the points of this plot appear to lie on or very near a straight line, then this line can be represented by equation (2) and hence the original curve by equation (I). We shall use the method of rectification quite freely in the work which follows.

Having chosen a simple form for the approximate equation we now proceed to determine the approximate values of the constants or coefficients appearing in the equation. The method of approximation employed in determining these constants depends upon the desired degree of accuracy. We may employ one of three methods: the method of selected points, the method of averages, or the method of Least Squares. Of these, the first is the simplest and the approximation is close enough for a large number of problems arising in technical work; the second requires a little more computation but usually gives closer approximations;
while the third gives the best approximate values of the constants but the work of determining these values is quite laborious. All three methods will be illustrated in some of the problems which follow.

After the constants have been determined the formula should be tested by performing several additional experiments where the variables lie within the range of the previous data, and comparing these results with those given by the empirical formula.

We shall now work two illustrative examples to indicate the general method of procedure.

(I) THE STRAIGHT LINE.

69. The straight line, $\boldsymbol{y}=\boldsymbol{b} \boldsymbol{x}$. - The following table gives the results of a series of experiments on the determination of the elongation E in inches of annealed high carbon steel wire of diameter 0.0693 in . and gage length 30 in . due to the load W in pounds.

W	E	EW	W^{2}	$E_{c}{ }^{\text { }}$	$E_{0}{ }^{\prime \prime}$	$E_{\text {e }}{ }^{\prime \prime}$	Δ^{1}	$\Delta^{\prime \prime}$	$\Delta^{\prime \prime \prime}$
0	0		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0
50	0.0130	0.650	2,500	0.0130	0.0131	0.0131	-	- I	- I
100	0.0251	2.510	10,000	0.0260	0.0261	0.0262	-9	-10	- 11
150	0.0387	5.805	22,500	0.0390	0.0392	0.0393	- 3	- 5	- 6
200	0.0520	10.400	40,000	0.0520	0.0522	0.0524		+ 2	-4
225	0.0589	13.253	50,625	0.0585	0.0587	0.0589	$+4$	+ 2	0
250	0.0659	16.475	62,500	0.0650	0.0653	0.0655	+9 +	+6	+8 +8
260	0.0689	17.914	67,600	0.0676	0.0679	0.0681	+13	+10	$\begin{array}{r}+8 \\ +8 \\ \hline\end{array}$
上1235	0.3425	$67.007,255,725$					38	36	34
						$\begin{aligned} \Sigma \dot{\Sigma} & =4.8 \\ \Sigma \Delta^{2} & =356 \end{aligned}$		4.5	$4 \cdot 3$
								270	254

The plot. - The data are plotted on a sheet of coördinate paper about 10 inches square and ruled in twentieths of an inch or in millimeters. If we wish to express the elongation as a function of the load, we plot the load on the horizontal axis or as abscissas, if the load as a function of the elongation we plot the latter as abscissas. In Fig. 69 we have plotted the values of W as abscissas and the values of E as ordinates. The scales with which these values are plotted are generally chosen so that the length of the axis represents the total range of the corresponding variable, and so that the line or curve is about equally inclined to the two axes. There is no advantage in choosing the scale units on the two axes equal. Care should be taken not to choose the units either too small or too large; for in the former case the precision of the data will not be utilized, and in the latter case the deviations from a representative line
or curve are likely to be magnified. The drawing of a good plot is evidently a matter of judgment. It is best to mark the plotted points as the intersection of two short straight lines, one horizontal and one vertical.

Fig. 69.
The representative curve and its eq:ation. - We now draw a smooth curve passing very near to the points of the plot, so that the deviations of the points from the curve are very small, some positive and some negative. In. Fig. 69, the points seem to fall approximately on a straight line. This should be tested by moving a stretched thread or by sliding a sheet of celluloid with a fine line scratched on its under side among the points and noting that the points do not deviate systematically from this thread or line. Having decided that a straight line will approximate the plot, we assume that an equation of the first degree, $E=a+b W$, will approximately represent the relation between the measured quantities. In this example we may evidently assume that $E=b W$ since a zero lcad gives a zero elongation.

The determination of the constant. - We shall now determine the constant b in the equation $E=b W$. This may be done in several ways. The three methods which are generally employed are as follows:
I. Method of selected points. - Place the sheet of celluloid on the coördinate paper so that the scratched line passes through the point $W=0, E=0$, and then rotate the sheet until a good average position among the plotted points is obtained, i.e., until the largest possible number of points lie either on the line or alternately on opposite sides of the line, in such a manner that the points below the line deviate from it by approximately the same amount as the points above it. Then note the values of W and E corresponding to one other point on this line, preferably near the farther end of the line. Thus we read $W=250, E=$ 0.0650. Substituting these values in the equation $E=b W$, we have $0.0650=250 b$, and hence $b=0.000260$, and finally $E=0.000260 \mathrm{~W}$. Since the choice of the "best" line is a matter of judgment, its position, and hence the value of the constant, will vary with different workers and often with the same worker at different times.
II. Method of averages. - The vertical distances of the plotted points from the representative line are called the residuals; these are the differences between the observed values of E and the values of E calculated from the formula, or $E-E_{c}$, where $E_{c}=b W$; some of these residuals are positive and others are negative. If we assume that the "best" line is that which makes the algebraic sum of the residuals equal to zero, we have
hence

$$
\begin{gathered}
\Sigma(E-b W)=0 \text { or } \Sigma E-b \Sigma W=0 \\
b=\frac{\Sigma E}{\Sigma W}=\frac{0.3225}{1235}=0.00026 \mathrm{I}
\end{gathered}
$$

and we may call this an average value of b. By this method it is no longer necessary to shift the line among the points so as to get an average position.
III. Method of Least Squares. - In the theory of Least Squares * it is shown that the best line or the best value of the constant is that which makes the sum of the squares of the differences of the observed and calculated values a minimum, i.e.,

$$
\Sigma(E-b W)^{2}=\text { minimum }
$$

Hence the derivative of this expression with respect to b must equal zero, or
or

$$
\frac{d}{d b} \Sigma(E-b W)^{2}=0, \quad \text { or } \quad \Sigma W(E-b W)=0
$$

$$
\Sigma W E-b \Sigma W^{2}=0, \quad \text { and } \quad b=\frac{\Sigma E W}{\Sigma W^{2}}
$$

[^5]We form two columns, one giving the values of $E W$ and the other the values of W^{2}, and adding these columns, we find

$$
b=67.007 / 255,725=0.000262 .
$$

We may now' compare the results obtained by each of the three methods. For this purpose we complete the table by computing the values of E from the formulas
I. $E=0.000260 \mathrm{~W}$; II. $E=0.00026 \mathrm{I} W$; III. $E=0.000262 \mathrm{~W}$.

These are marked $E_{c}{ }^{\text {I }}, E_{c}{ }^{\text {III }}, E_{c}{ }^{\text {IIII }}$, in the table. To discover how closely the computed values agree with the observed values we form the residuals

$$
\Delta^{\mathrm{I}}=-E-E_{c}^{\mathrm{I}}, \quad \Delta^{\mathrm{II}}=E-E_{c}^{\mathrm{II}}, \quad \Delta^{\mathrm{III}}=E-E_{c}^{\mathrm{III}} .
$$

Disregarding the signs of these residuals, we add them and divide by their number, 8, and find the average residual to be $0.00048,0.00045$, 0.00043 , respectively. We also find the sum of the squares of the residuals to be $356,270,254$, respectively. We may therefore draw the following conclusions: all thrée methods give good results; the method of Least Squares gives the best value of the constant but requires the most calculation; the method of averages gives, in general, the next best value of the constant and requires but little calculation; the graphical method of selected points requires the least calculation but depends upon the accuracy of the plot and the fitting of the representative line.
70. The straight line, $\boldsymbol{y}=\boldsymbol{a}+\boldsymbol{b x}$. - For measuring the temperature coefficient of a copper rod of diameter 0.3667 in . and length 30.55 in ., the following measurements were made. Here, C is the temperature Centigrade and r is the resistance of the rod in microhms.

C	r	C^{2}	rC	$r_{\text {a }}{ }^{\text {a }}$	$r_{0}{ }^{11}$	$r_{\text {d }}{ }^{\text {III }}$	Δ^{1}	$\Delta^{\prime \prime}$	$\Delta \mathrm{mm}$
19.1	76.30	364.8 I	1,457.33	76.19	76.19	76.26	+0.11	+0.11	+0.04
25.0	77.80	625.00	1,945.00	77.91	77.92	77.96	-0.11	-0.12	-0.16
30.1	79.75	906.01	2,400.48	79.39	79.41	79.43	+o.36	+0.34	+0.32
36.0	80.80	1296.00	2,908.80	81.11	81.14	81.13	-0.31	-0.34	-0.33
40.0	82.35	1600.00	3,294.00	82.27	82.31	82.28	+0.08	+0.04	+0.07
45.1	83.90	2034.01	3,783.89	83.75	83.80	83.76	+0.15	+0.10	+0.14
50.0	85.10	2500.00	4,255.00	85.18	85.24	85.16	-0.08	-0.14	-0.06
$\Sigma 245.3$	566.00	9325.83	20,044.50				1.20	1.19	1.12
					$\begin{aligned} \Sigma \div 7 & =0.171 \\ \dot{\Sigma} \Delta^{2} & =285^{2} \end{aligned}$			$\begin{aligned} & 0.170 \\ & 2869 \end{aligned}$	$\begin{aligned} & 0.160 \\ & 2646 \end{aligned}$

The plot (Fig. 70) appears to approximate a straight line, so that we shall assume the relation $r=a+b C$. We shall determine the constants, a and b, by the three methods.
I. Method of selected points. - Use a sheet of celluloid to determine the approximate position of the best straight line, and note two points
on this line; thus, $C=20, r=76.45$, and $C=48, r=84.60$. Substituting these values in the equation $r=a+b C$, we get

$$
76.45=a+20 b \quad \text { and } \quad 84.60=a+48 b,
$$

from which we determine

$$
a=70.63 \text { and } b=0.291
$$

so that our relation becomes

$$
r=70.63+0.291 C
$$

Fig. 70.
II. Method of averages. - Since we have to determine two constants, we divide the data into two equal or nearly equal groups, and place the sum of the residuals in each group equal to zero, i.e.,

$$
\Sigma(r-a-b C)=0 \text { or } \Sigma r=n a+b \Sigma C
$$

where n is the number of observations in the group. Thus, dividing the above data into two groups, the first containing four and the second three sets of data, and adding, we get

$$
314.65=4 a+110.2 b \text { and } 251.35=3 a+135.1 b
$$

Irom which we determine

$$
a=70.59 \text { and } b=0.293
$$

so that our relation becomes

$$
r=70.59+0.293 C
$$

III. Method of Least Squares. - The best values of the constants are those for which the sum of the squares of the residuals is a minimum, i.e., $\Sigma(r-a-b C)^{2}=$ minimum; hence the partial derivatives of this expression with respect to a and b must be zero; thus,

$$
\begin{array}{rlrl}
& & \frac{\partial}{\partial a} \Sigma(r-a-b C)^{2} & =0, \quad \frac{\partial}{\partial b} \Sigma(r-a-b C)^{2}=0, \\
& \text { or } \quad \Sigma[2(r-a-b C)(-\mathrm{I})] & =0, \quad \Sigma[2(r-a-b \dot{C})(-C)]=0, \\
& \text { or } & & =a n+b \Sigma C, \\
\Sigma r C & =a \Sigma C+b \Sigma C^{2},
\end{array}
$$

where n is the number of observations. We solve these last two equations for a and b. (Note that these equations may be formed as follows: substitute the observed values of r and C in the assumed relation $r=a$ $+b C$; add the n equations thus formed to get the first of the above equations; multiply each of the n equations by the corresponding value of C and add the resulting n equations to get the second of the above equations.)

We now compute the values of $r C, C^{2}, \Sigma C, \Sigma r C$, and ${ }^{\bullet} \Sigma C^{2}$, and substitute these in the equations for determining a and b. We thus get

$$
\begin{aligned}
566.00 & =7 a+245.3 b \\
20,044 \cdot 50 & =245.3 a+9325.83 b
\end{aligned}
$$

from which we determine

$$
a=70.76 \text { and } b=0.288
$$

so that our relation becomes

$$
r=70.76+0.288 C
$$

Comparison of results. - We note that the various results agree very well with the original data and with each other. We compute the residuals and find that the average residual is smallest by the third method and is approximately the same by the first two methods. The computation necessary in applying the method of Least Squares is very tedious. The method of selected points requires the fitting of the best straight line, and this becomes quite difficult when the number of plotted points is large. We shall therefore use the method of averages in most of the illustrative examples which fellow.

(II) FORMULAS INVOLVING TWO CONSTANTS.

71. Simple parabolic and hyperbolic curves, $\mathbf{y}=\mathbf{a x}$. - As stated in Art. 68, when the plotted points deviate systematically from a straight line, a smooth curve is drawn so as to pass very near the points; the shape of the curve or a knowledge of the nature of the experiment may give us a hint as to the form of the equation which will best represent the data.

Simple curves which approximate a large number of empirical data are the parabolic and hyperbolic curves. The equation of such a curve is $y=a x^{b}$, parabolic for b positive and hyperbolic for b negative. In Fig. $71 a$, we have drawn some of these curves for $a=2$ and $b=-2$, $-1,-0.5,0.25,0.5,1.5,2$. Note that the parabolic curves all pass

Fig. $71 a$.
through the points (o, o) and (I, a) and that as one of the variables increases the other increases also. The hyperbolic curves all pass through the point (I, a) and have the coördinate axes as asymptotes, and as one of the variables increases the other decreases.

There is a very simple method of verifying whether a set of data can be approximated by an equation of the form $y=a x^{b}$. Taking logarithms of both members of this equation, we get $\log y=\log a+b \log x$, and if $x^{\prime}=\log x, y^{\prime}=\log y$, this becomes $y^{\prime}=\log a+\bar{b} x^{\prime}$, an equation of the first degree in x^{\prime} and y^{\prime}; therefore the plot of $\left(x^{\prime}, y^{\prime}\right)$ or of $(\log x$, $\log y$) must approximate a straight line. Hence,

If a set of data can be approximately represented by an equation of the form $y=a x^{b}$, then the plot of $(\log x, \log y)$ approximates a straight line.

Instead of plotting $(\log x, \log y)$ on ordinary coördinate paper, we may plot (x, y) directly on logarithmic coördinate paper (see Art. 13). We determine the constants a and b from the equation of the straight line by one of the methods described in Art. 70.

Example. The following table gives the number of grams S of anhydrous ammonium chloride which dissolved in 100 grams of water makes a saturated solution of θ° absolute temperature.
$(\log \theta)$
2.432 .442 .452 .462 .472 .482 .492 .502 .512 .522 .532 .542 .552 .562 .57

Fig. $71 b$.

θ	S	$\log \theta$	$\log S$	$S_{0}{ }^{\text {a }}$	$S_{0}{ }^{11}$	$\Delta^{\text {r }}$	$\Delta^{\text {II }}$
273	29.4	2.4362	1.4684	29.7	29.7	-0.3	-0.3
283	33.3	2.4518	1.5224	33.2	33.2	+0.1	+o.1
288	35.2	2.4594	I. 5465	35.0	35.1	+0.2	+0.1
293	37.2	2.4669	1.5705	37.0	37.0	+0.2	+0.2
313	45.8	2.4955	1.6609	45.3	45.3	+0.5	+0.5
333	55.2	2.5224	1.7419	54.9	54.9	+0.3	+0.3
353	65.6	2.5478	1.8169	65.7	65.8	-0.1	-0.2
373	77.3	2.5717	1.8882	77.9	78.0	-0.6	-0.7
$\Sigma \div 8=0.29$							0.30

The points (θ, S) are plotted in Fig. 71b. The curve appears to be parabolic, i.e., of the general form illustrated in Fig. 7ia. We therefore plot $(\log \theta, \log S)$ and note that this approximates a straight line, so that we may assume

$$
S=a \theta^{b} \text { or } \log S=\log a+b \log \theta
$$

We shall first determine the constants by the method of selected points. We note two points on the line whose coördinates are
$\log \theta=2.445, \log S=1.50$ and $\log \theta=2.555, \log S=1.84$, hence we have

$$
\begin{aligned}
& \mathrm{I} .50=\log a+2.445 b, \\
& \mathrm{I} .84=\log a+2.555 b .
\end{aligned}
$$

$\therefore \quad b=3.09, \log a=-6.0550=3.9450-10, a=0.000,000,88 \mathrm{r}$.
$\therefore \quad \log S=-6.0550+3.09 \log \theta$, or $S=0.000,000,881 \theta^{30.00}$.
We shall now determine the constants by the method of averages. We divided the data into two groups of four sets, and adding, we have

$$
\begin{aligned}
& 6.1078=4 \log a+9.8143 b, \\
& 7.1079=4 \log a+10.1374 b .
\end{aligned}
$$

$\therefore b=3.09, \log a=-6.0546=3.9454-10, a=0.000000882$.
$\therefore \log S=-6.0546+3.09 \log \theta$ or $S=0.000000882 \theta^{93.09}$.
We complete the table by computing S, the residuals, and the average residual. The agreement between the observed and computed valucs of S is quite close.

Example. The following table gives the pressure p in pounds per sq. in. of saturated steam corresponding to the volume v in cu . ft. per pound. (From Perry's Elementary Practical Mathematics.)

-	p	$\log 0$	$\log p$	Do	Δ
53.92	6.86	1.7318	0.8363	6.85	+o.or
26.36	14.70	1.4210	1.1673	14.69	to.01
14.00	28.83	1.146 r	1.4599	28.85	-0.02
6.992.	- 60.40	0.8446	1.7810	60.49	-0.09
4.280	101.9	0.6314	2.0082	102.1	-0.2
2.748	163.3	0.4390	2.2130	163.7	-0.4
1.853	250.3	0.2679	2.3984	249.2	+1.1

The points (v, p) are plotted in Fig. 71c. The curve appears to be hyperbolic on comparison with Fig. $7 \mathrm{I} a$. Hence we plot $(\log v, \log p$) and note that this approximates a straight line, so that we may assume

$$
p=a v^{b}, \quad \text { or } \quad \log p=\log a+b \log v .
$$

We shall use the method of averages to determine the constants a and b.

Dividing the data into two groups, the first four and the last three sets, and adding, we have

$$
\begin{aligned}
& 5.2445=4 \log a+5.1435 b, \\
& 6.6 \mathrm{I} 96=3 \log a+\mathrm{I} .3383 b . \\
& \therefore \quad b=-\mathrm{I} .0662, \quad \log a=2.6822, \quad a=48 \mathrm{I} . \mathrm{I} . \\
& \therefore \quad \log p=2.6822-\mathrm{I} .0662 \log v, \quad \text { or } \quad p v^{1.0662}=48 \mathrm{I} . \mathrm{I} .
\end{aligned}
$$

$$
\therefore \quad b=-1.0662, \quad \log a=2.6822, \quad a=48 \mathrm{I} . \mathrm{I}
$$

We now compute p and Δ and note the close agreement between the observed and calculated values.

Fig. $71 c$.
72. Simple exponential curves, $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{e}^{\boldsymbol{b} \boldsymbol{x}}$. - Other simple curves that approximate a large number of experimental results are the exponential or logarithmic curves. The equation of such a curve may be written in the form $y=a e^{b x}$, where e is the base of natural logarithms; the form $y=a b^{x}$ is sometimes used. In Fig. 72a, we have drawn some of these curves for $a=1$ and $b=-2,-1,-0.5,0.5,1,2$. Note that these curves all pass through the point ($0, a$) and have the x-axis for asymptote.

There is a very simple method of verifying whether a set of data can be approximated by an equation of the form $y=a e^{b x}$. Taking logarithms
 of both members of this equation we get $\log y=\log a+$ $(b \log e) x$, and if $y^{\prime}=\log y$, this equation becomes $y^{\prime}=$ $\log a+(b \log e) x$, an equation of the first degree in x and y^{\prime}; therefore the plot of $\left(x, y^{\prime}\right)$ or of $(x, \log y)$ must approximate a straight line. Hence,

If a set of data can be approximately represented by an equation of the form $y=a e^{b x}$, then the plot of $(x, \log y) a p$ proximates a straight line.

Instead of plotting $(x, \log y)$ on ordinary coördinate paper, we may plot (x, y) directly on semilogarithmic coördinate paper (see Art. 14). The constants a and b are determined from the equation of the straight line by one of the methods described in Art. 70.

Example. Chemical experiments by Harcourt and Esson gave the results of the following table, where A is the amount of a substance remaining in a reacting system after an interval of time t.

t	A	$\log t$	$\log A$	A	Δ
2	94.8	0.3010	1.9768	94.9	-0.1
5	87.9	0.6990	1.9440	87.7	+0.2
8	8 r .3	0.9031	1.9101	8 I .0	+0.3
11	74.9	1.0414	1.8745	74.8	+0.1
14	68.7	I. 1461	1.8370	69.1	-0.4
17	64.0	1. 2304	1.8062	63.8	+0.2
27	49.3	1.4314	1.6928	49.0	+0.3
31	44.0	I. 4914	1.6435	44.1	-0.1
35	39.1	I. 5441	1. 5922	39.6	-0.5
44	3 I .6	1. 6435	1.4997	3 I .2	+o.4

The points (t, A) are plotted in Fig. 72b. This curve appears to be exponential, so that we plot $(t, \log A)$ and $(\log t, A)$; it is seen that the plot of $(t, \log A)$ approximates a straight line. We may therefore assume an equation of the form

$$
A=a e^{b t} \text { or } \log A=\log a+(b \log e) t .
$$

Fig. 72b.
We shall use the method of averages to determine the constants. Dividing the data into 2 groups and adding, we get

$$
\begin{gathered}
9.5424=5 \log a+40(b \log e), \\
8.2344=5 \log a+154(b \log e) . \\
\therefore \quad b \log e=-0.0115, \log a=2.0005 . \\
\therefore \quad b=-0.0265, \quad a=100.1, \text { since } \log e=0.4343 . \\
\therefore \quad \log A=2.0005-0.0115 t, \quad \text { or } A=100.1 e^{-0.0265 t .}
\end{gathered}
$$

We now compute the values of A and the residuals, and note the close agreement between the observed and the calculated values of A.

Example. The following table gives the results of measuring the electrical conductivity C of glass at temperature θ° Fahrenheit.

Fig. $72 c$.

-	c	$\log \theta$	$\log C$	c.	Δ
58	0	1.7634	-	0.0019	
86	0.004	x. 9345	7.6021-10	0.0039	+0.0001
148	0.018	2.1703	8.2553-10	0.0185	-0.0005
r66	0.029	2.2201	8.4624-10	0.0292	-0.0002
188	0.051	2.2742	8.7076-10	0.0510	
202	0.073	2.3054	8.8633-10	0.0728	+0.0002
210	0.090	2.3222	8.954\%-10	0.0891	-0.0010

In Fig. 72c, the points (θ, C) and $(\theta, \log C)$ are plotted; the latter plot approximates a straight line. We may therefore assume the equation

$$
C=a e^{\omega \theta}, \quad \text { or } \quad \log C=\log a+(b \log e) \theta .
$$

We use the method of averages to determine the constants. Omitting the first set and dividing the remaining data into two groups of three sets, we get

$$
\begin{gathered}
24 \cdot 3198-30=3 \log a+400(b \log e), \\
26.5251-30=3 \log a+600(b \log e) . \\
\therefore \quad b \log e=0.0110, \quad \log a=6.6399-10 . \\
\therefore \quad b=0.0253, \quad a=0.000436 . \\
\therefore \quad \log C=
\end{gathered} \quad 6.6399-10+0.0110 \theta, \quad \text { or } \quad C=0.00436 e^{0.0253 \theta} .
$$

We now compute the values of C and the residuals and note the remarkably close agreement between the observed and computed values of C.
73. Parabolic or hyperbolic curve, $\boldsymbol{y}=\boldsymbol{a}+\boldsymbol{b} \boldsymbol{x}^{\boldsymbol{n}}$ (where \boldsymbol{n} is known). In using this equation, it is assumed that from theoretical considerations we suspect the value of n. It is evident that

If a set of data can be approximately represented by an equation of the form $y=a+b x^{n}$, where n is known, then the plot of $\left(x^{n}, y\right)$ approximates a straight line.

Example. A small condensing triple expansion steam engine tested under seven steady loads, each lasting three hours, gave the following results; I is the indicated horse-power, w is the number of pounds of steam used per hour per indicated horse-power. (From Perry's Elementary Practical Mathematics.)

1	w	$w I$	w_{0}	Δ
36.8	12.5	460.0	12.6	-0.1
31.5	12.9	406.4	12.8	+o.1
26.3	13.1	344.5	13.0	+o.1
21.0	13.3	279.3	13.4	-0.1
15.8	14.1	222.8	14.0	+0.1
12.6	14.5	182.7	14.6	-0.1
8.4	16.3	136.9	16.1	+o. 2

Fig. $73 a$ gives the plot of (I, w). This is not a straight line. But if we plot ($I, w I$), i.e., the total weight of steam used per hour instead of the weight per indicated horse-power, we find that this plot approximates a straight line. Hence, we may assume the linear relation $w I=a+b I$. This relation may also be written $w=b+a / I$, so that the plot of ($1 / I, w$) also approximates a straight line. We use the method of averages to
determine the constants. Dividing the data into two groups, the first three and last four sets, and adding, we have

$$
\begin{array}{r}
1210.9=3 a+94.6 b \\
82 \mathrm{I} .7=4 a+57.8 b \\
\therefore \quad b=11.6, a=37.8 . \\
\therefore \quad w I=37.8+11.6 I, \quad \text { or } w=11.6+\frac{37.8}{I} .
\end{array}
$$

We now compute the values of w and the residuals.

Fig. $73 a$.
Example. For a parachute or flat plate falling in air we have the following observations; v is the velocity in ft . per sec. and p is the pressure in pounds per sq. in.

v	p	v^{2}	p_{0}
7.87	0.2	61.94	Δ
11.50	0.4	132.25	0.187
16.40	0.8	268.96	0.401
22.60	1.6	510.76	0.815
32.80	3.2	1075.84	1.548

In Fig. 73b, we have plotted (v, p). It is surmised that for low velocities, the pressure and the square of the velocity are linearly related, i.e., $p=a+b v^{2}$. We verify this by plotting (v^{2}, p) and noting that this approximates a straight line. We use the method of averages to deter-

Fic. 73 b.
mine the constants. Dividing the data into two groups, the first three and the last two sets, and adding, we have

$$
\begin{gathered}
\mathrm{I} .4=3 a+463.15 b \\
4.8=2 a+1586.60 b . \\
\therefore \quad b=0.00303 \text { and } a=-0.00111 . \\
\therefore \quad p=-0.00111+0.00303 v^{2} .
\end{gathered}
$$

We may with good approximation take $a=0$, so that $p=0.00303 v^{2}$, i.e., the pressure varies directly as the square of the velocity.
74. Hyperbolic curve, $y=\frac{x}{a+b x}$, or $\frac{x}{y}=a+b x$. -This equation represents the ordinary hyperbola with asymptotes $x=-a / b$ and $y=$ I / b, as illustrated in Fig. $74 a$ for values of $a=0.2, b=0.2 ; a=0.1$, $b=0.2 ; a=-0.1, b=0.2 ; a=-0.2, b=0.2$. Quite a large number of experimental results may be represented by an equation of this type.

The equation may also be written in the form $\frac{1}{y}=b+\frac{a}{x}$, so that the plots $\left(x, \frac{x}{y}\right)$ and $\left(\frac{1}{x}, \frac{1}{y}\right)$ approximate straight lines. Hence,

If a set of data can be approximately represented by an equation of the form $y=\frac{x}{a+b x}$, or $\frac{x}{y}=a+b x$ then the plot of $\left(x, \frac{x}{y}\right)$ or of $\left(\frac{1}{x}, \frac{1}{y}\right)$ approximates a straight line.

Fig. 74a. $y=\frac{x}{a+b x}$
Example. From a magnetization or normal induction curve for iron we find the following data; H is the number of Gilberts per cm ., a measure of the field intensity, and B is the number of kilolines per sq. cm ., a measure of the flux density.

H	B	H/B	B_{0}	Δ
2.5	3.5	0.714	7.97	
3.0	5.0	0.600	8.78	
3.1	7.5	0.413	8.91	
3.8	10.0	0.380	9.8	+o.2
7.0	12.5	0.560	12.4	+o.1
9.5	13.5	0.703	13.6	-0.1
11.3	14.0	0.808	14.0	\bigcirc
17.5	15.0	1.17	15.1	-0.1
31.5	16.0	1.97	16.2	-0.2
45.0	16.5	2.72	16.7	-0.2
64.0	17.0	3.76	17.0	0
95.0	17.5	5.43	17.3	+0.2

In Fig. 74b, (H, B) is plotted. The curve appears to be of the type illustrated in Fig. 74a. Furthermore, an important quantity in the
theory of magnetization is the reluctivity H / B, and if we plot $(H, H / B)$, we note that this plot approximates a straight line for values of $H>3$.I. (We may similarly introduce the permeability, B / H, and note that the plot of ($B / H, B$) approximates a straight line.) Hence, we assume a relation of the form $\frac{H}{B}=a+b H$. Using the method of averages,

omitting the first three values of H, and dividing the remaining data into two groups containing five and four sets respectively, we get the equations

$$
\begin{aligned}
& 3.62 \mathrm{I}=5 a+49.1 b \\
& 13.88=4 a+235.5 b \\
\therefore \quad & b=0.0560, \quad a=0.174
\end{aligned}
$$

$$
\therefore \quad \frac{H}{B}=0.174+0.0560 H \quad \text { or } \quad B=\frac{H}{0.174+0.0560 H}
$$

We now compute B and the residuals and note the close agreement between the observed and computed values.

(III) FORMULAS INVOLVING THREE CONSTANTS.

75. The parabolic or hyperbolic curve, $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{\boldsymbol{b}}+\boldsymbol{c}$. - It is often impossible to fit a simple equation involving only two constants to a set of data. In such cases we may modify our simple equations by the addition of a term involving a third constant. Thus the equation $y=a x^{b}$ may be modified into $y=a x^{b}+c$. If b is positive, the latter equation repre-

Fig. 75a. sents a parabolic curve with intercept c on $O Y$; if b is negative, the equation represents a hyperbolic curve with asymptote $y=c$. In Fig. 75a, we have sketched the curves $y=2 x^{0.5}, y=2 x^{0.5}+2$, $y=2 x^{-0.5}, y=2 x^{-0.5}+2$ to illustrate the relation of the simple types to the modified types.

In Art. 71 it was shown that if we suspect a relation of the form $y=a x^{b}$, we can verify this by observing whether the plot of $(\log x$, $\log y$) approximates a straight line. Now the form $y=a x^{b}$ $+c$ may be written $\log (y-c)=\log a+b \log x$, so that the plot of $(\log x, \log (y-c))$ would approximate a straight line. To make this test we shall evidently first have to determine a value of c. We might attempt to read the value of c from the original plot of (x, y). In the parabolic case we should have to read the intercept of the curve on $O Y$, but this may necessitate the extension of the curve beyond the points plotted from the given data, a procedure which is not safe in most cases. In the hyperbolic case, we should have to estimate the position of the asymptote, but this is generally a difficult matter.

The following procedure will lead to the determination of an approximate value of c for the equation $y=a x^{b}+c$. Choose two points (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$ on the curve sketched to represent the data. Choose a third point $\left(x_{3}, y_{3}\right)$ on this curve such that $x_{3}=\sqrt{x_{1} x_{2}}$, and measure the value of y_{3}. Then, since the three points are on the curve, their coördinates must satisfy the equation of the curve, so that

$$
y_{1}=a x_{1}^{b}+c, \quad y_{2}=a x_{2}^{b}+c, \quad y_{3}=a x_{3}^{b}+c .
$$

Now, since $x_{3}=\sqrt{x_{1} x_{2}}$,
therefore

$$
x_{3}^{b}=\sqrt{x_{1}^{b} x_{2}{ }^{b}}, \quad \text { and } a x_{3}^{b}=\sqrt{a x_{1}^{b} \cdot a x_{2}^{b}},
$$

or

$$
y_{3}-c=\sqrt{\left(y_{1}-c\right)\left(y_{2}-c\right)}
$$

and therefore

$$
c=\frac{y_{1} y_{2}-y_{3}{ }^{2}}{y_{1}+y_{2}-2 y_{3}} .
$$

It is evident that the determination of c is partly graphical, for it depends upon the reading of the coördinates of three points on the curve sketched to represent the data. The curve should be drawn as a smooth line lying evenly among the points, i.e., so that the largest number of the plotted points lic on the curve or are distributed alternately on opposite sides and very near it.

Having determined a value for c, we plot $(\log x, \log (y-c))$. If this plot approximates a straight line, the constants a and b in the equation $\log (y-c)=\log a+b \log x$ may then be determined in the ordinary way.

Example. In a magnetite arc, at constant arc length, the voltage V consumed by the arc is observed for values of the current i. (From Steinmetz, Engineering Mathematics.)

, i	V	$V-30.4$	$\log (V-30.4)$	$\log i$	V_{c}	Δ
0.5	160	129.6	2.1126	9.6990-10	158.8	+1.2
1	120	89.6	1.9523	0.0000-10	120.8	-0.8
2	94	63.6	1.8035	0.3010-10	94.0	-
4	75	44.6	I. 6493	0.6021 - 10	75.1	-0.1
8	62	31.6	I. 4997	0.9031 - 10	6 r .9	to.r
12	56	25.6	1.4082	1.0792-10	56.0	0

We plot (i, V) and note that the curve appears hyperbolic with an asymptote $V=. c$, and hence we assume an equation of the form $V=a i^{b}+c$. To verify this we must first determine a value for c. Choose two points on the experimental curve; in Fig. 755, we read $i_{1}=0.5, V_{1}=160$ and $i_{2}=12, V_{2}=56$. Choose a third point such that $i_{3}=\sqrt{i_{1} i_{2}}=\sqrt{6}=$ 2.45 , and measure $V_{3}=88$. Then

$$
c=\frac{V_{1} V_{2}-V_{3}^{2}}{V_{1}+V_{2}-2 V_{3}}=\frac{(160)(56)-(88)^{2}}{160+56-2(88)}=\frac{1216}{40}=30.4 .
$$

Now compute the values of $V-30.4$ and $\log (V-30.4)$ and plot $(\log i, \log (V-30.4))$. This last plot approximates a straight line so that the choice of the equation $V \overline{\boldsymbol{\tau}} a i^{b}+c$ is verified.
To determine the constants in the equation

$$
\log (V-30.4)=\log a+b \log i,
$$

we use the method of averages, dividing the data into two groups of three sets each, and find

$$
\begin{gathered}
5.8684=3 \log a \\
4.5572=3 \log a+2.5844 b . \\
\therefore \quad b=-0.507, \quad \log a=\mathrm{I} .956 \mathrm{I}, \quad a=90.4 . \\
\therefore \quad \log (V-30.4)=1.956 \mathrm{I}-0.507 \log i, \text { or } V=30.4+90.4 i-0.507 .
\end{gathered}
$$

Finally, we compute the values of V and the residuals.

Fig. 75b.
76. The exponential curve, $\boldsymbol{y}=\boldsymbol{a} e^{b \infty}+\boldsymbol{c}$. - The simple exponential equation $y=a e^{b x}$ may have to be modified into $y=a e^{b x}+c$ in order to fit a given set of data. In the latter curve, the asymptote is $y=c$. In Fig. $76 a$, we have sketched the curves $y=2 e^{0.1 x}, y=2 e^{0.1 x}+\mathrm{I}$, $y=2 e^{-01 x}, y=2 e^{-0.1 x}+1$.

In Art. 72 it was shown that if we suspect a relation of the form $y=a e^{b x}$, we can verify this by observing whether the plot of $(x, \log y)$ approximates a straight line. Now $y=a e^{b x}+c$ may be written $\log (y-c)=\log a+(b \log e) x$, so that the plot of $(x, \log (y-c))$ would approximate a straight line. • Evidently we shall first have to determine a value for c. We proceed to do this in a manner similar to that employed in Art. 75. Choose two points (x_{1}, y_{1}) and (x_{2}, y_{2}) on
the curve sketched to represent the data, and then a third point (x_{3}, y_{3}) on this curve such that $x_{3}=\frac{1}{2}\left(x_{1}+x_{2}\right)$ and measure the value of y_{3}. Since the three points are on the curve.

$$
y_{1}=a e^{b x_{1}}+c, \quad y_{2}=a e^{b x}+c, \quad y_{3}=a e^{b x_{2}}+\dot{c},
$$

or $\log \frac{y_{1}-c}{a}=(b \log e) x_{1}, \log \frac{y_{2}-c}{a}=(b \log e) x_{2}, \log \frac{y_{3}-c}{a}=(b \log e) x_{3}$.

Fig. 76a. $y=a e^{b x}+c$

Now, since

$$
x_{3}=\frac{1}{2}\left(x_{1}+x_{2}\right),
$$

therefore
$(b \log e) x_{3}=\frac{1}{2}\left[(b \log e) x_{1}+(b \log e) x_{2}\right]$,
and $\quad \log \frac{y_{3}-c}{a}=\frac{1}{2}\left[\log \frac{y_{1}-c}{a}+\log \frac{y_{2}-c}{a}\right]=\log \sqrt{\frac{y_{1}-c}{a} \cdot \frac{y_{2}-c}{a}}$.
Hence

$$
y_{3}-c=\sqrt{\left(y_{1}-c\right)\left(y_{2}-c\right)}, \quad \text { and } c=\frac{y_{1} y_{2}-y_{3}{ }^{2}}{y_{1}+y_{2}-2 y_{3}} .
$$

If the data are given so that the values of x are equidistant, i.e., so that they form an arithmetic progression, we may verify the choice of the equation $y=a e^{b x}+c$ and determine the constants a, b, and c in the following manner. Let the constant difference in the values of x equal h. If we replace x by $x+h$, we get $y^{\prime}=a e^{b(x+h)}+c$, and therefore, for the difference in the values of y,

$$
\begin{gathered}
\Delta y=y^{\prime}-y=a e^{b(x+h)}-a e^{b x}=a e^{b x}\left(e^{b h}-1\right), \\
\log \Delta y=\log a\left(e^{b h}-1\right)+(b \log e) x .
\end{gathered}
$$

and

This last equation is of the first degree in x and $\log \Delta y$ so that the plot of ($x, \log \Delta y$) is a straight line. To apply this to our data, we form a column of successive differences, Δy, of the values of y, and a column of the logarithms of these differences, $\log \Delta y$, and plot $(x, \log \Delta y)$; if the equation $y=a e^{b x}+c$ approximates the data, then this last plot will approximate a straight line. We may then determine $b \log e$ and $\log a\left(e^{b h}-1\right)$ and hence a and b in the ordinary way, and finally find an average value of c from $\Sigma y=a \Sigma e^{b x}+n c$, where n is the number of data.

Example. In studying the skin effect in a No. 0000 solid copper conductor of diameter 1.168 cm ., Kennelly, Laws, and Pierce found the following experimental results; F is the frequency in cycles per second, L is the total abhenrys observed.

F	L	L-51,860	$\log (L-51,860)$	L。	Δ
60	53,912	2052	3.3122	53,952	-40
306	53,767	1907	3.2804	53,668	+99
888	53,143	1283	3.1082	53,140	+ 3
1600	52,669	809	2.9079	52,699	-30
2040 3065	52,499 52,215	639 355	2.8055 2.5502	52,506	+ +3
3065 3950	52,215 52,082	355 222	2.5502 2.3464	52,212 52,068	+3 +14
3950 5000	52,082 $5 \times, 965$	222 105	2.3464 2.0212		+14 +7

In Fig. $76 b$, the points (F, L) are plotted; the curve appears to be exponential with an asymptote $L=c$. We shall try to fit the equation $L=a e^{b \boldsymbol{F}}+c$. First determine an approximate value for c by choosing two points on the experimental curve, $F_{1}=875, L_{1}=53,140$, and $F_{2}=$ 5000, $L_{2}=51,980$, and a third point $F_{3}=\frac{1}{2}\left(F_{1}+F_{2}\right)=2938, L_{3}=$ $\mathbf{5 2 , 2 5 0}$. Then $c=\frac{L_{1} L_{2}-L_{3}{ }^{2}}{L_{1}+L_{2}-2 L_{3}}=51,860$. Now compute ($L-51,860$) and $\log (L-51,860)$, and plot ($F, \log (L-51,860)$); this plot approximates a straight line, thus verifying the choice of equation. We determine the constants in the equation $\log (L-51,860)=\log a+(b \log e) F$ by the method of averages. Dividing the data into two groups of four sets each and adding, we have

$$
12.6087=4 \log a+2854 b \log e
$$

$$
9.7233=4 \log a+14,055 b \log e .
$$

and
or

$$
\begin{gathered}
\therefore \quad b \log e=-0.0002576, \quad \log a=3.3360 \\
b=-0.000593 \mathrm{I}, \quad a=2168 \\
\therefore \quad \log (L-51,860)=3.3360-0.0002576 F \\
L=51,860+2168 e^{-0.0005931 F}
\end{gathered}
$$

We now compute L and the residuals, and note the close agreement between the observed and computed values except for the first two values of F. If we omit these two values in computing a and b, these constants have slightly different values, but the agreement between the observed and computed values of L is about the same.

Fig. $76 b$.
77. The parabola, $y=a+b x+c x^{2}$. - The equation of the straight line $y=a+b x$ may be modified by the addition of a term of the second degree to the form $y=a+b x+c x^{2}$. This is the equation of the ordinary parabola. We may verify whether this equation fits a set of experimental data by one of the following methods.
(1) Choose any point (x_{k}, y_{k}) on the experimental curve; then $y_{k}=a+b x_{k}+c x_{k}^{2}$, and

$$
y-y_{k}=b\left(x-x_{k}\right)+c\left(x^{2}-x_{k}^{2}\right), \quad \text { or } \quad \frac{y-y_{k}}{x-x_{k}}=\left(b+c x_{k}\right)+c x .
$$

This last equation is of the first degree in x and $\frac{y-y_{k}}{x-x_{k}}$ so that the plot of $\left(x, \frac{y-y_{k}}{x-x_{k}}\right)$ will approximate a straight line.
(2) If the values of x are equidistant, i.e., if they form an arithmetic progression, with common difference h, then if we replace x by $x+h$ in the equation, we get $y^{\prime}=a+b(x+h)+c(x+h)^{2}$ and $\Delta y=y^{\prime}-y$ $=\left(b h+c h^{2}\right)+2 c h x$. This last equation is of the first degree in x and Δy, so that the plot of ($x, \Delta y$) will approximate a straight line.

Hence, if a set of data may be approximately represented by the equation $y=a+b x+c x^{2}$, then (I) the plot of $\left(x, \frac{y-y_{k}}{x-x_{k}}\right)$, where $\left(x_{k}, y_{k}\right)$ are the coördinates of any point on the experimental curve, will approximate a straight line, or (2) the plot of $(x, \Delta y)$, where the Δy 's are the differences in y formed for equidistant values of x, will approximate a straight line.

The following examples will illustrate the method of determining the constants.

Example. In the following table, θ is the melting point in degrees Centigrade of an alloy of lead and zinc containing x per cent of lead. (From Saxelby's Practical Mathematics.)

=	-	$x-36.9$	${ }^{0-}$	$\frac{9-188}{x-36.9}$	0 。	Δ
87.5	${ }^{292}$	50.6	111	2.20	295	$-^{-3}$
84.0 77.8	283 270	47.1 40.9	102 89	2.17 2.18 1.63	285 268	${ }_{+}^{-2}$
63.7	${ }^{235}$	26.8 98	54		${ }^{234}$	$\begin{array}{r}\text { + } \\ +1 \\ \hline\end{array}$
46.9	197 185	9.8	${ }^{16}$	${ }_{1} 1.63$	$\begin{array}{r}199 \\ 182 \\ \hline 18\end{array}$	${ }_{-1}$

In Fig. 77a, we have plotted (x, θ). We shall try to fit an equation of the form $\theta=a+b x+c x^{2}$ to the data. To verify this choice, observe that the curve passes through the point $x_{k}=36.9, \theta_{k}=18 \mathrm{I}$, and plot the points $\left(x, \frac{\theta-18 \mathrm{I}}{x-36.9}\right)$; this last plot approximates a straight line. (In plotting the ordinates for the straight line a scale unit ten times as large as that used for the ordinates of the experimental curve has been used: any further increase in the scale unit would simply magnify the devia-
bons.) We may now assume the relation $\frac{\theta-18 \mathbf{1}}{x-36.9}=a^{\prime}+b^{\prime} x$, and use the method of averages to determine the constants. Dividing the data into two groups of three and two sets respectively and adding, we get

$$
\begin{gathered}
6.55=3 a^{\prime}+249.3 b^{\prime} \\
3.64=2 a^{\prime}+110.4 b^{\prime} \\
\therefore \quad b^{\prime}=0.0130, \quad a^{\prime}=1.10 \\
\therefore \quad \frac{\theta-18 \mathrm{I}}{x-36.9}=1.10+0.0130 x, \text { or } \theta=14 \mathrm{I} .4+0.620 x+0.0130 x^{2}
\end{gathered}
$$

We now compute θ and the residuals.

Fic. 77a.

Example. The following table gives the results of the measurements of train resistances; V is the velocity in miles per hour, R is the resistance in pounds per ton. (From Armstrong's Electric Traction.)

v	\boldsymbol{R}	ΔR	$v=$	R	Δ
20	$5 \cdot 5$	3.6	400	5.70	-0.20
40	9.1	5.8	- 1,600	9.88	+0.02
60	14.9	7.9	3,600	14.82	+0.08
80	22.8	10.5	6,400	22.86	-0.06
100	33.3	12.7	10,000	33.22	+0.08
120	46.0		14,400	45.90	+0.10
$\Sigma 420$	131.6		36,400		

In Fig. 77b, the plot of (V, R) appears to be a parabola, $R=a+b V$ $+c V^{2}$. Since the values of V are equidistant, we shall verify our choice of equation by a plot of $(V, \Delta R)$; this last plot approximates a straight line. We may therefore assume $\Delta R=^{\prime}\left(b h+c h^{2}\right)+2 c h V$, where $h=20$.

Eig. 77b.
We determine the constants in this last equation by the method of averages, using the five sets of values of V and ΔR. Dividing these data into two groups of three and two sets respectively and adding, we get

$$
\begin{aligned}
17 \cdot 3 & =3\left(b h+c h^{2}\right)+120(2 c h), \\
& 23.2=2\left(b h+c h^{2}\right)+180(2 c h) . \\
\therefore \quad & 2 c h=0.117, \quad b h+c h^{2}=1.08 . \\
\therefore \quad & c=0.0029, \quad b=-0.004 . \\
\therefore \quad & R=a-0.004 V+0.0029 V^{2} .
\end{aligned}
$$

We determine a by substituting the six sets of values of V and R, and summing, thus

$$
\Sigma R=6 a-0.004 \Sigma V+0.0029 \Sigma V^{2}
$$

or

$$
\text { I31. } 6=6 a-0.004(420)+0.0029(36,400)
$$

and therefore

$$
a=4.62
$$

Hence, finally, $\quad R=4.62-0.004 V+0.0029 V^{2}$.
We now compute the values of R and the resid.als; the agreement between the observed and calculated values of R is very close.
78. The hyperbola, $\boldsymbol{y}=\frac{\boldsymbol{x}}{\boldsymbol{a}+\boldsymbol{b} \boldsymbol{x}}+\boldsymbol{c}$. -This equation is a modification of the equation $y=\frac{x}{a+b x}$ discussed in Art. 74. In the latter equation, $x=0$ gives $y=0$, while in the former, $x=\mathrm{o}$ gives $y=c$. We may verify whether the equation $y=\frac{x}{a+b x}+c$ fits a set of experimental data as follows. Choose any point (x_{k}, y_{k}) on the experimental curve; then $y_{k}=\frac{x_{k}}{a+b x_{k}}+c$, and
$y-y_{k}=\frac{a\left(x-x_{k}\right)}{(a+b x)\left(a+b x_{k}\right)}$, or $\frac{x-x_{k}}{y-y_{k}}=\left(a+b x_{k}\right)+\frac{b}{a}\left(a+b x_{k}\right) x$. This last equation is of the first degree in x and $\frac{x-x_{k}}{y-y_{k}}$, so that the plot of $\left(x, \frac{x-x_{k}}{y-y_{k}}\right)$ will approximate a straight line.

Hence, if a set of data may be approximately represented by the equation $y=\frac{x}{a+b x}+c$, the plot of $\left(x, \frac{x-x_{k}}{y-y_{k}}\right)$, where $\left(x_{k}, y_{k}\right)$ are the coördinates of a point on the experimental curve, will approximate a straight line.

Example. The following table gives the results of experiments on the friction between a straw-fiber driver and an iron driven wheel under a pressure of 400 pounds; y is the coefficient of friction and x is the slip, per cent. (From Goss, Trans. Am. Soc. Mech. Eng., for 1907, p. 1099.)

x	y	$x-0.65$	$y-0.129$	$\frac{x-0.65}{y-0.129}$	y_{0}	y_{0}^{\prime}
0.65	0.129	0				
0.87	0.217	0.22	0		0.129	0.129
0.88	0.228	0.23	0.088	2.50	0.253	0.228
0.90	0.234	0.25	0.105	2.38	0.256	0.232
0.93	0.275	0.28	0.146	1.92	0.274	0.238
1.16	0.318	0.51	0.189	2.70	0.326	0.248
1.80	0.400	1.15	0.271	4.25	0.394	0.304
2.12	0.410	1.47	0.281	5.23	0.410	0.388
3.00	0.435	2.35	0.306	7.68	0.435	0.451

In Fig. 78 we have plotted the points (x, y); the experimental curve appears to be an hyperbola with an equation of the form $y=\frac{x}{a+b x}+c$. To verify this we note the point $x=0.65, y=0.129$ on the curve, and plot the points $\left(x, \frac{x-0.65}{y-0.129}\right)$. This last plot approximates a straight line. We may therefore assume the relation $\frac{x-0.65}{y-0.129}=a+b x$, and

Fig. 78.
we shall determine the constants by the method of averages. As the first three points do not lie very near this straight line, we shall use only the last five sets of data, and dividing these into two groups of three and two sets respectively and adding, we get

$$
\begin{gathered}
8.87=3 a+3.89 b \\
12.91=3 a+5.12 b \\
\therefore \quad b=2.77, \quad a=-0.64 \\
\therefore \quad x-0.65 \\
\therefore-0.64+2.77 x \quad \text { or } y=\frac{x-0.65}{2.77 x-0.64}+0.129 .
\end{gathered}
$$

If we had used all eight points in determining the constants, we should have obtained

$$
\begin{gathered}
9.12=4 a+3.58 b \\
19.86=4 a+8.08 b \\
\therefore \quad b=2.39, \quad a=0.14
\end{gathered}
$$

$$
\therefore \frac{x-0.65}{y^{\prime}-0.129}=0.14+2.39 x \quad \text { or } \quad y^{\prime}=\frac{x-0.65}{2.39 x+0.14}+0.129
$$

We have computed both y and y^{\prime} and note that the agreement with the observed values is probably as close as could be expected.
79. The logarithmic or exponential curve, $\log y=a+b x+c x^{2}$ or $\boldsymbol{y}=\boldsymbol{a} e^{b \infty+\infty 0^{2}}$. - These equations are modifications of the logarithmic form $\log y=a+b x$ and the exponential form $y=a e^{b x}$. The equation $y=a e^{b x+c x t}$ may be written $\log y=\log a+(b \log e) x+(c \log e) x^{2}$, and so is equivalent to the form $\log y=a+b x+c x^{2}$. This last equation is similar in form to the equation $y=a+b x+c x^{2}$ discussed in Art. 77, and the equation may be verified and the constants determined in a similar way.

Hence, if a set of data may be approximately represented by the equation $\log y=a+b x+c x^{2}$, then (I) the plot of $\left(x, \frac{\log y-\log y_{k}}{x-x_{k}}\right)$, where $\left(x_{k}, y_{k}\right)$ are the coördinates of a point on the experimental curve, will approximate a straight line, or (2) the plot of $(x, \Delta \log y)$, where the $\Delta \log y$ are the differences in $\log y$ formed for equidistant values of x, will approximate a straight line.

Example. The following table gives the results of Winkelmann's experiments on the rate of cooling of a body in air; θ is the excess of temperature of the body over the temperature of its surroundings, t seconds from the beginning of the experiment.

t	θ	$\log \theta$	$\log \theta-\log 118.97$	$\frac{\log \theta-\log 118.97}{t}$	θ_{c}	Δ
0	118.97	2.07544	0			
12.1	116.97	2.06808	-0.00736	-0.000608	118.97	0
25.8	114.97	2.06059	-0.01485	-0.000576	114.99	-0.02
41.7	112.97	2.05296	-0.02248	-0.000539	112.90	0
59.7	110.97	2.04520	-0.03024	-0.000507	110.90	+0.07
82.0	108.97	2.03731	-0.03813	-0.000465	108.90	+0.07
109.0	106.97	2.02926	-0.04618	-0.000424	107.15	-0.18

In Fig. 79 we have plotted the points (t, θ). According to Newton's law of cooling, $\theta=a e^{b t}$ or $\log \theta=a+b t$, and so we have also plotted the points $(t, \log \theta)$; this last plot has a slight curvature. We shall therefore assume the law in the form $\log \theta=a+b t+c t^{2}$. To verify this, we note the point $t_{k}=0, \theta_{k}=118.97$ on the experimental curve, and plot the points $\left(t, \frac{\log \theta-\log 118.97}{t}\right)$; this plot approximates a straight line, so that we may assume $\frac{\log \theta-\log 118.97}{t}=b+c t$. We use the method of averages to determine the constants. Dividing the data into two groups of three sets each and adding, we get

$$
\begin{aligned}
& -0.001723=3 b+79.6 c \\
& -0.001396=3 b+250.7 c
\end{aligned}
$$

$$
\therefore \quad c=0.000001911, \quad b=-0.000625
$$

$$
\therefore \frac{\log \theta-\log 118.97}{t}=-0.000625+0.00000191 \text { I } t
$$

or

$$
\log \theta=2.07544-0.000625 t+0.000001911 t^{2} .
$$

We now compute θ and the residuals and note the close agreement between the observed and calculated values.

Fig. 79.
(IV) EQUATIONS INVOLVING FOUR OR MORE CONSTANTS.
80. The additional terms $c e^{d x}$ and $c x^{d}$. - It is sometimes found that a simple equation will represent a part of our data very well and another part not at all, i.e., the residuals $y_{0}-y_{c}$ are very small for one part of our data and quite large for another part. Geometrically, this is equivalent to saying that the plot of the simple equation coincides approximately only with a part of the experimental curve. In such cases a modification of the simple equation by the addition of one or more terms will often cause the curves to fit approximately throughout. Such terms usually have the form $c e^{d x}$ or $c d^{x}$, and added to our simple equations give the forms

$$
\begin{array}{ll}
y=a+b x+c e^{d x}, & y=a+b x+c x^{d} \\
y=a e^{b x}+c e^{d x}, & y=a x^{b}+c x^{d} \\
y=\frac{x}{a+b x}+c e^{d x}, & y=\frac{x}{a+b x}+c x^{d},
\end{array}
$$

We shall give a few examples to illustrate some of these cases.

8I. The equation $\boldsymbol{y}=\boldsymbol{a}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c} \boldsymbol{e}^{\boldsymbol{d}}$. - If a part of the experimental curve approximates a straight line, we may fit an equation of the form $y=a+b x$ to this part of the curve. The deviation of this straight line from the remainder of the experimental curve (Fig. 81 a) will be measured by the residuals $r=y_{0}-y_{c}=y-$ $(a+b x)$. We now plot (x, r) and study the nature of this plot. We may be able to represent this plot by means of the simple exponential $r=$ $c e^{d x}$, where the values of the constants c and d are such that the value of r is negligible for that part of the plot to which the straight line has been fitted. The entire experimental curve can thus be represented by $c e^{d x}=y-(a$

Fig. 8ia. $+b x)$ or $y=a+b x+c e^{d x}$.

The equation $y=a+b x+c e^{d x}$ may fit an experimental curve although no part of the curve is approximately a straight line; this means that the values of the term $c e^{d x}$ are not negligible for any values of x. If the values of x are equidistant, we may verify that this equation is the correct one to assume by the following method. Let the constant difference in the values of x be h. If we replace x by $x+h$, we get

$$
y^{\prime}=a+b(x+h)+c e^{d(x+h)}
$$

and, therefore, for the difference in the values of y,

$$
\Delta y=y^{\prime}-y=b h+c e^{d x}\left(e^{d h}-\mathrm{I}\right)
$$

If Δy and Δy^{\prime} are two successive values of Δy, then

$$
\Delta y^{\prime}=b h+c e^{d(x+h)}\left(e^{d h}-\mathbf{I}\right)
$$

and the difference in the values of Δy is

$$
\Delta^{2} y=\Delta y^{\prime}-\Delta y=c e^{d x}\left(e^{d h}-\mathrm{I}\right)^{2}
$$

Hence,

$$
\log \Delta^{2} y=\log c\left(e^{d h}-\mathrm{I}\right)^{2}+(d \log e) x
$$

The last equation is of the first degree in x and $\log \Delta^{2} y$ so that the plot of $\left(x, \log \Delta^{2} y\right)$ will approximate a straight line. From this straight
line we may determine the constants $\log c\left(e^{d h}-1\right)^{2}$ and $d \log e$ and therefore c and d in the usual way. We now write the equation in the

$y=a+b x+c e^{d x}$
Fig. $8 \mathrm{I} b$. form $y-c e^{d x}=a+b x$, and from the straight line plot of ($x, y-c e^{d x}$), we determine the constants a and b.

In Fig. 81 b we have plotted the equations

$$
\begin{aligned}
& y=0.5+x \\
& y=0.5+x-0.01 e^{x} \\
& y=0.5+x-0.001 e^{x} \\
& y=0.5+x+0.01 e^{x} \\
& y=0.5+x+0.001 e^{x}
\end{aligned}
$$

Example. The following data are the results of experiments made with a gasometer by means of which the amount of air which passes into a receiving tank can be measured; x is the vacuum in the tank in inches of mercury, y is the number of cu. ft. of air per minute passing into the tank. (Experiments made by W. D. Canan at the Mass. Inst. of Tech.)

x	y	y^{\prime}	$r=y^{\prime}-\boldsymbol{y}$	$\log r$	$r_{\text {c }}$	y_{0}	Δ
8	1.17	I. 49	0.32	9.5051-10	0.322	1.17	\bigcirc
10	1.37	I. 55	0.18	$9.2553-10$	0.179	1.37	0
12	I. 50	I.61	0.11	9.0414-10	0.099	I. 51	-0.01
14	1.62	1.67	0.05	8.6990-10	0.055	I. 61	+0.01
16	1.71	1.73	0.02		0.031	1.70	+0.01
18	1.80	1.79	-0.01		0.017	1.77	+0.03
20	1.85	1.85	\bigcirc		0.009	1.84	+o.01
22	1.91	1.91	\bigcirc		0.005	1.90	+0.01
24	1.96	1.97	0.01		0.003	1.97	-0.01
26	2.02	2.03	0.01		0.002	2.03	-0.01
28	2.10	2.09	-0.01		0.001	2.09	+o.01

In Fig. 8ic we note that the plot of (x, y) approximates a straight line for values of $x>14$, and we shall fit an equation of the form
$y^{\prime}=a+b x$ to this part of the data. Using the method of averages and dividing the data into two groups of four and three sets, we have

$$
\begin{aligned}
7.27 & =4 a+76 b, \\
6.08 & =3 a+78 b, \\
\therefore \quad b & =0.03, \quad a=1.25 \\
y^{\prime} & =1.25+0.03 x .
\end{aligned}
$$

and

(x)

Fig. 8ic.
Now compute the values of y^{\prime} and the residuals $r=y^{\prime}-y$ (by taking $r=y^{\prime}-y$ instead of $r=y-y^{\prime}$, the residuals are positive and easier to handle in the subsequent calculations). Plot (x, r) for values of $x<14$ and study the nature of this plot; this seems to be a simple exponential, $r=c e^{d x}$; verify this by plotting $(x, \log r)$ and note that this plot approximates a straight line. Using the method of averages determine the constants in the equation $\log r=\log c+(d \log e) x$; thus

$$
\begin{aligned}
& 8.7604-10=2 \log c+18 d \log e \\
& 7.7404-10=2 \log c+26 d \log e
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad d \log e=9.8725-10=-0.1275, \quad \log c=0.5277 \\
& \therefore d=-0.294, \quad c=3.37 \\
& \therefore \quad \log r=0.5277-0.1275 x, \quad \text { and } \quad r=3.37 e^{-0.294 x}
\end{aligned}
$$

The final equation is

$$
y=1.25+0.03 x-3.37 e^{-0.294 x} .
$$

Now compute y and the residuals, and note the close agreement between the observed and calculated values.
82. The equation $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{e}^{b \boldsymbol{x}}+\boldsymbol{c} \boldsymbol{e}^{\boldsymbol{a x}}$. - A part of the experimental curve may be represented by a simple exponential $y=a e^{b x}$, i.e., a part of the plot of $(x, \log y)$ approximates a straight line. We then study the deviations, $r=y_{0}-y_{c}=y-a e^{b x}$, of this exponential curve from the rest of the experimental curve. The plot of (x, r) may be representable by another exponential, $r=c e^{d x}$, where the values of r are negligible for that part of the experimental curve to which $y=a e^{b x}$ has been fitted. The entire curve can then be represented by the equation $y=a e^{b x}+c e^{d x}$.

The equation $y=a e^{b x}+c e^{d x}$ may fit an experimental curve although no part of the curve can be approximated by the simple exponential $y=a e^{b x}$. If the values of x are equidistant, we may verify that this equation is the correct one to assume by the following method. Let the constant difference in the values of x be h. Consider three successive values $x, x+h, x+2 h$ and their corresponding values $y, y^{\prime}, y^{\prime \prime}$. We evidently have

$$
\begin{aligned}
y & =a e^{b x}+c e^{d x}, \\
y^{\prime} & =a e^{b(x+h)}+c e^{d(x+h)}=a e^{b x} e^{b h}+c e^{d x} e^{d h}, \\
y^{\prime \prime} & =a e^{b(x+2 h)}+c e^{d(x+2 h)}=a e^{b x} e^{2 b h}+c e^{d x} e^{2 d h} .
\end{aligned}
$$

Now eliminate $e^{b x}$ and $e^{d x}$ from these three equations by multiplying the first equation by $e^{(b+d) h}$, the second by $-\left(e^{b h}+e^{d h}\right)$, and adding the results to the third equation. We get
or

$$
\begin{aligned}
& y^{\prime \prime}-\left(e^{b h}+e^{d h}\right) y^{\prime}+e^{(b+d) h} y=0 \\
& \frac{y^{\prime \prime}}{y}=\left(e^{b h}+e^{d h}\right) \frac{y^{\prime}}{y}-e^{(b+d) h}
\end{aligned}
$$

This is an equation of the first degree in y^{\prime} / y and $y^{\prime \prime} / y$ so that the plot of $\left(y^{\prime} / y, y^{\prime \prime} / y\right)$ will approximate a straight line. From this straight line determine the constants $e^{b h}+e^{d h}$ and $e^{(b+d) h}$, and hence b and d as usual. We now write the original equation $y e^{-d x}=a e^{(b-d) x}+c$. This is a linear equation in $e^{(b-d) x}$ and $y e^{-d x}$ so that the plot of ($e^{(b-d) x}, y e^{-d x}$) would approximate a straight line. From this straight line determine the values of the constants a and c.

In Fig. 82a, we have plotted the equations $y=e^{-x}, y=e^{-x}+0.5 e^{-5 x}$, $y=e^{-x}-0.5 e^{-5 x}, y=e^{-x}+e^{-2 x}, y=e^{-x}-e^{-2 x}$.

Fig. 82a.
Example. The following are the measurements made on a curve recorded by an oscillograph representing a change of current i due to a change in the conditions of an electric circuit t. (From Steinmetz, Engineering Mathematics.)

t	i	$\log i$	i^{\prime}	$r=i^{\prime}-i$	$\log r$	r 。	i_{0}	Δ
\bigcirc	2.10	0.3222	4.94	2.84	0.4533	2.85	2.09	+o.01
0.1	2.48	0.3945	4.44	. 1.96	0.2923	1.96	2.48	0
0.2	2.66	0.4249	- 3.99	1.33	-. 1239	I. 34	2.65	+0.01
0.4	2.58	0.4116	+ 3.22	0.64	9.8062-10	0.63	2.59	-0.01
0.8	2.00	0.3010	2.10	0.10	9.0000-10	0.14	1.96	+0.04
1.2	1.36	0.1335	1.37	0.01		0.03	1.34	+0.02
1.6	0.90	9.9542-10	0.89	-0.01		0.01	0.88	+0.02
2.0	0.58	9.7634-10	0.58	0		0	0.58	0
2.5	0.34	9.5315-10	0.34	-		\bigcirc	0.34	0
3.0	0.20	9.3010 - 10	0.20	\bigcirc		\bigcirc	0.20	-

In Fig. $82 b$ we note that the right-hand part of the plot of (t, i) appears to be exponential. We verify the choice of $i^{\prime}=a e^{b t}$ by plotting $(t, \log i)$ and noting that this plot approximates a straight line for values of
$t>0$.8. We therefore assume $\log i^{\prime}=\log a+(b \log e) t$, and using the method of averages for the values of $t>0.8$, we have

$$
\begin{aligned}
& 9.851 \mathrm{I}-10=3 \log a+4.8 b \log e \\
& 8.8325-10=2 \log a+5.5 b \log e
\end{aligned}
$$

$$
\therefore \quad b \log e=9.5356-10=-0.4644, \quad \log a=0.6934
$$

$$
\therefore \quad b=-1.07, \quad a=4.94
$$

and

$$
\log i^{\prime}=0.6934-0.4644 t, \quad \text { or } \quad i^{\prime}=4.94 e^{-1.07 t}
$$

(t)
Fig. 82b.
Now find the values of i^{\prime} and the residuals $r=i^{\prime}-i$; these residuals are practically negligible for values of $t>0.8$. We plot (t, r) and try to fit an equation to this curve. This again appears to be exponential and we verify this by plotting $(t, \log r)$; the plot approximates a
straight line, except for $t=0.8$. We therefore assume $r=c e^{d t}$ or $\log r=$ $\log c+(d \log e) t$. Using the method of averages for $t<0.8$, we have

$$
\begin{aligned}
0.7456 & =2 \log c+0.1 d \log e, \\
9.9301-10 & =2 \log c+0.6 d \log e .
\end{aligned}
$$

$$
\therefore \quad d \log e=-1.6310, \quad \log c=0.4544
$$

$$
\therefore d=-3.76, \quad c=2.85
$$

and $\log r=0.4544-1.6310 t$, or $r=2.85 e^{-3.76 t}$.
The final equation is

$$
i=4.94 e^{-1.07 t}-2.85 e^{-3.76 t} .
$$

We now compute i and the residuals and note the very close agreement between the observed and computed values of i.
83. The polynomial $\boldsymbol{y}=a+b x+c x^{2}+d x^{3}+\cdots$. - The equation $y=a+b x+c x^{2}$ may be modified by the addition of another term into $y=a+b x+c x^{2}+d x^{3}$. If the values of x are equidistant, we may verify the correctness of the assumption of the last equation by the following method. Let the constant difference in the values of x be h. Then the successive differences in the values of y are

$$
\begin{aligned}
\Delta y & =\left(b h+c h^{2}+d h^{3}\right)+\left(2 c h+3 d h^{2}\right) x+3 d h x^{2}, \\
\Delta^{2} y & =\left(2 c h^{2}+6 d h^{3}\right)+6 d h^{2} x, \\
\Delta^{3} y & =6 d h^{3} .
\end{aligned}
$$

Hence the plot of ($x, \Delta^{2} y$) will approximate a straight line, and the values of $\Delta^{3} y$ are approximately constant. From the equation of the straight line we may determine the constants c and d, and writing the original equation in the form $\left(y-c x^{2}-d x^{3}\right)=a+b x$, the plot of $\left(x, y-c x^{2}-d x^{3}\right)$ will approximate a straight line, from which the constants a and b may be determined. Another method of determining the constants a, b, c, d in the equation $y=a+b x+c x^{2}+d x^{3}$ consists in selecting four points on the experimental curve, substituting their coördinates in the equation, and solving the four linear equations thus obtained for the values of the four quantities a, b, c, and d.

In a similar manner the polynomial $y=a+b x+c x^{2}+\cdots+k x^{n}$ may be determined so that the corresponding curve passes through $n+1$ points of the experimental curve; it is simply necessary to substitute the coördinates of these $n+1$ points in the equation and to solve the $n+\mathrm{I}$ linear equations for the values of the $n+\mathrm{I}$ quantities, a, b, c, \ldots, k. If the values of x are equidistant, we can show that the plot of $\left(x, \Delta^{n-1} y\right)$ is a straight line and that $\Delta^{n} y$ is constant, where $\Delta^{n-1} y$ and $\Delta^{n} y$ are the $(n-1)$ st and nth order of differences in the values of y. Thus, if a sufficient number of terms are taken in the equation of the polynomial, this polynomial may be made to represent any set of data exactly; but it is not wise to force a fit in this way, since the determination of a large number of constants is very laborious, and in many
cases a much simpler equation involving fewer constants may give much more accurate results in subsequent calculations.

We shall work a single example to illustrate the method of determining the constants.

Example. We wish to fit a polynomial equation to the following data:

Fig. 83.

x	v	Δy	$\Delta^{2} y$	$\Delta^{3} y$	ν	Δ
\bigcirc	-	0.212	0.039	0.019	\bigcirc	,
0.1	0.212	0.251	0.058	0.014	0.210	+0.002
0.2	0.463	0.309	0.072	0.019	0.463	-
0.3	0.772	0.38 I	0.091	0.019	0.770	+0.002
0.4	1.153	0.472	0.110	0.018	1.152	+0.001
0.5	$\underline{1.625}$	0.582	0.128	0.021	1.625	.
0.6	2.207	0.710	0.149	0.014	2.209	-0.002
0.7 0.8	2.917	0.859	0.163	0.018	2.920	-0.003
0.9	3.776	1.022	0.181	-	3.776	
1.0	6.001	1.203			4.797 5.998	+0.001 +0.003

In Fig. 83 we have plotted (x, y). We form the successive differences and note that the third differences are approximately constant, and that the plot of ($x, \Delta^{2} y$) approximates a straight line (Fig. 83). We may therefore assume an equation of the form $y=a+b x+c x^{2}+d x^{3}$, or $y=b x+c x^{2}+d x^{3}$, since the curve evidently passes through the origin of coördinates. To determine the constants b, c, and d, select three points on the experimental curve; three such points are ($0.2,0.463$), ($0.5,1.625$), and ($0.8,3.776$). Substituting these coördinates in the equation, we get

$$
\begin{aligned}
& 0.463=0.2 b+0.04 c+0.008 d \\
& \mathrm{I} .625=0.5 b+0.25 c+0.125 d \\
& 3.776=0.8 b+0.64 c+0.5 \mathrm{I} 2 d
\end{aligned}
$$

Solving these equations for b, c, and d, we have

$$
b=\mathrm{I} .989, \quad c=\mathrm{I} .037, \quad d=2.972
$$

and hence the equation is

$$
y=1.989 x+1.037 x^{2}+2.972 x^{3} .
$$

We now compute the values of y and the residuals.
84. Two or more equations. - It is sometimes impossible to represent a set of data by a simple equation involving few constants or even by a complex equation involving many constants. In such cases it is often convenient to represent a part of the data by one equation and another part of the data by another equation. The entire set of data will then be represented by two equations, each equation being valid for a restricted range of the variables. Thus, Regnault represented the relation between the.vapor pressure and the temperature of water by three equations, one for the range from $-32^{\circ} \mathrm{F}$. to $0^{\circ} \mathrm{F}$., another for the range from $0^{\circ} \mathrm{F}$. to $100^{\circ} \mathrm{F}$., and a third for the range from $100^{\circ} \mathrm{F}$. to 230° F. Later, Rankine, Marks, and others represented the relation by a single equation. The following example will illustrate the representation of a set of data by two simple equations.

Example. The following data are the results of experiments on the collapsing pressure, p in pounds per sq. in. of Bessemer steel lap-welded tubes, where d is the outside diameter of the tube in inches and t is the thickness of the wall in inches. (Experiments reported by R. T. Stewart in the Trans. Am. Soc. of Mech. Eng., Vol. XXVII, p. 730.)

$\frac{t}{d}$	P	$\log \frac{t}{d}$	$\log P$	$P_{\text {。 }}$	Δ
0.0165	225	8.2175-10	2.3522	230	-5
0.0194	383	8.2878 - 10	2.5832	38 I	+2
0.0216	524	8.3345 - 10	2.7193	533	-9
0.0214	536	8.3304-10	2.7292	517	+19

Fig. 84.

$\begin{aligned} & t \\ & d \end{aligned}$	\boldsymbol{P}	$P_{\text {c }}$	Δ	$\frac{t}{d}$	P	P.	Δ
0.0228	592	570	+ 22	0.0370	1779	1821	-42
0.0250	670	764	- 84	0.0374	1860	1856	+ 4
0.0253	870	790	+ 80	0.0375	1879	1865	+ 14
0.0277	928	1002	- 74	0.0400	2147	2085	+62
0.0298	964	1187	-223	0.0403	2224	2112	+112
0.0299	1184	1196	- 12	0.0436	2280	2403	-123
0.0309	1251	1284	- 33	0.0442	2441	2455	- 14
0.0316	1319	1346	- 27	0.0477	2962	2764	+r98
0.0309	1419	1284	+135	0.0527	3170	3204	- 34
0.0343	1680	1583	+ 97	0.0628	4095	4194	- 99
0.0349	1762	1636	+126	0.0815	5560	5741	- 181

It should be noted that a set of corresponding values of t / d and P are not the results of a single experiment but the averages of groups containing from two to twenty experiments.

Following the work of Prof. Stewart, we have plotted ($t / d, P$), Fig. 84, and note that the experimental curve approximates a straight line for all values of t / d except the first four, i.e., for values of $t / d>0.023$. We may therefore assume $P=a+b\left(\frac{t}{d}\right)$. If we use the method of selected points to determine the constants a and b we may choose the points $t / d=0.065, P=4250$, and $t / d=0.030, P=1215$ as lying on the straight line; we then have
and

$$
\begin{aligned}
& 4250=a+0.065 b, \\
& \\
& \\
& 1215=a+0.030 b . \\
& \therefore \quad \\
& b=86,714, \quad a=-1386 \\
& \\
& \\
& P=86,714\left(\frac{t}{d}\right)-1386 .
\end{aligned}
$$

This result agrees with that given by Prof. Stewart. If we use the method of averages to determine the constants a and b we divide the last 22 sets of data into two groups of in each, and get

$$
\begin{gathered}
\text { 12,639 }=1 \text { I } a+0.323 \mathrm{I} b \\
30,397=11 a+0.5247 b \\
\therefore \quad b=88,085, \quad a=-1438 \\
P=88,055\left(\frac{t}{d}\right)-1438
\end{gathered}
$$

and
In our table we have given the values of P computed from this last formula. The values of P computed from the first formula agree very closely with these. It is seen that the percentage deviations are in general quite small though large in a few cases, varying from 0.2 per cent to 10 per cent, which is to be expected from the nature of the experiments.

We now attempt to fit an equation to the first four sets of data. The addition of a modifying term of the form $c\left(\frac{t}{d}\right)^{k}$ or $c e^{k^{\frac{t}{d}}}$ to the above formula is not successful here. We shall therefore follow Prof. Stewart's work and attempt to fit an equation of the parabolic form, $P=$ $a\left(\frac{t}{d}\right)^{b}$. We verify this choice by plotting $\left(\log \frac{t}{d}, \log P\right)$ and observing that this plot approximates a straight line. (The fewness of the experiments for values of $t / d<0.023$ is a handicap here.) Assuming

$$
\log P=\log a+b \log \left(\frac{t}{d}\right)
$$

and using the method of averages, we find

$$
\begin{aligned}
4.9354 & =2 \log a+(6.5053-10) b \\
5 \cdot 4485 & =2 \log a+(6.6649-10) b . \\
\therefore \quad b & =3.11, \quad a=80,580,000 \\
& P=80,580,000\left(\frac{t}{d}\right)^{3.11}
\end{aligned}
$$

and
We compute the values of P from this formula.
The entire set of data have thus been represented by means of two simple equations, each valid for a restricted range of the variables.*

EXERCISES.

[Note. The exercises which follow are divided into two sets. The type of equation that will approximately represent the empirical data is suggested for each example in the first set. For the examples in the second set, the choice of a suitable equation is left to the student.]

1. Temperature coefficient; r is the resistance of a coil of wire in ohms, θ is the temperature of the coil in degrees Centigrade. $[\boldsymbol{y}=\boldsymbol{a}+\boldsymbol{b x}]$

2. Galvanometer deflection; D is the deflection in mm., I is the current in micreamperes. $\quad[y=a+b x]$

$$
\frac{D}{I}\left|\frac{29.1}{0.0493}\right| \frac{48.2}{0.0821}\left|\frac{72.7}{0.123}\right| \frac{92.0}{0.154}\left|\frac{118}{0.197}\right| \frac{140}{0.234}\left|\frac{165}{0.274}\right| \frac{199}{0.328}
$$

3. Volt-ampere characteristic of 118 volt tungsten lamp; e is the terminal voltage, i is the current. [$\left.\boldsymbol{y}=\boldsymbol{a x}{ }^{\boldsymbol{b}}\right]$

$$
\begin{aligned}
& \frac{e}{i}\left|\frac{2}{0.0245}\right| \frac{4}{0.0370}\left|\frac{8}{0.0570}\right| \frac{16}{0.0855}\left|\frac{25}{0.1125}\right| \frac{32}{0.1295}\left|\frac{50}{0.1715}\right|-\frac{64}{0.2000}\left|\frac{100}{0.2605}\right| \frac{125}{0.2965} \\
& \frac{e}{i}\left|\frac{150}{0.3295}\right| \frac{180}{0.3635}\left|\frac{200}{0.3865}\right| \frac{218}{0.4070}
\end{aligned}
$$

4. Pressure-volume of saturated steam; v is the volume in $\mathrm{cu} . \mathrm{ft}$. of I pound of steam, p is the pressure in pounds per sq. in. $\left[y=a x^{b}\right]$

$$
\left.\frac{v}{p}\left|\frac{26.43}{14.70}\right| \frac{22.40}{17.53}\left|\frac{19.08}{20.80}\right| \frac{16.32}{24.54}\left|\frac{14.04}{28.83}\right|-\frac{12.12}{33.71}\left|-\frac{10.51}{39.25}\right| \frac{9.147}{45.49} \right\rvert\, \frac{7.995}{52.52}
$$

5. Chemical concentration experiment; x is the concentration of hydrogen ions, y is the concentration of undissociated hydrochloric acid. $\left[\boldsymbol{y}=\boldsymbol{a x}^{\boldsymbol{b}}\right]$

$$
\left.\frac{x}{y}\left|\frac{1.68}{1.32}\right| \frac{1.22}{0.676}\left|\frac{0.784}{0.216}\right| \frac{0.426}{0.074}\left|\frac{0.092}{0.0085}\right| \frac{0.047}{0.00315}\left|\frac{0.0096}{0.00036}\right| \frac{0.0049}{0.00014} \right\rvert\, \frac{0.00098}{0.000018}
$$

6. Vibration of a long pendulum; A is the amplitude in inches, t is the time since it was set swinging. $\left[y=a e^{b \infty}\right]$

[^6]7. Newton's law of cooling; θ is the excess of the temperature of the body over the temperature of its surroundings, t is the time in seconds since the beginning of the experiment. [$\boldsymbol{y}=\boldsymbol{a} 0^{b x}$]
$$
\frac{t}{\theta}\left|\frac{0}{19.9}\right| \frac{3.45}{18.9}\left|\frac{10.85}{16.9}\right| \frac{19.30}{14.9}\left|-\frac{28.80}{12.9}\right| \frac{40.10}{10.9}\left|\frac{53.75}{8.9}\right| \frac{70.95}{6.9}
$$
8. Barometric pressure; p is the pressure in inches of mercury, h is the height in ft . above sea level. [y=ae $\left.\boldsymbol{e}^{\boldsymbol{b} x}\right]$
$\frac{h}{p}\left|-\frac{0}{30}\right|-\frac{886}{29}\left|-\frac{2753}{27}\right| \frac{4763}{25}\left|\frac{6942}{23}\right| \frac{10,593}{20}$
9. Electric arc of length 4 mm .; V is the potential difference in volts, i is the current in amperes. $\quad\left[y=a+\frac{b}{x}\right]$
$\frac{i}{V}\left|\frac{2.46}{67.7}\right| \frac{2.97}{65.0}\left|\frac{3.45}{63.0}\right| \frac{3.96}{61.0}\left|\frac{4.97}{58.25}\right| \frac{5.97}{56.25}\left|\frac{6.97}{55.10}\right| \frac{7.97}{54.30}$
10. Speed of a vessel; H.P. is the horse power developed, v is the speed in knots. $\left[y=a+b x^{3}\right]$

v	5	7		
$H . P$.	290	560	$\frac{9}{1144}$	$\frac{11}{1810}$
2300				

11. Hydraulic transmission; H.P. is the horsepower supplied at one end of a line of pipes, u is the useful power delivered at the other end. $\left[\frac{y}{x}=a+b x^{2}\right]$

$$
\left.\begin{array}{c|c|c}
\text { H.P. } \\
u
\end{array}\left|\frac{100}{96.5}\right| \frac{150}{138}\left|\frac{200}{172}\right| \frac{250}{196} \right\rvert\, \frac{300}{206}
$$

12. Magnetic characteristic of iron; H is the number of gilberts per cm ., a measure of the field intensity, B is the number of kilolines per sq. cm., a measure of the flux density. $\left[y=\frac{x}{a+b x}\right]$

$$
\begin{array}{c|c|c|c|c|c|c|c}
H \\
\hline B & \frac{8}{13.0} & 10 & 14.0 & 15 & 15.4 & 20 & 16.3 \\
\hline 17.2 & 40 & 17.8 & 60 & 18.5 & 80 \\
\hline 18.8
\end{array}
$$

13. Focal distance of a lens; p is the distance of the object, p^{\prime} is the distance of its image. $\left[y=\frac{x}{a+b x}\right]$

14. Pressure-volume in a gas engine; p is the pressure in pounds per sq. in., v is the volume in cu. ft. per pound. $\quad\left[\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{\boldsymbol{b}}+\mathbf{c}\right]$

p	44.7	53.8	73.5	85.8	113.2	135.8
v	7.03	5.85	4.30	3.50	2.50	1.90

15. Law of cooling; θ is the temperature of a vessel of cooling water, t is the time in minutes since the beginning of observation. $\left[y=a e^{b \infty}+c\right]$

t	0						
θ	$\frac{1}{92.0}$	$\frac{2}{85.3}$	$\frac{3}{79.5}$	74.5	6	6	7
60.5	10	15	20				
53.0	39.5						

16. Straw-fibre friction at 150 pounds pressure according to Goss's experiments; \boldsymbol{y} is the coefficient of friction for a straw-fibre driver and an iron driven wheel, x is the slip, per cent. $\left[y=\frac{x}{a+b x}+c\right]$

$$
\begin{gathered}
\frac{x}{y}\left|\frac{0.153}{0.56}\right| \frac{0.179}{0.58}\left|\frac{0.213}{0.61}\right| \frac{0.271}{0.78}\left|\frac{0.313}{0.99}\right| \frac{0.359}{1.10}\left|\frac{0.368}{1.04}\right| \frac{0.381}{1.22}\left|\frac{0.386}{1.40}\right| \frac{0.405}{1.75} \\
\frac{x}{y}\left|\frac{0.411}{1.94}\right| \frac{0.432}{2.00}\left|\frac{0.458}{2.25}\right| \frac{0.463}{2.33}\left|\frac{0.465}{3.15}\right| \frac{0.473}{2.79}
\end{gathered}
$$

17. Expansion of mercury according to Regnault's experiments; γ is the coefficient of expansion between $0^{\circ} \mathrm{C}$. and $t^{\circ} \mathrm{C} . \quad\left[\boldsymbol{y}=\boldsymbol{a}+\boldsymbol{b x}+\boldsymbol{c x}{ }^{2}\right]$
$\left.\frac{t}{\gamma}\left|\frac{0}{0.00018179}\right| \frac{100}{0.00018216}\left|\frac{150}{0.00018261}\right| \frac{200}{0.00018323}\left|\frac{250}{0.00018403}\right| \frac{300}{0.00018500} \right\rvert\, \frac{360}{0.00018641}$
18. Velocity of water in Mississippi River; v is the velocity, D is the depth. $\left[y=a+b x+c x^{2}\right]$
$\frac{D}{v}\left|\frac{0}{3.1950}\right| \frac{0.1}{3.2299}\left|\frac{0.2}{3.2532}\right| \frac{0.3}{3.2611}\left|\frac{0.4}{3.2516}\right| \frac{0.5}{3.2282}\left|\frac{0.6}{3.1807}\right| \frac{0.7}{3.1266}\left|\frac{0.8}{3.0594}\right| \frac{0.9}{2.9759}$
19. Solution of potassium chromate; s is the weight of potassium chromate which will dissolve in 100 parts by weight of water at a temperature of $t^{\circ} \mathrm{C} . \quad\left[\log y=a+b x+c x^{2}\right]$

t	0	10		
s	61.5	62.1	27.4	42.1
66.3	70.3.			

20. Load-elongation of annealed high carbon steel wire of diameter 0.0693 and gage length 30 in .; W is the load in pounds, E is the elongation in inches. $\quad\left[y=a+b x+c e^{d x}\right]$
$\frac{W}{E}\left|\frac{0}{0}\right| \frac{50}{0.0130}\left|\frac{100}{0.0251}\right| \frac{150}{0.0387}\left|\frac{200}{0.0520}\right| \frac{225}{0.0589}\left|\frac{250}{0.0659}\right| \frac{260}{0.0689}\left|\frac{280}{0.0746}\right| \frac{290}{0.0778}\left|\frac{300}{0.0807}\right| \frac{310}{0.0842}$

$$
\left.\frac{W}{E}\left|\frac{320}{0.0877}\right| \frac{330}{0.0916}\left|\frac{340}{0.0980}\right| \frac{350}{0.1111} \right\rvert\, \frac{360}{0.1420}
$$

21. Load-elongation of wire of Ex. 20 in hard-drawn condition; W is the ioad in pounds, E is the elongation in inches. $\left[y=a+b x+c x^{d}\right]$
$\left.\frac{W}{E}\left|\frac{0}{0}\right| \frac{100}{0.0280}\left|\frac{200}{0.0562}\right| \frac{300}{0.0849}\left|\frac{400}{0.1150}\right| \frac{500}{0.1471}\left|\frac{600}{0.1820}\right| \frac{700}{0.2191}\left|\frac{800}{0.2628}\right| \frac{850}{0.2879} \right\rvert\, \frac{900}{0.3166}$
22. Empirical curve. $\left[\boldsymbol{y}=\boldsymbol{a} e^{b \infty}+c^{d \infty}\right]$
$\frac{x}{y}\left|\frac{0}{3.00}\right| \frac{0.3}{1.89}\left|\frac{0.6}{1.27}\right| \frac{0.9}{0.88}\left|\frac{1.2}{0.63}\right| \frac{1.5}{0.46}\left|\frac{1.8}{0.33}\right| \frac{2.1}{0.25}\left|\frac{2.4}{0.18}\right| \frac{3.0}{0.10}$
23. Magnetic characteristic of iron; $I I$ is the number of gilberts per cm ., a measure of the field intensity, B is the number of kilolines per sq. cm., a measure of the flux density (cf. Ex. 12). $\quad\left[y=\frac{x}{a+b x}+c e^{d x}\right]$

$\left.$| H |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B |$\left|\frac{2}{3.0}\right| \frac{4}{8.4}\left|\frac{6}{11.2}\right| \frac{8}{13.0}\left|\frac{10}{14.0}\right| \frac{15}{15.4}\left|\frac{20}{16.3}\right| \frac{30}{17.2}\left|\frac{40}{17.8}\right| \frac{60}{18.5} \right\rvert\, \frac{80}{18.8}$

24. Speed of a vessel; I is the indicated horsepower, v is the speed in knots.
$\left[y=a+b x+c x^{2}+d x\right]$
$\left.\frac{v}{I}\left|\frac{8}{1000}\right| \frac{9}{1400}\left|\frac{10}{1900}\right| \frac{11}{2500}\left|\frac{12}{3250}\right| \frac{13}{4200}\left|\frac{14}{5400}\right| \frac{15}{6950}\left|\frac{16}{8950}\right| \frac{17}{11,450} \right\rvert\, \frac{18}{15,400}$
25. Test on square steel wire for winding guns; S is the stress in pounds per sq. in., E is the elongation in inches per inch.

$$
\begin{gathered}
\left.\frac{S}{E}\left|\frac{5000}{0}\right| \frac{10,000}{0.00019}\left|\frac{20,000}{0.00057}\right| \frac{30,000}{0.00094}\left|\frac{40,000}{0.00134}\right| \frac{50,000}{0.00173}\left|\frac{60,000}{0.00216}\right| \frac{70.000}{0.00256} \right\rvert\, \frac{80,000}{0.00297 」} \\
\left.\frac{S}{E}\left|\frac{90,000}{0.00343}\right| \frac{100,000}{0.00390} \right\rvert\, \frac{110,000}{0.00444}
\end{gathered}
$$

26. Flow of water over a Thomson gauge notch; Q is the number of $\mathrm{cu} . \mathrm{ft}$. of water, H is the head in feet.

$$
\left.\begin{gathered}
H \\
\hline Q
\end{gathered}-\frac{1.2}{4.2}\left|\frac{1.4}{6.1}\right|-\frac{1.6}{8.5}\left|\frac{1.8}{11.5}\right| \frac{2.0}{14.9} \right\rvert\, \frac{2.4}{23.5}
$$

27. Friction between belt and pulley; θ is the arc of contact in radians between belt and pulley, P is the pull in pounds applied to one end of pulley to raise a weight W at the other end.

θ	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	$\frac{11 \pi}{6}$
P	5.62	6.93	8.52	10.50	12.90	15.96	19.67	24.24	29.94

28. Electric arc of length $2 \mathrm{~mm} . ; V$ is the potential difference in volts, i is the current in amperes.

$$
\frac{i}{V}\left|\frac{1.96}{50.25}\right| \frac{2.46}{48.70}\left|\frac{2.97}{47.90}\right|-\frac{3.45}{47.50}\left|\frac{3.96}{46.80}\right| \frac{4.97}{45.70}\left|\cdot \frac{5.97}{45.00}\right| \frac{6.97}{44.00}\left|\frac{7.97}{43.60}\right| \frac{9.00}{43.50}
$$

29. Normal induction curve for transformer steel; H is the number of gilberts per $\mathrm{cm} ., B$ is the number of lines per sq. cm .
$\frac{H}{B}\left|\frac{1.0}{425}\right| \frac{1.3}{800}\left|\frac{2.1}{1750}\right| \frac{2.9}{2850}\left|\frac{3.4}{4300}\right| \frac{4.1}{6100}\left|-\frac{4.5}{6725}\right| \frac{5.2}{7800}\left|-\frac{5.9}{8600}\right| \frac{7.5}{10,200}\left|\frac{9.0}{11,150}\right| \frac{11.0}{12,200}$
30. Pressure-volume in a gas engine; p is the pressure in pounds per sq. in., v is the volume in cu. ft. per pound.
$\frac{p}{v}\left|\frac{39.6}{10.6 \mathrm{I}}\right|-\frac{44.7}{9.73}\left|\frac{53.8}{8.55}\right| \frac{73.5}{7.00}\left|\frac{85.8}{6.23}\right|-\frac{113.2}{5.18}\left|\frac{135.8}{4.59}\right| \frac{178.2}{3.87}$

3r. Melting point of alloy of lead and zinc; θ is the temperature in degrees Centigrade, x is \% of lead.

32. Empirical curve.

$$
\left.\begin{array}{l|c|c|c|c|c|c}
x & 1 \\
\hline y & \frac{3}{6.42} & \frac{5}{8.50} & 11.03 & \frac{7}{14.03} & \frac{9}{17.53} & \frac{11}{21.55}
\end{array} \right\rvert\, \frac{13}{26.12}
$$

33. Candle-power of an incandescent lamp; H is the age of the lamp in hours, C.P. is the candle-power.

34. Insulation resistance-current passes through insulator and galvanometer; D is the deflection of the galvanometer, t is the time in minutes.

$$
\left.\frac{t}{D}\left|-\frac{1}{18}\right| \frac{2}{11}\left|\frac{3}{8.0}\right| \frac{4}{6.2}\left|\frac{5}{5.5}\right| \frac{6}{5.0}\left|\frac{7}{4.4}\right| \frac{8}{4.0}\left|\frac{9}{3.5}\right| \frac{10}{3.3}\left|\frac{11}{3.0}\right| \frac{12}{2.7}\left|\frac{13}{2.5}\right| \frac{14}{2.5} \right\rvert\, \frac{15}{2.4}
$$

35. Experiments with a crane; f is the force in pounds which will just overcome a weight w.

$$
\begin{array}{c|c|c|c|c|c|c}
w \\
\hline f
\end{array}\left|\frac{100}{8.5}\right| \frac{200}{12.8}\left|\frac{300}{17.0}\right| \frac{400}{21.4}\left|\frac{500}{25.6}\right| \frac{600}{29.9}\left|\frac{700}{34.2}\right| \frac{800}{38.5}
$$

36. Copper-nickel thermocouple; t is the temperature in degrees, p is the thermoelectric power in microvolts.

t	0			
p	$\frac{50}{24}$	$\frac{100}{25}$	$\frac{150}{26}$	$\frac{200}{26.9}$
27.5				

37. Law of falling body; s is the distance in cm . fallen by body in $t \mathrm{sec}$.

$$
\begin{array}{c|c|c|c}
t \\
s & \frac{0.2477}{30.13}\left|\frac{0.4175}{85.26}\right| \frac{0.5533}{150.39}\left|\frac{0.6760}{223.60}\right| \frac{0.7477}{274.20}
\end{array}
$$

38. Loads which cause the failure of long wrought-iron columns with rounded ends; P / a is the load in pounds per sq. in., l / r is the ratio of length of column to the least radius of gyration of its cross-section.
$\frac{l / r}{P / a}\left|\frac{140}{12,800}\right| \frac{180}{7500}\left|\frac{220}{5000}\right| \frac{260}{3800}\left|\frac{300}{2800}\right| \frac{340}{2100}\left|\frac{380}{1700}\right| \frac{420}{1300}$
39. Heat conduction of asbestos; θ is the temperature in degrees Fahrenheit, C is the coefficient of conductivity.

40. Rubber-covered wires exposed to high external temperatures; C is the maximum current in amperes, A is the area of cross-section in sq. in.
$\frac{C}{A}\left|\frac{3.2}{0.001810}\right| \frac{5.9}{0.004072}\left|\frac{9.0}{0.007052}\right| \frac{22.0}{0.02227}\left|\frac{42.0}{0.05000}\right| \frac{68.0}{0.09442}\left|\frac{84.0}{0.1250}\right| \frac{102.0}{0.1595}$
41. Pressure-volume relation for an air compressor; p is the pressure, v is the volume.

p	18	21	26.5	33.5	44
v	0.635	0.556	0.475	0.397	0.32 I
0.243					

42. Power delivered by an electric station; w is the average weight of coal consumed per hour per kilowatt delivered, f is the load factor.

$$
\begin{array}{l|l|l}
f \\
w
\end{array} \frac{0.25}{2.843}\left|-\frac{0.20}{3.012}\right| \frac{0.15}{3.293}\left|\frac{0.10}{3.856}\right| \frac{0.05}{5.545}
$$

43. Temperature at different depths in an artesian well; θ is the temperature in degrees C., d is the depth.

$$
\frac{d}{\theta}\left|\frac{28}{11.71}\right| \frac{66}{12.90}\left|\frac{173}{16.40}\right| \frac{248}{20.00}\left|\frac{298}{22.20}\right| \frac{400}{23.75}\left|\frac{505}{26.45}\right| \frac{548}{27.70}
$$

44. Resistance of copper wire; R is the resistance in ohms per 1000 ft ., D is the diameter of wire in mils.

| D | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R | $\frac{289}{0.126}\left\|\frac{182}{0.317}\right\| \frac{102}{1.010}\left\|\frac{57}{3.234}\right\| \frac{32}{10.26}\left\|\frac{18}{32.80}\right\| \frac{10}{105.1}$ |

45. Hysteresis losses in soft sheet iron subjected to an alternating magnetic flux; B is the flux density in kilolines per sq. in., P is the number of watts lost per cu. in. for I cycle per sec.

46. Volt-ampere characteristic of a 60 watt tungsten lamp: V is the number of volts, I is the number of milli-amperes.

V	2	5			30	40	50	60	70	80	90	100
I	49	80	117	180	227	272	311	348	383	414	443	473
V	110	120	130	140	150	160	170	180	190	200	210	229
I	501	523	553	577	597	618	639	663	682	702	722	3

47. Calibration of base metal pyrometer ($40 \% \mathrm{Ni}$ and $60 \% \mathrm{Cu}$); V is the number of millivolts, t is the temperature in degrees F.

V	0	2	4	6	8	10	12	14	16
t	0	46	255	320	39	475	553	634	714

48. Tests on drying of twine; t is the drying time in minutes (time of contact of twine with hot drum), W is the percentage of total water on bone dry twine at any time, E is the percentage of total water on bone dry twine at equilibrium, d is the ciameter of the twine in ins.
(a) $d=0.102$ ins., $E=18.7 \%$.

(b) $d=0.158, E=6.2 \%$.

t	0	1.11				
$W-E$	30.3	17.4	2.23	3.34	4.45	5.56
8.2	4.9	3.3				

CHAPTER VII.

EMPIRICAL FORMULAS - PERIODIC CURVES.

85. Representation of periodic phenomena. - Periodic phenomena, such as alternating electric currents and alternating voltages, valve-gear motions, propagation of sound waves, heat waves, tidal observations, etc., may be represented graphically by curves composed of a repetition of congruent parts at certain intervals. Such a periodic curve may in turn be represented analytically by a periodic function of a variable, i.e., by a function such that $f(x+k)=f(x)$, where k is the period. Thus the functions $\sin x$ and $\cos x$ have a period 2π, $\operatorname{since} \sin (x+2 \pi)=\sin x$ and $\cos (x+2 \pi)=\cos x$. Again, the function $\sin 5 x$ has a period $2 \pi / 5$, since $\sin 5(x+2 \pi / 5)=\sin (5 x+2 \pi)=\sin 5 x$, but the function $\sin x+\sin 5 x$ has a period 2π, $\operatorname{since} \sin (x+2 \pi)+\sin 5(x+2 \pi)$ $=\sin x+\sin 5 x$.

Now, any single-valued periodic function can, in general, be expressed by an infinite trigonometric series or Fourier's series of the form

$$
\begin{aligned}
y=f(x)=a_{0} & +a_{1} \cos x+a_{2} \cos 2 x+\cdots+a_{n} \cos n x+\cdots \\
& +b_{1} \sin x+b_{2} \sin 2 x+\cdots+b_{n} \sin n x+\cdots,
\end{aligned}
$$

where the coefficients a_{k} and b_{k} may be determined if the function is known. This series has a period 2π. But usually the function is unknown. Thus, in the problems mentioned above, the curve may either be drawn by an oscillograph or by other instruments, or the values of the ordinates may be given by means of which the curve may be drawn. Our problem then is to represent this curve approximately by a series of the above form, containing a finite number of terms, and to find the approximate values of the coefficients a_{k} and b_{k}. The following sections will give some of the methods employed to determine these coefficients.
86. The fundamental and the harmonics of a trigonometric series. In Fig. 86a we have drawn the curves $y=a_{1} \cos x, y=b_{1} \sin x$, and $y=a_{1} \cos x+b_{1} \sin x$.

The maximum height or amplitude of $y=a_{1} \cos x$ is a_{1} and the period is 2π. The amplitude of $y=b_{1} \sin x$ is b_{1} and the period is 2π. Now we may write
$y=a_{1} \cos x+b_{1} \sin x=\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}\left[\frac{b_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}} \sin x+\frac{a_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}} \cos x\right]$,
and letting $\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}=c_{1}, \quad \frac{b_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}}=\cos \phi_{1}, \quad \frac{a_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}}=\sin \phi_{1}$, we may write

$$
y=c_{1} \sin \left(x+\phi_{1}\right), \quad \text { where } \quad c_{1}=\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}, \quad \phi_{1}=\tan ^{-1} \frac{a_{1}}{b_{1}} .
$$

Here c_{1} is the amplitude and ϕ_{1} is called the phase. The wave represented by $y=c_{1} \sin \left(x+\dot{\phi}_{1}\right)$ is called the fundamental wave and $y=a_{1} \cos x, y=b_{1} \sin x$ are called its components.

Fig. 86a.
Similarly, we may represent $y=a_{k} \cos k x, y=b_{k} \sin k x$,
and $\quad y=a_{k} \cos k x+b_{k} \sin k x=c_{k} \sin \left(k x^{\circ}+\phi_{k}\right)$,
where $\quad c_{k}=\sqrt{a_{k}{ }^{2}+b_{k}^{2}}$ and $\phi_{k}=\tan ^{-1} a_{k} / b_{k}$.
The wave represented by $y=c_{k} \sin \left(k x+\phi_{k}\right)$ is called the k th harmonic, its amplitude is c_{k}, its phase is ϕ_{k}, its period is $2 \pi / k$, since

$$
\sin \left[k\left(x+\frac{2 \pi}{k}\right)+\phi_{k}\right]=\sin \left[k x+2 \pi+\phi_{k}\right]=\sin \left(k x+\phi_{k}\right),
$$

and its frequency, or the number of complete waves in the interval 2π, is k.

The trigonometric series is often written in the form
$y=c_{0}+c_{1} \sin \left(x+\phi_{1}\right)+c_{2} \sin \left(2 x+\phi_{2}\right)+\cdots+c_{n} \sin \left(n x+\phi_{n}\right)+\cdots$, showing explicitly the expressions for the fundamental wave and the successive harmonics. The more complex wave represented by this expression may be built up by a combination of the waves represented by the various harmonics. Fig. $86 b$ shows how the wave for the equation

$$
y=2 \sin \left(x+\frac{\pi}{6}\right)+\sin \left(2 x-\frac{2 \pi}{3}\right)+\frac{1}{2} \sin \left(3 x+\frac{3 \pi}{4}\right),
$$

or

$$
y=\cos x-\frac{\sqrt{3}}{2} \cos 2 x+\frac{\sqrt{2}}{4} \cos 3 x+\sqrt{3} \sin x-\frac{1}{2} \sin 2 x-\frac{\sqrt{2}}{4} \sin 3 x
$$

is built up as the combination of the fundamental and the second and third harmonics, and how the fundamental wave is modified by the addition of the harmonic waves.

- Fig. 863.

In the case of alternating currents or voltages, the portion of the wave extending from $x=\pi$ to $x=2 \pi$ is merely a repetition below the x-axis of the portion of the wave extending from $x=0$ to $x=\pi$; this is illus-

Fig. 86c. trated in Fig. $86 c$ where the values of the ordinate at $x=x_{r}+\pi$ is minus the value of the ordinate at $x=x_{r}$. Since

$$
\begin{aligned}
\sin & \left(k[x+\pi]+\phi_{k}\right) \\
& =\sin \left(k x+\phi_{k}+k \pi\right) \\
& =+\sin \left(k x+\phi_{k}\right) \text { if } k \text { is even } \\
& =-\sin \left(k x+\phi_{k}\right) \text { if } k \text { is odd, }
\end{aligned}
$$

the series can contain only the odd harmonics and has the form

$$
\begin{aligned}
& y=c_{0}+c_{1} \sin \left(x+\phi_{1}\right)+c_{3} \sin \left(3 x+\phi_{3}\right)+c_{5} \sin \left(5 x+\phi_{5}\right)+\cdots \\
& \text { or } \begin{aligned}
y= & a_{0}+a_{1} \cos x+a_{3} \cos 3 x+a_{5} \cos 5 x+\cdots \\
& +b_{1} \sin x+b_{2} \sin 3 x+b_{5} \sin 5 x+\cdots
\end{aligned}
\end{aligned}
$$

87. ' Determination of the constants when the function is known. If, in the series

$$
\begin{aligned}
y=f(x)= & a_{0}+a_{1} \cos x+a_{2} \cos 2 x+\cdots+a_{n} \cos n x+\cdots \\
& +b_{1} \sin x+b_{2} \sin 2 x+\cdots+b_{n} \sin n x+\cdots,
\end{aligned}
$$

we multiply both sides by $d x$ and integrate between the limits 0 and 2π, we have

$$
\begin{aligned}
& \int_{0}^{2 \pi} y d x=a_{0} \int_{0}^{2 \pi} d x+a_{1} \int_{0}^{2 \pi} \cos x d x+\ldots+a_{n} \int_{0}^{2 \pi} \cos n x d x+\cdots \\
& +b_{1} \int_{0}^{2 \pi} \sin x d x+\ldots+b_{n} \int_{0}^{2 \pi} \sin n x d x+\cdots \\
& =a_{0}|x|_{0}^{2 \pi}+a_{1}|\sin x|_{0}^{2 \pi}+\cdots+\frac{a_{n}}{n}|\sin n x|_{0}^{2 \pi}+\cdots \\
& -b_{1}|\cos x|_{0}^{2 \pi}-\cdots-\frac{b_{n}}{n}|\cos n x|_{0}^{2 \pi}-\cdots
\end{aligned}
$$

$=2 \pi a_{0}$, since all the other terms vanish.
If we multiply both sides by $\cos k x d x$ and integrate between the limits 0 and 2π, we have
$\int_{0}^{2 \pi} y \cos k x d x=a_{0} \int_{0}^{2 \pi} \cos k x d x+\cdots+a_{k} \int_{0}^{2 \pi} \cos ^{2} k x d x+\cdots$
$+a_{n} \int_{0}^{2 \pi} \cos n x \cos k x d x+\cdots+b_{n} \int_{0}^{2 \pi} \sin n x \cos k x d x+\cdots$

$$
\begin{aligned}
& =\frac{a_{0}}{k}|\sin k x|_{0}^{2 \pi}+\cdots+\frac{a_{k}}{2}\left|x+\frac{\sin 2 k x}{2 k}\right|_{0}^{2 \pi}+\cdots \\
& \quad+\frac{a_{n}}{2}\left|\frac{\sin (n-k) x}{n-k}+\frac{\sin (n+k) x}{n+k}\right|_{0}^{2 \pi}+\cdots \\
& \quad-\frac{b_{n}}{2}\left|\frac{\cos (n-k) x}{n-k}+\frac{\cos (n+k) x}{n+k}\right|_{0}^{2 \pi}-\cdots \\
& =\pi a_{k}, \text { since all the other terms vanish. }
\end{aligned}
$$

Similarly, if we multiply both sides by $\sin k x d x$ and integrate between the limits o and 2π, we have $\int_{0}^{2 \pi} y \sin k x d x=a_{0} \int_{0}^{2 \pi} \sin k x d x+\cdots+a_{n} \int_{0}^{2 \pi} \cos n x \sin k x d x+\cdots$ $+\cdots+b_{k} \int_{0}^{2 \pi} \sin ^{2} k x d x+\cdots+b_{n} \int_{0}^{2 \pi} \sin n x \sin k x d x+\cdots$ $=-\frac{a_{0}}{k}|\cos k x|_{0}^{2 \pi}-\cdots+\frac{b_{k}}{2}\left|x-\frac{\sin 2 k x}{2 k}\right|_{0}^{2 \pi}+\cdots$ $-\frac{a_{n}}{2}\left|\frac{\cos (k-n) x}{k-n}+\frac{\cos (k+n) x}{k+n}\right|_{0}^{2 \pi}-\cdots$ $+\frac{b_{n}}{2}\left|\frac{\sin (n-k) x}{n-k}-\frac{\sin (n+k) x}{n+k}\right|_{0}^{2 \pi}+\cdots$
$=\pi b_{k}$, since all the other terms vanish.

Collecting our results, we have
$a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} y d x, \quad a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} y \cos k x d x, \quad b_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} y \sin k x d x$,
where $k=1,2,3$, Each coefficient may thus be independently determined and thus each individual harmonic can be calculated without calculating the preceding harmonics.
88. Determination of the constants when the function is unknown. In our problems the function is unknown, and the periodic curve is drawn mechanically or a set of ordinates are given by means of which the curve may be approximately drawn. We shall represent the curve by a trigonometric series with a finite number of terms. We divide the interval from $x=0$ to $x=2 \pi$ into n equal intervals and measure the first n ordinates; these are represented by the table

We wish to determine the constants in the equation

$$
\begin{aligned}
y=a_{0} & +a_{1} \cos x+\cdots+a_{k} \cos k x+\cdots \\
& +b_{1} \sin x+\cdots+b_{k} \sin k x+\cdots
\end{aligned}
$$

where the number of terms is n, so that the corresponding curve will pass through the n points given in the table. Substituting the n sets of values of x and y in this equation, we get n linear equations in the a 's and b 's of the form

$$
\begin{aligned}
y_{r}=a_{0} & +a_{1} \cos x_{r}+\cdots+a_{k} \cos k x_{r}+\cdots \\
& +b_{1} \sin x_{r}+\cdots+b_{k} \sin k x_{r}+\cdots
\end{aligned}
$$

where r takes in succession the values $0,1,2, \ldots, n-1$. We may now solve these n equations for the a 's and b 's.

We shall first state two theorems in Trigonometry concerning the sum of the cosines or sines of n angles which are in arithmetic progression, viz.:
$\sum \cos (\alpha+r \beta)=\cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\cdots$

$$
+\cos (\alpha+[n-1] \beta)=\frac{\sin \frac{n \beta}{2}}{\sin \frac{\beta}{2}} \cos \left(\alpha+\frac{n-1}{2} \beta\right)
$$

$\sum \sin (\alpha+r \beta)=\sin \alpha+\sin (\alpha+\beta)+\sin (\alpha+2 \beta)+\cdots$

$$
+\sin (\alpha+[n-1] \beta)=\frac{\sin \frac{n \beta}{2}}{\sin \frac{\beta}{2}} \sin \left(\alpha+\frac{n-1}{2} \beta\right)^{*}
$$

If we let $\alpha=0$ and $\beta=l \frac{2 \pi}{n}$, these become

$$
\begin{aligned}
& \sum \cos r l \frac{2 \pi}{n}=\frac{\sin l \pi}{\sin \frac{l \pi}{n}} \cos \frac{l(n-1) \pi}{n}=0, \text { since } \sin l \pi=0 \\
& \sum \sin r l \frac{2 \pi}{n}=\frac{\sin l \pi}{\sin \frac{l \pi}{n}} \sin \frac{l(n-1) \pi}{n}=0, \text { since } \sin l \pi=0
\end{aligned}
$$

* We may prove these theorems as follows:

By means of the well-known trigonometric identities
$2 \cos u \sin v=\sin (u+v)-\sin (u-v), \quad 2 \sin u \sin v=\cos (u-v)-\cos (u+v)$ we may write the identities

$$
\begin{aligned}
& 2 \cos \alpha \sin \frac{\beta}{2}=\sin \left(\alpha+\frac{\beta}{2}\right)-\sin \left(\alpha-\frac{\beta}{2}\right) . \quad 2 \sin \alpha \sin \frac{\beta}{2}=\cos \left(\alpha-\frac{\beta}{2}\right)-\cos \left(\alpha+\frac{\beta}{2}\right) . \\
& 2 \cos (\alpha+\beta) \sin \frac{\beta}{2}=\sin \left(\alpha+\frac{3 \beta}{2}\right)-\sin \left(\alpha+\frac{\beta}{2}\right) \cdot 2 \sin (\alpha+\beta) \sin \frac{\beta}{2}=\cos \left(\alpha+\frac{\beta}{2}\right)-\cos \left(\alpha+\frac{3 \beta}{2}\right) \cdot \\
& 2 \cos (\alpha+2 \beta) \sin \frac{\beta}{2}=\sin \left(\alpha+\frac{5 \beta}{2}\right)-\sin \left(\alpha+\frac{3 \beta}{2}\right) \cdot 2 \sin (\alpha+2 \beta) \sin \frac{\beta}{2}=\cos \left(\alpha+\frac{3 \beta}{2}\right)-\cos \left(\alpha+\frac{5 \beta}{2}\right) \cdot \\
& 2 \cos (\alpha+[n-1] \beta) \sin \frac{\beta}{2}=\sin \left(\alpha+\frac{2 n-1}{2} \beta\right) 2 \sin (\alpha+[n-1] \beta) \sin \frac{\beta}{2}=\cos \left(\alpha+\frac{2 n-3}{2} \beta\right) \\
& -\sin \left(\alpha+\frac{2 n-3}{2} \beta\right) .
\end{aligned}
$$

Adding, we get

$$
\begin{aligned}
& 2 \sin \frac{\beta}{2} \sum \cos (\alpha+\gamma \beta)=\sin \left(\alpha+\frac{2 n-1}{2} \beta\right) \\
& -\sin \left(\alpha-\frac{\beta}{2}\right) \\
& =2 \cos \left(\alpha+\frac{n-1}{2} \beta\right) \sin \frac{n}{2} \beta \text {. } \\
& \therefore \sum \cos (\alpha+r \beta)=\frac{\sin \frac{n \beta}{2}}{\sin \frac{\beta}{2}} \cos \left(\alpha+\frac{n-1}{2} \beta\right) \cdot \therefore \sum \sin (\alpha+r \beta)=\frac{\sin \frac{n \beta}{2}}{\sin \frac{\beta}{2}} \sin \left(\alpha+\frac{n-1}{2} \beta\right) \text {. }
\end{aligned}
$$

for all values of l except

$$
\begin{aligned}
& l=0, \text { when } \sum \cos r l \frac{2 \pi}{n}=\sum \cos 0=n, \\
& l=n, \text { when } \sum \cos r l \frac{2 \pi}{n}=\sum \cos 2 r \pi=n .
\end{aligned}
$$

Since $x_{r}=r \frac{2 \pi}{n}$, we may finally state that

$$
\begin{aligned}
\sum \cos l x_{r} & =0, \text { except when } l=0 \text { or } l=n \\
& =n, \text { when } l=0 \text { or } l=n . \\
\sum \sin l x_{r} & =0 \text { for all values of } l .
\end{aligned}
$$

To determine a_{0} we merely add the n equations, and get

$$
\begin{aligned}
\sum y_{r} & =n a_{0}+\cdots+a_{k} \sum \cos k x_{r}+\cdots+a_{k} \sum \sin k x_{r}+\cdots \\
& =n a_{0}, \text { since all the other terms vanish. }
\end{aligned}
$$

To determine a_{k} we multiply each of the n equations by the coefficient of a_{k} in that equation, i.e., by $\cos k x_{r}$, and add the n resulting equations; we get

$$
\begin{aligned}
\sum y_{r} \cos k x_{r}= & a_{0} \sum \cos k x_{r}+\cdots+a_{k} \sum \cos ^{2} k x_{r}+\cdots \\
& +a_{p} \sum \cos p x_{r} \cos k x_{r}+\cdots+b_{p} \sum \sin p x_{r} \cos k x_{r}+\cdots
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \sum \cos k x_{r}=0 ; \\
& \sum \cos p x_{r} \cos k x_{r}^{*}=\frac{1}{2} \sum \cos (p+k) x_{r}+\frac{1}{2} \sum \cos (p-k) x_{r}=0 ; \\
& \sum \sin p x_{r} \cos k x_{r}^{*}=\frac{1}{2} \sum \sin (p+k) x_{r}+\frac{1}{2} \sum \sin (p-k) x_{r}=0 ; \\
& \begin{aligned}
\sum \cos ^{2} k x_{r}=\sum \frac{I}{2}\left(1+\cos 2 k x_{r}\right)=\frac{n}{2}+\frac{1}{2} \sum \cos 2 k x_{r} & =\frac{n}{2}, \text { if } k \neq \frac{n}{2} \\
& =n, \text { if } k=\frac{n}{2}
\end{aligned}
\end{aligned}
$$

- We use the trigonometric identities

$$
\begin{aligned}
& 2 \cos u \cos v=\cos (u+v)+\cos (u-v) . \\
& 2 \sin u \cos v=\sin (u+v)+\sin (u-v) . \\
& 2 \sin u \sin v=\cos (u-v)-\cos (u+v) .
\end{aligned}
$$

Hence, $\quad \sum y_{r} \cos k x_{r}=\frac{n}{2} a_{k}$, except when $k=\frac{n}{2}$

$$
=n a_{k}, \text { when } k=\frac{n}{2} .
$$

To determine b_{k} we multiply each of the n equations by the coefficient of b_{k} in that equation, i.e., by $\sin k x_{r}$, and add the n resulting equations; we get
$\sum y_{r} \sin k x_{r}=a_{0} \sum \sin k x_{r}+\cdots a_{p} \sum \cos p x_{r} \sin k x_{r}+\cdots$

$$
+b_{k} \sum \sin ^{2} k x_{r}+\cdots+b_{p} \sum \sin p x_{r} \sin k x_{r}+\cdots
$$

Now,

$$
\begin{aligned}
& \sum \sin k x_{r}=0 ; \\
& \sum \cos p x_{r} \sin k x_{r}^{*}=\frac{1}{2} \sum \sin (k+p) x_{r}+\frac{1}{2} \sum \sin (k-p) x_{r}=0 ; \\
& \sum \sin p x_{r} \sin k x_{r}^{*}=\frac{1}{2} \sum \cos (p-k) x_{r}-\frac{1}{2} \sum \cos (p+k) x_{r}=0 ; \\
& \begin{aligned}
\sum \sin ^{2} k x_{r}=\sum \frac{1}{2}\left(1-\cos 2 k x_{r}\right)=\frac{n}{2}-\frac{1}{2} \sum \cos 2 k x_{r} & =\frac{n}{2}, \text { if } k \neq \frac{n}{2} \\
& =0, \text { if } k=\frac{n}{2} .
\end{aligned}
\end{aligned}
$$

Hence,

$$
\sum y_{r} \sin k x_{r}=\frac{n}{2} b_{k} .
$$

Collecting our results, we have finally

$$
\begin{aligned}
& a_{0}=\frac{1}{n} \sum y_{r}=\frac{1}{n}\left(y_{0}+y_{1}+y_{2}+\cdots+y_{n-1}\right), \\
& a_{\frac{n}{2}}=\frac{1}{n} \sum y_{r} \cos \frac{n}{2} x_{r}=\frac{1}{n} \sum y_{r} \cos r \pi=\frac{1}{n}\left(y_{0}-y_{1}+y_{2}-y_{3}+\cdots-y_{n-1}\right), \\
& a_{k}=\frac{2}{n} \sum y_{r} \cos k x_{r}=\frac{2}{n}\left(y_{0} \cos k x_{0}+y_{1} \cos k x_{1}+\cdots+y_{n-1} \cos k x_{n-1}\right), \\
& b_{k}=\frac{2}{n} \sum y_{r} \sin k x_{r}=\frac{2}{n}\left(y_{0} \sin k x_{0}+y_{1} \sin k x_{1}+\cdots+y_{n-1} \sin k x_{n-1}\right),
\end{aligned}
$$

* We use the trigonometric identities

$$
\begin{aligned}
& 2 \cos u \cos v=\cos (u+v)+\cos (u-v) . \\
& 2 \sin u \cos v=\sin (u+v)+\sin (u-v) . \\
& 2 \sin u \sin v=\cos (u-v)-\cos (u+v) .
\end{aligned}
$$

If n is an even integer, our periodic curve is now represented by the equation

$$
\begin{aligned}
y=a_{0} & +a_{1} \cos x+\cdots+a_{k} \cos k x+\cdots+a_{\frac{n}{2}} \cos \frac{n}{2} x \\
& +b_{1} \sin x+\cdots+b_{k} \sin k x+\cdots+b_{\frac{n}{2}-1} \sin \left(\frac{n}{2}-1\right) x
\end{aligned}
$$

The n coefficients are determined as above. Thus -
a_{0} is the average value of the n ordinates.
$a_{\frac{n}{2}}$ is the average value of the n ordinates taken alternately plus and minus.
a_{k} or b_{k} is twice the average value of the products formed by multiplying each ordinate by the cosine or sine of k times the corresponding value of x.*

We note that each coefficient is determined independently of all the others.

If we wished to represent the periodic curve by a Fourier's series containing n terms, but had measured m ordinates, where $m>n$, we should have to determine the coefficients by the method of least squares. The values of the ordinates as computed from this series will agree as closely as possible with the values of the measured ordinates. It may be shown that the expressions for the coefficients obtained by the method of least squares have the same form as those derived above. \dagger

* We may also derive the values of the coefficients as follows: In Art. 87, we have shown that

$$
\int_{0}^{2 \pi} y \cos k x d x=a_{k} \int_{0}^{2 \pi} \cos ^{2} k x d x
$$

since all the other terms vanish.
If we replace the integrals by sums, and take for $d x$ the interval $2 \pi / n$, this becomes

$$
\begin{aligned}
\sum y_{r} \cos k x_{r}=a_{k} \sum \cos ^{2} k x_{r} & =\frac{n}{2} a_{k}, \text { if } k \neq 0 \text { or } k \neq \frac{n}{2} \\
& =n a_{k}, \text { if } k=0 \text { or } k=\frac{n}{2}
\end{aligned}
$$

Hence, $\quad \sum y_{r}=n a_{0}, \quad \sum y_{r} \cos \frac{n}{2} x_{r}=n a_{\frac{n}{2}}, \quad \sum y_{r} \cos k x_{r}=\frac{n}{2} a_{k}$.
Similarly we may show that $\quad \sum y_{r} \sin k x_{r}=\frac{n}{2} b_{k}$.

[^7]We shall illustrate the use of the above formulas for the coefficients by finding the fifth harmonic in the equation of the periodic curve passing through the 12 points given by the following data (Fig. 89).

x	y	$\cos 5 x$	$\sin 5 x$	$y \cos 5 x$	$y \sin 5 x$
0°	9.3	1.000	0.000	9.30	0.00
30°	15.0	-0.866	0.500	-12.99	7.50
60°	17.4	0.500	-0.866	8.70	-15.07
90°	23.0	0.000	1.000	0.00	23.00
120°	37.0	-0.500	-0.866	-18.50	-32.04
150°	31.0	0.866	0.500	26.85	15.50
180°	15.3	-1.000	0.000	-15.30	0.00
210°	4.0	0.866	-0.500	3.46	- 2.00
240°	-8.0	-0.500	0.866	4.00	- 6.93
270°	-13.2	0.000	-1.000	0.00	13.20
$30{ }^{\circ}$	-14.2	0.500	-0.866	- 7.10	-12.30
330°	-6.0	-0.866	-0.500	5.20	3.00
$\Sigma=3.62$					-6.14

$a_{5}=1_{12}^{2} \sum y_{r} \cos 5 x_{r}=0.60 ; \quad b_{5}=1_{12}^{2} \sum y_{r} \sin 5 x_{r}=-1.02$.
Hence the fifth harmonic is $0.60 \cos 5 x-1.02 \sin 5 x$.
It is evident that the labor involved in the direct determination of the coefficients by the above formulas is very great. This labor may be reduced to a minimum by arranging the work in tabular form. These forms follow the methods devised by Runge * for periodic curves involving both even and odd harmonics (Art. 89), and by S. P. Thompson \dagger for periodic curves involving only odd harmonics (Art. 90).
89. Numerical evaluation of the coefficients. Even and odd harmonics. -
(I) Six-ordinate scheme. - Given the curve and wishing to determine the first three harmonics, i.e., the 6 coefficients in the equation
$y=a_{0}+a_{1} \cos x+a_{2} \cos 2 x+a_{3} \cos 3 x+b_{1} \sin x+b_{2} \sin 2 x$, we divide the period from $x=0^{\circ}$ to $x=360^{\circ} \ddagger$ into 6 equal parts and

* Zeit. f. Math. u. Phys., xlviii. 443 (1903), lii. 117 (1905); Erläuterung des Rechnungsformulars, u.s.w., Braunschweig, 1913.
\dagger Proc. Phys. Soc., xix. 443, 1905; The Electrician, 5th May, 1905.
\ddagger If the period is taken equal to $2 \pi / m$ instead of 2π, the representing trigonometric series has the form

$$
\begin{aligned}
y=a_{0} & +a_{1} \cos m \theta+a_{2} \cos 2 m \theta+\cdots \\
& +b_{1} \sin m \theta+b_{2} \sin 2 m \theta+\cdots,
\end{aligned}
$$

where θ represents abscissas. By the substitution $m \theta=x$ or $\theta=x / m$, the series becomes

$$
\begin{aligned}
y=a_{0} & +a_{1} \cos x+a_{2} \cos 2 x+\cdots \\
& +b_{1} \sin x+b_{2} \sin 2 x+\cdots
\end{aligned}
$$

and this has a period 2π. The abscissas from $\theta=0$ to $\theta=2 \pi / m$ now become the abscissas from $x=0$ to $x=2 \pi$, and we proceed to determine the coefficients in the second series as outlined. Having determined the coefficients, we finally replace x by me.
measure the ordinates at the beginning of each interval; let these be represented by the following table:

x
y

Here $n=6$, and using the formulas on p. 177, we have

| $6 a_{0}=y_{0}$ | $+y_{1}$ | $+y_{2}$ | $+y_{3}$ | $+y_{4}$ |
| :--- | :--- | :--- | :--- | :--- |$+y_{5}$

We arrange the y 's in two rows,

Sum
Diff.

y_{0}	y_{1}	y_{2}	y_{3}
	y_{5}	y_{4}	
v_{0}	v_{1}	v_{2}	v_{3}
	w_{1}	w_{2}	

where the v 's are the sums and the w 's are the differences of the quantities standing in the same vertical column; thus, $v_{0}=y_{0}, v_{1}=y_{1}+y_{5}, w_{1}=y_{1}$ $-y_{6}$, etc. Since $\cos 240^{\circ}=\cos 120^{\circ}, \cos 300^{\circ}=\cos 60^{\circ}$, etc. We may now write

$$
\begin{array}{lll}
6 a_{0}=v_{0}+v_{1} & +v_{2} & +v_{3} \\
6 & a_{3}=v_{0}-v_{1} & -v_{2} \\
3 & a_{1}=v_{0}+v_{1} \cos 60^{\circ}+v_{2} \cos 120^{\circ}+v_{3} \cos 180^{\circ} \\
3 a_{2}=v_{0}+v_{1} \cos 120^{\circ}+v_{2} \cos 240^{\circ}+v_{3} \cos 360^{\circ} \\
3 & b_{1}= & w_{1} \sin 60^{\circ}+w_{2} \sin 120^{\circ} \\
3 b_{2}= & w_{1} \sin 120^{\circ}+w_{2} \sin 240^{\circ}
\end{array}
$$

We arrange the v 's and w 's in rows,

	v_{0}	v_{1}	w_{1}
Sum	v_{3}	v_{2}	$\frac{w_{2}}{r_{1}}$
	p_{0}	p_{1}	s_{1}

and we now write

$$
\begin{array}{ll}
6 a_{0}=p_{0}+p_{1}, & 6 a_{3}=q_{0}-q_{1} \\
3 a_{1}=q_{0}+\frac{1}{2} q_{1}, & 3 a_{2}=p_{0}-\frac{1}{2} p_{1} \\
3 b_{1}=\frac{\sqrt{3}}{2} r_{1}, & 3 b_{2}=\frac{\sqrt{3}}{2} s_{1}
\end{array}
$$

Example. Determine the first three harmonics for the following data taken from Fig. 866.

Hence, $\quad a_{0}=0.02, a_{1}=$ I.OI, $a_{2}=-\mathrm{o} .88, \quad a_{3}=0.33$, $b_{1}=1.76, \quad b_{2}=-0.46$,
and

$$
\begin{aligned}
y=0.02 & +1.01 \cos x-0.88 \cos 2 x+0.33 \cos 3 x \\
& +1.76 \sin x-0.46 \sin 2 x .
\end{aligned}
$$

The equation from which the curve in Fig. $86 b$ was plotted was
$y=2 \sin \left(x+\frac{\pi}{6}\right)+\sin \left(2 x-\frac{2 \pi}{3}\right)+\frac{1}{2} \sin \left(3 x+\frac{3 \pi}{4}\right)$
$=\cos x-0.87 \cos 2 x+0.35 \cos 3 x+1.73 \sin x+0.50 \sin 2 x-0.35 \sin 3 x$.
We observe the close agreement between the two sets of coefficients, the small discrepancies being due to the approximate measurements of the ordinates for our example.
(II) Twelve-ordinate scheme.-Given the curve and wishing to determine the first six harmonics, i.e., the 12 coefficients in the equation $y=a_{0}+a_{1} \cos x+a_{2} \cos 2 x+a_{3} \cos 3 x+a_{4} \cos 4 x+a_{5} \cos 5 x$ $+a_{6} \cos 6 x+b_{1} \sin x+b_{2} \sin 2 x+b_{3} \sin 3 x+b_{4} \sin 4 x+b_{5} \sin 5 x$, we divide the interval from $x=0$ to $x=360^{\circ}$ into 12 equal parts and measure the ordinates at the beginning of each interval; let these be represented by the following table:
$\frac{x}{y}\left|\frac{0^{\circ}}{y_{0}}\right| \frac{30^{\circ}}{y_{1}}\left|\frac{60^{\circ}}{y_{2}}\right| \frac{90^{\circ}}{y_{3}}\left|\frac{120^{\circ}}{y_{4}}\right| \frac{150^{\circ}}{y_{5}}\left|\frac{180^{\circ}}{y_{6}}\right| \frac{210^{\circ}}{y_{7}}\left|\frac{240^{\circ}}{y_{3}}\right| \frac{270^{\circ}}{y_{9}}\left|\frac{300^{\circ}}{y_{10}}\right| \frac{330^{\circ}}{y_{11}}$

Here $n=12$, and the formulas for the coefficients give

If we arrange the y 's in two rows

	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
	y_{11}	y_{10}	y_{9}	y_{8}	y_{7}		
	Sum	v_{0}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}
Diff.		w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	

and remember that $\cos 330^{\circ}=\cos 30^{\circ}, \sin 330^{\circ}=-\sin 30^{\circ}$, etc., the above equations may be written

If we now arrange the v 's and w 's in two rows

	v_{0}	v_{1}	v_{2}	v_{3}	w_{1}	w_{2}	w_{3}
	v_{6}	v_{5}	v_{4}		w_{3}	w_{5}	w_{4}
Sum	p_{0}	p_{1}	p_{2}	p_{3}	r_{1}	r_{2}	r_{3}
Diff.	q_{0}	q_{1}	q_{2}		s_{1}	s_{2}	

the equations may be written

$$
\begin{array}{rll}
12 & a_{0} & =q_{0}+q_{1} \\
12 & a_{6} & =p_{0}-p_{1} \\
6 & +q_{2} & +q_{3} \\
6 & =q_{0}+q_{1} \cos 30^{\circ}+q_{2} \cos 60^{\circ} & -p_{3} \\
6 & a_{2} & =p_{0}+p_{1} \cos 60^{\circ}+p_{2} \cos 120^{\circ}+p_{3} \cos 180^{\circ}
\end{array}
$$

$$
\begin{array}{ll}
6 b_{1}=r_{1} \sin 30^{\circ} & +r_{2} \sin 60^{\circ} \\
6 b_{2}=s_{1} \sin 60^{\circ} & +r_{3} \sin 90^{\circ}
\end{array}
$$

Finally, if we arrange the p 's, q 's, and r 's as follows:

Sum

Diff.

the equations become

$$
\begin{array}{rlrl}
12 a_{0} & =l_{0}+l_{1} . & \text { 12 } a_{6}=l_{0}-l_{1} . \\
6 a_{1}=q_{0}+q_{1} \sin 60^{\circ}+q_{2} \sin 30^{\circ} . & 6 a_{5}=q_{0}-q_{1} \sin 60^{\circ}+q_{2} \sin 30^{\circ} . \\
6 a_{2}=\left(p_{0}-p_{3}\right)+\left(p_{1}-p_{2}\right) \sin 30^{\circ} . & 6 a_{4}=\left(p_{0}+p_{3}\right)-\left(p_{1}+p_{2}\right) \sin 30^{\circ} . \\
6 a_{3}=t_{2} . & 6 b_{3}=t_{1} . \\
6 b_{1}=r_{1} \sin 30^{\circ}+r_{2} \sin 60^{\circ}+r_{3} . & 6 b_{5}=r_{1} \sin 30^{\circ}-r_{2} \sin 60^{\circ}+r_{3 .} . \\
6 b_{2}=\left(s_{1}+s_{2}\right) \sin 60^{\circ} . & 6 b_{1}=\left(s_{1}-s_{2}\right) \sin 60^{\circ} .
\end{array}
$$

We may now arrange the above scheme in a computing form as follows:

Ordinates		y_{0}	$\begin{aligned} & y_{1} \\ & y_{11} \\ & \hline \end{aligned}$	$\begin{aligned} & y_{2} \\ & y_{10} \\ & \hline \end{aligned}$	$\begin{aligned} & y_{8} \\ & y_{9} \end{aligned}$	$\begin{aligned} & y_{4} \\ & y_{8} \\ & \hline \end{aligned}$	$\begin{aligned} & y_{5} \\ & y_{7} \end{aligned}$	y_{6}
Sum Diff.		v_{u}	v_{1}	v_{2}	v_{3}	v_{3}	v_{5}	v_{6}
			w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	
	ν_{0}	v_{1}	v_{2}	v_{3}		w_{1}	w_{2}	w_{3}
	v_{6}	v_{5}	v_{4}			w_{5}	w_{4}	
Sum	p_{0}	p_{1}	p_{2}	p_{3}		r_{1}	r_{2}	r_{3}
Diff.	\underline{g}_{0}	q_{1}	g_{2}			s_{1}	s_{2}	
	p_{0}	p_{1}				r_{1}	q_{0}	
	p_{2}	p_{3}				r_{3}	g_{2}	
Sum	l_{0}	l_{1}			Diff.	t_{1}	l_{2}	

Multipliers of the quantities in the sare horizontal rows before these are entered	Cosine terms				Sine terms		
$\begin{aligned} & \sin 30^{\circ}=0.5 \\ & \sin 60^{\circ}=0866 \\ & \sin 90^{\circ}=1.0 \end{aligned}$	$\begin{array}{ll} q_{2} & q_{1} \\ q_{0} & \\ \hline \end{array}$	$\begin{array}{rr} -p_{2} & p_{1} \\ p_{0} & -p_{8} \\ \hline \end{array}$	t_{2}	$l_{0} \quad l_{1}$	r_{1} r_{8} r_{2}	$\begin{array}{ll}s_{1} & s_{2}\end{array}$	t_{1}
Sum of 1st column Sum of 2d column	,	P....... $\cdots \cdots \cdots$		[..... $\cdots \cdots .$.		… \ldots	
Sum Difference	$\begin{aligned} & 6 a_{1} \\ & 6 a_{5} \end{aligned}$	$6 a_{2}$ 6 a_{4}	$6 a_{3}$	$12 a_{0}$	$\begin{array}{ll}6 & b_{1} \\ 6 & b_{5}\end{array}$	6 6 6 b_{4}	$6 b_{3}$

Checks:

$$
y_{0}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}
$$

$$
y_{1}-y_{11}=\left(b_{1}+b_{5}\right)+\sqrt{3}\left(b_{2}+b_{4}\right)+2 b_{3} .
$$

Result: $\quad y=a_{0}+a_{1} \cos x+a_{2} \cos 2 x+\cdots+a_{6} \cos 6 x$ $+b_{1} \sin x+b_{2} \sin 2 x+\cdots+b_{5} \sin 5 x$.

Fig. 89.

Example. In the periodic curve of Fig. 89, the interval from $x=0^{\circ}$ to $x=360^{\circ}$ is divided into 12 equal parts and the ordinates y_{0} to y_{11} are measured.
$\frac{x}{y}\left|\frac{0^{\circ}}{9.3}\right| \frac{30^{\circ}}{15.0}\left|\frac{60^{\circ}}{17.4}\right| \frac{90^{\circ}}{23.0}\left|\frac{120^{\circ}}{37.0}\right| \frac{150^{\circ}}{31.0}\left|\frac{180^{\circ}}{15.3}\right| \frac{210^{\circ}}{4.0}\left|\frac{240^{\circ}}{-8.0}\right| \frac{270^{\circ}}{-13.2}\left|\frac{300^{\circ}}{-14.2}\right| \frac{330^{\circ}}{-6.0}$
We shall determine the first six harmonics by the above scheme.

Ordinates	9.3	15.0	17.4	23.0	37.0	31.0	15.3
		-6.0	-14.2	-13.2	-8.0	4.0	
(v)	9.3	9.0	3.2	9.8	29.0	35.0	15.3
Sum							
Diff. (w)		21.0	31.6	36.2	45.0	27.0	

	$\begin{array}{r} 9.3 \\ 15.3 \\ \hline \end{array}$	$\begin{array}{r} 9.0 \\ 35.0 \\ \hline \end{array}$	$\begin{array}{r} 3.2 \\ 29.0 \\ \hline \end{array}$	9.8		$\begin{array}{r} 21.0 \\ 27.0 \\ \hline \end{array}$	$\begin{array}{r} 31.6 \\ 45.0 \\ \hline \end{array}$	36.2
Sum (p)	24.6	44.0	32.2	9.8	(r)	(r) 48.0	76.6	36.2
Diff. (q)	-6.0	-26.0	-25.8		(s)) -6.0-13.4		
		24.6	44.0		Diff. (t)	$48 . \mathrm{I}-6.0$		
		32.2	9.8			$36.2-25.8$		
Sum (l)		56.8	53.8			(11.9	19.8	
Multipliers	Cosine terms					Sine terms		
$\begin{aligned} & 0.5 \\ & 0.866 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & -12.9 \\ & -6.0^{-22.5} \end{aligned}$		$\begin{array}{r}220 \\ -9.8 \\ \hline\end{array}$	19.8	56.853 .8	$\begin{array}{ll} 240 \\ 36.2 & 603 \end{array}$	-5.2-11.6	611.9
Sum of 1st col. Sum of 2d col.	-18.9		8.5.		56.8 53.8	${ }_{66}^{60.2}$	-5.2 -11.6	
Sum. .	$-41.4=6 a_{1}$ $36=6 a_{6}$		=6ay	19.8 $=6 a_{3}$	$\begin{array}{r} 1106=12 a_{0} \\ 3.0=12 a_{0} \end{array}$	$\begin{aligned} & 126.5=6 b_{1} \\ & -61=6 b_{5} \end{aligned}$	-16.8 606 $4=6 b_{2}$	${ }_{=6}^{119}$

$a_{1}=-6.90, a_{2}=3.45, a_{3}=3.30, a_{0}=9.22, b_{1}=2 \mathrm{I} .08, b_{2}=-2.80, b_{3}=1.98$, $a_{5}=0.60, \quad a_{4}=-0.62, \quad a_{6}=0.25, b_{5}=-1.02, b_{4}=1.07$.
Check: $9.3=9.22-6.90+3.45+3.30-0.62+0.60+0.25=9.30$.

$$
21.0=(21.08-1.02)+1.732(-2.80+1.07)+2(1.98)=21.02
$$

Result: *

$$
\begin{aligned}
y= & 9.22-6.90 \cos x+3.45 \cos 2 x+3.30 \cos 3 x-0.62 \cos 4 x \\
& +0.60 \cos 5 x+0.25 \cos 6 x+21.08 \sin x-2.80 \sin 2 x \\
& +1.98 \sin 3 x+1.07 \sin 4 x-1.02 \sin 5 x
\end{aligned}
$$

or

$$
\begin{aligned}
y= & 9.22+22.18 \sin \left(x-18.12^{\circ}\right)-4.44 \sin \left(2 x-50.93^{\circ}\right) \\
& +3.85 \sin \left(3 x+59.04^{\circ}\right)+1.24 \sin \left(4 x-30.09^{\circ}\right) \\
& -1.18 \sin \left(5 x-30.47^{\circ}\right)-0.25 \sin \left(6 x-90^{\circ}\right) .
\end{aligned}
$$

* The coefficients of the fifth harmonic agree with those found by the direct process in Art. 88. The time and labor spent in the computation of all six harmonics by means of the above computing form is much less than that spent in the determination of the fifth harmonic alone by the direct process in Art. 86.

The last result was obtained by using the relations

$$
a_{k} \cos k x+b_{k} \sin k x=c_{k} \sin \left(k x+\phi_{k}\right),
$$

where

$$
c_{k}=\sqrt{a_{k}^{2}+b_{k}^{2}} \quad \text { and } \quad \phi_{k}=\tan ^{-1} \frac{a_{k}}{b_{k}} .
$$

(III) Twenty-four-ordinate scheme. - Given the curve and wishing to find the first 12 harmonics, i.e., the 24 coefficients in the equation

$$
\begin{aligned}
y=a_{0} & +a_{1} \cos x+a_{2} \cos 2 x+\cdots+a_{12} \cos 12 x \\
& +b_{1} \sin x+b_{2} \sin 2 x+\cdots+b_{11} \sin 11
\end{aligned}
$$

we divide the interval from $x=0^{\circ}$ to $x=360^{\circ}$ into 24 equal parts and measure the ordinates at the beginning of each interval; let these be represented by the following table:

| x | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| y | 0° | $\left.\frac{15^{\circ}}{y_{0}}\left\|\frac{30^{\circ}}{y_{1}}, \frac{45^{\circ}}{y_{2}}\right\|-\frac{.}{y_{3}} \right\rvert\, \cdots 0^{\circ}$ | 345° |
| y_{22} | y_{23} | | |

If we use the same method as that employed in deriving the 12 -ordinate scheme, we shall arrive at the following 24 -ordinate computing form. This form is self-explanatory.

Ordinates	y_{0}	y_{1}	y_{2}	.	.	y_{11}	y_{12}
		y_{23}	$\cdot y_{22}$.	.	y_{13}	
Sum	v_{0}	v_{1}	v_{2}	\cdot	\cdot	v_{11}	v_{12}
Diff.		w_{1}	w_{2}	.	.	w_{11}	

Multipliers	Cosine terms				Sine terms		
$\begin{aligned} & \sin 30^{\circ}=0.5 \\ & \sin 60^{\circ}=0.866 \\ & \sin 90^{\circ}=1.0 \end{aligned}$	$g_{0} \quad g_{1}$	$\begin{aligned} & m_{2} \\ & m_{0} \end{aligned} m_{1}$	$\begin{array}{cc} -l_{2} & l_{1} \\ . l_{0} & -l_{3} \\ \hline \end{array}$	$m_{0} \quad m_{2}$	$\begin{array}{ll} k_{1} & \\ k_{8} & k_{2} \\ \hline \end{array}$	$n_{1} \quad n_{2}$	$k_{1} \quad k_{8}$
Sum of 1st col. Sum of 2 d col.			\cdots	\ldots		,	\ldots
Sum Difference	$\begin{aligned} & 24 a_{0} \\ & 24 a_{12} \end{aligned}$	$\begin{aligned} & 12 a_{2} \\ & 12 a_{10} \end{aligned}$	${ }_{12}^{12} a_{4}$	$12 a_{6}$	$\begin{aligned} & 12 b_{2} \\ & 12 b_{10} \end{aligned}$	$\begin{aligned} & 12 b_{4} \\ & 12 b_{8} \end{aligned}$	12 bb

Multipliers	Cosine terms			Sine terms		
$\begin{aligned} & \sin 15^{\circ}=0.259 \\ & \sin 30^{\circ}=0.5 \\ & \sin 45^{\circ}=0.707 \\ & \sin 60^{\circ}=0.866 \\ & \sin 75^{\circ}=0.966 \\ & \sin 90^{\circ}=1.0 \\ & \hline \end{aligned}$	$\begin{array}{ll} q_{4} & q_{6} \\ q_{2} & q_{3} \\ q_{0} & q_{1} \\ \hline \end{array}$	 t_{0} 	$\begin{array}{rr} q_{4} & q_{1} \\ -q_{2} & -q_{3} \\ q_{0} & q_{5} \\ \hline \end{array}$		u_{1} u_{2}	$\begin{array}{rr} r_{6} & r_{2} \\ -r_{3} & -r_{4} \\ r_{1} & r_{6} \end{array}$
Sum of 1st col. Sum of 2 d col.	\because	…....	,			
Sum Difference	$\begin{aligned} & 12 a_{1} \\ & 12 a_{11} \end{aligned}$	$\begin{aligned} & 12 a_{8} \\ & 12 a_{9} \end{aligned}$	$\begin{aligned} & 12 a_{5} \\ & 12 a_{7} \end{aligned}$	${ }_{12}^{12} b_{11}$	$\begin{aligned} & 12 b_{2} \\ & 12 \mathrm{bg} \end{aligned}$	$\begin{aligned} & 12 b_{5} \\ & 12 b_{7} \end{aligned}$

Checks: $\quad y_{0}=a_{0}+a_{1}+a_{2}+\ldots+a_{12}$.

$$
\begin{aligned}
\frac{1}{2}\left(y_{1}-y_{23}\right)= & 0.259\left(b_{1}+b_{11}\right)+\frac{1}{2}\left(b_{2}+b_{10}\right)+0.707\left(b_{3}+b_{9}\right) \\
& +0.866\left(b_{4}+b_{8}\right)+0.966\left(b_{6}+b_{7}\right)+b_{6} .
\end{aligned}
$$

Result:

$$
\begin{aligned}
& y=a_{0}+a_{1} \cos x+a_{2} \cos 2 x+\ldots+a_{12} \cos 12 x \\
& +b_{1} \sin x+b_{2} \sin 2 x+\ldots+b_{11} \sin 11 x \text {, } \\
& \text { or } y=c_{0}+c_{1} \sin \left(x+\phi_{1}\right)+c_{2} \sin \left(2 x+\phi_{2}\right)+\cdots+c_{12} \sin \left(12 x+\phi_{12}\right) \text {. }
\end{aligned}
$$

We shall now pass on to the evaluation of the coefficients when only the odd harmonics are present.*
90. Numerical evaluation of the coefficients. Odd harmonics only. Most problems in alternating currents and voltages present waves where the second half-period is merely a repetition below the axis of the first half-period; the axis or zero line is chosen midway between the highest and lowest points of the wave (Fig. 86c). We have shown in Art. 86 that, in such cases, the trigonometric series contains only the odd harmonics. Furthermore, since the sum of the ordinates over the entire period is evidently zero, then $a_{0}=\frac{1}{n} \sum y=0$, and the series does not contain the constant term a_{0}. Again, since
$\cos k(x+\pi)=\cos (k x+k \pi)=-\cos k x$, when k is odd, $\sin k(x+\pi)=\sin (k x+k \pi)=-\sin k x$, when k is odd,
and

$$
y_{x+\pi}=-y_{x}, \quad \therefore \quad y_{x+\pi} \cos k(x+\pi)=y_{x} \cos k x
$$

and $\sum y \cos k x$ has the same value over the second half-period as over the

[^8]first half. Hence in finding the coefficients we need merely carry the summation over the first half-period; thus,
$$
a_{k}=\frac{2}{n} \sum y \cos k x, \quad b_{k}=\frac{2}{n} \sum y \sin k x,
$$
where k is odd, x and y are measured in the first half-period only, and n is the number of intervals into which the half-period is divided.
(I) Odd harmonics up to the fifth.-Given the curve and wishing to determine the coefficients in the equation
$y=a_{1} \cos x+a_{3} \cos 3 x+a_{5} \cos 5 x+b_{1} \sin x+b_{3} \sin 3 x+b_{5} \sin 5 x$, we choose the origin where the wave crosses the axis, so that when $x_{0}=0$, $y_{0}=0$, divide the half-period into 6 equal parts, and measure the 5 ordinates $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$. Thus we have

| x | |
| :---: | :---: | :---: | :---: | :---: |
| y | $\frac{30^{\circ}}{y_{1}}\left\|-\frac{60^{\circ}}{y_{2}}\right\|-\frac{90^{\circ}}{y_{3}}\left\|-\frac{120^{\circ}}{y_{4}}\right\| \frac{150^{\circ}}{y_{5}}$ |

For the coefficients we have the following equations:
$3 a_{1}=y_{1} \cos 30^{\circ}+y_{2} \cos 60^{\circ}+y_{3} \cos 90^{\circ}+y_{4} \cos 120^{\circ}+y_{5} \cos 150^{\circ}$. $3 a_{3}=y_{1} \cos 90^{\circ}+y_{2} \cos 180^{\circ}+y_{3} \cos 270^{\circ}+y_{4} \cos 360^{\circ}+y_{5} \cos 450^{\circ}$. $3 a_{5}=y_{1} \cos 150^{\circ}+y_{2} \cos 300^{\circ}+y_{3} \cos 450^{\circ}+y_{4} \cos 600^{\circ}+y_{5} \cos 750^{\circ}$. $3 b_{1}=y_{1} \sin 30^{\circ}+y_{2} \sin 60^{\circ}+y_{3} \sin 90^{\circ}+y_{4} \sin 120^{\circ}+y_{6} \sin 150^{\circ}$. $3 b_{3}=y_{1} \sin 90^{\circ}+y_{2} \sin 180^{\circ}+y_{3} \sin 270^{\circ}+y_{4} \sin 360^{\circ}+y_{5} \sin 450^{\circ}$. $3 b_{5}=y_{1} \sin 150^{\circ}+y_{2} \sin 300^{\circ}+y_{3} \sin 450^{\circ}+y_{4} \sin 600^{\circ}+y_{5} \sin 750^{\circ}$.
Simplifying and replacing the trigonometric functions by their values in terms of $\sin 30^{\circ}$ and $\sin 60^{\circ}$, we may write

$$
\begin{aligned}
& 3 a_{1}=\left(y_{2}-y_{4}\right) \sin 30^{\circ}+\left(y_{1}-y_{5}\right) \sin 60^{\circ} . \\
& 3 a_{3}=-\left(y_{2}-y_{4}\right) \sin 90^{\circ} . \\
& 3 a_{5}=\left(y_{2}-y_{4}\right) \sin 30^{\circ}-\left(y_{1}-y_{5}\right) \sin 60^{\circ} . \\
& 3 b_{1}=\left(y_{1}+y_{5}\right) \sin 30^{\circ}+\left(y_{2}+y_{4}\right) \sin 60^{\circ}+y_{3} \sin 90^{\circ} . \\
& 3 b_{3}=\left(y_{1}-y_{3}+y_{5}\right) \sin 90^{\circ} . \\
& 3 b_{5}=\left(y_{1}+y_{5}\right) \sin 30^{\circ}-\left(y_{2}+y_{4}\right) \sin 60^{\circ}+y_{3} \sin 90^{\circ} .
\end{aligned}
$$

We may conveniently arrange the work in the following computing form:

Sum
Diff.

y_{1}	y_{2}	y_{3}
y_{5}	y_{4}	
s_{1}	s_{2}	s_{3}
d_{1}	d_{2}	

Checks: o $=a_{1}+a_{3}+a_{5}$.

$$
y_{3}=b_{1}-b_{3}+b_{5} .
$$

Multipliers	Cosine terms		Sine terms	
$\begin{aligned} & \sin 30^{\circ}=0.5 \\ & \sin 60^{\circ}=0.866 \\ & \sin 90^{\circ}=1.0 \end{aligned}$	$\begin{array}{ll}d_{2} & \\ & \\ & \end{array}$	$-d_{2}$		$s_{1} \quad s_{8}$
Sum of 1st col. Sum of 2 d col.	\ldots		\ldots	
Sum	$\begin{aligned} & 3 a_{1} \\ & 3 a_{5} \end{aligned}$	$3 a_{8}$	$\begin{aligned} & 3 b_{1} \\ & 3 b_{5} \end{aligned}$	$3 b_{3}$

Result:

$y=a_{1} \cos x+a_{3} \cos 3 x+a_{5} \cos 5 x+b_{1} \sin x+b_{3} \sin 3 x+b_{6} \sin 5 x$.

The following example will illustrate the rapidity with which the coefficients may be determined.

Example. We wish to analyze the symmetric wave of Fig. 90a, i.e., to find the coefficients of the ist, 3d, and 5th harmonics. Choose the x-axis midway between the highest and lowest points of the wave, and

Fig. 90a.
the origin at the point where the wave crosses this axis in the positive direction. Then divide the half-period into 6 equal parts and measure the ordinates y_{1}, \ldots, y_{5}. These are given in the following table:

$$
\begin{array}{l|l|l|l|l|l}
x \\
y & -30^{\circ} \\
10.7 & \frac{60^{\circ}}{2.8} & \frac{90^{\circ}}{20.5} & \frac{120^{\circ}}{26.5} & 150^{\circ} \\
16.6
\end{array}
$$

We arrange the work in the above computing form.

	10.7	2.8	20.5
	16.6	26.5	
Sum (s)	27.3	29.3	20.5
Diff. (d)	-5.9	-23.7	

Check: $\quad a_{1}+a_{3}+a_{5}=-5.65+7.90-2.25=0$.

$$
b_{1}-b_{3}+b_{5}=19.84-2.27+2.93=20.5=y_{3} .
$$

Result:

$$
\begin{aligned}
y= & -5.65 \cos x+7.90 \cos 3 x-2.25 \cos 5 x \\
& +19.84 \sin x+2.27 \sin 3 x+2.93 \sin 5 x .
\end{aligned}
$$

(II) Odd harmonics up to the eleventh.-Given a symmetric curve and wishing to determine the coefficients in the equation

$$
\begin{aligned}
y & =a_{1} \cos x+a_{3} \cos 3 x+\cdots+a_{11} \cos 11 x \\
& +b_{1} \sin x+b_{3} \sin 3 x+\cdots+b_{11} \sin 11 x,
\end{aligned}
$$

we choose the origin at the point where the wave crosses the axis, so that $y_{0}=0$, divide the half-period into 12 equal parts, and measure the II ordinates $y_{1}, y_{2}, \ldots, y_{11}$. Thus we have

x	15°	30°	45°	\ldots
y_{1}	y_{2}	y_{3}	$\cdots 5^{\circ}$	
y_{11}				

For the coefficients we have the following equations:

$$
\begin{aligned}
& 6 a_{1}=y_{1} \cos 15^{\circ}+y_{2} \cos 30^{\circ}+\cdots+y_{11} \cos 165^{\circ} . \\
& 6 a_{3}=y_{1} \cos 45^{\circ}+y_{2} \cos 90^{\circ}+\cdots+y_{11} \cos 495^{\circ} .
\end{aligned}
$$

$6 b_{1}=y_{1} \sin 15^{\circ}+y_{2} \sin 30^{\circ}+\cdots+y_{11} \sin 165^{\circ}$.
$6 b_{3}=y_{1} \sin 45^{\circ}+y_{2} \sin 90^{\circ}+\cdots+y_{11} \sin 495^{\circ}$.

If we arrange the ordinates in two rows,

Sum
Diff.

y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
y_{11}	y_{10}	y_{9}	y_{8}	y_{7}	
s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}
d_{1}	d_{2}	d_{3}	d_{1}	d_{5}	d_{6}

replace the trigonometric functions by their values in terms of the sines of $15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}, 90^{\circ}$, and collect terms, we may write
$6 a_{1}=d_{5} \sin 15^{\circ}+d_{4} \sin 30^{\circ}+d_{3} \sin 45^{\circ}+d_{2} \sin 60^{\circ}+d_{1} \sin 75^{\circ}$.
$6 a_{11}=-d_{5} \sin 15^{\circ}+d_{4} \sin 30^{\circ}-d_{3} \sin 45^{\circ}+d_{2} \sin 60^{\circ}-d_{1} \sin 75^{\circ}$.
$6 a_{5}=d_{1} \sin 15^{\circ}+d_{4} \sin 30^{\circ}-d_{3} \sin 45^{\circ}-d_{2} \sin 60^{\circ}+d_{5} \sin 75^{\circ}$.
$6 a_{7}=-d_{1} \sin 15^{\circ}+d_{4} \sin 30^{\circ}+d_{3} \sin 45^{\circ}-d_{2} \sin 60^{\circ}-d_{5} \sin 75^{\circ}$.
$6 b_{1}=s_{1} \sin 15^{\circ}+s_{2} \sin 30^{\circ}+s_{3} \sin 45^{\circ}+s_{4} \sin 60^{\circ}+s_{5} \sin 75^{\circ}+s_{6} \sin 90^{\circ}$.
$6 b_{11}=s_{1} \sin 15^{\circ}-s_{2} \sin 30^{\circ}+s_{3} \sin 45^{\circ}-s_{4} \sin 60^{\circ}+s_{5} \sin 75^{\circ}-s_{6} \sin 90^{\circ}$.
$6 b_{5}=s_{5} \sin 15^{\circ}+s_{2} \sin 30^{\circ}-s_{3} \sin 45^{\circ}-s_{4} \sin 60^{\circ}+s_{1} \sin 75^{\circ}+s_{6} \sin 90^{\circ}$.
$6 b_{7}=s_{6} \sin 15^{\circ}-s_{2} \sin 30^{\circ}-s_{3} \sin 45^{\circ}+s_{4} \sin 60^{\circ}+s_{1} \sin 75^{\circ}-s_{6} \sin 90^{\circ}$.
$6 a_{3}=\quad\left(d_{1}-d_{3}-d_{5}\right) \sin 45^{\circ} \quad-d_{4} \sin 90^{\circ}$.
$6 a_{9}=\quad-\left(d_{1}-d_{3}-d_{5}\right) \sin 45^{\circ} \quad-d_{4} \sin 90^{\circ}$.
$6 b_{3}=\quad\left(s_{1}+s_{3}-s_{6}\right) \sin 45^{\circ} \quad+\left(s_{2}-s_{6}\right) \sin 90^{\circ}$.
$6 b_{9}=\quad\left(s_{1}+s_{3}-s_{5}\right) \sin 45^{\circ} \quad-\left(s_{2}-s_{6}\right) \sin 90^{\circ}$.

We may conveniently arrange the work in the following computing form:

y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	$s_{1}+s_{3}-s_{5}=r_{1}$
y_{11}	y_{10}	y_{9}	y_{8}	y_{7}		$s_{2}-s_{6}=r_{2}$
Sum	$\left.\begin{array}{lllll}s_{1} & s_{2} & s_{3} & s_{4} & s_{5} \\ s_{6} & d_{1}-d_{3}-d_{5} & =e_{1}\end{array}\right]$					

Multipliers	Cosine terms			Sine torms		
$\begin{aligned} & \sin 15^{\circ}=0.259 \\ & \sin 30^{\circ}=0.5 \\ & \sin 45^{\circ}=0.707 \\ & \sin 60^{\circ}=0.866 \\ & \sin 75^{\circ}=0.966 \\ & \sin 90^{\circ}=1.0 \\ & \hline \end{aligned}$	$\begin{array}{ll} d_{4} & d_{5} \\ d_{2} & d_{2} \\ d_{1} \end{array}$	${ }^{e_{1}}$	$\begin{array}{rr} \\ d_{4} & d_{1} \\ -d_{2} & -d_{3} \\ & d_{6}\end{array}$		$\begin{array}{ll}r_{1} & \\ & \\ & \\ & r\end{array}$	$\begin{array}{rr} s_{6} & s_{2} \\ -s_{2} & -s_{4} \\ s_{1} & s_{8} \\ \hline \end{array}$
Sum of 1st col. Sum of 2d col.	…....	+..... \cdots \cdots	+r.t......		\ldots	+....... $\cdots \cdots \ldots \ldots$
Sum ${ }_{\text {Diff. }}$	$\begin{aligned} & 6 a_{1} \\ & 6 a_{11} \end{aligned}$	$\begin{aligned} & 6 a_{3} \\ & 6 a_{9} \end{aligned}$	$\begin{aligned} & 6 a_{5} \\ & 6 a_{7} \end{aligned}$	$\begin{aligned} & 6 b_{1} \\ & 6 b_{11} \end{aligned}$	$\begin{array}{ll} \hline 6 & b_{z} \\ 6 & b_{9} \end{array}$	$\begin{aligned} & 6 b_{8} \\ & 6 b_{7} \end{aligned}$

Checks: $\quad a_{1}+a_{3}+a_{5}+a_{7}+a_{9}+a_{11}=0$, $b_{1}-b_{3}+b_{5}-b_{7}+b_{9}-b_{11}=y_{6}$.
Result: $\quad y=a_{1} \cos x+a_{3} \cos 3 x+\cdots+a_{11} \cos$ II x $+b_{1} \sin x+b_{3} \sin 3 x+\cdots+b_{11} \sin \mathrm{II} x$.

Fig. $90 b$.
Example. Fig. $90 b$ represents a half-period of an e.m.f. wave whose frequency is 60 cycles. We wish to find the odd harmonics up to the IIth order. Choose the x-axis midway between the highest and lowest points of the complete wave and the origin at the point where the wave crosses the x-axis in the positive direction. Divide the half-period into 12 equal
parts and measure the ordinates $y_{1}, y_{2} \ldots, y_{11}$. These are given in the following table:

x	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
y	4	21	19	27	29	33	46	38	50	30	33

We arrange the work in the above computing form.

Multipliers	Cosine terms			Sine terms		
0.259	-4.4					
0.5	-5.5		-5.5	25.5		
0.707	- -21.9	13.4	. 21.9	48.8	21.9	-48.8
0.866	-7.8		7.8	726.3		-56.3
0.966	-28.0		-16.4	72.5		35.7
1.0		11.0		33.0	18.0	33.0
Sum 1st col.	-13.3	11.0	2.3	130.9	21.9	6.3
Sum 2d col.	-54.3	13.4	-2.0	114.8	18.0	2.2
Sum	-67.6	24.4	0.3	245.7	39.9	8.5
Diff.	41.0	-2.4	4.3	16.1	3.9	4.1
$\overline{\text { Divide by } 6}$	$\overline{a_{1}=-11.27}$	$a_{3}=4.07$	$a_{5}=0.05$	$b_{1}=40.95$		$b_{6}=1.42$
	$a_{11}=6.83$	$a_{3}=-0.40$	$a_{7}=0.72$	$b_{11}=2.68$	$b_{9}=0.65$	$b_{7}=0.68$

Check:

$$
\begin{aligned}
& a_{1}+a_{3}+\cdots+a_{11}=-11.27+4.07+0.05+0.72-0.40+6.83=0 \\
& b_{1}-b_{3}+\cdots-b_{11}=40.95-6.65+\mathrm{I} .42-0.68+0.65-2.68=33.0 \mathrm{I}=y_{6}
\end{aligned}
$$

Result:
$y=-11.27 \cos x+4.07 \cos 3 x+0.05 \cos 5 x+0.72 \cos 7 x-0.40 \cos 9 x$ $+6.83 \cos$ II $x+40.95 \sin x+6.65 \sin 3 x+1.42 \sin 5 x$ $+0.68 \sin 7 x+0.65 \sin 9 x+2.68 \sin 11 x$.
(III) Odd harmonics up to the seventeenth. - Given a symmetric curve and wishing to determine the coefficients in the equation

$$
\begin{aligned}
y & =a_{1} \cos x+a_{3} \cos 3 x+\cdots+a_{17} \cos 17 x \\
& +b_{1} \sin x+b_{3} \sin 3 x+\cdots+b_{17} \sin 17 x
\end{aligned}
$$

we choose the origin at the point where the wave crosses the axis, so that $y_{0}=0$, divide the half-period into 18 equal parts, and measure the 17 ordinates $y_{1}, y_{2}, \ldots, y_{17}$. Thus we have

x	10°			
y	$\frac{20^{\circ}}{y_{1}}$	$\frac{30^{\circ}}{y_{2}}$	\ldots	y_{3}
\cdots	$\cdots 0^{\circ}$			
y_{17}				

If we use the same method as that employed in deriving the Ir-ordinate scheme, we shall arrive at the following 17 -ordinate computing form. This form is self-explanatory.

Check: $\quad a_{1}+a_{3}+a_{5}+\cdots+a_{17}=0$,
Result: $\quad y=a_{1} \cos x+a_{3} \cos 3 x+\cdots+a_{17} \cos 17 x$

$$
+b_{1} \sin x+b_{3} \sin 3 x+\cdots+b_{17} \sin \text { II } x
$$

Similar computing forms may be constructed for symmetrical waves containing odd harmonics up to the seventh, ninth, etc., orders.
91. Numerical evaluation of the coefficients. Averaging selected ordinates.* - We are to determine the coefficients in the trigonometric series

$$
\begin{aligned}
y=a_{0} & +a_{1} \cos x+a_{2} \cos 2 x+\cdots+a_{k} \cos k x+\cdots \\
& +b_{1} \sin x+b_{2} \sin 2 x+\cdots+b_{k} \sin k x+\cdots
\end{aligned}
$$

Let a_{n} and b_{n} represent the coefficients of any harmonic. We divide the period 2π into n equal intervals of width $2 \pi / n$ and measure the ordinates at the beginning of these intervals. We have the table

* These methods have been developed by J. Fischer-Hinnen, Elekrotechnische Zeitschrift, May 9, 1901, and S. P. Thompson, Proc. of the Phys. Soc. of London, Vol. XXIII, 191I, p. 334. See, also, a description of the Fischer-Hinnen method by P. M. Lincoln, The Electric Journal, Vol. 5, 1908, p. 386.

Substituting these pairs of values in our series, we have n equations of the form

$$
\begin{aligned}
y_{r}=a_{0} & +a_{1} \cos x_{r}+a_{2} \cos 2 x_{r}+\cdots+a_{k} \cos k x_{r}+\cdots \\
& +b_{1} \sin x_{r}+b_{2} \sin 2 x_{r}+\cdots+b_{r} \sin k x_{r}+\cdots,
\end{aligned}
$$

where r takes in succession the values $0, \mathbf{1}, \mathbf{2}, 3, \ldots, n-\mathbf{1}$; adding these n equations, we get
$\sum y_{r}=n a_{0}+a_{1} \sum \cos x_{r}+\cdots+a_{k} \sum \cos k x_{r}+\cdots+b_{k} \sum \sin k x_{r}+\cdots$, where the summation is carried from $r=0$ to $r=n-\mathrm{I}$.

If we let $\beta=k \frac{2 \pi}{n}$ in the expressions for $\sum \cos (\alpha+r \beta)$ and $\sum \sin (\alpha+r \beta)$ derived in the note on p. 175, these become
$\sum \cos \left(\alpha+k r \frac{2 \pi}{n}\right)=\frac{\sin k \pi}{\sin (k \pi / n)} \cos \left(\alpha+\frac{k(n-1) \pi}{n}\right)=0$, since $\sin k \pi=0$,
$\sum \sin \left(\alpha+k r \frac{2 \pi}{n}\right)=\frac{\sin k \pi}{\sin (k \pi / n)} \sin \left(\alpha+\frac{k(n-1) \pi}{n}\right)=0, \operatorname{since} \sin k \pi=0$,
except when k is a multiple of n, for then both $\sin k \pi$ and $\sin (k \pi / n)$ are equal to zero and the fractional expression becomes indeterminate. But when k is a multiple of n,

$$
\begin{aligned}
& \sum \cos \left(\alpha+k r \frac{2 \pi}{n}\right)=\sum \cos (\alpha+\text { multiple of } 2 \pi)=\sum \cos \alpha=n \cos \alpha . \\
& \sum \sin \left(\alpha+k r \frac{2 \pi}{n}\right)=\sum \sin (\alpha+\text { multiple of } 2 \pi)=\sum \sin \alpha=n \sin \alpha .
\end{aligned}
$$

Hence we may state

$$
\begin{aligned}
\sum \cos \left(\alpha+k r \frac{2 \pi}{n}\right) & =0, \text { except when } k=n, 2 n, 3 n, \ldots \\
& =n \cos \alpha, \text { when } k=n, 2 n, 3 n, \ldots \\
\sum \sin \left(\alpha+k r \frac{2 \pi}{n}\right) & =0, \text { except when } k=n, 2 n, 3 n, \ldots \\
& =n \sin \alpha, \text { when } k=n, 2 n, 3 n, \ldots
\end{aligned}
$$

(I) If we start our intervals at $x_{0}=0$, then $x_{r}=r \frac{2 \pi}{n}$, and $\sum \cos k x_{r}=\sum \cos \left(0+k r \frac{2 \pi}{n}\right)=0$, except when $k=n, 2 n, 3 n, \ldots$

$$
=n \cos o=n, \text { when } k=n, 2 n, 3 n, \ldots
$$

$\sum \sin k x_{r}=\Sigma \sin \left(0+k r \frac{2 \pi}{n}\right)=0$, for all values of k.

$$
\therefore \quad \sum y_{r}=n a_{0}+n a_{n}+n a_{2 n}+\cdots=n\left(a_{0}+a_{n}+a_{2 n}+a_{3 n}+\cdots\right) .
$$

(2) If we start our intervals at $x_{0}^{\prime}=\frac{\pi}{n}$, then $x_{r}^{\prime}=\frac{\pi}{n}+r \frac{2 \pi}{n}$ and $\sum \cos k x_{r}^{\prime}=\sum \cos \left(k \frac{\pi}{n}+k r \frac{2 \pi}{n}\right)=0$ except when $k=n, 2 n, 3 n, \ldots$

$$
=n \cos \frac{k \pi}{n}\left\{\begin{array}{l}
=n \text { when } k=2 n, 4 n, 6 n, \ldots \\
=-n \text { when } k=n, 3 n, 5 n, \ldots
\end{array}\right.
$$

$\sum \sin k x_{r}^{\prime}=\sum \sin \left(k \frac{\pi}{n}+k r \frac{2 \pi}{n}\right)=0$ for all values of k.

$$
\begin{aligned}
\therefore \quad \sum y_{r}^{\prime} & =n a_{0}-n a_{n}+n a_{2 n}-n a_{3 n}+\cdots \\
& =n\left(a_{0}-a_{n}+a_{2 n}-a_{3 n}+a_{4 n}-\cdots\right)
\end{aligned}
$$

Subtracting the second set of ordinates, y^{\prime}, from the first set, y, we have

$$
\begin{aligned}
\sum y_{r}-\sum y_{r}^{\prime}=\sum\left(y_{r}-y_{r}^{\prime}\right) & =y_{0}-y_{0}^{\prime}+y_{1}-y_{1}^{\prime}+y_{2}-y_{2}^{\prime}+\cdots+y_{n-1}-y_{n-1}^{\prime} \\
& =2 n\left(a_{n}+a_{3 n}+a_{5 n}+\cdots\right), \\
\text { or } \quad a_{n}+a_{3 n}+a_{5 n}+\cdots & =\frac{1}{2 n}\left(y_{0}-y_{0}^{\prime}+y_{1}-y_{1}^{\prime}+\cdots+y_{n-1}-y_{n-1}^{\prime}\right) .
\end{aligned}
$$

The first set of n ordinates start at $x=0$ and are at intervals of $2 \pi / n$, and the second set of n ordinates, start at $x=\pi / n$ and are at intervals of $2 \pi / n$; thus, the period from $x=0$ to $x=2 \pi$ is divided into $2 n$ equal parts each of width π / n (Fig. 91a). Hence,

If, starting at $x=0$, we measure $2 n$ ordinates at intervals of π / n, the average of these ordinates taken alternately plus and minus is equal to the sum of the amplitudes of the nth, $3 \mathrm{nth}, 5 \mathrm{nth}, .$. cosine components.

Fig. 9 ia.
Thus, to determine the sum of the amplitudes of the 5th, 15th, 25th, . . . cosine components, merely average the 10 ordinates, taken alternately plus and minus, at intervals of $180^{\circ} \div 5=36^{\circ}$, or at $0^{\circ}, 36^{\circ}, 72^{\circ}$, . . . 324° (Fig. 91c); therefore

$$
\begin{gathered}
a_{6}+a_{18}+a_{25}+\cdots=\hat{1}_{10}\left(y_{0}-y_{88}+y_{72}-y_{108}+y_{14}-y_{180}+y_{210}\right. \\
\left.-y_{258}+y_{288}-y_{524}\right) .
\end{gathered}
$$

If the 15 th, 25 th, . . . harmonics are not present, then

$$
a_{5}={ }_{10}^{10}\left(y_{0}-y_{36}+y_{72}-y_{103}+y_{144}-y_{180}+y_{216}-y_{252}+y_{238}-y_{324}\right) .
$$

(3) Similarly, if we start our intervals at $\bar{x}_{0}=\frac{\pi}{2 n}$, then $\bar{x}_{r}=\frac{\pi}{2 n}+r \frac{2 \pi}{n}$, and
$\sum \cos k \bar{x}_{r}=\sum \cos \left(k \frac{\pi}{2 n}+k r \frac{2 \pi}{n}\right)=0$ for all values of k,
$\sum \dot{\sin } k \bar{x}_{r}=\sum \sin \left(k \frac{\pi}{2 n}+k r \frac{2 \pi}{n}\right)=0$ except when $k=n, 2 n, 3 n, \ldots$

$$
=n \sin \frac{k \pi}{2 n}\left\{\begin{aligned}
=n \text { when } k & =n, 5 n, 9 n, \ldots \\
= & \text { o when } k=2 n, 4 n, 6 n, \ldots
\end{aligned}\right)
$$

$\therefore \sum \bar{y}_{r}=n a_{0}+n b_{n}-n b_{3 n}+n b_{5 n}-\cdots=n\left(a_{0}+b_{n}-b_{3 n}+b_{\text {on }}-b_{7 n}+\cdots\right)$.
(4) Again, if we start our intervals at $\bar{x}_{0}{ }^{\prime}=\frac{\pi}{2 n}+\frac{\pi}{n}$, then $\bar{x}_{r}^{\prime}=\frac{3 \pi}{2 n}+r \frac{2 \pi}{n}$, and $\sum \cos k \bar{x}_{r}^{\prime}=\sum \cos \left(k \frac{3 \pi}{2 n}+k r \frac{2 \pi}{n}\right)=0$ for all values of k, $\sum \sin k \bar{x}_{r}^{\prime}=\sum \sin \left(k \frac{3 \pi}{2 n}+k r \frac{2 \pi}{n}\right)=0$ except when $k=n, 2 n, 3 n, \ldots$ $=n \sin \frac{3 k \pi}{2 n}\left\{\begin{array}{l}=-n \text { when } k=n, 5 n, 9 n, \ldots \\ =\quad 0 \text { when } k=2 n, 4 n, 6 n, \ldots\end{array}\right.$
$\therefore \sum \bar{y}_{r}^{\prime}=n a_{0}-n b_{n}+n b_{3 n}-n b_{5 n}+\cdots=n\left(a_{0}-b_{n}+b_{3 n}-b_{5 n}+b_{7 n}-\cdots\right)$.
Subtracting the second set of ordinates, \bar{y}^{\prime}, from the first set, \bar{y}, we have

$$
\begin{aligned}
\sum \bar{y}_{r}-\sum \bar{y}_{r}^{\prime}=\sum\left(\bar{y}-\bar{y}_{r}^{\prime}\right) & =\bar{y}_{0}-\bar{y}_{0}^{\prime}+\bar{y}_{1}-\bar{y}_{1}^{\prime}+\cdots+\bar{y}_{n-1}-\bar{y}_{n-1}^{\prime} \\
& =2 n\left(b_{n}-b_{3 n}+b_{5 n}-b_{7 n}+\cdots\right), \\
\text { or } \quad b_{n}-b_{3 n}+b_{5 n}-b_{7 n}+\cdots & =\frac{1}{2 n}\left(\bar{y}_{0}-\bar{y}_{0}^{\prime}+\bar{y}_{1}-\bar{y}_{1}^{\prime}+\cdots+\bar{y}_{n-1}-\bar{y}_{n-1}^{\prime}\right) .
\end{aligned}
$$

The first set of n ordinates start at $x=\pi / 2 n$ and are at intervals of $2 \pi / n$, and the second set of n ordinates start at $x=\frac{\pi}{2 n}+\frac{\pi}{n}$ and are at intervals of $2 \pi / n$; thus the period from $x=\pi / 2 n$ to $x=2 \pi+\pi / 2 n$ is divided into $2 n$ equal parts each of width $\frac{\pi}{n}$. Hence,

If, starting at $x=\pi / 2 n$, we measure $2 n$ ordinates at intervals of π / n, the average of thesz ordinates taken alternately plus and minus is equal to the
sum of the amplitudes, taken alternately plus and minus, of the nth, 3 nth, 5 nth, . . . sine components.

Thus to determine the sum of the amplitudes, taken alternately plus and minus, of the 5th, 15th, 25th, . . . sine components, merely average the io ordinates taken alternately plus and minus, at intervals of $180^{\circ} \div 5=36^{\circ}$, starting at $x=180^{\circ} \div 10=18^{\circ}$, i.e., at $x=18^{\circ}$, $54^{\circ}, 90^{\circ}, . . ., 342^{\circ}$ (Fig. 91c); therefore

$$
\begin{gathered}
\left.b_{5}-b_{15}+b_{25}-\cdots=\dot{\gamma} \frac{\left(y_{18}-y_{54}+y_{90}-y_{126}+y_{162}-y_{198}+y_{284}\right.}{}-y_{270}+y_{306}-y_{322}\right) .
\end{gathered}
$$

If the 15th, 25 th, . . . harmonics are not present, then

$$
b_{5}=\frac{1}{10}\left(y_{18}-y_{54}+y_{90}-y_{126}+y_{162}-y_{198}+y_{234}-y_{270}+y_{306}-y_{322}\right) .
$$

We may also note that the set of $2 n$ ordinates measured for determining the b 's lie midway between the set of $2 n$ ordinates measured for determining the a 's, so that to determine any desired harmonic we actually measure $4 n$ ordinates, starting at $x=0$ and at intervals of $\pi / 2 \mathrm{n}$. We use the 1 st, $3 \mathrm{~d}, 5$ th, . . of these ordinates for determining a, and the 2d, 4 th, 6 th, \ldots of these ordinates for determining b.

If the higher harmonics are present, these must be evaluated first. The absolute term a_{0} is obtained from the relation

$$
y_{0}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots .
$$

We shall now illustrate the methods developed by an example.
Example. Given the periodic wave of Fig. 89 and assuming that no higher harmonics than the 6th are present, we are to determine the coefficients in the equation

$$
\begin{aligned}
y=a_{0} & +a_{1} \cos x+a_{2} \cos 2 x+\cdots+a_{6} \cos 6 x \\
& +b_{1} \sin x+b_{2} \sin 2 x+\cdots+b_{6} \sin 6 x .
\end{aligned}
$$

To determine a_{6} and b_{6} measure 12 ordinates at intervals of 30° beginning at $x=0^{\circ}$ and $x=15^{\circ}$ respectively (Fig. 91b); then

Fig. 9 Ib.

$$
\begin{aligned}
& a_{6}= 1_{2}\left(y_{0}-y_{30}+y_{80}-y_{90}+\cdots+y_{300}-y_{330}\right) \\
&= \frac{1}{12}(9.3-15.0+17.4-23.0+37.0-31.0+15.3-4.0-8.0+13.2 \\
&\quad-14.2+6.0)=0.25 . \\
& b_{6}= 1_{12}^{2}\left(y_{15}-y_{45}+y_{75}-y_{105}+\cdots+y_{315}-y_{355}\right) \\
&= r_{12}^{12}(13.0-16.0+19.5-31.0+35.3-23.8+10.5+5.7-10.0 \\
&\quad+14.5-11.0-0.5)=0.52 .
\end{aligned}
$$

Fig. 9ic.
To determine a_{5} and b_{5} measure io ordinates at intervals of 36°, beginning at $x=0^{\circ}$ and $x=18^{\circ}$ respectively (Fig. 91c) then

$$
\begin{aligned}
a_{5} & =\frac{1}{10}\left(y_{0}-y_{36}+y_{72}-y_{108}+\cdots+y_{288}-y_{324}\right) \\
& =1_{10}^{1}(9.3-15.3+18.8-32.8+33.0-15.3-1.0+9.5-15.0+8.4) \\
& =-0.04 . \\
b_{5} & =\frac{10}{10}\left(y_{18}-y_{54}+y_{90}-y_{126}+\cdots+y_{306}-y_{342}\right) \\
& =1_{10}(13.8-16.8+23.0-36.8+25.5-9.0-7.7+13.4-13.2+1.5) \\
& =-0.63 .
\end{aligned}
$$

Fig. gid.

To determine a_{4} and b_{4} measure 8 ordinates at intervals of 45°, beginning at $x=0^{\circ}$ and $x=22 \frac{1}{2}^{\circ}$ respectively (Fig. 91d); then

$$
\begin{aligned}
a_{4} & =\frac{1}{8}\left(y_{0}-y_{45}+y_{00}-y_{135}+\cdots+y_{270}-y_{315}\right) \\
& =\frac{1}{8}(9.3-16.0+23.0-35.3+15.3+5.7-13.2+11.0)=-0.03 . \\
b_{4} & =\frac{1}{8}\left(y_{22.5}-y_{67.5}+y_{112.5}-\cdots+y_{292.5}-y_{337.5}\right) \\
& =\frac{1}{8}(14.5-18.0+35.0-27.7+7.7+8.8-14.7+3.0)=1.08 .
\end{aligned}
$$

To determine a_{3} and b_{3} measure 6 ordinates at intervals of 60°, beginning at $x=0$ and $x=30^{\circ}$ respectively (Fig. 91 b); then

$$
\begin{aligned}
a_{3} & =\frac{1}{6}\left(y_{0}-y_{60}+y_{120}-y_{180}+y_{240}-y_{300}\right) \\
& =\frac{1}{6}(9.3-17.4+37.0-15.3-8.0+14.2)=3.30 . \\
b_{3} & =\frac{1}{6}\left(y_{30}-y_{90}+y_{150}-y_{210}+y_{270}-y_{330}\right) \\
& =\frac{1}{6}(15.0-23.0+31.0-4.0-13.2+6.0)=1.97 .
\end{aligned}
$$

To determine a_{2} and b_{2} measure 4 ordinates at intervals of 90°, beginning at $x=0^{\circ}$ and $x=45^{\circ}$ respectively (Fig. 91 b); then
$a_{2}+a_{6}=\frac{1}{4}\left(y_{0}-y_{90}+y_{180}-y_{270}\right)=\frac{1}{4}(9.3-23.0+15.3+13.2)=3.70$, $\therefore \quad a_{2}=3.45$.
$b_{2}-b_{6}=\frac{1}{4}\left(y_{45}-y_{135}+y_{225}-y_{315}\right)=\frac{1}{4}(16.0-35.3-5.7+1$ I. 0$)=-3.50$, $\therefore \quad b_{2}=-2.98$.

To determine a_{1} and b_{1} measure 2 ordinates at intervals of 180°, beginning at $x=0^{\circ}$ and $x=90^{\circ}$ respectively (Fig. 91 b); then
$a_{1}+a_{3}+a_{5}=\frac{1}{2}\left(y_{0}-y_{180}\right)=\frac{1}{2}(9.3-15.3)=-3.00, \quad \therefore \quad a_{1}=-6.26$.
$b_{1}-b_{3}+b_{5}=\frac{1}{2}\left(y_{90}-y_{270}\right)=\frac{1}{2}(23.0+13.2)=18.10, \quad \therefore \quad b_{1}=20.60$.
To determine a_{0} we have

$$
a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}=y_{0}=9.3, \quad \therefore \quad a_{0}=8.63
$$

Result:

$$
\begin{aligned}
y=8.63 & -6.26 \cos x+3.45 \cos 2 x+3.30 \cos 3 x-0.03 \cos 4 x \\
& -0.04 \cos 5 x+0.25 \cos 6 x+20.60 \sin x-2.98 \sin 2 x \\
& +1.97 \sin 3 x+1.08 \sin 4 x-0.63 \sin 5 x+0.52 \sin 6 x .
\end{aligned}
$$

This result agrees quite closely with that of Art. 89, p. 184; the differences in the values of the coefficients are due to the fact that by the method of Art. 89 only the ordinates at $0^{\circ}, 30^{\circ}, 60^{\circ}, \ldots, 330^{\circ}$ are used, whereas by the method of this Art. a large number of intermediate ordinates are used. If the curve is drawn by some mechanical instrument, the present method will evidently give better approximations to the values of the coefficients; but the labor involved in using the computing form on p. 183 is much less than that used in measuring the selected ordinates above.
92. Numerical evaluation of the coefficients. Averaging selected ordinates. Odd harmonics only. - If the axis is chosen midway between the highest and lowest points of the wave and the second half-period is
merely a repetition below the axis of the first half-period, then only the odd harmonics are present. If the ordinates at $x=x_{r}$ and $x=x_{r}+\pi$ are designated by y_{r} and $y_{r+\pi}$ respectively, then $y_{r+\pi}=-y_{r}$. In the method of averaging selected ordinates, the $2 n$ ordinates are spaced at intervals of π / n and are taken alternately plus and minus; then $y_{r+\pi}$ is at a distance $\pi=n(\pi / n)$, or n intervals, from y_{r}, and since n is odd, $y_{r+\pi}$ will occur in the summation with sign opposite to that with which y_{r} occurs, so that, e.g.

$$
\begin{aligned}
a_{n}+a_{3 n}+\cdots & = \\
\frac{1}{2 n}\left(y_{0}-y_{1}^{\prime}\right. & \left.+\cdots \pm y_{r} \cdots-y_{0+\pi}+y_{1+\pi}^{\prime}-\cdots \mp y_{r+\pi} \cdots\right) \\
& =\frac{1}{2 n}\left(2 y_{0}-2 y_{1}^{\prime}+\cdots \pm 2 y_{r} \cdots\right) \\
& =\frac{1}{n}\left(y_{0}-y_{1}^{\prime}+\cdots \pm y_{r} \cdots\right) .
\end{aligned}
$$

Hence we need merely divide the half-period into n equal intervals and average n ordinates. We may therefore restate our rules for determining the coefficients if the wave contains odd harmonics only.

If, starting at $x=0$, we measure n ordinates at intervals of π / n, the average of these ordinates taken alternately plus and minus is equal to the sum of the amplitudes of the nth, 3 nth, 5 nth, . . . cosine components.

If, starting at $x=\pi / 2 n$, we measure n ordinates at intervals of π / n, the average of these ordinates taken alternately plus and minus is equal to the sum of the amplitudes, taken alternately plus and minus, of the nth, 3 nth, 5 nth, . . . sine components.

Furthermore, $a_{0}=\mathrm{o}$ since the sum of the ordinates over the entire period is zero.

Fig. 92.
Example. Assuming that the symmetric wave of Fig. 92 contains no higher harmonics than the 5 th, we are to determine the ist, 3 d , and 5 th harmonics. Applying the above rules we have

```
\(a_{5}=\frac{1}{5}\left(y_{0}-y_{36}+y_{72}-y_{108}+y_{144}\right)\)
    \(=\frac{1}{8}(0-8.6+6.3-27.7+19.0)=-2.20\).
\(b_{5}=\frac{1}{b} \cdot\left(y_{18}-y_{54}+y_{90}-y_{126}+y_{162}\right)=\frac{1}{8}(11.3-2.7+20.5-25.5+10.7)=2.86\).
\(a_{3}=\frac{1}{3}\left(y_{0}-y_{60}+y_{120}\right)=\frac{1}{3}(0-2.8+26.5)=7.90\).
\(b_{3}=\frac{1}{3}\left(y_{30}-y_{90}+y_{150}\right)=\frac{1}{3}(10.7-20.5+16.6)=2.27\).
\(a_{1}+a_{3}+a_{5}=\frac{1}{1}\left(y_{0}\right)=0, \quad \therefore \quad a_{1}=-5.70\).
\(b_{1}-b_{3}+b_{5}=1\left(y_{90}\right)=20.5, \quad \therefore \quad b_{1}=+19.91\).
```

Result:

$$
\begin{aligned}
y= & -5.70 \cos x+7.90 \cos 3 x-2.20 \cos 5 x \\
& +19.91 \sin x+2.27 \sin 3 x+2.86 \sin 5 x
\end{aligned}
$$

We may compare this result with that obtained for the same curve by the use of the computing form on p. 187.

If only the ist and 3 d harmonics had been present in the above wave, we should have

$$
\begin{array}{ll}
a_{3}=\frac{1}{3}\left(y_{0}-y_{60}+y_{120}\right) ; & b_{3}=\frac{1}{3}\left(y_{30}-y_{90}+y_{150}\right) ; \\
a_{1}+a_{3}=y_{0}=0 ; & b_{1}-b_{3}=y_{90} .
\end{array}
$$

If all the odd harmonics up to the ninth had been present in the above wave, we should have

$$
\begin{aligned}
& a_{9}=\frac{1}{5}\left(y_{0}-y_{20}+y_{40}-y_{60}+y_{80}-y_{100}+y_{120}-y_{140}+y_{160}\right) \text {; } \\
& b_{9}=\frac{1}{5}\left(y_{10}-y_{30}+y_{50}-y_{70}+y_{30}-y_{110}+y_{130}-y_{150}+y_{170}\right) \text {; } \\
& a_{7}=7\left(y_{0}-y_{25.71}+y_{51.43}-y_{77.14}+y_{102.86}-y_{128.57}+y_{154.29}\right) \text {; } \\
& b_{7}=7\left(y_{12.86}-y_{38.57}+y_{64.29}-y_{90}+y_{115.71}-y_{141.43}+y_{167.44}\right) ; \\
& a_{5}=\frac{1}{b}\left(y_{0}-y_{36}+y_{22}-y_{108}+y_{144}\right) ; \quad b_{5}=\frac{1}{8}\left(y_{18}-y_{64}+y_{90}-y_{126}+y_{162}\right) ; \\
& a_{3}+a_{9}=\frac{1}{3}\left(y_{0}-y_{60}+y_{120}\right) ; b_{3}-b_{9}=\frac{1}{3}\left(y_{30}-y_{90}+y_{150}\right) \text {; } \\
& a_{1}+a_{3}+a_{5}+a_{7}+a_{9}=y_{0}=0 ; \quad b_{1}-b_{3}+b_{5}-b_{7}+b_{9}=y_{90} .
\end{aligned}
$$

Similar schedules may be formed for determining the odd harmonics up to any order.
93. Graphical evaluation of the coefficients. - Various graphical methods have been devised for finding the values of the coefficients in the Fourier's series, but these are less accurate and much more laborious than the arithmetic ones. The graphical methods, while interesting, are of little practical value in rapidly analyzing a periodic curve, so that we shall describe here only one of these methods - the Ashworth-Harrison method.*

If, for example, we divide the complete period into 12 equal intervals and measure the 12 ordinates, we shall have the table
$\frac{x}{y}\left|\frac{0^{\circ}}{y_{0}}\right| \frac{30^{\circ}}{y_{1}}\left|\frac{60^{\circ}}{y_{2}}\right| \frac{90^{\circ}}{y_{3}}\left|\frac{120^{\circ}}{y_{4}}\right| \frac{150^{\circ}}{y_{5}}\left|\frac{180^{\circ}}{y_{6}}\right| \frac{210^{\circ}}{y_{7}}\left|\frac{240^{\circ}}{y_{8}}\right| \frac{270^{\circ}}{y_{9}}\left|\frac{300^{\circ}}{y_{10}}\right| \frac{330^{\circ}}{y_{11}}$

* Electrician, lxvii, p. 288, 1911; Engineering, lxxxi, p. 201, 1906. Other methods are briefly mentioned and further references are given in Modern Instruments and Methods of Calculation, a handbook of the Napier Tercentenary Celebration.

We have already shown (p. 18i) that

$$
\begin{aligned}
& 6 a_{1}=\sum y_{r} \cos x_{r}=y_{0} \cos 0^{\circ}+y_{1} \cos 30^{\circ}+\cdots+y_{11} \cos 330^{\circ} \\
& 6 b_{1}=\sum y_{r} \sin x_{r}=y_{0} \sin 0^{\circ}+y_{1} \sin 30^{\circ}+\ldots+y_{11} \sin 330^{\circ} .
\end{aligned}
$$

It is evident that if we consider the y 's as a set of co-planar forces radiating from a common center at angles $0^{\circ}, 30^{\circ}, 60^{\circ}$, . ., the sum of the horizontal components is equal to $6 a_{1}$ and the sum of the vertical components is $6 b_{1}$. To facilitate the finding of these sums we may draw the polygon of forces, starting at a point O and laying off in succession the ordinates, each making an angle of 30° with the preceding, as in Fig. $93 a$ (proper regard must be had for the signs of the ordinates). The polygon of forces may be constructed rapidly by means of a protractor carrying an ordinary measuring scale along the diameter. Then, $O A$, the projection of the resultant $O P$ on the horizontal, is equal to $6 a_{1}$, and $O B$, the projection of the resultant $O P$ on the vertical, is equal to $6 b_{1}$. Further-

Fig. 93a. more, if we write $a_{1} \cos x+b_{1} \sin x$ $=c_{1} \sin \left(x+\phi_{1}\right)$, then the length of $O P$ is $6 c_{1}$ and the angle $P O B$ is ϕ_{1}. In Fig. $93 a$ we have made the construction for the determination of a_{1}, b_{1}, c_{1}, and ϕ_{1} for the periodic curve drawn in Fig. 89 using the table of ordinates on p. r84. We find

$$
\begin{gathered}
O A=6 a_{1}=-4 \mathrm{I} .4, \quad O B=6 b_{1}=\mathrm{I} 26.0, \quad O P=6 c_{1}=\mathrm{I} 34 \\
\angle P O B=\phi_{1}=-\mathrm{I} 8.1^{\circ} ;
\end{gathered}
$$

hence

$$
a_{1}=-6.9, \quad b_{1}=21.0, \quad c_{1}=22.3, \quad \phi_{1}=-18.1^{\circ}
$$

These results agree very closely with those obtained on p. i84.
We may find a_{2} and b_{2} by laying off in succession the ordinates, each making an angle of 60° with the preceding; we proceed similarly in finding the other coefficients. A separate diagram must be drawn for each pair of coefficients.

More generally, if we divide the complete period into n equal intervals of width $2 \pi / n$ and measure the n ordinates, then (p. 177)

$$
\begin{aligned}
& \frac{n}{2} a_{k}=\sum y_{r} \cos k x_{r}=y_{0} \cos 0+y_{1} \cos k\left(\frac{2 \pi}{n}\right)+\cdots+y_{n-1} \cos k \frac{2(n-1) \pi}{n}, \\
& \frac{n}{2} b_{k}=\sum y_{r} \sin k x_{r}=y_{0} \sin 0+y_{1} \sin k\left(\frac{2 \pi}{n}\right)+\cdots+y_{n-1} \sin k \frac{2(n-1) \pi}{n} .
\end{aligned}
$$

Hence, if we construct the polygon of co-planar forces by starting at a point O and laying off in succession the ordinates, each making an angle

Fig. $93 b$. $2 k \pi / n$ with the preceding, then $O A$, the projection of the resultant $O P$ on the horizontal, is equal to $n a_{k} / 2$, and $O B$, the projection of the resultant $O P$ on the vertical, is equal to $n b_{k} / 2$, except when $k=0$ or $k=n / 2$, when we get the values $n a_{0}, n b_{0}$, $n a_{n / 2}, n b_{n / 2}$, respectively. Furthermore, the length of $O P$ is $n / 2$ (or n)

Fig. 93c.
times the amplitude c_{k} and the angle between $O P$ and $O B$ gives the phase ϕ_{k} of the complete harmonic $c_{k} \sin \left(k x+\phi_{k}\right)$.

Example. Analyze graphically the periodic curve in Fig. $86 b$.
As in the example on p. 181, we shall find the first three harmonics from the data

$$
\begin{array}{l|c|c|c|c|c}
x \\
y & \frac{0^{\circ}}{0.47} & \frac{60^{\circ}}{1.77} & \frac{120^{\circ}}{2.20} & -\frac{180^{\circ}}{-2.20} & \frac{240^{\circ}}{-1.64} \\
\hline-0.4900^{\circ} \\
\hline
\end{array}
$$

Here

$$
\begin{array}{lllll}
6 a_{0}=y_{0}+y_{1}+\cdots+y_{5} & =0.11 ; & a_{0}= & 0.02 . \\
6 a_{3}=y_{0}-y_{1}+\cdots-y_{5} & =1.95 ; & a_{3}= & 0.33 . \\
3 a_{1}=O A \text { (Fig. 93b) } & = & 3.09 ; a_{1}= & 1.03 . \\
3 b_{1}=O B \text { (Fig. 93b) } & = & 5.35 ; b_{1}= & 1.78 . & \\
3 c_{1}=O P \text { (Fig. 93b) } & = & 6.25 ; c_{1}= & 2.08, \quad \phi_{1}=30^{\circ} . \\
3 a_{2}=O A \text { (Fig. 93c) } & =-2.67 ; a_{2}=-0.89 . & \\
3 b_{2}=O B \text { (Fig. 93c) } & =-1.35 ; b_{2}=-0.45 . & \\
3 c_{2}=O P \text { (Fig. 93c) } & =3.00 ; c_{2}=1.00, \quad \phi_{2}=-60^{\circ} .
\end{array}
$$

Result:

$$
\begin{aligned}
y= & 0.02+1.03 \cos x-0.89 \cos 2 x+0.33 \cos 3 x \\
& +1.78 \sin x-0.45 \sin 2 x \\
= & 0.02+2.08 \sin \left(x+30^{\circ}\right)+\sin \left(2 x-60^{\circ}\right)-0.33 \sin \left(3 x-90^{\circ}\right)
\end{aligned}
$$

Note the close agreement of this result with that obtained by the arithmetic method on p. 181.
94. Mechanical evaluation of the coefficients. Harmonic analyzers. - A very large number of machines have been constructed for finding the coefficients in Fourier's series by mechanical means. These instruments are called harmonic analyzers. The machines have done useful work where a large number of curves are to be analyzed. Among these analyzers we may mention that of Lord Kelvin,* Henrici, \dagger Sharp, \ddagger Yule, § Michelson and Stratton, \|! Boucherot, $\|$ Mader,** and Westinghouse. $\dagger \dagger$ We shall briefly describe the principles upon which the construction of two of these instruments depend. $\ddagger \ddagger$

The harmonic analyzer of Henrici. This is one of a number of machines which use an integrating wheel like that attached to a planimeter or integrator \S to evaluate the integrals occurring in the general expressions for the cocfficients

$$
a_{0}=\frac{\mathrm{I}}{2 \pi} \int_{0}^{2 \pi} y d x, \quad a_{k}=\frac{\mathbf{1}}{\pi} \int_{0}^{2 \pi} y \cos k x d x, \quad b_{k}=\frac{\mathbf{1}}{\pi} \int_{0}^{2 \pi} y \sin k x d x
$$

given on P. 174 .
If the curve in Fig. 94^{a} represents a complete period of the curve to be analyzed, then evidently

$$
\int_{0}^{2 \pi} y d x=\text { area } O A B C D B O
$$

so that, if the tracing point of a planimeter is allowed to follow the curve $O A B C D B O$, the integrating wheel will give the reading $2 \pi a_{0}$, from which a_{0} may be computed.

[^9]Integrating by parts, we may write $a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} y \cos k x d x=\left|\frac{1}{k \pi} y \sin k x\right|_{0}^{2 \pi}-\frac{\mathrm{I}}{k \pi} \int_{0}^{2 \pi} \sin k x d y=-\frac{\mathrm{I}}{k \pi} \int_{0}^{2 \pi} \sin k x d y$, $b_{k}=\frac{\mathrm{I}}{\pi} \int_{0}^{2 \pi} y \sin k x d x=\left|-\frac{\mathrm{I}}{k \pi} y \cos k x\right|_{0}^{2 \pi}+\frac{\mathrm{I}}{k \pi} \int_{0}^{2 \pi} \cos k x d y=\frac{\mathrm{I}}{k \pi} \int_{0}^{2 \pi} \cos k x d y$.

Fig. 94a.

Now if the planimeter carries two integrating wheels whose axes make at each instant angles $k x$ and $\pi / 2-k x$ with the y-axis, and the point of intersection of these axes is capable of moving parallel to the y-axis, then as the tracer point passes around the boundary $O A B C D B O$, these wheels give readings proportional to

$$
\int \sin k x d y \text { and } \int \sin \left(\frac{\pi}{2}-k x\right) d y=\int \cos k x d y
$$

from which the values of a_{k} and b_{k} can be found.
In one form of the instrument the curve is drawn on a horizontal cylinder with the y-axis as one of the elements. A mechanism is attached to a carriage which moves along a rail parallel to the axis, by means of which a tracer point follows the curve while the cylinder rotates; the mechanism allows the axes of the integrating wheels to be turned through an angle $k x$ while the cylinder rotates through an angle x. Coradi, the Swiss manufacturer, has perfected the instrument so that several pairs of coefficients may be read with a single tracing of the curve.

Fig. $94 b$.

Fig. 94 c.

The Westinghouse harmonic analyzer.-This machine, constructed by the Westinghouse Electric and Mfg. Co., is particularly useful in
analyzing the alternating voltage and current curves represented by a polar or circular oscillogram.

Fig. $94 b$ gives one period of a periodic curve drawn on rectangular coördinate paper. In Fig. 94c, the same curve is represented on polar coördinate paper. This is done by constructing a circle of any convenient radius, called the zero line or reference circle and locating any point P by the angle $\theta=x$ and the radial distance $r=y$ from the zero line. Thus the points marked P, A, and B in Figs. $94 b$ and $94 c$ are corresponding points. If only the odd harmonics are present, the second half-period of the curve in Fig. $94 b$ will be a repetition below the x-axis of the first half-period; in this case, the diameters at all angles of the curve in Fig. 94c will be equal, and equal to the diameter of the reference circle. The relation between r and θ,

$$
\begin{aligned}
r=f(\theta) & =a_{1} \cos \theta+a_{2} \cos 2 \theta+\cdots+a_{k} \cos k \theta+\cdots \\
& +b_{1} \sin \theta+b_{2} \sin 2 \theta+\cdots+b_{k} \sin k \theta+\cdots
\end{aligned}
$$

is the function to be analyzed. This is done as follows.
The circular record of the periodic curve, drawn by hand from the rectangular record or directly by the circular oscillograph,* is transferred

FIG. $94 d$.
to a card of bristol board and a template is prepared by cutting around the curve. In the initial position the template M (Fig. 94d) is secured on a turntable T so that the axis $\theta=\mathrm{o}$ lies under the transverse cross-bar B. The turntable is set on a carriage D which slides on the rails L. The

[^10]carriage is given an oscillatory motion by the motion of a crank-pin P (Figs. 94e, 94f) attached to a rotating gear G and sliding in a transverse slot S on the bottom of the carriage. The carriage thus has a simple harmonic motion whose amplitude is the crank-pin radius R. By means of a crank and a simple arrangement of gears, the carriage makes k complete oscillations while the template makes one revolution, when determining the k th harmonic.

Fig. 94e.

Fig. $94 f$.

The cross-bar B is attached to the oscillating carriage; this bar carries a pin C held in contact with the edge of the template by means of springs, so that the bar has a transverse motion as the template revolves. Referred to a pair of axes $x x$ and $y y$, the motion of the end of the bar, $Q(x, y)$, may be said to consist of two components, viz., the transverse motion of the bar, $x=r=f(\theta)$, the function to be analyzed, and the simple harmonic motion of the carriage,

$$
\text { (I) } y=R \sin k \theta \quad \text { or (2) } y=R \sin \left(k \theta-\frac{\pi}{2}\right)=-R \cos k \theta \text {, }
$$

according as the carriage is started with the slot S in the dotted position of Fig. $94 e$ or of Fig. 94f. A planimeter is attached with its tracing point at Q. This point then describes compound Lissajous figures whose areas A_{1} and A_{2} may be read from the integrating wheel of the planimeter.

Now from (1), $\frac{d y}{d \theta}=R k \cos k \theta$ and from (2) $\frac{d y}{d \theta}=R k \sin k \theta$, hence

$$
\begin{aligned}
& A_{1}=\int_{0}^{2 \pi} x d y=\int_{0}^{2 \pi} r R k \cos k \theta d \theta=R k \int_{0}^{2 \pi} r \cos k \theta d \theta=R k \pi a_{k}, \\
& A_{2}=\int_{0}^{2 \pi} x d y=\int_{0}^{2 \pi} r R k \sin k \theta d \theta=R k \int_{0}^{2 \pi} r \sin k \theta d \theta=R k \pi b_{k},
\end{aligned}
$$

using the formulas for a_{k} and b_{k} on p. 174 .
Therefore $\quad a_{k}=\frac{A_{1},}{R k \pi}, \quad b_{k}=\frac{A_{2}}{R k \pi}$.
Gears are provided to analyze for all even and odd harmonics from I to 50 , and the shifting of the gears is a very simple matter.

EXERCISES.

1. Sketch the periodic curves

$$
y=2 \cos x ; \quad y=\cos 2 x ; \quad y=2 \cos x+\cos 2 x x^{\prime}
$$

2. Sketch the periodic curves

$$
\begin{aligned}
& y=\mathrm{I}+\sin x ; \quad y=-\frac{1}{2} \sin 2 x ; \quad y=\frac{1}{3} \sin 3 x ; \\
& y=1+\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x .
\end{aligned}
$$

3. Sketch the periodic curves

$$
\begin{aligned}
& y=2 \sin \left(x-40.5^{\circ}\right) ; \quad y=\sin \left(2 x+72.3^{\circ}\right) ; \quad y=\frac{1}{2} \sin \left(3 x-90^{\circ}\right) ; \\
& y=2 \sin \left(x-4.5^{\circ}\right)+\sin \left(2 x+7^{2} \cdot 3^{\circ}\right)+\frac{1}{2} \sin \left(3 x-90^{\circ}\right) .
\end{aligned}
$$

4. Sketch the periodic curve

$$
y=\cos x+0.4 \cos 3 x+0.5 \sin x-0.5 \sin 3 x .
$$

5. Sketch the periodic curve

$$
y=\cos x+0.4 \cos 3 x-0.2 \cos 5 x+0.5 \sin x-0.5 \sin 3 x-0.3 \sin 5 x .
$$

6. By use of the formulas on p. 177 and the direct method illustrated on p. 179, determine the coefficients of the third and fourth harmonics of the periodic curve in Fig. 89; use the table of ordinates on p. 179.
7. Determine the first three harmonics of the periodiacurve given by the following data; use the computing form on p. 180.

x	0°	60°	120°	180°		
y	-0.85	0.95	0.72	2.75	20°	300°
-1.37	-2.20					

8. Determine the first six harmonics of the periodic curve given by the following data; use the computing form on p . 183 .

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
x \\
y & \frac{0^{\circ}}{-18} & -30^{\circ} & 60^{\circ} & -90^{\circ} & -39 & -8 & -120^{\circ} & 150^{\circ} & 180^{\circ} & 210^{\circ} \\
22 & 11 & 10 & \frac{10^{\circ}}{14} & \frac{270^{\circ}}{12} & \frac{300^{\circ}}{15} & \frac{330^{\circ}}{-1}
\end{array}
$$

9. Determine the first twelve harmonics of the periodic curve given by the following data; use the computing form on p. 185 . (The curve is a graphical representation of the diurnal variation of the atmospheric electric potential gradient at Edinburgh during the year 1912.)

$$
\begin{array}{l|c|c|c|c|c|c|c|c|c|c|c|c}
x & 0^{\circ} & 15^{\circ} & 30^{\circ} & 45^{\circ} & 60^{\circ} & 75^{\circ} & 90^{\circ} & 105^{\circ} & 120^{\circ} & 135^{\circ} & 150^{\circ} & 165^{\circ} \\
\hline y & -18 & -30 & -39 & -4^{1} & -39 & -32 & -8^{\prime} & 11 & 22 & 24 & 22 & 20 \\
x & 180^{\circ} & \frac{195^{\circ}}{11} & 210^{\circ} & 225^{\circ} & 240^{\circ} & 255^{\circ} & 270^{\circ} & 285^{\circ} & 300^{\circ} & 315^{\circ} & 330^{\circ} & \frac{345^{\circ}}{16} \\
\hline y & 12 & 12 & 18 & 15 & 9 & -1 & -7
\end{array}
$$

10. Devise computing forms for determining the even and odd harmonic coefficients using 8 and 16 ordinates respectively.
in. Determine the odd harmonics up to the fifth for the symmetric periodic curve given by the following data; use the computing form on p. 187.

11. Determine the odd harmonics up to the fifth for the symmetric periodic curve from which the following measurements were taken; use the computing form on p. 187.

x
y

13. Determine the odd harmonics up to the eleventh for the symmetric periodic curve from which the following measurements were taken; use the computing form on p. 190 .

x	0°	15°	30°	45°	60°	75°	90°	$10{ }^{\circ}$	120°	135°	150°	16
	\bigcirc	14	33	52	60	40	27	30	15	18	6	

14. Determine the odd harmonics up to the seventeenth for the symmetric periodic curve from. which the following measurements were taken; use the computing form on p. 192.

$$
\begin{gathered}
x \\
y
\end{gathered}\left|\frac{0^{\circ}}{0}\right| \frac{10^{\circ}}{5}\left|\frac{20^{\circ}}{9}\right|-\frac{30^{\circ}}{21}\left|-\frac{40^{\circ}}{20}\right|-\frac{50^{\circ}}{21}\left|\frac{60^{\circ}}{27}\right| \frac{70^{\circ}}{30}\left|-\frac{80^{\circ}}{29}\right|-\frac{90^{\circ}}{33}\left|\cdot \frac{100^{\circ}}{42}\right| \frac{110^{\circ}}{44}
$$

15. Determine the first three harmonics for the peri odic curve from which the following measurements were taken; use the method of selected ordinates in Art. 9r; assume that all higher harmonics are absent.

$$
\begin{aligned}
& \begin{array}{c|c|c|c}
x & 300 & 315 & 3.30 \\
\hline y & -17.3 & -4.7 & 5.1
\end{array}
\end{aligned}
$$

16 Determine the first threc harmonics for the periodic curve drawn in Fig. 86b; use the method of selected ordinates in Art. 9r.
17. Determine the first six harmonics for the periodic curve drawn in Fig. 89; use the method of selected ordinates in Art. 9I; assume that all higher harmonics are absent.
18. Determine the first and third harmonics for the symmetric periodic curve given by the following data; use the method of selected ordinates in Art. 92; assume that all higher harmonics are absent

$$
\begin{array}{c|c|c|c|c|c|c}
x & 0^{\circ} & 30^{\circ} & 60^{\circ} & 90^{\circ} & 120^{\circ} & 150^{\circ} \\
\hline y & 0 & 62.9 & 66.5 & 22.4 & 14.9 & 33.3
\end{array}
$$

19. Assuming that the harmonics higher than the fifth are negligible, determine the odd harmonics of the symmetric periodic curve from which the following measurements were taken; use the method of selected ordinates in Art. 92.

$$
\begin{aligned}
& \begin{array}{c|c|c|c|c|c|c}
x & 0^{\circ} & 30^{\circ} & 60^{\circ} & 90^{\circ} & 120^{\circ} & 150^{\circ} \\
\hline y & 0 & 676 & 660 & 940 & 1004 & 554
\end{array}
\end{aligned}
$$

20. Use the method of selected ordinates in Art. 92 to determine the ninth harmonic of the curve given by the table in Ex. Iq.
21. Analyze graphically the curve in Ex. 7.

CHAPTER VIII.

INTERPOLATION.

95. Graphical Interpolation. - Having found the empirical formula connecting two measured quantities we may use this in the process of interpolation, i.e., in computing the value of one of the quantitics when the other is given within the range of values used in the determination of the formula. It is the purpose of this chapter to give some methods wherely interpolation may be performed when the empirical formula is inconvenient for computation or when such a formula cannot be found.

Let the following table represent a set of corresponding values of two quantities
$-\frac{x}{y}\left|-\frac{x_{0}}{y_{0}}\right| \frac{x_{1}}{y_{1}}\left|\frac{x_{2}}{y_{2}}\right|-\frac{x_{3}}{y_{3}}|\cdots|-\frac{x_{n}}{y_{n}}$
where y is a known or an unknown function of x. Our problem is to find the value of $y=y_{k}$ for a value of $x=x_{k}$ between x_{0} and x_{n}.

A simple graphical method consists in plotting the values of x and y as coördinates, drawing a smooth curve through or very near the plotted points, and measuring the ordinate y_{k} of the curve for the abscissa x_{k}. The value of y_{k} thus obtained may be sufficiently accurate for the purpose in hand. Thus from the curve in Fig. $72 b$, we read $t=10, A=77.0$, and $t=30, A=45.0$. If we use the empirical formula derived on p. 133,

$$
A=100.1 e^{-0.0265 t}, \text { or } \log A=2.0005-0.0115 t,
$$

we compute $t=$ го, $A=76.8$ and $t=30, A=45.2$. By comparison with the table on p. I 32 we note that the measured values of A for $t=$ 1o and $t=30$ agree about as closely with the computed values as the neighboring observed values agree with their corresponding computed values. Here, the last significant figures in the values of A were used in constructing the plot.

On the other hand, in Fig. $7 \mathrm{I} c$, we read $v=40, p=10.00$, whereas the empirical formula on p. 131 gives $v=40, p=9.42$. The residual is 0.58 , much larger than the residuals in the table on p . 130 for neighboring values of v. Here, the plot was constructed without using the last significant figures in the values of the quantities. It is of no advantage to construct a larger plot since the curve between plotted points is all the more indefinite.

For most problems the arithmetic or algebraic methods to be explained in the following sections give much better results.
96. Successive differences and the construction of tables. - Given a series of equidistant values of x and their corresponding values of y,

x	$\begin{aligned} & x_{0} \\ & x_{0} \end{aligned}$	$\stackrel{x_{1}}{x_{0}+h}$	$\begin{gathered} x_{2} \\ x_{0}+2 h \end{gathered}$	$\begin{gathered} x_{3} \\ x_{0}+3 h \\ \hline \end{gathered}$	$\begin{gathered} x_{n} \\ x_{0}+n h \end{gathered}$
y	y^{\prime}	y_{1}	y_{2}	y_{3}	y_{n},

we define the various orders of differences of y as follows:
Ist difference $=\Delta^{1}: a_{0}=y_{1}-y_{0}, a_{1}=y_{2}-y_{1}, \ldots, a_{n-1}=y_{n}-y_{n-1}$;
2 d difference $=\Delta^{2}: b_{0}=a_{1}-a_{0}, b_{1}=a_{2}-a_{1}, \ldots, b_{n-2}=a_{n-2}-a_{n-1}$;
3 d difference $=\Delta^{3}: c_{0}=b_{1}-b_{0}, c_{1}=b_{2}-b_{1}, \ldots, c_{n-3}=b_{n-3}-b_{n-2}$;
k th difference $=\Delta^{k}: k_{0}=j_{1}-j_{0}, k_{1}=j_{2}-j_{1}, \ldots$
These may be tabulated as follows:

where a quantity in any column of differences is written between two quantities in the preceding column and is equal to the lower one of these minus the upper one.

We may apply the above definitions in the formation of the differences of y when $y=f(x)$; thus,

$$
\Delta y=f(x+h)-f(x)=\Delta f(x) ; \Delta^{2} y=\Delta f(x+h)-\Delta f(x)=\Delta^{\prime} f(x) ;
$$ etc. E.g., if

$$
\begin{aligned}
y=x^{2}-2 x+2, \Delta y & =\left[(x+h)^{2}-2(x+h)+2\right]-\left[x^{2}-2 x+2\right] \\
& =2 h x+\left(h^{2}-2 h\right) ; \\
\Delta^{2} y & =\left[2 h(x+h)+\left(h^{2}-2 h\right)\right]-\left[2 h x+\left(h^{2}-2 h\right)\right] \\
& =2 h^{2} .
\end{aligned}
$$

We note that $\Delta^{2} y=2 h^{2}$, so that the second differences are constant for all values of x.

Similarly, if $y=x^{n}$ where n is a positive integer,

$$
\begin{aligned}
& \Delta y=(x+h)^{n}-x^{n}=x^{n}+n x^{n-1} h+\frac{n(n-1)}{\underline{2}} x^{n-2} h^{2}+\cdots-x^{n} \\
& =n x^{n-1} h+\frac{n(n-1)}{\underline{2}} x^{n-2} h^{2}+\cdots+h^{n} ; \\
& \Delta^{2} y=\left[n(x+h)^{n-1} h+\frac{n(n-1)}{\underline{2}}(x+h)^{n-2} h^{2}+\cdots\right] \\
& -\left[n x^{n-1} h+\frac{n(n-\mathrm{I})}{\underline{2}} x^{n-2} h^{2}+\cdots\right] \\
& =n(n-1) x^{n-2} h^{2}+\cdots, \\
& \Delta^{3} y=n(n-1)(n-2) x^{n-3} h^{3}+\cdots, \\
& \Delta^{n} y=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot \mathrm{I} h^{n}=\mid \underline{n} h^{n} ;
\end{aligned}
$$

hence the nth differences of x^{n}, where n is a positive integer, are constant, and hence the nth differences of any polynomial of the nth degree

$$
A x^{n}+B x^{n-1}+C x^{n-2}+\cdots+K x+L
$$

where n is a positive integer, are constant. If in forming the differences of a function some order of differences, say the n th, becomes approximately constant, then we may say that the function can be represented approximately by a polynomial of the nth degree, where n is a positive integer.

The formation of the differences for various functions is illustrated in the following tables:

(1) $y=x^{3}$					(2) $y=x^{3}$			
x	y	Δ^{1}	Δ^{2}	Δ^{3}	x	y	Δ^{1}	Δ^{2}
1	1				5.16	137.39		
2	8	7	12		5.21	141.42	4.03	0.08
		19		6			4.11	
3	27		18	6	5.26	145.53		0.08
4	64	37	24		5.31	149.72		0.08
		61		6			4.27	
5	125		30	6	5.36	153.99	. 35	0.08
6	216	9	36		5.41	158.34		0.08
		127		6			4.43	0.08
7	343		42	6	5.46	162.77	. 51	0.08
8	512		48		$5 \cdot 51$	167.28		0.09
		217					4.60	
9	729				$5 \cdot 56$	171.88		

(3) $y=\sqrt[3]{x}$

x	y	Δ^{1}	Δ^{2}
20	2.7144		
21	2.7589	445	-14
22	2.8020	431	-12
23	2.8439	419	-13
24	2.8845	406	-11
25	2.9240	395	

(5) Train-resistance

speed in mi. per hr.	resist. in lbs. per ton	Δ^{1}	Δ^{2}
20	5.5	3.6	
40	9.1	5.8	2.2
60	14.9	7.9	2.1
80	22.8	10.5	2.4
100	33.3	12.7	2.2
120	46.0		

(4) $y=\sqrt[3]{x}$

x	y	Δ^{1}
611	8.4856	
612	8.4902	46
613	8.4948	46
614	8.4994	46
615	8.5040	46
616	8.5086	46

(6) Speed of a vessel

$\underset{\substack{\text { speed in } \\ \text { knots per lir. }}}{V}$	$\begin{gathered} I \\ \text { horse-power } \end{gathered}$	Δ^{1}	Δ^{2}	Δ^{3}
8	1,000			
		400		
9	1,400		100	
10	1,900	500	100	o
		600		50
11	2,500		150	
		750		50
12	3,250		200	
13	4,200	950	250	50
		1200		100
14	5,400		350	
15	6,950	1550	450	100
		2000		50
16	8,950		500	
17	11,450	2500		

(7) $y=\log x$

x	y	Δ^{1}
500	2.6990	8
501	2.6998	9
502	2.7007	9
503	2.7016	8
504	2.7024	9
505	2.7033	9
506	2.7042	

(8) $y=\log \sin x$

In the above tables we note the following:
In (I), $y=x^{3}$ and Δ^{3} is constant.
In (2), $y=x^{3}$ and Δ^{2} is constant since we have carried the work to two decimal places and Δ^{3} does not sensibly affect the second decimal place.

If the computation had been carried to six decimal places, Δ^{2} would not be constant but Δ^{3} would be.

In (3), Δ^{2} is approximately constant, so that if we desire to work to four decimal places, $\sqrt[3]{x}$ could be represented by a polynomial of the second degree within the given range of values of x.

In (4), Δ^{1} is approximately constant so that $\sqrt[3]{x}$ could be represented by an equivalent polynomial of the first degree.

In (5) and (6), Δ^{2} and Δ^{3} are approximately constant, so that R may be approximately represented by a polynomial of the second degree in V, and I by a polynomial of the third degree in V.

In (7), $\log x$ may be approximately represented by a polynomial of the first degree, and in (8), $\log \sin x$ by a polynomial of the third degree within the given range of values of x.

In general, it is evident that we may stop the process of finding successive differences much sooner the smaller the number of digits required and the smaller the constant interval h. We should stop immediately if the differences become irregular.

The formation of differences is often valuable where a function is to be tabulated for a set of values of the variable. Thus, suppose we wish to form a table for $y=\pi x^{2} / 4$, expressing the area of a circle in terms of the diameter, for equidistant values of x. Since we have a polynomial of the second degree, $\Delta^{2} y$ is constant, and if $h=\mathrm{I}$ and the work is to be carried to 4 decimal places, we need merely compute the values of y for $x=1,2,3$ and form the corresponding differences; proceeding backwards, we repeat the value of $\Delta^{2} y=1.5708$, add this to $\Delta y=3.9270$ and get 5.4978 , add this to 7.0686 and get $\mathbf{1 2 . 5 6 6 4}$, which is the value of y for $x=4$. We proceed in the same manner to get the values of y for successive values of x.

x	$y=\pi x^{2} / 4$	Δ^{1}	Δ^{2}
\mathbf{I}	0.7854		
2	3.1416	2.3562	
3	7.5708		
4	12.5664	5.9270	1.5708
5	19.6350	7.0686	1.5708

x	$y=\pi x^{2} / 4$	Δ^{1}	Δ^{2}
69	3739.28	109.17	
70	3848.45	110.74	1.57
71	3959.19	112.31	1.57
72	4071.50	113.88	1.57
73	4185.38		

For larger values of x where we wish to work to two decimal places only, we take $\Delta^{2} y=1.57$ and proceed as above.

Suppose we wish to tabulate the function $y=x^{3}$. Here Δ^{3} is constant so that we merely compute the part of the accompanying table in heavy type. Then we extend the column for Δ^{3} by inserting 6 's, extend the columns for Δ^{2} and Δ^{2} by simple additions and subtractions, and thus determine the values of x^{3} for all integral values of x.

x	$y=x^{3}$	Δ^{1}	Δ^{2}	Δ^{3}
-1	-1	1		
0	0	1	0	6
1	1	7	6	6
2	8	7	12	6
3	27	19	18	6
4	64	37	24	6
5	125	61	30	61
6	216	91		

The same procedure may be followed in the construction of a table for a function where a certain order of differences is only approximately constant. Thus, in forming table (4) of cube roots, we note that for that portion of the table Δy is approximately 0.0046 so that we can find the values of $\sqrt[3]{x}$ by simple additions; we must check the work by direct computation every few values in order to find when $\Delta^{2} y$ changes its value.
97. Newton's interpolation formula. - We shall now express the value of y for any value of x. From the definitions of successive differences we have

$$
\begin{aligned}
& y_{1}=y_{0}+a_{0} ; \quad y_{2}=y_{1}+a_{1}=\left(y_{0}+a_{0}\right)+\left(a_{0}+b_{0}\right)=y_{0}+2 a_{0}+b_{0} ; \\
& y_{3}=y_{2}+a_{2}=\left(y_{0}+2 a_{0}+b_{0}\right)+\left(a_{0}+2 b_{0}+c_{0}\right)=y_{0}+3 a_{0}+3 b_{0}+c_{0} \text {; } \\
& y_{4}=y_{3}+a_{3}=\left(y_{0}+3 a_{0}+3 b_{0}+c_{0}\right)+\left(a_{0}+3 b_{0}+3 c_{0}+d_{0}\right) \\
& =y_{0}+4 a_{0}+6 b_{0}+4 c_{0}+d_{0} ;
\end{aligned}
$$

We note that the coefficients are those of the binomial expansion, and this suggests that

$$
\begin{equation*}
y_{n}=y_{0}+n a_{0}+\frac{n(n-1)}{\underline{2}} b_{0}+\frac{n(n-1)(n-2)}{\underline{3}} c_{0}+\cdots, \tag{I}
\end{equation*}
$$

where n is a positive integer. If this equation is true, then, replacing y by a, the first difference, we may also write

$$
\begin{aligned}
& a_{n}=a_{0}+n b_{0}+\frac{n(n-1)}{\underline{2}} c_{0}+\frac{n(n-1)(n-2)}{\underline{3}} d_{0}+\cdots, \\
& \therefore \quad y_{n+1}=y_{n}+a_{n}=y_{0}+(n+\mathrm{I}) a_{0}+\left[\frac{n(n-\mathrm{I})}{\mid \underline{2}}+n\right] b_{0} \\
& +\left[\frac{n(n-1)(n-2)}{\underline{3}}+\frac{n(n-1)}{\underline{2}}\right] c_{0}+\cdots \\
& =y_{0}+(n+1) a_{0}+\frac{(n+1) n}{\underline{2}} b_{0}+\frac{(n+1) n(n-1)}{\lfloor 3} c_{0}+\cdots,
\end{aligned}
$$

where the coefficients are again those of the binomial expansion with n replaced by $n+1$. Thus we have shown that if equation (I) is true for any positive integral value of n, it is true for the next larger integral value. But we have shown (I) to be true when $n=4$, therefore it is true when $n=5$; since it is true for $n=5$, therefore it is true for $n=6$; etc. Hence (I) is true for all positive integral values of n.

Now if some order of differences, say the k th order, is constant, i.e.. $\Delta^{k} y=k_{0}$, then y is a polynomial of the k th degree in n, and equation (I) may be written

$$
\begin{aligned}
A+B n+C n^{2}+\cdots+L n^{k}=y_{0}+n a_{0} & +\frac{n(n-1)}{\boxed{2}} b_{0}+\cdots \\
& +\frac{n(n-1) \cdot \cdot(n-k+1)}{\boxed{k}} k_{0}
\end{aligned}
$$

The right member of this equation is also a polynomial of the k th degree in n, and since these polynomials are equal for all positive integral values of n (i.e., for more than k values of n), they must be equal for all values of n, integral, fractional, positive, and negative.

Hence if the k th order of differences is constant, we have

$$
\begin{gather*}
y_{n}=y_{0}+n a_{0}+\frac{n(n-\mathrm{I})}{\underline{L}} b_{0}+\frac{n(n-\mathrm{I})(n-2)}{\underline{L}} c_{0}+\cdots \\
+\frac{n(n-\mathrm{I}) \ldots(n-k+\mathrm{I})}{\underline{k}} k_{0} \tag{N}
\end{gather*}
$$

for all values of n. This fundamental formula of interpolation is known as Newoton's interpolation formula. In this formula, y_{0} is any one of the tabulated values of y and the differences are those which occur in a line through y_{0} and parallel to the upper side of the triangle in the tabular scheme on p. 2 Io.

Newton's formula is approximately true for the more frequent case where the differences of some order are approximately constant; all the more so if $n<\mathrm{I}$. We can always arrange to have $n<\mathrm{I}$; for if we wish to find the value of $y=Y$ for $x=X$, where X lies between the tabular values x_{i} and x_{i+1}, we use Newton's formula with y_{i} and the corresponding differences $a_{i}, b_{i}, c_{i}, \ldots$, so that $X=x_{i}+n h$ and $n=\frac{X-x_{i}}{h}<\mathrm{I}$.* The values of the binomial cocfficients occurring in the formula have been tabulated for values of n between o and i at intervals of o.or. \dagger

Let us now apply Newton's formula to the illustrative differencetables (I) to (8).

* The ordinary interpolation formula of proportional parts disregards all differences higher than the first, so that $y=y_{0}+n a_{0}$, where $n=\left(X-x_{0}\right) / h$. This simple formula will often give the desired degree of accuracy if the interval h can be made small enough.
\dagger See H. L. Rice, Theory and Method of Interpolation.
(1) To compute (3.4) ${ }^{3} ; y_{0}=27, h=1, n=(3.4-3) / \mathrm{I}=0.4$;

$$
\begin{aligned}
\therefore \quad(3.4)^{3} & =27+(0.4)(37)+\frac{(0.4)(-0.6)}{2}(24)+\frac{(0.4)(-0.6)(-\mathrm{I} .6)}{6} \\
& =39.304 .
\end{aligned}
$$

(3) To compute $\sqrt[3]{23.5} ; y_{0}=2.8439, h=1, n=(23.5-23) / \mathbf{1}=0.5$;
$\therefore \quad \sqrt[3]{23 \cdot 5}=2.8439+\frac{1}{2}(0.0406)+\frac{1}{8}(0.001 \mathrm{II})=2.8643$.
If we use the ordinary interpolation formula of proportional parts,
$\sqrt[3]{23.5}=2.8439+\frac{1}{2}(0.0406)=2.8642$, which would be correct to three decimals only.
(4) To compute $\sqrt[3]{6 \mathrm{I} 2.25} ; y_{0}=8.4902, h=\mathrm{I}, n=(6 \mathrm{I} 2.25-612) / \mathrm{I}=\frac{1}{4}$;
$\therefore \quad \sqrt[3]{6 \mathrm{I} 2.25}=8.4902+\frac{1}{4}(0.0046)=8.4914$.
(5) To compute R when $V=65 ; R_{0}=14.9, h=20, n=(65-60) / 20=\frac{1}{4}$;
$\therefore \quad R=14.9+\frac{1}{4}(7.9)-{ }_{3}^{3}(2.4)=16.7$.
(7) To compute log 50I.3; $y_{0}=2.6998, h=\mathrm{I}, n=(50 \mathrm{I} .3-501) / \mathrm{I}=0.3$;
$\therefore \quad \log 501.3=2.6998+0.3(0.0009)=2.7001$.
(8) To compute $\log \sin 1^{\circ} \mathbf{1 6}^{\prime} ; y_{0}=8.3088-10, h=10^{\prime}, \quad n=$ $\left(\mathrm{I}^{\circ} \mathrm{I}^{\prime}-\mathrm{I}^{\circ} \mathrm{IO}^{\prime}\right) / \mathrm{IO}^{\prime}=0.6$;
$\therefore \quad \log \sin \mathrm{I}^{\circ} \mathrm{I}^{\prime}=(8.3088-10)+0.6(0.0580)-0.12(-0.0069)$ $+0.056(0.0016)=8.3+45-10$, correct to + decimals.
If we use the ordinary formula of proportional parts, we have $\log \sin \mathrm{I}^{\circ}{ }^{1} 6^{\prime}=8.3088-10+0.6(0.0580)=8.3+36-10$, correct to 2 decimals only.

If the value of x for which we wish to determine the value of y is near the end of the table we may not have all the required differences. To take care of this case Newton's formula is slightly modified. If we invert the series of values of x in the tabular scheme on p. 210 , and form the differences, we have

x	y	Δ^{1}	Δ^{2}	Δ^{3}	Δ^{4}
x_{n}	y_{n}	$-a_{n-1}$			
x_{n-1}	y_{n-1}				
\vdots					
\vdots					
x_{4}	y_{4}				
x_{3}	y_{3}	$-a_{3}$			
x_{2}	y_{2}	$-a_{2}$	b_{2}	$-c_{1}$	
x_{1}	y_{1}	$-a_{1}$	l_{1}	$-c_{0}$	d_{0}
x_{0}	y_{0}	$-a_{0}$	b_{0}		

Starting at y_{4} and applying Newton's formula, we get

$$
\begin{aligned}
y_{n} & =y_{4}+n\left(-a_{3}\right)+\frac{n(n-1)}{\underline{\mid 2}} b_{2}+\frac{n(n-1)(n-2)}{\lfloor 3}\left(-c_{1}\right)+\cdots \\
& =y_{4}-n a_{3}+\frac{n(n-1)}{\lfloor 2} b_{2}-\frac{n(n-1)(n-2)}{\lfloor 3} c_{1}+\cdots
\end{aligned}
$$

Comparing the result with the scheme on p. 210, we note that the differences are those which occur along a line parallel to the lower side of the triangle in that scheme. Here y_{4} is any value of y, and if X lies between x_{4} and x_{3}, then $X=x_{4}-n h$, and $n=\left(x_{4}-X\right) / h$.

Example. To compute $\sqrt[3]{24.8}$. In table (3), $y_{4}=2.9240, h=1$, $n=(25-24.8) / \mathrm{r}=0.2$;

$$
\therefore \sqrt[3]{24.8}=2.9240-0.2(0.0395)+\frac{0.2(-0.8)}{2}(-0.001 \mathrm{I})=2.9162 .
$$

If a series of corresponding numerical values of two quantitics are given, we may use Newton's formula for finding the polynomial which will represent this series of values exactly or approximately. For this purpose we replace n by $\left(x-x_{0}\right) / h$.

Thus, in table (I), $h=\mathrm{I}, x_{0}=\mathrm{I}, n=x-\mathrm{I}$; $\therefore \quad y=1+(x-1) 7+\frac{(x-1)(x-2)}{2} 12+\frac{x(x-1)(x-2)(x-3)}{13} 6=x^{3}$.

In table (5) $, \quad h=20, \quad V_{0}=20, \quad n=\frac{V-20}{20}=\frac{V}{20}-1$;

$$
\begin{aligned}
\therefore \quad R=5.5 & +\left(\frac{V}{20}-1\right) 3.6+\frac{\left(\frac{V}{20}-1\right)\left(\frac{V}{20}-2\right)}{\mid 2} 2.2 \\
& =4.1+0.015 \mathrm{~V}+0.00275 V^{2}
\end{aligned}
$$

The values of R computed by this formula agree quite closely with those in the table.

In table (6), $h=\mathrm{I}, \quad V_{0}=10, \quad n=V-10 ;$

$$
\begin{aligned}
\therefore \quad I= & 1900+(V-10) 600+\frac{(V-10)(V-11)}{2} 150 \\
& +\frac{(V-10)(V-11)(V-12)}{6} 50 \\
= & -6850+2042 V-200 V^{2}+8 \frac{1}{3} V^{3} .
\end{aligned}
$$

The values of I computed by this formula agree quite closely with those in the table; thus, $V=12$ gives $I=3254$.

Various formulas of interpolation similar to Newton's have been derived which are very convenient in certain problems. Among these may be mentioned the formulas of Stirling, Gauss, and Bessel.*

[^11]98. Lagrange's formula of interpolation. - Newton's formula is applicable only when the values of x are equidistant. When this is not the case, we may use a formula known as Lagrange's formula. Given the following table of values of x and y,
$\left.\frac{x}{y}\left|-\frac{a_{1}}{y_{1}}\right|-\frac{a_{2}}{y_{2}}\left|\frac{a_{3}}{y_{3}}\right| \frac{a_{4}}{y_{4}}\left|\frac{a_{5}}{y_{5}}\right| \cdots \cdots \right\rvert\, \frac{a_{n}}{y_{n}}$
we are to find an expression for y corresponding to a value of x lying between a_{1} and a_{n}. We take for y an expression of the ($n-1$) st degree in x containing n constants, and determine these n constants by requiring the n sets of values of x and y to satisfy the equation. But instead of assuming the form $y=A+B x+C x^{2}+\cdots+N x^{n-1}$, we may assume the equivalent form
\[

$$
\begin{aligned}
y & =A\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right) \cdots\left(x-a_{n}\right) \\
& +B\left(x-a_{1}\right)\left(x-a_{3}\right)\left(x-a_{4}\right) \cdot \cdot\left(x-a_{n}\right) \\
& +C\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{4}\right) \cdots \cdot\left(x-a_{n}\right) \\
& +N \cdot \cdot \cdot \cdot \cdot \\
& +N\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \cdot \cdot\left(x-a_{n-1}\right)
\end{aligned}
$$
\]

where the n terms in the right member of the equation lack the factors $\left(x-a_{1}\right),\left(x-a_{2}\right), \cdots\left(x-a_{n}\right)$ respectively.

Since (a_{1}, y_{1}) is to satisfy this equation,

$$
y_{1}=A\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right) \cdots\left(a_{1}-a_{n}\right)
$$

since all the other terms contain the factor $\left(a_{1}-a_{1}\right)$ and therefore vanish.
Similarly,

$$
\begin{gathered}
y_{2}=B\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right)\left(a_{2}-a_{4}\right) \cdots\left(a_{2}-a_{n}\right), \\
y_{3}=C\left(a_{3}-a_{1}\right)\left(a_{3}-a_{2}\right)\left(a_{3}-a_{4}\right) \cdots\left(a_{3}-a_{n}\right), \\
y_{n}=N\left(a_{n}-a_{1}\right)\left(a_{n}-a_{2}\right)\left(a_{n}-a_{3}\right) \cdots \cdot\left(a_{n}-a_{n-1}\right) .
\end{gathered}
$$

Hence,

$$
\begin{aligned}
A & =\frac{y_{1}}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right) \cdot \cdot\left(a_{1}-a_{n}\right)} \\
B & =\frac{y_{2}}{\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right)\left(a_{2}-a_{4}\right) \cdot\left(a_{2}-a_{n}\right)}, \text { etc. }
\end{aligned}
$$

and, finally,

$$
\begin{aligned}
y=y_{1} & \left(x-a_{2}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n}\right) \\
\left(a_{1}-I_{2}\right)\left(a_{1}-a_{3}\right) \ldots\left(y_{1}-a_{n}\right) & \frac{\left(x-a_{1}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n}\right)}{\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right) \ldots\left(a_{2}-a_{n}\right)} \\
& +\cdots+y_{n} \frac{\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n-1}\right)}{\left(a_{n}-a_{1}\right)\left(a_{n}-a_{2}\right) \ldots\left(a_{n}-a_{n-1}\right)}
\end{aligned}
$$

We note that in the term containing y_{k}, the numerator of the fraction lacks the factor $\left(x-a_{k}\right)$ and the denominator lacks the corresponding factor ($a_{k}-a_{k}$). Lagrange's formula is in convenient form for logarithmic computation.

Example. In the table on p. 132 we have
$\frac{t}{A}\left|\frac{14}{68.7}\right| \frac{17}{64.0}\left|\frac{31}{44.0}\right| \frac{35}{39.1}$
and we are to find the value of A when $t=27$. Using Lagrange's formula,

$$
\begin{aligned}
A & =68.7 \frac{(27-17)(27-31)(27-35)}{(14-17)(14-31)(14-35)}+64.0 \frac{(27-14)(27-31)(27-35)}{(17-14)(17-31)(17-35)} \\
& +44.0 \frac{(27-14)(27-17)(27-35)}{(31-14)(31-17)(31-35)}+39.1 \frac{(27-14)(27-17)(27-31)}{(35-14)(35-17)(35-31)} \\
& =-20.5+35.2+48.0-13.4=49.3,
\end{aligned}
$$

which agrees exactly with the observed value.
Example. In the table on p. 157 we have

$$
\begin{array}{c|c|c|c}
t \\
{ }_{i}^{t} & \left|\frac{0.1}{2.48}\right| \frac{0.2}{2.66} & \frac{0.4}{2.58} & 0.8 \\
2.00
\end{array}
$$

and we are to find the value of i when $t=0.3$. Using only the values $t=0.2$ and $t=0.4$,

$$
i=2.66 \frac{(0.3-0.4)}{(0.2-0.4)}+2.58 \frac{(0.3-0.2)}{(0.4-0.2)}=1.33+1.29=2.62 .
$$

Using all four values of $t, i=2.68$. Using the empirical equation

$$
i=4.9+e^{-1.07 t}-2.85 e^{-3.76 t}(\text { on p. 159), we get } i=2.66
$$

Gauss's interpolation formula for periodic functions. - When the data are periodic we may find the empirical equation as a trigonometric series by the method of Chapter VII and use this equation for purposes of interpolation, or we may use an equivalent equation given by Gauss:

$$
\begin{aligned}
y & =y_{1} \frac{\sin \frac{1}{2}\left(x-a_{2}\right) \sin \frac{1}{2}\left(x-a_{3}\right) \ldots \sin \frac{1}{2}\left(x-a_{n}\right)}{\sin \frac{1}{2}\left(a_{1}-a_{2}\right) \sin \frac{1}{2}\left(a_{1}-a_{3}\right) \ldots \sin \frac{1}{2}\left(a_{1}-a_{n}\right)} \\
& +y_{2} \frac{\sin \frac{1}{2}\left(x-a_{1}\right) \sin \frac{1}{2}\left(x-a_{3}\right) \ldots \sin \frac{1}{2}\left(x-a_{n}\right)}{\sin \frac{1}{2}\left(a_{2}-a_{1}\right) \sin \frac{1}{2}\left(a_{2}-a_{3}\right) \ldots \sin \frac{1}{2}\left(a_{2}-a_{n}\right)} \\
& +. \quad . \quad . \quad . \quad . \quad . \quad .
\end{aligned}
$$

It is evident that $y=y_{1}$ when $x=a_{1}, y=y_{2}$ when $x=a_{2}$, etc., so that the equation is satisfied by the corresponding values of x and y.
99. Inverse interpolation. - Given the table

we may wish to find the value of x corresponding to a given value of y. If the values of x are equidistant we may use Newton's interpolation formula. Here we know $y_{n}, y_{0}, a_{0}, b_{0}, c_{0}, \ldots$, and substituting these values in the formula we have an equation which is to be solved for n.

If only the first order of differences are taken into account, then $y_{n}=y_{0}+n a_{0}$, and $n=\frac{y_{n}-y_{0}}{a_{0}}$, the ordinary formula for inverse interpolation by proportional parts.

Example. In table (7), given $\log x=2.7003$, to find x. $n=\frac{2.7003-2.6998}{0.0009}=0.56$, and $x=x_{0}+n h=501+0.56(\mathrm{I})=501.56$.

If only the first and second differences are taken into account, then $y_{n}=y_{0}+n a_{0}+\frac{n(n-1)}{2} b_{0}$, a quadratic equation which can easily be solved for n.

Example. In table (5), given $R=27 \cdot 3$, to find V.
Here

$$
27.3=22.8+n(10.5)+\frac{n(n-1)}{2}(2.2)
$$

or

$$
\text { 1.1 } n^{2}+9.4 n-4.5=0
$$

hence $n=\mathrm{r}_{\mathrm{I}}^{5}=0.455$ and $x=V_{0}+n h=80+(0.455) 20=89 . \mathrm{I}$.
The empirical formula $R=4.62-0.004 V+0.0029 V^{2}$ on p. 149 gives

$$
V=89 . \mathrm{I}, \quad R=27.3
$$

But if the third and higher orders of differences have to be taken into account, the method would require the solution of equations of the third and higher degrees. In such cases as well as in the case where the values of x are not equidistant, we may use Lagrange's formula and merely interchange x and y; i.e.,

$$
x=x_{1} \frac{\left(y-a_{2}\right)\left(y-a_{3}\right) \cdots}{\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \ldots}+x_{2} \frac{\left(y-a_{1}\right)\left(y-a_{3}\right) \cdots \cdot}{\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right) \ldots}+\cdots
$$

Example. In table (8), given $\log \sin x=8.3850-10$, to find x. Using only the following values,

$$
\begin{array}{c|c|c|c}
\log \sin x \\
x & 8.3088-10 \\
70^{\prime} & \frac{8.3668-10}{80^{\prime}} & \frac{8.4179-10}{90^{\prime}}
\end{array}
$$

we have

$$
\begin{aligned}
x= & 70^{\prime} \frac{(0.0182)(-0.0329)}{(-0.0580)(-0.109 \mathrm{I})}+80^{\prime} \frac{(0.0762)(-0.0329)}{(0.0580)(-0.05 \mathrm{II})} \\
& +90^{\prime} \frac{(0.0762)(0.0182)}{(0.109 \mathrm{I})(0.05 \mathrm{II})} \\
= & 70^{\prime}(-0.0946)+80^{\prime}(0.846)+90^{\prime}(0.249) \\
= & 83.47^{\prime}=\mathrm{I}^{\circ} 23.47^{\prime} .
\end{aligned}
$$

We may also use a method of successive approximations as follows: From Newton's formula we write

$$
n=\frac{y-y_{0}}{a_{0}+\frac{1}{2}(n-\mathrm{I}) b_{0}+\frac{1}{6}(n-\mathrm{I})(n-2) c_{0}+\cdots}
$$

Applying this to the above example, and taking only the first differences into account, we get as a first approximation,

$$
n_{1}=\frac{y-y_{0}}{a_{0}}=\frac{(8.3850-\mathrm{I} 0)-(8.3668-\mathrm{I} 0)}{0.05 \mathrm{II}}=\frac{182}{5 \mathrm{II}}=0.356
$$

Taking also second differences into account and introducing the value of n_{1} for n in the denominator, we get as a second approximation,

$$
n_{2}=\frac{y-y_{0}}{a_{0}+\frac{1}{2}\left(n_{1}-\mathrm{I}\right) b_{0}}=\frac{0.0182}{0.051 \mathrm{I}+0.0017}=\frac{182}{528}=0.345
$$

We may continue in this way approximating more and more closely to the value of n. In this example it will be unnecessary to carry the work to third differences since Δ^{3} is negligible. Hence

$$
n=0.345, \quad \text { and } \quad x=x_{0}+n h=\mathrm{I}^{\circ} 2 \mathrm{o}^{\prime}+(0.345)\left(\mathrm{IO}^{\prime}\right)=\mathrm{I}^{\circ} 23.45^{\prime}
$$

We may check this by direct interpolation. Here

$$
y_{0}=8.3668-10, \quad h=10^{\prime}, \text { and } n=0.3+5 ;
$$

hence,

$$
y=8.3668-10+0.345(0.0511)-0.113(-0.0053)=8.3850-10 .
$$

Example. Find the real root of the equation $x^{3}+5 x-1=0$ We form a table of differences of the function $y=x^{3}+5 x-\mathrm{I}$.

x	y	Δ^{1}	Δ^{2}	Δ^{3}	
-2	-19	12			
-1	-7	6	-6	6	
0	-1	6	0	6	
1	5	12	6	6	
2	17	24	12		
3	41				

The root lies between $x=0$ and $x=\mathrm{I}$, and we are to find the value of x when $y=0$. Using the method of successive approximations we have

$$
\begin{aligned}
n_{1} & =\frac{y-y_{0}}{a_{0}}=\frac{\mathrm{o}+\mathrm{I}}{6}=\frac{\mathrm{I}}{6}=0.1667, \\
n_{2} & =\frac{y-y_{0}}{a_{0}+\frac{1}{2}\left(n_{1}-\mathrm{I}\right) b_{0}}=\frac{1}{6+\frac{1}{2}\left(\frac{1}{6}-\mathrm{I}\right) 6}=\frac{2}{7}=0.2857, \\
n_{3} & =\frac{y-y_{0}}{a_{0}+\frac{1}{2}\left(n_{2}-\mathrm{I}\right) b_{0}+\frac{1}{6}\left(n_{2}-\mathrm{I}\right)\left(n_{2}-2\right) c_{0}}=\frac{1}{6-1_{5}^{5}+\frac{60}{49}}=\frac{49}{249}=0.1968, \\
n_{4} & =\frac{1}{a_{0}+\frac{1}{2}\left(n_{3}-\mathrm{I}\right) b_{0}+\frac{1}{6}\left(n_{3}-\mathrm{I}\right)\left(n_{3}-2\right) c_{0}}=\frac{1}{6-2.4096+\mathrm{I} .4483} \\
& =\frac{\mathrm{I}}{5.0387}=0.1985 .
\end{aligned}
$$

Hence,

$$
x=x_{0}+n h=0.1985 .
$$

From the table

$$
\left.\frac{x}{y}\left|\frac{0.1985}{0.00032}\right| \frac{0.19845}{0.00006} \right\rvert\, \frac{0.1984}{-0.00019}
$$

we note that $x=0.1984$ is the root correct to 4 decimals.

EXERCISES

I. Tabulate the values and differences of the following functions; h is the common interval.
(a) x^{2}, from $x=5$ to $x=12$ when $h=1$; and from $x=3$ to $x=3$.1 when $h=0.01$.
(b) \sqrt{x}, from $x=1$ to $x=10$, when $h=1$, and from $x=563$ to $x=570$ when $h=\mathrm{I}$.
(c) $\frac{1}{x}$, from $x=60$ to $x=70$ when $h=1$, and from $x=260$ to $x=262$ when $h=0.2$.
(d) $\frac{\pi D^{3}}{6}$ (volume of a sphere), from $D=1$ to $D=1.8$ when $h=0 . \mathrm{I}$.
(e) $\log x$, to 4 decimals, from $x=356$ to $x=362$ when $h=1$.
(f) $\tan x$, to 4 decimals, from $x=32^{\circ}$ to $x=33^{\circ}$ when $h=10^{\prime}$.
(g) $\log \cos x$, to 4 decimals, from $x=88^{\circ} 10^{\prime}$ to $x=89^{\circ} 20^{\prime}$ when $h=10^{\prime}$.
(h) e^{x}, to 4 decimals, from $x=0.8$ to $x=0.9$ when $h=0.01$.
(i) $\frac{1}{2}(\alpha-\sin \alpha)$, to 4 decimals (area of a segment of a circle subtending a central angle α, in radians) from $\alpha=25^{\circ}$ to $\alpha=32^{\circ}$ when $h=1^{\circ}$.
2. Tabulate the differences for the following experimental results and indicate for each case the degree of the polynomial that would best express the relation between the variables.
(a) $S=$ stress in lbs. per sq. in. in steel wire used for winding guns, $E=$ elongation in inches per inch.

S	10,000	20,000	$\frac{30,000}{20,000}$	$\frac{40,000}{50,000}$	60,000	70,000	80,000
E	0.00019	0.00057	0.00094	0.00134	0.00173	0.00216	0.00256
0.00297							

(b) $Q=\mathrm{cu}$. ft . of water per sec. flowing over a Thomson gauge notch; $H=\mathrm{ft}$. of head.

$I I$	1.2	1.4	1.6	1.8	2.0
Q	4.2	6.1	8.5	11.5	14.9

(c) $P / a=$ load in lbs. per sq. in. which causes the failure of long wrought-iron columns with round ends, $l / r=$ ratio of length of column to least radius of gyration of its cross-section.
$\frac{l / r}{P / a}\left|\frac{140}{12,800}\right|-\frac{18:}{7500}-\left|-\frac{220}{5000}\right|-\frac{260}{3800}\left|-\frac{300}{2800}\right| \frac{340}{2100}\left|\frac{380}{1700}\right|-\frac{420}{1300}$
(d) $e=$ volts, $p=$ kilowatts in a core-loss curve for an electric motor.

$$
\begin{array}{c|c|c|c|c|c}
e & 40 \\
\hline p & 0.63 & \frac{60}{1.36} & \frac{80}{2.18} & 100 & 120 \\
3.00 & 140 & 160 \\
\hline .93 & 6.22 & 8.59
\end{array}
$$

(e) $A=$ amplitude of vibration in inches of a long pendulum, $t=$ time in min. since it was set swinging.

t
A

(f) $V=$ potential difference in volts, $A=$ current in amperes in an electric circuit.
$\frac{A}{V}\left|\frac{2.97}{65.0}\right| \frac{3.97}{61.0}\left|\frac{4.97}{58.25}\right| \frac{5.97}{56.25}\left|\frac{6.97}{55.1}\right| \frac{7.97}{54.3}$
(g)
$\left.-\frac{x}{y}\left|\frac{1}{6.42}\right| \frac{3}{8.50}\left|\frac{5}{11.03}\right| \frac{7}{14.03}\left|\frac{9}{17.53}\right|-\frac{11}{21.55} \right\rvert\,-\frac{13}{26.12}$
(h)

x	0	0.3	0.6					
y	3.00	1.89	1.27	0.88	1.2	$\frac{1.5}{0.63}$	0.46	$\frac{1.8}{0.33}$

3. By the method of differences explained in Art. 96, extend the tabulation of the functions in Exs. I a, b, d, e, h, i, for several values of the variables beyond the range of values for which the tables were constructed.
4. Apply Newton's interpolation formula to the tables in Ex. I.
(a) In Ex. i a, find x when $x=7.3$ and $x=3.056$.
(b) In Ex. I b, find \sqrt{x} when $x=566.2$.
(c) In Ex. 1 d, find $\pi D^{3} / 6$ when $D=1.452$.
(d) In Ex. I e, find $\log x$ when $x=36 \mathrm{r} .4$.
(e) In Ex. 1 g , find $\log \cos x$ when $x=88^{\circ} 43^{\prime}$.
5. Apply Newton's interpolation formula to the tables in Ex. 2.
(a) In Ex. 2 a, find E when $S=42,000$.
(b) In Ex. 2 b, find Q when $I=1.7$, and compare with the value given by the empirical formula $Q=2.672 H^{2.48}$.
(c) In Ex. 2 c , find $P_{i} a$ when $l^{\prime} r=327$, and compare with the value given by the empirical formula $P / a=417,000,000(l / r)^{2.1}$
(d) In Ex. 2 f, find V when $A=4.07$.
(e) In Ex. 2 g , find y when $x=6$.
(f) In Ex. 2 h , find y when $x=1.3$ and $x=2.46$.
6. In the following table (taken from p. 129)

$$
\begin{array}{c|c|c|c|c}
0 & 288 & 293 & 31.3 & 33.3 \\
\hdashline & 5 & 35.2 & 37.2 & +5.8 \\
\hline 5.5 .2
\end{array}
$$

S is the number of grams of anhydrous ammonium chloride which dissolved in 100 grams of water makes a saturated solution of θ° absolute temperature. Use Lagrange's formula of interpolation to find S when $\theta=300^{\circ}$, using (1) only two values of θ, (2) three values of $\theta,(3)$ all four values of θ. Compare the results with the value given by the empirical formula $S=0.000000882 \theta^{3.10}$.
7. In the following table (taken from p. $1+1$)

i is the current and V is the voltage consumed by a magnetite arc. Use Lagrange's formula to find V when $i=3$, and compare the result with the value given by the empirical formula $V=30.4+90 .+i-0 .: 07$.
8. Use the methods of inverse interpolation (Art. 99) in the following:
(a) In Ex. I a, find x when $x^{2}=39$ and when $x^{2}=9.34$.
(b) In Ex. I e, find x when $\log x=2.5542$.
(c) In Ex. I g, find x when $\log \cos x=8.3946$ - 10 .
(d) In Ex. 2 a, find S when $E=0.00192$.
(e) In Ex. 2 c, find $l_{i}^{\prime} r$ when $P_{i}^{\prime}(l)=4000$.
(f) In Ex. 2 g , find x when $y=15.25$.
9. Approximate to the real roots of the equations:
(a) $x^{3}-2 x+3=0$.
(b) $x^{4}-4 x+2=0$.
(c) $e^{x}+x^{2}-4=0$.
(d) $10 \log x-x-2=0$.
(e) $\sin x+x^{2}-1.5=0$.

CHAPTER IX.

APPROXIMATE INTEGRATION AND DIFFERENTIATION.

100. The necessity for approximate methods.-- In a large number of engineering problems it is necessary to determine the value of the definite integral, $\int_{a}^{b} f(x) d x$. Geometrically, this integral represents the area bounded by the curve $y=f(x)$, the x-axis, and the ordinates $x=a$ and $x=b$. Physically, it may represent the work done by an engine, the velocity acquired by a moving body, the pressure on an immersed surface, etc. If $f(x)$ is analytically known, the above integral may be evaluated by the methods of the Integral Calculus. But if we merely know a set of values of $f(x)$ for various values of x, or if the curve is drawn mechanically, e.g., an indicator diagram or oscillograph, or even where the function is analytically known but the integration cannot be performed by the elementary methods of the Integral Calculus - in all these cases, the integral must be evaluated by approximate methods - numerical, graphical, or mechanical. The planimeter is ordinarily used in measuring the area enclosed by an indicator diagram and in certain problems in Naval Architecture; such approximations often have the desired degree of accuracy. Where a higher degree of accuracy is required or where a planimeter is not available numerical methods must be used.

In certain problems it becomes necessary to determine the value of the derivative, $\frac{d y}{d \dot{x}}$. Geometrically, this represents the slope of the curve $y=f(x)$ at any point. Physically, it arises in problems in which the velocity and acceleration are to be found when the distance is given as a function of the time, in problems involving maximum and minimum values and rates of change of various physical quantities, etc. To evaluate the derivative we may use the methods of the Differential Calculus if the function is analytically known. Otherwise we are forced to use approximate methods - numerical, graphical, or mechanical.

It is our purpose, in the following sections, to develop some of the numerical, graphical, and mechanical methods used in approximate integration and differentiation.

1or. Rectangular, Trapezoidal, Simpson's, and Durand's rules. Suppose we wish to find the approximate area bounded by the curve $y=f(x)$, the x-axis, and the ordinates $x=x_{0}$ and $x=x_{n}$ (Fig. ıor).

We divide the interval from $x=x_{0}$ to $x=x_{n}$ into n equal intervals of width h, and measure the $(n+1)$ ordinates $y_{0}, y_{1}, y_{2}, \ldots, y_{n-1}, y_{n}$.
(i) Rectangular rule. - If, starting at P_{0}, we draw segments parallel to the x-axis through the points $P_{0}, P_{1}, P_{2}, \ldots, P_{n-1}$, the area enclosed by the rectangles thus formed is given by

$$
A_{R}=h\left(y_{0}+y_{1}+y_{2}+\cdots+y_{n-1}\right) .
$$

Fiti. 101.
If, starting at P_{n}, we draw segments parallel to the x-axis through the points $P_{n}, P_{n-1}, \ldots, P_{2}, P_{1}$, the area enclosed by the rectangles thus formed is given by

$$
A_{l^{\prime}}^{\prime}=h\left(y_{1}+y_{2}+y_{3}+\cdots+y_{n}\right) .
$$

It is evident that the smaller the interval h, the better the approximation to the required area.
(2) Trapesoidal rule. - If the chords $P_{0} P_{1}, P_{1} P_{2}, \ldots, P_{n-1} P_{n}$ are drawn, then the area enclosed by the trapezoids thus formed is

$$
\begin{aligned}
A_{T} & =h\left(\frac{y_{0}+y_{1}}{2}\right)+h\binom{y_{1}+y_{2}}{2}+h\left(\frac{y_{2}+y_{3}}{2}\right)+\cdots+h\left(\frac{y_{n-1}+y_{n}}{2}\right) \\
& =h\left[\frac{1}{2}\left(y_{0}+y_{n}\right)+y_{1}+y_{2}+\cdots+y_{n-1}\right] .
\end{aligned}
$$

This expression for the area is the average of the two expressions given by the rectangular rules. It is evident that the smaller the interval h and the flatter the curve, the better the approximation to the required area. If the curve is steep at either end or anywhere within the interval, the rule may be modified by sublividing the smaller interval into 2 or 4 parts; thus, subdividing the steep interval between x_{n-1} and x_{n} in Fig. ion into 2 parts: $A_{T}=h\left(\frac{y_{0}+y_{1}}{2}\right)+\cdots+\frac{h}{2}\left(\frac{y_{n-1}+y_{m}}{2}\right)+\frac{h}{2}\left(\frac{y_{m}+y_{n}}{2}\right)$,

$$
\text { into } 4 \text { parts: } A_{T}=h\left(\frac{y_{0}+y_{r}}{2}\right)+\cdots+\frac{h}{4}\left(\frac{y_{n-1}+y_{k}}{2}\right)+\frac{h}{4}\left(\frac{y_{k}+y_{m}}{2}\right) .
$$

(3) Simpson's rule. - Let us pass arcs of parabolas through the points $P_{0} P_{1} P_{2}, P_{2} P_{3} P_{4}, \ldots, P_{n-2} P_{n-1} P_{n}$. Let the equation of the parabola through $P_{0} P_{1} P_{2}$ be $y=a x^{2}+b x+c$. Then the area bounded by the parabola, the x-axis, and the ordinates $x=x_{0}$ and $x=x_{2}$ is

$$
\begin{aligned}
& A=\int_{x_{0}}^{x_{2}}\left(a x^{2}+b x+c\right) d x=\left|\frac{a x^{3}}{3}+\frac{b x^{2}}{2}+c x\right|_{x_{0}}^{r_{2}}=\frac{a}{3}\left(x_{2}{ }^{3}-x_{0}{ }^{3}\right)+\frac{b}{2}\left(x_{2}{ }^{2}-x_{0}{ }^{2}\right) \\
&+c\left(x_{2}-x_{0}\right)=\frac{x_{2}-x_{0}}{6}\left[2 a\left(x_{2}{ }^{2}+x_{2} x_{0}+x_{0}{ }^{2}\right)+3 b\left(x_{2}+x_{0}\right)+6 c\right] .
\end{aligned}
$$

Now, $\quad y_{0}=a x_{0}{ }^{2}+b x_{0}+c, \quad y_{2}=a x_{2}{ }^{2}+b x_{2}+c, \quad h=\frac{x_{2}-x_{0}{ }^{\circ}}{2}$,

$$
y_{1}=a x_{1}^{2}+b x_{1}+c=a\left(\frac{x_{2}+x_{0}}{2}\right)^{2}+b\left(\frac{x_{2}+x_{0}}{2}\right)+c,
$$

and we may easily verify that

$$
A=\frac{1}{3} h\left(y_{1}++y_{1}+y_{2}\right) .
$$

If we have an even number of intervals and apply this formula to the successive areas under the parabolic arcs, we get

$$
\begin{aligned}
A_{S} & =\frac{1}{3} h\left(y_{0}+4 y_{1}+y_{2}\right)+\frac{1}{3} h\left(y_{2}++y_{3}+y_{1}\right)+\cdots+\frac{1}{3} h\left(y_{n-2}+4 y_{n-1}+y_{n}\right) \\
& =\frac{1}{3} h\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right) \\
& =\frac{1}{3} h\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+y_{5}+\cdots+y_{n-1}\right)+2\left(y_{2}+y_{4}+y_{6}+\cdots+y_{n-2}\right)\right] .
\end{aligned}
$$

To apply Simpson's rule we must divide the interval into an even number of parts, and the required area is approximately equal to the sum of the extreme ordinates, plus four times the sum of the ordinates with odd subscripts, plus twice the sum of the ordinates with even sub)scripts, all multiplied by one-third the common distance between the ordinates.
(4) Durand's rule.* - If we have an even number of parts and apply Simpson's rule to the interval from x_{1} to x_{n-1} and the Trapezoidal rule to the end intervals,

$$
\begin{aligned}
A=h\left[\left(\frac{1}{2} y_{0}+\frac{1}{2} y_{1}\right)+\left(\frac{1}{3} y_{1}\right.\right. & +\frac{4}{3} y_{2}+\frac{2}{3} y_{3}+\cdots \\
& \left.\left.\quad+\frac{2}{3} y_{n-3}+3 y_{n-2}+\frac{1}{3} y_{n-1}\right)+\left(\frac{1}{2} y_{n-1}+\frac{1}{2} y_{n}\right)\right] .
\end{aligned}
$$

Applying Simpson's rule to the entire interval from x_{0} to x_{n}, $A=h\left[\frac{1}{3} y_{0}+\frac{4}{3} y_{1}+\frac{2}{3} y_{2}+\frac{4}{3} y_{3}+\cdots+\frac{1}{3} y_{n-3}+\frac{2}{3} y_{n-2}+\frac{1}{3} y_{n-1}+\frac{1}{3} y_{n}\right]$. Adding,
$2 A=h\left[\begin{array}{l}8 \\ y_{0}+J_{6}^{3} \\ y_{1}\end{array}+2 y_{2}+2 y_{3}+\ldots+2 y_{n-3}+2 y_{n-2}+\frac{1_{6}^{3}}{2} y_{n-1}+\frac{8}{6} y_{n}\right]$.

* Given by Prof. Durand in Enginecring News, Jan., r894.

Hence,

$$
\begin{aligned}
A_{D} & =h\left[\mathrm{~s}_{2}\left(y_{0}+y_{n}\right)++3\left(y_{1}+y_{n-1}\right)+y_{2}+y_{3}+\cdots+y_{n-2}\right] \\
& =h\left[0.4\left(y_{0}+y_{n}\right)+1.1\left(y_{1}+y_{n-1}\right)+y_{2}+y_{3}+\cdots+y_{n-2}\right] .
\end{aligned}
$$

Collecting our rules, we have
(1) $A_{R}=h\left(y_{0}+y_{1}+y_{2}+\cdots+y_{n-1}\right)$,
or

$$
A_{R^{\prime}}=h\left(y_{1}+y_{2}+y_{3}+\cdots+y_{n}\right) .
$$

(2) $A_{T}=h\left[\frac{1}{2}\left(y_{0}+y_{n}\right)+y_{1}+y_{2}+\cdots+y_{n-1}\right]$.
(3) $A_{S}=\frac{1}{3} h\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+y_{5}+\cdots+y_{n-1}\right)\right.$ $\left.+2\left(y_{2}+y_{4}+y_{6}+\cdots+y_{n-2}\right)\right]$.
(4) $A_{D}=h\left[0.4\left(y_{0}+y_{n}\right)+\right.$ I.I $\left.\left(y_{1}+y_{n-1}\right)+y_{2}+y_{3}+\cdots+y_{n-2}\right]$.
102. Applications of approximate rules. - We shall give some examples illustrating the application of these rules.
I. Area. - Evaluate $\int_{2}^{10} \frac{d x}{x}$. This is equivalent to finding the area between the curve $y=1 / x$, the x-axis, and the ordinates $x=2$ and $x=10$. If we divide the interval into 8 parts, then $h=1$; we have the table.

$$
\begin{aligned}
& A_{R}=\mathrm{I}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{3}\right)=\mathrm{I} .8290 ; \\
& A_{R^{\prime}}=1\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{3}+\cdots+1_{18}^{1}\right)=1.4290 ; \\
& A_{\boldsymbol{T}}=1\left[\frac{1}{2}\left(\frac{1}{2}+\frac{1}{1 \pi}\right)+\frac{1}{3}+\cdots+3\right]=1.6290 ; \\
& A_{S}=\frac{1}{3}\left[\left(\frac{1}{2}+1_{1}^{1}\right)+4\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)+2\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)\right]=1.6109 \text {; } \\
& A_{D}=1\left[0.4\left(\frac{1}{2}+\mathrm{T}_{10}^{15}\right)+\mathrm{I} . \mathrm{I}\left(\frac{1}{3}+\frac{1}{9}\right)+\frac{1}{4}+\frac{1}{5}+\cdots+\frac{1}{8}\right]=1.6134 .
\end{aligned}
$$

By actual integration, $\int_{2}^{{ }^{10}} \frac{d x}{x}=|\ln x|_{2}^{10}=\ln 10-\ln 2=\ln 5=1.6094$.
We note that Simpson's rule gives the best approximation (within o. I \% of the true value), with Durand's next.

If we take $h=\frac{1}{2}$,

$$
\begin{aligned}
& A_{T}= \frac{1}{2}\left[\frac{1}{2}\left(\frac{1}{2}+\frac{1}{10}\right)+\frac{1}{5 / 2}+\frac{1}{3}+\frac{1}{7 / 2}\right. \\
& \begin{aligned}
A_{S}= & \frac{1}{6}\left[\left(\frac{1}{2}+\frac{1}{10}\right)+4\left(\frac{1}{5 / 2}+\frac{1}{7 / 2}+\cdots+\frac{1}{19 / 2}\right]=1.6 \mathrm{I} 44\right.
\end{aligned} \\
&\left.+2\left(\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{9}\right)\right]=1.6096 .
\end{aligned}
$$

Thus the Trapezoidal rule with 16 ordinates does not give the accuracy given by Simpson's rule with 8 ordinates.
2. Area. - The half-ordinates in feet of the mid-ship section of a vessel are
12.5, 12.8, 12.9, 13.0, 13.0, 12.8, $12.4,11.8,10.4,6.8,0.5$, and the ordinates are 2 feet apart; find the area of the whole section.

$$
\begin{aligned}
\frac{1}{2} A_{T} & =2\left[\frac{1}{2}(12.5+0.5)+12.8+\cdots+6.8\right]=224.8 ; \\
\frac{1}{2} A_{S}=\frac{2}{3}[(12.5+0.5)+4(12.8 & +13.0+12.8+11.8+6.8) \\
& +2(12.9+13.0+12.4+10.4)]=226.1 .
\end{aligned}
$$

Hence, $\quad A_{T}=449.6$ sq. ft., $A_{S}=452.2$ sq. ft.
3. Work. - Given the following data for steam

$\left.$| v | 2 | 4 | 6 |
| :---: | :---: | :---: | :---: |
| p | 68.7 | 31.3 | 19.8 |$\frac{8}{14.3} \right\rvert\, \frac{10}{11.3}$

where v is the volume in cu . ft . per pound and p is the pressure in pounds per sq. in.; find the work done by the piston.

Work $=\int_{2}^{10} p d v$; this is equivalent to finding the area under the curve obtained by plotting (v, p).

$$
\begin{aligned}
& W_{T}=2\left[\frac{1}{2}(68.7+11.3)+31.3+19.8+14.3\right]=210.80 \\
& W_{S}=\frac{2}{3}[(68.7+11.3)+4(31.3+14.3)+2(19.8)]=201.33 .
\end{aligned}
$$

By the methods of Chapter VI we find the empirical formula connecting v and p to be $p v^{1.12}=148$, and hence,

$$
W=\int_{2}^{10} p d v=148 \int_{2}^{10} v^{-1.12} d v=148\left|\frac{v^{-0.12}}{-0.12}\right|_{2}^{10}=199.3 \mathbf{1} .
$$

This last value differs from the value given by Simpson's rule by about $\mathbf{I} \%$.
4. Mean effective pressure. Indicator diagram. Fig. Ioza is a reproduction of an indicator diagram; to find the mean effective pressure.

The mean effective pressure P is the area of the diagram divided by the length of the diagram, since the area represents the effective area of the piston in sq. in. and the length represents the length of the stroke in ft . Since the total area enclosed by the curve is the difference between the area bounded by a horizontal axis, the end ordinates, and the upper part of the curve, and the area bounded by the same straight lines and the lower part of the curve, we need merely measure the lengths of the ordinates within the curve. The diagram is 3.5 ins. long. We divide the interval into 8 parts; then $h=1_{1_{8}^{7}}^{7}$, and we measure the ordinates
o,
0.40 ,
0.63 ,
0.91,
0.98 ,
1.00,
0.92,
$0.74, \quad 0$.

$$
\begin{aligned}
& A_{T}=1^{7}[0.40+0.63+\cdots+0.74]=2.44 ; \\
& A_{S}=4^{7} 8[4(0.40+0.91+1.00+0.74)+2(0.63+0.98+0.92)]=2.52 .
\end{aligned}
$$

Hence,

$$
P=\frac{A_{S}}{3.5}=\frac{2.52}{3.5}=0.72
$$

We divide the interval into 14 parts; then $h=\frac{1}{4}$, and we measure the ordinates
 $A_{T}=\frac{1}{4}\left[0.30+0.42+\cdots+0.6_{4}\right]=2.52$.
$A_{S}=\frac{1}{12}[4(0.30+0.54+\cdots+0.64)+2(0.42+0.68+\cdots+0.78)]=2.55$.
Hence,

$$
P=\frac{A_{S}}{.3 .5}=\frac{2.55}{3.5}=0.73
$$

We note that A_{S} with 9 ordinates has the same value ${ }_{2 s} A_{T}$ with ${ }_{15}$ ordinates.
5. Velocity. - Given a weight of 1000 tons sliding down a 1% grade (Fig. ro2b) with a frictional resistance of io lbs. per ton at all speeds. The total resistance is 30,000 lbs. (a frictional resistance of io,0oo lbs. and

Fig. $102 b$. a grade resistance of $20,000 \mathrm{lbs}$.). Let the following table express the accelerated force F as a function of the time t in seconds:

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
t & 0 & 100 & 200 & 300 & 400 & 500 & 600 & 700 & 800 & 900 & 1000 \\
\hline F & 20,000 & 19,000 & 16,000 & 11,000 & 5000 & -1000 & -5000 & -8500 & -11,000 & -13,000 & -15,000
\end{array}
$$

Find the velocity acquired by the body in 1000 seconds.
Since $F=m \times a$, and $m=\frac{2,000,000}{g}=\frac{1,000,000}{16.1}$, therefore, $\quad a=\frac{F}{m}=\frac{16.1 ~}{\mathrm{I}, 000,000} ;$ and $\frac{d v}{d t}=a$, hence, $v=\int_{0}^{1000} a d t$.

We form a table for the acceleration a.
 Here, $h=100$, so that
$v_{T}=100\left[\frac{1}{2}(0.322-0.242)+(0.306+0.258+\cdots-0.209)\right]=24.2 \mathrm{ft}$. per sec. $v_{S}=1 \frac{10}{3}[(0.322-0.242)+4(0.306+0.177-0.016-0.137-0.209)$

$$
+2(0.258+0.08 \mathrm{I}-0.08 \mathrm{I}-0.177)]=24.2 \mathrm{ft} . \text { per sec. }
$$

6. Volume. - If S_{x} is the area of a cross-section of a solid made by a plane perpendicular to the x-axis, then the volume of the solid included between the planes x_{0} and x_{n} is $V=\int_{x_{0}}^{x_{n}} S_{x} d x$. In order to integrate, we must know the analytical expression for S_{x} as a function of x. Otherwise we employ the approximate formulas; the values of S_{x} are the ordinates and h is the common distance between the cutting planes.

A buoy is in the form of a solid of revolution with its axis vertical, and D is the diameter in ft . at a depth $p \mathrm{ft}$. below the surface of the water.

p	0	0.3	0.6	0.9	1.2	1.5	1.8
D	6.00	5.90	5.80	5.55	5.25	4.70	4.20
D^{2}	36.00	34.8 I	33.64	30.80	27.56	22.09	17.64

Find the weight of water displaced by the buoy ($\mathrm{I} \mathrm{cu} . \mathrm{ft}$. of sea water weighs 64.1 I lbs.).

Here,

$$
V=\int_{0}^{1.8} \frac{\pi}{4} D^{2} d p, \quad \text { and } \quad h=0.3
$$

hence, $\quad V_{S}=\frac{0.3}{3} \frac{\pi}{4}[(36.00+17.64)+4(34.8 \mathrm{I}+30.80+22.09)$

$$
+2(33.64+27.56)]=41.38 \mathrm{cu} . \mathrm{ft} .
$$

and the weight of water displaced $=2652.87 \mathrm{lbs}$.
The areas in sq. ft . of the sections of a ship below the load-water plane and 3 ft . apart are

$$
7500, \quad 7150, \quad 6640, \quad 5680, \quad 4225, \quad 2430, \quad 260 \text {, }
$$

where the load-water plane has an area of 7500 sq . ft . Find the displacement in tons ($35 \mathrm{cu} . \mathrm{ft}$. of sea water weigh I ton).
$V_{T}=3\left[\frac{1}{2}(7500+260)+(7150+6640+5680+4225+2430)\right]=90,015 \mathrm{cu} . \mathrm{ft}$. $V_{S}=\frac{3}{3}[(7500+260)+4(7150+5680+2430)+2(6640+4225)]=90,530 \mathrm{cu} . \mathrm{ft}$.
Hence, the displacement is 2572 tons by the Trapezoidal rule and 2587 tons by Simpson's rule.
7. Moment of inertia. - The moments of inertia of an area about the axes are

$$
J_{x}=\int_{x_{0}}^{x_{n}} \frac{1}{3} y^{3} d x, \quad J_{y}=\int_{x_{0}}^{x_{n}} x^{2} y d x .
$$

The evaluation of these integrals is equivalent to finding the areas under the curves with $\frac{1}{3} y^{3}$ or $x^{2} y$ as ordinates and x as abscissas.

The half-ordinates in ft . of the mid-ship section of a vessel are

$$
\text { 12.5, 12.8, 12.9, 13.0, 13.0, 12.8, 12.4, 11.8, 10.4, 6.8, } 0.5
$$

and the ordinates are 2 ft . apart. Find the moment of inertia of the entire section about the axis.
Here, $\quad J_{x}=2 \int_{0}^{20} \frac{1}{3} y^{3} d x, \quad h=2, \quad$ and the values of y^{3} are 1953.1, 2097 2, 2146.7, 2197.0, 2197.0, 2097.2, 1906.6, 1643.0, 1124.9, 314.4, 0.1, and applying Simpson's rule,

$$
\begin{aligned}
J_{x}=\frac{2}{3}\left(\frac{2}{3}\right)[(1953.1+0.1)+ & 4(2097.2+\cdots+314.4) \\
& +2(2146.7+\cdots+1124.9)]=22,266.1 .
\end{aligned}
$$

8. Pressure and center of pressure. - The pressure on a plane area perpendicular to the surface of the liquid, between depths x_{0} and x_{n}, is $p=w \int_{x_{6}}^{x_{n}} x y d x$, where w is the weight of the liquid per unit volume, y is the width of the area at a depth x beneath the surface. The depth of the center of pressure of such an area is given by $\bar{x}=\frac{\int_{x_{0}}^{x_{n}} x^{2} y d x}{\int_{x_{0}}^{r_{n}} x y d x}$. All these integrals can be evaluated approximately.
9. Center of gravity. - The coördinates of the center of gravity of an area are
$\bar{x}=\frac{\int x y d x}{\int y d x}=\frac{\text { Moment about } O Y}{\text { Area }}, \bar{y}=\frac{\int^{\frac{1}{2}} y^{2} d x}{\int y d x}=\frac{\text { Moment about } O X}{\text { Area }}$.
The half-ordinates in ft . of the mid-ship section of a vessel are

$$
12.5,12.8,12.9,13.0,13.0,12.8,12.4,11.8,10.4,6.8,0.5,
$$ and the ordinates are 2 ft . apart. Find the center of gravity of the section.

$$
\bar{x}=\frac{\int_{0}^{20} x y d x}{\int_{0}^{20} y d x}=\frac{\text { Moment about } O Y}{\text { Area }},
$$

and applying Simpson's rule to the table,

$$
\begin{aligned}
& M_{S}={ }_{3}[(0+10.0)+4(25.6+\cdots+122.4)+2(51.6+\cdots+166.4)] \\
& =2018.9 . \\
& A_{S}=\frac{2}{3}[(12.5+0.5)+4(12.8+\cdots+6.8)+2(12.9+\cdots+10.4)] \\
& =226.1 \text {. } \\
& \text { Hence, } \\
& \bar{x}=\frac{2018.9}{226.1}=8.93 \mathrm{ft} .
\end{aligned}
$$

103. General formula for approximate integration. - We may derive a general formula for approximate integration by integrating any of the formulas of interpolation. Thus, Newton's formula (p. 215), $y_{n}=y_{0}+n a_{0}+\frac{n(n-1)}{\underline{L}} b_{0}+\cdots+\frac{n(n-1) \cdots(n-k+1)}{\underline{k}} k_{0}$,
where $x=x_{0}+n h$, is true for all values of n if some order of differences is constant or approximately constant. Multiplying by $d n$ and integrating term by term between the limits o and n, we have

$$
\begin{aligned}
\int_{0}^{n} y_{n} d n=y_{0} \int_{0}^{n} d n+a_{0} \int_{0}^{n} n d n & +\frac{b_{0}}{\underline{2}} \int_{0}^{\bullet_{n}} n(n-1) d r \\
& +\frac{c_{0}}{\underline{3}} \int_{0}^{n} n(n-1)(n-2) d n+\cdots
\end{aligned}
$$

Since $x=x_{0}+n h$, therefore, $n=\frac{x-x_{0}}{h}$ and $d n=\frac{\mathbf{I}}{h} d x$. Hence,

$$
\begin{aligned}
& \int_{x_{0}}^{x_{n}} y d x=h\left[n y_{0}+\frac{n^{2}}{2} a_{0}+\left(\frac{n^{3}}{3}-\frac{n^{2}}{2}\right) \frac{b_{0}}{[2}+\left(\frac{n^{4}}{4}-n^{3}+n^{2}\right) \frac{c_{0}}{\sqrt{3}}\right. \\
& \left.+\left(\frac{n^{5}}{5}-\frac{3 n^{4}}{2}+\frac{11 n^{3}}{3}-3 n^{2}\right) \frac{d_{0}}{44}+\left(\frac{n^{6}}{6}-2 n^{5}+\frac{35 n^{4}}{4}-\frac{50 n^{3}}{3}+12 n^{2}\right) \frac{e_{0}}{[5}+\cdots\right] .
\end{aligned}
$$

Thus, if the differences after some order, as the k th, are negligible, we may use this formula to get the approximate area between the curve, the x-axis, and the ordinates $x=x_{0}$ and $x=x_{n}$. The process is equivalent to approximating the equation of the curve by a polynomial of the k th degree. The differences $a_{0}, b_{0}, c_{0}, \ldots$ are those which occur in a line through y_{0} parallel to the upper side of the triangle in the scheme on p. 210. Similar integration formulas can be derived from the other interpolation formulas.

If the interval from x_{0} to x_{n} is large, it is well to divide this into smaller intervals, apply the formula to each of the smaller intervals, and add the results. In this way we may derive the formulas of Art. Ior and similar formulas as special cases of the above general formula.

Let us first note that by means of the rule for the formation of the successive differences of a function (p. 210) we may express the differences $a_{0}, b_{0}, c_{0}, \ldots$ in terms of $y_{0}, y_{1}, y_{2}, \ldots$ Thus,

$$
\begin{aligned}
& a_{0}=y_{1}-y_{0}, \\
& b_{0}=a_{1}-a_{0}=\left(y_{2}-y_{1}\right)-\left(y_{1}-y_{0}\right)=y_{2}-2 y_{1}+y_{0}, \\
& c_{0}=b_{1}-b_{0}=\left[\left(y_{3}-2 y_{2}+y_{1}\right)-\left(y_{2}-2 y_{1}+y_{0}\right)\right]=y_{3}-3 y_{2}+3 y_{1}-y_{0}, \\
& d_{0}=y_{4}-4 y_{3}+6 y_{2}-4 y_{1}+y_{0}, \\
& e_{0}=y_{6}-5 y_{4}+\text { IO } y_{3}-10 y_{2}+5 y_{1}-y_{0}, \\
& \\
& \quad \cdot \cdot \cdot \cdot \cdot \\
& k_{0}=y_{k}-k y_{k-1}+\frac{k(k-1)}{2} y_{k-2}-\cdots \cdot
\end{aligned}
$$

where the coefficients in the right members of these equations are the binomial coefficients, taken alternately plus and minus.
(1) Let $n=1$ and b_{0}, c_{0}, \ldots all zero, i.e., approximate the curve (Fig. ioia) from x_{0} to x_{1} by a straight line, $y=A+B x$. Then

$$
\int_{x_{0}}^{x_{1}} y d x=h\left[y_{0}+\frac{1}{2} a_{0}\right]=h\left[y_{0}+\frac{1}{2}\left(y_{1}-y_{0}\right)\right]=h\left[\frac{y_{0}+y_{1}}{2}\right] .
$$

Applying this result to each interval and adding, we get the Trapezoidal rule:

$$
A_{T}=\int_{x_{0}}^{x_{n}} y d x=h\left[\frac{1}{2}\left(y_{0}+y_{n}\right)+y_{1}+y_{2}+\cdots+y_{n-1}\right] .
$$

(2) Let $n=2$ and c_{0}, d_{0}, \ldots all zero, i.e., approximate the curve (Fig. ioia) from x_{0} to x_{2} by a parabola, $y=A+B x+C x^{2}$. Then

$$
\begin{aligned}
\int_{x_{0}}^{x_{2}} y d x & =h\left[2 y_{0}+2 a_{0}+\frac{1}{3} b_{0}\right]=h\left[2 y_{0}+2\left(y_{1}-y_{0}\right)+\frac{1}{3}\left(y_{2}-2 y_{1}+y_{0}\right)\right] \\
& =\frac{h}{3}\left[y_{0}+4 y_{1}+y_{2}\right] .
\end{aligned}
$$

Applying this result to an even number of intervals, two at a time, and adding, we get Simpson's rule:
$A_{S}=\int_{x_{0}}^{x_{n}} y d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+\cdots+y_{n-1}\right)+2\left(y_{2}+y_{4}+\cdots+y_{n-2}\right)\right]$
(3) Let $n=3$ and d_{0}, c_{0}, \ldots all zero, i.e., approximate the curve (Fig. Iota) from x_{0} to x_{3} by a parabola of the 3 d degree, $y=A+B x+$ $C x^{2}+D x^{3}$. Then

$$
\begin{array}{r}
\int_{x_{0}}^{x_{3}} y d x=h\left[3 y_{0}+\frac{9}{2} a_{0}+9 b_{0}+\frac{3}{8} c_{0}\right]=h\left[3 y_{0}+\frac{9}{2}\left(y_{1}-y_{0}\right)+\frac{9}{4}\left(y_{2}-2 y_{1}+y_{0}\right)\right. \\
\left.+\frac{3}{8}\left(y_{3}-3 y_{2}+3 y_{1}-y_{0}\right)\right]=\frac{3}{8} h\left[y_{0}+3 y_{1}+3 y_{2}+y_{3}\right] .
\end{array}
$$

Applying this result to n intervals, where n is a multiple of 3 , and adding, we get Simpson's three-eighths rule:
$A_{S^{\prime}}=\int_{x_{0}}^{x_{n}} y d x=\frac{3}{8} h\left[y_{0}+2\left(y_{3}+y_{6}+y_{9}+\cdots\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+\cdots\right)\right]$.
(4) Let $n=6$ and the differences beyond the 6th order negligible, i.e., approximate the curve (Fig. IoIa) from x_{0} to x_{6} by a parabola of the 6th degree, $y=A+B x+C x^{2}+\cdots+I I x^{6}$. Then

$$
\int_{x_{0}}^{x_{0}} y d x=h\left[6 y_{0}+18 a_{0}+27 b_{0}+24 c_{0}+1_{10}^{23} d_{0}+\frac{33}{} e_{0}+{ }_{140}^{46} f_{0}\right] .
$$

Substituting the values of $a_{0}, b_{0}, \ldots, f_{0}$ in terms of the y 's and re-
 get Weddle's rule:

$$
A_{W}=\int_{x_{0}}^{x_{0}} y d x=1_{1^{3}}^{\sigma} h\left[y_{0}+5 y_{1}+y_{2}+6 y_{3}+y_{4}+5 y_{5}+y_{6}\right] .
$$

We may apply this rule to n intervals where n is a multiple of 6 .

Example. Apply the approximate rules (1) to (4) to evaluate $\int_{2}^{2.6} \frac{d x}{x}$.
We divide the interval into 6 equal parts, so that $h=0.1$. From the table

x	2	2.1	2.2	2.3	2.4	2.5	2.6
y	$\frac{1}{2}$	$\frac{\mathrm{I}}{2.1}$	$\frac{\mathrm{I}}{2.2}$	$\frac{\mathrm{I}}{2.3}$	$\frac{\mathrm{I}}{2.4}$	$\frac{\mathrm{I}}{2.5}$	$\frac{1}{2.6}$

$A_{T}=0.1\left[\frac{1}{2}\left(\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{2.6}\right)+\frac{\mathrm{I}}{2 . \mathrm{I}}+\frac{\mathrm{I}}{2.2}+\frac{\mathrm{I}}{2.3}+\frac{\mathrm{I}}{2.4}+\frac{\mathrm{I}}{2.5}\right]=0.2624493 ;$
$\left.A_{S}=\frac{0.1}{3}\left[\left(\frac{1}{2}+\frac{1}{2.6}\right)+4\left(\frac{1}{2.1}+\frac{1}{2.3}+\frac{1 \mathrm{I}}{2.5}\right)+2\left(\frac{\mathrm{I}}{2.2}+\frac{\mathrm{I}}{2.4}\right)^{-1}\right)^{-}\right]=0.2623644 ;$
$A_{s^{\prime}}=\frac{3}{8}(\mathrm{o} . \mathrm{I})\left[\frac{\mathrm{I}}{2}+3\left(\frac{\mathrm{I}}{2 . \mathrm{I}}\right)+3\left(\frac{\mathrm{I}}{2.2}\right)+2\left(\frac{\mathrm{I}}{2.3}\right)+3\left(\frac{\mathrm{I}}{(2.4}\right)\right.$

$$
\left.+3\left(\frac{\mathrm{I}}{2.5}\right)+\frac{\mathrm{I}}{2.6}\right]=0.2623645 ;
$$

$A_{W}=\frac{3}{10}(0.1)\left[\frac{\mathrm{I}}{2}+5\left(\frac{\mathrm{I}}{2.1}\right)+\frac{\mathrm{I}}{2.2}+6\left(\frac{\mathrm{I}}{2.3}\right)+\frac{\mathrm{I}}{2.4}+5\left(\frac{\mathrm{I}}{2.5}\right)+\frac{\mathrm{I}}{2.6}\right]=0.2623643$.
By integration, $A=\int_{2}^{2.6} \frac{d x}{x}=|\ln x|_{2}^{2.6}=\ln 2.6-\ln 2=\ln 1.3=0.2623637$.
A_{T} agrees with A to 4 decimals, while $A_{S}, A_{S^{\prime}}$, and A_{W} agree about equally well with A to 6 decimals.
104. Numerical differentiation. - We are to find the slope of the curve $y=f(x)$ at any point when the curve is drawn or a table of values of equidistant ordinates are given, i.e., we are to find $\frac{d y}{d . x}$ when the analytical form of the function is unknown. Graphically, we must construct the tangent line to the curve at the given point. The exact or even approximate construction of the tangent line to a curve (except for the parabola) is difficult and inaccurate.*

We may derive an expression for $\frac{d y}{d x}$ by differentiating Newton's interpolation formula. Newton's formula
$y_{n}=y_{0}+n a_{0}+\frac{n(n-1)}{\underline{\underline{2}}} b_{0}+\cdots+\frac{n(n-1) \cdots(n-k+1)}{\underline{\underline{k}}} k_{0}$,
is true for all values of n if some order of differences, as the k th, is con. stant or approximately constant.
Since $x=x_{0}+n h$, therefore, $d x=h d n$, and $\frac{d y}{d x}=\frac{\mathrm{I}}{h} \frac{d y}{d n}, \frac{d^{2} y}{d x^{2}}=\frac{\mathrm{I}}{h^{2}} \frac{d^{2} y}{d n^{2}}$.

[^12]Hence,

$$
\begin{gathered}
\frac{d y}{d x}=\frac{1}{h}\left[a_{0}+(2 n-1) \frac{b_{0}}{\frac{2}{2}}+\left(3 n^{2}-6 n+2\right) \frac{c_{0}}{\frac{3}{3}}+\left(4 n^{3}-18 n^{2}+22 n-6\right) \frac{d_{0}}{4}+\cdots\right], \\
\frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}}\left[b_{0}+(n-1) c_{0}+\left(6 n^{2}-18 n+11\right) \frac{d_{0}}{12}+\cdots\right] .
\end{gathered}
$$

The values of these coefficients are tabulated for values of n between 0 and r at intervals of o.oI.*

For the tabulated values $x_{0}, x_{1}, \ldots, x_{n}$, we have $n=0$, so that for these values of x we have the simpler formulas

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\mathrm{I}}{h}\left[a_{0}-\frac{\mathrm{I}}{2} b_{0}+\frac{\mathrm{I}}{3} c_{0}-\frac{\mathrm{I}}{4} d_{0}+\cdots\right] \\
\frac{d^{2} y}{d x^{2}} & =\frac{\mathrm{I}}{h^{2}}\left[b_{0}-c_{0}+\frac{\mathrm{I}}{\mathrm{I} 2} d_{0}+\cdots\right]
\end{aligned}
$$

If the value of x for which $\frac{d y}{d x}$ is required is near the end of the table, we may use similar formulas derived from the modified Newton's formula for end-interpolation (p. 217).

Example. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $x=3$ and $x=3.3$ from table (1) on p. 21 I and check the results by differentiating $y=x^{3}$.

Since $x=3$ is a tabulated value we apply the second set of formulas:

$$
\frac{d y}{d x}=\left[37-\frac{1}{2}(24)+\frac{1}{3}(6)\right]=27 ; \quad \frac{d^{2} y}{d x^{2}}=[24-6]=18 .
$$

From

$$
y=x^{3}, \quad \frac{d y}{d x}=3 x^{2}=27, \quad \frac{d^{2} y}{d x^{2}}=6 x=18 .
$$

For $x=3.3$ we apply the first set of formulas, where $a_{0}=37, b_{0}=24$, $c_{0}=6, n=0.3$. Then
$\frac{d y}{d x}=\left[37+(-0.4) \frac{24}{2}+(0.47) \frac{6}{6}\right]=32.67 ; \frac{d^{2} y}{d x^{2}}=[24+(-0.7) 6]=19.8$.
From

$$
y=x^{3}, \quad \frac{d y}{d x}=3 x^{2}=32.67, \quad \frac{d^{2} y}{d x^{2}}=6 x=19.8 .
$$

Example. Rate of change.-The following table gives the results of observation; θ is the observed temperature in degrees Centigrade of a vessel of cooling water, t is the time in minutes from the beginning of observation.

$$
\begin{gathered}
t \\
\hdashline \theta
\end{gathered}\left|\frac{0}{92.0}\right| \frac{1}{85.3}\left|\frac{2}{79.5}\right| \frac{3}{74.5}\left|\frac{4}{70.2}\right| \frac{5}{67.0}
$$

To find the approximate rate of cooling when $t=1$ and $t=2.5$.

[^13]From the table of differences

t	θ	Δ^{1}	Δ^{2}	Δ^{3}
0	92.0	-6.7		
1	85.3	-5.8	0.9	-0.1
2	79.5	-5.0	0.8	-0.1
3	74.5	-4.3	0.7	0.4
4	70.2	-3.2	1.1	
5	67.0			

when $t=1, n=0 \quad$ and $\quad \frac{d \theta}{d t}=\left[-5.8-\frac{1}{2}(0.8)+\frac{1}{3}(-0.1)\right]=-6.23$; when $t=2.5, n=0.5$ and $\frac{d \theta}{d t}=\left[-5.0+0+(-0.25)\left(\frac{+0.4}{6}\right)\right]=-5.02$.

Example. Maximum and minimum. - The following table gives the results of measurements made on a magnetization curve of iron; B is the number of kilolines per sq. $\mathrm{cm} ., \mu$ is the permeability (Fig. 104).
$\frac{\beta}{\mu}\left|\frac{0}{370}\right| \frac{1}{570}\left|\frac{2}{730}\right| \frac{3}{865}\left|\frac{4}{985}\right| \frac{5}{1090}\left|\frac{6}{1175}\right| \frac{7}{1245}\left|\frac{8}{1295}\right| \frac{9}{1330}\left|\frac{10}{1340}\right| \frac{11}{1320}\left|\frac{12}{1250}\right| \frac{13}{1120}\left|\frac{14}{930}\right| \frac{15}{725}$

Fig. 10.4 .
To find the maximum permeability. In Fig. io4 the maximum permeability appears to be in the neighborhood of $B=10$. We therefore tabulate the differences of μ in the neighborhood of $B=10$.

B	μ	Δ^{1}	Δ^{2}	Δ^{3}
9	1330	10		
10	1340	-20	-30	-20
11	1320	-70	-50	-10
12	1250	-70	-60	-10
13	1120	-130		

For values of B between $B=9$ and $B=10$, we have
$\frac{d \mu}{d B}=\left[1 \mathrm{O}+(2 n-\mathrm{I})\left(-\frac{3 \mathrm{O}}{2}\right)+\left(3 n^{2}-6 n+2\right)\left(-\frac{2 \mathrm{O}}{6}\right)\right]=\frac{5}{3}\left(\mathrm{II}-6 n-6 n^{2}\right)$.
For a maximum, $\frac{d \mu}{d B}=0$, hence $6 n^{2}+6 n-\mathrm{II}=0$, and $n=0.94$. Therefore, $B=B_{0}+n h=9.94$.

We find the corresponding value of μ by the interpolation formula,

$$
\mu=1330+(0.94)(10)+(0.0282)(-30)+(0.0100)(-20)=1340 .
$$

If we take account of Δ^{1} and Δ^{2} only, we get
$\frac{d \mu}{d B}=10+(2 n-1)\left(-\frac{30}{2}\right)=0, \quad$ or $\quad n=\frac{5}{6}=0.83, \quad$ and $B=9.83$.
Then $\quad \mu=1330+(0.83)(10)+(0.0275)(-30)=1337.5$.
105. Graphical integration. - Let us find the value of the definite integral $\int_{a}^{b} f(x) d x$ or the area under the curve $y=f(x)$ by graphical methods. We draw the curve $y=f(x)$ (Fig. IO5a) and along the ordinate at $P(x, y)$ erect the ordinate y^{\prime} whose value is a measure of the area under

Fig. $105 a$.

Fig. iosb.
the curve $y=f(x)$ from the initial point $\Lambda(x=a)$ to the point P, i.e., $y^{\prime}=\int_{a}^{x} f(x) d x$. Thus for every point $P(x, y)$ we have a corresponding point $P^{\prime}\left(x, y^{\prime}\right)$. The curve traced by the point P^{\prime} (marked I in the figure) is called the integral curve and the curve traced by the point P (marked Δ in the figure) is called the derivative curve. Evidently, if P and Q are two points on the Δ-curve and P^{\prime} and Q^{\prime} are their corresponding points on the I-curve, the difference of the ordinates of P^{\prime} and Q^{\prime}, $y^{\prime \prime}-y^{\prime}$, is a measure of the area under the arc $P Q$.

The practical construction of the integral curve consists of the following steps (Fig. Io5b).
(I) Divide the interval from x_{0} to x_{n} into n equal or unequal intervals and erect the ordinates $y_{0}, y_{1}, \ldots, y_{n}$.
(2) Measure the areas $x_{0} A_{0} A_{1} x_{1}=y_{1}{ }^{\prime}, \quad x_{0} A_{0} A_{2} x_{2}=y_{2}{ }^{\prime}, \ldots$, $x_{0} A_{0} A_{n} x_{n}=y_{n}{ }^{\prime}$. These areas may be found by means of a planimeter or by the construction of the mean ordinates. Thus, the area $x_{0} A_{0} A_{1} x_{1}$ is equal to the area of a rectangle whose base is $x_{0} x_{1}$ and whose altitude is the mean ordinate m_{1} within that area. Similarly, the area $x_{1} A_{1} A_{2} x_{1}$ is equal to the area of a rectangle whose base is $x_{1} x_{2}$ and whose altitude is the mean ordinate m_{2} within that area. Estimate the mean ordinates $m_{1}, m_{2}, m_{3}, \ldots, m_{n}$ within the successive sections. Then
$y_{1}{ }^{\prime}=m_{1}\left(x_{0} x_{1}\right), y_{2}{ }^{\prime}=y_{1}{ }^{\prime}+m_{2}\left(x_{1} x_{2}\right), y_{3}{ }^{\prime}=y_{2}{ }^{\prime}+m_{3}\left(x_{2} x_{3}\right), \ldots$,

$$
y_{n}{ }^{\prime}=y_{n-1}^{\prime}{ }^{\prime}+m_{n}\left(x_{n-1} x_{n}\right) .
$$

If the intervals are all equal, i.e., $x_{0} x_{1}=x_{1} x_{2}=\ldots .=x_{n-1} x_{n}=\Delta x$, then $y^{\prime}=\Sigma m \Delta x$. (We shall later give a more exact construction for the mean ordinate.)

Fig. 105 c.
(3) At $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ erect ordinates $x_{1} B_{1}, x_{2} B_{2}, \ldots, x_{n} B_{n}$ equal respectively to $y_{1}{ }^{\prime}, y_{2}{ }^{\prime}, \ldots, y_{n}{ }^{\prime}$, and draw a smooth curve through the points $B_{0}, B_{1}, B_{2}, \ldots, B_{n}$. This last curve will approximate the required integral curve.

Example. Construct the integral curve of the straight line $y=\mathrm{r}-x$ between $x=0$ and $x=2$. (Fig. IO5c.)

Divide the interval from $x=0$ to $x=2$ into 10 equal parts and erect the ordinates given in the table; here, $\Delta x=0.2$.

x	y	m	$m . \pm$ r	$y^{\prime}=\Sigma \mathrm{L}$ m s x
-	1		0.18	\bigcirc
- 2	0.8		0.18	0.18
0.4	0.6	0.7	0.14	0.32
0.6	0.4	0.5	0.10	0.42
0.8	0.2	0.3	0.06	0.48
1.0	0	0.1	-0.02	0.50
1.2	-0.2	-0.1	-0.02	0.48
1.4	-0.4	-0.3	-0.06	0.42
1.6	-0.6	-0.5		0.32
1.8	-0.8	-0.7	-0.14	0.18
2.0	-1.0	-0.9	-0.18	\bigcirc

It is evident that the mean ordinate in each section is merely one-half the sum of the end ordinates, so that the values of m are easily found. Erect the ordinates y^{\prime} and draw a smooth curve through the ends of the ordinates. The curve will approximate the parabola $y^{\prime}=\int_{0}^{x}(\mathrm{I}-x) d x$ $=x-\frac{3}{3} x^{2}$.

Example. The following table gives the accelerations a of a body sliding down an inclined plane at various times t, in seconds. To find the velocity and distance traversed at any time, if the initial velocity and initial distance are zero.

0	100	200	300	400	500	600	700	800	900	1000	
a	0.320	0.304	0.256	0.176	0.080	-0.016	-0.080	-0.136	-0.170	-0.208	-0.240

Since $v=\int a d t$ and $s=\int v d t$, the time-velocity curve is the integral curve of the time-acceleration curve, and the time-distance curve is in turn the integral curve of the time-velocity curve.

In Fig. Iosd, we have plotted t as abscissas and a as ordinates. The units chosen are I in. $=100 \mathrm{sec}$., and I in. $=0.16 \mathrm{ft}$. per sec. per sec.

Fig. 10 gad.

t	a	avg. acc. a_{m}	$a_{m} د t$	$r^{\prime}=\mathbf{\Sigma} a_{m}+\lambda$	awr. vel. $\mathrm{r}^{\prime \prime}$	$r_{m} \cdot \pm t$	$s=2 i_{m} \Delta t$
-	0.320			-	15.6	1560	0
100	0.304	0.312 0.280	31.2 28.0	3 I .2	15.6 45.2	1560 4520	1,560
200	0.256	0.216	21.6	59.2	70.0	7000	6,080
300	0.176	0.216 0.128	12.8	80.8	87.2 87	88720	13,080
400	0.080			93.6			21,800
500	-0.016	0.032 -0.048	3.2 -4.8	96.8	95.2 94.4	9520 9440	31,320
60 c	-0.c8o	-0.048	- 4.8	92.0	94.4 86.6	9440 8660	40,760
700	-0.136	-0.108	-10.8	81.2			49,420
800	-0.176	-0.156	-15.6	65.6	73.4 56.0	7340 5600	56,760
900	-0. 208	-0.192	-19.2 -22.4	46.4	56.0 35.2	5600 3520	62,360
1000	-0.240	-0.224	-22.4	24.0	35.2	3520	65,880

In each interval of 100 sec . we have estimated the mean acceleration as the average of the accelerations at the beginning and end of the interval; thus, in the first interval, $a_{m}=\frac{1}{2}(0.320+0.304)=0.312$. This is equivalent to replacing the arcs of the curve by their chords or to finding the area by the trapezoidal rule. Since the initial velocity is zero, the (t, v) curve joins $t=0, v=0$ with $t=100, v=31.2$, etc. We have drawn the (t, v) curve with a unit of I in. $=20 \mathrm{ft}$. sec.

In each interval of roo sec. we have estimated the mean velocity as the average of the velocities at the beginning and end of the interval; thus in the first interval, $v_{m}=\frac{1}{2}(0+31.2)=15.6$. Since the initial distance is zero, the (t, s) curve is drawn through the points $t=0, s=0, t=100$, $s=1560$, etc. The unit chosen is $1 \mathrm{in} .=10,000 \mathrm{ft}$.

The tables for v and s give the velocity and distance at the end of each 100 seconds, and we may interpolate graphically or numerically for the velocity and distance at any time between $t=0$ and $t=1000$.

In the foregoing discussion the accuracy of the construction of the integral curve depends largely upon the construction of the mean ordinates in the successive intervals. If the intervals are very small, we may

Fig. 105 c . get the required degree of accuracy by replacing the ares by their chords and taking for the mean ordinate the average of the end ordinates.

The approximation of the mean ordinate for the arc $\Lambda_{0} \Lambda_{1}$ (Fig. Io5e) is equivalent to finding a point M on the arc such that the area under the horizontal $C_{0} C_{1}$ through M is equal to the area under the arc $A_{0} A_{1}$ or such that the shaded areas $A_{0} C_{0} M$ and $A_{1} C_{1} M$ are equal. By means of a strip of celluloid and with a little practice the eye will find the position of M quite accurately, for the eye is very sensitive to differences in small areas.

We may draw the integral curve by a purely graphical process. Let us first consider the case when the derivative curve is the straight line $A B$ parallel to the x-axis (Fig. Io5f). Choose a fixed point S at any convenient distance a to the left of O. Extend $A B$ to the point K on the y axis and draw $S K$. Through A^{\prime} (the projection of A on the x-axis) draw a line parallel to $S K$ cutting the vertical through B in B^{\prime}. Then, the oblique line $A^{\prime} B^{\prime}$ is the integral curve of the horizontal line $A B$. For, if P and P^{\prime} are two corresponding points, then

$$
y^{\prime}: A^{\prime} Q=y_{0}: a, \text { or } y^{\prime}=\frac{1}{a}\left(y_{0} \times A^{\prime} Q\right)=\frac{\mathbf{1}}{a} \times(\text { area under } A P) .
$$

Similarly, for another horizontal $C D$, with C and B in the same vertical line, extend $C D$ to the point L on the y-axis and draw $S L$; through $B^{\prime \prime}$ draw a line parallel to $S L$ cutting the vertical through D in $C^{\prime \prime}$; then, the oblique line $B^{\prime \prime} C^{\prime \prime}$ is the integral curve of the horizontal $C D$. Finally,
draw $B^{\prime} C^{\prime}$ parallel to $B^{\prime \prime} C^{\prime \prime}$ or to $S L$; then the broken oblique line $A^{\prime} B^{\prime} C^{\prime}$ is the integral curve of the broken horizontal line $A B C D$.

Consider, now, any curve. Divide the interval from x_{0} to x_{n} into n parts and erect the ordinates (Fig. 105g). Through $A_{0}, A_{1}, A_{2}, \ldots$, draw short horizontal lines. Cut the arc $A_{0} A_{1}$ by a vertical line making

Fig. 105 .
the small areas bounded by this vertical, the arc, and the horizontals through A_{0} and A_{1}, equal. Proceed similarly for the succeeding arcs. Then construct the integral curve of the stepped line by the method explained above. Choose a point S at a convenient distance a to the left of O and join S with the points $C_{0}, C_{1}, C_{2}, \ldots$, in which the extended

Fig. 105 g .
horizontals cut the y-axis. Then, starting at B_{0}, draw a line through B_{0} parallel to $S C_{0}$ until it cuts the first vertical; through this point draw a line parallel to $S C_{1}$ until it cuts the second vertical, etc. The points where the resulting broken line cuts the ordinates at $A_{0}, A_{1}, A_{2}, \ldots$, i.e., the points $B_{0}, B_{1}, B_{2}, \ldots$, are points on the required integral curve; for at each of the points $A_{0}, A_{1}, A_{2}, \ldots$, the area under the curve from
on each side of the vertical, the m.s.c.p. is found by drawing $A_{0} E$ parallel to $B_{5} B_{7}$ and reading $O E=42.0 c-p$ on the candle-power scale, since

$$
\frac{O E}{a}=\frac{x_{i} B_{7}-x_{5} B_{5}}{x_{5} x_{7}}, \quad \text { or } \quad O E=\frac{\text { area under } A_{5} A_{7}}{\text { base }}=m . s . c . p .
$$

Similarly the m.s.c.p. of the section above a horizontal plane through the lamp is measured by $O F=37.0 c-p$, and the m. s.c. p. of the section below a horizontal plane through the lamp is measured by $O G=29.5 c-p$.
106. Graphical differentiation. - If the integral curve $y^{\prime}=f(x)$ is given we may construct the derivative curve $y=\frac{d y^{\prime}}{d x}$ by using the prin-

Fig. iofa. ciple that the ordinate of the derivative curve at any point $P(x, y)$ (Fig. 106a) is equal to the slope of the integral curve or of the tangent line $P^{\prime} T$ at the corresponding point $P^{\prime}\left(x, y^{\prime}\right)$.

The practical construction of the derivative curve consists of the following steps: (1) Livide the interval from x_{0} to x_{n} (Fig. 106b) into n parts and erect the ordinates $y_{0}{ }^{\prime}, y_{1}{ }^{\prime}, y_{2}{ }^{\prime}, \ldots, y_{n}{ }^{\prime}$. (2) Construct the tangents at $B_{0}, B_{1}, B_{2}, \ldots, B_{n}$ and measure their slopes. (3) At x_{0}, x_{1}, \ldots, x_{n} erect ordinates $x_{0} A_{0}=y_{0}, x_{1} A_{1}=y_{1}, \ldots, x_{n} A_{n}=y_{n}$, where

Fig. $106 b$.
the y 's are proportional to the corresponding slopes, and draw a smooth curve through the points $A_{0}, A_{1}, A_{2}, \ldots, A_{n}$. This curve will approximate the required derivative curve.

Example. The following table gives the pressure p in pounds per sq. in. of saturated steam at temperature $\theta^{\circ} \mathrm{F}$. Construct the curve showing the rate of change of pressure with respect to the temperature, $d p / d \theta$.

θ	p	Δp	$\Delta \theta$	$\Delta p / \Delta \theta$
302.7	70			
307.4	75	5	4.7	1.06
311.8	80	5	4.4	1.14
316.0	85	5	4.2	1.19
320.0	90	5	4.0	1.25
323.9	95	5	3.9	1.28
327.6	100	5	3.7	1.35
331.1	105	5	3.5	1.43
334.5	110	5	3.4	1.47
337.8	115	5	3.3	1.52

In the above table we have approximated $d p / d \theta$ by $\Delta p / \Delta \theta$, i.e., we have replaced the (θ, p) curve by a series of chords, and the slopes of the tangents by the slopes of these chords. We then plotted $(\theta, \Delta p / \Delta \theta)$ and joined the points by a smooth curve (Fig. Io6c).

Fig. Io6c.
It is evident that the difficulty in the construction of the derivative curve lies in the construction of the tangent line to the integral curve. The direction of the tangent line at any point is not very well defined by the curve. As a rule it is better to draw a tangent of a given direction and then mark its point of contact than to mark a point of contact and then try to draw the tangent at this point. A strip of celluloid on the under side of which are 2 black dots about $2 \mathrm{~m} . \mathrm{m}$. apart may be moved over the paper so that the two dots coincide with points on the integral curve and so that the secant line which they determine is practically identical with the tangent line. If the arc $A B$ (Fig. Io6d) is approxi-
mately the arc of a parabola, we have a more accurate construction of the tangent; the line joining the middle points M and M^{\prime} of two parallel chords $A B$ and $A^{\prime} B^{\prime}$ intersects the curve in P, the point of contact, and the tangent $P T$ is parallel to the chord $A B$.

Fig. iofid.

We may also draw the derivative curve by purely graphical methodi The process is the reverse of t.y process described for constructin the integral curve (Art. 105). Le ${ }^{+}$ $B_{0}, B_{1}, B_{2}, \ldots$ be the points of contact of tangent lines to the integral curve (Fig. logg). Choose a fixed point S at a convenient distance a to the left of the y-axis and draw the lines $S C_{0}, S C_{1}, S C_{2}, \ldots$, parallel respectively to the tangent lines at $B_{0}, B_{1}, B_{2}, \ldots$ Project the points $C_{0}, C_{1}, C_{2}, \ldots$, horizontally on the ordinates at B_{0}, B_{1}, B_{2}, \ldots, cutting these ordinates in $\Lambda_{0}, \Lambda_{1}, A_{2}, \ldots$ The points $A_{0}, A_{1}, A_{2}, \ldots$, are then points on the required derivative curve, since $B_{0} A_{0} \div a=$ slope of $S C_{0}=$ slope of tangent at B_{0}, etc. We may now join the points $A_{0}, A_{1}, A_{2}, \ldots$ by a smooth curve, or we may get.e greater accuracy by using the stepred line of horizontals and verticalis. n. Thus, we draw the horizontals through the points $A_{0}, A_{1}, A_{2}, \ldots$, ald the verticals through the points of intersection of consecutive tangents to the integral curve. The arcs $A_{0.1_{1}}, 1_{1}, i_{2}^{\prime}, \ldots$, are now drawn so that the areas bounded by each arc, the horizontals, and the vertical, are equal.
107. Mechanical integration.* The planimeter. - This is an instrument for measuring areas. Consider a line $P Q$ of fixe- length l moving in any manner whatever in the plane of the paper. The motion of the line at any instant may be thought of as a motion translution combined with a motion of rotation. Suppose the line $P Q$ swerps out the elementary area $P Q Q^{\prime} P^{\prime}=d S$ (Fig. 107a). This may be broken up into a motion of translation of $P Q$ to $P^{\prime \prime} Q^{\prime}$ and a motion of rotation from $P^{\prime \prime} Q^{\prime}$ to $P^{\prime} Q^{\prime}$. If $d n$ is the perpendicular distance between the parallel positions $P Q$ and $P^{\prime} Q^{\prime}$ and $d \phi$ is the angle between $P^{\prime \prime} Q^{\prime}$ and $P^{\prime} Q^{\prime}$, then

$$
d S=l d n+\frac{1}{2} l^{2} d \phi
$$

[^14]Now if $P Q$ carries a rolling wheel W, called the integrating wheel, whose as ${ }^{i}$ is parallel to $P Q$ (Fig. 107b), then, while $P Q$ moves to the parallel postuon $P^{\prime \prime} Q^{\prime}$, any point on the circumference of this wheel receives a displacement $d n$, and while $P^{\prime \prime} Q^{\prime}$ rotates to the position $P^{\prime} Q^{\prime}$, this point receives a displacement $a d \phi$, where a is the distance from Q to the plane

Fig. $107 a$.

Fig. $107 b$.
of the wheel. So that, as $P Q$ sweeps out the elementary area $d S$, any point on the circumference of the wheel receives a displacement

Therefore,

$$
\begin{aligned}
d s & =d n+a d \phi \\
d S & =l d s-a l d \phi+\frac{1}{2} l^{2} d \phi
\end{aligned}
$$

Hence the total area swept out by $P Q$ is

$$
S=l \int d s-a l \int d \phi+\frac{1}{2} l^{2} \int d \phi
$$

Fig. 107c.
Now, if $P Q$ comes back to its original position without turning completely around, then the total angle of rotation $\int d \phi=0$, so that

$$
S=l s
$$

where s is the total displacement of any point on the circumference of the integrating wheel.

But if $P Q$ comes back to its original position after turning completely around, then

$$
S=l s-2 \pi a l+\pi l^{2}
$$

The most common type of planimeter is the Amsler polar planimeter * (Fig. 107c). Here, Fig. 107d, by means of a guiding arm $O Q$, called the polar arm. one end Q of the tracer arm $P Q$ is constrained to move in a circle while the other end P is guided around a closed curve $c-c-c-\ldots$. which bounds the area to be measured. Then the area $Q^{\prime} P^{\prime} P P^{\prime \prime} Q^{\prime \prime} Q Q^{\prime}$ is swept out twice but in opposite directions and the corresponding displacements of the integrating wheel cancel, so that the final displacement gives only the required area $c-c-c-\ldots$ The circumference of the wheel is graduated so that one revolution corresponds to-a certain definite number of square units of area.

Fig. $107 d$.
The ordinary planimeter used for measuring indicator diagrams $l=4 \mathrm{in}$. and the circumference of the wheel is 2.5 in.; hence one revolution corresponds to $4-2=-10 \mathrm{sq}$. in. The wheel is graduated into io parts, each of these parts again into io parts, and a vernier scale allows us to divide each of the smaller divisions into 10 parts, so that the area can be read to the nearest hundredth of a sq. in. The indicator diagram on p. 228 gives a planimeter reading of 2.55 sq . in., which agrees with the result found by Simpson's rule with 15 ordinates.

The polar planimeters used in the work in Naval Architecture usually have a tracer arm of length 8 in ., and a wheel of circumference 2.5 in ., so 'that one revolution corresponds to 20 sq . in., thus giving a larger range for the tracing point. If the area to be measured is quite large, it may be split up into parts and the area of each part measured; or the area may be re-drawn on a smaller scale and the reading of the wheel multiplied by the area-scale of the drawing. \dagger

* This instrument was first put on the market by Amsler in 1854.
\dagger If $P Q$ (Fig. 107 d) turns completely around, the required area is $S+\pi(O Q)^{2}$.

2. If very accurate results are required, account must be taken of several errors. (I) The axis of the integrating wheel may not be parallel to the tracer arm $P Q$. This error can be partly eliminated by taking the mean of two readings, one with the pole O to the left of the tracer arm, the other with the pole to the right * (Fig. Io7e). This cannot be done with the ordinary Amsler planimeter because the tracer arm is mounted above the polar arm, but can be done with any of the Coradi or Ott compensation planimeters; one of these instruments is illustrated in Fig. Io7f. (2) The integrating wheel may slip; some of this slipping may be due to the irregularities of the paper and has been obviated by the use of disc planimeters, in which the recording wheel works on a revolving disc instead

Fig. 107%. of on the surface of the paper.

Various types of linear planimeters have been constructed. These differ from the polar planimeters in that one end of the tracer arm is

Fig. 107f.
constrained to move in a straight line instead of in a circle. Planimeters of the linear type form part of the integrators described in Art. 108. Various other types of planimeters
 have been constructed, which do not have an integrating wheel. One of the best known of these is that of Prytz, also known as the hatchet planimeter. \dagger In this form of the instrument (Fig. 107g) the end Q forms a knifeedge so that Q can only move freely along the line $P Q$. When P traces the given curve, Q will describe a curve such that $P Q$ is always tangent to it.

[^15]Prytz starts the instrument with the point P approximately at the center of gravity G of the area to be measured, moves P along the radius vector to the curve, completely around the curve, and back along the same radius vector to G. The required area is then given approximately by $l^{2} \phi$, where l is the length $P Q$ and ϕ is the angle between the initial and final positions of the line $P Q$.
108. Integrators. - The Amsler integrator is practically an extension of the linear planimeter. In the latter instrument, the end Q of the tracer $\operatorname{arm} P Q$ of constant length l, is constrained to move in a straight line $X^{\prime} X$, while the tracing point P describes a circuit of the curve. If the axis of the integrating wheel attached to $P Q$ makes a variable angle $m \alpha$ with $X^{\prime} X$ (Fig. 108a) at each instant, the point P will have for ordinate $y_{m}=l \sin m \alpha$, and the area described by P will be $\int l \sin m \alpha d x$. On the other hand, the area described by P is equal to l times the displacement of any point on the circumference of the integrating wheel; hence $\int \sin m \alpha d x$ is equal to the displacement of a point on the circumference of an integrating wheel whose axis makes an angle ma with $X^{\prime} X$.

Fig. iofa.

Fig. $108 b$.

Now, given a curve $c-c-c-\ldots$. (Fig. 108b),

$$
\text { Area }=\int y d x=\int l \sin \alpha d x=l \int \sin \alpha d x
$$

$\begin{gathered}\text { Moment of area } \\ \text { about } X^{\prime} X\end{gathered}=\frac{\mathrm{I}}{2} \int y^{2} d x=\frac{\mathrm{I}}{2} \int l^{2} \sin ^{2} \alpha d x=\frac{l^{2}}{4} \int(\mathrm{I}-\cos 2 \alpha) d x$

$$
\begin{aligned}
& =\frac{l^{2}}{4} \int d x-\frac{l^{2}}{4} \int \sin \left(90^{\circ}-2 \alpha\right) d x \\
& =-\frac{l^{2}}{4} \int \sin \left(90^{\circ}-2 \alpha\right) d x, \text { since } \int d x=0,
\end{aligned}
$$

the arm $P Q$ returning to its original position when P makes a complete circuit of the curve.
$\begin{aligned} & \text { Moment of inertia } \\ & \text { of area about } X^{\prime} X\end{aligned}=\frac{1}{3} \int y^{3} d x=\frac{1}{3} \int l^{3} \sin ^{3} \alpha d x=\frac{l^{3}}{3} \int\left(\frac{3}{4} \sin \alpha-\frac{1}{4} \sin 3 \alpha\right) d x$

$$
=\frac{l^{3}}{4} \int \sin \alpha d x-\frac{l^{3}}{12} \int \sin 3 \alpha d x .
$$

Now, $\int \sin \alpha d x, \int \sin \left(90^{\circ}-2 \alpha\right) d x$, and $\int \sin 3 \alpha d x$, and hence the area, moment, and moment of inertia can be measured by three integrating wheels whose axes at any instant make angles $\alpha, 90^{\circ}-2 \alpha$, and 3α, respectively, with $X^{\prime} X$.

The Amsler 3-wheel integrator (Fig. 108c) consists of an $\operatorname{arm} P Q$ and 3 integrating wheels A, M, and I. The instrument is guided by a carriage which rolls in a straight groove in a steel bar; this bar may be set at a proper distance from the hinge of the tracer arm by the aid of trams. The

Fig. $108 c$.
line $X^{\prime} X$, which passes through the points of the trams and under the hinge, is the axis about which the moment and moment of inertia are measured. The radius of the disk containing the M-wheel is one-half the radius, and the radius of the disk containing the I-wheel is one-third the radius of the circular disk D to which they are geared. Therefore, the axis of the M-wheel turns through twice, and the axis of the I-wheel turns through three times the angle through which the tracer arm $P Q$ or the axis of the A-wheel swings from the axis $X^{\prime} X$. .

The integrating wheels are set so that in the initial position, i.e., when P lies on $X^{\prime} X$, the axes of the A - and I-wheels are parallel to $X^{\prime} X$ while the axis of the M-wheel is perpendicular to $X^{\prime} X$. Then, when the tracer $\operatorname{arm} P Q$ makes an angle α with $X^{\prime} X$, the axes of the $A-, M-$, and I-wheels make angles $\alpha, 90^{\circ}-2 \alpha$, and 3α, respectively, with $X^{\prime} X$. Furthermore, the graduations of the M-wheel are marked so that these graduations move backward while the graduations on the other wheels move
forward. Hence, when P has completed the circuit, and if a, m, and i are the displacements of points on the circumferences of the $A-, M-$, and I wheels, respectively, we have

$$
\text { Area }=l a ; \quad \text { Moment }=\frac{l^{2}}{4} m ; \quad \text { Moment of } \text { Inertia }=\frac{\Gamma^{3}}{4} a-\frac{l^{3}}{12} i .
$$

The wheels are graduated from I to io so that a reading of 5 , for example, means $5 / 10$ of a revolution. The constants by which these readings are multiplied depend upon the length of the tracing arm and the circumferences of the integrating wheels. In the ordinary instrument, $l=8 \mathrm{in}$. and the circumferences of the $A-, M$-, and I-wheels are

$$
C_{A}=2.5 \mathrm{in} ., \quad C_{M}=2.5 \mathrm{in} ., \quad C_{I}=2.3+375 \mathrm{in} .
$$

Thus, to find the

Finally, if $a_{1}, a_{2}, m_{1}, m_{2}$, and i_{1}, i_{2} are the initial and final readings of the A-, M-, and I-wheels, we have

$$
\begin{array}{ll}
\text { Area }=20\left(a_{2}-a_{1}\right) ; & \text { Moment }=40\left(m_{2}-m_{1}\right) ; \\
& \text { Moment of Inertia }=320\left(a_{2}-a_{1}\right)-100\left(i_{2}-i_{1}\right) .
\end{array}
$$

109. The integraph. - This is a machine which draws the integral curve, $y^{\prime}=\int f(x) d x$, of the curve $y=f(x)$. The most familiar type of such machines is the one invented by Abdank-Abakanowicz in 1878. The theory of its construction is very simple. A diagram of the machine is given in Fig. 109a. The machine is set to travel along the base line of the curve to be integrated, and two non-slipping wheels, W, ensure that the motion continues along this axis. The scale-bar slides along the main frame as the tracing point P, at the end of the bar, describes the curve $y=f(x)$ to be integrated. The radial-bar turns about the point Q which is at a constant distance a from the main frame. The motion of the recording pen at P_{1} is always parallel to the plane of a small, sharp-edged, non-slipping wheel w, and by means of the parallel frame-work $A B C D$, the plane of the wheel w is maintained parallel to the radial bar [since w is set perpendicular to $A B$ which is parallel and equal to $C D$ throughout the motion, and the radial bar is set perpendicular to $C D]$. As the point P describes the curve $y=f(x)$, the angle θ between the radial-bar and the
axis, and consequently the angle θ between the plane of the wheel and the axis, are constantly changing, and the recording pen at P_{1} draws a curve with ordinate y^{\prime} such that its slope

$$
\frac{d y^{\prime}}{d x}=\tan \theta=\frac{y}{a}=\frac{f(x)}{a},
$$

and therefore,

$$
y^{\prime}=\frac{\mathbf{1}}{a} \int f(x) d x=\stackrel{\mathbf{1}}{a} \times \text { area } O R P,
$$

so that the curve drawn by P_{1} is the integral curve of the curve traced by P.

Fig. ioga.
If we now set the machine so that the point P traces the integral curve, then the recording pen P_{1} will draw its integral curve

$$
y^{\prime \prime}=\int y^{\prime} d x=\int\left(\int y d x\right) d x=\iint y d x^{2} .
$$

We may thus draw the successive integral curves $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}$, Fig. rog b gives the integral curves connected with the curve of loads of the shaft of a Westinghouse-Rateau Turbine. The curve of loads is represented by the broken line in the figure. By successive integration we get the shear curve, the bending moment curve, the slope curve, and the deflection curve. The distance marked "offset" is the distance $O O_{1}$ in Fig. 109a.
SHAFT OF THE WESTINGHOUSE-RATEAU TURBINE

(
110. Mechanical differentiation. The Differentiator. - This is a machine which draws the derivative curve $y^{\prime}=\frac{d y}{d x}$ of the curve $y=f(x)$. Since the ordinate of the derivative curve is equal to the slope of the integral curve, it is necessary to construct the tangent lines at a series of points of the integral curve. We have already mentioned (Art. 106) the use of a strip of celluloid with two black dots on its under side to deter-

Fig. 110.
mine the direction of the tangent. This scheme is used in a differentiating machine constructed by J. E. Murray.* In a differentiating machine recently constructed by A. Elmendorf, \dagger a silver mirror is used for determining the tangent. The mirror is placed across the curve so that the curve and its image form a continuous unbroken line, for then the surface of the mirror will be exactly normal to the curve, and a perpendicular to this at the point of intersection of the mirror and the curve will give the direction of the tangent line. If the surface of the mirror de-

[^16]viates even slightly from the normal, a break will occur at the point where the image and curve join. It is claimed that with a little practice a remarkable degree of accuracy can be obtained in setting the mirror.

Fig. ino gives a diagram illustrating the working of this machine. The tracing point P follows the curve $y=f(x)$ so that the curve and its image in the mirror $M P$ form a continuous unbroken line; then the arm $P T$, which is set perpendicular to the mirror, will take the direction of the tangent line to the curve. The link $P R$, of fixed length a, is free to move horizontally in the slot $X^{\prime} X^{\prime}$ of the carriage C. The vertical bar $S U$ passes through R and is constrained to move horizontally by heavy rollers. The point Q slides out along the tangent bar PT and also vertically in the bar $S U$, carrying with it the bar $Q P^{\prime}$. If we choose for the x-axis a line $X X$ whose distance from $X^{\prime} X^{\prime}$ is equal to $Q P^{\prime}$, then the point P^{\prime} will draw a curve whose ordinate is equal to $y^{\prime}=R Q$. But $R Q / a$ is the slope of the tangent $P T$, hence, $y^{\prime}=a \times \frac{d y}{d x}$, and the curve drawn by P^{\prime} is the derivative curve of the curve traced by P.

The machine is especially useful for differentiating deflection-time curves to obtain velocity-time curves, and by a second differentiation, acceleration-time curves. It is also helpful in solving many other problems.

EXERCISES.

Apply the approximate rules of integration (Art. 101) to the following examples:
I. Evaluate $\int_{0.2}^{1.0} \frac{d x}{x}$, when $h=0.1$, and when $h=0.05$, and compare the results with the values obtained by integration.
2. Evaluate $\int_{0}^{\pi} \sin x d x$, when $h=\frac{\pi}{6}$, and when $h=\frac{\pi}{12}$, and compare the results with the values obtained by integration.
3. The are of a quadrant of an ellipse whose eccentricity is 0.5 is given by $\int_{0}^{\frac{\pi}{2}} \sqrt{1-0.25 \sin ^{2} \phi} d \phi . \quad$ Evaluate the integral when $h=9^{\circ}$.
4. Evaluate $\int_{0}^{3} \frac{d x}{x^{3}-x+1}$, when $h=0.5$.
5. The semi-ordinates in ft . of the deck plan of a ship are

3, 16.6, $25.5, \quad 28.6,29.8, \quad 30,29.8, \quad 29.5,28.5, \quad 24.2, \quad 6.8 ;$
these measurements are 28 ft . apart. Find the area of the deck.
6. Given the following data for superheated steam

$$
\begin{array}{c|c|c}
v & 2 \\
\hline p & \left.\frac{4}{42.7}\left|\frac{6}{25.3}\right| \frac{8}{16.7} \right\rvert\, \frac{10}{13}
\end{array}
$$

Find the work done.
7. The length of an indicator diagram is 3.6 in . The widths of the diagram, 0.3 in . apart, are
$0,0.40,0.52,0.63,0.72,0.93,0.99,1.00,1.00,1.00,1.00,0.97,0$.
Find the mean effective pressure.
8. The length of an indicator diagram is 3.2 in . The widths of the diagram, 0.2 in . apart, are

$$
1.00, \quad 1.68, \quad 1.62, \quad 1.00,10.64, \quad 0.48,0.36,0.26,0 .
$$

Find the mean effective pressure.
9. The speed of a car is v miles per hour at a time t seconds from rest;

Find the distance traversed in 30 seconds.
10. s is the specific heat of a body at temperature $\theta^{\circ} \mathrm{C}$.

θ						
s	0	0	2	4	6	8
1.00604	1.00543	1.00435	1.00331	1.00233	1.00149	1.00078

Find the total heat required to raise the temperature of a gram of water from $0^{\circ} \mathrm{C}$. to $12^{\circ} \mathrm{C}$. (total heat $=\int_{\theta_{1}}^{\theta_{2}} s d \theta$).
II. The areas in sq. ft . of the sections of a ship above the keel and two feet apart are

$$
2690, \quad 3635, \quad 4320, \quad 4900, \quad 5400 .
$$

Find the total displacement in tons.
12. A reservoir is in the form of a volume of revolution and D is the diameter in ft . at a depth of p feet bencath the surface of the water.

p	0	16	$\frac{32}{48}$	64		
D	110	105	100	86	66	48
86						

Find the number of gallons of water the reservoir holds when full.
13. A plane board is immersed vertically in water. The widths of the board in ft . parallel to the surface of the water and at depths $\frac{1}{2} \mathrm{ft}$. apart are

$$
\text { 4.0, } 3.6, \quad 3.0, \quad 1.7, \quad 1.3, \quad 1.0, \quad 0.8, \quad 0.6, \quad 0.1 .
$$

Find the pressure on the board and the depth of the center of pressure when the surface of the water is level with the top of the board.
14. The half-ordinates in ft . of the mid-ship section of a vessel at intervals 2 ft . apart are

```
12.2, 12.5, 12.6, 12.7, 12.7, 12.5, 12.1, 11.5, 10.1, 6.5, 0.2.
```

Find the position of the center of gravity of the section.
15. The shape of a quarter-section of a hollow pillar is given by the following table. The axes of x and y are the shortest and longest diameters.

	0	0.25	$\underline{0.50}$	0.75	1.00	1.25	150	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50
side	5	4.90	4.78	4.65	4.45	4.22	3.80	3.40	2.77	2.08	0				
$y_{2} \mathrm{in}$.															

Find the moments of inertia of the section about the x - and y-axes.
16. Apply the formulas for numerical differentiation (p. 235) to table (2) $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{3}}$ on p. 211 , and find $\frac{d y}{d x}$ and $\frac{d y}{d x^{2}}$ when $x=5.31$ and $x=5.33$. Check the results by actual differentiation.
17. Apply the formulas for numerical differentiation (p. 235) to table (8) $y=\log \sin x$ on p. 212, and find $\frac{d y}{d x}$ and $\frac{d^{\prime} y}{d x^{2}}$ when $x=1^{\circ}{ }^{2} 0^{\prime}$ and $x=1^{\circ} 24^{\prime}$. Check the results by actual differentiation.
18. In the following table, s is the distance in ft . which the projectile of a gun travels along the bore in $t \mathrm{scc}$.
 Find the velocity $v=\frac{d s}{d t}=1 / \frac{d t}{d s}$, and the acceleration $a=\frac{d^{2} s}{d t^{2}}=-\frac{d^{2} t}{d s^{2}} /\left(\frac{d t}{d s}\right)^{3}$ when $s=$ 5 ft .
19. Use the data given in Ex. 6 to find the rate of change of the pressure with respect to the volume, $d p / d v$, when $v=4$ and $v=5$.
20. Use the data given in Ex. 9 to find the acceleration, $a=\frac{d v}{d t}$, when $t=10$ and $t=12$.
21. Find the minimum value of the polynomial which has the values

$$
\begin{array}{c|c|c|c}
x \\
y & 0 & \frac{2}{3} & \frac{2}{3} \\
11 & \frac{6}{27}
\end{array}
$$

22. The following table gives the results of measurements made on a normal induction curve for transformer steel; B is the number of kilolines per $\mathrm{sq} . \mathrm{cm} . ; \mu$ is the permeability.

$\left.$| B |
| :--- |
| u |$\left|\frac{1}{625}\right| \frac{2}{870}\left|\frac{3}{1035}\right| \frac{4}{1210}\left|\frac{5}{1350}\right| \frac{6}{1465}\left|\frac{7}{1520}\right| \frac{8}{1480} \right\rvert\,$| 1430 | 10 | 1370 | 1280 | 1130 |
| :--- | :--- | :--- | :--- | :--- |

Find the maximum permeability.
23. Construct the integral curve of the parabola $y=x-\frac{1}{2} x^{2}$ as x varies from o to 2 .
24. Construct the integral curve of the sine wave $y=2 \sin 2 x$ as x varies fromo to π.
25. The following table gives the accelerations a of a body sliding down an inclined plane for various distances s in ft .

s										
a	$\frac{0}{0.320}$	$\frac{100}{0.304}$	$\frac{200}{0.256}$	$\frac{300}{0.176}$	$\frac{400}{0.080}$	$\frac{500}{-0.016}$	-000	700	800	900
-0.080	-0.136	-0.176	-0.208	-0.240						

26. The following table gives the accelerations a of a body at various velocities v in ft . per sec.

$$
\frac{v}{a}\left|\frac{0}{0.405}\right| \frac{1}{0.360}\left|\frac{2}{0.283}\right| \frac{3}{0.179}\left|\frac{4}{0.069}\right| \frac{5}{0.013}
$$

Draw the integral cufves to determine the time, $t=\int \frac{1}{a} d v$, and the distance, $s=\int \frac{v}{a} d v$, for any velocity, if $t=0$ and $s=0$ when $v=0$.
27. In the following table
$\left.\begin{gathered}s \\ P\end{gathered}\left|\frac{0}{38,000}\right| \frac{1}{38,500}\left|\frac{4}{38,500}\right| \frac{6}{35,500}\left|\frac{8}{27,500}\right| \frac{11.5}{19,000}\left|\frac{15}{15,700}\right| \frac{19}{11,000} \right\rvert\, \frac{20}{3850}$
\boldsymbol{P} is the resultant pressure in pounds on the piston of a steam engine at distances s inches from the beginning of the stroke. Draw the integral curve to find the work done as the piston moves forward. $\quad\left(\right.$ Work $\left.=\int P d s.\right)$
28. A car weighs 10 tons. It is drawn by a pull of P lbs.; t is the time in seconds since starting.

If the retarding friction is constant and equal to 410 lbs ., draw the integral curve to find the speed of the car at any time. $\quad\left(\right.$ Momentum $\left.=\int(P-410) d t.\right)$
29. In the following table
$\left.-\frac{1}{v}\left|\frac{0.00490}{869}\right| \frac{0.00598}{9^{87}}\left|\frac{0.00695}{107 t}\right| \frac{0.00785}{114^{2}}\left|\frac{0.00871}{1195}\right| \frac{0.00953}{124^{2}}\left|\frac{0.01032}{1277}\right| \frac{0.01109}{1309} \right\rvert\, \frac{0.01184}{1335}$
$' v$ is the velocity of projection in ft . per sec. in the bore of a gun at time $t \mathrm{sec}$. from the beginning of the explosion. If $s=2 \mathrm{ft}$. when $t=0.00490 \mathrm{sec}$., draw the integral curve to show the relation between the distance and the time.
30. A beam ro ft . long is loaded as in the following table, where w is the weight per unit length at distances $x \mathrm{ft}$. from the free end.

Draw integral curves to show (1) the shearing force, $s=\int w d x$ and (2) the bending moment, $M=\int s d x$.
31. The following table gives the measurements for every 15° of the intensity of illumination of a lamp.

$\left.$| Angle θ° |
| :---: |
| $\mathrm{c}-\mathrm{p}$ |$\left|\frac{0}{60}\right| \frac{15}{88.0}\left|\frac{30}{99.5}\right| \frac{45}{86.5}|60.50 .0| \frac{75}{31.0}\left|\frac{90}{29.0}\right| \frac{105}{29.0}\left|\frac{120}{28.0}\right| \frac{135}{20.0}\left|\frac{150}{15.0}\right| \frac{165}{13.0} \right\rvert\, \frac{180}{12.5}$

Apply the method of the illustrative example on p. 242 to find the m.s.c.p. for various sections of the lamp.
32. In the following table
$\left.\begin{aligned} & t \\ & s\end{aligned}\left|-\frac{0}{0}\right| \frac{10}{156}\left|-\frac{20}{608}\right| \frac{30}{1308}\left|\frac{40}{2180}\right| \frac{50}{3132}\left|\frac{60}{4076}\right| \frac{70}{494^{2}}\left|\frac{80}{5676}\right| \frac{90}{6236} \right\rvert\, \frac{100}{6588}$
s is the distance in ft . traversed by a body weighing 2000 lbs . in $t \mathrm{sec}$. Draw the derivative curves to show the velocity and acceleration at any time. Also draw the curve showing the relation between the kinetic energy and the force.
33. The observed temperature θ in degrees Centigrade of a vessel of cooling wate, at time t in min . from the beginning of observation are given in the following table:

$$
\left.\begin{aligned}
& t \\
& \theta
\end{aligned}\left|\frac{0}{92.0}\right| \frac{1}{85.3}\left|\frac{2}{79.5}\right| \frac{3}{74.5}\left|\frac{5}{67.0}\right| \frac{7}{60.5}\left|\frac{10}{53.5}\right| \frac{15}{45.0} \right\rvert\, \frac{20}{39.5}
$$

Draw the derivative curve to show the rate of cooling at any time.

INDEX.

Adiabatic expansion formula, 48
chart for, 33, 49
Alignment or nomographic charts (see also Charts, alignment or nomographic)
fundamental principle of, 44
with curved scales, 106
with four or more parallel scales, 55
with parallel or perpendicular index lines, 87, 9I, 97
with three or more concurrent scales, 104
with three parallel scales, 45
with two intersecting index lines, 68
with two or more intersecting index lines, 76
with two parallel scales and one intersecting scale, 65
Approximate differentiation, $22+$
Approximate integration, $22+$
Area,
by approximate integration rules, 227
by planimeter, 246
Armature or field winding formula, 90 chart for, 90

Bazin formula, ior
chart for, 102, 116
Center of gravity, by approximate integration rules, 231
Chart, alignment or nomographic, for
adiabatic expansion, 49
armature or field winding, 90
Bazin formula, 102, 116
Chezy formula for flow of water, 58
D'Arcy's formula for flow of steam, 81
deflection of beams, 72, 73, 86
discharge of gas through an orifice, 89
distributed load on a wooden beam, 83
focal length of a lens, 106
Francis formula for a contracted weir, 109
friction loss in pipes, 94

Chart, Grasshoff's formula, 5 I
Hazen-Williams formula, 60
horsepower of belting, 54
indicated horsepower of a steam engine, 63
Lamé formula for thick hollow cylinders, 92
McMath "run-off," formula, 49
moment of inertia of cylinder, $\mathbf{1 0 0}$
multiplication and division, 47
prony brake, 70
resistance of riveted steel plate, 103
solution of quadratic and cubic equations, 112
specific speed of turbine and water wheel, 75
storm water run-off formula, 108
tension in belts, 54
tension on bolts, 67
twisting moment in a cylindrical shaft, 78
volume of circular cylinder, 49
volume of sphere, 49
Charts, hexagonal, 40
Chart with network of scales, for
adiabatic expansion, 33
chimney draft, 38
elastic limit of rivet steel, 34
equations in three variables, 28
equations in two variables, 20
multiplication and division, $30,3 \mathrm{I}$
solution of cubic equation, 36
temperature difference, 39
Chezy formula for flow of water, 56
chart for, 58
Chimney draft formula, 37
chart for, 38
Coefficients in trigonometric series evaluated,
by six-ordinate scheme, 179
by twelve-ordinate scheme, 181
by twenty-four-ordinate scheme, 185
for even and odd harmonics, 179

Coefficients in trigonometric series evaluated,
for odd harmonics only, 186
for odd harmonics up to the fifth, 187
for odd harmonics up to the eleventh, 189
for odd harmonics up to the seventeenth, 191
graphically, 200
mechanically, 203
numerically, 179, 186, 192, 198
Constants in empirical formulas determined by
method of averages, 124, 126
method of least squares, 124, 127
method of selected points, 124, 125
Coördinate paper,
logarithmic, 22
rectangular, 21
semilogarithmic, $2+$
D'Arcy's formula for flow of steam, 79
chart for, 81
Deflection of beams, 70, 71, 84
chart for, 72, 73, 86
Differences, 210
Differentiation, approximate, 224
graphical, 244
mechanical, 255
numerical, 234
Differentiator, 255
Discharge of gas through an orifice, 89
chart for, 89
Distributed load on a wooden beam, 80
chart for, 83
Durand's rule, 226
Elastic limit of rivet steel, 32
chart for, 34
Empirical formulas,
determination of constants in, 124, 125, 173, 174
for non-periodic curves, 120
for periodic curves, 170
involving 2 constants, 128
involving 3 constants, 140
involving 4 or more constants, 152
Equations, solutions of (see Solutions of algebraic equations)
Experimental data, 120, 170
Exponential curves, 131, 142, 151, 153, 156

Focal length of a lens, chart for, 35, 40, 106
slide rule for, 15
Fourier's series, 170
Francis formula for a contracted weir, 110 chart for, 109
Friction loss in pipes, 94
chart for, 94
Fundamental of trigonometric series, 170
Gauss's interpolation formula, 219
Graphical differentiation, 244
Graphical evaluation of coefficients, 200
Graphical integration, 237
Graphical interpolation, 209
Grasshoff's formula, 50
chart for, 5^{1}
Harmonic analyzers, 203
Harmonics of trigonometric series, 170
Hazen-Williams formula, 57
chart for, 60
Hexagonal charts, 40
Horsepower of belting, 52
chart for, 54
Hyperbola, 149
Hyperbolic curves, 128, 135, 137, 140
Index line, 44
Indicated horsepower of steam engine, 61
chart for, 63
Integraph, 252
Integration, approximate, 224
applications of, 227
by Durand's rule, 226
by rectangular rule, 225
by Simpson's rule, 226, 233
by trapezoidal rule, 225
by Weddle's rule, 233
general formula for, 231
graphical, 237
mechanical, 246
Integrators, 250
Interpolation, 209
Gauss's formula for, 219
graphical, 209
inverse, 219
Lagrange's formula for, 218
Newton's formula for, 214, 217
Isopleth, 44
Lagrange's interpolation formula, 218

Lamé formula for thick hollow cylinders, 91
chart for, 92
Least Squares, method of, 124, 127
Logarithmic coürdinate paper, 22
Logarithmic curve, 15 I
Logarithmic scale, ,

Maxima and minima by approximate differentiation formulas, 236
McMath "run-off" formula, 48
chart for, 49
Mean effective pressure by approximate integration rules, 228
Mechanical differentiation, 255
Mechanical integration, 246
Moment, by integrator, 250
Moment of inertia,
by approximate integration rules, 230
by integrator, 250
Moment of inertia of cylinder, 99
chart for, 100
Multiplication and division, charts for, 30, 31, 4I, 47

Newton's interpolation formula, 214, 217
Nomographic or alignment charts (see Alignment or nomographic charts)
Numerical evaluation of coefficients, 179, 186, 192, 198
Numerical differentiation, 234
Numerical integration, 224
Numerical interpolation, 215

Parabola, 145
Parabolic curves, 128, 135, 140
Periodic phenomena, representation of, 170
Planimeter,
Amsler polar, 248
compensation, 249
linear, 249
principle of, 246
Polynomial, 159
Pressure and center of pressure, by approximate integration rules, 231
Prony brake, 69
chart for, 70
Rates of change, by approximate differentiation formulas, 235

Rectangular coördinate paper, 21
Rectangular rule, 225
Resistance of riveted steel plate, iol
chart for, 103
Scale,
definition of, I
equation of, 2
logarithmic, 2
representation of, \mathbf{I}
Scale modulus, 2
Scales,
network of, 20
perpendicular, 20
sliding, 7
stationary, 5
Semilogarithmic coürdinate paper, 24
Simpson's rule, 226, 233
Slide rule,

- circular, 16
for electrical resistances, 15
for focal length of lens, 15
Lilly's spiral, 18
logarithmic, 9
$\log -\log , 13$
Sexton's omnimetre, 17
Thacher's cylindrical, 18
Solutions of algebraic equations,
by means of parabola and circle, 26
by means of rectangular chart, 35
by means of alignment chart, 110
by method of inverse interpolation, 221
on the logarithmic slide rule, in
Specific speed of iurbine and water wheel, 73
chart for, 75
Storm water run-off formula, 107
chart for, 108
Straight line, 122, 125
Tables, construction of, 213
Temperature difference, 37
chart for, 39
Tension in belts, 52
chart for, 54
Tension on bolts, 66
chart for, 67
Trapezoidal rule, 225
Trigonometric series, $\mathbf{1 7 0}$ determination of constants in, 173, 174
Twisting moment in a cylindrical shaft, 77 chart for, 78

Velocity, by approximate integration rules, 229
Volume, by approximate integration rules, 229
Volume of circular cylinder, 48 chart for, 49

Volume of sphere, 50
chart for, 49
Weddle's rule, 233
Work, by approximate integration rules, 228

[^0]: * The values of m given in the text are those which were employed originally in the construction of the scales; these values do not however refer to the cuts which, in most cases, are reductions of the original drawings.

[^1]: * Historical Note. Gunter invented the lagarithmic scale and used compasses to calculate with it (1620). Oughtred invented the straight logarithmic slide rule, consisting of two rulers each bearing a logarithmic scale, which were slid along each other by hand (1630). Rules in which the slide worked between parts of a fixed stock were known in England in 1654. Robertson constructed the first runner in 1775. Mannheim designed the modern standard slide rule (1850). Roget invented the log-log scale in 1815. See F. Cajori's History of the Logarithmic Slide Rule.

[^2]: * The principles underlying the construction of nomographic or alignment charts have been most fully developed by M. D'Ocagne in his "Traité de Nomographie." Further references may be given to "The Construction of Graphical Charts," by J. B. Peddle; "Nomographic Solutions for Formulas of Various Types," by R. C. Strachan (Transactions of the American Society of Civil Engineers, Vol. LXXVIII, p. 1359), and to various smaller articles that have appeared from time to time in Engineering Journals.

[^3]: H．P OF BELTS．
 H．P $=\frac{\left(T_{1}-T_{3}\right) S}{33000}$

[^4]: * These forms, involving three or four variables, occur rarely in engineering practice, and are therefore treated very briefly.

[^5]: *See Bartlett's "The Method of Least Squares," or any other book on this theory.

[^6]: *Prof. Peddle in "The Construction of Graphical Charts" has fitted the equation $s / d=0.00274 \sqrt[1]{P}+0.00000000$ II P^{2} to Prof. Stewart's data .

[^7]: \dagger See A Course in Fourier's Analysis and Periodogram Analysis by G. A. Carse and G. Shearer.

[^8]: * T. R. Running, Empirical Formulas, p. 74, gives similar schemes with 8, 10, 16, and 20 ordinates, for waves having even and odd harmonics. H. O. Taylor, in the Physical Review, N. S., Vol. VI (1915), p. 303, gives a somewhat different scheme with 24 ordinates for waves having even and odd harmonics. A very convenient computing form for the above scheme with 24 ordinates has been devised by E. T. Whittaker for use in his mathematical laboratory at the University of Edinburgh; see Carse and Shearer, ibid., p. 22.

[^9]: * Proc. Roy. Soc., xxvii, 1878, p. 371; Kelvin and Tait's Natural Philosophy.
 \dagger Phil. Mag., xxxviii, 1894, p. 110.
 \ddagger Phil. Mag., xxxviii, 1894, p. 121.
 § Phil. Mag., xxxix, 1895, p. 367; The Electrician, March 22, 1895.
 || Phil. Mag., xlv, 1898, p. 85.
 If Morin, Les Appareils d'Intégration, 1913, p. 179.
 ** Elektrotech. Zeit., xxxvi, 1909; Phys. Zeit., xi, 1910, p. 354.
 $\dagger \dagger$ The Electric Journal, xi, 1914, p. 91.
 $\ddagger \ddagger$ Brief descriptions of all but the last of these may be found in Modern Instruments and Methods of Calculation, a handbook of the Napier Tercentenary Celebration, 1914.
 §§ For the principle of the planimeter and integrator, see pp. 246, 250.

[^10]: * The Electric Journal, xi, 1914, p. 262.

[^11]: * For an account of these formulas, see H. L. Rice, Theory and Practice of Interpolation, and D. Gibb, Interpolation and Numerical Integration.

[^12]: * See Art. 106 on graphical differentiation.

[^13]: * See Rice, Theory and Practice of Interpolation.

[^14]: * For descriptions and discussions of various mechanical integrators see: Abdank. Abakanowicz, Les Intégraphes (Paris, Gauthier-Villars); Henrici, Report on Planimeters (Brit. Assoc. Ann. Rep., 1894, p. 496); Shaw, Mechunical Integrators (Proc. Inst. Civ. Engs., 1885, p. 75); Instruments and Methods of Calculation (London, G. Bell \& Sons); Dyck's Catalogue; Morin's Les Appareils d'Intégration.

[^15]: * For a proof of this statement, see Instruments and Methods of Calculation, p. 196.
 \dagger For the theory of this instrument, see F. W. Hill, Phil. Mag., xxxviii, 1894, p. 265.

[^16]: Proc. Roy. Soc. of Edinburgh, May, 1904.
 Scientific American Supplement, Feb. 12, 1916.

