
FIELD PRACTICE

DATA BOOK for CIVIL ENGINEERS

By ELWYN E. SEELYE VOLUME ONE - DESIGN. 417 pages. Illustrated. $93 / 8 \times 113 / 4$. Cloth.

VOLUME TWO - SPECIFICATIONS AND COSTS. 325 pages. Illustrated. $91 / 4 \times 111 / 2$. Cloth.

VOLUME THREE - FIELD PRACTICE. 306 pages. Illustrated. $47 / 8 \times 8$. Cloth.

DATA BOO்K FOR CIVIL ENGINEERS

FIELD PRACTICE

ELWYN E. SEELYE

New York • JOHN WILEY \& SONS, Inc. London • CHAPMAN \& HALL, Limited'

Copyright, 1947
BY
Elfyn E. Seelye

All Rights Reserved
This book or any part therecf must not be reproduced in any form without the uritten permission of the publisher.

PREFACE

Field practice embraces the inspection and sometimes supervision of construction of engineering works by a field man who may have the background of an inspector, a designer, a clerk-of-the-works, a contractor's superintendent, or a surveyor. If the inspection and supervision are performed in accordance with modern practice, the field man merits the dignity that is implied by the title of engineer.

Modern practice for field engineers comprises extensive technological advances, many of them made within the past decade. The purpose of this volume is to enable the inspector or field engineer to brief himself as to the essentials in the inspection and supervision of the work which he is to undertake. Its purpose is also to enable him to bring to the field the basic data which he will require.

For example, sampling of material for laboratory tests should be done in accordance with certain rules. The method of taking a concrete sample for a compression or flexure test is rigidly prescribed. Any deviation from the rules will detract from the validity of the test. Hence "Rules for Sampling" are included in this book.

Certain field tests, such as the concrete slump test, the penetration of asphalt test, and soil tests, are required to control the quality of construction. These tests should be performed according to certain rules; hence. "Instructions for Field Tests."

Field engineering includes the checking of material so that size, quality, and other properties are in accordance with plans and specifications. Therefore, tables such as the detailed dimensions of steel beams and of culvert pipe are included herein to enable an inspector to identify the exact size of a steel beam or the classification of a reinforced-concrete pipe.
A whole series of special tests have been developed in connection with the science of soil mechanics. A field engineer may be required to make these tests and to furnish information concerning them. In order that he may do so, detailed information is given to determine density, grain size, Atterberg limits, optimum moisture, field shear tests, C.B.R. values, and related data.

What items should be checked by an inspector? A check list for inspectors is included for such work as concrete, bituminous paving, steel, welding, and timber. Complete information for inspecting pile driving is also given. In addition, report forms are presented so arranged that the report becomes not only a progress report but also an inspector's
checking list. This is illustrated by the steel inspector's reports, of which Part I is a list of items to be checked off by the inspector and Part II is a progress report.

The importance of surveying to field engineering has been recognized, and a section of this volume provides the data a construction surveyor requires. Under "Surveying" are stadia reduction tables, stakeout problems, curve data, railroad turnout data, earthwork tables, transit and level problems, azimuth determination, isogonic chart, instrument adjustments, tape data, plotting problems, mapping symbols, and tables of measure, trigonometric formulas, and trigonometric functions.

The identification of common building stone and timber is assisted by photographs of different types or species placed in juxtaposition to emphasize points of difference.

A few words on job power together with cuts of construction machinery are given to assist the field engineer in talking to the contractor in his own language.

Elwyn E. Seelye

ACKNOWLEDGMENTS

In addition to the sources listed in the text, the author wishes to thank the following for their aid.
Dr. Arthur S. Tuttle, for his help and advice and for making available to the author his wide contacts for the collection of information.

Dean S. C. Hollister, of the College of Engineering, Cornell University, who has given the author advice and encouragement, particularly in regard to the general scope of the book.

Mr. Frank H. Alcott, of National Lumber Manufacturers Association.
Mr. L. E. Andrews, Regional Highway Engineer, Portland Cement Association.

Mr. Clinton L. Bogert.
Gilbert D. Fish.
Mr. E. M. Fleming, District Manager, Portland Cement Association.
Mr. Elliott Haller, of Haller Engineering Associates, Inc.
Mr. Prevost Hubbard and Mr. Bernard E. Gray, of The Asphalt Institute.

Mr. John Hoffine.
Mr. Elson T. Killam.
Mr. Ralph H. Mann, of American Wood-Preservers Association.
Mr. Edward A. Robinson, of Haller Engineering Associates, Inc.
Mr. John M. Stratton.
Mr. Russell Wise, C.E.
The author wishes to make special mention of the assistance received from the following members of his organization.

Mr. J. U. Wiesendanger for his work on general editing.
Colonel Burnside R. Value and Mr. A. L. Stevenson for general advice and counsel.

Messrs. E. G. Whitten, W. D. Bailey, V. J. Pacello, C. M. Throop, Patrick H. Murphy, A. H. Jorgensen, Laurence Vought, and S. D. Teetor.

Miss Jean M. Luckett for her assistance in editing.

CONTENTS

PART I

INSPECTION

PAGE
Typical Heavy Construction Equipment 3
Concrete
Field Sampling 10
Field Testing 12
Check List for Inspectors, Concrete-General 13
Check List for Inspectors, Concrete-Paving 19
Rules for Concrete Floors 21
Approximate Data on Concrete Mixes 23
Concrete Batching 24
Quantities for Concrete Mixes 25
Concrete Batching Computations 34
Concrete Reinforcement 39
Load Tests 42
Report on Concrete Structures-Field Inspection (Short Form) 43
Report on Concrete Structures-Field Inspection (Long Form) 44
Report on Concrete Test Specimens 45
Report on Concrete Test Beams 46
Report on Cement Analyses 47
Cement Shipping Report 48
Masonry
Check List for Inspectors 49
Lime for Mortar and Masonry 49
Identification of Building Stone 50
Structural Steel
Check List for Inspectors 53
Structural Steel Sections 55
Wire and Sheet Metal Gages 58
Report on Structural Steel-Riveted or Bolted, Field Inspection 60
Report on Structural Steel-Riveted or Bolted, Shop Inspection, Part I 61
Report on Structural Steel-Shop Inspection, Part II (For both riveted and welded steel) 62
Steel Mill Report 63
Welding
Common Welding Processes 64
Welders' Qualification Test 65
Welding Positions 66
PAGE
Weld Characteristics 66
Illustrations of Acceptable and Defective Welds 67
Fillet Weld Gages 67
Weld Penetration and Arc Crater 68
Electrodes and Their Uses 68
Check List for Inspectors 70
Identification of Iron and Steel 71
Report on Structural Steel-Welded, Field Inspection 72
Report on Structural Steel-Welded, Shop Inspection, Part I 74
Bridges
Field Data Required for Rating Existing Bridges 75
Inspection of Existing Bridges 75
Field Data for New Small Bridges 78
Existing Bridge Inspection Report 78
Field Data for New Structure 80
Painting
Check List for Inspectors 81
Foundations on Soil
Method of Conducting a Load Test 82
Presumptive Bearing Capacity of Soils 82
Check List for Inspectors 84
Pile Driving
Check List for Inspectors and Data 84
Bearing Power of Piles 86
Values of E for McKiernan-Terry Pile Hammers 86
Load Tests 87
Report on Pile Driving 88
Timber
Wood Joists-Net Section 89
Identification of Timber 90
Check List for Inspectors 94
Report on Wood Preservation 96
Ropes and Cable-Strengths 97
Varieties of Knots 98
Soils
Surveying and Sampling Methods 99
Spacing and Depth of Borings and Test Pits or Test Holes 100
Size of Samples 100
Testing Equipment 101
Typical Soil Profile Map 105
Plan and Log of Test Pits for Airfield 106
Boring Log 107
Identification of Principal Types 108
Identification by Mechanical Grain Size Analyses 109
Classification of Soils by Horizons 109
P.R.A. Classification 110
Classification of Soil Mixtures 112
Classification of Soils by Origin 112
Atterberg Limit Tests 113
Moisture Determination 115
Maximum Density, Optimum Moisture, Proctor Needle Plasticity Test 117
California Bearing Ratio 120
Field Density (Unit Weight) Test 120
Bearing Values vs. Percentage of Compaction 123
Mechanical Analysis (Grain Size) 124
Effective Size and Uniformity Coefficient 125
Optimum Moisture-Maximum Density Report 126
Report on Density Determination 127
Report on Soil Studies 128
Report on Soils Classification 129
California Bearing Ratio Report 130
Boring Log 131
Grain Size Classification Report 133
Aggregates
Field Testing 134
Sieve Analysis 134
Approximate Absorption of Water by Aggregates 136
Sicve Analysis Report 137
Grading
Check List for Inspectors 138
Bituminous Paving
Field Sampling 139
Field or Plant Tests 140
Check List for Inspectors, Bituminous Paving-General 141
Check List for Inspectors, Plant-Mix Bituminous Paving 146
Use of Bituminous Materials 150
Quantities Required 152
Quantities Per Unit 155
Application Rate 157
Standard Abridged Volume Correction Table 158
Amounts of Material Per Square Yard 159
Daily Bituminous Report for Macadam, Bituminous Treatments, Mix-in-Place 160
Plant-Mix Bituminous Inspection-Daily Paving Report 161
Plant-Mix Bituminous Inspection-Daily Plant Report 162
Bituminous Paving Analyses Report 163
Asphalt Report 164
Sanitary Construction
Check List for Inspectors 165
Pipe Laying
Cement-Asbestos Sewer Pipe (Transite) 166
Clay Pipe, Standard Strength 167
Clay Pipe, Extra Strength 168
Corrugated Metal Culvert Pipe 169
Non-Reinforced-Concrete Sewer Pipe 170
Reinforced-Concrete Sewer Pipe 171
PAGE
Standard Strength Reinforced-Concrete Culvert Pipe 172
Extra-Strength Reinforced-Concrete Culvert Pipe 173
Concrete Pipe, Weights and Laying Lengths 174
American Water Works Association Standard Cast-Iron Pipe 175
Federal Specifications, WW-P-421 Standard 175
Standard Thicknesses and Weights of Cast-Iron Pit Cast Pipe 176
Approximate Quantities of Materials Used per Joint for Water Service 177
Steel Pipe, A.S.T.M. A53-44, Weights and Dimensions 178
Cement-Asbestos Water Pipe (Transite) 179
Check List for Inspectors 179
Report on Pipe Laying 181
Miscellaneous
Inspector's Time Record 182
Payroll and Expense Record 183
Report on Airfield Runways 184
Inspector's Daily Report-General Construction 186
General Contractor's Daily Report 188
Job Power 189
PART II
SURVEYING
Topographic Survey 193
Sample Notes 193
Stadia Tables 195
Construction Stakeouts
Stakeout for Structures 197
Highway Construction Stakeout 198
Railroad Construction Stakeout 199
Airfield Construction Stakeout 200
Pipeline Stakeout 201
Circular Curves
Arc Definition 202
Deflections 203
Externals 203
Minimum Curvature 204
Maximum Curvature 204
Tangent Offsets 204
Chord Definition 204
Radii, Deflections, Offsets, Ordinates, Chords and Arcs-100' Chords 206
Minutes in Decimals of a Degree, Seconds in Decimals of a Minute 207
Functions of 1° Curve 208
Corrections for Tangents and Externals 209
Deflections and Chord Lengths for Circular Curves 210
Lengths of Circular Arcs for Unit Radius 211
Metric Curves 212
Short-Radius Curves 213
Deflections (d) and Middle Ordinates (m) for Subchords 215
Formulas for Areas 216
PAGE
Transition Curves
Circular Curves with Spiral Transitions 217
Spiral Layout 218
Minimum Transition Lengths 219
General Problems 220
Properties of Spiral 221
Layout of Control Points 223
Functions of Transition for $L_{s}=1$ 224
Functions of Curves Transitional Throughout-Tangents and Ex- ternals for $L_{s}=1$ 225
Spiral Layout by Offsets or Deflections 226
Vertical Curves
Vertical Summit Curve 227
Vertical Sag Curve 228
Symmetrical Vertical Curves 228
Unsymmetrical Vertical Curves 229
Parabolic Crown Ordinates 229
Railroad Turnouts and Crossovers 233
Earthwork Computations
Methods of Finding Areas 234
Methods of Finding Volumes 234
Double End Area Volumes 236
Prismoidal Corrections for $L=100^{\prime}$ Stations 240
Leveling
Sample Notes 242
Transit Problems
Determination of Distance to Inaccessible Point 243
Angles by Repetition 243
Laying off Angles by Repetition 244
Area by Double Meridian Distance 244
Omitted Side 247
Prolongation of a Line by Double Sighting with Transit (Double Centering) 248
Establishing a Line by Balancing-in with Transit (Bucking-in) 248
Layout of Circular Curve 249
Sample Notes 250
Allowable Errors
Leveling 250
Distances 251
Transit and Tape Traverses 251
Determination of True North
Observation on Polaris 252
Isogonic Chart 254
Instruments and Their Adjustments
Parts of Gurley Precise Transits 256
Parts for Gurley Dumpy Levels 257
PAGE
Parts for Gurley Wye Levels 258
Hints on Adjustments 259
Transit Adjustments 260
Adjustments of Wye and Dumpy Levels 268
Taping 276
Mapping
Plotting Traverses 277
Plotting Topography 279
Mapping Symbols 280
General Tables and Information
Land Measure 283
Trigonometric Formulas 283
Natural Trigonometric Functions 289
Logarithmic Trigonometric Functions 292
Minutes into Decimals of a Degree 293
Logarithms of Numbers 294
Decimal Equivalents of Common Fractions 296
Surveying Signals 297
Index 299

PART I

INSPECTION

TYPICAL HEAVY CONSTRUCTION EQUIPMENT

Fig. 1. Lorain crane with attachments. Courtesy of the Thew Shovel Company.

isg. 2. Four-wheel scraper. (Earth-moving, grading, excavation.) Couivesy of Bucyrus-Erie Company.

Fig. 3. Bulldozer. (Clearing, stripping, grading, earth-moving.) Courtexy of Bucyrus-Erie Company.

Fig. 4. Motor grader "motor patrol." (Shaping subgrades and surfaces, soil mixing.) Courtesy of the Galion Iron Works and Manufacturing Company.

Fig. 5. Tamping roller "sheepsfoot." (Compacting fills.) Courtesy of the Baker Manufacturing Company.

Fig. 6. Eight-ton three-wheel roller. Courtesy of Huber Manufacturing Company.

Fig. 7. Five- to eight-ton tandem roller. Courtesy of Huber Manufacturing Company.

Fig. 8. Pulvi-Mix. (Mixing earth and stabilizing agente-pulverizing.) Courtesy of Seaman Motors.

Fig. 9. Trencher. (Trench excavation in earth.) Courtesy of the Parsons Company.

Fra. 10. Concrete paver. Courtesy of Ransome Machinery Company.

Fig. 11. Rex transit-mix truck. Courtesy of Chain Belt Company.

Fig. 12. Aggregate batching plant. Courtesy of Blaw-Knox Company.

Fig. 13. Finishing machine for roads and airports. Courtesy of Blaw-Knox Company.

Fig. 14. Compressor. Ceurtesy of the Jaeger Machine Company.
CONCRETE
FIELD SAMPLING

Material and Method	When Sampled	Size of Sample	Instructions
$\underset{\text { Cement, A.S.T.M. }}{\text { Cent }}$	Each 1600 sacks or 400 bbl .	$8 \mathrm{lb} . \mathrm{min}$.	Sacked cement: compose sample from portions taken from 1 sack in 40. Bulk cement: sample from different locations with small scoop. Ship in container sealed airtight with paraffin.
Aggregates, A.S.T.M. D-75	Each source First shipment and if any change	Sand, 30 lb . Stone and slag, 100 lb. Gravel, 100 lb . over 1/2-in. size	Quarter aggregates by placing on canvas square or clean surface. Mix thoroughly. Form into conical pile. Flatten pile. Cut into 4 pie-shape parts. Discard 2 opposite quarters including dust. Remix remainder. Repeat till desired size, but not less than twice. Ship in strong, tight bag or box.
Steel Reinforcement, A.S.T.M. A-15, 16, or 160	Each 10 tons Each lot or shipment	3 pieces of each size, 18 in. long min.	Wire pieces together and wrap in burlap.
Bar or rod mats, A.S.T.M. A-184	Each order or each 500 mats	2 ft . by 2 ft .	Cut sample from 2 mats in each order. Ship crated.
Wire fabric, A.S.T.M. A-185 and A-82	Each order or each 75,000 sq. ft.	2 ft . by 2 ft .	If heavy edge wire type include edge in square. Ship crated.
Expansion joint filler, A.S.T.M. D-545	Each 1000 sq. ft.	3 ft . long min. by full depth	Ship crated. Seal cork type in waterproof paper.
Joint sealer, A.A.S.H.O. M-18	Each lot or shipment	1 qt . min.	Place in friction lid can. Ship crated or boxed.
Curing liquids, A.S.T.M. C-156	Each lot or shipment	1 qt . min.	Ship in small-mouth can with cork-lined screw top.

Concrete test cylinders, A.S.T.M. C-31	As specified, or 4 for each 250 cu . yd. or 2000 sq. yd. of slabs	6 in . dia. by 12 in. high for aggregate 2 in. and under; 8 in . dia. by 16 in . high for aggregate over 2 in .	Use paraffined cardboard or metal mold. Place sample in mold in 3 equal layers, rodding each layer 25 strokes with $5 / 8$ in. by 24 in. bullet pointed rod. Strike off top with trowel. Cover and keep moist at $60^{\circ}-80^{\circ} \mathrm{F}$. Do not move for 24 hr ., then remove molds and paint identification on cylinder. Cure laboratory control cylinder moist at $70^{\circ} \mathrm{F}$. till tested. Cure field control cylinders same as corresponding concrete. Pack in wet sawdust or burlap, and ship in strong box.
Concrete test beams, A.S.T.M. C-78	3 or 4 beams for every 2000 sq. yd. of pavement or slab	6 in. by 6 in. by 30 in . or 36 in.	Use rigid wood or metal form ($6-\mathrm{in}$. channels) lightly oiled or paraffined. Place concrete in 2 equal layers, each layer rodded 50 times per sq. ft . Spade sides and edges with trowel, and strike off top. Finish with cork float. Cover at once with damp burlap. After 24 hr . remove forms and cure moist at 60° to $75^{\circ} \mathrm{F}$. for laboratory control. Paint identifying marks or symbols. Cure field control beams same as corresponding concrete. Pack in wet sawdust or burlap, and ship in strong box.
Calcium chloride, A.S.T.M. D-98	Each lot or shipment	$1 \mathrm{qt}$. min.	Ship in airtight container.
Water, A.A.S.H.O. T-26	Each source	2 qt .	Ship in crated glass jar with glass stopper.

[^0]
FIELD TESTING

Slump Test for Consistency, A.S.T.M. C-143. Use a standard slump cone made of No. 16 gage galvanized metal in the form of a frustum of a cone with the base 8 in . in diameter, the top 4 in . in diameter, and the altitude 12 in . Provide mold with foot pieces and handles.

Take 5 samples of concrete, and thoroughly mix to form test specimen. Sample from discharge stream of mixer, starting at beginning of discharge and repeating until batch is discharged. For paving concrete, samples may be taken from the batch deposited on the subgrade. Before placing concrete, dampen the cone and place on a flat, moist, non-absorbent surface. In placing each scoopful of concrete move the scoop around the top edge of the cone as the concrete slides from it, in order to insure symmetrical distribution of concrete within the cone. Fill the mold in 3 equal layers, rodding each layer with 25 strokes of a $5 / 8-\mathrm{in} . \phi$ rod 24 in . in length, bullet pointed at the lower end. Distribute the strokes in a uniform manner over the cross section of the cone and penetrate into the underlying layer. Rod the bottom layer throughout its depth. After the top layer has been rodded strike off the surface of the concrete with a trowel or board so that the cone is exactly filled. Immediately remove the cone from the concrete by raising it carefully in a vertical direction. Then measure the slump immediately by laying the $24-\mathrm{in}$. rod across the top of the cone and measuring down to the top of the sample. This is known as the slump, which is equal to 12 in . minus the height in inches, after subsidence, of the concrete specimen. The slump test should be made frequently, at least 3 or 4 times a day.

Unit Weight of Plastic Concrete, A.S.T.M. C-138. Use a calibrated bucket of minimum No. 11 gage metal, a $5 / 8-\mathrm{in}$. by $24-\mathrm{in}$. bullet-pointed rod, and a scale accurate to 0.5% of total weight tested. Capacity of bucket should be $1 / 10 \mathrm{cu}$. ft. for $1 / 2$-in. maximum aggregate; $1 / 2$ or $1 / 3 \mathrm{cu} . \mathrm{ft}$. for $2-\mathrm{in}$. maximum aggregate, and $1 \mathrm{cu} . \mathrm{ft}$. for $4-\mathrm{in}$. maximum aggregate. Place a representative sample (selected as described for slump test above) in the bucket in 3 equal layers, rodding each layer 25 strokes as described for slump test. Vibrated concrete shall be compacted in the measure by vibration. Strike off surface, taking care that measure is just level full. Weigh to nearest 0.1 lb ., subtract weight of bucket, and compute net weight of concrete in pounds per cubic foot.

Note. It is suggested that the inspector carefully sample about $1 \mathrm{cu} . \mathrm{ft}$. or more of concrete and run slump test, unit weight test, and mold cylinders and beams in one sequence of operations. Complete data will then be obtained.

PuTE I

COPYRIGHT, 1942
american society for testing Materials
1916 Race St., Philadelphia 3, PA.

Fro. 15. Colors of Treated Sands with Suggested Ranges of Application.

Correct
Methoos which place material in the pile in individual units not larger than a truck load and which do not permit the aggregate to run down the slopes at the edge of the pile.

Incorrect
Methods which permit the oggregate to roll down the slopes as it is added to the pile.

STOCKPILING OF SCREENED AGGREGATE (WHEN PERMITTED)
 UNFINISHED OR FINE AGGREGATE STORAGE (DRY MATERIALS)

> Correct
> Full bottom sloping 50° from horizontal in all directions to outlet with corners of bin proper. ly rounded.
 through outlet without shoveling.

Incorrect with any arrangement of slopes having corners or areas such that all material in bins will not flow readily
Flat-bottom bins or those

SLOPE OF AGGREGATE BIN BOTTOMS

Incorrect
Chuting material into bin on an angle. Material falling other than directly over opening not always uniform as discharged.

FILLING OF AGGREGATE BINS

PROVISION FOR CEMENT IN DRY-BATCH COMPARTMENTS

LOADING CEMENT FROM BATCHER

3. 16. Storage and handling of aggregates and cement. From Concrete Manual, U. S. Bureau of Reclamation.

CHECK LIST FOR INSPECTORS

CONCRETE-GENERAL

Inspectors' Equipment

Complete set of plans and specifications and approved set of rein-forced-concrete working drawings.

Supply of required forms, sample tags, bags and boxes for samples. Balance, capacity 2 kg ., sensitive to 0.1 gram.
Set of square-mesh sieves of specified aggregate sizes and cleaning brush.
Fruit jar pycnometer, Chapman flask or hot plate and pan for moisture content of aggregates.

12-oz. graduate bottle and 1 lb . of sodium hydroxide (caustic soda) for colorimetric test.

Pint milk bottle for silt and clay test.
6 in. by 12 in. metal or paraffined cardboard molds for concrete test cylinders and shipping boxes for same.

Slump cone, $5 / 8 \mathrm{in}$. by 24 in . tamping rod, and mason's trowel.
$1 / 3$ or $1 / 2 \mathrm{cu} . \mathrm{ft}$. calibrated bucket and scale for unit weight tests, when specified.

Thermometer similar to Weston All-Metal type, 0 to $180^{\circ} \mathrm{F}$. for coldweather concreting.
$6-\mathrm{ft}$. rule and $50-\mathrm{ft}$. steel tape.
Plumb bob and marking keel.
Field book and pencils for records and diary.

Fig. 17. Cloth tag for attaching to concrete test beams or cylinders.

Procedure in Inspection

Tested and Approved Materials. Cement, aggregates, reinforcing steel, and water tested and source approved before use.

Schedule of required field tests adhered to.
Prompt shipment of samples of materials delivered at site.
Prompt reporting of field tests.
Accurate and complete daily reports and records.
Removal of rejected materials from site of work.
Storage and Handling of Materials. Aggregates stockpiled in 2-ft. to 4 -ft. layers on mats or planking.

Aggregate segregation avoided; see Fig. 16.
Cement protected from moisture and weather.
Cement handled to avoid loss by blowing or leakage, see Fig. 16.
Reinforcing steel protected from rusting, bending, or distortion and kept free from oil or grease.

Batch Plant Inspection

Batching Plant. Inspected and approved before use.
Daily check of weighing scales, accurate to tolerance of 0.004 .
Use ten $50-\mathrm{lb}$. weights, check in $500-\mathrm{lb}$. increments to greatest batch weight or have scales checked and sealed by certified scale master.

Adequate visibility of weighing and batching.
Telltale dial or balance indicator for correct quantities in hoppers.
Positive shut-off for bulk cement.
Prompt removal of excess material in hoppers.
Protection for weighing equipment from dust or damage.
Oscillating beams normally horizontal with equal play.
Beam scale for each aggregate usually required.
Control of Concrete. Determine percentage of surface moisture in aggregates.

Check at least 3 times daily, or more often when slump of concrete or condition of aggregate changes.

Translate the design into batch weights, see p. 34.
Run trial batch to check on slump and unit weight of mixture.
Check on cement factor during operations to detect bulking due to voids, air entrainment, or batching inaccuracies.

Adjust batch weights to produce required cement content per cubic yard and yield of concrete per batch.

Check actual amount of cement used to concrete laid each day as check on dimensions of concrete and accuracy of batching.

Note. The inspector should not vary the mix furnished by the laboratory without authority from the project on resident engineer. *

Transporting Materials. Record of batch weights and number of batches dispatched; check with mixer inspector daily.

Tight truck partitions high enough to prevent intermingling of aggregates and loss of cement. Separate cement partitions, when specified.

Required amount of cement placed in batch partitions.
Covers for batch trucks provided.
Cement carried in sacks if specified.

Field Inspection

Forms. Correct alignment and elevation.
Centering true and rigid with horizontal and diagonal bracing.
Tight enough to prevent mortar leakage.
Columns plumb, true, and cross braced.
Floor and beam centering crowned $1 / 4 \mathrm{in}$. per 16 ft . of span.
Beveled chamfer strips at angles and corners.
Inside of forms oiled or wetted. Oil applied before placing of reinforcing.

Check Installation of bolts, sleeves, inserts, and embedded items against plan details.

Check cleaning and removal of debris through temporary openings.
Check slab depths, beam and column sizes.
Removal of Forms and Shoring. Record of date forms poured and date forms removed.

Forms not removed until concrete is set, should ring under a hammer blow; follow job specifications.

Reshores placed after forms removed.
Forms removed carefully, damage to green concrete avoided.
Inspect surface at once after form removal. Notify superior of serious defects.

Reinforcing Steel. Clean and free of scale, oil, and defects. Can be rubbed down with burlap sacks or wire brushes.

Accurately fabricated to plan dimensions.
Supports rigid, metal preferable; do not allow use of rocks, brickbats, old concrete fragments, etc., to support steel.

Check minimum clear spacing between bars; $11 / 2$ diameters for round bars and 2 times side dimension for square bars.

2 -in. cover for steel in exposed exterior surfaces or as specified or detailed.

Check, from working drawings, the quantity, size, placing, bending, splicing, and location of reinforcing.

Check prebent steel against bending schedule upon delivery.
Mixing Concrete. Mixer in good condition and kept clean of hardened concrete.

Mixer blades not worn, and drum watertight.

Check drum speed, usually 200 to 225 peripheral feet per minute.
Check mixing time frequently; should be 1 to $11 / 2$ minutes minimum.
No retempering of concrete. Mixer completely emptied before starting new batch.

Adherence to specified water content. Amount of mix water based on moisture content of aggregates obtained from batch plant inspector and correct amount added at mixer.

Check consistency; make slump test at least 2 or 3 times daily.
Check for full cement content in each batch if cement is batched at mixer.

Ready-Mixed Concrete, Transit Mixers. Strict adherence to job specifications.

Calibration of water-discharge mechanism plainly marked.
Error in water measurement should not exceed 1%.
Leakage in valves; should be tight when closed.
Drums should be watertight. Check specified revolutions, usually 50 to 150 allowed for mixing.

Number, arrangement, and dimensions of mixer blades checked against manufacturer's statement. Blades not worn more than 15% of stated width.

Main water tank provided against loss by leakage or surging. To discharge full volume for mixing in not more than 5 minutes.

Volume of concrete mixed not more than 58% gross volume of drum. (If concrete is central mixed and only transported in truck mixers, 80% of volume is usually allowed.)

All truck mixers inspected and approved.
Complete removal of wash water or remaining concrete after each mixer discharge.

Wash water transported in auxiliary tank with gage and watertight valve.

Adherence to specified mixing time and any restrictions on mixing en route.

Drum to be revolved during transfer of water into drum.
Adherence to correct amount of water. Inspector should approve adding additional water. If necessary to add water to discharge, dry cement should be added at required W / C ratio.

Concrete containing air-entraining agent not to be mixed en route.
For transit trucks the time of mixing should be from 5 minutes to 15 minutes or more, increasing with the volume of the truck and depending on the condition of the blades and whether or not it is a high dump truck.

Placing of Concrete. Forms inspected and approved before concreting.
Steel reinforcing in place and inspected.
Earth under footings to be undisturbed, original soil.

Rock or ledge should be well cleaned off, washed, and with no dirt or loose rock fragments.
Footings shall be free from standing water.
Avoid segregation, rehandling or flowing.
Place each unit continuously, if possible, till completed.
Spading and vibrating to maximum subsidence without segregation and next to forms and joints.

Reinforcing bars shaken to insure bond with concrete.
Accumulated water removed; concrete not placed therein.
Avoid excessive vibration and manipulation.
In thin high sections avoid having concrete stick and harden on steel and forms above placing level.
Mold required number of test cylinders each day. See p. 11.
See that wood form spreaders are knocked out and not buried as concrete is placed.

Concrete placed as close to final position as possible in continuous horizontal layers.

Concrete not placed in or under water unless as specially specified or directed by engineer.
Construction Joints. Avoid if possible, or place as detailed on plans.
If necessary at end of day's pour, install plumb, at right angles to plane of stress and in area of minimum shear.

Check on placing of dowels, keys, waterstops, and other details as shown on plans.

Floors. Check and remove laitance when concrete reaches required level. If excessive, cut down on mix water or overworking of concrete.

Finish floor as specified.
Pumping and Conveying. Only if approved or specified.
Equipment cleaned before and after pouring.
Continuous flow of concrete; no segregation.
Exposed Surfaces. Retain original surface film and form marks; do not rub.
Fins and projections removed.
Small voids filled with 1:2 mortar.
Construction joints only as detailed on plans.
Metal ties, chairs and spacers covered with $11 / 2 \mathrm{in}$. of concrete.
Curing Concrete. Kept moist for 1 week minimum or sprayed with approved preparation.

Continuous saturation by sprays or wet fabric is preferred to intermittent sprinkling by hand. On vertical surfaces see that wet fabric is kept in contact with concrete.

Prompt application of curing materials as soon as possible after finishing concrete.

Cold-Weather Concreting. Do not heat cement. Aggregates and/or water heated to not over $175^{\circ} \mathrm{F}$. No snow or frozen lumps in aggregate.

Check temperature of concrete as placed, not less than $60^{\circ} \mathrm{F}$. or more than $100^{\circ} \mathrm{F}$. Use immersion thermometer inserted in concrete near forms or surface.
Ice and snow removed from forms, place of deposit and reinforcement before placing concrete.
Frost Protection. Provided by full enclosure of concrete and temperature of not less than $60^{\circ} \mathrm{F}$. maintained for 7 days or as specified. Keep humidity high in enclosure.
Or, by consent of engineer, provided by protecting surface with straw, hay, or fabric for 7 days. In buildings enclose story below and heat to $50^{\circ} \mathrm{F}$. for 7 days.
Temperature protection gradually removed to prevent sudden freezing of concrete.
Accelerating Admixtures (Calcium Chloride). Use only if specified. Tested before use.

Delivered in moisture-proof bags or airtight drums.
Quantity used not over 2 lb . per sack of cement. -
Dissolve 1 lb . per quart of water, and add not more than 2 qt. per sack of cement to mixing water. Subtract amount of solution from normal quantity of mixing water.

Dry calcium chloride not to be added to aggregate in mixer skip or placed in contact with dry cement.

For cold-weather placing and curing, provide same precautions as for plain cement.
High-Early-Strength Cement. Use only if specified. Mixing and placing same as standard cement.

Prompt finishing (delay will ruin finish).
Curing temperature maintained as specified (usually $70^{\circ} \mathrm{F}$. for 2 days or $60^{\circ} \mathrm{F}$. for 3 days).
Load Tests. May be required for faulty workmanship, violation of specification, or concrete suspected of having been frozen.

Notify superiors if necessary.

Pay Items

Accurate record kept of all pay items in contract, such as:
Volume of concrete placed and batches wasted.
Volume of openings or embedded structures if payment for such is not made.

Amount of reinforcing steel in pounds or tons actually placed.
Number and length of extra dowels and dowel holes drilled.
Embedded items or structures.
Any other contract pay items.

CHECK LIST FOR INSPECTORS

CONCRETE-PAVING

Procedure in Inspection

It is assumed that batching has been performed and inspected; see p . 14. For transit-mix concrete, see p. 16.

Field Inspection

Subgrade. Drainage, stability, compaction. Wet down ahead of placing. Moist, not muddy.

Grade and cross section. Full depth of pavement at all points.
Check ordinates to subgrade templates and scratch boards.
Forms. Approved type with true face, top, and base.
Connections rigid and true.
Alignment and grade.
Staked solidly with adequate base support.
Cleaned and oiled each time used.
Reinforcing and Joint Assemblies. Tested and approved reinforcing steel placed to secure final position shown on drawings.

Transverse joint assemblies at correct locations staked solidly. Accurate to line and perpendicular to subgrade. Joint material tight against forms or adjacent joint.
Approved dowels, painted and greased, held rigidly parallel to surface and axis of pavement. Correctly spaced. Approved expansion caps in place.

Correctly aligned longitudinal joints with correctly spaced tie bars held securely in place, normal to joint and parallel to surface.
Mixing and Placing Concrete. Full cement content of batch. Empty bags and count at end of each run to check cement factor. Provide against loss of bulk cement by blowing away.
Approved mixer with accurate timing and bell. Provision to lock discharge lever until mixing time is complete. Mixer drum not loaded more than 10% above rated capacity (29.7 cu . ft. for $27-\mathrm{E}$ paver).*
Full mixing time for each batch after all ingredients are in drum. Check time frequently. Allow 1 minute minimum unless otherwise specified. Check specified revolutions of drum, usually 14 to 20 r.p.m., and peripheral speed.*

[^1]Specified slump concrete, not too harsh or too wet. Concrete workable and plastic consistency. If not specified use following slumps: ordinary batch mixer, $11 / 2$ in. to 3 in .; if vibrated, 1 in . to $11 / 2 \mathrm{in}$.; transit mixers, $21 / 2 \mathrm{in}$. to 3 in . Use stiffest concrete that can be molded into forms and around reinforcing bars.

Thorough compaction of concrete. Spade or vibrate against forms and existing concrete. Do not vibrate or manipulate too much.

Daily check of cement content, yield, water cement ratio, adherence to design mix, aggregates, and cement used. Check of slump and unit weight, several tests daily.

Adequate protection at hand (burlap, cotton mats, tarpaulins, etc.), for sudden rain or drop in temperature. Assembled construction joint ready to install for stoppage over 30 minutes.

Uniform amount of concrete carried ahead of strike-off. Workmen to avoid walking on soft concrete or reinforcement assemblies. Deposit concrete in final position. Do not dump on joint assemblies.
Finishing and Curing. Surface finished at proper time with approved tools and appliances. Systematic checking with tested straightedge.

Ordinates checked to all screeds. For parabolic ordinates, see p. 229.
Overfinishing avoided, may produce scaling. High or low spots corrected.

Good workmanship on tooling of joints and edges; specified edge rounding radius and width of tooling.
Prompt application of approved curing agents. Curing for full period specified.

Care in removing forms and bending tie bars. Do not pry against green concrete.
Ample protection from traffic until cured.
Sealing Joints, Opening to Traffic. Careful cleaning and sealing of joints and cracks.

Final check for surface roughness, high joints, fractured slabs, flush sealing of joints. Correction and repair as directed.

Temporary shoulder for edge protection before traffic is allowed.
Adequate structural strength (usually flexural strength of 500 to 550 p.s.i. before opening). Test beams cured same as slab and broken by cantilever, center or $1 / 3$ point loading. (The latter is recommended.)

Air-Entraining Cement. Check for minimum and maximum air content; see specification. (Usually 3 to 6% of weight of a theoretical air-free mix.) Check with standard unit weight test using $1 / 3$ or $1 / 2 \mathrm{cu}$. ft. calibrated bucket; see p. 12. Excessive loss of weight may be due to following:
Overmixing of concrete. Check ready-mix and transit mix particularly.
High sand-aggregate ratio.
High water-cement ratio.

Air pressure in mixing drum of transit mixers. Leave discharge door partly opened and vent end of drum with four $5 / 8$ in. diameter holes kept open at all times. Report excessive air content to engineer.

Cold-Weather Concrete

Concrete not placed on frozen subgrade.
Aggregate and water heated to produce temperature of concrete, at placing, of $70^{\circ} \mathrm{F}$. minimum and $100^{\circ} \mathrm{F}$. maximum or as specified.

Curing temperature of 50° to $100^{\circ} \mathrm{F}$. maintained for specified period. No admixtures or extra cement used unless specified.

Mix thoroughly by hand or dry mixer I

sock of cement and 21/2 cu. ff. of dry sand. Sand must be dried out before using.

V
Fig. 18. Rules for construction of monolithic floor.

APPROXIMATE DATA ON CONCRETE MIXES

TABLE 1. WATER-CEMENT RATIO (W/C) FOR VARIOUS STRENGTHS

Water Content	W/C Ratio				
Gallons	W / C by Vol.	by	W/C Ratio Strength of Concrete		
per Sack	Cu. Ft.	Absolute	By	at 28 Days	
of Cement	per Sack	Volime	Weight	Compressive	Flexural
5 max.	0.668	1.38	0.444	5000 p.s.i.	750 p.s.i.
6 max.	0.802	1.66	0.533	4000 p.s.i.	600 p.s.i.
7 max.	0.936	1.93	0.621	3200 p.s.i.	500 p.s.i.
8 max.	1.069	2.21	0.710	2500 p.s.i.	450 p.s.i.

Note: Strengths should be determined by trial mixes (when practicable) based on fixed W / C. To allow for field conditions the strength values shown in table should be reduced by about 20%.

TABLE 2. RECOMMENDED CONSISTENCY OR SLUMP OF CONCRETE

	Slump in	
Type of Structure		
Tyax.	Min.	
Reinforced foundation walls and footings	5	2
Plain footings and substructure walls	4	1
Slabs, beams, columns, and reinforced walls	6	3
Pavement and mass concrete	3	1

TABLE 3. EXPOSED CONCRETE-MAXIMUM WATER CONTENT IN GALLONS PER SACK

	Severe and Moderate Climate	Mild Climate
At waterline (intermittent saturation)		
Sea water	$51 / 2$	$51 / 2$
Fresh water	6	6
Not at waterline but frequent wetting		
Sea water	6	$61 / 2$
Fresh water	$61 / 2$	7
Ordinary exposed structures	$61 / 2$	7
Completely submerged	$61 / 2$	$61 / 2$
\quad Sea water	7	7
Fresh water	$51 / 2$	$51 / 2$
Concrete deposited through water		
Pavement slabs on ground	$51 / 2$	6
\quad Wearing slabs	$61 / 2$	7

TABLE 4. RECOMMENDED PER CENT OF SAND TO TOTAL AGGREGATE

Crushed stone, max. $11 / 2$-in. size	38 to 42
Crushed stone, $\max .3 / 4$-in. size	43 to 49
Gravel, max. $11 / 2$-in. size	36 to 40
Gravel, max. $3 / 4$-in. size	39 to 44

Sand-Aggregate Ratio or percentage by weight or volume of sand to total aggregate in mix should be from 33 to 45%, with extreme limits of 28 and 49%. The most economical mix will be that with lowest sand-aggregate ratio producing the desired plasticity, workability, and consistency.

CONCRETE BATCHING

Quantities of Materials by Fuller's Rule

Batching by Volume-Aggregates Measured Damp and Loose.

$$
\text { Cement factor or } C=\frac{42}{1+s+g}
$$

where $C=$ sacks cement per cubic yard of concrete.
$s=$ cubic feet of sand per sack of cement.
$g=$ cubic feet of gravel or stone per sack of cement.
Volume of sand required per cubic yard of concrete, or $S=0.037 C s$
Volume of gravel or stone required per cubic yard of concrete, or $G \quad=0.037 C g$
Quantity of cement required per cubic yard of concrete, in barrels

$$
=\frac{10.5}{1+8+g}
$$

Example. Given: 1:2:4 mix by volume.
Required: C, S, and G.
Solution:

$$
\begin{aligned}
& C=\frac{42}{1+2+4}=\frac{42}{7}=\begin{array}{c}
6 \text { sacks cement required per cubic } \\
\text { yard of concrete }
\end{array} \\
& s=0.037 \times 6 \times 2=\begin{array}{c}
0.44 \text { cu. yd. of sand required per } \\
\text { cubic yard of concrete }
\end{array} \\
& G=0.037 \times 6 \times 4=\begin{array}{c}
0.89 \text { cu. yd. of stone or gravel re- } \\
\text { quired per cubic yard of concrete }
\end{array}
\end{aligned}
$$

Based on Portland Cement Association Test Data. These figures are for moist curing at $70^{\circ} \mathrm{F}$. For data on concrete for lower term-
peratures, see Table 13.

* From Lehigh Portland Cement Company.

QUANTITIES FOR CONCRETE MIXES *

GRAVEL USING NORMAL LEHIGH PORTLAND CEMENT Materials per Cubic Yard
$\overbrace{-}^{\text {By Volume }}$

$\overbrace{}^{\text {By Volume }}$

TABLE 5.
table 6. 1-IN. GRAVEL USiNg Lehigh early-strength portland cement

TABLE 7. 1-IN. STONE USING NORMAL LEHIGH PORTLAND CEMENT

Materials per Cubic Yard										
Sacks Cement per Cu. Yd.	Concrete Con- sistency	W / C Ratio, Gal. per Sack	By Weight			By Volume			Estimated Strength, Lb. per Sq. In.	
					Added Water			Added		
			Lb.	Lb.	Lb.	Cu . Ft.	Cu. Ft	Gal.	7 Days	28 Days
4	Wet	9.75	1760	1610	241	19.8	16.3	28.9	1200	2000
4	Med.	9.00	1800	1640	214	20.2	16.6	25.7	1400	2300
4	Stiff	8.25	1830	1680	188	20.6	16.9	22.6	1700	2700
5	Wet	7.80	1650	1640	246	18.6	16.5	29.5	1900	2800
5	Med.	7.20	1680	1670	220	18.9	16.9	26.4	2200	3200
5	Stiff	6.60	1720	1700	193	19.3	17.2	23.2	2500	3600
6	Wet	6.50	1540	1660	251	17.3	16.8	30.1	2500	3700
6	Med.	6.00	1580	1690	225	17.7	17.1	27.0	2800	4000
6	Stiff	5.50	1610	1730	198	18.1	17.5	23.8	3200	4400
7	Wet	5.57	1440	1680	256	16.2	16.9	30.7	3100	4400
7	Med.	5.14	1470	1710	230	16.6	17.3	27.6	3400	4800
7	Stiff	4.71	1500	1750	203	16.9	17.7	24.4	3700	5200
Based on Portland Cement Association Test Data. These figures are for moist curing at $70^{\circ} \mathrm{F}$. For d peratures, see Tabl* 18.										

TABLE 8. 1-IN. STONE USING LEHIGH EARLY-STRENGTH PORTLAND CEMENT

					terials p	ic Ya					
Sacks		W/C		By Weig			y Volum				
Cement	Concrete	Ratio,			Added					ated Str per Sq.	ngth, n.
Cu. Yd.	sistency	per Sack	Lb.	Stone,	Lb.	$\mathrm{Cu} . \mathrm{Ft}$	Stone, Cu . Ft.	Water, Gal.	1 Day	3 Days	7 Days
4	Wet	9.75	1690	1680	244	19.0	16.9	29.3	500	1300	2000
4	Med.	9.00	1730	1710	218	19.4	17.3	26.2	650	1600	2300
4	Stiff	8.25	1760	1740	191	19.8	17.6	22.9	800	1900	2700
5	Wet	7.80	1580	1700	250	- 17.8	17.2	30.0	1000	2100	2800
5	Med.	7.20	1620	1740	223	18.2	17.5	26.8	1200	2400	3200
5	Stiff	6.60	1650	1770	196	18.5	17.9	23.5	1400	2800	3600
6	Wet	6.50	1480	1720	255	16.6	17.4	30.6	1500	2800	3700
6	Med.	6.00	1510	1760	228	17.0	17.8	27.4	1700	3100	4000
6	Stiff	5.50	1540	1800	202	17.3	18.1	24.2	1900	3400	4400
$\therefore 7$	Wet	5.57	1380	1740	259	15.5	17.6	31.1	1800	3400	4400
7	Med.	5.14	1410	1780	233	15.8	17.9	28.0	2100	3700	4800
7	Stiff	4.71	1440	1810	207	16.1	18.3	24.8	2400	4000	5200
Based on Portland Cement Association Test Data. These figures are for moist curing at $70^{\circ} \mathrm{F}$. For peratures, see Table 18.											

TABLE 9. 2-IN. GRAVEL USING NORMAL LEHIGH PORTLAND CEMENT

concrete for lower tem-

Sacks	Concrete Con-	W/C	Materials per Cubic Yard					
			By Weight			By Volume		
Cement		Ratio,			Added			Added
per		Gal.	Sand,	Gravel,	Water,	Sand,	Gravel,	Water,
$\mathrm{Cu} . \mathrm{Yd}$.	sistency	per Sack	Lb.	Lb.	Lb.	Cu. Ft.	$\mathrm{Cu} . \mathrm{Ft}$.	Gal.
4	Wet	9.00	1410	2010	233	15.8	20.3	28.0
4	Med.	8.25	1440	2050	207	16.1	20.7	24.8
4	Stiff	7.50	1460	2090	180	16.4	21.1	21.6
5	Wet	7.20	1310	2030	238	14.7	20.5	28.6
5	Med.	6.60	1330	2070	211	15.0	20.9	25.3
5	Stiff	6.00	1360	2110	185	15.3	21.3	22.2
6	Wet	6.00	1210	2040	242	13.6	20.6	29.0
6	Med.	5.50	1230	2090	216	13.9	21.1	25.9
6	Stiff	5.00	1260	2130	190	14.1	21.5	22.8
7	Wet	5.14	1110	2060	247	12.5	20.8	29.6
7	Med.	4.71	1140	2100	221	12.8	21.2	26.5
7	Stiff	4.29	1160	2140	195	13.0	21.7	23.4
Based on Portland Cement Association Test Data. These figures are for moist curing at $70^{\circ} \mathrm{F}$. For d peratures, see Table 18.								

TABLE 10. 2-IN. GRAVEL USING LEHIGH EARLY-STRENGTH PORTLAND CEMENT

Materials per Cubic Yard											
Sacks Cement per Cu. Yd.	Concrete Consistency		By Weight			By Volume			Estimated Strength, Lb. per Sq. In.		
					Added Water,			Added Water			
			Lb.	b.	Lb.	Cu. Ft.	Cu . Ft.	Gal.	1 Day	3 Days	7 Days
4	Wet	9.00	1340	2080	236	15.0	21.0	28.3	650	1600	2300
4	Med.	8.25	1360	2120	210	15.3	21.4	25.2	800	1900	2700
4	Stiff	7.50	1390	2160	184	15.6	21.8	22.1	1100	2200	3000
5	Wet	7.20	1240	2100	241	13.9	21.2	28.9	1200	2400	3200
5	Med.	6.60	1260	2140	215	14.2	21.6	25.8	1400	2800	3600
5	Stiff	6.00	1290	2180	189	14.5	22.0	22.7	1700	3100	4000
6	Wet	6.00	1140	2110	246	12.8	21.3	29.5	1700	3100	4000
6	Med.	5.50	1160	2150	220	13.1	21.8	26.4	1900	3400	4400
6	Stiff	5.00	1190	2200	193	13.3	22.2	23.2	2200	3800	4900
7	Wet	5.14	1050	2120	250	11.8	21.4	30.0	2100	3700	4800
7	Med.	4.71	1070	2160	224	12.0	21.8	26.9	2400	4000	5200
7	Stiff	4.29	1090	2210	198	12.3	22.3	23.8	2600	4300	5500
Based peratures	Portland see Table 18.	ement Asso	tion Test	Data. TI	figure	for moi	curing at	${ }^{\circ} \mathrm{F}$.	an	crete for	er tem-

2-IN. STONE USING NORMAL LEHIGH PORTLAND CEMENT

		어N	\&	

Based on Portland Cement Association Test Data. These figures are for moist curing at $70^{\circ} \mathrm{F}$. For data on concrete for lower tem-
peratures, see Tabie 13.

 peratures, see Table 15.

Fig. 20. Age-strength relation for normal and high-early-strength portland cements. The strengths indicated should be obtained on average construction projects where all materials, including the water, are controlled. On important work, tests should be made with the materials to be used on the project to establish job curves and fix design values.

Approximate Quantity of Surface Water Carried by Average Aggregates * \dagger

Very wet sand
Moderately wet sand
Moist sand
Moist gravel or crushed rock

8/4 to 1 gal. per cu. ft. about $1 / 2$ gal. per cu. ft . about $1 / 4$ gal. per cu. ft. about $1 / 4$ gal. per cu. ft.

Approximate Absorption of Aggregates *

Average sand
Pebbles and crushed limestone
Trap rock and granite
Porous sandstone
Very light and porous aggregate may be as high as
1.0 per cent by weight
1.0 per cent by weight
0.5 per cent by weight
7.0 per cent by weight

25 per cent by weight

[^2]
MISCELLANEOUS DATA

table 13. \% OF 70° MOIST-CURED COMPRESSIVE STRENGTH NORMAL PORTLAND CEMENT

Placed	412 Gal. per Sack				6 Gal. per Sack				9 Gal. per Sack			
Cured at	1 d.	3 d.	7 d.	28 d.	1 d.	3 d .	7 d .	28 d.	1 d.	3 d.	7 d.	28 d.
$60^{\circ} \mathrm{F}$.	68\%	78\%	82\%	83\%	65\%	74\%	79\%	82\%	61\%	71%	78\%	78\%
$50^{\circ} \mathrm{F}$.	28\%	50\%	60\%	61%	22\%	43\%	52%	59\%	14%	36\%	51\%	51\%

\% OF 70° MOIST-CURED COMPRESSIVE STRENGTH EARLYStrength portland cement

60° F. $\quad \mathbf{7 2 \%} \quad \mathbf{8 8 \%} \quad 94 \% \quad 94 \% \quad 70 \% \quad \mathbf{7 8 \%} \quad 88 \% \quad 93 \% \quad 70 \% ~ 85 \% ~ 88 \% ~ 94 \%$
50° F. $\quad 38 \% \quad 72 \% \quad 80 \% \quad 88 \% \quad 34 \% \quad 64 \% \quad 75 \% \quad 84 \% \quad 32 \% \quad 66 \% ~ 73 \% ~ 85 \%$
Based on "Temperature Effects on Compressive Strengths of Concrete," Timms and Withey, A. C. I. Journal, Vol. VI, No. \&.

CONCRETE BATCHING COMPUTATIONS

Translating Design Mix into Batch Weights, Example

Given by laboratory:
Design mix by proportional weights (saturated surface dry aggregates):

	Parts by Weight
Cement	1
Sand	1.84
Stone (fine)	2.00
Stone (coarse)	1.80
Water (W / C ratio by weight)	(4.8 gal. per sack)
$\quad \underline{0.426}$	
\quad Mix parts, total	$\underline{7.066}$

Apparent (absolute) specific gravity of sand (without
voids) saturated surface dry
Apparent (absolute) specific gravity of stone (without
voids) saturated surface dry
Apparent (absolute) specific gravity of cement (without voids) saturated surface dry
3.10

Required slump
2 in. to $21 / 2$ in.
Determined by field test:
Surface moisture in sand by weight 4%
Surface moisture in stone by weight 1%

Constants:
Weight of cement per sack 94 lb .
Loose volume of cement per sack
$1 \mathrm{cu} . \mathrm{ft}$.
Weight of water per gallon 8.345 lb .

Volume of water per gallon 7.5 cu . ft.

Weight of water per cubic foot 62.5 lb .

Computation of weight of each material required per sack of cement:

	Pounds	
Cement	1×94	$=94.00$
Sand	1.84×94	$=172.96$
Fine stone	2.00×94	$=188.00$
Coarse stone	1.80×94	$=169.20$
Water	4.8×8.345 or $.426 \times 94$	$=\underline{40.00}$
\quad Total weight of materials per sack of cement		$=\underline{664.16}$

Computation of yield of concrete per sack of cement:
Solid Volume, Cu. Ft.

Assuming that sacked cement is being used, batch weights are computed to utilize an even number of sacks as illustrated for a 6 -sack batch. Note. Volume of concrete is usually not allowed to exceed 10% of rated capacity of mixer, and so a 6 -sack batch in this case is selected for a 27-E paving mixer as theoretical yield for 6 -sack cement $=4.35 \times 6=$ $26.1 \mathrm{cu} . \mathrm{ft}$. of concrete. See Table 14 for batch weights.

TABLE 14. COMPUTATION OF BATCH WEIGHTS FOR A 6-SACK BATCH

$177 \div 8.345=21.2$ gal. of water to be added at mixer Resulting batch weights in last column should be posted at scales.
Adjust to required slump if necessary, but do not increase water/cement ratio.

Check of Cement Factor during Operations, Example. Given:
 Total weight of materials per sack of cement $=664.16 \mathrm{lb}$.
 Actual weight of $1 \mathrm{cu} . \mathrm{ft}$. of concrete by unit weight test of freshly mixed sample $=152.5 \mathrm{lb}$.

Computations:

Weight of 1 -sack batch $\frac{664.16}{152.5}=4.35 \mathrm{cu} . \mathrm{ft}$. yield per sack.
Unit weight of concrete
Actual cement factor $=27 \div 4.35=6.2$ sacks per cu. yd.
As the yield and cement factor check theoretically, no adjustment is necessary. (The air content of freshly mixed concrete made with normal portland cement is usually 0.5 to 1.0% and does not usually affect cement factor or yield enough to warrant adjustment.)

This check with normal portland-cement concrete is made to determine actual yield and cement factor when the cement factor may be running off as determined by the daily check of sacks used.

Actual sacks of cement used each day should be checked against theoretical quantity as follows: The volume of concrete is computed by dimensions. Required quantity of cement in sacks $=$ theoretical cement factor \times cubic yards of concrete. Example. Given: 1000 cu. yd. of concrete and cement factor $=6.2$; cement used should be 6200 sacks. Overrun of $11 / 2 \%$ usually allowed. Underrun usually due to one or more of the following:

1. Concrete laid deficient in width and depth; check and correct.
2. Excess of water or aggregate; check and correct.
3. Errors in batching or proportioning; check and correct.
4. Volume of concrete increased by voids; check and correct.

Air-Entraining Cement

When air-entraining portland cement is used, the volume of concrete is increased by the void content resulting from entrainment of air in the mix. The total yield must be determined in order to check with specification requirements.

It is desirable, and usually required, that the amount of entrained air shall be not less than 3% nor more than 6% by volume. For example, a normal portland cement mix producing a yield of $27.0 \mathrm{cu} . \mathrm{ft}$. and requiring 6.2 bags of cement would, if air-entraining portland cement is supstituted without further changes, increase the yield to approximately $28.1 \mathrm{cu} . \mathrm{ft}$. if 4% air is entrained, in which case the cement factor would be reduced to 5.95 bags per cu. yd.

Specifications generally require that the same cement factor (yield of concrete) be maintained as for normal cement use. It is therefore necessary that other ingredients, usually sand and water, be reduced by such
amount that the same yield is secured. Other reasons for such adjustment are to maintain proper consistency, workability and freedom from excess mortar not required.

The amount of air-entrainment may be determined by comparing the actual weight of the fresh concrete with its air-free weight. Then the percentage of air (gravimetric method) is:

$$
\left(\frac{\text { Diff. in wt. }}{\text { Air-free wt. }}\right) 100=\% \text { air }
$$

If, in the above case, the actual unit weight in field is 144.0 and the airfree weight is 150.0 lb ., then the percentage of air by above formula is:

$$
\frac{(150-144)}{150} 100=4 \%
$$

In order to maintain correct yield the total batch weight for use with air-entraining portland cement is adjusted for trial purposes as follows:

Reduce sand by an amount equal to 3% of the total weight of all aggregates.

Reduce water by $1 / 4 \mathrm{gal}$. per bag of cement.
Measure unit weight of fresh concrete and divide into total batch weight for determining yield, air-entrainment, and cement factor.

The air-entrainment should be within the range of 3 to 6% in order to secure best results. Make any further adjustment necessary in water and sand and also in coarse aggregate, if desirable, to keep entrained air within this range and maintain desired cement factor.

Use following computation (from batch given above):

Cement		Absolute Volume, Cu. Ft.
	94	0.49
	3.10×62.5	0.49
Sand	$\underline{172.96-.03(530.16)}$	0.957
	2.63×62.5	
Fine stone	188	1.14
	2.63×62.5	
Coarse stone	169.2	1.03
	2.63×62.5	
Water	40-2.09	
Water	62.5	0.606
Air (if adjustments in aggregate and water are correct)	\because	
	- $\quad \therefore$	0.127
Yield		4.35

Batch weight, 1 sack $\frac{646.17}{148.6^{*}}=4.35 \mathrm{cu} . \mathrm{ft}$. yield per bag of cement.
Unit weight by test
Cement factor $=27 \div 4.35=6.2$ bags per cu. yd.
Sand-aggregate ratio $100(0.957) \div(3.127)=30.6 \%$.

CONCRETE REINFORCEMENT

TABLE 15. STANDARD STYLES OF AMERICAN ELECTRICALLY WELDED MESH

| Spacing of Wires | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| in Inches |
 Wire Co. Gage No. | | Sect. Area per Foot
 of Fabric |
| Long. | Trans. In.) | | |

See pp. 58 and 59 for gage data.

* This is an assumed unit weight for purpose of this example. Actually, the unit weight may be higher or lower than this, in which event further adjustments of water or sand or also coarse aggregate must be made in order to maintain the desired cement factor and at the same time secure the necessary weight loss to insure proper air-entrainment.

TABLE 16. PROPERTIES OF REINFORCING BARS AND HOOK DIMENSIONS

Method of hooking bars as recommended by A.C.I.

Size	Area	Perimeter	Wt. per Lin. Fr.	P	H	X	A
$1 / 4^{\prime \prime} \phi$	0.05	0.79	0.167	11/4"	13/4'	$7 / 8$ "	$33 / 8{ }^{\prime \prime}$
$3 / 8{ }^{\prime \prime} \phi$	0.11	1.18	0.376	17/8"	25/8"	$13 / 8{ }^{\prime \prime}$	5 "
$1 / 2^{\prime \prime} \phi$	0.20	1.57	0.668	21/2"	$31 / 2^{\prime \prime}$	$13 / 4{ }^{\prime \prime}$	63/4"
$12^{\prime \prime} \square$	0.25	2.00	0.850	$21 / 2^{\prime \prime}$	$31 / 2$ "	$13 / 4$ "	$63 / 4$ "
5/8' ϕ	0.31	1.96	1.043	31/8"	$43 / 8$ "	21/8"	$83 / 8 \prime$
$34^{\prime \prime}$ ¢	0.44	2.36	1.502	33/4"	51/4"	$25 / 8 \prime$	$10^{\prime \prime}$
$78^{\prime \prime}$ ¢	0.60	2.75	2.044	$43 / 8^{\prime \prime}$	61/8"	$3^{\prime \prime}$	113/4"
$1^{\prime \prime} \phi$	0.79	3.14	2.670	5"	$7{ }^{\prime \prime}$	$31 / 2^{\prime \prime}$	$1^{\prime} 13 / 8 \prime$
$1^{\prime \prime} \square$	1.00	4.00	3.400	5"	7"	$31 / 2^{\prime \prime}$	$1^{\prime} 13 / 8 \prime$
$11 / 8^{\prime \prime} \square$	1.27	4.50	4.303	55/8"	77/8"	$37 / 8$ "	$1^{\prime} 31 / 8^{\prime \prime}$,
$114^{\prime \prime} \square$	1.56	5.00	5.313	61/4"	$83 / 4{ }^{\prime \prime}$	$43 / 8{ }^{\prime \prime}$	$1^{\prime} 43 / 4{ }^{\prime \prime}$

TABLE 17. MINIMUM BEAM WIDTHS IN INCHES *

No. of Bars in Single Layer of Reinforcement Add for

Size								Each Additional Bar
of Bar	2	3	4	5	6	7	8	
$1 / 2^{\prime \prime}$ ¢	$6^{\prime \prime}$	71/2"	$9{ }^{\prime \prime}$					11/2"
$1 / 2^{\prime \prime} \square$	61/2"	$8^{\prime \prime}$	$10^{\prime \prime}$					$13 / 4{ }^{\prime \prime}$
$5 / 8{ }^{\prime \prime} \phi$	6 "	$8^{\prime \prime}$	91/2"	11"	121/2"			$15 /{ }^{\prime \prime}$
$34^{\prime \prime} \phi$	61/2"	$81 / 2^{\prime \prime}$	101/2"	$12^{\prime \prime}$	$14^{\prime \prime}$			$17 / 8^{\prime \prime}$
$7 / 8^{\prime \prime} \phi$	7"	9 '	111/2"	131/2"	$16^{\prime \prime}$	$18^{\prime \prime}$	20"	23/16"
$1^{\prime \prime} \phi$	71/2"	$10^{\prime \prime}$	121/2"	15"	171/2"	$20^{\prime \prime}$	221/2"	21/2"
1" \square	$8^{\prime \prime}$	$11^{\prime \prime}$	$14^{\prime \prime}$	$17^{\prime \prime}$	$20^{\prime \prime}$	$23^{\prime \prime}$	$26^{\prime \prime}$	3 "
$11 / 8^{\prime \prime} \square$	81/2"	$12^{\prime \prime}$	$15^{\prime \prime}$	181/2"	$22^{\prime \prime}$	251/2"	281/2"	33/8"
$11 / 4{ }^{\prime \prime} \square$	$9^{\prime \prime}$	121/2"	161/2"	20"	$24^{\prime \prime}$	$27^{\prime \prime}$	3112"	33/4"

[^3]TABLE 18．AREA OF STEEL PER FOOT OF WIDTH

	Spacing of Bars																
Size	$4^{\prime \prime}$	41／2＂	$5^{\prime \prime}$	51／2＂	$6^{\prime \prime}$	61／2＂	7＇	71／2＇	$8^{\prime \prime}$	81／2＇	$9^{\prime \prime}$	91／2＂	$10^{\prime \prime}$	101／2＂	$11^{\prime \prime}$	111／2＇1	12＇
$1 / 4^{\prime \prime}$ ¢	0.15	0.13	0.12	0.11	0.10	0.09	0.08	0.08	0.07	0.07	0.07	0.06	0.06	0.06	0.05	0.05	0.05
$3 / 8^{\prime \prime} \phi$	0.33	0.29	0.26	0.24	0.22	0.20	0.19	0.18	0.17	0.16	0.15	0.14	0.13	0.13	0.12	0.11	0.11
$1 / 2^{\prime \prime}$ ¢	0.59	0.52	0.47	0.43	0.39	0.36	0.34	0.31	0.29	0.28	0.26	0.25	0.23	0.22	0.21	0.20	0.20
$1 / 2^{\prime \prime} \square$	0.75	0.67	0.60	0.55	0.50	0.46	0.43	0.40	0.37	0.35	0.33	0.32	0.30	0.29	0.27	0.26	0.25
5／8＇${ }^{\prime \prime}$ ¢	0.92	0.82	0.74	0.67	0.61	0.57	0.53	0.49	0.46	0.43	0.41	0.39	0.37	0.35	0.33	0.32	0.31
$34^{\prime \prime}$＇ 的	1.33	1.18	1.06	0.96	0.88	0.82	0.76	0.71	0.66	0.62	0.59	0.56	0.53	0.51	0.48	． 0.46	0.44
$7 / 8^{\prime \prime}$ ¢	1.80	1.60	1.44	1.31	1.20	1.11	1.03	0.96	0.90	0.85	0.80	0.76	0.72	0.69	0.66	0.62	0.60
$1{ }^{\prime \prime} \phi$	2.36	2.09	1.88	1.71	1.57	1.45	1.35	1.26	1.18	1.11	1.05	0.99	0.94	0.90	0.86	0.82	0.78
1＇口	3.00	2.67	2.40	2.18	2.00	1.85	1.71	1.60	1.50	1.41	1.33	1.26	1.20	1.14	1.09	1.04	1.00
11／8＂口	3.80	3.37	3.04	2.76	2.53	2.34	2.17	2.02	1.90	1.79	1.69	1.60	1.52	1.45	1.38	1.32	1.27
11／4＂口	4.69	4.17	3.75	3.41	3.13	2.89	2.68	2.50	2.34	2.21	2.08	1.97	1.87	1.79	1.70	1.63	1.56

LOAD TESTS

Permanent measurable deflections are a sign of weakness.

Fig. 21. Standard deflection magnifier for load tests.

Note. When the expense of safety shoring is too great, men conducting a load test may be protected by using a roller as a test load, the roller being towed from some safe distance. Level shots to measure deflection can be taken.

Engineer

REPORT ON CONCRETE STRUCTURES

Field Inspection
(Short Form)

Report No. \qquad -

Date \qquad
Job
Temp. \qquad
Reported to \qquad

Work Inspected

Footings	Location or Station	Reinforcement and Forms	Concrete
Columns	-		
Beams			
Slabs			
Walls			

Aggregate inspected \qquad
Slump tests made \qquad
Test cylinders made
Frost protection checked

Engineer

REPORT ON CONCRETE STRUCTURES

Field Inspection
(Long Form)

Report No.	Date __
Job __	Temp.

Reported to \qquad

Work Inspected

	Location or Station	Reinforcement and Forms	Concrete	Yardage Footings	
Columns			Total to date incl.		
Beams					
Slabs					
Walls					

Cement: tested and sealed
Coarse aggregate: size, appearance, cleanliness, soundness \qquad
Fine aggregate: grading, silt content by bottle sediment test \qquad
Forms: dimensions, oil, cleanliness, tightness \qquad
Reinforcement: inserts, recesses, concrete coverage for protection \qquad
Slump tests: cylinders and/or test beams \qquad
Construction joints \qquad
Mixing: proportioning, water content, time of mixing
Concrete placing, vibration or rodding \qquad
Finishing
Protection vs. frost \qquad
Curing
Form stripping and reshoring

Engineer

REPORT ON CONCRETE TEST SPECIMENS*

Remarke:

* From War Department Corps of Engineers, North Atlantic Division.

Engineer

REPORT ON CONCRETE TEST BEAMS

	Date Cast	Location	Date Shipped	Flexural Strength		Remarks		
				7-day	28-day	Slump	Density	Percentage of Air Voids
						.		

Engineer

REPORT ON CEMENT ANALYSES *
Date \qquad

Project \qquad
Mill \qquad ,

Specific Surface	Time of Set		Soundness	Tensile Strength 1-3				Igni- tion Loss	Insol- uble Resi- due	Mag-nesia	Sul- furic Anhy- dride
	Initial	Final		1	3	7	28				

Reported to:

The above tests $\begin{aligned} & \text { do } \\ & \text { do not }\end{aligned}$ fulfill A.S.T.M. Spec. \qquad Type \qquad

* Adapted from Haller Engineering Associátes, Inc.

Engineer
CEMENT SHIPPING REPORT *

Gentlemen:
Shipments of portland cement indicated have been mill inspected and sealed for your account.

Car Number	Seal	Contents Bbl.	Bin	Brand

Reported to:

Inspector

* Adapted from Haller Ẹngineering Associates, Inc.

MASONRY

CHECK LIST FOR INSPECTORS

MASONRY

Inspectors' Equipment

Complete set of plans, specifications, approved samples and shop drawings.

Set of sieves of specified sand sizes.
Plumb bob and line.
6 -foot rule.

Procedure in Inspection

Prepare and ship samples of brick, concrete block, clay tile, sand lime bricks, cement, and sand lime to laboratory for test.

Perform sieve tests on sand for mortar at site.
Inspect brick. Discard underburned brick (sometimes called salmon brick), which is pale in color if a red brick. Compare brick with specifications. Face brick can best be checked from approved sample.

See that joints are according to specification.
If the engineer has built up a sample of wall, see that this is followed.
Check thickness of joints, type of pointing, and mortar against specifications.

Check lime against lime memorandum on pp. 49 and 50, particularly as to length of time after slaking.

Do not permit laying of brick in weather cold enough to freeze mortar. See specifications.

Check bonding of brickwork.
In warm weather, dry brick to be wetted.
All beds and vertical joints to be full without voids.
No voids permitted in interior of wall.
Check wall for plumbness and level courses.
All flashings, weep holes, and sills built in as required by plans and specifications.

Lift brick up that are laid. There should be sufficient suction to lift mortar with them.

LIME FOR MORTAR AND MASONRY

Lime is produced in two forms as follows:

1. High-calcium quicklime, which is sent to the job in powdered form of two different kinds: pulverized or granular, labeled as quicklime. One has no particular advantage over the other.

This lime is slaked by adding water similar to the method of preparing lump lime, and must be allowed to age 3 to 7 days.

One ton of quicklime will produce approximately $80 \mathrm{cu} . \mathrm{ft}$. of stiff lime putty.
2. Hydrated lime, which is lime containing water in chemical combination. It is a calcium hydroxide and comes on the job labeled hydrated masons' lime. This lime also comes in two different kinds: (a) Ordinary hydrated lime. This product should be soaked in water for not less than 24 hours before using. (b) Pressure hydrated lime. This lime can safely be put in the mixer without any treatment whatever. It is used exactly the same as cement.

IDENTIFICATION OF BUILDING STONE

Granite is a coarse-grained, hard, igneous rock in which the different minerals give a speckled appearance.

True granite contains the following elements:
Quartz-a clear, hard crystal.
Feldspar, which looks like a yellowish tooth.
Hornblende-hard, black, shiny.
Mica-thin, flaky, transparent.
Pyrite, which looks like a yellowish metal.
Bastard granite contains some but not all of these crystals.
Both granites are excellent building materials although too much pyrite might cause stain and a possible breaking down of the stone by weathering.

Gneiss may be either sedimentary or igneous rock which has been metamorphosed, that is, compressed and worked under sufficient pressure and heat so that the structural changes were by plastic flow rather than by cracking.

In gneiss, the interlocking minerals are for the most part visible to the naked eye. The gneisses are banded. Gneiss is a satisfactory building material.

Gneisses merge into schists as the texture becomes finer.
Schists with a large percentage of mica are known as mica schists. As a building material they are subject to cleavage.

Trap rock is heavy, dark, and igneous. The origin of its name is steps as it tends to break into steplike blocks. Trap rock is an excellent building material.

Basalt is a dark igneous rock ranging from dark gray to black. Its texture is very fine. Basalt is an excellent building material.

Marble is a metamorphosed limestone and in its broken state shows shiny, smooth, crystalline surfaces. It is vulnerable to dissolving in certain atmospheres or water. Its hardness is medium. Marble may be made from either calcitic or dolomitic limestone. The dolomitic limestone does not effervesce with dilute acid. Marble has excellent durability and workability for buildings.

Fig. 21b.
Limestone is calcium carbonate rock of sedimentary origin. It is somewhat vulnerable and may be distinguished from magnesium carbonate limestone by the fact that it effervesces under a dilute solution of acid, which is not the case with the dolomite. Individual grains cannot be distinguished. Limestone is soft, easily worked, and a reasonably good building stone but vulnerable.

Sandstone, as its name implics, is made up of sand cemented with silica or lime. In general, the grains are distinguishable. Its reliability as a building material can be ascertained only after investigation; for instance, brownstone is a sandstone which has not always proved reliable.

Slates are metamorphosed shale and have cleavage planes along which the stone is split for commercial purposes. These cleavage planes occur at an angle to the bed planes. Slates are a satisfactory building material, particularly for roofs.

Shale comes from silt and clay and occurs in beds which tend to "shale" off. It is softer than limestone and unreliable as a building material.

Caution: Sedimentary stone should be laid on natural beds.
Definition: Porphyritic texture means a texture in which the larger minerals appear to be embedded in a matrix.

STRUCTURAL STEEL

CHECK LIST FOR INSPECTORS

STRUCTURAL STEEL

The following is based on the assumption that steel has been inspected in shop. If this has not been done, steel should be completely checked against shop details and for correct sections.

Inspectors' Equipment

Complete set of erection plans and specifications.
Details should not be necessary unless shop inspection was not made or unless necessary to show special field connections.

Steel tape.
6-ft. rule.
Plumb bob.
Rivet-testing hammer.
Steel handbook.
Necessary coveralls, helmet, gloves, etc.
Calipers, gages, etc.

Procedure in Inspection

Members should be checked for damage in shipment, such as bent plates, connection angles or members themselves, and condition of paint. This checking should be done before erection so that damaged pieces may be rejected or rectified by straightening or reinforcing.

Anchor bolts should be checked as to size, location, elevation, and plumbing.

Base plates and grillages should be checked for correct work, level, and proper grouting. In general, they should be leveled up so as to carry load direct to foundations or walls.

Columns resting on base plates, grillages, or girders and column splices should be checked for proper bearing of milled surfaces. Where column sections change in nominal section and milled fillers are used, they should be carefully inspected.

Minor corrections may be made with steel shims.
Plumbing of columns should be checked to specified tolerance before any riveting or permanent bolting of floors is done.

As erection proceeds, inspector should match pieces against erection plans to see that proper piece is in correct position. Usually material is properly marked, but where there is any doubt, section of member should be checked.

The inspector should make sure that rivets or turned bolts are used where called for on erection plans or specifications. If there is any question
as to what connection is to be used, inspector should check with engineer's office.

Rivets should be checked for size and tightness. The alignment of holes should be checked before driving. Where they are not true, holes should be reamed and larger rivets driven. If rivet is tight and has full head, it should be passed.

In no case should the following be allowed:
Burning of holes with torch.
Gouging of holes with drift pins.
Tightening of rivet by calking of head.
Rivets should be tested with small hammer. Strike rivet head with several good blows of hammer to see if it can be "floated" or moved up and down. Defective rivets should be marked with chalk. When a loose rivet is removed, it may loosen adjoining rivets. In small groups, it may be necessary to remove all the rivets in group. However, as a rivet shrinks in cooling, a slight vibration is not cause for condemning a rivet. Sufficient temporary bolts should be used to hold pieces tight together while riveting.

Bolted connections should be reasonably tight but should not be turned up so as to strip thread. Where washer, lock washer, lock nuts, etc., are called for, they should be checked.

Beams on walls should be checked for proper wall bearing and anchorage.

Inspector should cooperate with the erector in safeguarding structure from accidents during erection. He should see that derrick base is secured from horizontal thrust of boom in any direction. Steel carrying derricks should be strong enough and have sufficient connections for erection stresses involved. The erectors should be warned against such dangerous practices as lifting too heavy a load for the strength of counter ties of derrick, booming out too far and splicing of boom. Guying and bracing of steel in process of erection against wind pressure are important. Shrinkage of a wet rope should be allowed for.

Painting should be done according to specifications. Where shop paint has been removed during shipment, repainting should be done before erection. Field paint should be of different color from shop paint. All stee] should be free from rust and scale and should be dry. Painting should not be permitted in freezing weather.

Inspector should be familiar with design of building if possible. In any event, he should confer with the engineer to see whether there are any special connections which should be watched If, in the opinion of inspector, any part of the structure does not appear structurally sound, he should notify engineer.
TABLE 19. STRUCTURAL STEEL SECTIONS

Amer. Std. Channel Sect.																								
D	Wt	s	t	${ }^{\text {d }}$	b	D	Wt	s	t	${ }^{\text {d }}$	b	D	Wt	s	t	d	b	D	wt	s	t	d	b	
${ }_{[}^{18}$	58	74.5	. 70	18	414		$\begin{aligned} & 30 \\ & 25 \\ & 20.7 \end{aligned}$	$\begin{aligned} & 26.9 \\ & 23.9 \\ & 21.4 \end{aligned}$	$\begin{aligned} & .51 \\ & .39 \\ & .28 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathbf{3} 1 / 8 \\ & \mathbf{3} \\ & \mathbf{3} \end{aligned}$	$\begin{aligned} & 9 \\ & {[} \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 13.4 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 11.3 \\ & 10.5 \end{aligned}$	$\begin{aligned} & .45 \\ & .28 \\ & .23 \end{aligned}$	999	$\begin{aligned} & 256 \\ & 216 \end{aligned}$	${ }_{[}^{6}$	13.010.58.2	5.85.0	. 41	${ }_{6}^{6}$	${ }_{2}^{238}$	
	51.9	69.1	. 60	18	41/8																			
	45.8	63.7	. 50	18	4															4.3	. 20	6	178	
	42.7	61.0	. 45	18	4																			
15 50 150 1 30.9		53.6	. 72	15					$1 .$			${ }^{8}$	$\begin{aligned} & 18.75 \\ & 13.75 \end{aligned}$$11.5$					5	9.0 6.7	3.5	. 32	5	178	
		53.646.2												10.99.08.1	$\begin{array}{r} .49 \\ .30 \\ .22 \end{array}$	8 8 8	$\begin{aligned} & 21 / 2,6 \\ & 23 / 8 \\ & 214 \end{aligned}$	${ }_{[}^{4}$	6.77.255.4	$\begin{aligned} & 2.3 \\ & 1.9 \end{aligned}$	$\begin{aligned} & .32 \\ & .18 \end{aligned}$	$5{ }^{5}$		
		. 40	15	31/2		30	20.6	. 67	10	3	4											$13 / 4$134158		
	50		48.1	. 79	13	438	10	25	18.1	. 53	10	278												4
		$\begin{aligned} & 41.7 \\ & 38.6 \\ & 36.5 \end{aligned}$				[20	15.7	. 38	10	234		14.75	7.7	. 42	7	234							
1	$\begin{aligned} & 40 \\ & 35 \\ & 31.8 \end{aligned}$		$\begin{aligned} & .56 \\ & .45 \\ & .38 \end{aligned}$	131313	$\begin{aligned} & 438 \\ & 4388 \\ & 4 \end{aligned}$		15.3	13.4	. 24	10	258	[$\mathbf{9 . 8}$	$\begin{aligned} & 6.9 \\ & 6.9 \end{aligned}$. 31	7	234	3	6.05.04.1	1.41.21.1	$\begin{array}{r} .36 \\ .26 \\ .17 \\ \hline \end{array}$	3 158 3 138 3 138		

Amer. Std. Beam Sect.																							
D	Wt	s	t	d	b	D	Wt	s	t	${ }^{\text {a }}$	b	D	Wt	s	t	${ }_{\text {d }}$	b	D	Wt	S	t	d	b
$\begin{gathered} 24 \\ \mathbf{I} \end{gathered}$	120	250.9	. 80	24	8	18	70	101.9	. 71	18	634	10	35	29.2	. 59	10	5	5	14.75	6.0	. 49	5	$31 / 4$
	105.9	234.3	. 62	24	77/8	I	54.7	88.4	. 46	18	6	1	25.4	24.4	. 31	10	45\%	1	10.0	4.8	. 21	5	3
	100	197.6	. 75	24	734																		
	90	185.8	. 62	24	738							8	23.0	16.0	. 44	8	41/8						
	79.9	173.9	. 50	24	7	15	s^{50}	${ }_{54}^{64.2}$. 51	15	5568	1	18.4	14.2	. 27	8	4						
						1	42.9	58.9	. 41	15	532							4	9.5	3.3	.33	4	234
20	95	160.0	. 80	20	73/4		50	50.3	. 69	12	51/2	I	20.0 15.3	12.0 10.4	. 45	7	37\% 3	1	7.7	3.0	. 19	4	25/8
	85	150.2	. 65	20	7	12	40.8	44.8	. 46	12	534												
	75	126.3	. 64	20	638	1	35	37.8	. 43	12	51/8	6	17.25	8.7	. 47	6	358	3	7.5	1.9	. 35		23/2
	65.4	116.9	. 50	20	64		31.8	36.0	. 35	12	5	I	12.5	7.3	. 23	6	33,6	I	5.7	1.7	. 17	3	23/8

$\begin{aligned} d & =\text { actual depth in inches. } \\ b & =\text { flange width in inches. }\end{aligned}$
TABLE 19. STRUCTURAL STEEL SECTIONS (Continued)

	4 H
－${ }_{0}$	4 －
¢ ¢	N゙ $\mathscr{N}_{\text {N }}$
	～
No	セ ¢ ¢
－0 5	サー＊
 엉응ㅇㅇㅇㅇㅇㅇ	
O3	은
	品
	历心
※゙少	－
ヨヨコ一 $-\infty \infty$ N	－ivinconcixic
	\％8\％
$0{ }_{-1}^{3}$	盛
	会気会会会
	N8859\％
のनलNOの 웅	
－83	cy

TABLE 20. WIRE AND SHEET METAL GAGES IN DECIMALS OF AN INCH*

Name of Gage	United Standard	States Gage \dagger	American Steel \& Wire Co., \ddagger and John A. Roebling Sons Co.	American or Brown \& Sharpe Wire Gage	New Birmingham Standard Sheet and Hoop Gage	British Imperial or English Legal Standard Wire Gage	Birmingham or Stubs Iron Wire Gage	$\begin{aligned} & \text { Name } \\ & \text { of } \\ & \text { Gage } \end{aligned}$
Principal Use	Uncoat sheets light	d steel and lates	Steel wire except music wire	Nonferrous sheets and wire	Iron and steel sheets and hoops	Wire	Strips, bands, hoops, and wire	Principal Use
Gage No.	Weight, lb. per sq. ft.	Approx. Thickness, inches			ckness, inch			Gage No.
7/0's	20.00	0.4902	0.4900		0.6666	0.500		7/0's
6/0's	18.75	. 4596	. 4615	0.5800	. 625	. 464		6/0's
5/0's	17.50	. 4289	. 4305	. 5165	. 5883	. 432	0.500	5/0's
4/0's	16.25	. 3983	. 3938	. 4600	. 5416	. 400	. 454	4/0's
3/0's	15.00	. 3676	. 3625	. 4096	. 500	. 372	. 425	3/0's
2/0's	13.75	. 3370	. 3310	. 3648	. 4452	. 348	. 380	2/0's
0	12.50	. 3064	. 3065	. 3249	. 3964	. 324	. 340	0
1	11.25	. 2757	. 2830	. 2893	. 3532	. 300	. 300	1
2	10.625	. 2604	. 2625	. 2576	. 3147	. 276	. 284	2
3	10.00	. 2451	. 2437	. 2294	. 2804	. 252	. 259	3
4	9.375	. 2298	. 2253	. 2043	. 250	. 232	. 238	4
5	8.75	. 2145	. 2070	. 1819	. 2225	. 212	. 220	5
6	8.125	. 1991	. 1920	. 1620	. 1981	. 192	. 203	6
7	7.50	. 1838	. 1770	. 1443	. 1764	. 176	. 180	7
8	6.875	. 1685	. 1620	. 1285	. 1570	. 160	. 165	8
9	6.25	. 1532	. 1483	. 1144	. 1398	. 144	. 148	9
10	5.625	. 1379	. 1350	. 1019	. 1250	. 128	. 134	10
11	5.00	. 1225	. 1205	. 0907	. 1113	. 116	. 120	11
. 12	4.375	. 1072	. 1055	. 0808	. 0991	. 104	. 109	12
13	3.75	. 0919	. 0915	,0720	. 0882	. 092	. 095	13
14	3.125	. 0766	. 0800	. 0841	. 0788	. 080	. 083	14
15	2.8125	. 0889	. 0720	. 0571	. 0699	, . 072	. 072	15
16	2.50	. 0813	. 0625	. 0508	. 0625	$\because .064$. 065	16
17	2.25	. 0551	. 0540	. 0453	. 0556	.068	. 058	17
18	2.00	. 0490	. 0475	. . 0403	. 0485	4 T .048	. 049	18
19	1.75	. 0429	. 0410	. 0389	. 0440	- .040	. 042	19
20	1.50	. 0368	, 0348	. 0320	. 0392	${ }^{4} .086$. 085	20

TABLE 20. WIRE AND SHEET METAL GAGES IN DECIMALS OF AN INCH (Continued) *

Name of Gage	Unite Standar	States Gage \dagger	American Steel \& Wire Co., \ddagger and John A. Roebling Sons Co.	American or Brown \& Sharpe Wire Gage	New Birmingham Standard Sheet and Hoop Gage	British Imperial or English Legal Standard Wire Gage	Birming- ham or Stubs Iron Wire Gage	$\begin{array}{\|c} \text { Name } \\ \text { of } \\ \text { Gage } \end{array}$
Principal Use	Uncoat sheet light	d steel and plates	Steel wire except music wire	Nonferrous sheets and wire	Iron and steel sheets and hoops	Wire	Strips, bands, hoops, and wire	Principal Use
Gage No.	Weight, lb. per sq. ft .	Approx. Thickness, inches			kness, inch			Gage No.
21	1.375	. 0337	. 0318	. 0285	. 0349	. 032	. 032	21
22	1.25	. 0306	. 0286	. 0253	. 0313	. 028	. 028	22
23	1.125	. 0276	. 0258	. 0226	. 0278	. 024	. 025	23
24	1.00	. 0245	. 0230	. 0201	. 0248	. 022	. 022	24
25	. 875	. 0214	. 0204	. 0179	. 0220	. 020	. 020	25
26	. 75	. 0184	. 0181	. 0159	. 0196	. 018	. 018	26
27	. 6875	. 0169	. 0173	. 0142	. 0175	. 0164	. 016	27
28	. 625	. 0153	. 0162	. 0126	. 0156	. 0148	. 014	28
29	. 5625	. 0138	. 0150	. 0113	. 0139	. 0136	. 013	29
30	. 50	. 0123	. 0140	. 0100	. 0123	. 0124	. 012	30
31	. 4375	. 0107	. 0132	. 0089	. 0110	. 0116	. 010	31
32	. 4062	. 0100	. 0128	. 0080	. 0098	. 0108	. 009	32
33	. 375	. 0092	. 0118	. 0071	. 0087	. 0100	. 008	33
34	. 3438	. 0084	. 0104	. 0063	. 0077	. 0092	. 007	34
35	. 3125	. 0077	. 0095	. 0056	. 0069	. 0084	. 005	35
36	. 2812	. 0069	. 0090	. 0050	. 0061	. 0076	. 004	36
37	. 2656	. 0065	. 0085	. 0045	. 0054	. 0068		37
38	. 25	. 0061	. 0080	. 0040	. 0048	. 0060		38
39	. 2344	. 0057	. 0075	. 0035	. 0043	. 0052		39
40	. 2188	. 0054	. 0070	. 0031	. 0039	. 0048		40

* From American Institute of Steel Construction.
\dagger U.S. Standard Gage is officially a weight gage (in ounces per square foot) based oy wrought iron at 480 lb . per cu. ft . The values tabulated above give the thickness of steel (at 489.6 lb . per cu. ft .) that will approximate the respective weights. The other gages are offcially thickneess gages.
Platen, over 6 in . to 48 in . wide, 34 in . and thicker; over 48 in . wide, 316 in, and thicker.
Sheets, 24 in. to 48 in. wide, under 34 in. thick; over 48 in. wide, under 340 in. thiok.
Strip, 231910 in, and narrower, undor 36 in. thick.
\$ Formerly Washburn \& Moen.

Engineer

REPORT ON STRUCTURAL STEEL-RIVETED OR BOLTED FIELD INSPECTION

Report No.
\qquad Date \qquad
Reported to \qquad Temp. \qquad

	Erected during this period	Erected to date	Plumbed	Riveted	Accepted
Columns					
Beams					

Worked from approved erection plans and specifications \qquad
The fact that shop inspection has been made has been verified \qquad
All steel accepted has been inspected and approved as follows with special attention to the following:

All members have been checked against plans for piece mark and location -

Column bases, leveled and grouted \qquad
Columns plumbed \qquad
Riveting where called for on plans \qquad Quality \qquad
Bolting quality \qquad

- Painting \qquad
Every column splice has been inspected for true bearing
* Ends of beams on seat connections are within 11/6 in. maximum of face of supporting members
Remarks (rejections, corrections, etc.) \qquad
\qquad

Engineer

REPORT ON STRUCTURAL STEEL-RIVETED OR BOLTED

Shop Inspection, Part I

Report No. \qquad
Job \qquad Date \qquad
Reported to \qquad Where Inspected \qquad
Approved drawings used for inspection, shop drawings, erection plan, joint details

Steel inspected for:
Surface defects, folds, twists, straightness \qquad
All sections called for on plans
Connections agree with details and for correct location
All members requiring bearing ends have full square-milled bearing \qquad
Stiffeners are full in contact at both ends for plate girders and at the ends shown in contact for seats and rolled sections

All skewed connecting angles and plates have been bent hot \qquad
Rivets are tight and of correct diameter
The ends of beams bearing on seat connections will be not more than ${ }^{11 / 16} \mathrm{in}$. maximum from the face of column or supporting member \qquad
Not more than 2 of the rivets are punched more than $1 / 16 \mathrm{in}$. off for any connections and not more than $1 / 4 \mathrm{in}$. in any case

Material has been properly cleaned before painting
Painting is according to specifications or drawings
Sample of shop coat paint has been taken for analysis \qquad
Inspector has marked every member after accepting same \qquad
No member has been shipped without inspector's mark except \qquad
Inspector has marked on plans and column schedule all members accepted
Members have been assembled to insure proper alignment and fit, and freedom from twists, bends, and open joints between the component parts \qquad
Inspector will be able to state in final report that every member has been covered
Special requests have been attended to
Remarks (rejections, corrections, attention to warning notes, etc.) \qquad
\qquad

Engineer

REPORT ON STRUCTURAL STEEL

Shop Inspection, Part II
(For both riveted and welded steel)

Report No.
Job
\qquad Date \qquad
Reported to \qquad Where Inspected \qquad

	Required	Being Fabricated	Finished	Shipments			Weights
				Date	R.R.	Car No.	
		-					
\cdots							

Remarks \qquad
\qquad
Shipped this report \qquad
Previous
Total to date

Requirements

* Adapted from Haller Engineering Associates, Inc.

WELDING

COMMON WELDING PROCESSES

Figures 22 and 23 indicate common welding processes and the action of the shielded arc electrode. In the electric arc welding process a metal electrode is melted and fuses with contiguous metal surfaces to be joined. The welding heat is obtained from the electric arc formed between the electrode and the parts to be welded. The temperature of the arc is approximately $10,000^{\circ} \mathrm{F}$.

In the metal arc process if the direction of flow of current is through ground lead, into work, into electrode, into work lead, and back to machine, the circuit is known as electrode negative (straight polarity). With the electrode positive (reverse polarity) the direction of the flow of current is reversed. In alternating-current welding the direct-current generator is replaced by a transformer. Direct current with electrode positive (reverse polarity) is used for structural work except where deep penetration is required. The type of electrodes affects the polarity, as electrodes can be used only as shown in Table 21, p. 68, on account of the material of the covering.

Fig. 22. Welding processes. From H. Malcolm Priest, Practical Desion of Welded Steel Structures, Amerioan Welding Society.

Fig. 23. Shielded arc electrode. From H. Malcolm Priest, Practical Design of Welded Steel Structures, American Welding Society.

WELDERS' QUALIFICATION TEST USING FILLET WELDS

Take two bars 5 in. by $1 / 2$ in. by 4 in., and weld as indicated in Fig. 24 in the desired position, that is, flat, horizontal, vertical, or overhead. Turn plates over and break with a blow by a sledge hammer. The weld should break cleanly along the center line, showing a clean cross section of weld material. Visual inspection of the weld and its fracture readily reveals any improper fusion between the weld and base metal or any lack of soundness.

Fig. 24. Test for weld soundness.

Fig. 25. Welding positions. From H. Malcolm Priest, Practical Design of Welded Steel Structures, American Welding Society.

(a) Welding arc has traveled olong too slowly

(b) Too long arc used or too rapid trovel

(d) Satisfactory weld, good penetration

Fig. 26. Weld characteristics under certain conditions. From Gilbert D. Fish, Arc-Welded Steel Frame Structures, McGraw-Hill Book Company.

Desirable fillet weld profiles

Acceptable fillet weld profile

Acceptable butt weld profile

Fig. 27. Illustrations of acceptable and defective welds as contained in A.W.S. Code. From Specifications for Design, Fabrication and Erection of Structural Steel for Buildings by Arc and Gas Welding, 1942, American Institute of Steel Construction.

Fia. 28. Fillet weld gages. From H. Malcolm Priest, Practical Design of Welded Steel Structures, American Welding Society.

Fig. 29. Weld penetration and arc crater. From Gilbert D. Fish, Arc-Welded Steel Frame Structures, McGraw-Hill Book Company.

TABLE 21. ELECTRODES AND THEIR USES (A.W.S. SPEC.)

	Capable of Producing		
Electrode	Satisfactory		
	Welds in		
cation	Positions	General	
Number	Shown	Description	Remarks
E6010	$F, V, O H, H^{*}$	Heavy covering, useful with direct current, electrode positive (reverse polarity) only.	These electrodes, called slow electrodes, are used in both shop and field. They produce a slower weld
E6011	$F, V, O H, H$	Heavy covering, useful with alternating current only.	than E6020 and E6030. The weld pool can be controlled in all positions. E6010 is used
E6012	$F, V, O H, H$	Heavy covering, usually used with electrode negative (straight polarity), direct or alternating current.	for root pass of flat welds.
E6013	$F, V, O H, H$	Heavy covering, usually used with alternating current.	

	Capable of Producing		
Electrode	Satisfactory		
Classification	Welds in Positions	General	
Number	Shown	Desctripion	Remaris
E6020	F, H fillets	Heavy covering, usually used with electrode negative (straight polarity) or alternating current for fillets; and electrode positive (reverse polarity) or alternating current for flat welding.	These electrodes, called fast electrodes, are usually used in shop and only in positions indicated as weld pool has to be controlled by fast welding.
E6030	F	Heavy covering, usually used with electrode positive (reverse polarity) on direct current, or with alternating current.	

table 22. MAXIMUM SIZE OF ELECTRODES

	Posirion				
Type	Flat	Horizontal	Vertical	Overhead	Note: Maximum size of fillet weld in
Fillet	$1 / 4 \mathrm{in}$.	$5 / 6$ in.	$3 / 16 \mathrm{in}$.	$3 / 16$ in.	
Butt	$1 / 4 \mathrm{in}$.	$8 / 16 \mathrm{in}$.	$3 / 16 \mathrm{in}$.	$3 / 16 \mathrm{in}$.	one pass is $5 / 16$ in., ex- cept that vertical welds
can be $3 / 2 \mathrm{in}$.					

Electrodes for a single pass fillet weld and for root pass of a multilayer weld shall be of proper size to insure thorough fusion and penetration with freedom from slag incursions, but shall not exceed $5 / 32$ in. diameter for butt welds, vertical and overhead fillet welds.

Read off electrode container recommended current. Check vs. current being used.

To find current being used, time rate of electrode burn-off; find ourrent from chart on following page.

Example. Given $5 / 32$ electrode and burn-off rate of 12 in . in 70 seconds.
Enter chart at 70 seconds, proceed across to intersection with $5 / 32 \mathrm{in}$. curve, drop vertical to ampere scale, read 150 amperes.

Chart to determine welding current by rate of electrode melt-off. From Procedure Handbook of Arc Welding-Design and Practice, The Lincoln Electric Company.

CHECK LIST FOR INSPECTORS

WELDING

See also "Check List for Inspectors, Structural Steel," p. 53.

Extra Equipment for Structural Welded Job

Welding gage.
Chipping hammer.
Wire brush.
Protective shield.

Procedure in Inspection

Qualifications of welder. If there is any question as to his qualifications, he should be required to make test pieces for inspector.

Conformity of electrodes to specifications or correct usage. See p. 68. For current actually used, see above chart.

Condition and capacity of welding equipment.
Quality of welds for overlap, color, porosity, slag inclusions, undercutting, uniformity, and workmanlike appearance.

Fitting up of members for tightness. In fillet welds when the gap exceeds $1 / 16 \mathrm{in}$., size of weld should be increased.

Sequence of welding in order to minimize residual stresbes.

Condition of any tack welds which are to be fused with final welds. If any of these are not satisfactory, they should be removed.

Cleanliness of work, as good welds cannot be made on dirt, rust, or slag. In a multiple pass weld, slag must be chipped and wire brushed to shiny surface before next pass is made.

Weather conditions, as welding should not be done in temperature less than $0^{\circ} \mathrm{F}$., or when surfaces are wet from condensation, rain, snow, or ice. Welder should be properly protected from wind. At temperatures between $0^{\circ} \mathrm{F}$. and $32^{\circ} \mathrm{F}$., surfaces must be heated. Material $11 / 2 \mathrm{in}$. thick or over should be $70^{\circ} \mathrm{F}$. minimum.

Conformity to approved plans for the following details:
Cross-sectional size, length, location, and omission. They should not be increased arbitrarily as longer welds sometimes introduce more restraint than calculated.

Operator at work at frequent intervals. If welding is not being properly done, he should be corrected. An experienced welder knows when he is making a good weld. He also knows whether equipment is working properly and will tell you.

IDENTIFICATION OF IRON AND STEEL

	White Cast Iron*	Gray Cast Iron	Malleable \dagger Iron
Fracture	Very fine silvery white silky crystalline formation	Dark gray	Dark gray
Unfinished surface	Evidence of sand mold; dull gray	Evidence of sand mold; very dull gray	Evidence of sand mold; dull gray
Newly machined	Rarely machined	Fairly smooth; light gray	Smooth surface; light gray
	Wrought Iron	Low-Carbon Steel and Cast Steel	High-Carbon Steel
Fracture	Bright gray	Bright gray	Very light gray
Unfinished surface	Light gray ${ }^{\text {smooth }}$	Dary gray; forging marks may be noticeable; cast-evidences of mold	Dark gray; rolling or forging lines may be noticeable
Newly machined	Very smooth surface; light gray	Very smooth; bright gray	Very smooth; bright gray

[^4]Engineer

REPORT ON STRUCTURAL STEEL—WELDED

Field Inspection

Project \qquad Date \qquad
Welding permit No. Report No. \qquad
Welding contractor \qquad
Description of work \qquad

	Ereated during this Period	Erected to Date	Plumbed	Welded	Accepted
Columns					
Beams					

Shop welded or riveted
Weather and temperature \qquad
Checked against approved typical details and erection plans \qquad
Machines \qquad
\qquad
Electrodes *
No. of layers or beads flat \qquad vertical
\qquad
Weld sizes
\qquad overhead
\qquad Authority \qquad
All welders' qualifications checked
Has every welder marked joint with index number? \qquad
Has inspector kept complete record of welding?
Has every weld been checked for size? Length? \qquad
Location? \qquad Quality? Workmanship? \qquad
Number of individual welds made: \qquad Accepted: \qquad Rewelded: \qquad
.
Reasons for rejections and rewelding, method of correction of defective welds, and name and index numbers of welders making such defective welds:

Inspector has marked on plans all joints accepted including column splices using separate prints where plans cover two or more tiers

Before welding was the steel properly cleaned, and free from corrosion, water, oil, scale, dirt, paint, etc.?

Were proper methods employed when setting up the work to insure tight fit without displacement of component parts after welding, together with full penetration of the weld metal to the root of the joints? \qquad
Was inspector in full attendance at all times while welds or fusion was being made in the passing of metal from the electrode to the base metal?

Was each completed weld carefully examined for defects and irregularities such as: undercutting, overlaps, lack of fusion at edges, lack of penetration, place cracks adjacent to or behind weld, water cracks and cracks in weld metal, slag inclusions? \qquad
Remarks \qquad

Joints welded and accepted
Inspector has marked every weld group after accepting them.

Engineer
 REPORT ON STRUCTURAL STEEL-WELDED
 Shop Inspection, Part I
 (See p. 62 for Part II.)

Report No.
Reported to __ Where inspected ___
Approved drawings used for inspection, shop drawings, erection plan, joint details

Steel inspected for surface defects, fold, twists, straightness
All sections are as called for on plans
Connections agree with details and for correct locations
All members requiring bearing ends have full square-milled bearing
Stiffeners are full in contact at both ends for plate girders and at the ends shown in contact for seats and rolled sections

All skewed connecting angles and plates have been bent hot
The ends of beams bearing on seat connections will be not more than ${ }^{11 / 16}$ in. maximum from the face of column or supporting member

Material has been properly cleaned before painting
Painting is according to specifications or drawings
\qquad
Sample of shop coat paint taken for analysis \qquad
Inspector has marked every member after accepting same
No member has been shipped without inspector's mark except \qquad
Inspector has marked on plans and column schedule all members accepted
Inspector will be able to state in final report that every member has been covered \qquad
Every weld inspected for size \qquad length \qquad location \qquad and quality
Every welder has marked every weld group for identification \qquad
All welders' qualifications checked \qquad Authority \qquad
Number of welders Names \qquad
Make and capacity of machines
Kind of current
Make, grade, style No.; and size of electrodes \qquad
Special requests have been attended to \qquad
Remarks (rejections, corrections, etc.) \qquad

BRIDGES

Reports When under Construction

Structural steel see pp. 60 to 63.
Concrete see pp. 43 to 48.
Piles see p. 88.
Timber see p. 96.
Other items
Field Data Required for Rating Existing Bridges if Plans Not Available
Sizes of all members.
All span and panel point dimensions.
Sketches of all joints including dimensions and sizes of bolts, rivets, pins, connection angles, washers, etc.

Data for dead-load computations such as material and thickness of floor construction.

Live loads from using railroad or proper highway department.

INSPECTION OF EXISTING BRIDGES *

Waterway. First show the area of the structure in square feet in the space provided.

Conditions in the streambed should be noted as to (1) adequacy of channel afforded by the existing structure; (2) probability of scour that may endanger the footings; and (3) presence of obstructions, such as drift logs, stumps, or old piers, that may be diverting the current so as to cause undermining of the footings. Also note any undergrowth or obstructions that can be removed to increase the adequacy of the waterway or to lessen the fire hazard of timber structures. Lastly, note whether stream-bank protection is necessary to keep the channel properly confined and thus to avoid endangering the bridge foundations or the end fills. Also note if there are any indications of unusual corrosiveness at the site.

Piers and Abutments. The type and material used should be listed.
Timber Piles. Piles supporting timber bridges should be inspected carefully at the ground line, where decay first sets in. A $3 / 4-\mathrm{in}$. hexagonal steel bar about 4 ft . long, with one end sharpened to a long tapering point and the other end provided with a chisel face, is a very useful tool in such examinations. It can be jabbed into a pile to disclose deterioration not apparent on the surface and to determine the extent of sap rot. Piles in which the diameter of sound material has been reduced to 6 in . or less should be marked with yellow keel for replacement.

[^5]Steel Tubular Piers. Steel tubular piers should be carefully examined for corrosion in rivets or bolt heads connecting the cylindrical sections. (The filling material in such steel cylinders is usually inferior and without strength in itself.) Also note whether there has been appreciable movement of the tubes due to impact of heavy loads on the structure; if so, additional footings or bracing may be needed. Note whether the steel tubes are out of plumb and if so whether this is due to undermining, to lack of proper bracing, or to inadequate support below. Examine base of tubes for exposed piling caused by scour.

Concrete Substructures. The pier shafts should be examined for damage from drift or ice. Examine exposed footings for rock pockets due to improper placement of concrete. Note extent of any undermining. Look for cracks, and note whether they are caused by unequal settlement, contraction, or fill pressure. Check abutments and adequacy of wing walls. Recommend placement of riprapand rock slope protection where necessary.

Concrete Structures

Culverts. Examine barrel and wing walls of culverts to find any harmful cracks due to settlement that should be grouted to prevent deterioration of the reinforcing steel. Also examine floor of barrel to note any upheaval which may cause failure of side walls due to excessive fill pressure; especially note this in culverts under high fills.

Beam-and-Slab Spans. Note condition of railing for damage by collision; sight alignment of railing for indication of settlement of the structure. On heavily traveled roads, the handrail should be kept clean in order to provide proper visibility for night driving and, if conditions warrant, should be painted with a cement wash coat. Examine beams for cracks that may be due to clogged expansion joints, settlement, or fill pressure at either end of bridge. Note any surface checking in deck, railing, curbs, or sidewalks that may allow water to seep in and cause disintegration by freezing action.

Steel Structures

On steel trusses note first the general alignment of the span to see whether the end posts and top chords are straight and in line. Any buckling indicates that the structure has been overloaded. Especially note this for light construction. Kinks in any one member may have been caused by damage in shipment, in erection, or by collision; the inspector should satisfy himself that any such kinks are not due to overstress.

For all pin-connected trusses, note whether eyebars in the same member are taking equal tension. Overloading or lack of proper camber adjustment may cause one eyebar to take all the stress, leaving the others loose on the pin. Especially note this for the diagonal and hip vertical mem-
bers. Observe the structure under heavy loading, and note whether there is any excessive deflection or bowing in or out of the diagonal eyebar members which would indicate lack of proper counterbracing. Note condition of end shoes and rollers to see whether proper expansion is being provided for and whether the rollers are free to move.

Timber Structures

Timber Trusses. In inspecting a timber truss, first see if it has any noticeable sag. If sag is present note whether it is due to failure of splices, improper adjustment of vertical rods, or crushing of diagonal members. Examine all splices for splitting or cracking of the shear tables. Sound the rods with a hammer to note whether each is carrying the same amount of tension, and examine condition of caps and ends of diagonal members for signs of crushing. If the structure is very old, it will be advisable to use a $3 / 8-\mathrm{in}$. auger bit to test out the center of the top and bottom chord members for heart rot at all panel points and splices; the floor beams at contact with bottom chords should also be bored. Decay will be found first at contact points and where rods go through timber members.
Other points to check on covered trusses will be the condition of the roof and housing. Be sure to examine truss bearings over the pier caps and the condition of caps over pier piling for crushing, and bore with auger bit where there is any doubt as to their soundness. Note whether all bolts through splices, packing blocks, and cross bracing are tight and in good order. The substructure of timber trestles should be examined as directed under "Piers and Abutments." Caps should be examined for any crushing over the posts or piling. Decay will always be found first at bearing contacts, and a testing bar or auger bit should be used on all doubtful timbers. A thorough boring test must be made on all timbers that have been in place more than 6 years.
Note condition of bulkheads at each end of the bridge for decay, height, and proper retention of approach fill. Check sway and longitudinal bracing to note whether any members are broken or decayed and whether additional bracing is required. In examining the superstructure, first go under the bridge, examine each span, and note (1) whether stringers are crushing, cracking, or splitting, (2) whether they have full bearing over the caps, and (3) whether bridging between stringers is in place. Note condition of under side of decking, and see whether all bolts are properly tightened or have become loose due to shrinkage of timbers.
Second, examine deck and handrail from roadway. Especially on high bridges, sound handrail posts with testing bar at contact with felloe guard, stringers, and railing to see that members are not badly decayed. Handrail should be kept painted for protection against decay and to provide visibility for night traffic; all decayed members must be replaced. Timber handrails require repainting about every 3 years.

FIELD DATA FOR NEW SMALL BRIDGES

The following bridge inspection report on p. 80 is devoted to data that should be gathered in the field for the replacement of an existing small bridge with a new structure. All data requested in the heading is selfexplanatory; however, it should be emphasized that, if the existing structure is noticeably too small or too large, then the area to be drained, expressed as drainage area in acres, should be as accurate as possible. Likewise, the correct value for c should be shown for use in the Talbot formula.

Fill in the data requested for the respective type; however, if a decision as to proper selection has not been made, it is advisable to list the data for both pipe and arches since very little extra time will be required to develop the additional information.
It is important that the profile of the stream bed and road and location sketch be as accurate as possible. Be sure to indicate on the location sketch any suggested desired change in location for the new structure.

EXISTING BRIDGE INSPECTION REPORT *

Make above observations for each part of structure, and note with (\checkmark) mark to indicate "OK" or "None." For items needing explanation mark with circle with a number inserted to refer to corresponding remark listed below. Amplify remarks with sketches on second sheet when neoeseary.

Rzyarys

(Use second sheet when space below is not sufficient; also, list causes of all defeotin such as cracking and scaling of conorete whenever possible.)

Recommendationb

(Furaish data on p. 80 when total replacement is recommended)

Ite:n	Estimated Cost	
	Maiatenance	Improvenents

Note. List under maintenance and "Recommendations" all necessary channel clearing, revetments, bank protection, channel changes, stream-bed pavements, riprap work, underpinning or other foundation protection shoulder and slope protection, repairs to concrete work, painting, waterproofing, preservative treatments, repairs to roadway surfaces, repairs and renewals to timber and piling, and all other maintenance and repair work of whatever nature.

Inspector

* From Toncan Culvert Manuf. Assoc.
\dagger Under "Structural defects" note any tendency to warp, split, crack, etc.

Additional Data for Arch Structure
Waterway area required sq. ft. Live load
Cover over arch
\qquad
\qquad
Rise No. of arches Span

Center-line length Slope or skew

Bearing power of soil Head walls or riprap

Recommended material for abutments, piers, and walls
Depth of abutments and piers below stream bed
Slope of stream

* From Toncan Culvert Manuf. Assoc.

PAINTING

CHECK LIST FOR INSPECTORS

TREATMENT OF SURFACES FOR PAINTING

General Conditions

All surfaces to be painted shall be thoroughly dry.
No exterior painting to be done in rainy, damp, or frosty weather.
Permit no interior painting until surfaces have become thoroughly dry. (By artificial heating if necessary.)
Allow no painting on metal surfaces to be welded. If such surfaces have been painted, paint is to be removed.

All surfaces must be of material in compliance with specifications. Surfaces must be checked for shop coat where called for in specifications.

Surface Preparation

Metal Surfaces. Remove dirt and mud by brushing and/or washing. Remove grease and oil with benzine, naphtha, or turpentine.
Rust and scale to be removed with wire brush, steel scraper, or sand blasting.

Mill scale to be removed by burning.
Old paint to be removed by burning, scraping or paint remover.
Before painting over prime coat, check and reprime where necessary.
Before priming new galvanized metal wash with copper sulfate solution to remove grease and chemicals.

Before hot asphaltic applications, heat metal.
Where phosphoric acid treatment is specified, immerse material in caustic soda solution at $200^{\circ} \mathrm{F}$. to remove grease and oils; rinse in hot water; immerse in 5% sulfuric acid pickle, then rinse in hot water.
Wood Surfaces. Remove dirt and dust with brush and rag.
Stop out all knots and sap streaks with shellac.
Putty nail holes, cracks, and other depressions after primer coat has thoroughly dried. Tint putty to match finish.

Old paint to be removed by sanding, wire brushing, scraping, or burning.
Floors to be sanded or scraped.
Open-grained woods to be varnished to be given first an application of wood paste filler thinned with turpentine.
Masonry Surfaces. Dust, dirt, and excess material to be removed with stiff bristle or wire brush.

Remove salts from brickwork with zinc sulfate water solution, and brush off surface when dry.

All masonry surfaces to be allowed thorough period for curing.
Porous block to be primed with casein paste or resin sealer.
Cement floors to be prepared by acid etching with muriatic acid to
improve adhesion; acid to be washed off and floor dried before painting.
Stucco and concrete to be cleaned with stiff fiber brush; traces of oil to be removed with abrasive stone or, if general, by light sand blasting. Sealer to be added to the paint.

Smooth dense concrete surfaces to be roughened by light sand blasting, muriatic acid etching, or rubbing with abrasive stone to improve adhesion.

Where cement paints are used on exterior concrete the surface to be dampened before application.

Plaster Surfaces. Allow 30 days for drying before painting.
Apply prime coat of sealer to clean dry surface.
Check prime coat for fading caused by hot spots (incomplete mixing of hydrated lime) and suction spots (thin spots and inadequate troweling).

FOUNDATIONS ON SOIL

Method of conducting a load test, N. Y. City code. See also Fig. 30, p. 83.
Procedure. Apply sufficient load uniformly on platform to produce a center load of four times the proposed "design load per square foot." Center load equals load of platform times $\frac{b}{a+b}$.

Read settlement every 24 hours until no settlement occurs in 24 hours.
Add 50% more load and read settlement every 24 hours until no settlement occurs in 24 hours.

Settlement under proposed load should not show more than $3 / 4 \mathrm{in}$., or increment of settlement under 50% overload should not exceed 60% of settlement under proposed load.

If the above limitations are not met, repeat test with reduced load.
TABLE 23. PRESUMPTIVE BEARING CAPACITY OF SOILS

	Capacity IN Tons
Material	per So. Ft.

Frg. 30. Load test on soil.

CHECK LIST FOR INSPECTORS

FOUNDATIONS

Inspector should determine from plans the type of soil on which the foundation design is based and check against actual conditions.

Shallow pipe borings under each footing should be made if there is a question about the underlying soils.

If there is any question in regard to soil bearing capacity, inspector should notify engineer, who may according to his judgment revise size of footings or require footings to be carried deeper. Soil test may be required.

Keep footings clear of water when concrete is poured.
Soil to be original strata and below loam or vegetation.
Bottom elevation of footing to be at least the elevation called for on plan. If necessary, owing to soil condition, elevation may be lowered for suitable bearing.

Keep record of actual elevation of footings installed.
Check slope between footings when elevations differ from plans or when determined in field. This slope should not be more than 2 horizontal to 1 vertical for compact soils but should be fixed by the engineer.

Conditions which may require sheeting where impossible to keep minimum slope should be watched.

Possible undermining of existing foundations should be checked.
Footings should be of size shown on plans.
Concrete for footing. See "Instructions to Inspectors, Concrete."

PILE DRIVING

CHECK LIST FOR INSPECTORS AND DATA

PILE DRIVING

Procedure in Inspection

Inspector should first determine from specifications the type of pile to be used, should familiarize himself with specifications, and should have approved drawings for his use in field.

Condition of pile or pile shells before driving.
Type of pile driver and size. Weight of striking part or ram and stroke.
Plumbing of pile or mandrel before driving.
Lateral tolerance of pile. Limit 3 in . from horizontal location.
Plumbness of pile. Limit 2% of pile length.
Pile shell just before concrete is poured with light for: buckling of shell, puncture of shell, water, ice, and snow.

Buckling of cast-in-place pile when another pile is being driven close. This can be detected by watching the concrete rise in shell. If concrete rises to any extent, pile should be replaced.

Heaving of pile when another pile is being driven close. This can be noticed by watching to see if the shell is being lifted out of ground. Condition may be relieved by driving an occasional open-end pipe pile.

Check concrete mix from specifications or drawings.
Protection of concrete against freezing.
Pile caps not laid on frozen ground.
Proper cutoff.
Injury to wood piles. Crushing or brooming of pile head or, in precast concrete piles, the cracking or disintegrating of concrete makes it impossible to drive piles properly as this dissipates the energy of the blow of hammer.

Possible telescoping or crushing of the middle of wooden piles as indicated by sudden loss of resistance.

Possible deflection of the foot of pile. This happens when pile hits a slanting surface of rock and then drives easier as result of the splitting or sliding of the bottom.

Driving Control. Check length of piles and blows per inch. Calculate required safe load on each pile as follows:

For drop hammer $P=\frac{2 W H}{S+1}$; for single-acting steam hammer, $P=$ $\frac{2 W H}{S+0.1}$. The reason for the difference in the formulas is the extra speed of the steam hammer, which affects consolidation time between blows. Both are gravity-type hammers.
$P=$ safe load in pounds; $W=$ weight of striking part in pounds; $H=$ height of fall in feet or stroke in feet; $S=$ average penetration in inches under last 5 blows.

Examples. Given $W=2000 \mathrm{lb} ., H=15 \mathrm{ft} .0 \mathrm{in}$., $S=0.5 \mathrm{in}$. Required P using drop hammer

$$
P=\frac{2 \times 2000 \times 15}{0.5+1}=40,000 \mathrm{lb}
$$

Given $W=5000 \mathrm{lb} ., H=3 \mathrm{ft} .0 \mathrm{in} ., S=0.4 \mathrm{in}$. Required P using single-acting steam hammer

$$
P=\frac{2 \times 5000 \times 3}{0.4+0.1}=60,000 \mathrm{lb}
$$

TABLE 24. BEARING POWER OF PILES IN THOUSANDS OF POUNDS DRIVEN WITH SINGLE-ACTING STEAM PILE HAMMERS AS PER FORMULA GIVEN IN TEXT

Safe load for piles driven by double-acting steam pile hammer though usually prohibited in specifications for friction piles may be checked by the following manufacturer's data:

Bearing Power of Piles Driven with McKiernan-Terry Pile Hammers. By the Engineering News formula, $P=\frac{2 E}{S+0.1}$, where $P=$ safe load in pounds; $E=$ energy or foot-pounds per blow (see Table 25); $S=$ average penetration in inches for last 5 blows. The assumed safety factor of this formula is 6 . E is computed from indicator diagram tests rather than from steam pressure.

TABLE 25. VALUES OF E FOR McKIERNAN-TERRY PILE HAMMERS

SizeOFOfamer	Ft-Lb. Blow at Given Strokes per Minute		Size of Hammer	Ft-Lb. Blow at Given Strokes per Minute	
	Strokes	Ft-Lb. per		Strokes	Ft-Lb. per
	per Min.	Blow $=E$		per Min.	Blow $=E$
7	225	4,150	9B2	100	3,700
	195	3,720		105	4,200
	170	3,280		110	4,750
				115	5,350
9B3	145	8,750		120	5,940
	140	8,100		130	7,000
	135	7,500		140	8,200
	130	6,800			
			10B2	100	10,700
10B3	105	13,100		105	12,000
	100	12,000		110	13,500
	95	10,900		115	15,000
	90	9,550			
			11B2	100	15,600
11B3	95	19,150		105	17,250
	90	18,300		110	18,900
	85	17,500		115	20,500
	80	16,700		120	22,000

TABLE 26. BEARING POWER OF PILES IN THOUSANDS OF POUNDS USING MAXIMUM E

Penetration per Blow in	Size of Hammer						
Inches	7	9B3	10B3	11B3	9 B 2	10B2	11B2
0.1	41.5	87.5	131.0	191.5	82.0	150.0	220.8
0.2	27.6	58.3	87.3	127.6	54.6	100.0	147.2
0.3	20.7	43.7	65.5	95.7	41.0	75.0	110.4
0.4	16.6	35.0	52.4	76.6	32.8	60.0	88.3
0.5	13.8	29.1	43.6	63.8	27.3	50.0	73.6
0.6	11.8	25.0	37.4	54.7	23.4	42.9	63.2
0.7	10.3	21.8	32.7	47.8	20.5	37.5	55.3
0.8	9.2	19.4	29.1	42.5	18.2	33.3	49.1
0.9	8.3	17.5	26.2	38.3	16.4	30.0	44.1
1.0	7.5	15.9	23.8	34.8	14.9	27.3	40.1

Comments. The field engineer's checking criterion is the number of strokes per minute, rather than the steam pressure, and also penetration. If steam pressure falls off, the number of blows per minute cannot be delivered and the penetration falls off.

Load Tests

Conduct as follows. A suitable balanced platform shall be built on top of pile which has been in place for at least 2 days. If it is a concrete pile, the concrete should be thoroughly hardened. Place initial load equal to the proposed pile load using heavy material such as pig iron. Increase this load 25% after 12 hours, and 25% after 24 hours, thus the total load is 150% of proposed load.
Allow final load to remain at least 48 hours. Take readings before and after placing of each load and 12 and 24 hours after placing final load.
The total net settlement deducting rebound after removing load should not be more than 0.01 in . per ton of total test load.

Engineer

REPORT ON PILE DRIVING

Field Inspection
Report No. \qquad
Job \qquad Date \qquad
Reported to \qquad
Hammer data \qquad

Foot- ing No.	Pile No.	Pene- tration	No. Blows Last In.	No. Strokes per Min.	Bearing Capacity	Ap- proved	Re- jected	Re- marks

See field drawing No. \qquad for field location of piles in this report \qquad
TIMBER
WOOD JOISTS-NET SECTION
TABLE 27. SECTION MODULI $=b d^{2} / 6$

Nom. Size	$\begin{aligned} & \text { Actual } \\ & \text { Size } \end{aligned}$	s	Nom. Size	Actual Size	s	$\begin{array}{\|c} \text { Nom. } \\ \text { Size } \end{array}$	Actual Size	s	Nom. Size	$\begin{gathered} \text { Actual } \\ \text { Size } \end{gathered}$	s	Nom. Size	$\begin{aligned} & \text { Actual } \\ & \text { Size } \end{aligned}$	s	Nom. Size	Actual Size	s
2×4	158×358	3.56	3×4	258×358	5.75	$\times 4$	358×358	7.94	6×6	$51 / 2 \times 532$	27.7	8×8	7132×712	70.3	10×10	$93 / 2 \times 942$	143
2×6	158×558	8.57	3×6	258×558	13.8	4×6	358×578	19.1	6×8	536×732	51.6	8×10	$712 \times 9{ }^{1}$	113	10×12	9h2 $\times 1112$	209
2×8	$158 \times 73 / 2$	15.3	3×8	258×716	24.6	4×8	358× 736	34.0	6×10	$53_{2} \times 932$	82.	8×12	732×1136	165	10×14	$91 / 2 \times 131 / 2$	289
2×10	156×93	24.4	3×10	$25 / 6 \times 93 / 2$	39.5	4×10	$35 / 8 \times 91 / 2$	54.5	6×12	542×1146	121	8×14	$73 / 2 \times 1312$	228	10×16	935 $\times 1532$	380
2×12	156×1112	35.8	3×12	$258 \times 111 / 2$	57.9	4×12	358×1116	79.9	6×14	512 $\times 1312$	167	8×16	$732 \times 153_{2}$	300	10×18	$91 / 2 \times 1746$	485
2×14	$156 \times 133_{2}$	49.4		2588 $\times 1316$	79.7	+ $\times 14$	35/8 $\times 1336$	110.0	6×16	53/6 $\times 151 / 2$	220	$\mid 8 \times 18$	736 $\times 1732$		10×20	932×1936	602

HARDWOODS-RED OAK

Transverse Section

Radial Section

Tangential Section
This illustration is representative of the oaks, which are all very strong and suitable for the manufacture of anything from piles to furniture. The wood is very heavy, the white oak is the most resistant to decay.

Eastern \quad whitish gray, woft texture, light and strong.
Spruce Larch fine-grained, light wood roming into witler use.

Douglas Fir
the westorn counterpart of Inug Laif Yollow Pine, heavy for soft wood, distinctly reddish in color. Suumuer wood dark red, very hard. Splits casily hut has good resistance against decay. One of the strougent soft woods.

Short Leaf Yellow Pine
distinctly yellowish in color. Suumer wood same color as spring wood. Coarse grauing gives oruamental appearance when out on tangential plane.
counterpart of western fir except that it is rellow with a
Lang Jeaf
Yellow Pine reddish cast. Summer rings dark colored, very dense. Wood gets its great strength from this feature. Used for wood trusses and ligh-class timber construetion.

HARDWOODS-MAPLE

Transverse Section

Radial Section

Tangential Section
This illustration is representative of the maples, an excellent flooring and furniture material but not used very much as etructural timber.

CHECK LIST FOR INSPECTORS

WOOD AND TIMBER CONSTRUCTION

Inspectors' Equipment

Complete set of final structural plans, specifications, and approved shop details.

Copy of rules for stress grade of lumber.
6-foot rule.
Plumb bob.
Moisture meter.

Procedure in Inspection

Grade of lumber checked. Material should be stamped with grade shown on plans or called for in specifications. The inspector should familiarize himself with rules for grading of lumber to be used so that he may check grading if from appearance it looks incorrect.

Selection of already graded lumber checked. Select beams so as to avoid slope of grain in lower third of beam steeper than 1:20. Slope of grain in tension member of truss not to be steeper than 1:20. Avoid knots in lower edge of beams. By utilizing elsewhere or inverting pieces which do not conform, these results should be attained without waste.

Imperfections that may have occurred after grading, such as broken fibers due to transportation, decay, and moisture content, which should not be more than 20%, to be checked. Moisture content may be checked with moisture meter if available; otherwise inspector will have to, accept manufacturer's certificate of moisture at time of grading plus visual inspection.

Increased checks, loose knots, and warping due to unsatisfactory seasoning watched.

Sizes, lengths and spacing of all members checked.
Bearing and anchorage of beam, girder, or joists on masonry checked.
Plumbing, base, cap, and splice details of columns, especially checking bearing at ends, checked.

All special details shown on plans carefully followed.
Correct fabrication of built-up member such as laminated members and trusses. All members with bolts and ring connectors should be fabricated with standard tools and strictly according to instructions furnished by manufacturer of same.

Drilling and grooving of ring connector members. Any material that is incorrectly drilled or grooved must be rejected as it is impossible to correct it.

Tightness of bolts in bolted or connected work. These should be tightened up so hard that washer makes a slight impression in wood surface but not so as to tear fibers. After construction until seasoning, bolts should be given a periodical inspection for tightness and at the same time timber should be inspected for further checking. This particularly applies to ring connectors or keyed work as ring or key tends to rotate as bolts loosen.

Alignment, bearing, or connection of trusses after erection. They should be straight and in a vertical position, and bearing or connection in accordance with plans.

Gluing of glued laminated members. This is usually done in a shop with proper facilities. Inspector should check to see that specifications are followed exactly with special attention to the following: type and quality of glue, mixing of glue, amount of glue used, method of applying, moisture content of lumber, curing of members, and temperatures of manufacturing space. In field watch for tendency of laminations to separate.

Retouching of cut, preserved members, see specifications.

Engineer

REPORT ON WOOD PRESERVATION *

Plant Inspection

Report for \qquad
Material \qquad
Project \qquad
Producer \qquad
Contractor \qquad Specs. \qquad
\qquad

Lineal feet \quad Cubic feet

Net retention \qquad
Cubic feet__ Condition of _ hours at _ pounds maximum pressure ___ ${ }^{\circ} \mathrm{F}$. maximum temperature
Vacuum ___ hours at _ inches maximum pressure ___ ${ }^{\circ}$ F. minimum temperature

Air \qquad hours at _ pounds maximum pressure \qquad
Preservative ___ hours at _ pounds maximum pressure ___ ${ }^{\circ} \mathrm{F}$. average temperature
Vacuum \qquad hours at _ inches maximum mercury \qquad ${ }^{\circ} \mathrm{F}$. minimum temperature
Special operation \qquad
Penetration
Specific gravity or preservative

No. Pieces	Size	Length	Total Treated	Total to Date

Remarks:

The above preservative and treatment fulfills the specification.

* Adapted from Haller Engineering Associates, Inc.
ROPES AND CABLE-STRENGTHS
WEIGHT AND STRENGTH OF MANILA AND SISAL ROPE *

Diameter, in.	Circumference, in.	Approx. Feet per Lb.	Ultimate Breaking Strength of Manila Rope (Min. Government Allowance), lb.	Safe Working Strains, lb.	Ultimate Breaking Strength of Sisal Rope (Min. Government Allowance), lb.	Safe Working Strains, lb.
1/4	34	50.0	600	120	480	96
3/8	11/8	24.4	1,350	270	1,080	216
$1 / 2$	11/2	13.3	2,650	530	2,120	424
$3 / 4$	21/4	6.00	5,400	1,080	4,320	864
1	3	3.71	9,000	1,800	7,200	1,440
11/2	41/2	1.67	18,500	3,700	14,800	2,960
2	6	. 930	31,000	6,200	24,800	4,960

- Adapted from American Manufacturing Company.
WIRE ROPE 6×19 STANDARD HOISTING-PLOW STEEL*

Diameter, in.	23/4	21/4	2	17/8	13/4	15/8	11/2	13/8	11/4	118	1	7/8	3/4	5/8	916	$1 / 2$	7/16	3/8
Breaking strength, tons of 2000 lb.	254.0	174.0	139.0	123.0	108.0	93.4	80.0	67.5	56.2	45.7	36.4	28.0	20.7	14.5	11.8	9.35	7.19	5.31

* From John A. Roebling's Sons Company.

VARIETIES OF KNOTS

A great number of knots have been devised, of which only a few are illustrated, but those selected are the most frequently used. See Fig. 31.

Fig. 31. From American Manufacturing Company.
a. Bowline. Makes a slip-proof loop. Popular because it is easy to untie.
b. Timber hitch. For securing a line to logs or planks. For lifting or dragging.
c. Clove hitch. For attaching rope to a fixed object, or small rope to a larger one.
d. Blackwall hitch. A temporary hook tie. More secure with two turns around hook.
SOILS
SURVEYING AND SAMPLING METHODS

Method	Material in Which Used	Penetration Method	Sampling Method	Type of Sample	Purpose or Value
Rod sounding or jet probing	All soils except hardpan or boulders	Driving 1 in. steel rod or $3 / 4 \mathrm{in}$. jet pipe with hand pump	No sample		To obtain depth of muck or soft strata. Location ledge or boulders. Otherwise valueless.
Wash borings		Washing inside 23: in. driven casing with chopping bit on end of 1 in . extra heavy pipe	Sample recovered from sediment in wash water	Disturbed-sedimentary, coarse grains only	Depth to ledge or boulders; otherwise valueless. Results deceptive and dangerous.
Dry sample boring			Open-end pipe or split spoon sampler driven into soil	Disturbed but not separated	Density data from penetration of spoon. Fairly reliable and inexpensive.
Special sampling devices	Cohesive soils	Driven casing or auger boring	By special sampling spoon or device	Undisturbed	To obtain samples for laboratory study
Auger boring	Cohesive soils. Cohesionless soils above ground water	Soil, wood or post hole; auger rotated by hand or machine and withdrawn	Sample recovered from soil brought up by auger	Disturbed but better than wash samples	To locate soil strata and ground water. Roads, airfields, canals, and railroads. Samples for visual inspection and soil profile.
Well or churn drilling	All soils including boulders, rock, and gravel	Churn drilling by power	Bailed sample of churned material or use of "clay socket"	"Clay socket" or "dry"	Occasionally used for foundations. "Bailed" samples worthless.
Rotary drilling		Rotating bit	From circulating liquid	Fluid	Samples worthless
Core drill borings	Large boulders and solid rock	Diamond, shot, or sawtooth cutters	Cores cut and recovered	Rock cores $7 / 8 \mathrm{in}$. and over in diameter	Best method to obtain type and condition of rock
Test pits and caissons	All soils; below ground water use pneumatic caisson or lower water table	Excavate by hand or power; pit over 6 ft . sheeted or lagged	Bulk sample by hand; undisturbed sample with spoon, tube, or special device	Disturbed or undisturbed	Most satisfactory method; should supplement others. To obtain undisturbed sample cohesionless soil. Soil can be inspected in natural condition.
Geophysical, seismic, electric resistance, electric potential	No samples. Continuous vibration or impulse from dynamite explosion. vibrations. Mostly patented methods.				Primary exploration will indicate earth, loose rock, or solid rock. Interpretation uncertain.

SPACING AND DEPTH OF BORINGS AND TEST PITS OR TEST HOLES

Highways.* At 100 ft . stations plus additional necessary at culverts, bridges, weak zones, wide cuts and fills, muck deposits, borrow pits, and sources of base material. Depth not less than 3 ft . below subgrade. Locate ground water table, seepage sources, and direction of flow.

Airfields. \dagger At $100-\mathrm{ft}$. to $1000-\mathrm{ft}$. spacing on center line, edge of pavement and edge of shoulders. Depth not less than 4 to 6 ft . below subgrade in cut or ground surface in fill. Not less than twice diameter of tire contact area nor less than frost penetration. Locate ground water table and seepage data. Make field load-bearing tests at time of survey (from 5 to 10 usual for each airfield).

Bridges, Dams, and Piers. \ddagger Borings spaced as needed to bedrock or well below foundation level. Make borings at least 20 ft . into solid rock. Make 1 or more borings at each pier 50 ft . minimum into solid rock. Use open-pit exploration on land and in shallow water. Make soil bearing tests and pile loading tests.

Building Foundations, Towers, Chimneys, etc. \ddagger Borings spaced not over 50 ft . center to center. Depth 15 ft . to 20 ft . minimum below foundation level. Initial borings to depth $=2 \times$ width loaded area.

Core borings into rock greater than minimum design depth of rock required. Supplement borings with test pits, load tests, and test piles.

TABLE 29. SIZE OF SAMPLES

Visual inspection and record, 1 qt. mason jar. California bearing ratio, 125 lb . Soil stabilization, 125 lb .
Physical constants and mech. analysis, $5-15 \mathrm{lb}$.
Aggregates for construction (concrete), 35 lb .
Moisture-density (Proctor tests), $10-35 \mathrm{lb}$.
Undisturbed sample, $12^{\prime \prime}$ to 2^{\prime} long $\times 3^{\prime \prime}$ to $5^{\prime \prime}$ diam.
Rock core, usually $7 / 8^{\prime \prime}$ to $112^{\prime \prime}$ diam.
Note. Seal undisturbed samples in tube with paraffin so structure and moisture content are not disturbed. Place bulk (disturbed) samples in bag or container tight enough so fines will not be lost.

Fig. 32. Split spoon sampler.

[^6]

Fig. 33. Test pit (sheathed and braced). Krynine, Soil Mechanics, McGrau-Hill Book Company.

Note: Auger borings may be carried to average depth of 20^{\prime} by hand. Use cased borings for penetrating cohesionless soils below ground water table.

Other types used ore $3^{\prime \prime}$ to 8 " post hole ougers for sands.
2 "to 3 " spiral auger for clay soils and muck.
Wood augers for hard soils, glacial till, etc.
$10^{\prime \prime}$ to $20^{\prime \prime}$ power drven augers for grovel, etc.
Soil Augers
Fig. 34. Soil auger.

Fig. 36. Wash boring rig. After Mohr.

Fig. 37. Shallow sampler for cohesive soil. After Taylor.

Cylinder is worked into soil by hand.
Sample is reversed, excess soil trimmed ond somple sealed.

Fig. 38. Shallow sampling, cohesionless soil (sand). Krynine, Soil Mechanics, McGraw-Hill Book Company.

Fia. 39. Deep sampler, cohesive soils.

For slightly cohesive soils.

Fig. 40. Piston-type sampler, cohesive soils.

Description of Layers
$\begin{aligned} & \text { Layer 1: } \\ & \text { Reddish brown mellow silt loam. Friable when dry but of }\end{aligned}$
pasty consistency when wet.
Grayish brown or mottled gray and rusty brown silt clay loam or sitty clay of moderately compact structure. Compactness increases with depth. Frable when dry but
plastic when wet. The compact nature of this layer does not seem to retard percolation to any degree.
Similar to layer 5 but contains a very large quantity of gravel varying in size from $14^{\prime \prime}$ to $2^{\prime \prime}$ with the largest apparently does not affect the structure particles or their behaviour. On drying, shrinkage cracks develop and soil shrinks away from gravel. This layer also includes a brown
or grayish brown compact clay which is a transition between layers 3 and 5, and shrinks considerably on drying.
Layer 5:
Mottled bluish gray and rusty brown plastic, sticky.
and tenacious clay composed of angular structure particles which have a wet, shiny and slick surface. The particles are irregular in shape, easily crushed and when molded take on the appearance and consistency of putty. Upper
3 feet of layer is very wet. It blends gradually into a dense, plastic, cloddy structured bluish gray clay which retards the downward movement of water but does not stop it, since the water can penetrate between the cleavage
planes which are well defined. White concretions, black planes which are well defined. White concretions, blach.
rusty brown and blood red stains are found throughout the Jayer. This material shrinks considerably on drying. leaving
wide shrinkage cracks and on exposure the farger clods wide shrinkage cracks and on exposure the larger clods
slake down to the smaller sized particles. This fayer contains a high percentage of lime.
Fig. 41. Typieal soil profile map as made for design and construction of road, runways, railroads, and canals. Adapted from Surveying and Sampling Soils for Highway Subgrades, A.S.T.M.

Sample number 18 -Layer 4 contains coarse gravel. See description.
General Notes and Recommendations
Orainage is across the road from east to west
Original ground gives excellent support for fill
Layers 1 and 3 are excellent subgrade materials
Cut and waste layer 5 material to a depth of about 2 feet below grade Cut Berm ditch as shown in cross section
Cut Berm ditch as shown in cross section
Cut backs/opes not steeper than 2:1
Waste all material excavated from layers 4 and 5
Waste all material excavated from layers 4 and 5
Pavement design should include longitudinal and transuerse crack control
and backfill with layers 1 and 3. Seeplan, profile, and cross section
Construct drain as shown on plan. profile, and cross section
contains a high percentage of lime.

Fıg. 42. Deep sampler, cohesionless soil. Krynine, Soil Mechanics, McGraw-Hill Book Company.

Fig. 43. Plan and \log of test pits for airfield.

BORING LOG \dagger (TYPICAL STRUCTURES)

		$\frac{4 n t i g u}{1}$							eyplon) Sheet No. 1.of ? Date 1-3-41
	atifico			Cos	sing		pleor		Miscelloneas Doto
$\begin{array}{r} \frac{5}{2} \\ \frac{1}{2} \\ \frac{4}{4} \\ 73.7 \\ \hline \end{array}$	$\begin{array}{\|l} \text { f } \\ \hline 0 . \\ 0 \\ 0 \\ \hline \end{array}$		Description of Moterials (Type, Color, ६ृ Consistency) -Surface	$\frac{\stackrel{y}{\circ}}{\circ}$		$\frac{p_{\bar{\delta}}^{5}}{5}$			Rock Weight of hommer Joolbs Aver foll of hommer 30 $\frac{1.0 \text { of ground water }+68.4}{\text { Remarks }}+$
			\therefore Brown sondy loom						Few roots
			A', Trace of gravel			6	12"	10	Dry and frioble
71.2	$2 \cdot 6$		1						
			1	8	12^{*}	32	$18^{\prime \prime}$	20	Fairly firm
			Fine brown sand	10	12"				Cohesionless
66	6W.		STrace of gravel	16	12"				Resistance
				16	12"	28	12"	30	increases with
64.7	$9^{\prime} 0$		\downarrow						depth.
		On	Co Firm, hard, yellow,						Becomes plastic
			A silty cloy.	18	12"	20	$18^{\prime \prime}$	40	when worked.
62.2			-						
			-\% Compoct gravel, silt,	380	12"	60	$3^{\prime \prime}$	50	Chips of black slate
52.7	21°		\% and sond "Hardpon"						embedded in silt.
		多:	Buff-colored						Casing and rods
			in Yimestone.					6 C	refused of 21'-0"
		,	Hord 80\% core						Bottom of hole
477	26°	-	\downarrow recovery.						ot 26 ${ }^{\circ} 0.0$

Note: Additionol dota may include: Key plon with contours, stotions coordinates, and building outline; Benchmarks, date, drilling rig, casing dia.; length and diarmeter of sampler, Atterberg Limits, Mech. Analysis, density, water content.
*Write somple number of corresponding depth, designote dry somples by D, wash somples by W, undisturted somples by l, and rock cares by C.
** When drilling cones in rock record the percentage of recovery in eoch foot of penetrotion.
Fig. 44.
\dagger Caribbean Architect-Engineer.

IDENTIFICATION OF PRINCIPAL TYPES

TABLE 30. MAJOR DIVISIONS OF SOILS

Coarse-Grained (Granular)	Fine-Grained		Organic		
Gravel	Sand	Silt	Clay	Muck	Peat

IDENTIFICATION-VISUAL AND BY TEXTURE

Gravel

Rounded or water-worn pebbles or bulk rock grains. No cohesion. No plasticity. Gritty and granular. Crunchy under foot. As a soil, over $1 / 10 \mathrm{in}$. in size. As an aggregate, over $1 / 4 \mathrm{in}$. in size.

Sand

Granular, gritty, loose grains, passing No. 10 and retained on No. 270 sieve. Individual grains readily seen and felt. No plasticity or cohesion. When dry, a cast formed in the hands will fall apart. When moist, a cast will crumble when touched. The coarse grains are rounded; the fine grains are visible and angular. As an aggregate for construction sand consists of mineral grains between $1 / 4$ and $1 / 200 \mathrm{in}$.

Silt

Fine, barely visible grains, passing No. 270 sieve and over 0.005 mm . in size. Little or no plasticity. No cohesion. A dried cast is easily crushed in the hands. Permeable; movement of water through voids occurs easily and is visible. When mixed with water the grains will settle in from 30 minutes to 1 hour. Feels gritty when bitten. Will not form a ribbon. Care must be used to distinguish fine sand from silt and fine silt from clay.

Clay

Invisible particles under 0.005 mm . (or 0.002 mm . in M.I.T. scale) in size. Cohesive. Highly plastic when moist. When pinched between the fingers will form a long, thin, flexible ribbon. Can be rolled into a thread to a pin point. When bitten with the teeth will not feel gritty. Will form hard lumps or clods when dry, difficult or impossible to crush in hands. Impermeable; no movement of water apparent through voids. Will remain suspended in water from 3 hours to indefinitely.

Muck and Organic Silt

Thoroughly decomposed organic material with considerable mineral soil material. Usually black, with a few fibrous remains. Odorous when dried and burnt. Found as deposits in swamps, peat bogs, and muskeg. Easily identified. May contain some sand or silt.

Peat

Partly decayed plant material. Mostly organic. Highly fibrous with visible plant remains.

Fig. 45. Identification by mechanical grain size analyses.
Notes. Mechanical analysis is necessary to identify soils into the various divisions and into PRA and Casagrande systems. In general, the value of soils as a foundation for structures and as a material of construction is determined by the grain sizes and the gradation of the soil mixture. Other widely used grain-size classifications are International, M.I.T., Natl. Pk. Serv., A.S.T.M.

Classification of Soils by Horizons

Soil Profile: A vertical cross section of the soil layers from the surface downwards.

The upper layer, surface soil or top soil. The upper part is designated A_{0} and is humus or organic debris. Indices are used for subdivision into transition zones as shown for A_{1}, A_{2}, etc. May range to 24 in . in depth.

The heavier-textured underlayer or subsoil. May range from 6 in . to 8 ft . in depth. May be subdivided into transition zones B_{1}, B_{2}, etc., as shown. The products of the leaching or eluviation of the A horizon may be deposited in horizon B.

The unweathered or incompletely weathered parent material.

Fig. 46.

The underlying stratum such as hard rock, hard pan, sand, or clay.

Notes. Structures or pavements are not usually placed on A horizon solls. Also the organic content of these soils may adversely affect stabilization. In cuts the C horizon soil does not usually have as good bearing value as the more weathered B horizon. Foundations for heavy structures are preferably founded on the D horizon where it is bedrock or unyielding.
P.R.A. CLASSIFICATION
TABLE 31. CHARACTERISTICS FOR IDENTIFYING P.R.A. SOIL GROUPS *
Established by Public Roads Administration and Highway Research Board. Classification as shown is latest modification. Extensively used by engineers for highways, airfields, and dams.

		A-1		A-2		A-3	$\begin{aligned} & A-4 \text { and } \\ & A-4-7 \dagger \end{aligned}$	$\begin{aligned} & \text { A.5 and } \\ & \mathrm{A}-5-7 \dagger \end{aligned}$	A-6	A-7	A-8
		NonPlastic	Plastic	NonPlastic	Plastic						
Textural Class		Uniformly Graded Granular Coarse to Fine		Poorly Graded Granular, Coarse, and Fine		Clean Sand or Gravel	Silt or Silt Loam	Silt or Silt Loam	Plastic Clay	Plastic Clay Loam	Muck and Peat
	Internal friction	High	High	High	High	High	Variable	Variable	Low	Low	Low
	Cohesion	High	High	Low	High	None	Variable	Low	High	High	Low
	Shrinkage	Not detrimental		Not significant	Detrimental if poorly graded	Not significant	Variable	Variable	Detrimental	Detrimental	Detrimental
	Expansion	None		None	Some	Slight	Variable	High	High	Detrimental	Detrimental
	Capillarity	None		None	Some		Detrimental	High	.High	High	Detrimental
	Elasticity	None		None	Some	None	Variable	Detrimental	None	High	Detrimental
Capillary rise		Low	High	36" max.	Over 36"	6" max.	High	High	High	High	Detrimental
	Liquid limit	25 max.	35 max.	35 max.	40 max.	Non-plastic	40 max.	Over 40	35 min .	35 min .	35-400
	Plasticity index	6 max.	4-9	Non-plastic	15 max.	Non-plastic	0-15	0-60	18 min.	12 min .	0-60
	Shrinkage limit	14-20		15-25	25 max.	Not essential	20-30	30-120	6-14	10-30	30-120

$\underset{\text { Fiel }}{\text { le }}$	d moisture equiva-	Not essential	$\begin{array}{\|c} \text { Not } \\ \text { essential } \end{array}$	$\begin{gathered} \text { Not } \\ \text { essential } \end{gathered}$	Not essential	$\stackrel{\text { Not }}{\text { essential }}$	30 max.	30-120	50 max.	30-100	30-400
$\begin{gathered} \text { Cen } \\ \text { eq } \end{gathered}$	trifuge moisture quivalent	15 max.		12-25	25 max.	12 max.	Not essential				
Shri	nkage ratio	1.7	-1.9	1.7-1.9	1.7-1.9	Not essential	1.5-1.7	0.7-1.5	1.7-2.0	1.7-2.0	0.3-1.4
Vol	ume change		-10	0-6	0-6	None	0-16	0-16	17 min .	17 min .	4-200
Line	eal shrinkage		-3	0-2	0-4	None	0-4	0-4	5 min .	5 min .	1-30
	\% Sand		-85	55-80	55-80	75-100	55 max.				
令	\% Silt		-20	0-45	0-45		High	Medium	Medium	Medium	$\begin{gathered} \text { Not } \\ \text { significant } \end{gathered}$
哥	\% Clay		-10	0-45	0-45		Low	Low	30 min .	30 min .	
\%	\% Passing No. 10	20-100	40-100								
\%	\% Passing No. 40	10-70	25-70								
0	\% Passing No. 200	3-25	8-25	$\begin{gathered} \text { Less than } \\ 35 \end{gathered}$	$\begin{aligned} & \text { Less than } \\ & 35 \end{aligned}$	0-10					

Fig. 47. Classification of non-uniform subgrade soils.

* Adapted from, Public Roods Administration and Highway Research Board Publications.
$\dagger \boldsymbol{A}-4$ or $\boldsymbol{A}-5$ soll with $A-7$ characteristics.

CLASSIFICATION

TABLE 32. CLASSIFICATION OF SOIL MIXTURES*

Fig, 48. Right angle soil chart.

Class	Per Cent		
	Sand	Silt	Clay
Sand	$80-100$	$0-20$	$0-20$
Sandy loam	$50-80$	$0-50$	$0-20$
Loam	$30-50$	$30-50$	$0-20$
Silt Loam	$0-50$	$50-100$	$0-20$
Sandy Clay			
\quad Loam	$50-80$	$0-30$	$20-30$
Clay Loam	$20-50$	$20-50$	$20-30$
Silty Clay			
\quad Loam	$0-30$	$50-80$	$20-30$
Sandy Clay	$55-70$	$0-15$	$30-45$
Clay	$0-55$	$0-55$	$30-100$
Silty Clay	$0-15$	$55-70$	$30-45$

* Adapted from Soil Cement Laboratory Handbook, Portland Cement Assoc.

Note. Determine proportions of sand, silt and clay by sieve analysis or inspection.
(Natural soils seldom exist separately as gravel, sand, silt, clay, but are found as mixtures.)

TABLE 33. CLASSIFICATION OF SOILS BY ORIGIN

Residual: Cumulose		Rock weathered in place-Wacke, laterite, podzols, residual sands, clays and gravels.
		Organic accumulations-peat, muck, swamp soils, muskeg, humus, bog soils.
	Glacial	Moraines, eskers, drumlins, kames-till, drift, boulder clay, glacial sands and gravels.
	Alluvial	Flood planes, deltas, bars-sedimentary clays and silts, alluvial sands and gravels.
	Aeolian	Wind-borne deposits-blow sands, dune sands, loess, adobe.
	Colluvial	Gravity deposits-cliff debris, talus, avalanches, masses of rock waste.
	Volcanic	Volcanic deposits-Dakota bentonite, volclay, volcanic ash, lava.
	Fill	Man-made deposits-may range from waste and rubbish to carefully built embankments.

Note. In general, residual or glacial deposits are preferable for heavy foundations. Important in soil surveys and engineering reports.

ATTERBERG LIMIT TESTS

Purpose. 1. To classify soils into P.R.A. or Casagrande Groups. 2. To assign soils a value as a foundation or construction material. 3. Construction control and laboratory reports. High values of L.L. and P.I. indicate high compressibility and low bearing capacity. High shrinkage values indicate excessive volume change.

The liquid limit (L.L.) of a soil is the water content at which the groove formed in a soil sample with a standard grooving tool will just meet when the dish is held in one hand and tapped lightly 10 blows with the heel of the other hand. In the machine method the L.L. is the water-content when the soil sample flows together for $1 / 2^{\prime \prime}$ along the groove with 25 shakes of the machine at 2 drops per sec.

Diameter of brass cup or evaporating dish about $41 / 2 \mathrm{in}$.
Size of sample: By hand 30 grams; by machine 100 grams. as shown, or

Several trials are made, the moisture content being gradually increased. Blows are plotted against water content and the liquid limit is picked off from the curve
L.L. $=\frac{\text { Weight of water }}{\text { Weight of oven-dried soil }} \times 100$

Example of Flow Curve
Adapted from Krynine, Soil Mechanics, McGraw-

Hill Book Company.

Divided soll coke before test

Adapted from Hogentogler, Engineering Properties of Soil, McGraw-Hill Book Company.

Fig. 49. Liquid limit (L.L.), A.S.T.M. 0423, A.A.S.H.O. T-89.

The plastic limit (P.L.) is the lowest watercontent at which a thread of the soil can be just rolled to a diam. of $1 / 8 \mathrm{in}$. without cracking, crumbling, or breaking into pieces.

Soil thread obove the plostic limit

$$
\text { P.L. }=\frac{\text { Weight of water }}{\text { Wt. of oven-dried soil }} \times 100
$$

Size of soil sample is $\mathbf{1 5}$ grams.
Soil which cannot be rolled into a thread is recorded as non-plastic (N.P.).

Fig. 50. Plastic limit (P.L.), A.S.T.M. D424, A.A.S.H.O. T-9a

TABLE 34. LIMITING VALUES

Base Course	Subgrade	Sub-base	Stab. Surf.	Soil Cement	Cem. Treated Base
No Shrinkage L.L. $=25$	Lineal Shrinkage P.I. $=6$ max.	L.L. $=35$ P.I. $=15$ max.	P.I. $=4 \%$ to 9	L.L. $=40$ P.I. $=18$ max.	L.L. $=25$ P.I. $=6$ to 9

The water content or moisture content is expressed as a percentage of the oven-dried weight of the soil sample. These soil constants are determined from the soil fraction passing the No. 40 (420 -micron) sieve.

Plasticity Index (P.I.): A.A.S.H.O., T-91. Numerical difference between liquid limit (L.L.) and plastic limit (P.L.) or P.I. = L.L. - P.L. Example: Given L.L. $=28$, P.L. $=24$, P.I. $=4$. Cohesionless soils are reported as non-plastic (N.P.). When plastic limit is equal to or greater than liquid limit the P.I. is reported as 0 , see Table 31.

Shrinkage Ratio (R): = bulk specific gravity of the dried soil pat used in obtaining shrinkage limit.

$$
R=\frac{\text { Weight of oven-dried soil pat in grams }}{\text { Volume of oven-dried soil pat in cc. }} \text { or } \frac{W_{0}}{V_{0}}
$$

Shrinkage Limit(s): A.S.T.M., A.A.S.H.O., T-92. Water content at which there is no further decrease in volume with additional drying of the soil but at which an increase in water content will cause an increase in volume.

$$
S=\left(\frac{1}{\text { Shrinkage ratio }}-\frac{1}{\text { Spec. gravity }}\right) \times 100
$$

Size of sample 30 grams.
Lineal Shrinkage is the decrease in one dimension of the soil mass when the water content is reduced to the shrinkage limit or the \% change in length occurring when a moist sample has dried out.

MOISTURE DETERMINATION

Purpose: 1. To determine moisture content for optimum moisture and maximum density relations. 2. To determine the amount of water in aggregates for concrete, bituminous, and other mixtures.

Gravelly soils: Use pycnometer method, Fig. 51, or heat method described below.

Sandy soils: Use Chapman flask, Fig. 52, or heat method described below.
Silts and clays: Use heat method described below.
Heat Method: For total moisture content or surface moisture content.

1. Obtain a representative sample. If a metric scale is available the sample should not be smaller than 100 grams. If an avoirdupois scale graduated by $1 / 2$ ounces is used, the sample should contain at least 50 ounces.
2. Weigh sample and record weight.
3. Place sample in pan and spread to permit uniform drying. Set pan in oven or on top of stove in a second pan to prevent burning of soil.
4. Dry to constant weight when total moisture is to be found; dry until surface moisture disappears when surface moisture content is desired. Temperature should not exceed $105^{\circ} \mathrm{C}$. ($221^{\circ} \mathrm{F}$.). Stir constantly to prevent burning.
5. After the sample has been dried to constant weight, remove from oven and allow to cool sufficiently to permit absorption of hygroscopic moisture. Weigh dried sample and record weight.
6. Compute the moisture content as follows:

Per cent moisture $=\frac{\text { weight of wet soil }- \text { weight of dry soil }}{\text { weight of dry soil }} \times 100$

Fig. 51. Specific gravity and surface moisture content of aggregate, pycnometer method.

Use of the Chapman Flask:

Fill to the $200-\mathrm{ml}$. mark on the lower neck with water. Add 500 grams of moist soil and read the combined volume $=V$ on upper scale. $\quad M=$ approximate percentage of surface moisture.

$$
M=\frac{V-\frac{500}{\text { sp.gr. }}-200}{200+500-V} \times 100
$$

Sp. gr. = the bulk specific gravity of the surface dry aggregate found by the equation $500 \div\left(V^{\prime}-200\right)$.
V^{\prime} differs from V in that 500 grams of dry sample is added instead of 500 grams of a moist sample as in the case of V. This method is only practical for the surface moisture of relatively sandy soils.

Use stirring rod to eliminate air.

Fig. 52. Specific gravity and surface moisture content of aggregate, Chapman flask method.

MAXIMUM DENSITY, OPTIMUM MOISTURE, PROCTOR NEEDLE PLASTICITY TEST

Purpose of maximum density-optimum moisture test is to determine the percentage of moisture at which the maximum density can be obtained when soil is compacted in fill, earth dams, embankments, etc.
After the maximum density curve has been obtained, these samples may be subjected to the Proctor needle for resistance to penetration.

[^7]Then subjecting soil at the site to the Proctor needle, the amount of compaction of soil at the site may be obtained. See Fig. 55(a).

Maximum Density, Optimum Moisture, as per A.S.T.M.-D698-A.A.S.H.O.-D: T-99.

Fig. 53.
Testing Procedure. $6 \mathrm{lb} . \pm$ (3000 grams) of air-dried soil slightly damp and passing the No. 4 sieve is mixed thoroughly, then compacted in the mold in 3 equal layers, each layer receiving 25 blows from the rammer with a controlled drop of 1 ft . The collar is removed, the soil struck off level and the mold weighed.
(Wt. of soil plus mold - wt. of mold) $\times 30$
$=$ wet weight per cubic foot or wet density
A $100-\mathrm{g}$. sample from the center of the mold is weighed, then dried at $230^{\circ} \mathrm{F}$., and the moisture content is determined.

Pulverize 6-lb. sample, add about 1% water, and repeat test. Repeat until soil becomes saturated (about 5 times). Plot wet-density curve. See Fig. 54. Compute dry density by formula and plot curve:

$$
\text { Dry density }=\frac{\text { Wet wt., lb. per cu. ft. }}{\% \text { moisture }+100} \times 100
$$

In Fig. 54 enter at top of dry density curve and read optimum moisture and maximum weight of soil 20.2% and 103.5 lb .

Fig. 54.

Modified A.A.S.H.O. Method.*

Same as above except:

1. Rammer to weigh 10 lb .
2. Rammer to have controlled drop of 18 in.
3. Soil compacted in mold in 5 equal layers, 25 blows to each layer.

The highest dry density is recorded as laboratory unit weight.
Note. Modern air field compaction equipment can secure greater densities than can be obtained by the standard Proctor or A.A.S.H.O. Test. If field compaction or vibration will give greater densities on any job than the test, the higher density should be used to control compaction.

Proctor Needle Plasticity Test \dagger

Five pounds of dry soil passing a No. 10 sieve is mixed thoroughly with just enough water to make it slightly damp, then compacted in the mold in 3 layers. Each layer is given 25 blows with the rammer dropped 1 ft . The soil is then struck off level with the cylinder, weighed, and the stability determined with the plasticity needle by measuring the force required to press it into the soil at the rate of $1 / 2 \mathrm{in}$. per sec. A small portion of the soil is oven-dried to determine the moisture content. This procedure is repeated 3 to 6 or more times, each time adding about 1% more water until the soil becomes very wet. The density and plasticity needle readings are plotted against moisture content. See Fig. 54. Thu in Fig. 54 a needle reading of 400 gives a moisture content of 23%.

Fig. 55(a).

[^8]

Fig. 55(b). Apparatus.

California Bearing Ratio

Purpose is to obtain relative resistance of a soil in place or soil to be placed and compacted to a specified degree to a standard broken stone layer. The resistance of the standard layer is given in the last column of the report form for California bearing ratio on p. 130.

For soil in place apply a 3 sq in . end area piston at a constant rate of penetration of 0.05 in . per minute to a total penetration of 0.5 in . The penetration force required per square inch at the values in the left-hand column of the report form for California bearing ratio on p. 130 is recorded and stated as a ratio of the corresponding values in the right-hand column of the report; usually the values for $0.1-\mathrm{in}$. deflection are used.

Laboratory determination is made by remolding the samples of the soil until it has the specified density using the A.S.T.M. or A.A.S.H.O. methods given above, except that 55 blows of the rammer are used instead of 25 and material is passed through a $3 / 4-\mathrm{in}$. sieve instead of a No. 4 sieve. These samples are then loaded by means of the same piston and recorded as given above for the field test.

For the purpose of determining the effect of saturating conditions on the soil, tests may be made on soaked samples.

FIELD DENSITY (UNIT WEIGHT) TEST *

Purpose. 1. To obtain the natural density of soil in place (a) as an indication of its stability or bearing value as foundation, (b) to compute

[^9]the shrinkage or swell when the soil is removed and placed in embankment at a higher or lower density. 2. To determine the per cent of compaction being obtained to check against requirements of specifications.

Method of Determining Weight per Cubic Foot of Soil in Place. Calibrated Sand Method

The density of a soil layer may be determined by finding the weight of a disturbed sample and measuring the volume of the space occupied by the sample prior to removal. This volume may be measured by filling the space with a weighed quantity of a medium of predetermined weight per unit volume. Sand, heavy lubricating oil, or water in a thin rubber sack may be used.

1. Determine the weight per cubic foot of the dry sand by filling a measure of known volume. The height and diameter of the measure should be approximately equal, and its volume should be not less than $0.1 \mathrm{cu} . \mathrm{ft}$. The sand should be deposited in the measure by pouring through a funnel or from a measure with a funnel spout from a fixed height. The measure is filled until the sand overflows and the excess is struck off with a straightedge. The weight of the sand in the measure is determined, and the weight per cubic foot computed and recorded.
2. Remove all loose soil from an area large enough to place a box similar to the one shown in Fig. 57 and cut a plane surface for bedding the box firmly. A dish pan with a circular hole in the bottom may be used.
3. With a soil auger or other cutting tools bore a hole the full depth of the compacted lift.
4. Place in pans all soil removed, including any spillage caught in the box. Remove all loose particles from the hole with a small can or spoon. Extreme care should be taken not to lose any soil.
5. Weigh all soil taken from the hole, and record weight.
6. Mix sample thoroughly, and take sample for water determination.
7. Weigh a volume of sand in excess of that required to fill the test hole, and record weight.
8. Deposit sand in test hole by means of a funnel or from a measure as illustrated in Fig. 57 by exactly the same procedure as was used in the determination of unit weight of sand until the hole is filled almost flush with original ground surface. Bring the sand to the level of the base course by adding the last increments with a small can or trowel and testing with a straightedge.
9. Weigh remaining sand, and record weight.
10. Determine the moisture content of soil samples in percentage of dry weight of sample.
11. Compute dry density from the following formulas:

$$
\begin{gathered}
\text { Vol. soil }=\frac{\text { Wt. of sand to replace soil }}{\text { Wt. per cu. ft. of sand }} \\
\% \text { moisture }=\frac{\text { Wt. of moist. soil-Wt. of dry soil }}{\text { Wt. of dry soil }} \times 100 \\
\text { Moist density }=\frac{\text { Weight of soil }}{\text { Volume of soil }} \\
\text { Dry density }=\frac{\text { Moist density }}{1+\frac{\% \text { of moisture }}{100}}
\end{gathered}
$$

$$
\% \text { compaction }=\frac{\text { Dry density }}{\text { Maximum density }} \times 100
$$

Example. Given:

$$
\begin{aligned}
\text { Wt. per cubic foot of sand } & =100 \mathrm{lb} . \\
\text { Wt. of moist soil from hole } & =5.7 \mathrm{lb} . \\
\text { Moisture content of soil } & =15 \% \\
\text { Wt. of sand to fill hole } & =4.5 \mathrm{lb}
\end{aligned}
$$

Required: Density and per cent compaction.
Solution: Vol. soil $=\frac{4.5}{100}=0.045 \mathrm{cu} . \mathrm{ft}$.

$$
\begin{aligned}
& \text { Moist density }=\frac{5.7}{0.045}=126.7 \mathrm{lb} \\
& \text { Dry density } \\
& =\frac{126.7}{1+15 / 100}=110.0 \mathrm{lb}
\end{aligned}
$$

Given maximum density $=115 \mathrm{lb}$. (from density test).

$$
\% \text { compaction }=\frac{110}{115} \times 100=95.7 \%
$$

Note. In gravel soils material over $1 / 4 \mathrm{in}$. is screened out and correction made.

Chunk Sample Method. 1. Cut sample $4^{\prime \prime}-5^{\prime \prime}$ in diameter full depth of layer. 2. Determine per cent moisture. 3. Trim sample and weigh to $1 / 2$ oz: 4. Immerse sample in hot paraffin, remove, cool, and weigh again. 5. Compute volume of paraffin using 55 lb . per cu. ft. 6. Compute volume of sample by weighing in water (correcting for volume of paraffin). 7. Compute density data by formulas above.

Fig. 56. Field density determination apparatus, dry sand method.

Fig. 57. Field density test.

Fig. 58. Rubber sack inflated to fill hole with known volume of water.

Fig. 59. Pump and jar to fill hole with known volume of oil. S.A.E.-40.

TABLE 35. BEARING VALUES AND PER CENT COMPACTION REQUIRED

Max. Dry Density	Soil Rating	Recommended Compaction
90 lb. and less	No good	
$90 \mathrm{lb} .-100 \mathrm{lb}$.	Very poor	$95-100 \%$
$100-110 \mathrm{lb}$.	Poor to very poor	$95-100 \%$
$110-120 \mathrm{lb}$.	Poor to fair	$90-95 \%$
$120-130 \mathrm{lb}$.	Good	$90-95 \%$
130 lb. and over	Excellent	$90-95 \%$

Note. Density or $\frac{W t}{\text { Vol. }}$ may be expressed as pound per cubic foot or grams per cubic centimeter. Density in grams per cubic centimeter $=$ bulk specific gravity.

MECHANICAL ANALYSIS (GRAIN SIZE)

Purpose. 1. To identify homogeneous soils in the major divisions. See pp. 108 and 109. 2. To classify soil mixtures occurring in a natural state, Table 32 \& Fig. 46. 3. To classify soil into the P.R.A. or Casagrande groups. See pp. 110 and 111, also Vol. I, p. 3-06. 4. To design or control stabilized soil mixtures. 5. To determine frost heaving potentialities. 6. To determine effective size (D_{10}) and uniformity coefficient (Cu) for the design and control of filters and subdrainage backfill.

Sieve Analysis

Size of sample to be 400 to 750 grams-the coarser the material the larger the sample required.
Take sample by quartering or with sample splitter.
Dry surface moisture by heating the quar-

Hydrometer Test
Fig. 60. Mechanical analysis of soils. tered sample at less than 212° F., or boiling point of water at high altitudes, in open pan until surface water disappears and sample is apparently dry and will not lose more weight with additional heating.

Break up cakes with mortar and pestle.
Record dry weight of sample.
Proceed to pass material through screens by placing sample in a stack of sieves, largest size on top, and shake vigorously with horizontal rotating motion balancing on bumper or pad until no more material will pass through each screen.

Weigh amount retained on each sieve, compute per cent of total weight of sample, and plot curve.

Washing is recommended for No. 200 sieves and smaller.

Partly immerse the largest sieve in a pan of water and agitate.

Take material and water from pan and repeat for next smaller size sieve. Agitate smallest sieve in several water baths until water remains clear. Air-dry portions retained in sieves, weigh, and plot curve.

U.S.Standard sieve numbers
3
3

Size of sieve openings in inches

Groin size in millimeters

10050	10	5	1	0.5	0.10 .05	0.010 .005	0.001
Groin size in inches							

$43210.5 \quad 0.10 .05 \quad 0.010 .0050 .0010 .00050 .0001$.

Fig. 61. Typical grain size curve.

Effective size (D_{10}) of a soil is the particle size that is coarser than 10% (by weight) of the soil; that is, 10% of the soil consists of particles smaller than the effective size (D_{10}) and 90% consists of larger particles. Example. In Fig 62, effective size (D_{10}) is 0.02 mm .

Uniformity coefficient (Cu) is computed by first determining the size that is coarser than 60% of the soil and dividing that size by the effective size (D_{10}), i.e., $C u=\frac{60 \% \text { size }}{10 \% \text { size }}$.

Example. In chart, $C u=\frac{0.5}{0.02}=25$.

Fig. 62. Effective size (D_{10}) and uniformity efficient ($C u$).

Note. The $C u$ of filter backfill should not be over 20 . The D_{10} of nonfrost heaving uniform soil is 0.02 mm . minimum.

Engineer

OPTIMUM MOISTURE-MAXIMUM DENSITY

Laboratory Test

Location \qquad
Date \qquad

Soil sampler \qquad
Soil tester \qquad

Control soil \#

Item	$\begin{gathered} \text { Run } \\ 1 \end{gathered}$	$\begin{gathered} \text { Run } \\ 2 \end{gathered}$	$\begin{gathered} \text { Run } \\ 3 \end{gathered}$	$\begin{gathered} \text { Run } \\ 4 \end{gathered}$	$\begin{gathered} \text { Run } \\ 5 \end{gathered}$	$\begin{gathered} \text { Run } \\ 6 \end{gathered}$
Weight of cylinder + wet soil Weight of cylinder Weight of wet soil						
Weight of wet sample + pan Weight of pan Weight of wet sample						
Weight of dry sample + pan Weight of pan Weight of dry sample						
Weight of moisture						
\% of moisture						
Wet density						
Dry density						
Optimum moisture			imum	densit		

Engineer

TUTTLE, SEELYE, PLACE \& RAYMOND

Report on Density Determination

Engineer
SOIL STUDIES *

* From Haller Engineering Associates, Inc. 3

Engineer
 SOILS CLASSIFICATION *

Engineer
 CALIFORNIA BEARING RATIO*

California Bearing Test Data

Condition of Sample				
Penetration (inches)	Lb. per C/B Sq. In. Ratio	Lb. per C/B Sq. In. Ratio	Lb. per C/B Sq. In. Ratio	Standard
0.025				
0.050				
0.075				
0.10				1000
0.20				1500
0.30				
0.40				
0.50				
Unit dry weight (pounds per cu. ft.)				,
Expanaion \%				

Water Contmatr-Percentage of Dry Wemget

\dagger Write sample number at corresponding depth. Designate dry samplea by D, wash samples by W, undisturbed samples by U, rock cores by C.
\ddagger When drilling cores in rock, record the percentage of recovery in each foot of penetration.

BORING LOG (Continued)

Location of project \qquad
Location of boring \qquad
Coordinates \qquad and \qquad
Drill No.
Boring foreman
Size and weight of casing \qquad Depth \qquad

Length of hole \qquad Earth \qquad Rock \qquad
Type of rock drill used \qquad
Weight of hammer \qquad
Average fall of hammer \qquad
Elevation of ground water surface \qquad

Record of Work

Boring inspector \qquad
Remarks
\qquad
\qquad
\qquad ?

Note. Mark samples with name of base, name of structure, hole number, sample number, depth, and material.

AGGREGATES

FIELD TESTING

Specific Gravity and Surface Moisture

Use fruit jar (see Fig. 51) and 2-kilo. (5-lb.) balance accurate to $1 / 10$ gram.

Specific Gravity. Weigh jar full of water. Empty jar, place therein 700 grams surface-dry sample. Fill jar with water and weigh. Determine specific gravity from nomograph. See Fig. 51.

Surface Moisture. Same procedure except 700 -gram sample is moist aggregate to be tested.

Precautions. Roll submerged sample to remove air. Jar must be dry outside when weighed. Use eye-dropper to insure completely filling with water. Remove foam.

Surface Moisture, Heat Method. Heat a weighed sample at $212^{\circ} \mathrm{F}$., in open pan until surface water disappears (3 to 10 minutes). Weigh again. The difference between the original and the final weight is calculated as per cent of surface moisture.

Total Moisture Content. Heat weighed sample in open pan above $212^{\circ} \mathrm{F}$. for 30 minutes or to constant weight. The difference between the original and the final weights is calculated as per cent of total moisture.

TABLE 36. APPROXIMATE SURFACE MOISTURE

(Use only when testing is impracticable)

	Per Cent
Condition of Aggregate	by Weight
Very wet sand	6 to 8
Average stock pile sand, drained	$31 / 2$ to 4
Moist sand	2
Moist gravel or crushed rock	2

Tests of Gradation. Sieve Analysis, A.S.T.M. C-136

Quarter sample until sufficient material remains to give a dry sample as follows: sand under No. 10, 100 grams (0.2 lb .); sand under No. 4,500 grams (1.1 lb.); coarse sand, 1000 grams (2.2 lb .); coarse aggregate under 1 in . maximum, 10 kg . (22 lb .); 2 in . maximum, 20 kg . (44 lb .); 3 in. maximum, 30 kg . (66 lb .). Use square- or round-aperture sieves as specified and of the sizes specified. If not specified, use square-mesh sieves as follows: bituminous aggregates, Nos. 200, 80, 40, 10, 4, $3 / 8 \mathrm{in}$., $3 / 2 \mathrm{in}$., $3 / 4 \mathrm{in} ., 1 \mathrm{in} ., 11 / 4 \mathrm{in} ., 11 / 2 \mathrm{in}$.; concrete aggregates, Nos. 100,.50, 30, 16, 8, $4,3 / 8 \mathrm{in} . ; 3 / 4 \mathrm{in} ., 11 / 2 \mathrm{in}$., 3 in . Use 8 -in.-diameter sieves for samples of 5 kg . (11 lb .) or less and 16 -in.-diameter sieves for larger samples. Use
balance or scale sensitive to 0.1% of sample weight. Set sieves in sequence with smallest size on bottom. Weighed sample is set on top sieve, and sieves are vibrated by lateral and vertical motion with jarring action. Weigh amount retained on each sieve and in pan, and compute percentage.

Fineness Modulus

Add cumulative per cent retained on each of U. S. Standard Sieves listed above for concrete. Divide sum by 100 ; result equals fineness modulus.

Material Finer than No. 200 Sieve-Silt and Clay in

 Fine Aggregate, A.S.T.M. C-117Use two sieves, No. 200 and No. 16, and a vessel large enough to contain the sample covered with water, and permit agitation. Select a moist sample large enough to weigh 500 grams (1.1 lb.) when dry. The sample after being dried to constant weight is placed in the container and covered with water. The contents of the container are agitated vigorously and the wash water is poured over the nested sieves, the No. 16 being on top. The operation is repeated until the wash water is clear. The washed aggregate is dried to constant weight and weighed to nearest 0.02%.
$\%$ of minus No. 200 material

Fig. 63. Sieves.

$$
=\frac{\text { original dry weight }- \text { dry weight after washing }}{\text { original dry weight }} \times 100
$$

Approximate Amount of Silt and Clay

Place fine aggregate in a pint bottle to a height of 4 in .; then add water until the bottle is nearly full. Shake thoroughly, and allow to settle for 1 hr . or until the water is clear. Silt and clay will settle on top. The thickness of this layer should not be over $1 / 8 \mathrm{in}$. Alternative: Place 5 oz . of sand in $12-\mathrm{oz}$. graduated bottle and add water until the mixture equals 10 oz . after shaking. Allow to settle as above. If silt and clay content is more than 3% or as specified, sand should be washed or additional laboratory tests made.

Organic Impurities in Fine Aggregate (Colorimetric Test), A.S.T.M. C- $\mathbf{4 0}$
Fill a 12 -oz. graduated prescription bottle to the $41 / 2$-oz. mark with the sample to be tested. Add a 3% solution of caustic soda, known as sodium
hydroxide, until the volume of sand and solution after shaking reaches the 7 -oz. mark. Let the bottle stand for 24 hr ., then observe the color of the liquid above the sand. If colorless or light amber color, the sand may be considered satisfactory. If it is light brown or darker, the sand should be sent to laboratory for additional tests.

Unit Weight of Aggregate, Dry Rodded Method, A.S.T.M. C-29

Use a calibrated bucket of minimum No. 11 gage metal, a $5 / 8-\mathrm{in}$. by $24-\mathrm{in}$. bullet-pointed tamping rod, and a scale accurate to 0.5%. The capacity of the bucket in cubic feet should be as follows: $1 / 2$-in. maximum aggregate size use $1 / 10 \mathrm{cu} . \mathrm{ft}$.; 2 -in. maximum aggregate size use $1 / 3$ or $1 / 2 \mathrm{cu} . \mathrm{ft}$.; 4 -in. maximum aggregate size use $1 \mathrm{cu} . \mathrm{ft}$. Aggregate should be room dry and thoroughly mixed. Fill the measure in 3 equal layers, rodding each layer 25 times. Strike off top layer and determine net weight. Calculate weight per cubic foot (unit weight). Note. In rodding use only enough force to penetrate the layer being rodded. The rod should not strike the bottom of the bucket.

Voids in Aggregate, A.S.T.M. C-30

$$
\% \text { of voids }=\frac{(\text { specific gravity of aggregate } \times 62.4)-\text { weight }}{(\text { specific gravity of aggregate } \times 62.4)} \times 100
$$

where weight equals the weight in pounds per cubic foot of the aggregate as determined by the unit weight test above (A.S.T.M. C-29). Specific gravity is determined by nomograph, p. 116, or by laboratory.

Absorption of Aggregates

The following table may be used as a guide for the field where A.S.T.M. Tests C-127 and C-128 are not practicable.

TABLE 37. APPROXIMATE ABSORPTION OF WATER BY AGGREGATES

	Per Cent
	by Weight
Average sand	1.0
Calcareous pebbles and crushed limestone	1.0
Trap rock and granite	
Porous sandstone	\cdots

TUTTLE, SEELYE, PLACE AND RAYMOND ARCHITECT-ENGINEER FORT DIX NEW JERSEY

Contract No.	Date of test
Contractor	Type construction
Source of material	Plant
Sampled at	
Specification	Used at station or building

REPORT ON AGGREGATES-SIEVE ANALYSIS

Screen or Sieve Size	Round or Square Shape	Weight Retained	Weight Passing	$\%$ Passing	\% Spec. Reqmts.	
3'					Min. Max.	Weights of Sample
21/2"						
234"						
$2^{\prime \prime}$						
132'						
134"						gravel (or
$1{ }^{\prime \prime}$						eta
34"						
$32^{\prime \prime}$						
3/8'						cumulative $\%$ retained on each of Nos. 100, 50,
$34^{\prime \prime}$						$30,16,8$, and $4,3 / 8$-in., 3/-in., 112 -in., and 3 -in.
No. 4						$\text { sizes } \div 100=$

Remarks:

Remarks:

Tested by:
Approved Disapproved $\quad *$ Inspector

GRADING

CHECK LIST FOR INSPECTORS

Inspectors' Equipment

Complete set of approved plans and specifications.
Surveying instruments if required.
$100-\mathrm{ft}$. tape and $6-\mathrm{ft}$. rule.
Line level and line.
Equipment for sampling and testing soils as required.

Procedure in Inspection

Preparation of Site. Check against specifications for:
Stripping.
Storage of topsoil.
Removal of obstructions.
Clearing and grubbing.
Protection of trees.
Removal of peat, muck, humus, sod.
Removal or resetting of poles.
Resetting or installation of culverts.
Drains, sewers, water pipes, utilities.
Cavities and trenches to be backfilled and tamped.
Stake grades and slopes.
Cross-section borrow pits.
Cross-section rock as exposed before excavating.
Selection of Material. Follow specifications in selecting material such as placing granular material under paved areas.

Broken rocks on slopes and in marshy foundations.
Wasting peat, muck, frozen clods, organic matter.
Soil Compaction. Check specification requirements such as:
Weight of equipment and number of passes. Eight to twelve passes with sheepsfoot roller are customary. Three-wheel roller, 8 to 12 tons for final rolling of each layer and on the subgrade beneath base course. Caterpillar tractors may be used for granular soils when sheepsfoot or three-wheel rollers are not effective.

Thicknesses of layers rolled (usually 4 in . to 12 in .).
Harrows, rotary tillers, reduction of moisture and soil mixture.
Provision of water distribution in dry weather.
Provision of uniform travel for construction equipment.
Do not permit end dumping over face of high fills.
Stable slopes may be obtained by filling beyond final grade and subsequently excavating to that grade.

Protection of pipes from injury by equipment during construction.

BITUMINOUS PAVING

FIELD SAMPLING

Material and Method	When Sampled	Size of Sample	Instructions
Asphalt, cement, crude asphalt, refined asphalt, bituminous materials, A.S.T.M. D-140	From each source in advance of work and from each carrier as delivered	1 qt. min. Asphalt emulsion or cut-back 2 qt . min.	Draw sample from top, bottom, and middle of tank by lowering bottle or can fitted with a stopper or lid lifted by attached wire, or sample may be taken from drain cock after initial draining. Solid or semi-solid asphalt sampled with clean hatchet or putty knife. Place liquids in smallmouth cans with cork-lined screw top. Place semi-solid material in friction lid cans. Ship erated or boxed. Mark cans.
$\underset{\text { D-290 }}{\text { Asphalt, A.S.T.M. }}$	Daily, for penetration test	$3 \mathrm{oz} . \mathrm{min}$.	Draw sample into can from valve over asphalt bucket on plant. Mix and pour into tin or glass container.
Asphalt sand, screenings, crushed stone and gravel, mineral fillers, A.S.T.M. D-75	Each source First shipment and if any change for laboratory tests Daily from piles or bins for plant tests	Fine aggregates 5 lb. min.; coarse aggregates 20 lb .	Quarter samples to size required. Sample from pits by channeling open face or from test hole. Sample from stock piles in various places avoiding base of pile. From cars, sample from top, middle, and bottom. Ship in strong, tight bags or boxes. At plant, sample separate sizes and composite mixture for daily sieve tests.
Heated and dried aggregates, A.S.T.M. D-290	Daily from bins	Fine, 5 lb .; coarse, 20 lb .	Pass shovel or pan quickly through stream of hot material as it flows from bin for daily sieve tests.
Bituminous mixtures (sheet asphalt, bituminous concrete, road mix, sand asphalt, plant mixes), A.A.S.H.O.T-41, A.S.T.M. D-290	Daily, or as specified or directed	Sheet asphalt, 1 lb . min.; bituminous concrete, 5 lb. min.; cold mixes, 15 lb . min.; compressed mixture, 6 to 12 in . sq . by full depth	At plant, take small portions from a number of batches during day, mix, and quarter to size. At paving site, compose sample from top, bottom, front, and back of load. Road mixes, shovel from course full depth, mix, and quarter. Ship eamples in clean, tight box, carton, or friction lid can. Compressed samples, select location where mix is representative, before seal coat and after final rolling. Cut exact square to full depth of course.

Maritiva Sampleg-All Materiala

General. Same as for concrete field ampling, p. 11.
Bituminous Material. Railroed oar number, refinery, type, grade, propaned use.
Asgregaten. Kind, source, where sampled, separated size or combined mixture.
Bituminous Mixturies. Typa, plant, date, specified mix, tiation or location placed.

FIELD OR PLANT TESTS

May be used when full-scale laboratory tests are not practicable
Penetration of Asphalt (A.S.T.M. D-5) is the distance, measured in units of $1 / 10 \mathrm{~mm}$., that a standard blunt-point needle will penetrate a sample of asphalt at $77^{\circ} \mathrm{F}$. when the needle is loaded with 100 grams applied for 5 seconds. Sample selected per p. 139, melted, stirred, and poured into container, 2.17 in . diameter by 1.38 in . Place in water for 1 hour at $77^{\circ} \mathrm{F}$. to a depth of 4 in . and 2 in . off bottom of vessel. Sample is penetrated in at least 3 places, and average penetration is reported.

Notes. Sample must be maintained at $77^{\circ} \mathrm{F}$. during the test by placing in a transfer dish filled with water and by returning the sample to the water bath after each test. The needle must be wiped after each test. Metal "ointment box" of above dimensions may be obtained at drug store. The inspector should have orders as to action to take if penetration is not as specified.

Normal Penetration Limits

$$
\left(77^{\circ} \mathrm{F} ., 100 \mathrm{~g} ., 5 \mathrm{sec} .\right)
$$

Fig. 64. Penetration test.
Pat Test of Sheet Asphalt. Select small sample of hot mix and note the temperature. Place at once upon a sheet of unglazed manila paper, resting upon a flat board. Fold the paper over the sample and press heavily with the flat of a wood paddle 6 in . long by 4 in . wide. Strike the paper a sharp blow with the paddle, open the paper, and remove the sample. If the stain is medium dark, bitumen content is about right. If it is very dark or sloppy, bitumen is excessive. If it is light and dry, bitumen is insufficient. If only the imprint of single sand grains appears, the amount of filler is deficient. If the space between sand grains is filled in, aggregate grading is good.

Percentage of Bitumen and Mechanical Analysis of Mixtures. The following method is for routine control where A.A.S.H.O. Tests T-58 and T-30 are not practicable. Dissolve and wash all the bitumen from a weighed sample of the mix with carbon tetrachloride, gasoline, or other solvent such as benzol, xylene, or chloroform, and weigh the recovered aggregate.
$\%$ of bitumen

$$
=\frac{\text { weight of original sample }- \text { weight of recovered aggregate }}{\text { weight of original sample }} \times 100
$$

Note. Wash aggregate clean. Avoid loss of any aggregate. If the percentage of bitumen varies from that specified, check the plant scales and the weighing operation. For sieve analysis of dried recovered aggregate (A.S.T.M. C-136 and C-117), see pp. 134 and 135, Aggregate Field Testing.

Field Density of Compressed Mixture. Immerse the weighed sample in hot paraffin, remove, cool, and weigh again. Weight gain is weight of paraffin. Volume of paraffin coat is calculated using 55 lb . per cu. ft. as weight of paraffin. Weigh the coated sample in water, record weight, and calculate the volume of the sample or measure the volume of the displaced water by an overflow device (weight water $=62.4 \mathrm{lb}$. per cu. ft .). Deduct the volume of the paraffin coat. Field density (lb. per cu. ft.$)=$ net weight of sample in pounds \div volume of sample in cubic feet. The percentage of compaction $=$ field density \div theoretical maximum density (from laboratory).

$$
\% \text { of voids }=\frac{\text { maximum density }- \text { field density }}{\text { maximum density }} \times 100
$$

Note. Compaction to $94-96 \%$ of maximum density is usually specified.

CHECK LIST FOR INSPECTORS

BITUMINOUS PAVING-GENERAL

Inspectors' Equipment

Complete set of latest approved plans and specifications.
Penetrometer with extra needles and $3-\mathrm{oz}$. tins (optional; needed only when asphalt penetration is checked on job).
Supply of report forms, sample tags, cartons, cans, and sacks for shipping samples.

Metal dipper, pans, shovels, pails, etc., for sampling.
Armored thermometers of specified temperature range for both plant and field.

Set of screens or sieves of specified aggregate sizes.
Wire brush for cleaning sieves.
1 balance of 500 -gram capacity.
1 scale or balance of $10-$ to $25-\mathrm{lb}$. capacity.
Supply of carbon tetrachloride or other solvent such as benzol, carbon disulfide, chloroform, or gasoline.

Putty knife for checking pavement depth.
6 -ft. folding rule and $50-\mathrm{ft}$. steel tape.
$10-\mathrm{ft}$. straightedge, $3-\mathrm{ft}$. straightedge, and template cut to required crown.

Grade line and string level.
Field books, pencils, keel or crayon.
Fruit jar, Chapman flask, or hot plate and pan for moisture content (not necessary for mixes with hot, dry aggregates).

Procedure in Inspection

Bituminous Treatments

Prime Coat. Applied to receptive surfaces; should soak in.
Subgrade or Base. Compacted to specified density; should not shove, creep, or weave under a moving road roller.

Width, elevation, and cross section.
Condition to receive prime; excess loose material removed but surface not so tightly bound as to be impervious; slightly moist surface better for cutbacks and tars than dry and dusty; surface may be quite damp for asphalt emulsions.
Application. Bituminous material tested, approved, and of specified type.
Distributor truck calibrated and volume of material in load determined.
Distance each load should cover, at the width spread and at the gallonage per square yard specified, measured off and marked conspicuously. Amount of bitumen used is usually 0.20 to 0.45 gal . per sq. yd. for tight surfaces and 0.4 to 0.6 for open surfaces.

Distributor checked for specified requirements, usually: mechanical circulator, dual tires, pressure gage, range of application rates, positive shut-off, thermometer, spray bar width, measuring stick, tachometer, application pressure, wheel load or tire pressure, clean apertures or jets, load calibration and capacity.

Specified temperature of application adhered to.
Net gallonage computed by applying temperature conversion factor to gallonage measured at application temperature, see p. 158.

Provision to prevent overlap at beginning and end of application strip; usually building paper is laid down to insure a clear-cut joint.

Cover Material. May or may not be specified. If not specified, a light
cover in spots may be necessary to prevent migration of bitumen on steep grades and banked curves.

If specified, check following: gradation, type, moisture content, rate and uniformity of application, dragging, rolling, brooming and sweeping.

Curing Period. As specified, should elapse before subsequent applications or pavement courses.

Tack Coat. Usually applied to hard, dense impervious surfaces, without soaking in.

Surface. Cleaned or swept, dry but not dusty, patched, brought to line, grade and cross section as specified.

Application. Same as for prime coat except for following precautions:
As application is very light (0.08 to 0.15 gal. per sq. yd.) distributor must travel at very high speed; tachometer is a necessity.

All distributor bar apertures or jets must be open and functioning.
Uniformity can be obtained by use of burlap drag behind distributor.
Great care must be exercised to prevent overlapping at sides and ends of strips; resulting fat spots will seriously affect pavement.

Surface must be kept tacky or sticky till pavement is laid, not allowed to be covered with dust or dirt; traffic must be kept off.

Seal Coat. Surface. Prepared as per specifications.
Application. Same as for prime coat with same precautions as for tack coat except bitumen is usually immediately covered with aggregate. Leave an 8 -in. strip of bitumen uncovered for lapping adjacent strips.

Cover Material. May or may not be specified. If specified, check type, gradation, moisture content, rate and uniformity of application.

Applied at once after bitumen is spread so particles can be embedded. Material should be spread out ahead in piles or windrows or spreader trucks should be on job before bitumen is applied.

Specified method of uniformly distributing cover material followed.
Rolling, if specified, began at once and continued until aggregate is embedded. Excessive rolling, causing crushing of particles, avoided.

Broom or wire mesh dragging carried on simultaneously with rolling unless otherwise specified.

Excess cover material swept off after rolling if specified.
Back spotting of bleeding areas with cover material for several days.

Mix-in-Place (Road Mix)

Subgrade or Base. Compacted to specified requirements and shaped to correct width, grade and cross section.

Prime Coat. May or may not be specified. Same as for bituminous treatments.

Aggregates for Mix. Source approved and laboratory testing verified. Gradation checked before use and continuously during operations.
Aggregate may be bank run or artificially mixed as specified; in either
case the aggregate, before mixing with bitumen, should conform to specified gradation.

Continuous check on any special requirements such as liquid limit, plasticity index, percentage of silt and clay, either by sending samples to laboratory or by field testing as directed by superiors.

Preparation of Aggregate. Loose aggregate spread flat or in windrows in such volume and to such depth as to produce specified thickness when compacted.

Coarse or fine material mixed into aggregates to produce specified gradation if necessary.

Mixed aggregate brought to specified moisture content by pulverizing and aeration if wet or by sprinkling if dry. If not specified otherwise, usually maximum 2% moisture for cutback asphalts and tars, and 4 to 5% moisture for emulsions. Sprinkling necessary only when aggregate is very dry and dusty.

As contractor will demand quick moisture readings, use of fruit jar pycnometer is recommended; see p. 134.

Application of Bituminous Material. (a) By Set Quantity per Square Yard. Same as for bituminous treatments, prime coat. Follow job specification for increments and sequence of application. If not specified, best practice is to apply in increments of 0.5 to 0.6 gal. per sq. yd. with partial mixing between increments. For dense graded mixes, 0.5 to 0.6 gal. per sq. yd. per inch of depth of finished mix should suffice.
(b) Quantity Varied per Aggregate Gradation. Inspector must make continual screen analysis and compute required quantity of bitumen by formula or method as specified or directed. Screen analysis made either at pit, plant, or on the site, preferably on the site. Bitumen usually 4 to 7% by weight.

Mixing. (a) By Blade Graders. Graders to cut clear down to base (but not to cut into or tear up the base) and make complete turnover. Mixture to roll over in front of grader blade. Mixing to begin at once behind bituminous application to prevent migration of bitumen. Graders to manipulate mixture back and forth across entire width of road or strip being placed. Mix in as long strips as possible keeping turnarounds to minimum. Mixing to continue until all aggregate particles are coated; usually 12 to 15 complete turnovers are necessary.

Areas deficient in bitumen, i.e., dry, brownish color, powdery, no cohesion, large particles uncoated, should receive additional bitumen and remixing.

* Areas with excess bitumen, i.e., greasy, fat, sloppy;, unstable, free bitumen in evidence, corrected by adding more aggregate and remixing.
(b) By Rotary Tillers (Pulvi-Mixers, Roto-Tillers, etc.). . Same general procedure as for blade graders except:

Aggregate is usually spread flat and mixed flat.
Aggregate is not manipulated back and forth.

Bitumen applied in 0.4 to 0.6 gal. per sq. yd. increments with partial mixing between applications is best practice.

Watch for balling up of aggregate, i.e., lumps of uncoated aggregates.
If road or area is wide enough, transverse, diagonal or figure-8 travel of the Rotary-Tiller is recommended.

Mixing continued till all aggregates are coated for full depth.
Note. Rotary tillers and blade graders are sometimes operated in combination. Blade grader throws up windrow directly in front of rotary tiller, which mixes and spreads out flat; 10 to 12 repetitions of this process will usually produce uniform mixture.
(c) By Travel Plant Methods. Check calibration of measuring devices on machine.
Control of moisture content of aggregates by constant checking.
Gradation of material in windrows; continual screen analysis.
Accurate windrowing of aggregates ahead of travel plant to produce required finished thickness and width of pavement.

Mixed material as it leaves plant to have all aggregates coated, well mixed, and uniform in gradation and bitumen content.
Bituminous material introduced within specified temperature range.
Mixture may be spread with blade graders or paving machine; follow job specifications.

Curing. As specified.
Rolling. Equipment and methods as specified, to continue until mix is compacted to specified density, is smooth, and shaped to specified cross section and elevations.

Seal Coat. Same as for Bituminous Treatments.

Penetration Macadam

Subgrade or Base. Compacted to specified requirements and shaped to correct width, grade, and cross section.

Aggregates. Coarse stone, choke stone, and chips tested and approved for gradation and quality before use.

Inspection of gradation primarily visual, but screen analysis should be made once a day.
Avoid an excess of stone under $11 / 4-\mathrm{in}$. size, dust, and screenings, which will form mats that bitumen cannot penetrate.

Placing Aggregates. May be spread by hand, spreader boxes, machines, or blade graders.

Avoid segregation of coarse and fine stone.
Spread in layers as specified; $31 / 2 \mathrm{in}$. to 4 in . is about the maximum thickness one layer can be built.

Depressions removed by working coarse stone into low areas; do not fill depressions with fine stone.

Pockets or areas of fine stone or choked with dust removed and replaced with properly graded stone.

Surface true, "spotted" to grade and cross section and without areas of excess fine or coarse stone before rolling begins.

Initial Rolling. Begin at sides and progress to center, overlapping shoulder and each previous wheel mark.

Rolling to continue until all stone keyed together.
Depressions developing during rolling corrected.
Rolling not to continue if stones are being crushed. Check stone soundness; if okay, add keystone or use lighter roller. (Some emulsified asphalt specifications require keystone to be spread during initial rolling; check.)

Roll in as long strips as possible to avoid reversing roller.
Rollers to operate in straight, not wavy, lines, and reverse motion smoothly, not in jerks.

Bituminous Application. Do not begin until surface is dry (except for emulsions), not dusty or excessively choked, and uniformly compacted.

Application is same as for prime coat, Bituminous Treatments.
Choke Stone (applied after bituminous material). Spread uniformly, just sufficient to fill voids in stone.

Rolled and broom dragged simultaneously until surface is thoroughly consolidated and free from large voids.

In hot weather or with asphalt emulsions this rolling and brooming may be postponed until day following bituminous application.

Continue rolling and broom dragging until all roller creases and marks are removed and surface does not creep or shove under roller wheels. Additional small amounts of keystone may be added during this process.

Note. Follow job specifications for quantity of bitumen and increments of application. Practice varies from applying bitumen in one heavy application with one choking and rolling to applying bitumen in two or three increments with choking and rolling after each.

Seal Coat. Same as for seal coat, Bituminous Treatments.
Pay Items. Accurate record of all pay items in contract.
Gallons of bituminous material placed (corrected for temperature).
Tons, square yards, or cubic yards of aggregates or completed pavement as specified.

Extra applications of bitumen and aggregates.

CHECK LIST FOR INSPECTORS

PLANT-MIX BITUMINOUS PAVING

Plant Inspection

Procedure in Inspection

Tested and Approved Materials. Bituminous material, aggregates, and fillers tested and approved before use.

[^10]Daily screen analysis of aggregates and completed mixture.
Storage and Handling of Materials. Aggregates stock piled to avoid segregation and intermingling.

Mineral filler stored in dry place.
Plant. Plant equipment to meet specifications.
Weighing devices to work properly. Check scales with standard weights.
Tare weight of asphalt bucket checked twice daily. Tare weight is weight of empty bucket including residue and adhering bitumen.

Bucket kept clean or correction made for adhering bitumen.
Weigh box large enough to prevent spilling, with tight gates and in good condition.

No segregation or intermingling of aggregates before mixing.
Screens of specified size to completely separate various sizes required.
Asphalt thermometers checked for correct reading.
Weighing facilities for mineral fillers.
Correction of aggregate grading if variation occurs.
Scales for aggregate and bitumen set to produce specified mixture.
No change in basic mix proportions without approval from engineer.
Mixing Operations. Specified moisture content of aggregates adhered to for cold aggregate mixes.

All aggregates coated with bitumen and mix of uniform color and consistency.

Bitumen bucket completely emptied or drained.
Mixing time as specified and sufficient to coat aggregate thoroughly.
On sheet-asphalt jobs sand gradation checked hourly.
Weekly check of aggregate scales or more often if variation occurs.
Net weight of truck loads to equal total batch weights; check once a week.

Aggregates and bitumen heated to specified or approved temperatures; keep daily record.

Aggregates or bitumen never to be heated above the specified limits.
Mixture leaves plant at specified or approved temperature.
Proportions of mixture checked daily by dissolving the bitumen of a representative sample and making screen analysis of aggregates.

Transporting Mirture. All trucks covered with canvas or tarpaulin.
Trucks cleaned and sprayed with light oil or soap emulsion before mixture is placed therein; avoid excess.

Insulated truck bodies preferable if available.
No loads sent out if weather will hinder proper laying; cooperate with field inspector and contractor in this respect.

Field Inspection

Subgrade or Basie. Compacted and shaped according to plans and specifications.

Prime or tack coats, if specified, properly applied and curing time elapsed.

Holes and depressions repaired and rolled in advance of paving.
Base dry before mix is placed.
Note. Proper compaction and contour of base and subgrade are essential to a smooth and satisfactory pavement.
Forms. If specified, must be rigidly supported and accurately set to line and grade.
Placing. Paving machines and rollers inspected and approved before use for conformance with specified requirements.

Screeds on paver checked for crown ordinates. See p. 229 for crown offsets.

Screeds cleaned at noon and night shutdowns with fuel oil and scrapers.
Contact surfaces of paving equipment lightly oiled.
Avoid excessive hand raking behind paver. Paver should be so adjusted that only occasional touching behind will be necessary by hand.

Notify plant to shut down if rain begins. Loads in transit are customarily allowed to be placed if they are covered and temperature is sufficiently high.

Mixture delivered at proper temperature and not too rich or too lean.
Note. Excessive bitumen in mix will flush to surface during rolling and mix will be fat, greasy, and soupy. Deficient bitumen is indicated by cracking under roller, pushing into lumps, and dull, lusterless appearance. Either condition must be reported immediately to plant inspector.

Check temperature frequently by use of immersion armored thermometer of Weston type or equal.

An overheated or burnt-up batch will usually give off a cloud of acrid, white smoke when dumped.
If bitumen drains off or migrates to bottom of truck and aggregate on top is uncoated, the plant inspector should be notified immediately.

Check thickness of course as follows: (1) Compute number of square yards a load will cover, and make a mark on the base to which a load should spread. (2) After initial rolling make small hole with putty knife in mixture and check depth with rule. (3) Check square yards laid against tons hauled at noon and at end of day. For dense bituminous concrete mixes, the yield should be about $1 \mathrm{sq} . \mathrm{yd}$. for 1 in . in depth for every 110 lb . of mix.
Mixture spread to a loose depth that will produce specified finished thickness; loose depth must be determined by experiment.
Hand Spreading. Each shovelful turned over as placed and load so dumped that entire batch is shoveled into place.
Workmen not to walk in loose mixture.
Avoid excessive raking that pulls coarse stone to surface.
Control depth with spreading blocks of correct height.

Shovels, rakes, and tampers kept hot and clean.
Rolling. Rollers of type and weight specified, and equipped with water spray and scrapers on wheels.

Begin rolling as soon after spreading as mixture will bear the roller without shoving or hair cracking.
When specified, check square yards rolled per hour per roller.
Begin rolling at sides and proceed toward center, overlapping one-half width of roller on successive passes.
If not specified otherwise, use tandem rollers for initial rolling and keep 3 -wheel rollers off until mix is somewhat cooled.

Rollers to reverse motion smoothly, not in jerks.
Length of roller passes to be staggered.
Surface checked immediately after initial rolling with straightedge and template. This must be done before mix cools so corrections can be made. Tolerance usually $1 / 8 \mathrm{in}$. to $1 / 4 \mathrm{in}$. in 10 ft . Try to correct surface before mix hardens to avoid unsightly skin patches later.

Rollers and trucks not to park on pavement while it is still plastic.
Excessive rolling avoided; it will cause crushing of aggregate and displacement of mix.

Rolling diagonally and at right angles very desirable if width of street or road is sufficient.

Rolling continued until all roller creases are removed and specified density is attained.
Joints. At shutdowns and end of day's work, transverse joints are formed by rolling over edge and then cutting back a vertical joint at full depth.

All cold joints painted with liquid bitumen and fresh mixture rolled firmly against the joint face.

Seal Coat. If specified, check gallons per square yard, temperature, and type of material.

Final Inspection. Depressions and bumps over specified tolerance corrected by concentrated rolling or skin patches.

Oil spots and fat spots cut out and refilled and tamped.
Disintegrated spots where mixture is raveling cut out to full depth with vertical faces and refilled with fresh mixture thoroughly tamped and ro'led.
Opening to Traffic. Edges protected from traffic runover before opening pavement, usually after final rolling when mix has cooled off and hardened or from 4 to 12 hr . after placing.
Pay Items. Accurate record kept of all contract pay items, such as:
Tons, square yards, or cubic yards (as specified) of mixture laid.
Volume of embedded structures if deducted from unit price.
Gallons or square yards of any prime, tack, or seal coats applied.
Record of batches condemned or wasted.
Any other contract pay items.
TABLE 33. USE OF BITUMINOUS MATERIALS, Continued

£ٌ告

TABLE 39. GALLONS ASPHALTIC MATERIALS REQUIRED AT various rates of application *

Gallons per 100 Linear Feet

Width, ft.	9	12	15	16	20
Gal. per Sq. Yd.					
0.10	10.	13.3	16.7	17.8	22.2
0.15	15.	20.0	25.0	26.7	33.3
0.20	20.	26.7	33.3	35.6	44.4
0.25	25.	33.3	41.7	44.5	55.5
0.30	30.	40.0	50.0	53.4	66.6
0.35	35.	46.7	58.3	62.3	77.7
0.40	40.	53.3	66.7	71.2	88.8
0.45	45.	60.0	75.0	80.1	99.9
0.50	50.	66.7	83.4	89.0	111.1
1.25	125.	166.3	208.4	222.3	277.7
2.00	200.	266.7	333.4	355.6	444.4

Gallons per Mile

Width, ft.	9	12	15	16	20
			12		
Gal. per Sq. Yd.					
0.10	530	700	880		940
0.15	790	1,050	1,320	1,410	1,170
0.20	1,050	1,410	1,760	1,880	2,350
0.25	1,320	1,760	2,200	2,350	2,930
0.30	1,580	2,110	2,640	2,820	3,520
0.35	1,840	2,460	3,080	3,290	4,110
0.40	2,110	2,820	3,520	3,750	4,690
0.45	2,330	3,170	3,960	4,220	5,280
0.50	2,640	3,520	4,400	4,690	5,870
1.25	6,600	8,800	11,000	11,730	14,670
2.00	10,560	14,080	17,600	18,770	23,470

[^11]TABLE 40. TONS MINERAL AGGREGATE REQUIRED AT VARIOUS RATES OF APPLICATION *

Tons per 100 Linear Feet

Width, ft.	9	12	15	16	20
Lb. per Sq. Yd.					
10	.5	.67	.84	.89	1.11
15	.75	1.0	1.25	1.33	1.67
20	1.0	1.33	1.67	1.77	2.22
25	1.25	1.67	2.08	2.22	2.78
30	1.5	2.0	2.50	2.67	3.33
35	1.75	2.33	2.92	3.11	3.89
40	2.0	2.67	3.33	3.56	4.44
45	2.25	3.0	3.75	4.0	5.0
50	2.5	3.33	4.16	4.44	5.55

Tons Per Mile

Width, ft.	9	12	15	16	20
Lb. per Sq. Yd.					
10	27	35	44	47	59
15	40	53	66	71	88
20	53	71	88	94	117
25	66	88	110	118	147
30	80	106	133	141	176
35	93	124	155	165	205
40	106	141	177	188	234
45	119	159	199	212	264
50	133	177	221	236	293

[^12]TABLE 41. CUBIC YARDS OF AGGREGATE REQUIRED PER 100 LINEAR FEET AND PER MILE FOR VARIOUS LOOSE DEPTHS ON ROADS OF VARIOUS WIDTHS*

Width of Road	Area		Cubic Yards for Various Loose Depths								
	Per	Sq. Yards	1"	132' ${ }^{\prime \prime}$	$2^{\prime \prime}$	$212^{\prime \prime}$	$3{ }^{\prime \prime}$	312"	4"	5'	6"
6^{\prime}	100^{\prime}	66.6	1.9	2.8	3.7	4.6	5.6	6.5	7.4	9.3	11.1
	Mile	3520.0	97.8	146.7	195.6	244.4	293.3	342.2	391.1	488.9	586.7
$7{ }^{\prime}$	100^{\prime}	77.7	2.2	3.2	4.3	5.4	6.5	7.6	8.6	10.8	13.0
	Mile	4106.6	114.1	171.1	228.1	285.2	342.2	399.3	456.3	570.4	684.4
8^{\prime}	100^{\prime}	88.8	2.5	3.7	4.9	6.2	7.4	8.6	9.9	12.3	14.8
	Mile	4693.3	130.4	195.6	260.7	325.9	391.1	456.3	521.5	651.9	782.2
$9{ }^{\prime}$	100	100.0	2.8	4.2	5.6	6.9	8.3	9.7	11.1	13.9	16.7
	Mile	5280.0	146.7	220.0	293.3	366.7	440.0	513.3	586.7	733.3	880.0
10^{\prime}	100^{\prime}	111.1	3.1	4.6	6.2	7.7	9.3	10.8	12.3	15.4	18.5
	Mile	5866.6	163.0	244.4	325.8	407.4	488.9	570.4	651.9	814.8	977.8
12^{\prime}	100^{\prime}	133.3	3.7	5.6	7.4	9.3	11.1	13.0	14.8	18.5	22.2
	Mile	7040.0	195.6	293.3	391.1	488.9	586.7	684.4	782.2	977.8	1173.3
14^{\prime}	100^{\prime}	155.5	4.3	6.5	8.6	10.8	13.0	15.1	17.3	21.6	25.9
	Mile	8213.3	228.1	342.2	456.3	570.4	684.4	798.5	912.6	1140.7	1368.9
16^{\prime}	100^{\prime}	177.7	4.9	7.4	9.9	12.3	14.8	17.3	19.8	24.7	29.6
	Mile	9386.6	260.7	391.1	521.5	651.9	782.2	912.6	1043.0	1303.7	1564.4
18'	100^{\prime}	200.0	5.6	8.3	11.1	13.9	16.7	18.4	22.2	27.8	33.3
	Mile	10560.0	293.3	440.0	586.7	733.3	880.0	1026.7	1173.3	1466.7	1760.0
20^{\prime}	100^{\prime}	222.2	6.2	9.3	12.3	15.4	18.5	21.6	24.7	30.9	37.0
	Mile	11733.3	325.9	488.9	651.9	814.8	977.8	1140.7	1303.7	1629.6	1955.6
21^{\prime}	100^{\prime}	233.3	6.5	9.7	13.0	16.2	19.4	22.7	25.9	32.4	38.9
	Mile	12320.0	342.2	513.3	684.4	855.6	1026.7	1187.8	1368.9	1711.1	2053.3
23^{\prime}	100^{\prime}	255.5	7.1	10.6	14.2	17.7	21.3	24.8	28.4	35.5	42.6
	Mile	13493.3	374.8	562.2	749.6	937.0	1124.4	1311.9	1490.3	1874.1	2248.9
24^{\prime}	100^{\prime}	266.6	7.4	11.1	14.8	18.5	22.2	25.9	29.6	37.0	44.4
	Mile	14080.0	391.1	586.7	782.2	977.8	1173.3	1368.9	1564.4	1955.6	2346.7

Rolling compacts crushed aggregate base course approximately 20% and wearing course approximately 25%.
Ordinary bank gravel compacts approximately $331 / 3 \%$.
For road 5^{\prime} wide take half of 10^{\prime} quantity.
For road 22^{\prime} wide add quantities for 10^{\prime} and 122^{\prime} widths.
For road 28^{\prime} wide add quantities for 20^{\prime} and θ^{\prime} widths.
For roed 28^{\prime} wide take twice quantity for 14^{\prime} width.
For road 30^{\prime} wide take three times quantity for 10^{\prime} width.

* From Tarmac Handbook, Koppers Co.

TABLE 42. AREAS OF PAVEMENT SURFACES *

Widthin	Square Feet	Square Yards	
Feet	Per Mile	Per Mile	per Linear Foot

*From Bitumuls Handbook, American Bitumuls Co.

TABLE 43. LINEAR FEET COVERED BY 1 TON OF AGGREGATE AT VARIOUS RATES OF APPLICATION *

Width, ft.	9	12	15	16	20
Lb. per Sq. Yd.					
10	200	150	123	113	90
15	133	100	80	75	60
20	100	75	60	56	45
25	80	60	48	45	36
30	67	50	40	38	30
35	57	43	34	32	26
40	50	38	30	28	23
45	44	33	27	25	20
50	40	30	24	23	18

[^13]
table 44. WEIGHT AND VOLUME RELATIONS MINERAL AGGREGATES*

Broken Stone
 Pounds per Cubic Yard

Kind	Sp. Gr.	Loose Spread 45\% Voids	Compacted 30\% Voids
Trap	2.8	2590	-3300
	2.9	2680	3420
	3.0	2770	3540
	3.1	2870	3650
Granite	2.6	2400	3060
	2.7	2500	3180
	2.8	2590	3300
Limestone	2.6	2400	3060
	2.7	2500	3180
	2.8	2590	3300
Sandstone	2.4	2220	2830
	2.5	2310	2940
	2.6	2400	3060
	2.7	2500	3180

Gravel and Sand
Approximate Number of Pounds per Cubic Yard

Voids	Weight	Voids	Weight
50%	2240	35%	2910
45%	2460	30%	3130
40%	2680	25%	3350

*From Pocket Reference for Highway Engineers, Asphalt Institute.
TABLE 45. WEIGHT AND VOLUME RELATIONS OF ASPHALTIC MATERIALS AT $60^{\circ} \mathrm{F}$.*

Specific Gravity	Pounds per Gallon	Gallons per Ton	Specific Gravity	Pounds per Gallon	Gallons per Ton	Specific Gravity	Pounds per Gallon	Gallons per Ton
0.930	7.745	258.2	0.980	8.162	245.0	1.030	8.578	233.2
0.935	7.786	256.8	0.985	8.203	243.8	1.035	8.620	232.0
0.940	7.828	255.6	0.990	8.245	242.6	1.040	8.662	230.8
0.945	7.870	254.2	0.995	8.287	241.4	1.045	8.704	229.8
0.950	7.911	252.8	1.000	8.328	240.2	1.050	8.745	228.6
0.955	7.953	251.4	1.005	8.370	239.0	1.055	8.787	227.6
0.960	7.995	250.2	1.010	8.412	237.8	1.10	9.161	218.3
0.965	8.036	248.8	1.015	8.453	236.6	1.20	9.904	200.1
0.970	8.078	247.6	1.020	8.495	235.4	1.30	10.826	184.8
0.975	8.120	246.4	1.025	8.537	234.2	1.40	11.659	171.6

[^14]TABLE 46. DISTANCE IN LINEAL FEET COVERED BY A 1000-GALLON DISTRIBUTOR TANK LOAD *

Application Rate, gallons per square yard	Width of Spread, feet									
	2	3	4	'	6	7	8	9	10	11
0.1	45,000	30,000	22,500	18,000	15,000	12,857	11,250	10,000	9000	8182
0.15	30,000	20,000	15,000	12,000	10,000	8,571	7,500	6,867	6000	5455
0.2	22,500	15,000	11,250	9,000	7,500	6,429	5,625	5,000	4500	4091
0.25	18,000	12,000	9,000	7,200	6,000	5,143	4,500	4,000	3000	3273
0.3	15,000	10,000	7,500	6,000	5,000	4,288	3,750	3,333	3000	2727
0.333	13,500	9,000	6,750	5,400	4,500	3,857	3,375	3,000	2700	2455
0.35	12,857	8,571	6,429	5,143	4.286	3,673	3,214	2,857	2571	2338
0.4	11,250	7,500	5,625	4,500	3,750	3,214	2,813	2,500	2250	2045
0.45	10,000	6,667	5,000	4,000	3,333	2,857	2,500	2,222	2000	1818
0.5	9,000	6,000	4,500	3,600	3,000	2,571	2,250	2,000	1800	1636
0.6	7,500	5,000	3,750	3,000	2,500	2,143	1,875	1,667	1500	1364
0.667	6,750	4,500	3,375	2,700	2,250	1,929	1,688	1,500	1350	1227
0.7	6,429	4,286	3,214	2,571	2,143	1,837	1,607	1,429	1288	1168
0.75	6,000	4,000	3,000	2,400	2,000	1,714	1,500	1,333	1200	1091
0.8	5,625	3,750	2,813	2,250	1,875	1,607	1.406	1,250	1125	1023
${ }^{0} 0.8$	5,000	3,333	2,500	2,000	1,667	1,429	1,250	1,111	1000	909
1.0	4,500	3,000	2,250	1,800	1,500	1,286	1,125	1,000	900	818
1.25	3,600	2,400	1,800	1,440	1,200	1,029	900	800	720	655
1.5	3,000	2,000	1,500	1,200	1,000	857	750	667	600	545
1.75	2,571	1,714	1,286	1,029	857	735	643	571	514	468
2.0	2,250	1,500	1,125	900	750	643	563	500	450	409
2.25	2,000	1,333	1,000	800	667	571	500	444	400	364
2.5	1,800	1,200	900	720	600	514	450	400	360	327

Application Rate, gallons per square yard	Width of Spread, feet								
	12	13	14	15	16	17	18	19	20
0.1	7500	6923	6429	6000	5625	5294	5000	4737	4500
0.15	5000	4615	4286	4000	3750	3529	3333	3158	3000
0.2	8750	3462	3214	3000	2813	2647	2500	2368	2250
0.25	3000	2769	2571	2400	2250	2118	2000	1895	1800
0.3	2500	2308	2143	2000	1875	1765	1667	1579	1500
0.333	2250	2077	1928	1800	1688	1588	1500	1421	1350
0.35	2143	1978	1837	1714	1607	1513	1429	1353	1286
0.4	1875	1731	1607	1500	1406	1324	1250	1184	1125
0.45	1667	1538	1429	1333	1250	1176	1111	1053	1000
0.5	1500	1385	1286	1200	1125	1059	1000	947	900
0.6	1250	1154	1071	1000	938	882	833	789	750
0.667	1125	1038	964	900	844	794	750	711	675
0.7	1071	989	918	857	804	758	714	677	643
0.75	1000	923	857	800	750	706	667	632	600
0.8	938	865	804	750	703	662	625	592	563
0.9	833	769	714	667	625	588	556	526	500
1.0	750	682	643	600	563	529	500	474	450
1.25	600	554	514	480	450	424	400	379	360
1.5	500	462	429	400	375	353	333	316	300
1.75	429	386	367	343	321	303	288	271	\$57
2.0	375	346	321	300	281	265	250	237	225
2.25	333	308	288	287	250	235	222	211	200
2.5	300	277	257	240	225	212	200	189	180

[^15]TABLE 47. STANDARD ABRIDGED VOLUME CORRECTION TABLE FOR BITUMINOUS MATERIALS *
[Volume at $60^{\circ} \mathrm{F}$. occupied by unit volume at indicated temperature; $t=\mathrm{ob}-$ served temperature ${ }^{\circ} \mathrm{F}$.; $M=$ multiplier to reduce volume to $60^{\circ} \mathrm{F}$.]

Group 0. Specific Gravity at 60° F., Above 0.966

t	\boldsymbol{M}	t	M	t	M	t	M
60	1.0000	145	0.9707	230	0.9425	315	0.9154
65	.9982	150	.9691	235	.9409	320	.9138
70	.9965	155	.9674	240	.9392	325	.9123
75	.9948	160	.9657	245	.9376	330	.9107
80	.9931	165	.9640	250	.9360	335	.9092
85	.9914	170	.9623	255	.9344	340	.9076
90	.9896	175	.9606	260	.9328	345	.9061
95	.9879	180	.9590	265	.9312	350	.9045
100	.9862	185	.9573	270	.9296	355	.9030
105	.9844	190	.9556	275	.9280	360	.9014
110	.9827	195	.9539	280	.9264	365	.8999
115	.9809	200	.9523	285	.9248	370	.8984
120	.9792	205	.9507	230	.9233	375	.8969
125	.9775	210	.9490	295	.9217	380	.8953
130	.9758	215	.9474	300	.9201	385	.8938
135	.9741	220	.9458	305	.9185	390	.8923
140	.9724	225	.9441	310	.9169	395	.8908
						400	.8893

Group 1. Specific Gravity at 60° F., 0.850 to 0.966

60	1.0000	145	0.9667	230	0.9345	315	0.9034
65	.9980	150	.9647	235	.9326	320	.9016
70	.9960	155	.9628	240	.9307	325	.8998
75	.9940	160	.9608	245	.9289	330	.8980
80	.9921	165	.9590	250	.9270	335	.8962
85	.9901	170	.9570	255	.9252	340	.8945
90	.9881	175	.9551	260	.9234	345	.8927
95	.9861	180	.9532	265	.9215	350	.8909
100	.9841	185	.9513	270	.9197	355	.8892
105	.9822	190	.9494	275	.9179	360	.8874
110	.9803	195	.9476	280	.9160	365	.8856
115	.9783	200	.9457	285	.9142	370	.8839
120	.9763	205	.9438	290	.9124	375	.8821
125	.9744	210	.9419	295	.9106	380	.8804
130	.9724	215	.9401	300	.9088	385	.8886
135	.9705	220	.9382	305	.9070	390	.8769
140	.9686	225	.9363	310	.9052	395	.8752
						400	.8734

Group 00. Tar Products, A.A.S.H.O.
Grades RT-5, RT-6, RT-7, RT-8, RT-9, RT-10, RT-11, RT-12, RTCB-5, RTCB-6

60	1.0000	105	0.9867	155	0.9723	205	0.9583
65	.9985	110	.9852	160	.9709	210	.9569
70	.9970	115	.9838	165	.9695	215	.9556
75	.9955	120	.9823	170	.9681	220	.9542
80	.9940	125	.9809	175	.9667	225	.9528
85	.9926	130	.9794	180	.9653	230	.9515
00	.9911	135	.9780	185	.9639	235	.9501
95	.9896	140	.9766	190	.9625	240	.9488
100	.9881	145	.9751	195	.9611	245	.9474
		150	.9737	200	.9597	250	.9461

[^16]
TABLE 48. AMOUNTS OF MATERIAL PER SQUARE YARD FOR A TYPICAL PENETRATION MACADAM SURFACE *

	Base		Surface	
	Size	Amount	Size	Amount
Coarse stone	3 to 2 in.	285 lb .	$21 / 2$ to $11 / 2 \mathrm{in}$.	270 lb .
Bitumen		1.85 gal.		1.5 gal.
Medium stone	1 to $3 / 4 \mathrm{in}$.	30 lb .	3/4 in. to No. 4	30 lb .
Bitumen		0.3 gal.		0.5 gal .
Fine stone	1 to $3 / 4 \mathrm{in}$.	25 lb .	3/4 in. to No. 4	25 lb .
Bitumen				0.3 gal .
Stone chips	1/2 in. to No. 4	10 lb.	3/8 in. to No. 8	15 lb .
Do			3/8 in. to No. 8	10 lb .
Total aggregate		350 lb .		350 lb .
Total bitumen		2.15 gal.		2.3 gal .

* From Principles of Highway Construction, Public Roads Administration.

Daily bituminous report (CONSTRUCTION)* FOR MACADAM, BITUM. TREATMENTS, MIX-IN-PLACE

Aggregate Grading

Course	Pit No. or Station	Total Per Cent Passing								
		3/4	5/8	8/8	10	20	40	100	200	
Wearing Wearing Seal	$\begin{gathered} 506 \\ \text { So6 } \\ \text { Doe Gravel Co. } \end{gathered}$	100	98 97	80 80 100	47 51 5.0	2.0	18 19		3.1 3.4	

Remarks: Agoregate mixed and coated very well.

Signed by \qquad

Date
Type of pavement
Width \qquad
PLANT-MIX BITUMINOUS INSPECTION DAILY PAVING REPORT

Report No. \qquad
s. P. No. \qquad
F. A. P. No. \qquad Length \qquad
T. H. No. \qquad From \qquad To \qquad
Engineer \qquad Contractor _ Plant inspector \qquad

Course	Station		Tons Mixture Placed	Area in Sq. Yd.	Yield Lb. per Sq. Yd.	Temperature When Laid
	From	To				
Total						

Equipment

Spreading Machine		Total Hours Worked	
Make and type	No.	Width	
Rollers			
Make and type	No.	Wt.	
Other Equipment			
Description	No.		

Placing and Finishing

Hatl Data
Average round-trip time Min. Average length of haul \qquad Miles

Weather and Temperature

Weather: A.M.
Temperature: 7:00 A.m 2:00 P.м.
\qquad P.M. 10:00 A.M. \qquad

Time Distribution and Delays

Time start	Time stop		Gross time	Time delayed		Net paving time \qquad	
Moving	Weather	Non wk. days	Rock	Sand	Filler	Bit. cement	Chips
					,		
Paver	Plant	Switohing	Haul road	Trucks	Rollers	Base	

Remarks

Engineer

PLANT-MIX BITUMINOUS INSPECTION

Report No. \qquad
S. P. No.
F. A. P. No. \qquad
DAILY PLANT REPORT ${ }^{*}{ }^{*}$
T. H. No.

Location of plant Type of plant Street inspector \qquad
Batch Proportions

Aggregate Gradings

Materials Used

	Source	Tons Today	Tons Prev.	Tons to Date
Coarse agg.				
Fine agg.				
Filler Bit. cement Totals				

Mixing Time

Time start	Time stop	Gross time	Time delayed	Net operating time \qquad
Remarks:				

Signed by

* From Minnesota State Hiohway Department.

Project engineer
\qquad
Engineer

BITUMINOUS PAVING ANALYSES*

Client
Project
Material \qquad

Report No.
Job sample No.
Date laid
Sampled by
Taken at

[^17]*From Haller Engineering Associates, Inc."

Engineer

ASPHALT REPORT*

Remarks:

The above fulfills the specification requirements.

SANITARY CONSTRUCTION

 CHECK LIST FOR INSPECTORS

 CHECK LIST FOR INSPECTORS}

SANITARY CONSTRUCTION

Inspectors' Equipment

Complete working drawings with accurate dimensions covering anchor bolts, sleeves, flexible couplings, expansion loops, etc., with adequate clearances for erection.

Procedure in Inspection

Anchor-bolt locations and wall castings should be checked for accuracy; make sure bolt threads are clean and not damaged.

Sufficient flexible couplings, sleeves, expansion loops, and similar fittings should be provided to reduce vibration and facilitate erection and dismantling of equipment and piping.

Base plates of machines should be set accurately and blocked, not grouted in until assembly of machine is complete. Adjust to level again and grout into position.

Check lubrication of all machines before operating. If equipment has stood around for a period, flushing oil should be used to remove sediment.

Flush out pipe lines, particularly sludge lines from clarifiers. Make sure there are no blocks of lumber, bits of concrete, or other debris in these lines to obstruct a clear passage.

Capacity tests should be run on centrifugal pumps by using a tank (clarifier, wet well, etc.).

Check weirs, making sure they are level.
Review erection instructions of equipment manufacturer, and check to see they have been followed.

Make sure motors are rotating in right direction for the equipment.
Where possible rotate motor and reducer by hand to make sure bearings are free.

Check seal in distributor to see that mercury has been placed properly.
Check gas-utilization equipment to make sure that drainage traps are correctly installed and valves prevent gas escape; that meters are not filled with water; that counterweights in relief devices are correct in size and function freely; that entire hook-up is installed correctly.

In high-rate filter plants, check size, grading, and cleanliness of rock. Dirt and undersized particles should not be allowed.

Pipe Laying. See p. 180.
Filter sands should be carefully controlled to fit the requirements of the specifications.

Take and send frequent samples to the laboratory for test for effective size and uniformity coefficient, or make these tests in the field; see p. 125.

Samples of sand should be taken by the quartering method; see p. 10.
See sections on Concrete, Structural Steel, Timber, Masonry, Welding, etc., for those particular phases of the work.
pipe laying
TABLE 49. CEMENT-ASBESTOS SEWER PIPE (TRANSITE)

$\begin{gathered} \text { Pipe Size } \\ \text { (inside } \\ \text { diameter), } \\ \text { inches } \end{gathered}$	Class 1			Class 2			Class 3			Class 4		
	Shell Thickness, inches	Weight per Lin. Ft., lb.	Ultimate Strength 3-edge Bearing, lb. per lin. ft.	Shell Thickness, inches	Lin. Weight per Lin. Ft., lb.	Ulimate Strength 3-edge Bearing, lb. per lin. ft .	Shell Thickness, inches	$\begin{gathered} \text { Weight } \\ \text { per } \\ \text { Lin. Ft., } \\ \text { li. } \end{gathered}$	Ultimate Strength 3-Edge Bearing, lb. per lin. ft.	Shell Thickness,	Weight per Lin. Ft., lb.	Ultimate Strength 3-Edge Bearing, lb. per lin. ft .
4	0.39	4.9	4,125									
. 6	0.42	7.9	2,880									
8	0.48	11.9	3,100									
10	0.50	15.3	2,580	0.56	17.7	3,690	0.65	21.0	4,920			
- 12	0.54	19.9	2,370	0.64	23.6	3,850	0.74	28.6	5,100			
14	0.58	24.6	2,200	0.73	31.0	3,920	0.84	37.0	5,150			
16	0.62	30.2	2,120	0.82	40.6	4,050	0.94	47.8	5,280			
18	0.65	35.5	2,030	0.90	51.0	4,140	1.03	58.0	5,360	1.12	66.0	6,340
20	0.69	41.7	2,290	0.94	57.5	4,280	1.13	70.0	5,850	1.25	84.0	7,100
24	0.75	54.3	2,340	1.06	77.6	4,550	1.31	100.0	7,050	1.45	110.0	8,600
30	0.96	86.8	2,980	1.24	113.2	5,000	1.64	155.0	8,180	1.85	175.0	10,450
36	1.15	124.8	3,500	1.41	154.3	5,400	1.93	215.0	9,700	2.18	248.0	12,300
Standard laying length, 13 ft . Furnished only in straight lengths. Cast-iron fittings recommended for branch connections. Ultimate strengths determined by tests made in A.S.T.M. All data furnished by Johns-Manville Corp.												

TABLE 50. CLAY PIPE, STANDARD STRENGTH, A.S.T.M. SPEC. C-13

Sise, 1.	Laying Length		Maximum Difference in Length of Two Opposite Sides, in.	Outside Diameter of Barrel, in.		Inside Diameter of Socket at 32 in. above Base, in.		Depth of Socket, in.		Thickness of Barrel, in.		Thickness of Socket at $1,2 \mathrm{in}$. from Outer End, in.		Average Strength Requirements, min., lb. per lin. ft.		Weight per foot of Pipe
	Nominal, ft.	Limit of Minus Variation, ${ }^{a}$ in. per ft . of length														
				Min.	Max.	Min.	Max.	Nominal	Min.	Nominal	Min.	Nominal	Min.	Bearing Method	Bearing Method	
4	2, 21/2, 3	14	516	478	538	534	638	13.4	13:	1,6	\%if	716	3/8	1000	1430	9.0
6 1	2, 21/2, 3	14	38	7116	7316	83/16	85\%	234	2	58	916	1,2	7 i 6	1000	1430	15.5
8	2, 246, 3	34	76	9144	934	1016	11	21/2	234	3,4	${ }^{1316}$	916	12	1000	1430	23.8
10	2, $21 / 2,3$	14	76	1132	12	123/4	1314	25.8	23/8	78	1316	$5 / 8$	9í	1100	1570	33.8
12	2, 21/6, 3	34	7/16	133/4	145/16	151/8	1534	23/4	21/2	1	15.16	31	${ }^{1316}$	1200	1710	46.8
15	3, 4	14	36	173/6	$1713 / 6$	185/8	1934	2788	25\%	134	11/8	15.16	\%8	1400	2000	67.7
18	3,4	14	$1 / 2$	2056	217/16	223 \%	23	3	23,4	132	138	11.8	1316	1700	2430	97.7
21	3,4	1/4	96	2418	25	25\%8	263 \%	314,	3	$13 / 4$	158	15.10	1316	2000	2860	139
24	3, 4	38	916	2736	2836	293/8	30,88	33/8	31/8	2	178	1142	138	2400	3430	180
27	3, 4	38	916	31	321/8	33	34188	- $31 / 2$	314	23,4	238	1136	19, 6	2750	3930	
30	3, 4	38	58	343/8	355/8	3636	373/4	358	338	21/2	238	178	13.4	3200	4570	277
33	3,4	3/8	5/8	37 5/8	3815/16	397\%	4134	33/4	$31 / 2$	258	23\%	2	113/6	3500	5000	
36	3,4	38	1316	4034	4234	4314	4434	4	33.4	234	25.8	2116	1788	3900	5570	392

a^{a} There is no limit for plus variation.

* From Robinson Clay Products Co.
TABLE 51．CLAY PIPE，EXTRA STRENGTH，A．S．T．M．SPEC．C－200

		ర్ట్రి ర్టి ర్ట్రి ్ㅓN :
	号	
	完罢	
	家	
	安号	
	思	～
	砍云	
	烒	
	㐋	
	安	
	寝	

[^18]TABLE 62. CORRUGATED METAL CULVERT PIPE

Inside Pipe Diam- eter, in.	16 Gage	14 Gage	Wage Gage	10 Gage	8 Gage
6					
8	7.6	9.3			
10	9.3	11.4			
12	10.8	13.3	18.5		
15	13.3	16.4	22.7		
18	15.8	19.5	27.0		
21	18.3	22.5	31.2	39.7	
24	21.0	26.0	35.9	45.7	
30		31.7	43.9	55.9	
36		37.9	52.4	66.7	81.1
42		44.4	61.5	78.3	95.1
48		50.5	70.0	89.1	108.3
54		57.8	80.1	102.0	123.9
60			88.2	112.3	136.4
66			96.6	123.1	149.5
72			105.1	133.9	162.6
84				156.6	190.3

Furnished in any length in multiples of 2 ft .
Data furnished for Armco Pipe by Shelt Co., Elmira, N. Y.
TABLE 63. NON-REINFORCED-CONCRETE SEWER PIPE, A.S.T.M. C-14-41

Internal Diameter, D, in.	Laying Length, L, ft.	Inside Diameter at Mouth Socket, D_{s}, in. ${ }^{a}$	Depth of Socket, L_{s}, in.	Minimum Taper of Socket, H	Thickness of Barrel, T, in.	Thickness of Socket, T_{s}	Average Strength, lb. per lin. ft.		Maximum Ab-sorption, \%	Limits of Permissible Variation in:				
							Three-EdgeBearing Method			Length, in. per ft . $(-)^{b}$	Internal Diameter, in.		Depth of Socket, in. $(-)^{b}$	Thick- ness of Barrel, in. $(-)^{b}$
								Sand- Bearing Method			$\begin{aligned} & \text { Spigot } \\ & (\pm)^{b} \end{aligned}$	Socket, $(\pm)^{b}$		
4	2, 232, 3	6	1122	1:20	916	The thickness of	1000	1500	8	3:	38	38	38	1/16
6	2, 232, 3	814	2	1:20	5.8	the socket 4 i in .	1100	1650	8	34	$3 / 16$	$3 / 16$	34	316
8	2, 21, $, 3,4$	1034	214	1:20	34	from its outer end	1300	1950	8	34	34	34	34	116
10	2, 21,2, 3, 4	13	$21 / 2$	1:20	78	shall be not less	1400	2100	8	34	34	14	14	116
12	2, 23, 3,4	1514	215	1:20	1	than $3 i 4$ of the	1500	2250	8	34	34	34	$1 / 4$	316
15	2, 21, , 3, 4	183/4	21/2	1:20	134	thickness of the	1750	2620	8	34	34	34	34	33.2
18	2, 21, $, 3,4$	2214	234	1:20	11/2	barrel of the pipe.	2000	3000	8	34	34	34	14	332
21	2, 236, 3, 4	26	23/4	1:20	134		2200	3300	8	14,	5/16	516	314	1/8
24	2, 23, $, 3,4$	2912	3	1:20	21/8		2400	3600	8	38	516	516	34	1/8
	\cdots													

When pipes are furnished having an increase in thickness over that given in last column, then the diameter of socket shall be increased by an amount equal
to twice the increase of thickness of barrel.
${ }^{6}$ The minus sign (-) alone indicates that the plus variation is not limited; the plus-and-minus sign (\pm) indicates variation in both excess and deficiency in
Note. For weights and laying lengths, see Table 57.
TABLE 54. REINFORCED-CONCRETE SEWER PIPE, A.S.T.M. SPEC. C-75-41

Internal Diameter, in.	Strength Test Requirements, lb. per lin. ft.				Minimum Design Requirements a					
	Three-EdgeBearing Method		Sand-Bearing Method		Concrete, 3000 psi .		Concrete, 3500 psi.		Concrete, 4000 psi .	
	Load to Produce a $0.01-\mathrm{in}$. Crack	Ultimate Load	Load to Produce a 0.01 -in. Crack	Ultimate Load	Shell Thickness, in.	Total Steel Area, sq. in. per lin. ft.	Shell Thickness, in.	Total Steel Area, sq. in. per lin. ft.	Shell Thickness, in.	Total Steel Area, sq. in. per lin. ft.
12	1,800	2,700	2,700	4,050	2	1 line 0.06	134	1 line 0.07		
15	2,000	3,000	3,000	4,500	234	1 line $\quad 0.06$	2	1 line $\quad 0.07$	\cdots	
18	2,200	3,300	3,300	4,950	216	1 line $\quad 0.06$	2		2	1 line $\quad 0.07$
21	2,400	3,600	3,600	5,400	234	1 line $\quad 0.06$	\ldots		234	1 line $\quad 0.07$
24	2,400	3,600	3,600	5,400	3	1 line $\quad 0.06$	25/8	1 line 0.08	21/2	1 line $\quad 0.09$
27	2,550	3,800	3,800	5,700	3	1 line $\quad 0.07$	23.4	1 line $\quad 0.10$	2,88	1 line $\quad 0.12$
30	2,700	4,050	4,050	6,100	$31 / 2$	1 line $\quad 0.09$	3	1 line $\quad 0.12$	234	1 line $\quad 0.14$
33	2,850	4,300	4,300	6,400	334	1 line b 0.11	314	1 line $\quad 0.14$	234	1 line $\quad 0.17$
36	3,000	4,500	4,500	6,750	4	2 lines ${ }^{\text {b }}$ totalling 0.14	$33 / 8$	2 lines ${ }^{6}$ totalling 0.20	3	2 lines ${ }^{6}$ totalling 0.23
42	3,200 3,400	4,800 5,100	4,800 5,100	7,200	$41 / 2$	2 lines ${ }^{b}$ totalling 0.16	$33 / 4$	2 lines ${ }^{6}$ totalling 0.23	33/8	2 lines ${ }^{6}$ totalling 0.27
48 54	3,400 3,700	5,100	5,100	7,650	5	2 lines ${ }^{b}$ totalling 0.21	434	2 lines ${ }^{\text {b }}$ totalling 0.27	$33 / 4$	2 lines ${ }^{b}$ totalling 0.32
54 60	3,700 4,000	5,550 6,000	5,550 6,000	8,300 9,000	${ }_{6} 512$	2 lines ${ }^{b}$ totalling 0.25	45/8	2 lines ${ }^{6}$ totalling 0.32	414	2 lines ${ }^{\text {b }}$ totalling 0.38
60	4,000 4,250	6,000 6,350	6,000	9,000	6	2 lines ${ }^{6}$ totalling 0.29	5	2 lines ${ }^{6}$ totalling 0.38	412	2 lines ${ }^{b}$ totalling 0.44
66 72	4,250 4,500	6,350 $\mathbf{6 , 7 5 0}$	6,350 $\mathbf{6 , 7 5 0}$	9,550 10,100	${ }^{619}$	2 lines ${ }^{\text {b }}$ totalling 0.32	538	2 lines ${ }^{\text {b }}$ totalling 0.44	43/4	2 lines ${ }^{b}$ totalling 0.47
78		,			7112	2 lines ${ }^{\text {b }}$ (lines ${ }^{\text {b }}$ totalling 0.36	53/4	2 lines ${ }^{b}$ totalling 0.47	5	2 lines ${ }^{b}$ totalling 0.55
84				8	2 lines ${ }^{\text {b }}$ totalling 0.43	\ldots		\cdots	
90				8	2 lines ${ }^{\text {b }}$, totalling 0.49				
96 108					8112	2 lines ${ }^{\text {b }}$ totalling 0.57				
108			\ldots		9	2 lines ${ }^{6}$ totalling 0.67				

[^19]TABLE 55. STANDARD STRENGTH REINFORCED-CONCRETE CULVERT PIPE, A.S.T.M. SPEC. C-76-41

Internal Diameter of Pipe, in.	Concrete, 3,500 psi.				Concrete, 4,500 psi.				Strength Test Requirements, lb. per lin. ft. of pipe Three-EdgeBearing Method ${ }^{d}$	
	Minimum Shell Thickness, in.	Minimum Reinforcement, ${ }^{\text {a }}$ sq. in. per lin. $\mathbf{f t}$. of pipe barrel \boldsymbol{b}		$\begin{gathered} \text { Weight } \\ \text { per } \\ \text { Lin. Ft., } \\ \text { lb. } \end{gathered}$	Minimum Shell Thickness, in.	Minimum Reinforcement, ${ }^{a}$ sq. in. per lin. ft. of pipe barrel b				
		Circular Reinforcement in Circular Pipe	Elliptical Reinforcement in Circular Pipe and Circular Reinforcement in Elliptical Pipe			Circular Reinforcement in Circular Pipe	Elliptical Keinforcement in Circular Pipe and Circular Reinforcement in Elliptical Pipe		Load to Produce a 0.01-in. Crack	Ultimate Load
12	2	1 line $\quad 0.07$		88	134	1 line 0.08		75	2,250	
15	214	1 line $\quad 0.09$		125	2^{134}	1 line $\quad 0.11$		110	2,250	3,500
18	$21 / 2$	1 line $\quad 0.12$	1 line 0.io	160	2	1 line $\quad 0.14$		140	3,000	4,500
24	3	1 line $\quad 0.17$	1 line 0.13	260	$23 / 2$	1 line $\quad 0.20$	1 line 0.17	225	3,000	5,000
30	$31 / 2$	1 line 0.22	1 line 0.17	370	3	1 line $\quad 0.28$	1 line 0.21	315	3,375	5,750
36	4	2 lines, each 0.18	1 line 0.18	520	338	2 lines, each 0.22	1 line 0.22	450	4,050	6,600
42	432	2 lines, each 0.21	1 line 0.21	680	$33 / 4$	2 lines, each 0.25	1 line 0.25	560	4,725	7,350
48	5	2 lines, each 0.25	1 line 0.25	850	414	2 lines, each 0.31	1 line 0.31	720	5,400	8,000
64	532	2 lines, each 0.30	1 line 0.30	1,050	458	2 lines, each 0.37	1 line 0.37	880	5,850	9,000
66	$61 / 2$	2 lines, each 0.33	1 line 0.33	1,280 1,480	$51 / 2$	2 lines, each 0.41	1 line 0.41 line 0.45	1,060	6,000 6,300	10,000
72	7	2 lines, each 0.40	1 line 0.40	1,835	${ }^{3 / 3}$	2 lines, each 0.48	1 line 0.48		6,300 6,600	11,000
78	736	2 lines, each 0.43	1 line 0.43	2,150	6312	2 lines, each 0.51	1 line 0.51			
84	8	2 lines, each 0.46	1 line 0.46	2.300	7	2 lines, each 0.54	1 line 0.54			
	8	2 lines, each 0.56	1 line 0.56	2.600	...					
102	$81 / 2$	2 lines, each 0.72	1 line 0.60	2,750 3,050	\cdots				\ldots	
108 =	9	2 lines, each 0.78	1 line 0.78	3,450						

${ }^{-4}$ The distance from the center line of the reinforcement to the nearest surface of the concrete has been assumed in the design tables as 1% in. for pipe with a shell 232 in . or more in thickness. 2 lines or elliptical reinf. provide 1 -in cover.
dest loads for sand-bearing tests shall be 113 times those specified in this table for the three-edge-bearing tests.

TABLE 56. EXTRA-STRENGTH REINFORCED-CONCRETE CULVERT PIPE, A.S.T.M. SPEC. C-76-41

$\begin{gathered} \text { Inter- } \\ \text { nal } \\ \text { Diam- } \\ \text { eter } \\ \text { of } \\ \text { Pipe, } \\ \text { in. } \end{gathered}$	Concrete, 4500 psi .			Strength Test Requirements, lb. per lin. ft. of pipe		WeightperLin. Ft.in Lb. ${ }^{\text {d }}$
	Minimum Shell Thickness, in.	Minimum Reinforcement, ${ }^{a}$ sq. in. per lin. ft. of pipe barrel ${ }^{b}$		Three-Edge-Bearing Method ${ }^{c}$		
		Circular Reinforce ment in Circular Pipe	Elliptical Reinforcement in Circular Pipe and Circular Reinforcement in Elliptical Pipe	Load to Produce a $0.01-\mathrm{in}$. Crack	Ultimate Load	
24	3	1 line $\quad 0.26$	1 line 0.20	4,000	6,000	260
30	336	1 line - 0.31	1 line 0.24	5,000	7,500	370
36	4	2 lines, each 0.28	1 line 0.28	6,000	9,000	520
42	432	2 lines, each 0.33	1 line 0.33	7,000	10,500	680
48	5	2 lines, each 0.38	1 line 0.38	8,000	12,000	850
54	$53 / 2$	2 lines, each 0.44	1 line 0.44	9,000	13,500	1,050
60	6	2 lines, each 0.50	1 line 0.50	9,000	15,000	1,280
66	632	2 lines, each 0.56	1 line 0.56	9,500	16,500	1,480
72	7	2 lines, each 0.60	1 line 0.60	9,900	18,000	1,835
78	7312	2 lines, each 0.65	1 line 0.65	2,150
84	8	2 lines, each 0.72	1 line 0.72	\ldots	2,300
90	8	2 lines, each 0.84	1 line 0.84	\ldots	2,600
96	$81 / 2$	2 lines, each 0.90	1 line 0.90	\ldots		2,750
102	8412	2 lines, each 1.08	1 line 1.08	\cdots		3,050
108	9	2 lines, each 1.17	1 line 1.17	\ldots		3,450

[^20]TABLE 67. CONCRETE PIPE, WEIGHTS AND LAYING LENGTHS*

on-Reinforced Sewer Pipe				Bell-End Extra-Strength Culvert Pipe C-76-41			
A.S.T.M. C-14-41							Weight
InsideDiameter,		Wall	Weight per	Insid		Wall Thick	per
		Thick-	Lineal	Diameter,	Length,	ness,	Foot,
	Length,	ness,	Foot,	in.	ft .	in.	lb.
in.	ft .	in.	lb.	12	4	2	100
6	3	1	25	15	4	21/4	150
8	3	1	35	18	4	$21 / 2$	205
10	3	11/8	48	21	4	23/4	255
12	4	11/4	60	24	4	3	320
15	4	$11 / 2$	90	30	4	31/2	470
18	4	134	120	36	4	4	600
21	4	2	190	42	4	41/2	750
24	4	21/4	225	48	4	5	1000
24	4	25\%	255				

Machine Bell and Spigot Relnforced-Concrete Pipe				Tongue and Groove Reinforced-Concrete Pipe			
C-75-41 and C-76-41				C-75-41 3000 psi Concrete C-76-41 Table 553500 psi Concrete C-76-41 Table 564500 psi Concrete			
12	4	13/4	90				
15	4	2	125				
18	4	$21 / 4$	160	6	3	$13 / 4$	48
21	4	$23 / 8$	205	8	4	2	65
24	4	25\%	260	10	4	2	80
27	4	$23 / 4$	300	12	4	2	88
30	4	3	370	15	4	$21 / 4$	125
36	4	31/2	510	18	4	$21 / 2$	160
42	4	$33 / 4$	660	21	4	$3^{3 / 4}$	205 260
48	4	41/4	835	$\stackrel{24}{27}$	4	$3{ }_{31 / 4}$	260 310
				$\stackrel{27}{30}$	4	$31 / 4$ $31 / 2$	310 370
				30 33	4	$31 / 2$ $3 / 4$	370 450
Tongue	and Groove Reinforced-			33 36	4 4	$3{ }_{4}{ }^{3 / 4}$	450 520
	Conc	e Pipe		39	4	414	600
C-75-41 3500 psi Concrete				42	4	$41 / 2$	680
C-76-41 Table 5		4500 psi	Concrete	45 48	4	${ }_{5}{ }^{3}$	760 850
12	4	13/4	75	54	4	51/2	1050
15	4	2	110	60	4	6	1280
18	4	214	140	66	$4^{\prime}, 5^{\prime}, 6^{\prime}$	61/2	1480
24	4	25/8	225	72	$4^{\prime}, 5^{\prime}, 6^{\prime}$	7	1835
30	4	3	315	78	$4^{\prime}, 5^{\prime}, 6^{\prime}$	71/2	2150
36	4	$31 / 2$	450	84	$4^{\prime}, 5^{\prime}, 6^{\prime}$	8	2300
42	4	$33 / 4$	560	90	$4^{\prime}, 5^{\prime}, 6^{\prime}$, 8	2600
. 48	4	$41 / 4$	720	96	$4^{\prime}, 5^{\prime}, 6^{\prime}$	$83 / 2$	2750
54	4	45\%	880	102	$4^{\prime}, 5^{\prime}, 6^{\prime}$	81/2	3050
60	4	5	1060	108	$4^{\prime}, 5^{\prime}, 6^{\prime}$	9	3450

[^21]TABLE 58. AMERICAN WATER WORKS ASSOCIATION STANDARD CAST-IRON PIPE*

Nominal Inside Diameter, in.	Class A 100-Ft. Head 43 Lb . Pressure		Class B 200-Ft. Head 86 Lb . Pressure		Class C 300-Ft. Head 130 Lb. Pressure		Class D 400-Ft. Head 173 Lb. Pressure	
	Thickness, in.	Approximate Weight per Ft., lb.	Thickness, in.	Approximate Weight per Ft., lb.	Thickness, in.	```Approxi- mate W eight per Ft., lb.```	Thickness, in.	Approximate Weight per Ft., lb.
3	0.39	14.5	0.42	16.2	0.45	17.1	0.48	18.0
4	0.42	20.0	0.45	21.7	0.48	23.3	0.52	25.0
6	0.44	30.8	0.48	33.3	0.51	35.8	0.55	38.3
8	0.46	42.9	0.51	47.5	0.56	52.1	0.60	55.8
10	0.50	57.1	0.57	63.8	0.62	70.8	0.68	76.7
12	0.54	72.5	0.62	82.1	0.68	91.7	0.75	100.0
14	0.57	89.6	0.66	102.5	0.74	116.7	0.82	129.2
16	0.60	108.3	0.70	125.0	0.80	143.8	0.89	158.3
18	0.64	129.2	0.75	150.0	0.87	175.0	0.96	191.7
20	0.67	150.0	0.80	175.0	0.92	208.3	1.03	229.2
24	0.76	204.2	0.89	233.3	1.04	279.2	1.16	306.7
30	0.88	291.7	1.03	333.3	1.20	400.0	1.37	450.0
36	0.99	391.7	1.15	454.2	1.36	545.8	1.58	625.0
42	1.10	512.5	1.28	591.7	1.54	716.7	1.78	825.0

* From Handbook of Cast Iron Pipe by C. I. Pipe Research Assn.

Water hammer of ordinary intensity allowed for in the above table. Weights based on $12-\mathrm{ft}$. length.

TABLE 59. FEDERAL SPECIFICATIONS, WW-P-421 STANDARD

Nominal Inside Diameter, in.	100-1b. Class \dagger or Max. Working Pressure		150-lb. Class \ddagger or Max. Working Pressure		$200-\mathrm{lb}$. Class \dagger or Max. Working Pressure		250-1b. Class \ddagger or Max. Working Pressure	
	Thickness, in.	Approximate Weight per Ft., lb.	Thickness, in.	Approximate Weight per Ft., lb.	Thickness, in.	Approximate Weight per Ft., lb.	Thickness, in.	Approximate Weight per Ft., lb.
3			0.33	12.5			0.36	13.8
4			0.34	16.1			0.38	18.1
6			0.37	25.7			0.43	28.7
8			0.42	38.6	0.46	41.6	0.50	44.6
10			0.47	52.2	0.52	57.2	0.57	62.3
12			0.50	66.1	0.57	74.1	0.62	81.1
14	0.48	74.9	0.55	88.9	0.62	97.0	0.69	108.0
16	0.52	92.1	0.80	108.1	0.68	121.6	0.75	133.6
18	0.56	111.4	0.65	130.4	0.74	147.9	0.83	164.9
20	0.58	129.0	0.68	152.0	0.78	173.6	0.88	193.6
24	0.64	169.9	0.76	202.9	0.88	233.1	1.00	262.1

\dagger From American Cast Iron Pipe Co. $\quad \ddagger$ From Federal Specifications WW-P-421.
Water hammer of ordinary intensity allowed for in the above table. Weights based on $16-\mathrm{ft}$. length. 100 lb . Class-weights for Class B fittings; $150 \mathrm{lb} ., 200 \mathrm{lb}, 250 \mathrm{lb}$. Classesweights for Class D fittings.
table 60．STANDARD THICKNESSES AND WEIGHTS Of CAST－IRON PIT CAST PIPE＊

思品品	Class			Class			Class 150			Class 200			Class 250			Class 300			Class 350		
	50 Lb ．Pressure			0 Lb ．Pressur			50 Lb ．Pressur			200 Lb．Pressure			50 Lb ．Pressure			300 Lb ．Pressure			350 Lb ．Pressure		
	115 Feet Head			231 Feet Hesd			346 Feet Head			462 Feet Head			577 Feet Head			693 Feet Head			808 Feet Head		
	Thick－ness， inches	Wt．Based on 12 Ft．Lgh．\dagger		Thick－ ness， inches	Wt．Based on 12 Ft ．Lgh．\dagger		Thick－ ness， inches	Wt．Based on 12 Ft．Lgh．\dagger		Thick－ ness， inches	Wt．Based on 12 Ft．Lgh．\dagger		Thick－ ness， inche	Wt．Based on 12 Ft．Lgh．\dagger		Thick－ ness， inches	Wt．Based on 12 Ft ．Lgh．\dagger		Thick－ inches	Wt．Based on 12 Ft．Lgh．\dagger	
		$\begin{gathered} \text { Avg. } \\ \text { Per } \\ \text { Foot } \end{gathered}$	$\begin{gathered} \mathrm{Per} \\ \text { Length } \end{gathered}$		$\begin{aligned} & \text { Apg. } \\ & \text { Per } \\ & \text { Foot } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { Length } \end{gathered}$		$\begin{aligned} & \text { Avg. } \\ & \text { Per } \\ & \text { Foot } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { Length } \end{gathered}$		$\begin{aligned} & \text { Avg. } \\ & \text { Per } \\ & \text { Foot } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { Length } \end{gathered}$		$\begin{aligned} & \text { Avg. } \\ & \text { Per } \\ & \text { Foot } \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { Length } \end{gathered}$		$\begin{aligned} & \text { Avg. } \\ & \substack{\text { Per } \\ \text { Foot }} \end{aligned}$	$\begin{gathered} \text { Per } \\ \text { Length } \end{gathered}$		$\begin{gathered} \text { Avg. } \\ \text { Per } \\ \text { Foot } \end{gathered}$	$\begin{gathered} \text { Per } \\ \text { Length } \end{gathered}$
	． 37	14.2	170	． 37	14.2	170		14	170	． 37	14.2	170	． 37	14.2	170	． 37	14.2			14.2	
4	． 40	19.2	${ }^{230}$	． 49	19.2	230	． 40	19.2	230	． 40	19.2	230	． 40	19.2	230	． 40	19.2	230	． 40	19.2	230
6	\cdots	30.0	365	． 43	30.0	${ }_{5}^{360}$	． 43	30.0	350	． 43	30.0	360	． 43	30.0	360	． 46	31.7	380	． 50	34.2	410
10	． 50	57.1	685	． 50	57.1	685	． 54	${ }_{60.8}$	730	． 58	44.6	775	． 50	45.8	550	． 54	49.2	590	． 58	53.8	
	． 54	73.3	880	． 54	73.3	880	． 58	77.9	935	． 63	83.8	1，005	． 68	92.1	1，105	． 73	97.9	1，175	． 79	105.0	1，260
14			1，025	． 58	${ }^{911.3}$	1，095	． 68	100.8	1，210	． 68	107.9	1，295	． 79	${ }_{15}^{123.3}$	1.480	． 85	131.7	1，580	． 92	148.3	1，780
16	． 58	105．4	1，265	． 68	113.3	1，360	． 68	125.0	1.500	． 79	142.5	1，710	． 85	152.1	1，825	． 92	162.9	1．955	． 99	181.7	2，180
18	． 63	127.9	1，535	． 68	1358	1，640	． 73	150.4	1，805	． 85	172.1	2，065	． 92	184.2	2.210	． 99	196.7	${ }^{2}, 360$	1.07	220.8	2，650
20	． 68	148.8	1，785	． 71	158.8	1，905	． 83	188.8	2，265	． 90	202.5	2，430	． 97	216.7	2，600	1.05	232.1	2，785	1.22	277.1	3，325
	． 74	198.8	2,385	． 80	212.9	2，555		252.5	3，030	1.00	269.2	3,230	1.08	288.3	3.460	1.26	346.2				4，440
30	． 87	288.3	3，460	94	312.3	3，735	1．10	367.1	4，405	1.19	402.9	4，835	1.39	462.1	5，545	1.50	${ }^{511.3}$	6， 135	1.62	557.9	6，695
4	－1．07	384， 2	4，610	1.05	420.8	5.050	1.22	491.3	5．895	1.43	578.3	6，940	1.54	617.1	7.405	1.79	727.9	8，735	1.93	794.2	9，530
48	1.18	625.8	7，510	${ }_{1.37}$	${ }_{726.3}$	8.715	1.48	${ }_{799.6}^{63.9}$	${ }^{\text {9，} 595}$	1.73	${ }_{940.0}$	${ }^{8} 1280$	1.71		12，925						
60	1：39	922.5	11，070	1.62	1，077．1	12，925	1.89	1，270．9	15，250	2.20	1，488．3	17，880	${ }_{2.38}^{2.21}$	1， $1,394.6$	$\begin{aligned} & 16,005 \\ & 19,135 \end{aligned}$						

From American Standard Assn．，Spec．A21．2－19s9．
\dagger Inchuding bell and spigot bead．Calculated weight of pipe rounded off to nearest 5 pounds．
Note．These weights are for pipe laid without blocks，on flat bottom trench，with tamped backfill，under 5 feet of cover．

TABLE 61. APPROXIMATE QUANTITIES OF MATERIALS USED PER JOINT FOR WATER SERVICE*

Nominal Diameter, In.	Pounds of Joint				
Compound $21 / 2^{\prime \prime}$ Joint Depth \dagger	Pounds of Hemp per Joint	Pounds of Lead in Joint $2^{\prime \prime}$ Deep	Pounds of Lead in Joint $214^{\prime \prime}$ Deep	Pounds of Lead in Joint $21 / 2^{\prime \prime}$ Deep	
4	2.00	0.18	6.00	6.50	7.00
4	3.00	0.31	10.25	8.00	8.75
8	4.00	0.44	13.25	14.50	12.25
10	5.00	0.53	16.00	17.50	15.75
12	6.00	0.61	19.00	20.50	22.00
14	7.00	0.81	22.00	24.00	26.00
16	8.25	0.94	30.00	33.00	35.75
18	9.25	1.00	33.80	36.90	40.00
20	10.50	1.25	37.00	40.50	44.00
24	13.00	1.50	44.00	48.00	52.50

* Adapted from U. S. Pipe and Foundry Co.
\dagger Approximate only; will vary with kind of material used.
Note. Weight of lead is based on std. wt. $=0.41 \mathrm{lb}$. per cu. in. This weight may vary 15% depending on purity.
TABLE 62. STEEL PIPE, A.S.T.M. A53-44, WEIGHTS AND DIMENSIONS

Pipe Diam- eter Nomi- nal Sizes, in.	Outside Diameter, in.	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Threads } \\ \text { per inch } \end{array}\right\|$	Standard-Weight Pipe				Extra-Strong Pipe				Double Extra- Strong Pipe	
			Scheduie 30		Schedule 40		Schedule 60		Schedule 80			
			Thickness, in.	Wt. of Pipe, lb. per ft., Threaded and with Couplings	Thickness, in.	Wt. of Pipe, lb. per ft., Threaded and with Couplings	Thickness, in.	Weight of Pipe, lb. per ft., Plain Ends	Thickness, in.	Weight of Pipe, lb. per ft., Plain Ends	Thickness, in.	Weight of Pipe, lb. per ft., Plain Ends
2	2.375	111/2			0.154	3.68			0.218	5.02	0.436	9.03
4	4.500	8			0.237	10.89			0.337	14.98	0.674	27.54
6	6.625	8			0.280	19.18			0.432	28.57	0.864	53.16
8	8.625	8	0.277	25.00	-0.322	28.81			0.500	43.39	0.875	72.42
10	10.750	8	0.307	35.00	0.365	41.13	0.500	54.74				
12	12.750	8	0.330	45.00	0.375	50.71	0.500	65.41				

Sizes larger than 12 in . are specified by their outside diameter, O.D., and thickness. These larger sizes are furnished with plain ends, unless otherwise specified. The weights for O.D. pipe are given by manufacturers' published standards although it is possible to calculate the theoretical weights for any given size and wall thickness on the basis of $1 \mathrm{cu} . \mathrm{in}$. of steel weighing 0.2833 lb . The table does not give complete list of sizes less than 6 in.

TABLE 63. CEMENT-ASBESTOS WATER PIPE (TRANSITE)

Pipe Size,* in.	Class 50		Class 100		Class 150		Class 200	
	Shell Thickness, in.	Weight per Lin. Ft., lb.	Shell Thickness, in.	Weight per Lin. Ft., lb.	Shell Thickness, in.	$\begin{gathered} \text { Weight } \\ \text { per } \\ \text { Lin. } \\ \text { Ft., lb. } \end{gathered}$	Shell Thickness, in.	Weight per Lin. Ft., lb.
3	0.33	3.6	0.35	3.8	0.44	4.6	0.60	6.6
31/2	0.33	4.2	0.35	4.4	0.45	5.4	0.60	7.5
4	0.33	4.7	0.35	5.0	0.45	6.0	0.60	8.4
$41 / 2$	0.34	5.4	0.36	5.6	0.48	7.3	0.64	10.0
5	0.35	6.2	0.37	6.4	0.51	8.6	0.68	11.8
6	0.36	7.6	0.38	7.8	0.55	10.7	0.75	15.4
7	0.38	9.3	0.41	9.8	0.61	14.1	0.82	19.5
8	0.42	11.7	0.44	11.9	0.65	16.8	0.88	23.7
10	0.44	15.2	0.59	19.8	0.85	28.0	1.10	37.0
12	0.48	19.8	0.68	27.6	0.98	38.6	1.24	49.6
14	0.52	24.8	0.78	36.6	1.13	51.6	1.44	67.0
16	0.56	30.6	0.88	47.0	1.25	65.0	1.65	87.8
18	0.59	35.9	0.97	58.2	1.39	81.2	1.87	112.0
20	0.63	42.5	1.07	71.2	1.53	99.5	2.09	139.5
24	0.69	55.5	1.25	99.3	1.82	141.5	2.48	199.0
30	0.90	89.2	1.54	150.6	2.29	221.0	3.12	310.0
36	1.09	126.3	1.83	211.0	2.80	318.0	3.74	435.0

* Pipe size is inside diameter except sizes 4, 6, and 8 in. in Class 150 which are $3.95,5.85$, and 7.85 in ., respectively.

Class of pipe is same as allowable working pressure in pounds per square inch. Furnished in straight lengths only, standard length $=13 \mathrm{ft}$.

CHECK LIST FOR INSPECTORS

PIPE LAYING

Inspectors' Equipment

Complete set of plans, specifications, and approved shop drawings. Calipers.
$6-\mathrm{ft}$. rule, $50-\mathrm{ft}$. tape and mason's level.
Plumb bob and line.

Procedure in Inspection

Check all pipe delivered for conformity with specification requirements of size, thickness, and reinforcement. Check pipe thickness with calipers and compare with tables, pp. 166-179.

Check all pipe and fittings for cracks or other defects before laying.
When concrete pipe is not inspected at the plant, have contractor cut into 5% of pipe delivered to job in order to check size and number of lines of reinforcing for verification of specification requirements.

Accept no elliptically reinforced pipe unless top is properly marked on outside of pipe. When installing such pipe, require exact centering of each piece.

Report to superior any unsatisfactory subgrade condition which may require special treatment such as removal of unsatisfactory material, consolidation of subgrade with stone or gravel, blocking, reinforced-concrete cradle, or pile support.

Permit no variation from type of bedding called for by plans or specifications except as directed. Remember that such change may require heavier pipe.

Where rock occurs, be sure earth, sand or gravel cushion is provided.
When laying bell and spigot or tongue and groove pipe, require spigot or tongue to be inserted to proper depth and center.

Always require asbestos-cement pipe to be laid with proper space between ends at each joint. See that bells are laid upgrade and excavation is carried on upgrade.

Require mechanical joints to be uniformly bolted, and welded joints to be thoroughly cleaned before welding begins.

Insist upon removal of water from trench where jointing is in progress, and require joints to be clean before lead or compound is poured.

Check each length as laid for size, strength, line, and grade.
Wherever bends or tees occur and in back of hydrants, require proper backing with concrete to prevent joints from opening under pressure.

Do not allow backfill to be placed over joints until pressure test has been made. If covered, require joint to be uncovered during test.

Require backfill to be placed exactly as specified.
Where pipe lines must pass through a fill as is common in the construction of treatment plants, see that pipes are supported by piers (or by other methods) resting on undisturbed soil.

Conduct tests for leakage in water mains and infiltration in sewer lines; see specifications.

Disinfection of pipes and tanks.
Do not place material under or around pipes which will have the effect of making a subdrain of trench.

Engineer

REPORT ON CLAY AND CONCRETE PIPE* Shop Inspection

Material
Project \qquad
Producer

Sample taken from	Reported to
Quantity represented	
Marks on sample	
Sampled by	
Date taken	
Date rec'd at lab.	
Job sample No.	
Laboratory report No.	

Absorption Test				
Weight after immersion, grams				
Weight after drying, grams				
Loss of weight				
Absorption, \%				

Reinforcement

| Number of lines of reinforcing | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Area of circular reinforcing per ft. of pipe, sq. in. | | | |
| Number of longitudinals | | | |
| Total area of longitudinals, sq. in. | | | |

Remarks:

The above tests do do fulfill A.S.T.M. Spec. \qquad

* From Haller Engineering Associates, Inc.

MISCELLANEOUS
INSPECTOR'S TIME RECORD
TUTTLE, SEELYE, PLACE \& RAYMOND

Employee \qquad
Approved \qquad
PAYROLL AND EXPENSE RECORD

INSPECTOR'S DAILY REPORT
AIRFIELD RUNWAYS
TUTTLE, SEELYE, PLACE \& RAYMOND
Architect-Engineer
Fort Dix, New Jerbey

Labor	Equipment	Inspector's Checking List		
		Sewers	Water	Roads
		Material	Material	Material
		Line	Blocking	Subgrade
		Grade	Line	Consolidation
		Joints	Grade	Surface
		Backfill	Joints	Culverts
		Manholes	Backfill	Head walls
			Valves	Storm sewer
Worked from	Worked from		Hydrant	

Remarks: \qquad

INSPECTOR'S DAILY REPORT * GENERAL CONSTRUCTION
Report No \qquad Sheet No. \qquad Place \qquad
Date
Specification No. For \qquad Superintendent \qquad
Contractor \qquad Temperatures
Weather $\left\{\begin{array}{l}\text { A.M. } \\ \text { P.M. }\end{array}\right.$ \qquad [Time of starting work-
Tides (for all work affected thereby)
$\begin{cases}\text { High ____ } & \text { Elevation at } \\ \text { Low } & \text { Elevation at }\end{cases}$
NOON ${ }^{\circ} \mathrm{F}$.
Time of stopping work-
M. \qquad ${ }^{\circ} \mathrm{F}$.

Contractor's Force Including Supervisors and Subcontractor's Forces

Material Received this Date

Item	Delivered	Passed	Rejected	Item	Delivered	Passed	Rejected
						.	
					\therefore		

Instructions to inspectors. Make reports full and complete, and to include all work performed on contractor's plant. When the contractor, his chief engineer, general superintendent, or other responsible member of his organization visits the job, make a note, giving names, and also any instructions given by them to the superintendent on the job relative to the prosecution of the work. Note all accidents, delays, fires; etc., and give your opinion as to causes, and how the progress of the work is affected thereby.

* From Navy Department-Bureau Yards and Docks.

GENERAL CONTRACTOR'S DAILY REPORT
Date $\frac{10-4-45}{\text { Weather_Clear }}$

Job \qquad Temperature \qquad

Equipment Truck; hauling rubbish away.
Subcontractors Kalman. Watering Floors.

Excavation
Struct. steel
Misc. \& orn. iron
Cut stone
Plumbing
Heating
Eleotric
Waterproofing
Hollow metal
Kalamein

Steel sash
Calking
Lathing
Plastering
Marble and tile
Floor covering
Weatherstripping
Metal equipment
Painting
Glaxing

Remarks Wreckers-Cutting arches on 9th floor." Cutting wood floor. 7th floor. Removing rub. bish, atc., from 9th floor.

JOB POWER

In order to give the field engineer a general perspective of job power, the following is submitted.

Air compressors used in construction are of various types and sizes.
The most common type for the usual construction job is the portable type mounted on wheels for easy moving.

Compressor should be placed in a safe location to avoid injury but as close to operations as possible in order to avoid expensive labor and material in pipe lines, and to avoid decreased efficiency due to line losses, leaky joints, and actual breakage of line resulting from accident or carelessness.

Compressor capacity is rated on the actual cubic feet of air delivered at a designated pressure, usually 100 p.s.i.

The usual capacities for portable compressors are $105 \mathrm{cu} . \mathrm{ft} ., 210 \mathrm{cu} . \mathrm{ft}$. , $315 \mathrm{cu} . \mathrm{ft} ., 365 \mathrm{cu} . \mathrm{ft}$., and $500 \mathrm{cu} . \mathrm{ft}$.

There are many air tools for use with compressors; some of the more common are listed below:

Drills, jackhammers, wagon drills, drifters-for drilling holes in rock for use with explosives.

Breakers or busters-for breaking and chipping rock or loosening hard compact earth.

Air riveters (guns)-for driving rivets in steel bridge and building construction.

Plug drills-for plug and feather work, used generally in quarries for dimension stone such as granite, sandstone, and marble.

Air augers-for drilling holes in wood, in use on wooden piers, cofferdams, roof trusses, etc.

Bolt runners-for tightening bolts.
Tampers-to consolidate backfill.
Hoists, single and multiple drum-for use with derricks, mine scrapers, car haulage in industrial plants, etc.

Sheathing hammers-in trenches or cofferdams to drive wood sheathing, usually up to about 3 in . thick.

Air spades-for digging hard clay or other compact material.
Air vibrators-for concrete.
Pile hammers-for driving any type of pile.
Air saws, air clamps, etc.
The above tools use a varying amount of air, depending on size, mechanical condition of tool, etc.

For tools in general use on a construction job, such as a drill, breaker, tamper, and spades, a figure of $50 \mathrm{cu} . \mathrm{ft}$. can be taken to estimate the compressor capacity required.

For example, a $210 \mathrm{cu} . \mathrm{ft}$. compressor will operate four average size
drills, breakers, spades, or tampers, assuming that these tools are in fair mechanical condition.
The above figure is for practical field conditions.
Two or more compressors may be coupled together to increase the available amount of air. If this is done, the compressors should discharge into an air receiver or reservoir. This will increase efficiency, decrease wear on compressors, and insure an even flow of power to tools.

On any job it is good practice to have one spare tool for every four tools in use to avoid costly delays caused by mechanical failure.

Tools are expensive and should be well cared for; carelessness is an item that should not be on any report sheet.
Some attempts have been made to operate percussion tools (breakers) by gasoline or electricity, but this type of tool is not in general use as yet in the construction field.
Careful consideration should be given to weight of tool selected for various operations. For instance, a man can use a heavier, more powerful drill or breaker if he is drilling a down hole, i.e., a hole either vertical or on a slant away from him. But a much lighter tool should be provided for drilling or chipping a horizontal hole (breast hole), to avoid excessive fatigue. There is, however, a third leg or jack on the market which can be clamped to the drill or breaker which will relieve the operator of much of the weight of the tool and which adds considerably to the efficiency of the tool.

An air tool in operation is always cold owing to the expansion of the air out of the exhaust valve; hence, care must be taken to use a good grade of air oil for lubrication. One of the best of many ways to oil an air tool is by a line oiler. This is an oil reservoir holding about a pint of oil and can be set to provide oil drop by drop into the air line which is carried to the tool.
For several years manufacturers have provided a drill rod threaded on one end to receive a jack bit. This eliminates hand sharpening of steel on the job as the jack bit can be used until dull or until the gage is worn down, then it is simply unscrewed from the rod and replaced.

The gage of a bit is its width. As the drill rotates, the bit is worn down by the rock and gradually the bit becomes narrower until finally, in construction parlance, "the gage is gone."

The gage of a bit is of great importance. Drill rods usually provide for a depth of hole up to 10 ft . to 12 ft . or more by 2 ft . stages.
Example.

Gage

No. 1 or starter drill rod 2 ft .-Bit 2 in.
No. 2 drill rod 4 ft .-Bit $1 \frac{1}{4}$ in.
No. 3 drill rod 6 ft .-Bit $11 / 2 \mathrm{in}$.
Note that, on No. 1 bit, the gage is 2 in.

As the bit is worn or loses its gage, it is evident that No. 2 bit will not follow; that is, it will not seat at the bottom of the hole already drilled by No. 1. As a result, bit 2 will become fast in the hole resulting in loss of steel and time. The above bit sizes are arbitrary, but note that the gage for any following bit is $1 / 4 \mathrm{in}$. smaller always.
Bits may be resharpened by special tools but always to a smaller gage; for example a $2-\mathrm{in}$. bit becomes $13 / 4 \mathrm{in}$., etc.

Bits are various shapes: X bits, cross bits + or six point or rose bits . The cross bit and six point are the more common. Although each shape has its strong supporters among rock men, in general it can be said that, in hard dense rock, the cross bit is superior, while in loosely stratified rock, the six point is superior. The six point bit is especially desirable in drilling concrete for demolition.

The use of goggles to protect the eyes is a wise precaution for men operating drills or breakers, and in enclosed places a simple dust mask can be provided to keep the nose and throat as free from dust as possible.

Electric tools such as saws, pumps, wood augers, vibrators, bolt runners, and drill presses have a place in construction. For many tools, electricity is more advantageous in that the primary power feeder is a distant power house and, after the feeder lines are run, power is available at the turn of a switch.

Gasoline- and diesel-fuel-driven motors are widely used as the primary power unit on all sizes of tools from the small compresser, table saws, pumps, vibrators, chain saws, electric generators, etc., to the giant locomotive.

PART II

SURVEYING

TOPOGRAPHIC SURVEY

Traverse points should be selected with a view to economy of setups; e.g., so located that a maximum area can be seen by the instrument man. For accuracy the traverse should be run separately from the topography shots. For economy, where refined accuracy is not necessary, the traverse and the topography can be run simultaneously; i.e., the topography shots are taken as each traverse point is occupied.
Since stadia topography is normally plotted with a protractor, refinements greater than 15 minutes in the horizontal angle are not warranted. Considerable speed is attained when the horizontal angles are estimated to the nearest quarter degree and the vertical angles to the nearest minute.

SAMPLE NOTES

Fra. 1.

Fig. 2.

Fig. 3.'

STADIA TABLES

Table 1. Stadia Reductions *
Differences in Elevation for 100 ft . Inclined Distance

Min- utes	0°	10	$2{ }^{\circ}$	3°	4°	$5{ }^{\circ}$	6°	$7{ }^{\circ}$	8°	90	10°	11°	12°
0	0.00	1.74	3.49	5.23	6.96	8.68	10.40	12.10	13.78	15.45	17.10	18.73	20.34
2	0.06	1.80	3.55	5.28	7.02	8.74	10.45	12.15	13.84	15.51	17.16	18.78	20.39
4	0.12	1.86	3.60	5.34	7.07	8.80	10.51	12.21	13.89	15.56	17.21	18.84	20.44
6	0.17	1.92	$3.66{ }^{\circ}$	5.40	7.13	8.85	10.57	12.26	13.95	15.62	17.26	18.89	20.50
8	0.23	1.98	3.72	5.46	7.19	8.91	10.62	12.32	14.01	15.67	17.32	18.95	20.55
10	0.29	2.04	3.78	5.52	7.25	8.97	10.68	12.38	14.06	15.73	17.37	19.00	20.60
12	0.35	2.09	3.84	5.57	7.30	9.03	10.74	12.43	14.12	15.78	17.43	19.05	20.66
14	0.41	2.15	3.90	5.63	7.36	9.08	10.79	12.49	14.17	15.84	17.48	19.11	20.71
16	0.47	2.21	3.95	5.69	7.42	9.14	10.85	12.55	14.23	15.89	17.54	19.16	20.76
18	0.52	2.27	4.01	5.75	7.48	9.20	10.91	12.60	14.28	15.95	17.59	19.21	20.81
80	0.58	2.33	4.07	5.80	7.53	9.25	10.96	12.66	14.34	16.00	17.65	19.27	20.87
22	0.64	2.38	4.13	5.86	7.59	9.31	11.02	12.72	14.40	16.06	17.70	19.32	20.92
24	0.70	2.44	4.18	5.92	7.65	9.37	11.08	12.77	14.45	16.11	17.76	19.38	20.97
26	0.76	2.50	4.24	5.98	7.71	9.43	11.13	12.83	14.51	16.17	17.81	19.43	21.03
28	0.81	2.56	4.30	6.04	7.76	9.48	11.19	12.88	14.56	16.22	17.86	19.48	21.08
80	0.87	2.62	4.36	6.09	7.82	9.54	11.25	12.94	14.62	16.28	17.92	19.54	21.13
32	0.93	2.67	4.42	6.15	7.88	9.60	11.30	13.00	14.67	16.33	17.97	19.59	21.18
34	0.99	2.73	4.48	6.21	7.94	9.65	11.36	13.05	14.73	16.39	18.03	19.64	21.24
36	1.05	2.79	4.53	6.27	7.99	9.71	11.42	13.11	14.79	16.44	18.08	19.70	21.29
38	1.11	2.85	4.59	6.33	8.05	9.77	11.47	13.17	14.84	16.50	18.14	19.75	21.34
40	1.16	2.91	4.65	6.38	8.11	9.83	11.53	13.22	14.90	16.55	18.19	19.80	21.39
42	1.22	2.97	4.71	6.44	8.17	9.88	11.59	13.28	14.95	16.61	18.24	19.86	21.45
44	1.28	3.02	4.76	6.50	8.22	9.94	11.64	13.33	15.01	16.66	18.30	19.91	21.50
46	1.34	3.08	4.82	6.56	8.28	10.00	11.70	13.39	15.06	16.72	18.35	19.96	21.55
48	1.40	3.14	4.88	6.61	8.34	10.05	11.76	13.45	15.12	16.77	18.41	20.02	21.60
50	1.45	3.20	4.94	6.67	8.40	10.11	11.81	13.50	15.17	16.83	18.46	20.07	21.66
52	1.51	3.26	4.99	6.73	8.45	10.17	11.87	13.56	15.23	16.88	18.51	20.12	21.71
54	1.57	3.31	5.05	6.79	8.51	10.22	11.93	13.61	15.28	16.94	18.57	20.18	21.76
56	1.63	3.37	5.11	6.84	8.57	10.28	11.98	13.67	15.34	16.99	18.62	20.23	21.81
58	1.69	3.43	5.17	6.90	8.63	10.34	12.04	13.73	15.40	17.05	18.68	20.28	21.87
60	1.74	3.49	5.23	6.96	8.68	10.40	12.10	13.78	15.45	17.10	18.73	20.34	21.92
$\begin{array}{r} f+c \\ .75 \end{array}$	0.01	0.02	0.03	0.05	0.06	0.07	0.08	0.10	0.11	0.12	0.14	0.15	0.16
1.00	0.01	0.03	0.04	0.06	0.08	0.09	0.11	0.13	0.15	0.16	0.18	0.20	0.22
1.25	0.02	0.03	0.05	0.08	0.10	0.11	0.14	0.16	0.18	0.21	0.23	0.25	0.27

Corrections to Horizontal Distances

Min- utes	0°	1°	2°	3°	4°	5°	6°	7°	8°	9°	10°	11°	12°
0	$\ldots \ldots$.	0.03	0.12	0.27	0.49	0.76	1.09	1.49	1.94	2.45	3.02	3.64	4.32
10	$\ldots \ldots$	0.04	0.14	0.31	0.53	0.81	1.15	1.56	2.02	2.54	3.12	3.75	4.44
20	0.35	0.05	0.17	0.34	0.57	0.86	1.22	1.63	2.10	2.63	3.22	3.86	4.56
30	0.01	0.07	0.19	0.37	0.62	0.92	1.28	1.70	2.18	2.72	3.32	3.97	4.68
60	0.01	0.08	0.22	0.41	0.66	0.98	1.35	1.78	2.27	2.82	3.42	4.09	4.81
80	0.02	0.10	0.24	0.45	0.71	1.03	1.42	1.86	2.36	2.92	3.53	4.21	4.93

Table 1. Stadia Reductions (Continued) *
Differences in Elevation for 100 ft . Inclined Distance

$\underset{\text { utee }}{\text { Min- }}$	13°	14°	15°	16°	17°	18°	19°	20°	21°	22°	23°	24°	25°
	21.9	23.	25		27.96	29.39	30				35.97		
2	21.97	23.52	25.05	26.55	28.01	29.44	30.8	32.18	33.50	34.77	36.01	37.20	38
4	22.02	23.58	25.10	26.59	28.06	29.48	30.87	32.23	33.54	34.82	36.05	37.23	38.38
6	22.08	23.63	25.15	26.64	28. 10	29.53	30.92	32.27	33.59	34.86	36.09	37.37	
8	22.13	23.68	25.20	26.69	28.15	29.58	30.97	32.32	33.63	34.90	36.13	37.31	38.4
10	22.18	23.73	25.25	26.74	28.20	29.62	31.01	32.36	33.67	34.94	36.17	37.35	38.49
12	22.23	23			28.25	29.67	31.06	32.41	33.72	34.98	36.21	37.39	
14	22.28	23.83	25.35	26.84	28.30	29.72	31.10	32.45	33.76	35.02	36.25	37.43	38.56
16	22.34	23.88	25.40	26.89	28.34	29.76	31.15	32.49	33.80	35.07	36.29	37.47	
18	22.39	23.93	25.45	26.94	28.39	29.81	31.19	32.54	33.84	35.11	36.33	37.51	
20	22.44	23	25.50	26	28.44	86	24	32.58	33.89	35.15	36.37	37.54	
									33				
24	22.54	24	25.	27	28.54	29.95	31.33	32.67	33.97	35.23		37.62	
26	22.60	24.14	25.65	27.13	28.58	30.00	31.38	32.72 32.76	34.01	35.27 35.	36.49	37.66	78
28	22.65	24.19	25.70	27.18	28.63	30.04	31.42	32.76	34.06	35.31	36.53	37.70	38.82
80	22.70	24.24	25.75	27.23	28.68	30.09	31.47	32.80	34.10	35.36	36.57	37.74	
32	22.75	24.29	25.	27.28	28.73	30.14	31.51	32.85	34.14	35.40	36.61	37.77	38.8
34	22.80	24.34	25.85	27.33	28.77	30.19	31.56	32.89	34.18	35.44	36.65	37.81	38.93
36	22.85	24.39	25.90	27.38	28.82	30.23	31.60	32.93	34.23		36.69	37.85	38.97
36	22.91	24.	25.95	27	28.	30.28	31.	32.98	34.27	35.52	36.73	37.89	39.00
40	22.96	24.49	26.00		28.92	30.32	31.69	33.02	34.31	35.56	36.77	37.93	
4	23.01	24.55	26.05		28.96	30.37	31.74	33.07	34.35	35.60	36.80	37.96	
44	23.06	24.60	26.10	27.57	29.01	30.41	31.78	33.11	34.40	35.64	36.84	38.00	39.11
46	23.11	24.65	26.15	27.62	29.06	30.46	31.83	33.15	34.44	35.68	36.88	38.04	39.15
48	23.16	24.70	26.20	27.67	29.11	30.51	31.87	33.20	34.48	35.72	36.92	38.08	39.18
50	23.22	24.75	26.25	27.72	29.1	30.55	31.92	33.24	34.52	35.76	36.96	38.11	
52	23.27	24.80	26.30	27.71	29.20	30.60	31.96	33.28	34.57	35.80	37.00	38.15	996
54	23.32	24.85	26.35	27.81	29.25	30.65	32.01	33.33	34.61	35.85	37.04	38.19	39.29
56	23.37	24.90	26.40	27.86	29.30	30.69	32.05	33.37	34.65	35.89	37.08	38.23	39.33
58	23.4	24.9	26.45	27.	29.3	30.7	32.09	33.41	34.69	35.93	37.12	38.26	39.36
0	23.47	25.00	26.50	27.96	29.39	30.78	32.14	33.46	34.73	35.97	37.16	38.30	. 4
$8+e$	0.17	0.19	0.20	0.21	0.23	0.24	0.25	0.26	0.27	0.29	0.30	0.31	
1.00	0.23	0.25	0.27	0.28	0.30	0.32	0.33	0.35	0.37	0.38	0.40	0.41	0.43
1.25	0.29	0.31	0.34	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50	0.52	0.5

Corrections to Horizontal Distances

Minutee	13°	14°	15°	16°	17°	18°	19°	20°	21°	22°	23°	24°	25°
0	5.06	5.85	6.70	7.60	8.55	9.55	10.60	11.70	12.84	14.03	15.27	16.54	17.86
20	5.19	5.99	6.84	7.75	8.71	9.72	10.78	11.89	13.04	14.24	15.48	16.76	18.08
20	5.32	6.13	6.99	7.91	8.88	9.89	10.96	12.07	13.23	14.44	15.69	16.98	18.31
20	5.45	6.27	7.14	8.07	9.04	10.07	11.14	12.26	13.43	14.64	15.90	17.20	18.53
40.	5.58	6.41	7.29	8.23	9.21	10.24	11.33	12.46	13.63	14.85	16.11	17.42	18.76
60°	5.72	6.55	7.44	8.39	9.38	10.42	11.51	12.65	13.83	15.06	16.33	17.64	18.99

[^22]
CONSTRUCTION STAKEOUTS

STAKEOUT FOR STRUCTURES

Fig. 4. Batter boards for structures.

Batter boards as illustrated are set on, or parallel to, the building or structure lines either before or after the rough excavation is completed. When set before excavating, the batter boards should be checked upon completion of the rough excavation. Points on the batter boards may be set on the outside foundation line or sometimes on the center line of columns. It is preferable to set the top of each batter board to some definite grade, such as the first-floor elevation or else some even foot above or below a working grade.

Before setting the batter boards a base line should be established and referenced in with ties. Targets may also be set on the base line projected. Angles turned from the base line should be established by the method of repetition (see p. 244) as an error of 1 minute in 300 ft . will throw the building line off 1 in .

From time to time during construction, the batter boards should be checked for disturbance or movement.

HIGHWAY CONSTRUCTION STAKEOUT

Fig. 5. Highway construction stakeout.

Before work begins, the construction centerline is staked out, usually on $50-\mathrm{ft}$. stations. Hubs are set at P.C.'s, P.T.'s, P.I.'s, and transit points. These hubs are tied in or offset, and the ties are recorded in the field book.

Offset grade stakes are set on $50-\mathrm{ft}$. stations far enough out to escape disturbance during operations where possible. Elevations of these stake tops are taken with a level, and the cut or fill to finish center-line grade is computed and marked on each stake. The distance to the toe or top of slope is marked on the offset grade stake or else the actual location of the toe or top of slope is marked with a slope stake. The station and the distance from the offset stake to center line are marked on the face of the offset stake. The superelevation plus or minus to edge of pavement and any pavement widening or curves are also marked on the offset stakes.

- After rough grading is completed, blue tops or fine grade stakes are set every 50 ft . minimum. Blue tops are stakes set to fine grade and the top marked blue. Allowance for settlement or subsidence is sometimes made in setting these grades, or it may be made the contractor's responsibility, the engineer in the latter case setting the stakes to the grades shown on plan.

For concrete pavement, stakes are set usually every 50 ft . on tangents and straight grades and every 25 ft . on horizontal and vertical curves. These stakes are carefully aligned with a transit and tacks set on line. Either the tops are set to exact grade or the cut or fill is marked to finish grade.

Pavement stakes are set with a sufficient offset to allow room for the flanged bases of the forms, the offset usually being about 18 in . or 2 ft . from the edge of pavement. After the initial lane is placed, additional stakes may be set for other lanes or the forms may be set by leveling over with a line level.

For asphaltic pavements stakes are usually not set when the base has been constructed true to grade as the paving machines can be set for the required thickness. If the base is variable, steel pins for line and grade are usually set at 50 - or $25-\mathrm{ft}$. intervals and offset enough to allow the machines to work. A $1-\mathrm{ft}$. offset is usually sufficient.

The amount of stakeout done for highway construction depends on the value and importance of the work, and judgment is required. For example, on cheap tertiary road construction only center-line stakes might be set at $100-\mathrm{ft}$. stations and a list of cuts and fill given to the foreman. The line and grade may then be transferred by the foreman, using a tape and hand level, to convenient trees, offset stakes, etc.

Through wooded country, stakes or marks are usually set at the clearing and grubbing limits. Trees to be saved are indicated by markings or signs.

In addition to line and grade stakes, right-of-way stakes may be necessary, also project markers and stakes set at intersection of right-of-way and adjoining property lines.

RAILROAD CONSTRUCTION STAKEOUT

Fig. 6. Railroad construction stakeout.
Stakeout for the grading work is similar to highway stakeout.
After grading is finished, and the ballast, ties, and rails are being installed, stakes for exact alignment and grade of rails are set. These stakes are tacked for line and may be set on center line or offset about 2 ft . from one rail. The grade marked is usually finish grade to the near rail, superelevation being set for the other rail by using a track level.

AIRFIELD CONSTRUCTION STAKEOUT

Cross Sectional View of Stake Plocement
Fig. 7. Airport stakeout.
The stakeout required differs from highway work in that the widths of runways and taxiways, together with their shoulders and graded areas, are so great that it is not practicable to set offset stakes to serve during construction.
The construction center line is staked out at $50-\mathrm{ft}$. stations and well referenced and tied in, and targets are set on the line extended. During grading operations stakes are set continually day by day, at least one party usually being required at all times for each runway under construction.

For rough grading stakes at $50-\mathrm{ft}$. intervals both longitudinally and transversely are sufficient, but for fine grading stakes should be set at $25-\mathrm{ft}$. intervals.

Concrete pavement stakes are set exactly the same as for highways, but owing to the widths of runways and aprons it is not desirable to depend on a string level to transfer the grades for more than 2 or 3 lanes. Additional stake lines should be run in at intervals of 25 or 30 ft . transversely.
Stakeout for asphaltic pavements is the same as for highways.
Stakes for grading interior areas are usually set on $50-$ to $100-\mathrm{ft}$. grids and marked for cut and fill.

PIPELINE STAKEOUT *

Fig. 8. Pipeline stakeout.
Before beginning excavation, stakes should be set 25 or 50 ft . apart parallel to and offset from the center line of the drain on the side opposite to that on which earth will be thrown. Elevations of tops of stakes should be taken with a level and depth of cut marked on each. These stakes will serve as guides for the rough excavation.

Excavation should be begun at the outlet.
After the excavation is approximately to grade, batter boards should be placed across the trench opposite each stake with the top of each board at the same distance above the grade of the flow line. About 6.5 or 7 ft . above grade is good practice. The center line is then marked on the batter boards, and a string connecting these points will be directly above and parallel to the grade line. The center line at any point may then be obtained by dropping a plumb bob from the string, and the grade determined by measuring down from the string with a pole of proper length.
Laying of pipe should begin at the outlet and proceed upstream.

[^23]
CIRCULAR CURVES

ARC DEFINITION

Formulas

$$
\begin{aligned}
R & =\frac{5729.58}{D} \\
T & =R \tan \frac{\Delta}{2} ; T=\frac{\tan 1^{\circ} \text { curve for } \Delta}{D} \\
L & =\text { length }=\frac{100 \Delta}{D} \\
M & =R(1-\cos 1 / 2 \Delta) \\
E & =R\left(\frac{1}{\cos 1 / 2 \Delta}-1\right) ; \quad E=\frac{\text { ext. } 1^{\circ} \text { curve for } \Delta}{D} \\
C & =2 R \sin \frac{\Delta}{2}
\end{aligned}
$$

Definitions

$L=$ Length of circular curve.
P.I. $=$ point of intersection.
P.C. $=$ point of curvature.
P.T. = point of tangency.

Example. Given. $\Delta=54^{\circ} 20^{\prime} ; D=7^{\circ} 40^{\prime} ;$ P.I. $=$ Sta. $125+39.88$.
Required. $R ; T ; L$ and Sta. of P.C. and P.T.
Solution.
$R=\frac{5729.58}{7^{\circ} 40^{\prime}}=747.34^{\prime}$.
$T=747.34\left(\tan 27^{\circ} 10^{\prime}\right)=747.34(0.513195)=383.53^{\prime}$.
Also, from p. 208 (funct. 1° curve) by interpolation, $\tan 1^{\circ}$ curve for $\Delta 54^{\circ} 20^{\prime}=2940.41$.
$\therefore T=\frac{2940.41}{7^{\circ} 40^{\prime}}=383.53^{\prime}$.
P.C. $=$ Sta. $125+39.88-383.53=$ Sta. $121+56.35$.
$L=\frac{100 \Delta}{D}=\frac{100\left(54^{\circ} 20^{\prime}\right)}{7^{\circ} 40^{\prime}}=708.70^{\prime}$.
P.T. $=$ Sta. $121+56.35+708.70=$ Sta. $128+65.05$.

DEFLECTIONS

Formulas

Deflection angle $=\frac{D}{2}$ for $100^{\prime} ; \frac{D}{4}$ for 50^{\prime}, etc.
For c feet (in minutes) $=0.3 c D$.
Deflection angle (in minutes) from P.C. to P.T. $=0.3 L D$.
Also, deflection angle (in degrees) from P.C. to P.T. $=\frac{\Delta}{2}$.
Example. Given. $\Delta=54^{\circ} 20^{\prime} ; D=7^{\circ} 40^{\prime} ; L=708.70$; P.C. $=$ Sta. $121+56.35 ;$ P.T. $=$ Sta. $128+65.05$.
Required. Deflection angle from P.C. to Sta. $122+00$; Sta. $122+50$ and P.T. Sta. $128+65.05$.

Solution.
Sta. $122+00-$ P.C. Sta. $121+56.35=43.65^{\prime}$.
\therefore Deflection angle to Sta. $122+00=0.3 \times 43.65 \times 7^{\circ} 40^{\prime}=100.395^{\prime}$ $=1^{\circ} 40.395^{\prime}$.
Deflection angle to Sta. $122+50=1^{\circ} 40.395^{\prime}+\frac{7^{\circ} 40^{\prime}}{4}=1^{\circ} 40.395^{\prime}$ $+1^{\circ} 55^{\prime}=3^{\circ} 35.395^{\prime}$.
Deflection angle to P.T. Sta. $128+65.05=0.3 \times 708.70 \times 7^{\circ} 40^{\prime}$ $=27^{\circ} 10^{\prime}$.
Also, deflection angle to P.T. Sta. $128+65.05=\frac{\Delta}{2}=\frac{54^{\circ} 20^{\prime}}{2}$ $=27^{\circ} 10^{\prime}$.

EXTERNALS

Example. Given. $\Delta=54^{\circ} 20^{\prime} ; \quad D=7^{\circ} 40^{\prime} ; \quad R=747.34^{\prime}$.
Required. External " E ".
Solution.

$$
E=747.34\left(\frac{1}{.8896822}-1\right)=92.67^{\prime}
$$

Also, from p. 208 (funct. 1° curve) by interpolation, external 1° curve for $\Delta 54^{\circ} 20^{\prime}=710.48$.

$$
\therefore E=\frac{710.48}{7^{\circ} 40^{\prime}}=92.67^{\prime} .
$$

MINIMUM CURVATURE *

The curve should be at least 500 ft . long for $\Delta=5$ degrees and increase 100 ft . in length for each decrease of 1 degree in the Δ.

Where topography permits, use simple $0^{\circ} 20^{\prime}$ to $1^{\circ} 00^{\prime}$ curves without superelevation or widening.

MAXIMUM CURVATURE *

	Degree of Curve	
Assumed Design	Desirable	Absolute
Speed, M.P.H.	Maximum	Maximum
30	20	25
40	11	14
50	7	9
60	5	6
70	3	4

TANGENT OFFSETS

The approximate offset from the tangent to the curve at any distance from the P.C. $=\frac{\text { distance }^{2}}{2 R}$.

CHORD DEFINITION (R. R. CURVE)

D (in degrees) subtends 100^{\prime} chord.

$$
\begin{aligned}
& D=100 \Delta / L \\
& D=\frac{\tan 1^{\circ} \text { curve }}{T} \text { (approx.). } \\
& D=\frac{\text { ext. } 1^{\circ} \text { curve }}{E} \text { (approx.). }
\end{aligned}
$$

Tan offset $=\frac{\text { chord }^{2}}{2 R}=$ chord $\cdot \sin$ def. $=\left(\frac{\text { chord }^{2}}{100}\right) \tan$ offset, Table 3.
Chord offset $=2 \tan$ deflection for 100^{\prime} chord $=100 \sin D^{\circ}$.

* From Geometric Design Standards by A.A.S.H.O.

Tan def. $=1 / 2 D \frac{\text { chord }}{100}$; for c feet $=0.3 D \times c=$ def. for 1^{\prime} in Table 2 $\times c$.

Chord def. $=2 \tan$ def. $=D$ for 100^{\prime} chord.
Formulas

$$
\begin{gathered}
R=\frac{50}{\sin D / 2} ; \quad R=T \cdot \operatorname{cotan} \frac{\Delta}{2} ; R=\frac{E}{\operatorname{exsec} \Delta / 2} ; \quad T=R \cdot \tan \frac{\Delta}{2} ; \\
T=\frac{50 \tan \Delta / 2}{\sin \Delta / 2} ; \quad T=\frac{\tan 1^{\circ} \text { curve }}{D}+\text { corr.* } L=100 \frac{\Delta}{D} ; \quad \Delta=\frac{D L}{100} ; \\
M=R\left(1-\cos \frac{\Delta}{2}\right) ; \quad M=R \operatorname{vers} \frac{\Delta}{2} ; \quad E=T \cdot \tan \frac{\Delta}{4} ; \\
\quad E=\frac{R}{\cos \Delta / 2}-R ; \quad E=R \cdot \operatorname{exsec} \frac{\Delta}{2} . C=2 R \cdot \sin \frac{\Delta}{2} ; \\
E=\frac{\text { ext. } 1^{\circ} \text { curve }}{D}+\text { correction. }{ }^{*} \sin \frac{D}{2}=\frac{50}{R} ; \sin \frac{D}{2}=\frac{50 \tan \Delta / 2}{T}
\end{gathered}
$$

Example. Given. $\Delta=54^{\circ} 20^{\prime} ; D=7^{\circ} 40^{\prime}$, P.I. Sta. $125+39.88$.
Required. R, T, L, P.C., and P.T.
Solution.
$R=50 \div \sin 3^{\circ} 50^{\prime}=747.89$.
$T=747.89\left(\tan 27^{\circ} 10^{\prime}\right)=383.81$.
$L=100 \Delta \div D=100\left(54^{\circ} 20^{\prime}\right) \div 7^{\circ} 40^{\prime}=708.70$.
P.C. $=$ P.I. Sta. $125+39.88-383.81=$ Sta. $121+56.07$.
P.T. $=$ Sta. $121+56.07+708.70=$ Sta. $128+64.77$.
*See p. 209.
TABLE 2．RADII，DEFLECTIONS，OFFSETS，ORDINATES，CHORDS AND ARCS－100＇CHORDS＊

θ	ผे సे సे సे సे సे ले
＋	
	め 凡 M
	Si
N N N	 రీ\＆
For Subchords Add	$00^{\circ 0} 00^{\circ 0} 000000000 \cdot$
	$00^{\circ \circ} 0^{\circ} 00^{\circ 0} 00000$
	$0^{\circ} 0^{\circ \circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$
	すごㅇㅇㅇㅇㅇㅇㅇㅇ․ㅇ $0^{\circ 0} 0^{\circ 0} 0^{\circ} 0^{\circ}$
B ị	
雷它	
$\begin{aligned} & \text { 受 } \\ & \text { 易 } \end{aligned}$	ヘ サN
0	

＊Adapted from Railroad Curve Tables by Eugene Dietzgen Co．

TABLE 8. MINUTES IN DECIMALS OF A DEGREE, SECONDS IN DECIMALS OF A MINUTE *

1	0.0167	11	0.1833	21	0.3500	31	0.5167	41	0.6833	51	0.8500
2	0.0333	12	0.2000	22	0.3667	32	0.5333	42	0.7000	52	0.8667
3	0.0500	13	0.2167	23	0.3833	33	0.5500	43	0.7167	53	0.8833
4	0.0867	14	0.2333	24	0.4000	34	0.5667	44	0.7333	54	0.9000
5	0.0833	15	0.2500	25	0.4167	35	0.5833	45	0.7500	55	0.9167
6	0.1000	16	0.2667	26	0.4333	36	0.6000	46	0.7687	56	0.9333
7	0.1167	17	0.2833	27	0.4500	37	0.6167	47	0.7833	57	0.9500
8	0.1333	18	0.3000	28	0.4687	38	0.6333	48	0.8000	58	0.9667
9	0.1500	19	0.3167	29	0.4833	30	0.6500	49	0.8167	59	0.9833
10	0.1667	20	0.3333	30	0.5000	40	0.6667	50	0.8333	60	1.0000

Proportional Part for $1^{\prime \prime}=0.000278$ of 1°

Use of Tableg 2 and 3

Given	Required	Solution
$D=2^{\circ} 30^{\prime}$	Deflection for 35 ft .	$=0.75 \times 35=26.25 \quad=26^{\prime} 15^{\prime \prime}$
$D=4^{\circ}$	Tan offset for 125 ft .	$=3.49(1.25 / 100)^{2} \quad=5.45 \mathrm{ft}$.
$D=10^{\circ}$	Mid ord. for 30 ft . chord	$=0.0001 \times 30^{2} \times 2.183 \quad=0.196 \mathrm{ft}$.
$D=14^{\circ}$	Length of nominal 20 ft . sub chord	$=20+0.05=20.05 \mathrm{ft}$.
$D=20^{\circ}$	Actual length of arc for $L=600 \mathrm{ft} .(6 \mathrm{Sta} .)$	$=100.51 \times 6=603.06 \mathrm{ft}$.
$\begin{aligned} & D=3^{\circ} \\ & \Delta=27^{\circ} 05^{\prime} 11^{\prime \prime} \end{aligned}$	Long chord for 3 Sta. Δ in decimals of ${ }^{\circ}$	$=$ From Table 2 From Table 3 $=27+0.0833+11 \times 0.000278=27.086^{\circ}$

* Adapted from Railroad Curve Tables by Eugene Dietzoen Co.

TABLE 4. FUNCTIONS OF 1° CURVE

See pp. 202, 203, 204 for use of table.

$\begin{gathered} \text { Central } \\ \text { Angle } \end{gathered}$	Tangent	External	Central Angle	Tangent	External	Central Angle	Tangent	Ex- ternal	Central Angle	Tangent	Ex- ternal
$1{ }^{\circ}$	50.00	0.22	31°	1588.95	216.25	61°	3374.98	920.1	91°	5830.46	2444.9
30^{\prime}	75.00	0.48	0^{\prime}	1615.91	223.51	30'	3408.74	937.3	30^{\prime}	5881.58	2481.5
$2{ }^{\circ}$	100.01	0.87		1642.93	230.90		3442.68	954.8		5933.15	2518.5
30^{\prime}	125.02	1.36	30^{\prime}	1670.02	238.43	30^{\prime}	3476.79	972.4	$3^{30^{\prime}}$	5985.20	2556.0
	150.03	1.96	33°	1897.18	248.08		3511.09	990.2		6037.72	2594.0
	175.05	2.67		1724.41	253.87	0^{\prime}	3545.57	1008.3	30^{\prime}	6090.72	2632.6
	200.08	3.49		1751.71	261.80		3580.24	1026.6		6144.22	2671.6
	225.12	4.42		1779.08	269.86	30'	3615.09	1045.2		6198.22	2711.2
	250.16	5.46	35	1808.53	278.05		3650.14	1063.9		6252.74	2751.3
30^{\prime}	275.21	6.61	30^{\prime}	1834.05	286.39	30^{\prime}	3685.39	1082.9	30^{\prime}	6307.77	2792.0
	300.27	7.86	36°	1861.65	294.86		3720.83	1102.2		6363.34	2833.2
	325.35	9.23		1889.33	303.47		3756.48	1121.7		6419.45	2875.0
	350.44	10.71		1917.09	312.22		3792.33	1141.4		6476.11	2917.3
	375.54	12.29	38^{30}	1944.93	321.11	30^{\prime}	3828.38	. 1161.3		6533.33	2960.3
	400.65	13.99		1972.85	330.15		3864.65	1181.6		6591.13	3003.8
	425.78	15.80		2000.86	339.32	10^{30}	3901.13	1202.0		6649.50	3047.9
	450.83	17.72		2028.95	348.64		3937.83	1222.7		6708.47	3092.7
	476.09	19.75	3'	2057.13	358.11	30^{\prime}	3974.75	1243.7		6768.05	3138.1
10°	501.27	21.89		2085.40	367.72		4011.89	1265.0		6828.25	3184.1
	526.47	24.14		2113.75	377.47	30^{\prime}	4049.27	1286.5		6889.07	3230.8
	551.70	26.50		2142.20	387.38		4086.87	1308.2		6950.53	3278.1
	576.94	28.97		2170.74	397.43		4124.71	1330.3		7012.65	3326.1
	602.20	31.56		2199.38	407.64		4162.78	1352.6		7075.44	3374.9
	627.49	34.26		2228.11	417.99		4201.10	1375.2		7138.91	3424.3
	65	37.07		2256.94 2285	428.50 439.16		4239.66	1398.0		72	3474.4
14°	703.50	43.03		2314.90	449.98	74	4317.55	1444.6	104°	7333.53	${ }_{3576.8}$
	728.89	46.18		2344.03	480.95		4356.87	1468.4		7399.85	3629.2
	754.31	49.44		2373.27	472.08		4396.46	1482.4		7466.93	3682.3
	779.76	52.82		2402.61	483.37		4436.31	1516.7		7534.78	3736.2
16°	805.24	56.31		2432.06	494.82	76	4476.44	1541.4	$10{ }^{\circ}$	7603.41	3791.0
	830.75	59.91	0^{\prime}	2461.62	506.42	30^{\prime}	4516.83	1566.3		7672.84	3846.5
	856.29	63.63		2491.29	518.20		4557.51	1591.6	10	7743.08	3902.9
	881.87	67.47		2521.07	530.13		4598.47	1617.1		7814.16	3960.1
	907.48	71.42		2550.97	542.23		4639.72	1643.0		7886.09	4018.2
	933.12	75.49		2580.98	554.50	30^{\prime}	4881.26	1869.2		7958.89	4077.2
19°	958.80	79.67		2611.12	566.94		4723.10	1695.8	109	8032.57	4137.1
	984.52	83.97		2641.37	579.54		4765.24	1722.7		8107.17	4197.9
20°	1010.28	88.39		2671.75	592.32		4807.69	1749.9		8182.69	4259.7
	1036.08	92.92		2702.24	605.27		4850.45	1777.4		8259.15	4322.4
21°	1061.91	97.58	51°	2732.87	618.39		4893.52	1805.3	$111^{\circ}{ }^{\circ}$	8336.59	4386.1
	1087.79	102.35		2763.62	631.69		4836.92	1833.6		8415.01	4450.9
22°	1113.72	107.24	52	2794.50	645.17		4980.65	1862.2		8494.45	4816.6
	1139.68	112.25		2825.52	658.83		5024.71	1891.2		8574.92	
23°	1165.70	117.38	53	2856.66	672.66	83	5069.10	1920.5	113°	8656.45	4651.3
	1191.75	122.63		2887.95	688.68		5113.84	1950.3		8739.06	4720.3
24°	1217.86	128.00		2919.37	700.89		5158.93	1980.4	114°	8820.78	4790.4
	1244.01	133.50		2950.83	715.28		5204.38	2010.8		8907.63	4861.7
$25^{\circ} 30^{\prime}$	1270.22	139.11		2982.63	729.85		5250.19	2041.7		8983.64	4834.1
	1298.47	144.85		3014.48	744.62		5296.37	2073.0		9080.83	5007.8
26°	1322.78	150.71		3046.47	758.58		5342.92	2104.7	116	9169.24	5082.7
	1349.14	156.70		3078.61	774.73		5389.85	2136.7	'	9258.89	5158.8
27	1375.55	162.81	57	3110.91	790.08		5487.17	2169.2	117	9349.82	5236.2
	1402.02	169.04		3143.35	805.62		5484.88	2202.2	11	9442.05	5315.0
	1428.54	175.41		3175.96	821.37		5532.99	2235.5	118	9535.62	5395.1
	1455,13	181.89		3208.72	837.31		5581.51	2269.3	'	9630.55	5476.5
	1481.77	188.51		3241.64	853.48		5630.44	2303.5	118°	9726.89	5559.4
	1508.47	195.25		3274.72	889.82		5879.78	2338.2		9824.67	5843.8
30	1535.24	202.12		3307.97	886.38		5729.58	2373.8	120°	9823.92	5729.7
30^{\prime}	1562.06	209.12	30^{\prime}	3341.39	903.15	30^{\prime}	5779.80	2408.9	30^{\prime}	10,024.68	5817.0

TABLE 5. CORRECTIONS FOR TANGENTS AND EXTERNALS

For railroad and highway curves laid out by the chord definition these corrections are to be added to the values found, using table on p. 208, in order to obtain the corrected tangents and external distances.

For Tangents Add *

Central Angle	Degree of Curve													
	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	6°	0°
10°	. 03	. 06	. 09	. 13	. 16	. 19	. 22	. 25	. 28	. 31	. 34	. 38	. 42	. 46
15°	. 04	. 10	. 14	. 19	. 24	. 29	. 34	. 39	. 45	. 51	. 53	. 58	. 63	. 68
20°	. 08	. 13	. 19	. 26	. 32	. 39	. 45	. 51	. 58	. 65	. 72	. 79	. 84	. 90
25°	. 08	. 16	. 24	. 38	. 40	. 49	. 58	. 67	. 75	. 83	. 90	. 99	1.06	. 14
30°	. 10	. 19	. 29	. 39	. 49	. 58	. 89	. 79	. 89	. 99	1.09	1.20	1.29	. 39
35°	. 11	. 22	. 34	. 47	. 58	. 69	. 70	. 81	. 82	1.04	1.29	1.42	1.54	. 66
40°	. 13	. 26	. 40	. 53	. 67	. 80	. 93	1.06	1.20	1.34	1.49	1.64	1.79	. 94
45°	. 15	. 30	. 44	. 60	. 76	. 91	1.06	1.21	1.37	1.52	1.70	1.87	2.04	. 21
50°	. 17	. 34	. 51	. 68	. 85	1.02	1.19	1.36	1.54	1.72	1.91	2.10	2.29	2.48
55°	. 19	. 38	. 57	. 76	. 95	1.14	1.32	1.52	1.72	1.92	2.14	2.35	2.56	2.77
60°	. 21	. 42	. 63	. 84	1.05	1.27	1.49	1.71	1.94	2.17	2.38	2.60	2.83	3.07
65°	. 23	. 46	. 69	. 83	1.16	1.40	1.64	1.88	2.13	2.38	2.63	2.88	3. 13	3.39
70°	. 25	. 51	. 76	1.02	1.28	1.54	1.80	2.06	2.33	2.60	2.88	3.16	3.44	3.72
75°	. 27	. 56	. 83	1.12	1.40	1.69	1.98	2.27	2.57	2.87	3.16	3.47	3.78	4.09
80°	. 30	. 61	. 81	1.22	1.53	1.84	2.15	2.46	2.78	3.10	3.44	3.78	4.12	4.46
85°	. 33	. 66	1.00	1.33	1.68	2.02	2.36	2.70	3.05	3.40	3.77	4.14	4.55	4.89
90°	. 36	. 72	1.09	1.45	1.83	2.20	2.57	2.94	3.32	3.70	4.10	4.50	4.91	5.32
95°	. 39	. 79	1.19	1.55	2.00	2.40	2.80	3.20	3.81	4.02	4.40	4.98	5.38	3.83
100°	. 43	. 86	1.30	1.74	2.18	2.62	3.06	3.50	3.95	4.40	4.88	5.37	5.85	8.34
110°	. 51	1.03	1.56	2.08	2.61	3.14	3.67	4.21	4.76	5.31	5.86	6.43	7.01	. 60
120°	. 62	1.25	1.93	2.52	3.16	3.81	4.45	5.11	5.77	6.44	7.12	7.80	8.50	9.22

For Externals Add *

Central Angle	Degree of Curve													
	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°
10°	. 001	. 003	. 004	. 006	. 007	. 008	. 009	. 011	. 012	. 014	. 015	. 017	. 018	. 020
15°	. 003	. 007	. 010	. 014	. 018	. 023	. 027	. 029	. 032	. 035	. 039	. 043	. 047	. 051
20°	. 008	. 011	. 017	. 022	. 028	. 034	. 038	. 045	. 051	. 057	. 063	. 070	. 076	. 083
25°	. 009	. 018	. 027	. 036	. 046	. 056	. 085	. 074	. 083	. 093	. 106	. 120	. 127	. 135
30°	. 013	. 025	. 038	. 051	. 065	. 078	. 090	. 103	. 116	. 129	. 149	. 170	. 179	. 188
35°	. 018	. 035	. 054	. 072	. 086	. 109	. 131	. 153	. 175	. 197	. 213	. 230	. 247	. 264
40°	. 023	. 046	. 070	. 093	. 117	. 141	. 172	. 203	. 234	. 265	. 277	. 290	. 315	341
45°	. 030	. 080	. 093	. 118	. 153	. 184	. 216	. 254	. 280	. 325	. 351	. 378	. 411	. 445
50°	. 037	. 075	. 116	. 151	. 189	. 227	. 266	. 305	. 345	. 384	. 425	. 467	. 508	. 550
55°	. 046	. 093	. 142	. 188	. 236	. 283	. 332	. 381	. 420	. 479	. 530	. 582	. 641	. 700
60°	. 058	. 112	. 168	. 225	. 283	. 340	. 398	. 457	. 516	. 575	. 636	. 697	. 774	. 851
65°	. 067	. 135	. 204	. 273	. 343	. 412	. 483	. 554	. 625	. 697	. 711	. 845	. 922	1.01
70°	. 080	. 159	. 240	. 321	. 403	. 485	. 568	. 652	. 735	. 819	. 906	. 894	1.08	1.17
75°	. 095	. 182	. 288	. 383	. 480	. 578	. 678	. 777	. 877	. 977	1.07	1.18	1.29	1.39
80°	. 110	. 220	. 332	. 445	. 558	. 671	. 787	. 903	1.02	1.13	1.25	1.38	1.50	1.62
85°	. 128	. 259	. 391	. 524	. 657	. 780	. 826	1.06	1.20	1.34	1.47	1.62	1.76	1.91
90°	. 149	. 299	. 450	. 603	. 758	. 810	1.07	1.22	1.38	1.54	1.70	1.87	2.03	2.20
95°	. 174	. 350	. 522	. 708	. 985	1.06	1.25	1.43	1.62	1.80	1.98	2.18	2.38	2.58
100°	. 200	. 401	. 604	. 800	1.01	1.22	1.43	1.64	1.85	2.06	2.28	2.50	2.73	1.28
110°	. 268	. 536	. 806	1.08	1.35	1.63	1.81	2.20	2.48	2.76	3.05	3.35	3.66	3.98
120°	. 360	. 721	1.08	1.45	1.82	2.19	2.57	2.95	3.33	3.72	4.11	4.50	4.91	5.32

[^24]
TABLE 6. DEFLECTIONS AND CHORD LENGTHS FOR CIRCULAR CURVES

For Laying Out Arc Definition Curves By Measured Chords

Degree of Curve	Radius	Deflection for Arc Length				Chord for Arc Length		
		Deflection $=$ arc length (0.3° of curve)				Chord $=2 R$ sin def.		
		1^{\prime}	25^{\prime}	50^{\prime}	100^{\prime}	25^{\prime}	50^{\prime}	100^{\prime}
$0^{\circ} 30^{\prime}$	11,459.16	$0^{\circ} 00.15^{\prime}$	$0^{\circ} 03.75^{\prime}$	$0^{\circ} 07.50^{\prime}$	$0^{\circ} 15.00^{\prime}$	25.00'	50.00'	100.00^{\prime}
	5,729.58	$0^{\circ} 00.30^{\prime}$	$0^{\circ} 07.50^{\prime}$	$0^{\circ} 15.00^{\prime}$	$0^{\circ} 30.00^{\prime}$	25.00^{\prime}	50.00 '	100.00^{\prime}
30^{\prime}	3,819.72	$0^{\circ} 00.45{ }^{\prime}$	$0^{\circ} 11.25^{\prime}$	$0^{\circ} 22.50^{\prime}$	$0^{\circ} 45.00^{\prime}$	25.00^{\prime}	50.00^{\prime}	100.00^{\prime}
	2,864.79	$0^{\circ} 00.60^{\prime}$	$0^{\circ} 15.00^{\prime}$	$0^{\circ} 330.00^{\prime}$	$1^{\circ} 00.00^{\prime}$	25.00^{\prime}	50.00^{\prime}	100.00^{\prime}
	$2,291.83$ $1,909.86$	$0^{\circ} 00.75^{\prime}$ $0^{\circ} 00.90^{\prime}$	$0^{\circ} 18.75^{\prime}$ $0^{\circ} 22.50^{\prime}$ 0°	$0^{\circ} 37.50{ }^{\circ}$	$1^{\circ} 15.00^{\prime}$ $1^{\circ} 30.00$	25.00^{\prime} 25.00	50.00^{\prime} 50.00^{\prime}	99.99^{\prime} 99.99^{\prime}
30*	1,637.02	$0^{\circ} 01.05^{\prime}$	$0^{\circ} 26.25^{\prime}$	$0^{\circ} 52.50^{\prime}$	$1^{\circ} 45.00^{\prime}$	25.00^{\prime}	50.00^{\prime}	$99.98{ }^{\prime}$
	1,432.40	$0^{\circ} 01.20^{\prime}$	$0^{\circ} 30.00^{\prime}$	$1^{\circ} 00.00^{\prime}$	$2^{\circ} 00.00^{\prime}$	25.00^{\prime}	50.00^{\prime}	99.98'
30^{\prime}	1,273.24	$0^{\circ} 01.35^{\prime}$	$0^{\circ} 33.75^{\prime}$	$1^{\circ} 07.50^{\prime}$	$2^{\circ} 15.00^{\prime}$	25.00^{\prime}	50.00^{\prime}	$99.97{ }^{\prime}$
	1,145.92	$0^{\circ} 01.50{ }^{\prime}$	$0^{\circ} 37.50^{\prime}$	$1^{\circ} 15.00^{\prime}$	$2^{\circ} 30.00^{\prime}$,	25.00^{\prime}	50.00'	99.97'
${ }^{30}$	1,041.74	$0^{\circ} 01.65^{\prime}$	$0^{\circ} 41.25^{\prime}$	$1^{\circ} 22.50^{\prime}$	$2^{\circ} 45.00^{\prime}$	25.00^{\prime}	50.00^{\prime}	${ }^{99.96}{ }^{\prime}$
6°	-954.93	$0^{\circ} 01.80^{\prime}$	$0^{\circ} 45.00^{\prime}$	$1^{\circ} 320.00^{\prime}$	$3^{\circ} 00.00^{\prime}$	25.00^{\prime}	50.00^{\prime}	99.95'
$7^{30}{ }^{\prime}$	881.47	$0^{\circ} 01.95^{\prime}$	$0^{\circ} 48.75{ }^{\prime}$	$1^{\circ} 37.50{ }^{\prime}$	$3^{\circ} 15.00^{\prime}$	25.00^{\prime}	50.00^{\prime}	99.95^{\prime}
	818.51	$0^{\circ} 02.10^{\prime}$	$0^{\circ} 52.50^{\prime}$	$1^{\circ} \mathrm{45.00}{ }^{\circ}$	$3^{\circ} 30.00{ }^{\prime}$	25.00^{\prime}	50.00^{\prime}	99.94^{\prime}
$8^{\circ}{ }^{30}$	763.94 716.20	$0^{\circ} 002.25{ }^{\circ}$	$0^{\circ} 56.25^{\prime}$ $1^{\circ} 00.00^{\prime}$	$1^{\circ} 52.50$ $2^{\circ} 00.00^{\prime}$ col	$3^{\circ} \mathrm{45.00}$ $4^{\circ} 00.00$	25.00^{\prime} 25.00^{\prime}	49.99^{\prime} 49.99^{\prime}	$99.93 '$ 99.92
30^{\prime}	674.07	$0^{\circ} 02.55{ }^{\prime}$	$1^{\circ} 03.75^{\prime}$	$2^{\circ} 07.50{ }^{\prime}$	$4^{\circ} 15.00^{\prime}$	25.00^{\prime}	49.99^{\prime}	99.91^{\prime}
9°	636.62	$0^{\circ} 02.70^{\prime}$	$1^{\circ} 07.50^{\prime}$	$2^{\circ} 15.00^{\prime}$	$4^{\circ} 30.00^{\prime}$	25.00^{\prime}	49.99'	99.90^{\prime}
30^{\prime}	603.11	$0^{\circ} 02.85{ }^{\prime}$	$1^{\circ} 11.25^{\prime}$	$2^{\circ} 22.50^{\prime}$	$4^{\circ} 45.00{ }^{\prime}$	25.00^{\prime}	49.99'	99.89'
10°	572.98	$0^{\circ} 03.00^{\prime}$	$1^{\circ} 15.00^{\prime}$	$2^{\circ} 30.00^{\prime}$	$5^{\circ} 00.00^{\prime}$	25.00^{\prime}	49.98'	$99.87{ }^{\prime}$,
11°	520.87	$0^{\circ} 03.30^{\prime}$	$1^{\circ} 22.50^{\prime}$	$2^{\circ} \mathrm{45.00}{ }^{\prime}$	$5^{\circ} 30.00^{\prime}$	25.00^{\prime}	49.98'	${ }^{99.85}{ }^{\prime}$
12°	477.46	$0^{\circ} 03.60^{\prime}$	$1^{\circ} 32.00^{\prime}$	$3^{\circ} 00.00^{\prime}$	$6^{\circ} 00.00^{\prime}$	25.00^{\prime}	49.98'	$99.82{ }^{\prime}$
13°	440.74	$0^{\circ} 03.90^{\prime}$	$1^{\circ} 37.50^{\prime}$	$3^{\circ} 15.00^{\prime}$	$6^{\circ} 30.00^{\prime}$	25.00^{\prime}	49.97'	99.79'
14°	409.26	$0^{\circ} 04.20^{\prime}$	$1^{\circ} 45.00^{\prime}$	$3^{\circ} 30.00^{\prime}$	$7^{\circ} 000.00^{\prime}$	25.00^{\prime}	49.97'	99.75^{\prime}
15°	381.97	$0^{\circ} 04.50^{\prime}$	$1^{\circ} 52.50{ }^{\prime}$	$3^{\circ} 45.00^{\prime}$	$7^{\circ} 30.00^{\prime}$	25.00^{\prime}	49.96'	99.72^{\prime}
16°	358.10	$0^{\circ} 04.80^{\prime}$	$2^{\circ} 00.00^{\prime}$	$4^{\circ} 00.00^{\prime}$	$8^{\circ} 00.00^{\prime}$	25.00^{\prime}	49.96'	99.68'
17°	337.03	$0^{\circ} 05.10^{\prime}$	$2^{\circ} 07.50^{\prime}$	$4^{\circ} 15.00^{\prime}$	$8^{\circ} 30.00^{\prime}$	25.00^{\prime}	49.95'	99.63^{\prime}
18°	318.31	$0^{\circ} 05.40^{\prime}$	$2^{\circ} 15.00^{\prime}$	$4^{\circ} 30.00^{\prime}$	$9^{\circ} 00.00{ }^{\prime}$	24.99^{\prime}	49.95'	99.59^{\prime}
19°	301.56	$0^{\circ} 05.70^{\prime}$	2° 22.50'	$4^{\circ} 45.00^{\prime}$	$9^{\circ} 30.00^{\prime}$	24.99^{\prime}	49.94'	$99.54{ }^{\prime}$
20°	286.48	$0^{\circ} 06.00^{\prime}$	$2^{\circ} 30.00^{\prime}$	$5^{\circ} 00.00^{\prime}$	$10^{\circ} 00.00^{\prime}$	24.99^{\prime}	49.94'	99.49^{\prime}
21°	272.84	$0^{\circ} 06.30^{\prime}$	$2^{\circ} 37.50^{\prime}$	$5^{\circ} 15.00^{\prime}$	$10^{\circ} 30.00^{\prime}$	24.99'	49.93'	99.44'
22°	260.44	$0^{\circ} 06.60^{\prime}$	$2^{\circ} 45.00^{\prime}$	$5^{\circ} 30.00^{\prime}$	$11^{\circ} 00.00^{\prime}$	24.99^{\prime}	49.92'	99.39^{\prime}
23°	249.11	$0^{\circ} 06.90{ }^{\prime}$	$2^{\circ} 52.50{ }^{\prime}$	$5^{5}{ }^{\circ} 45.00^{\prime}$	$11^{\circ} 30.00^{\prime}$	24.99^{\prime}	49.92'	${ }^{99.33}{ }^{\prime}$
24°	238.73	$0^{\circ} 07.20^{\prime}$	$3^{\circ} 00.00^{\prime}$	$6^{\circ} 00.00^{\prime}$	$12^{\circ} 00.00^{\prime}$	24.99'	49.91'	99.27^{\prime}

$38^{\circ} 12^{\prime}$	150	$0^{\circ} 11.45^{\prime}$	4° 46.48'	$9^{\circ} 32.96^{\prime}$	$19^{\circ} 05.92^{\prime}$	24.97'	49.77'	98.16^{\prime}
$28^{\circ} 39^{\prime}$	200	$0^{\circ} 08.59^{\prime}$	$3^{\circ} 34.86^{\prime}$	$7^{\circ} 09.72^{\prime \prime}$	$14^{\circ} 19.44^{\prime}$	24.98'	49.87'	$98.96{ }^{\prime}$
$25^{\circ} 28^{\prime}$	225	$0^{\circ} 07.64{ }^{\prime}$	$3^{\circ} 10.99^{\prime}$	$6^{\circ} 21.97^{\prime}$	$12^{\circ} 43.94^{\prime}$	24.99^{\prime}	49.90^{\prime}	99.18^{\prime}
$22^{\circ} 55^{\prime}$	250	$0^{\circ} 06.88^{\prime}$	$2^{\circ} 51.89^{\prime}$	$5^{\circ} 43.78{ }^{\prime}$	$11^{\circ} 27.55^{\prime}$	24.99'	49.92'	99.34'
$20^{\circ} 50^{\prime}$	275	$0^{\circ} 06.25^{\prime}$	$2^{\circ} 36.26^{\prime}$	$5^{\circ} 12.52^{\prime}$	$10^{\circ} 25.04^{\prime}$	24.99'	49.93'	99.45'
$19^{\circ} 06^{\prime}$	300	$0^{\circ} 05.73{ }^{\prime}$	$2^{\circ} 23.24^{\prime}$	$4^{\circ} \mathbf{4 6 . 4 8}$	$9^{\circ} 32.98^{\prime}$	24.99'	49.94'	$99.54{ }^{\prime}$
$17^{\circ} 38^{\prime}$	325	$0^{\circ} 05.29^{\prime}$	$2^{\circ} 12.22^{\prime}$	$4^{\circ} 24.44^{\prime}$	$8^{\circ} 48.88{ }^{\prime}$	24.99'	49.95'	99.61'
$16^{\circ} 22^{\prime}$	350	$0^{\circ} 04.91{ }^{\prime}$	$2^{\circ} 02.78{ }^{\prime}$	$4^{\circ} 05.55{ }^{\prime}$	$8^{\circ} 11.11^{\prime}$	25.00^{\prime}	49.96'	99.66'
$15^{\circ} 17^{\prime}$	375	$0^{\circ} 04.58{ }^{\prime}$	$1^{\circ} 54.59^{\prime}$	$3^{\circ} 49.18^{\prime}$	$7^{\circ} 38.37^{\prime}$	25.00^{\prime}	49.96'	$99.70{ }^{\prime}$
$14^{\circ} 19^{\prime}$	400	$0^{\circ} 04.30^{\prime}$	$1^{\circ} 47.43{ }^{\prime}$	$3^{\circ} 34.86{ }^{\prime}$	$7^{\circ} 09.72^{\prime}$	$25.00{ }^{\prime}$	49.97'	$99.74{ }^{\prime}$
$12^{\circ} 44^{\prime}$	450	$0^{\circ} 03.82^{\prime}$	$1^{\circ} 35.49^{\prime}$	$3^{\circ} 10.99^{\prime}$	$6^{\circ} 21.97^{\prime}$	25.00^{\prime}	49.97'	99.79'
$11^{\circ} 28^{\prime}$	500	$0^{\circ} 03.44^{\prime}$	$1^{\circ} 25.94{ }^{\prime}$	$2^{\circ} 51.89^{\prime}$	$5^{\circ} 43.77^{\prime}$	25.00^{\prime}	49.98'	${ }^{99.83}{ }^{\prime}$
$10^{\circ} 25^{\prime}$	550	$0^{\circ} 03.13^{\prime}$	$1^{\circ} 18.13^{\prime}$	$2^{\circ} 36.26^{\prime}$	$5^{\circ} 12.52^{\prime}$	25.00^{\prime}	49.98'	99.86 ${ }^{\prime}$
9° 33'	600	$0^{\circ} 02.86{ }^{\prime}$	$1^{\circ} 11.62^{\prime}$	$2^{\circ} 23.24^{\prime}$	4° 46.48'	$25.00{ }^{\prime}$	49.99'	99.89'
$8^{\circ} 50{ }^{\prime}$	650	$0^{\circ} 02.64{ }^{\prime}$	$1^{\circ} 06.11^{\prime}$	$2^{\circ} 12.22^{\prime}$	$4^{\circ} 24.44^{\prime}$	25.00^{\prime}	49.99'	99.90'
$8^{\circ} 11^{\prime}$	700	$0^{\circ} 02.46^{\prime}$	$1^{\circ} 01.39^{\prime}$	$2^{\circ} 02.78{ }^{\prime}$	$4^{\circ} 05.55^{\prime}$	25.00^{\prime}	49.99'	99.92'
$7^{\circ} 38^{\prime}$	750	$0^{\circ} 02.29^{\prime}$	$0^{\circ} 57.30^{\prime}$	$1^{\circ} 54.59^{\prime}$	$3^{\circ} 49.18{ }^{\prime}$	25.00^{\prime}	50.00'	${ }^{99.93}{ }^{\prime}$
$7^{\circ} 10^{\prime}$	800	$0^{\circ} 02.15{ }^{\prime}$	$0^{\circ} 53.71^{\prime}$	$1^{\circ} 47.43^{\prime}$	$3^{\circ} 34.88^{\prime}$	25.00^{\prime}	${ }^{50.00}{ }^{\prime}$	99.93'
$6^{\circ} 44^{\prime}$	850	$0^{\circ} 02.02{ }^{\prime}$	$0^{\circ} 50.56^{\prime}$	$1^{\circ} 41.11^{\prime}$	$8^{\circ} 22.22^{\prime}$	25.00^{\prime}	50.00^{\prime}	99.94'
-6 $6^{\circ} 22^{\prime}$	900	$0^{\circ} 01.91{ }^{\prime}$	$0^{\circ} 47.75{ }^{\prime}$	$1^{\circ} 35.49^{\prime}$	$3^{\circ} 10.99^{\prime}$	25.00^{\prime}	50.00^{\prime}	${ }^{99.95}$
$6^{\circ} 02^{\prime}$	950	$0^{\circ} 01.81{ }^{\prime}$	$0^{\circ} 45.23^{\prime}$	$1^{\circ} 30.47{ }^{\prime}$	$3^{\circ} 00.93^{\prime}$	25.00^{\prime}	50.00^{\prime}	99.85'
$5^{\circ} 44^{\prime}$	1000	$0^{\circ} 01.72^{\prime}$	$0^{\circ} 42.97^{\prime}$	$1^{\circ} 25.94{ }^{\prime}$	$2^{\circ} 51.89^{\prime}$	25.00^{\prime}	50.00^{\prime}	99.96

Deflection for curves of even radii $=\frac{1718.873}{R}$ arc length.

TABLE 7. LENGTHS OF CIRCULAR ARCS FOR UNIT RADIUS*

By the use of this table, the length of any are may be found if the length of the radius and the angle of the segment are known. Example. Required: The length of arc of segment of $32^{\circ} 15^{\prime} 27^{\prime \prime}$ with radius of 24 ft .3 in .

From table: Length of arc (radius 1) for $32^{\circ}=0.5585054$ $15^{\prime}=0.0043633$
$27^{\prime \prime}=0.0001309$
0.5629996
0.5629996×24.25 (length of radius) $=13.65 \mathrm{ft}$.

Degrees						Minutes		Seconds	
-		-				,		"	
1	. 0174533	61	1.0646508	121	2.1118484	1	. 0002909	1	. 0000048
2	. 0349066	62	1.0821041	122	2.1293017	2	. 0005818	2	. 0000097
3	. 0523599	63	1.0995574	123	2.1467550	3	. 0008727	3	. 0000145
4	. 0698132	64	1.1170107	124	2.1642083	4	. 0011636	4	. 0000194
5	. 0872665	65	1.1344640	125	2.1816616	5	. 0014544	5	. 0000242
6	. 1047198	66	1.1519173	126	2.1991149	6	. 0017453	6	. 0000291
7	. 1221730	67	1.1693706	127	2.2165682	7	. 0020362	7	. 0000339
8	. 1396263	68	1.1868239	128	2.2340214	8	. 0023271	8	. 00003888
9	. 1570796	69	1.2042772	129	2.2514747	9	. 0026180	9	. 0000436
10	. 1745329	70	1.2217305	130	2.2689280	10	. 0029089	10	. 0000485
11	. 1919862	71	1.2391838	131	2.2863813	11	. 0031998	11	. 0000533
12	. 2094395	72	1.2566371	132	2.3038346	12	. 0034907	12	. 0000582
13	. 2268928	73	1.2740304	133	2.3212879	13	. 0037815	13	. 0000630
14	. 2443461	74	1.2915436	134	2.3387412	14	. 0040724	14	. 0000679
15	. 2617994	75	1.3089969	135	2.3561945	15	. 0043633	15	. 0000727
16	. 2792527	76	1.3264502	136	2.3736478	16	. 0046542	16	. 0000776
17	. 2967060	77	1.3439035	137	2.3911011	17	. 0049451	17	. 0000824
18	. 3141593	78	1.3613568	138	2.4085544	18	. 0052360	18	. 0000873
19	. 3316126	79	1.3788101	139	2.4260077	19	. 0055269	19	. 0000921
20	. 3490659	80	1.3962634	140	2.4434610	20	. 0058178	20	. 0000970
21	. 3665191	81	1.4137167	141	2.4609142	21	. 0061087	21	. 0001018
22	. 3839724	82	1.4311700	142	2.4783675	22	. 0063995	22	. 0001067
23	. 4014257	83	1.4486233	143	2.4958208	23	. 0066904	23	. 0001115
24	. 4188790	84	1.4660766	144	2.5132741	24	. 0069813	24	. 0001164
25	. 4363323	85	1.4835299	145	2.5307274	25	. 0072722	25	. 0001212
26	. 4537856	86	1.5009832	146	2.5481807	26	. 0075631	26	. 0001261
27	. 4712389	87	1.5184364	147	2.5656340	27	. 0078540	27	. 0001309
28	. 4886922	88	1.5358897	148	2.5830873	28	. 0081449	28	. 0001357
29	. 5061455	89	1.5533430	149	2.6005406	29	. 0084358	29	. 0001408
30	. 5235988	90	1.5707963	150	2.6179939	30	. 0087266	30	. 0001454
31	. 5410521	91	1.5882496	151	2.6354472	31	. 0090175	31	. 0001503
32	. 5585054	92	1.6057029	152	2.6529005	32	. 0093084	32	. 0001551
33	. 5759587	93	1.6231562	153	2.6703538	33	. 0095993	33	. 0001600
34	. 5934119	94	1.6406095	154	2.6878070	34	. 0098902	34	. 0001648
35	. 6108652	95	1.6580628	155	2.7052603	35	. 0101811	35	. 0001697
36	. 6283185	96	1.6755161	158	2.7227136	36	. 0104720	36	. 0001745
37	. 6457718	97	1.6929694	157	2.7401669	37	. 0107629	37	. 0001794
38	. 6632251	98	1.7104227	158	2.7576202	38	. 0110538	38	. 0001842
39	. 6806784	99	1.7278760	159	2.7750735	39	. 0113446	39	. 0001891
40	. 6981317	100	1.7453293	160	2.7925268	40	. 0116355	40	. 0001939
41	. 7155850	101	1.7627825	161	2.8099801	41	. 0119264	41	. 0001988
42	. 7330383	102	1.7802358	162	2.8274334	42	. 0122173	42	. 0002036
43	. 7504916	103	1.7976891	163	2.8448867	43	. 0125082	43	. 0002085
44	. 7679449	104	1.8151424	164	2.8623400	44	. 0127991	44	. 0002133
45	. 7853982	105	1.8325957	165	2.8797933	45	. 0130900	45	. 0002182
46	. 8028515	106	1.8500490	166	2.8972466	46	. 0133809	46	. 0002230
47	. 8203047	107	1.8675023	167	2.9146999	47	. 0136717	47	. 0002279
48	. 8377580	108	1.8849556	168	2.9321531	48	. 0139626	48	. 0002327
49	. 8552113	109	1.9024089	169	2.9496064	49	. 0142535	49	. 0002376
50	. 8726646	110	1.9198622	170	2.9670597	50	. 0145444	50	. 0002424
51	. 8901179	111	1.9373155	171	2.9845130	51	. 0148353	51	. 0002473
52	. 9075712	112	1.9547688	172	3.0019663	52	. 0151262	52	. 0002521
53	. 9250245	113	1.9722221	173	3.0194196	53	. 0154171	53	. 0002570
54	. 9424778	114	1.9896753	174	3.0368729	54	. 0157080	54	. 0002618
55	. 9599311	115	2.0071286	175	3.0543282	55	. 0159989	55	. 0002668
56	. 9773844	116	2.0245819	176	3.0717795	56	. 0162897	56	. 0002215
57	. 9948377	117	2.0420352	177	3.0892328	57	. 0165806	57	. 0002763
58	1.0122910	118	2.0594885	178	3.106 6861	58	. 0168715	58	. 0002812
59	1.0297443	119	2.0769418	179	3.1241394	59	. 0171624	59	. 0002880
60	1.0471976	120	2.0943951	180	3.1415927	60	. 0174533	60	2909

* From War Department, Surveying Tables.

TABLE 8. METRIC CURVES

Deflection Angle $20-\mathrm{m}$. Chord	Radius in Meters	Log of Radius	Mid. Ordinate	Tangent Offset	Degree of Equivalent U. S. Curve	$\begin{gathered} \text { Deflection } \\ \text { Angle } \\ 20-\mathrm{m} . \\ \text { Chord } \end{gathered}$
$0^{\circ} 10^{\prime}$	3437.75	3.536274	. 015	0.058	$0^{\circ} 30^{\prime}$	$0^{\circ} 10^{\prime}$
20	1718.89	3.235246	. 029	0.116	101	20
30	1145.93	3.059158	. 044	0.175	131	30
40	859.46	2.934224	. 058	0.233	202	40
50	687.57	2.837319	. 073	0.291	232	50
100	572.99	2.758145	. 087	0.349	303	100
10	491.14	2.691206	. 102	0.407	333	10
20	429.76	2.633223	. 116	0.465	404	20
30	382.02	2.582081	. 131	0.524	434	30
40	343.82	2.536335	. 145	0.582	505	40
50	312.58	2.494955	. 160	0.640	535	50
200	286.54	2.457181	. 175	0.698	606	200
10	264.51	2.422434	. 189	0.756	636	10
20	245.62	2.390266	. 204	0.814	$\begin{array}{lll}7 & 07\end{array}$	20
30	229.26	2.360320	. 218	0.872	737	30
40	214.94	2.332311	. 233	0.931	808	40
50	202.30	2.306002	. 247	0.989	838	50
300	191.07	2.281200	. 262	1.047	909	300
10	181.03	2.257741	. 276	1.105	940	10
20	171.98	2.235489	. 291	1.163	1010	20
30	163.80	2.214325	. 306	1.221	1041	30
40	156.37	2.194148	. 320	1.279	1111	40
50	149.58	2.174870	. 335	1.337	1142	50
400	143.36	2.156416	. 349	1.395	1212	400
10	137.63	2.138717	. 364	1.453	1243	10
20	132.35	2.121715	. 378	1.511	1313	20
30	127.45	2.105357	. 393	1.569	1344	30
40	122.91	2.089596	. 407	1.627	1415	40
50	118.68	2.074391	. 422	1.685	1445	50
500	114.737	2.059704	. 437	1.743	1516	500
10	111.045	2.045501	. 451	1.801	1547	10
20	107.585	2.031751	. 466	1.859	1617	20
30	104.334	2.018427	. 480	1.917	1648	30
40	101.275	2.005503	. 495	1.975	1719	40
50	98.391	1.992956	. 509	2.033	1749	50
600	95.668	1.980765	. 524	2.091	1820	600
10	93.092	1.968911	. 539	2.148	1851	10
20	90.652	1.957375	. 553	2.206	1921	20
30	88.337	1.946141	. 568	2.264	1952	30
40	86.138	1.935194	. 582	2.322	2023	40
750	84.047	1.924520	. 597	2.380	$20 \quad 54$	50
700	82.055	1.914105	. 612	2.437	21.24	700
10 20	80.156	1.903938	. 626	2.495	2155	
20 30	78.344 76.613	1.894008	. 641	2.553	22 26	20
30 40	76.613	1.884302	. 655	2.611	$\begin{array}{ll}22 & 57 \\ 23\end{array}$	30
40 50	74.957	1.874813	. 670	2.668	238	40
50	73.372	1.865530	. 685	2.726	2359	50
800	71.853	1.856445	. 699	2.783	2429	
10	70.396	1.847549	. 714	2.841	2500	10
20	68.998	1.838836	. 729	2.899	2531	20
30	67.655	1.830298	. 743	2.856	2602	30
40	66.363	1.821928	. 758	3.014	2633	40
- 50	65.121	1.813720	. 772	3.071	2704	50
900	63.925	1.805688	. 787	3.129	2735	900
10 20	62.772	1.797766	. 802	3.186	28 28	10
20 30	61.661 60.589	1.790008 1.782391	. 81816	3.244 3.301	$\begin{array}{ll}28 & 37 \\ 29 & 08\end{array}$	20 30
40	60.589 59.554	1.782391 1.774908	. 846	3.358	2988 29	40
- 50	58.554	1.767556	. 860	3.416	3010	50
$10^{\circ} 00^{\prime}$	57.588	1.760330	. 875	3.473	3041	$10^{\circ} 00^{\prime}$

SHORT-RADIUS CURVES

Note. The degree of curve is not usually used for the curves involved in street intersections, curbs, road intersections, runway and taxiway fillets, and turnarounds, traffic circles, rotaries, cloverleafs, etc. These curves are defined by the radius R, and central angle, Δ or θ.

Notation
$T=$ tangent length P.C. or P.T. to P.l.
$L=$ arc length P.C. to P.T.
$l=$ arc length for any subchord
$C=$ long chord P.C. to P.T.
$c=$ any subchord.
$d=$ deflection to any point.
$\Delta=$ central angle in degrees.
$\theta=$ central angle in radians.
One radian $=\frac{360^{\circ}}{2 \pi}=\frac{180^{\circ}}{\pi}$
$=57.2958^{\circ}$
$=57^{\circ} 17^{\prime} 44.8^{\prime \prime}$

$$
\pi=3.14159
$$

$M=$ mid. ordinate; m for subchords.
$E=$ external; e for subchords.

Short-radius Curve

Subchords and Deflections

$$
\begin{aligned}
R= & \frac{L}{\theta}=\frac{L \cdot 180 / \Delta}{\pi}=\frac{L}{\Delta} 57.2958=T \cdot \cot \frac{\Delta}{2}=\frac{C}{2 \sin \Delta / 2} \\
& \frac{4 M^{2}+C^{2}}{8 M}=\frac{M^{2}+(C / 2)^{2}}{2 M} \\
L= & R \theta=\frac{\Delta R \pi}{180}=0.017453 \Delta R=\operatorname{circum} \cdot \cdot \frac{\Delta}{360} \\
T= & R \cdot \tan \frac{\Delta}{2}=E \cdot \cot \frac{\Delta}{4}=\frac{C}{2 \cos \Delta / 2} \\
C= & 2 R \cdot \sin \frac{\Delta}{2}=2 T \cdot \cos \frac{\Delta}{2}=2 \sqrt{M(2 R-M)} \\
M= & R \cdot \operatorname{vers} \frac{\Delta}{2}=E \cdot \cos \frac{\Delta}{2}=R\left(1-\cos \frac{\Delta}{2}\right) \\
E= & R \cdot \operatorname{exsec} \frac{\Delta}{2}=T \cdot \tan \frac{\Delta}{4}=\frac{R}{\cos \Delta / 2}-R . \\
\Delta= & \frac{180 L}{\pi R}=57.2958 \frac{L}{R}=\theta \cdot 57.2958 .
\end{aligned}
$$

$$
\theta=\frac{L}{R}=\frac{\Delta \pi}{180}=\Delta \cdot 0.017453
$$

$$
\sin \frac{\Delta}{2}=\frac{C}{2 R} ; \quad \cos \frac{\Delta}{2}=\frac{R-M}{R}=\frac{C}{2 T} ; \quad \tan \frac{\Delta}{2}=\frac{T}{R}
$$

Subcord $=2 R \cdot \sin d=2(R-M) \cdot \tan d$.
$d($ in minutes $)=1718.873 \frac{l}{R} . \quad$ Radius $=\frac{C}{2 \sin d}$.
Length $=\frac{\pi R d}{90}=0.034906 R d(d$ in degrees $)$.
Mid. ordinate $=R(1-\cos d)=2 R \cdot \sin ^{2} \frac{d}{2}$
$\operatorname{Tan} d=\frac{1 / 2 C}{R-m} ; \quad \sin d=\frac{1 / 2 C}{R}$
Excess of l over $c=l-c=l-2 R \cdot \sin d$.
Sum of deflection angles, $d_{1}+d_{2}+\cdots d_{n}=\frac{\Delta}{2}$
Concentric Curves

$$
L_{0}=\frac{R+W / 2}{R} L
$$

$$
L_{i}=\frac{R-W / 2}{R} L
$$

$$
L_{0}-L_{i}=0.017453 W \cdot \Lambda
$$

$$
=W \cdot L / R
$$

$$
\text { Area }=L \cdot W
$$

Example. Given. $R=50^{\prime} ; \Delta=110^{\circ}(\theta=1.9195) ; l=50^{\prime}$.
Required. L, l_{1}, d, d_{1}, c, and c_{1}.
Solution.
$L=50 \times 1.9195=95.98^{\prime} ; l_{1}=95.98-50=45.98^{\prime}$.
$d=1718.873 \times 50 / 50=28^{\circ} 39^{\prime}$.
$d_{1}=1718.873 \times \frac{45.98}{50}=26^{\circ} 21^{\prime}$.
$c=2 R \sin 28^{\circ} 39^{\prime}=47.946^{\prime}$.
$c_{1}=2 R \sin 26^{\circ} 21^{\prime}=44.385^{\prime}$.
TABLE 9. DEFLECTIONS (d) AND MIDDLE ORDINATES (m) FOR SUBCHORDS*

* Adapted from Lefax Society, Inc., Philadelphia, Pa.

Circle

Area $=\pi R^{2}=\frac{\pi D^{2}}{4}$
Circumference $=2 \pi R=\pi D$.
$R=\frac{\text { Cir. }}{2 \pi}=\frac{D}{2}=\sqrt{\frac{\text { Area }}{\pi}}$
$D=2 R=\operatorname{cir} . / \pi$

Sector of Circle

$$
\begin{aligned}
\text { Area } & =0.008727 R^{2} \Delta \\
& =\frac{l}{2} \cdot R=\pi R^{2} \frac{\Delta}{360} \\
& =R^{2} \cdot \frac{\theta}{2}
\end{aligned}
$$

when

$$
\Delta=90^{\circ}: A=0.3927 C^{2} ; 0.7854 R^{2}
$$

Segment of Circle

$$
\begin{aligned}
& A_{1}=R^{2}\left(\tan \frac{\Delta}{2}-\frac{\Delta \pi}{360}\right)=R\left(T-\frac{l}{2}\right) . \\
& A_{2}=\frac{l R-c(R-M)}{2}=\left(\pi R^{2} \frac{\Delta}{360}\right)-\left[\left(R \sin \frac{\Delta}{2}\right)\right. \\
& \left.\left(R \cos \frac{\Delta}{2}\right)\right] . \\
& \begin{array}{r}
A_{2}=\left(\pi R^{2} \frac{\Delta}{360}\right)-1 / 2 c(R-M) \\
A_{2}=2 / 3 M c\left\{\begin{array}{c}
\text { Correct for parabolic segment, approximate } \\
\quad \text { for circular segment. }
\end{array}\right. \\
\begin{aligned}
A_{2}=1 / 2 R^{2}(\theta-\sin \Delta)=2 / 3 M c+\frac{M^{3}}{2 c}
\end{aligned} \\
A_{3}=1 / 2 R^{2} \sin \Delta=1 / 2 c(R-M)=\left(R \sin \frac{\Delta}{2}\right)\left(R \cos \frac{\Delta}{2}\right) . \\
\text { When } \Delta=90^{\circ}: A_{1}=0.2146 R^{2} \\
=1.2594 E^{2}
\end{array}
\end{aligned}
$$

Fig. 9. Formulas for areas.

TRANSITION CURVES *

Formulas

$$
\begin{aligned}
T_{s} & =\left(R_{c}+p\right) \tan \frac{\Delta}{2}+k . \\
E_{s} & =\left(R_{c}+p\right) \operatorname{exsec} \frac{\Delta}{2}+p=\frac{R_{c}+p}{\cos \frac{\Delta}{2}}-R_{c} \\
P & =y_{c}-R_{c}\left(1-\cos \theta_{s}\right)=\frac{y_{c}}{4} \text { (approx.). } \\
k & =x_{c}-R_{c} \sin \theta_{s}=\frac{L_{s}}{2} \text { (approx.). } \\
\theta_{s} & =\frac{L_{s} D_{c}}{200} ; \theta=\left(\frac{L}{L_{s}}\right)^{2} \theta_{s} . \\
\theta & =\frac{L^{2} D_{c}}{200 L_{s}} . \\
L_{c} & =\frac{100 \Delta_{c}}{D_{c}} ; \text { L.C. }=\frac{X_{c}}{\cos \phi_{c}} . \\
\Delta_{c} & =\Delta-\frac{L_{s} D_{c}}{100} . \\
D & =\frac{L}{L_{s}} D_{c} . \\
D_{c} & =\frac{200 \theta_{s}}{L_{s}} .
\end{aligned}
$$

Offsets to x and y

Note. At the P.C. the spiral approximately bisects P.

$$
\begin{aligned}
& y=\frac{L^{3}}{L_{s}} y_{c}=L\left(y \text { for } L_{s}=1\right) \\
& y_{c}=L_{s}\left(y \text { for } L_{s}=1\right) \\
& x=L\left(x \text { for } L_{s}=1\right) \\
& \qquad x_{c}=L_{s}\left(x \text { for } L_{s}=1\right)
\end{aligned}
$$

Offsets to $1 / 4$ Points
y at $1 / 4$ point $=y_{c} / 4^{3}$ y at $1 / 2$ point $=y_{c} / 2^{3}=P / 2$
(approx.)
y at $3 / 4$ point $=y_{c} /(4 / 3)^{3}$
Total Length of Curve

$$
T_{s} \text { to S.T. }=2 L_{s}+100 \frac{\Delta_{c}}{D_{f}}
$$

$$
\phi_{c}=\theta / 3-c ; . \phi=(L / L s)^{2} \phi_{c} .
$$

Fig. 10. Circular curves with spiral transitions.

* Adapted from Transition Curves for Highways by Joseph Barnett, P.R.A.

Notes for Fig. 10. With L_{s} given or selected from Table 11 below, p, k, x, y, L.T., S.T., and L.C. may be computed for any spiral by multiplying functions for $L_{s}=1$ in Table 12, p. 224, by L_{8} or L in feet. Interpolate for values of θ or θ_{s} between even degrees. For circular curve layout see pp. 202, 203, 204.

Circular curve may be omitted and curve made transitional throughout in which case S.C. and C.S. coincide at S.C.S., $\theta=\Delta / 2, \Delta_{c}=0$, and T_{s} and E_{s} are computed from Table 13, p. 225.

Notation

$R_{c}=$ radius of the circular curve.
$P=$ offset distance from tangent to the P.C. of the circular curve produced.
$k=$ distance from T.S. to P.C. along tangent.
$T_{s}=$ tangent distance.
$E_{s}=$ external distance.
$x_{c}, y_{c}=$ coordinates from T.S. to S.C. and S.T. to C.S.
$\theta=$ spiral angle at any point on spiral.
$\theta_{s}=$ spiral angle at S.C. or C.S.
$L=$ length of spiral, T.S. to any point on spiral.
$L_{s}=$ length of spiral, T.S. to S.C. or S.T. to C.S.
$D_{c}=$ degree of circular curve (arc definition).
$D=$ degree of curve at any point on spiral.
$x, y=$ coordinates from T.S. or S.T. to any point on spiral.
$\phi_{c}=$ deflection from tangent at T.S. to S.C.
$\phi=$ deflection from tangent at T.S., S.T. or any point on spiral to any other point on spiral.
L.T., S.T. = long tangent, short tangent.
L.C. $=$ long chord of spiral transition.
$\Delta=$ intersection and central angle of entire curve.
$\Delta_{c}=$ intersection and central angle of circular curve.
$L_{c}=$ length of circular curve, S.C. to C.S.
Note. The degree of curvature varies directly as the length, from zero curvature at T.S. to the maximum of $D c$ at the S.C. The spiral departs from the circular curve at the same rate as from the tangent.

Spiral Layout (See pp. 221, 222, 223 also.)
Method I: Deflections to even stations by formula $\phi=\theta / 3=$ $1 / 3 \theta_{s}\left(L / L_{s}\right)^{2}$. Correct ϕ for c when $\theta>20^{\circ}$.

TABLE 10. C IN FORMULA, $\phi=\theta / 3-C$
(For curves with θ over 20°)

θ in degrees	20	25	30	35	40	45	50
c in minutes	0.4	0.8	1.4	2.2	3.4	4.8	5.6

Method II: Offsets from tangent. Establish by measuring x distances from T.S. and y distances from tangent. Compute θ for each point and then compute x and y coordinates from Table 12, p. 224, or use $1 / 4$ point formulas above.
Method III: Deflection angle from T.S. or S.T. to any point on spiral with coordinates x and y is the angle whose tangent $=y / x$.
Method IV: Deflection angles from T.S. to points of 10 equal divisions (10 chord spiral) are: $0.01 \phi_{c} ; 0.04 \phi_{c} ; 0.16 \phi_{c} ; 0.25 \phi_{c} ; 0.36 \phi_{c} ; 0.49 \phi_{c} ; 0.64 \phi_{c}$; $0.81 \phi_{c}$ and ϕ_{c}.

TABLE 11. MINIMUM TRANSITION LENGTHS

D_{c}	$\begin{gathered} 30 \\ \text { M.P.H. } \end{gathered}$	$\begin{gathered} 40 \\ \text { M.P.H. } \end{gathered}$	$\begin{gathered} 50 \\ \text { M.P.H. } \end{gathered}$	$\begin{gathered} 60 \\ \text { M.P.Н. } \end{gathered}$	$\begin{gathered} 70 \\ \text { M.P.H. } \end{gathered}$	D_{c}				
	L_{s}	L_{s}	L_{s}	L_{8}	L_{s}					
$1^{\circ} 30^{\prime}$	$150{ }^{\prime}$	$1^{\circ} 30^{\prime}$								
2°	$150{ }^{\prime}$	$150{ }^{\prime}$	$150{ }^{\prime}$	$150{ }^{\prime}$	$200{ }^{\prime}$	2°				
$2^{\circ} 30^{\prime}$	$150{ }^{\prime}$	$150 '$	$150{ }^{\prime}$	$150{ }^{\prime}$	$250{ }^{\prime}$	$2^{\circ} 30^{\prime}$				
3°	$150{ }^{\prime}$	$150{ }^{\prime}$	$150{ }^{\prime}$	$150{ }^{\prime}$	$300{ }^{\prime}$	3°				
$3^{\circ} 30^{\prime}$	$150{ }^{\prime}$	$150{ }^{\prime}$	$150{ }^{\prime}$	200^{\prime}	$350{ }^{\prime}$	$3^{\circ} 30^{\prime}$				
4°	150^{\prime}	$150{ }^{\prime}$	$150{ }^{\prime}$	$250{ }^{\prime}$	400^{\prime}	4°				
5°	$150{ }^{\prime}$	$150{ }^{\prime}$	$150{ }^{\prime}$	$300{ }^{\prime}$						
6°	$150{ }^{\prime}$	$150{ }^{\prime}$	200'	$350{ }^{\prime}$						
7°	$150{ }^{\prime}$	$150{ }^{\prime}$	$250{ }^{\prime}$			d on				
$8^{\circ}-9^{\circ}$	$150{ }^{\prime}$	$150{ }^{\prime}$	$300{ }^{\prime}$	$L_{s}=\frac{1.6 V^{3}}{R_{G}}$						
$10^{\circ}-12^{\circ}$	$150{ }^{\prime}$	200^{\prime}								
$13^{\circ}-14^{\circ}$	$150{ }^{\prime}$	$250{ }^{\prime}$								
$15^{\circ}-23^{\circ}$	$\begin{aligned} & 150^{\prime} \\ & 200^{\prime} \end{aligned}$		Where: $V=0.75$ design speed in M.P.H. Min. $L_{s}=150 \mathrm{ft}$.							
24°										

INSERTION OF SPIRALS INTO EXISTING ALIGNMENT OF CIRCULAR CURVES
$L_{s}=$ Length of spiral select from table 11 , page 219
$\theta_{s}=$ Spiral angle $=\frac{L s S_{c}}{200}$, where $D_{C}=$ Degree of curvature (arc definition).
$P=$ Offset of curve at P.C. to permit spiral introduction from table, page 224 knowing θ_{s}.

CASE I-Radius of original circular curve reduced by value of 'p' to provide space to insert spiral transition.
1st trial : Assume $D_{c}=D_{\text {, find trial "p"as above. }}$ 2nd trial : Compute $D_{c}=\frac{5727.58}{R_{c}}$, find correct "p."

CASE III - Original circular curve location retained and tangents shifted outward to insert spiral.

Original tangents

CASE II-Radius of original curve retained and curve center " O "shiffed inward. Note: Degree of curve retained.

CASE IV-Original alignment retained as closely as possible by compounding circular curve at both ends.
$\theta_{a}=$ Equivalent spiral angle. Use in table on page 224 to find "Pa'.

CASE V- To insert a spiral in a compound curve.

CASE VI - To insert spirals between simple reverse curves separoted by a tangent.

PROPERTIES AND EXAMPLES*

Properties of Spiral

1. Offsets, y, vary as the cube of L, or length of spiral. $\therefore y$ at any point $=\left(L / L_{s}\right)^{3} y_{c}$. See Fig. 11.
2. Spiral angle θ varies as L^{2}. $\therefore \theta$ at any point on spiral $=\left(L / L_{s}\right)^{2} \theta_{s}$.
3. Deflection angle ϕ varies as L^{2}. $\therefore \phi=\left(L / L_{s}\right)^{2} \phi_{c} . \quad \phi_{c}=1 / 3 \theta_{s}-c$, c being a constant; see Table 10, p. 219. (May be neglected for ordinary problems.)
4. D, or degree of curve of spiral at any point, varies directly as L. $\therefore D=L / L_{s} D_{c}$.
5. Spiral bisects P very nearly and k approximately $=1 / 2 L_{s}$. $\quad \therefore$ Offset from circular curve or tangent to midpoint of spiral is $1 / 2 P$ very nearly.
6. Spiral departs from the circular curve between S.C. and P.C. at the same rate as from the tangent. \therefore Radial offsets from circular curve between S.C. and P.C. to the spiral are the same as perpendicular offsets from the tangent between T.S. and P.C.

Given. Spiral $L_{s}=200^{\prime} ; \theta_{s}=24^{\circ}$; T.S. at Sta. $125+60$.
Required. Offsets to even stations.
Solution. Compute θ and read x and y for $L_{s}=1$ from table on 224.

Sta.	L	θ	$x, L_{s}=1$	$y, L_{s}=1$	x	y
$126+0$	40	$0^{\circ} 58^{\prime}$	0.99997	0.00559	40.0	0.22
$127+0$	140	$11^{\circ} 46^{\prime}$	0.99578	0.06821	139.41	9.55
$127+60$	200	$24^{\circ} 0^{\prime}$	0.98260	0.13789	196.52	28.58

Frg. 11. Offsets to even stations.

[^25]

Given. Spiral, $L_{s}=200^{\prime} ; \theta_{s}=24^{\circ}$.
Required. Offsets to $1 / 4$ points.
Solution. From Fig. 11, $y_{c}=27.58^{\prime}$. By formula, y at any point $=$ $\left(L / L_{8}\right)^{3} y_{c}$

At $1 / 4$ points, $y=27.58 \times 1 / 64=0.43^{\prime}$.
At $1 / 2$ points, $y=27.58 \times 1 / 8=3.45^{\prime}$.
Fig. 12. Offsets to $1 / 4$ points.

Given. Spiral with $L_{s}=200^{\prime}$ and $\theta_{s}=24^{\circ}$.
Required. Deflection angles ϕ, to Sta. $126+0 ; \phi_{2}$ to
 Sta. $127+0 ; \phi_{c}$ to Sta. $127+60$.

Solution. By formulas, $\phi_{c}=\theta_{s} / 3-c$ and $\phi=1 / 3\left(L / L_{s}\right)^{2}$ $\theta_{s}-c$.

Sta. $127+60: \phi_{c}=24 / 3-0.8=7.9866^{\circ}=7^{\circ} 69.2^{\prime}$
Sta. $126+00: \phi_{1}=\left(L / L_{s}\right)^{2} \phi_{c}=(40 / 200)^{2} \times 7.9866$ $=0.3195^{\circ}=0^{\circ} 19^{\prime}$
Sta. $127+00: \phi_{2}=\left(L / L_{s}\right)^{2} \phi_{c}=(140 / 200)^{2} \times 7.9866$ $=3.9134^{\circ}=3^{\circ} 55^{\prime}$

Layout. With transit at T.S., foresight along tangent with vernier at 0° Turn ϕ_{1} and measure 40 ft . to Sta. $126+0$. Turn ϕ_{2} and measure 100 ft . from Sta. $126+0$ to Sta. $127+0$. Turn ϕ_{c} and measure 60^{\prime} from Sta. $127+0$ to S.C.

Fig. 13. Deflections to even stations.

Given. $\Delta=90^{\circ} ; D_{c}=24^{\circ} ; L_{s}=200^{\prime}$. Formulas from p. 217. Functions of spiral for $L_{s}=1$ from p. 224.

For layout of circular curve, see pp. 202, 203, 204.

Layout of Control Points *

Establish T.S. by measuring k from P.O.T. normal to P.C. or by T_{s} from P.I. Establish S.C. by L.T., θ_{s}, and S.T. or by x_{c} and y_{c} from T.S., or by ϕ_{c} and L.C. from T.S.

Note. Figures 11-13 give all dimensions usually necessary to plot or locate the spiral. The following example is a curve fully worked out.

Required	Formula	Solution
θ_{s}	$L_{8} D_{c} \div 200$	$\theta_{s}=24^{\circ}$
Δ_{c}	$\Delta-\left(L_{8} D_{c} \div 100\right)$	$\Delta_{c}=42^{\circ}$
$L_{\text {c }}$	$100 \Delta_{c} \div D_{c}$	$L_{c}=175.00$
ϕ_{c}	$1 / 3 \theta_{8}-c$	$\phi_{c}=7^{\circ} 59.2^{\prime}$
y_{c}	(y for $L_{s}=1$) $\cdot L_{8}$	$y_{c}=27.58^{\prime}$
x_{c}	$\left(x\right.$ for $\left.L_{8}=1\right) \cdot L_{8}$	$x_{c}=196.52^{\prime}$
P	$y_{c}-R_{c}\left(1-\cos \theta_{s}\right)$	$P=6.94{ }^{\prime}$
k	$x_{c}-R_{c} \sin \theta_{s}$	$k=99.42^{\prime}$
E_{s}	$\left(R_{c}+P\right)$ exsec $\Delta / 2+P$	$E_{s}=108.70^{\prime}$
T_{s}	$\left(R_{r}+P\right) \tan \Delta / 2+k$	$T_{s}=345.09^{\prime}$
L.T.	(L.T. for $L_{s}=1$) $L_{s} ; \theta=24^{\circ}$	L.T. $=134.58^{\prime}$
S.T.	(S.T. for $L_{s}=1$) $L_{8} ; \theta=24^{\circ}$	S.T. $=67.80^{\prime}$
L.C.	(L.工. for $L_{s}=1$) $L_{s} ; \theta=24^{\circ}$	L.C. $=198.44$

Fig. 14. Computations for spiral transitions to circular curves.

[^26]TABLE 12. FUNCTIONS OF TRANSITION FOR $L_{s}=1$ *
Enter table with value of θ or θ_{s}, and multiply function by L or L_{8}. See pp. 218-223 for use of table.

θ	p	k	x	y	L.T.	S.T.	L.C.	θ
0°	. 00000	. 50000	1.00000	. 00000	. 68667	. 33333	1.00000	0°
1°	. 00146	. 49999	. 99997	. 00582	. 66668	. 33334	. 99999	1°
2°	. 00291	. 49998	. 99988	. 01163	. 66671	. 33337	. 99995	2°
3°	. 00435	. 49995	. 99973	. 01745	. 66676	. 33342	. 99988	3°
4°	. 00581	. 49992	. 99951	. 02326	. 66684	. 33349	. 99978	4°
5°	. 00727	. 49987	. 99924	. 02907	. 66693	. 33358	. 99966	5°
6°	. 00872	. 49982	. 99890	. 03488	. 66705	. 33368	. 99951	6°
7°	. 01018	. 49975	. 99851	. 04068	. 66719	. 33381	. 99934	7°
8°	. 01163	. 49967	. 99805	. 04648	. 66735	. 33395	. 99913	8°
9°	. 01308	. 49959	. 99754	. 05227	. 66753	. 33412	. 99890	9°
10°	. 01453	. 49949	. 99696	. 05805	. 66773	. 33430	. 99885	10°
11°	. 01598	. 49939	. 99632	. 06383	. 66796	. 33451	. 99836	11°
12°	. 01743	. 49927	. 99562	. 06959	. 66821	. 33473	. 99805	12°
13°	. 01887	. 49914	. 99486	. 07535	. 66847	. 33498	. 99771	13°
14°	. 02032	. 49901	. 99405	. 08110	. 66877	. 33524	. 99735	14°
15°	. 02176	. 49886	. 99317	. 08684	. 66908	. 33553	. 99696	15°
16°	. 02320	. 49870	. 99223	. 09257	. 66941	. 33583	. 99654	16°
17°	. 02465	. 49854	. 99123	. 09828	. 66977	. 33615	. 99609	17°
18°	. 02608	. 49836	. 99018	. 10398	. 67015	. 33650	. 99562	18°
19°	. 02752	. 49817	. 98906	. 10967	. 67055	. 33687	. 99512	19°
20°	. 02896	. 49798	. 98788	. 11535	. 67097	. 33725	. 99460	20°
21°	. 03040	. 49777	. 98665	. 12101	. 67142	. 33766	. 99404	21°
22°	. 03183	. 49755	. 98536	. 12665	. 67189	. 33809	. 99346	22°
23°	. 03326	. 49733	. 98401	. 13228	. 67238	. 33854	. 99286	23°
24°	. 03469	. 49709	. 98260	. 13789	. 67290	. 33901	. 99222	24°
25°	. 03611	. 49684	. 98113	. 14348	. 67344	. 33950	. 99157	25°
26°	. 03753	. 49658	. 97960	. 14905	. 67400	. 34001	. 99088	26°
27°	. 03896	. 49632	. 97802	. 15461	. 67459	. 34055	. 99017	27°
28°	. 04037	. 49605	. 97638	. 16014	. 67520	. 34111	. 98943	28°
29°	. 04179	. 49576	. 97469	. 16565	. 67584	. 34169	. 98866	29°
30°	. 04321	. 49546	. 97293	. 17114	. 67650	. 34229	. 98887	30°
31°	. 04462	. 49516	. 97112	. 17661	. 67719	. 34292	. 98705	31°
32°	. 04602	. 49484	. 96926	. 18206	. 67790	. 34356	. 98621	32°
33°	. 04743	. 49452	. 96733	. 18748	. 67863	. 34424	. 98534	33°
34°	. 04883	. 49419	. 96536	. 19288	. 67939	. 34493	. 98444	34°
35°	. 05023	. 49385	. 96332	. 19826	. 68018	. 34565	. 98351	35°
36°	. 05163	. 49349	. 96124	. 20361	. 68100	. 34640	. 98257	36°
37°	. 05301	. 49313	. 95910	. 20893	. 68184	. 34717	. 98159	37°
38°	. 05441	. 49276	. 95690	. 21423	. 68271	. 34796	. 98059	38°
39°	. 05579	. 49238	. 95466	. 21949	. 68360	. 34878	. 97956	39°
40°	. 05718	. 49199	. 95235	. 22473	. 68452	. 34962	. 97851	40°
41°	. 05855	. 49159	. 95000	. 22994	. 68547	. 35049	. 97743	41°
42°	. 05993	. 49118	. 94759	. 23513	. 68645	. 35139	. 97632	42°
43°	. 06130	. 49075	. 94513	. 24028	. 68746	. 35232	. 97519	43°
44°	. 06267	. 49032	. 94262	. 24540	. 68850	. 35327	. 97404	44°
45°	. 06403	. 48990	. 94005	. 25049	. 68957	. 35424	. 97285	45°
46°	. 06538	. 48945	. 93744	. 25555	. 69066	. 35525	. 97165	46°
47°	. 06674	. 48900	. 93477	. 26057	. 69179	. 35629	. 97041	47°
48°	. 06809	. 48852	. 93206	. 26556	. 69295	. 35735	. 96916	48°
49°	. 06944	. 48805	. 92930	. 27052	. 69414	. 35844	. 96787	49°
50°	. 07078	. 48757	. 92649	. 27544	. 69536	. 35957	. 96656	50°

[^27]TABLE 13. FUNCTIONS OF CURVES TRANSITIONAL THROUGHOUT
TANGENTS AND EXTERNALS FOR $\mathrm{L}_{s}=1 *$

Δ°	T_{s}	E_{s}	Δ°	T_{s}	E_{s}	Δ°	T_{s}	E_{s}
6°	1.00064	0.01747	38°	1.02682	0.11599	70°	1.10214	0.24203
7	1.00087	0.02040	39	1.02832	0.11936	71	1.10561	0.24681
8	1.00114	0.02332	40	1.02987	0.12275	72	1.10917	0.25167
9	1.00144	0.02625	41	1.03146	0.12617	73	1.11281	0.25660
10	1.00178	0.02918	42	1.03310	0.12962	74	1.11654	0.26161
11	1.00216	0.03213	43	1.03479	0.13309	75	1.12036	0.26669
12	1.00257	0.03507	44	1.03653	0.13660	76	1.12427	0.27186
13	1.00302	0.03802	45	1.03831	0.14012	77	1.12828	0.27710
14	1.00350	0.04098	46	1.04015	0.14370	78	1.13240	0.28244
15	1.00402	0.04396	47	1.04204	0.14730	79	1.13661	0.28786
16	1.00458	0.04693	48	1.04399	0.15094	80	1.14092	0.29337
17	1.00518	0.04992	49	1.04598	0.15460	81	1.14535	0.29898
18	1.00581	0.05292	50	1.04804	0.15831	82	1.14988	0.30468
19	1.00648	0.05593	51	1.05014	0.16206	83	1.15453	0.31048
20	1.00719	0.05895	52	1.05230	0.16584	84	1.15930	0.31639
21	1.00794	0.06198	53	1.05452	0.16966	85	1.16418	0.32241
22	1.00873	0.06502	54	1.05680	0.17352	86	1.16918	0.32854
23	1.00955	0.06808	55	1.05913	0.17742	87	1.17433	0.33478
24	1.01042	0.07115	56	1.06153	0.18137	88	1.17960	0.34115
25	1.01132	0.07424	57	1.06399	0.18536	89	1.18500	0.34763
20	1.01226	0.07734	58	1.06651	0.18940	c0	1.15054	0.35425
27	1.01324	0.08045	59	1.06909	0.19348	91	1.19623	0.36099
28	1.01427	0.08358	60	1.07174	0.19762	92	1.20207	0.36788
29	1.01533	0.08674	61	1.07446	0.20181	93	1.20806	0.37490
30	1.01644	0.08990	62	1.07724	0.20604	94	1.21421	0.38207
31	1.01758	0.09309	63	1.08010	0.21034	95	1.22052	0.38940
32	1.01877	0.09630	64	1.08302	0.21468	96	1.22700	0.39688
33	1.02000	0.09952	65	1.08602	0.21908	97	1.23366	0.40453
34	1.02128	0.10277	66	1.08909	0.22355	98	1.24050	0.41234
35	1.02260	0.10604	67	1.09223	0.22807	99	1.24753	0.42034
36	1.02396	0.10933	68	1.09546	0.23266	100	1.25475	0.42852
37	1.02537	0.11265	69	1.09876	0.23731			

[^28]Case VII. Given Δ and an external or tangent distance; to determine a curve transitional throughout.

Enter Table 13 at known Δ and read T_{s} and E_{s} values. Then $L_{s}=E_{8} / E_{s}$ value and $T_{s}=L_{s} \cdot$ tangent value, or $L_{8}=T_{s} / T_{s}$ value and $E_{\mathrm{s}}=L_{\mathrm{s}} \cdot$ external value.

Example. Given. $\Delta=30^{\circ}$ and $E_{s}=40^{\prime}$.
Required. L_{s}, T_{s}, θ_{s}, L.T., S.T., D_{c}, P, and k.
Solution. $L_{s}=40 \div 0.08990=444.9$, say $445^{\prime} . \quad T_{s}=1.01644 \times 445$
$=452.32^{\prime} . \quad \theta_{s}=\frac{\Delta}{2}=15^{\circ} . \quad D_{c}=\frac{200 \theta_{s}}{L_{s}}=6.47^{\prime}$. L.T. $=0.66908 \times 445$ $=297.74^{\prime} . \quad$ S.T. $=0.33553 \times 445=149.31^{\prime} . \quad p=0.02176 \times 445=$ $9.68^{\prime} . k=498.86 \times 445=221.99^{\prime}$.

Fig. 15. Spiral layout by offsets or deflections (same as for spiral transitions to a circular curve).

VERTICAL CURVES (Parabolic)

Formulas

$$
\begin{aligned}
A & =\text { algebraic difference of grades }=+g_{1} \%-\left(-g_{2} \%\right) \\
e & =A L / 8 . \\
d & =l^{2} A / 2 L ; d=4 e(l / L)^{2}
\end{aligned}
$$

Vertical Summit Curve

Length of vertical summit curves should provide required sight distance. See Vol. I, p. 3-60.

Note. All horizontal distances shown on this page- $L, l, l_{1}, l_{2}, x, x_{1}, x_{2}-$ are expressed in 100 ft . stations.

Where L, length of vertical curve, is not determined by sight distance criteria, the minimum value for comfort is

$$
L=\frac{A V^{2}}{10,000} *
$$

Example. Given. $g_{1} \%=+3.00 \% ; g_{2} \%=-2.00 \% ; L=3.00 ; l=0.50$.
Required. A, e, and d.
Solution.

$$
\begin{aligned}
& A=3.00-(-2.00)=5.00 \\
& e=\frac{5.00 \times 3.00}{8}=1.875^{\prime} \\
& d=\frac{0.50^{2} \times 5.00}{2 \times 3.00}=0.208^{\prime} \\
& d=4(1.875)\left(\frac{0.50}{3.00}\right)^{2}=0.208^{\prime}
\end{aligned}
$$

To find Sta. of P.V.I. when elevations of P_{1} and P_{2} are known.
Formula

$$
x=\frac{\text { elev. } P_{1}-\text { elev. } P_{2}}{A}
$$

Example. Given. Elev. $P_{1}=154.50$; elev. $P_{2}=150.00 ; A=5.00$.
Required. $x=$ distance in 100^{\prime} stations from known point to P.V.I.

* From O'Rourke, General Engineering Handbook, McGraw-Hill.

Solution.

$$
x=\frac{154.50-150.00}{5.00}=0.90\left(100^{\prime} \text { stations }\right)
$$

To find low point on sag curve.

Vertical Sag Curve

Length of vertical sag curve should provide headlight illumination for a safe stopping distance. See Vol. I, p. 3-62.

Formulas

$$
\begin{aligned}
& x=g(\text { lesser gradient }) L / A . \\
& d(\text { at low point })=x^{2} A / 2 L .
\end{aligned}
$$

Example. Given. $g_{1} \%=-3.00 \% ; g_{2}=+2.00 \% ; L=3.00 ; A=5.00$. Required. x and d. Solution.

$$
\begin{aligned}
& x=2.00 \times \frac{3.00}{5.00}=1.20^{\prime} \\
& d=\frac{1.20^{2} \times 5.00}{2 \times 3.00}=1.20^{\prime}
\end{aligned}
$$

Note. High point on summit curve can be found by same method.
Fig. 16. Symmetrical vertical curves.

Formulas

$$
e=\frac{l_{1} l_{2}}{2\left(l_{1}+l_{2}\right)}\left(g_{1}-g_{2}\right) ; y_{1}=e\left(\frac{x_{1}}{l_{1}}\right)^{2} ; y_{2}=e\left(\frac{x_{2}}{l_{2}}\right)^{2}
$$

Example. Given. $g_{1}=3.00 \% ; g_{2}=2.00 \% ; L=4.00 ; l_{1}=1.50$; $l_{2}=2.50 ; x_{1}=0.50 ; x_{2}=1.00$.

Required. e, y_{1}, and y_{2}.
Solution.

$$
\begin{aligned}
e & =\frac{1.50 \times 2.50}{2(1.50+2.50)}(3.00+2.00)=2.35^{\prime} \\
y_{1} & =2.35\left(\frac{0.50}{1.50}\right)^{2}=0.26^{\prime} \\
y_{2} & =2.35\left(\frac{1.00}{2.50}\right)^{2}=0.38^{\prime}
\end{aligned}
$$

Fig. 17. Unsymmetrical vertical curves u ed to fit unusual conditions.

PARABOLIC CROWN ORDINATES

Formulas

> Symmetrical Crown

Used for roads and for streets where gutters are same elevation.

$$
c=c_{1}\left(\frac{W}{2}\right) ; y=4 c\left(\frac{x}{W}\right)^{2}
$$

Example. Given. $c_{1}=1 / 8^{\prime \prime} ; W=22^{\prime}$; and $x=6^{\prime}$.
Required. $c ; y$ (at any point P).
Solution.

$$
\begin{aligned}
& c=1 / 8 \times 22 / 2=1.375^{\prime \prime}=13 / 8^{\prime \prime} \\
& y=4 \times 1.375(6 / 22)^{2}=0.409^{\prime \prime}=13 / 32^{\prime \prime}
\end{aligned}
$$

Ordinates-Any Parabolic Curve

Unsymmetrical Crown

Used for city streets where conditions necessitate different gutter elevations. If slope per foot is over $1 / 2 \mathrm{in}$., a stepped curb or retaining wall should be used on uphill side of street.
Also used for off-center crowns on three-lane roads to provide symmetrical crown for future four lanes.

Also used for transition onto superelevated curves.
Offsets from tangent to curve vary directly as the squares of the tangent distances.

Formula

$$
d^{2}: x^{2}=o: y . \quad \therefore y=\frac{o x^{2}}{d^{2}}
$$

Example. Given. $d=10^{\prime} ; o=6^{\prime \prime}$; and $x=5^{\prime}$.
Required. y.
Solution.

$$
y=\frac{6 \times 5^{2}}{10^{2}}=1.50^{\prime \prime}=11 / 2^{\prime \prime}
$$

Alternative Method

Divide the distance from center line or high point to edge of pavement into 10 equal spaces. Multiply figures in chart by total crown to get ordinates from crown elevation to pavement surface for points shown.

Example. Given. Total crown $=6^{\prime \prime}$.
Required. Ordinates at fifth and eighth points.
Solution.
Ordinate at fifth point $=0.25 \times 6=1.50^{\prime \prime}=11_{2}^{\prime \prime}$.
Ordinate at eighth point $=0.64 \times 6=3.84^{\prime \prime}=31,16^{\prime \prime}$.

Formulas

$$
\begin{aligned}
& x_{1}=\frac{d w}{8 h} ; y_{1}=\frac{d^{2}}{16 h} ; d_{1}=\frac{d}{2}+h+y_{1} ; y=\frac{d_{1} x^{2}}{t^{2}} \\
& y_{2}=d_{1}-d ; t=x_{1}+\frac{w}{2} ; t_{1}=W-t
\end{aligned}
$$

Example. Given. $h=0.5^{\prime} ; w=40^{\prime} ; d=0.5^{\prime} ; x=10^{\prime}$. Required. $x_{1} ; y_{1} ; d_{1} ; y_{2} ; y ; t$ and t_{1}.
Solution.

$$
\begin{aligned}
x_{1} & =\frac{0.5 \times 40}{8 \times 0.5}=5.0^{\prime} \\
y_{1} & =\frac{0.5^{2}}{16 \times 0.5}=0.0312^{\prime}=0.375^{\prime \prime}=3,8^{\prime \prime} \\
d_{1} & =\frac{0.5}{2}+0.5+0.0312=0.7812^{\prime}=9.375^{\prime \prime}=938^{\prime \prime} \\
y_{2} & =0.7812-0.5=0.2812^{\prime}=3.375^{\prime \prime}=3.8^{\prime \prime} \\
t & =5.0+\frac{40}{2}=25.0^{\prime} \\
y & =\frac{0.7812 \times 10^{2}}{25^{2}}=0.125^{\prime \prime}=11_{2}^{\prime \prime} \\
t_{1} & =40-25=15^{\prime}
\end{aligned}
$$

TABLE 14. PARABOLIC CROWN ORDINATES

RAILROAD TURNOUTS AND CROSSOVERS

EARTHWORK COMPUTATIONS

find area by planimeter or by counting squares on cross section paper.

Irregular Sections

Area $=c\left(b+S_{c}\right)$ where: $S=\frac{d_{r}}{c}=$ Slope
Level Sections

$$
\text { Three Level Sections and } S=\frac{d_{r}-1 / 2 b}{h_{r}}
$$

Fig. 18. Methods of finding areas.

1. By average end areas:* Volume in cubic yards $=\frac{A_{0}+A_{1}}{2} \cdot \frac{l}{27}$, where $l=$ distance in feet between section A_{0} and A_{1}. Compute end areas as indicated in Fig. 18. Use Tables 16 and 17; also see example on p. 235.
2. By prismoidal formula: Volume in cubic yards $=\frac{A_{0}+4 M+A_{1}}{6} \cdot \frac{l}{27}$, where $l=$ distance in feet between sections A_{0} and $A_{1}, M=$ area at section midway between section A_{0} and A_{1}.
3. Using prismoidal corrections: Subtract volume in Table 18, p. 240, from volume found using average end areas method.
4. To find volume of excavation on curves use average end area method with l between sections as indicated below. Fill volumes can be computed similarly.

$l=$ distance between centers of gravity of adjacent sections.

Locate c.g. as shown on left; plot e on plan, and scale l along curve as indicated at right.

Fig. 19. Methods of finding volumes.

[^29]

Example 1. Given. End area $_{1}=97$ sq. ft.; end area $_{2}=120$ sq. ft.; $l=50^{\prime}$.

Required. Cubic yards between sections.
Solution. D.A. $=97+120=217$ sq. ft. Enter D.A. column, and to right of 217 find C.Y. $=201$ in C.Y. column.

Use Table 17 for D.A. of from 500 to $1000 \mathrm{cu} . \mathrm{yd}$.
Example 2. Given. D.A. $=2751$ sq. ft.; $l=50^{\prime}$.
Required. Cubic yards between stations.
Solution. D.A. of $2000=1852 \mathrm{cu} . \mathrm{yd}$. Find at bottom of Table 16; D.A. of $751 \mathrm{sq} . \mathrm{ft} .=695 \mathrm{cu} . \mathrm{yd}$. Therefore cubic yards for D.A. of 2751 sq. ft. $=1852+695=2547 \mathrm{cu} . \mathrm{yd}$.

Example 3. When l is less than 50^{\prime}.
Given. D.A. $=217$ sq. ft. $; l=37^{\prime}$.
Required. C.Y. between sections.
Solution. Enter column "Distance between Sections" and to right of 37 find "Constant" .6852. Then $.6852 \times 217=149$ C.Y.
DOUBLE END AREA VOLUMES

D．A．$=$ sum of end areas in square feet．	入่	
	¢	
	ジ	
	$\dot{\square}$	
	$\stackrel{\rightharpoonup}{0}$	
	A	
	$\stackrel{\mathrm{c}}{0}$	
	－	
	$\stackrel{\sim}{0}$	「下
	$\dot{\square}$	
	－	
	－	
	－	
	A	
	ジ	
	¢	
	ji	
	$\dot{\square}$	
	－	
	－	

TABLE 17.

台菏		OW NO
$\underset{\sim}{\mathscr{O}}$	－	雷
	4	，
	シ	
	－	
	¢	
	＋	
	－	
	$\dot{\dot{j}}$	응ㅇㅇㅇ으엉 융 $\infty \infty \infty$
	\％	
	$\dot{\dot{~}}$	
	－	
	$\stackrel{\square}{\square}$	
	3	Nơ్ర
	安	
$\dot{4}$	$\underset{0}{3}$	
	－	
	シ	
	－	
	$\underset{3}{2}$	
	¢	

 स

स路N
N

N성 어엉 엉

स్ర్రీ

$8000=7407$

$7000=6481$
0
in
II
8
8
8
$6000=55$

$4000=3704$

TABLE 18. PRISMOIDAL CORRECTIONS FOR L $=100^{\prime}$ STATIONS *

$c_{1}-c_{2}=$	1	2	3	4	5	6	7	8	9
$\mathrm{D}_{1}-\mathrm{D}_{2}$									
0.1	0.03	0.06	0.09	0.12	0.15	0.19	0.22	0.25	0.28
0.2	0.06	0.12	0.19	0.25	0.31	0.37	0.43	0.49	0.56
0.3	0.09	0.19	0.28	0.37	0.46	0.56	0.65	0.74	0.83
0.4	0.12	0.25	0.37	0.49	0.62	0.74	0.86	0.99	1.11
0.5	0.15	0.31	0.46	0.62	0.77	0.93	1.08	1.23	1.39
0.6	0.19	0.37	0.56	0.74	0.93	1.11	1.30	1.48	1.67
0.7	0.22	0.43	0.65	0.86	1.08	1.30	1.51	1.73	1.94
0.8	0.25	0.49	0.74	0.99	1.23	1.48	1.73	1.98	2.22
0.9	0.28	0.56	0.83	1.11	1.39	1.67	1.94	2.22	2.50
1.0	0.31	0.62	0.93	1.23	1.54	1.85	2.16	2.47	2.78
1.1	0.34	0.68	1.02	1.36	1.70	2.04	2.38	2.72	3.06
1.2	0.37	0.74	1.11	1.48	1.85	2.22	2.59	2.96	3.33
1.3	0.40	0.80	1.20	1.60	2.01	2.41	2.81	3.21	3.61
1.4	0.43	0.86	1.30	1.73	2.16	2.59	3.02	3.46	3.89
1.5	0.46	0.93	1.39	1.85	2.31	2.78	3.24	3.70	4.17
1.6	0.49	0.99	1.48	1.98	2.47	2.96	3.46	3.95	4.44
1.7	0.52	1.05	1.57	2.10	2.62	3.15	3.67	4.20	4.72
1.8	0.56	1.11	1.67	2.22	2.78	3.33	3.89	4.44	5.00
1.9	0.59	1.17	1.76	2.35	2.93	3.52	4.10	4.69	5.28
2.0	0.62	1.23	1.85	2.47	3.09	3.70	4.32	4.94	5.56
2.1	0.65	1.30	1.94	2.59	3.24	3.89	4.54	5.19	5.83
2.2	0.68	1.36	2.04	2.72	3.40	4.07	4.75	5.43	6.11
2.3	0.71	1.42	2.13	2.84	3.55	4.26	4.97	5.68	6.39
2.4	0.74	1.48	2.22	2.96	3.70	4.44	5.19	5.93	6.67
2.5	0.77	1.54	2.31	3.09	3.86	4.63	5.40	6.17	6.94
2.6	0.80	1.60	2.41	3.21	4.01	4.81	5.62	6.42	7.22
2.7	0.83	1.67	2.50	3.33	4.17	5.00	5.83	6.67	7.50
2.8	0.86	1.73	2.53	3.46	4.32	5.19	6.05	6.91	7.78
2.9	0.90	1.79	2.69	3.58	4.48	5.37	6.27	7.16	8.06
3.0	0.93	1.85	2.78	3.70	4.63	5.56	6.48	7.41	8.33
3.1	0.96	1.91	2.87	3.83	4.78	5.74	6.70	7.65	8.61
3.2	0.99	1.98	2.96	3.95	4.94	5.93	6.91	7.90	8.89
3.3	1.02	2.04	3.06	4.07	5.09	6.11	7.13	8.15	9.17
3.4	1.05	2.10	3.15	4.20	5.25	6.30	7.35	8.40	9.44
3.5	1.08	2.16	3.24	4.32	5.40	6.48	7.56	8.64	9.72
3.6	1.11	2.22	3.33	4.44	5.56	6.67	7.78	8.89	10.00
3.7	1.14	2.28	3.43	4.57	5.71	6.85	7.99	9.14	10.28
3.8	1.17	2.35	3.52	4.69	5.86	7.04	8.21	9.38	10.56
3.9	1.20	2.41	3.61	4.81	6.02	7.22	8.43	9.63	10.83
4.0	1.23	2.47	3.70	4.94	6.17	7.41	8.64	9.88	11.11
4.1	1.27	2.53	3.80	5.06	6.33	7.59	8.86	10.12	11.39
4.2	1.30	2.59	3.89	5.19	6.48	7.78	9.07	10.37	11.67
4.3	1.33	2.65	3.98	5.31	6.64	7.96	9.29	10.62	11.94
4.4	1.36	2.72	4.07	5.43	6.79	8.15	9.51	10.86	12.22
4.5	1.39	2.78	4.17	5.56	6.94	8.33	9.72	11.11	12.50
4.6	1.42	2.84	4.26	5.68	7.10	8.52	9.94	11.36	12.78
4.7	1.45	2.90	4.35	5.80	7.25	8.70	10.15	11.60	13.06
4.8	1.48	2.96	4.44	5.93	7.41	8.89	10.37	11.85	13.33
4.9	1.51	3.02	4.54	6.05	7.56	9.07	10.50	12.10	13.61
8.0	1.54	3.09	4.63	6.17	7.72	9.26	10.80	12.35	13.89
$\dot{c}_{1}-c_{2}=$	1	2	3	4	5	6	7	8	9

Example. Given. $c_{1}=4^{\prime}, \quad D_{1}=$ $130^{\prime}, c_{2}=8^{\prime}, D_{2}=138^{\prime}$.

Required. Prismoidal correction value.

Solution. $\quad c_{1}-c_{2}=4 ; \quad D_{1}-D_{2}=$ 8. Enter table at 8.0 ; read correction $=9.88 \mathrm{cu} . \mathrm{yd} .\left(c_{2}-c_{1}\right)\left(D_{2}-D_{1}\right)=$ $(8-4)(138-130)=+. \quad$ Subtract correction from volume by average end area method. See p. 234.

TABLE 18. PRISMOIDAL CORRECTIONS FOR L $=100^{\prime}$ STATIONS,*
Continued

$c_{1}-c_{2}=$	1	2	3	4	5	6	7	8	9
$\mathrm{D}_{1}-\mathrm{D}_{2}$									
5.1	1.57	3.15	4.72	6.30	7.87	9.44	11.02	12.59	14.17
5.2	1.60	3.21	4.81	6.42	8.02	9.63	11.23	12.84	14.44
5.3	1.64	3.27	4.91	6.54	8.18	9.81	11.45	13.09	14.72
5.4	1.67	3.33	5.00	6.67	8.33	10.00	11.67	13.33	15.00
5.5	1.70	3.40	5.09	6.79	8.49	10.19	11.88	13.58	15.28
5.6	1.73	3.46	5.19	6.91	8.64	10.37	12.10	13.83	15.56
5.7	1.76	3.52	5.28	7.04	8.80	10.56	12.31	14.07	15.83
5.8	1.79	3.58	5.37	7.16	8.95	10.74	12.53	14.32	16.11
5.9	1.82	3.64	5.46	7.28	9.10	10.93	12.75	14.57	16.39
6.0	1.85	3.70	5.56	7.41	9.26	11.11	12.96	14.81	16.67
6.1	1.88	3.77	5.65	7.53	9.41	11.30	13.18	15.06	16.94
6.2	1.91	3.83	5.74	7.65	9.57	11.48	13.40	15.31	17.22
6.3	1.94	3.89	5.83	7.78	9.72	11.67	13.61	15.56	17.50
6.4	1.98	3.95	5.93	7.90	9.88	11.85	13.83	15.80	17.78
6.5	2.01	4.01	6.02	8.02	10.03	12.04	14.04	16.05	18.06
6.6	2.04	4.07	6.11	8.15	10.19	12.22	14.26	16.30	18.33
6.7	2.07	4.14	6.20	8.27	10.34	12.41	14.48	16.54	18.61
6.8	2.10	4.20	6.30	8.40	10.49	12.59	14.69	16.79	18.89
6.9	2.13	4.26	6.39	8.52	10.65	12.78	14.91	17.04	19.17
7.0	2.16	4.32	6.48	8.64	10.80	12.96	15.12	17.28	19.44
7.1	2.19	4.38	6.57	8.77	10.96	13.15	15.34	17.53	19.72
7.2	2.22	4.44	6.67	8.89	11.11	13.33	15.56	17.78	20.00
7.3	2.25	4.51	6.76	9.01	11.27	13.52	15.77	18.02	20.28
7.4	2.28	4.57	6.85	9.14	11.42	13.70	15.99	18.27	20.56
7.5	2.31	4.63	6.94	9.26	11.57	13.89	16.20	18.52	20.83
7.6	2.35	4.69	7.04	9.38	11.73	14.07	16.42	18.77	21.11
7.7	2.38	4.75	7.13	9.51	11.88	14.26	16.64	19.01	21.39
7.8	2.41	4.81	7.22	9.63	12.04	14.44	16.85	19.26	21.67
7.9	2.44	4.83	7.31	9.75	12.19	14.63	17.07	19.51	21.94
8.0	2.47	4.94	7.41	9.88	12.35	14.81	17.28	19.75	22.22
8.1	2.50	5.00	7.50	10.00	12.50	15.00	17.50	20.00	22.50
8.2	2.53	5.06	7.59	10.12	12.65	15.19	17.72	20.25	22.78
8.3	2.56	5.12	7.69	10.25	12.81	15.37	17.93	20.49	23.06
8.4	2.59	5.19	7.78	10.37	12.96	15.56	18.15	20.74	23.33
8.5	2.62	5.25	7.87	10.49	13.12	15.74	18.36	20.99	23.61
8.6	2.65	5.31	7.96	10.62	13.27	15.93	18.58	21.23	23.89
8.7	2.69	5.37	8.06	10.74	13.43	16.11	18.80	21.48	24.17
8.8	2.72	5.43	8.15	10.86	13.58	16.30	19.01	21.73	24.44
8.9	2.75	5.43	8.24	10.99	13.73	16.48	19.23	21.97	24.72
9.0	2.78	5.56	8.33	11.11	13.89	16.67	19.44	22.22	25.00
9.1	2.81	5.62	8.43	11.23	14.04	16.85	19.66	22.47	25.28
9.2	2.84	5.68	8.52	11.36	14.20	17.04	19.88	22.72	25.56
9.3	2.87	5.74	8.61	11.48	14.35	17.22	20.09	22.96	25.83
9.4	2.90	5.80	8.70	11.60	14.51	17.41	20.31	23.21	26.11
9.5	2.93	5.86	8.80	11.73	14.66	17.59	20.52	23.46	26.39
9.6	2.96	5.93	8.89	11.85	14.81	17.78	20.74	23.70	26.67
9.7	2.99	5.99	8.98	11.98	14.97	17.96	20.96	23.95	26.94
9.8	3.02	6.05	9.07	12.10	15.12	18.15	21.17	24.20	27.22
9.9	3.06	6.11	9.17	12.22	15.28	18.33	21.39	24.44	27.50
10.0	3.09	6.17	9.26	12.35	15.43	18.52	21.60	24.69	27.78
$c_{1}-c_{2}=$	1	2	3	1	5	6	7	8	9

c_{1}, c_{2}, D_{1}, and D_{2} are shown for a three-level section. Volume by average end area \pm prismoidal correction $=$ volume by prismoidal formula.

When $\left(c_{2}-c_{1}\right)\left(D_{2}-D_{1}\right)$ is + , subtract correction.
When $\left(c_{2}-c_{1}\right)\left(D_{2}-D_{1}\right)$ is -, add correction.
Irregular sections are generally treated the same as three-level sections.

[^30]
LEVELING

SAMPLE NOTES

Fia. 20.

Fra. 21.

TRANSIT PROBLEMS

1. Determination of Distance to Inaccessible Point

Required. $A B$.
Procedure. Set transit at A, sight on B. Turn 90° and set C at a point at least equal to $1 / 2 A B$. Measure length $A C$. Set up at C and measure angle $A C B . \quad A B=A C \times$ tangent $A C B$.

2. Angles by Repetition *

Required. A more accurate determination of an angle than possible by a single measurement.

Procedure. (1) Set the transit very carefully over the point.
Set the A vernier at zero, read the B vernier, and record the readings.
(3) With the telescope in its normal position, measure one of the angles in a clockwise direction, and record both vernier readings to the smallest reading of the vernier. (4) Leaving the upper motion clamped, again set on the first point and again measure the angle in a clockwise direction (thus doubling the angle). (5) Continue until six repetitions have been secured. Record both vernier readings and the total angle turned. (6) In a like manner, setting the B vernier at zero, measure the explement of the angle in a counterclockwise direction with the bubble down, but read the horizontal circle as though the angle itself had been measured clockwise. (7) Go through the same process for all other angles about the point. (8) Compute the value of each of the angles for each direction turned, and compare with the single measurement. (9) Find the mean of each of these sets of single angles. For a transit reading to single minutes the total error should not exceed $10^{\prime \prime} \sqrt{n}$, in which n is the number of observations. (10) Adjust the angles so that their sum shall equal 360° by distributing the error equally among the mean values.

Hints and Precautions. (1) Level the transit very carefully before each repetition, but do not disturb the leveling screws while a measurement is being made. (2) The mean of each set of single angles should furnish a value free from instrumental errors. The station adjustment is an attempt to distribute the accidental errors so that the condition that there are 360° about a point shall be fulfilled. (3) Do not become

[^31]confused when calculating the total angle turned. Observe how the horizontal limb is graduated, and do not omit 360°. (4) The instrument should be handled very carefully. When turning on the lower motion the hands should be in contact with the lower plate (not the alidade), and when making an exact setting on a point the last movement of the tangent screw should be clockwise or against the opposing spring. (5) After each repetition the instrument should be turned on its lower motion in a direction opposite to that of the measurement. (6) The single measurement is taken as a check on the number of repetitions. It should agree closely with the mean value.
Practical Applications. This method is used in triangulation work to measure any angle accurately. The number of sets of readings and the number of repetitions in each set observed depend upon the desired accuracy.

3. Laying off Angles by Repetition *

Required. To lay off a given horizontal angle more accurately than by a single setting of the vernier.
Procedure. (1) Set the transit carefully over the point and lay off the angle. (2) Set a stake on the line of sight, preferably at least 500 ft . from the instrument, and carefully set a tack. (3) By repetition measure the angle laid off, as in the previous problem, making six repetitions in each direction. (4) Find the angular discrepancy between the angle laid off and the required angle. Move the tack perpendicular to the line of sight, a distance equal to the sine of the angular discrepancy times the measured distance between the stakes. (5) Set the tack accordingly.
Practical Applications. This method is of use in laying out large buildings, valuable city lots or right of ways, important highway work such as viaducts and bridges, and airport runway center lines. With a transit vernier reading to 1 minute, an error of 30 in . in a single reading might easily occur; in 300 ft . this would amount to approximately $1 / 2 \mathrm{in}$.

4. Area by Double Meridian Distance *

Required. Area of a closed traverse.
Rules.
Latitude $=$ distance times cosine bearing angle.
Departure $=$ distance times sine bearing angle.
Latitudes and departures are positive or negative according as they are north and east or south and west.

In any closed traverse the algebraic sum of the latitudes (or departures) must equal zero.
Compass rule for balancing. The correction to be applied to the lati-

[^32]tude (or departure) of any course is to the total error in latitude (or departure) as the length of the course is to the perimeter of the field.
Transit rule for balancing. The correction to be applied to the latitude (or departure) of any course is to the total error in latitude (or departure) as the latitude (or departure) of that course is to the arithmetical sum of all the latitudes (or departures).

Rules for double meridian distances. (1) The D.M.D. of the first course equals the departure of that course.
(2) The D.M.D. of any other course equals the D.M.D. of the preceding course plus the departure of the preceding course plus the departure of the course itself.
(3) The D.M.D. of the last course is numerically equal to the departure of that course, but with opposite sign.

Procedure. (1) Transcribe necessary data from the field book into a form similar to that shown below. Check the copy.
(2) Calculate the latitude and departure of each course, using logarithms as shown in sample computations or more quickly and accurately with natural functions and a calculating machine if one is available. Check results with the slide rule.
(3) Determine the total error in latitude and in departure, and compute the error of closure.
(4) Determine the latitude and departure corrections by one of the preceding rules for balancing.
(5) Apply these corrections, and check by taking the algebraic sum of the corrected latitudes and the algebraic sum of the corrected departures. Each of these sums should equal zero.
(6) From the corrected departures compute the D.M.D.'s, applying the preceding rules and starting from the most westerly point in the survey. If the last D.M.D. is not numerically equal to the last corrected departure, it will indicate that a mistake in addition has been made.
(7) Compute double areas by the preceding rule paying special attention to signs. Check computations.
(8) Sum up the double areas, divide by 2 , and transform into acres.

Hints and Precautions. (1) Use tables of logarithms or natural functions with number of places consistent with the precision of the field measurements. If the bearings have been determined with the surveyor's compass, four places will be sufficient; if angles have been taken to the nearest minute (in error less than 30 seconds) with the transit, five-place tables should be used.
(2) Checks should be applied after each of the steps in the computations. An absolute check on the work can, of course, be had only by recomputation, by methods that will give as many significant figures in the final result as the original computations gave. However, the slide rule will furnish an approximate check, which is very desirable.
(3) If, after having calculated the latitudes and departures and after having checked them against large errors, the error of closure is found to be larger than that allowable, the computer may frequently locate the mistake, whether it be in computations or field work, through the relation of total error in latitudes and total error in departures. Thus, if the mistake is in the length of one line and there are no other large errors, the ratio of the total error in departures to the total error in latitudes will approximately express the tangent of the bearing angle of that line, or if a mistake has been made in the latitude of a line the departures may nearly close. The computer should, therefore, conduct a critical examination of results and should then recompute those values that seem most likely to contain the mistake. If the mistake is not brought to light when all latitudes and departures have been rechecked, then, and only then, may he be warranted in concluding that the mistake occurred in the field.
(4) The compass rule or transit rule will be used for balancing latitudes and departures according as the error is assumed to be as much in angles as in distances or as the error is assumed to be mostly due to erroneous lengths.
(5) When the error of closure is small, the latitudes and departures may usually be balanced by inspection without computing the corrections by either of the preceding rules. When the computer knows the conditions surrounding the field work, he may often distribute the error according to his own judgment rather than by any fixed rule.
(6) Often neither calculated nor magnetic bearings of lines are shown in the transit notes. If deflection or interior angles were taken, it will be convenient to assume one of the lines in the traverse as the meridian and calculate the bearings of other lines accordingly. If magnetic bearings are recorded in the field notes, they should not be confused with calculated bearings and used as the basis of computations, for their precision will not warrant such use.
(7) Corrections for erroneous length of chain or tape should not be overlooked. Constant errors of this sort will have no effect on the error of closure.
(8) By starting with the most westerly point in the survey all the D.M.D.'s become positive; it is not necessary for the solution of the problem that this point be chosen, but it is customary.

Practical Applications. The double meridian distance method of calculating the area within a closed traverse is universally followed in preference to subdividing into triangles. It is generally agreed that it takes less time, is more systematic, and offers more easy checks; through the use of latitudes and departures, the error of closure is readily determined.

Some surveyors favor the method of double parallel distances, which is the same in principle as the preceding method, the only difference being that in double parallel distances (D.P.D.'s) the bases of trapezoids are

Fig. 22.
along a line perpendicular to the meridian, whereas in double meridian distances they lie on the meridian itself. Thus, the rules for finding D.M.D.'s may be changed to rules for D.P.D.'s by substituting the word "latitude" for "departure"; and the rule for finding double areas will then be as follows: The double area of any trapezoid equals the product of its D.P.D. and its corrected departure.

b. Omitted Side *

Required. Length and bearing of one side of a traverse, this side not accessible in field. (It is assumed that errors in measured sides are negligible; all errors are thrown into computed side.)
Procedure. (1) Calculate the latitudes and departures of the known lines as in the previous problem, and find their totals. (2) On the preceding assumption, and since the algebraic sum of latitudes and of departures for any closed traverse is zero, it follows that the latitude and departure of the unknown line are numerically equal to the sums of corresponding quantities for the known lines, but with opposite sign. Therefore, determine the bearing and length of the unknown line by the equations:

$$
\text { Tan bearing angle }=\frac{\text { departure of line }}{\text { latitude of line }}
$$

and

[^33]Length of line $=\sqrt{\text { latitude }^{2}+\text { departure }^{2}}$

$$
=\frac{\text { latitude of line }}{\text { cos bearing angle }}=\frac{\text { departure of line }}{\sin \text { bearing angle }}
$$

Precaution. Plot known sides, and graphically check omitted side and bearing.

6. Prolongation of a Line by Double Sighting with Transit * (Double Centering)

Required. To produce a straight line with precision.
Procedure. (1) Set the instrument carefully over the forward point on the line with the telescope normal and backsight on line. Use the lower horizontal motion, the upper motion being clamped. (2) Plunge the telescope, and set a stake on the line in advance. Mark a point on the stake exactly on line. (3) Take a second backsight on line in the same manner as before, with the telescope inverted. Plunge the telescope again, and mark a second point on the advance stake. (4) If this point is not coincident with the first point set, a point midway between them is on the line. (5) Set the transit over this point, and advance by the same process, backsighting upon the next point in the rear. Continue in this way for the desired distance.

Hints and Precautions. (1) Be sure that one backsight from each station is taken with the telescope inverted and one with the telescope direct. (2) Tacks should be set in all stakes, and after being set should be checked. A finely divided scale should be used for bisecting the distances. (3) Whenever an opportunity arises, take backsights as far back on a line as possible to check the line.

Practical Applications. The method of double sighting is used when it is desired to set a point in advance accurately on line. The process of double sighting eliminates instrumental errors. It is used in prolonging lines of a considerable length or setting points accurately ahead on line. Frequently a line prolonged by simply plunging the telescope with a transit supposed to be in perfect adjustment has later been found to be not a straight line but a curve of large radius. The same method should be used when setting transit points ahead on a curve.

7. Establishing a Line by Balancing-in with Transit (Bucking-in)

Required. To establish an intermediate transit point on a line when the two ends of the line are not intervisible.

Procedure. (1) Set up the transit where the intermediate point is required, and as near as can be estimated, on the line. (2) Backsight with telescope normal on the point marking one end of the line, and plunge

[^34]the telescope. (3) Move the transit a proportionate amount of the distance by which the line of sight fails to strike the point at the opposite end of the line. (4) Repeat the procedure until the line of sight is coincident with the line. (5) Establish the point by lowering the plumb bob of the transit. (6) Repeat the process with the telescope inverted as in double centering. If the instrument is not in adjustment a second point will be found; the correct point is set midway between the two.

Hints and Precautions. The final movement of the transit can usually be made with the shifting head. Until near the correct point, it is unnecessary to level the transit carefully. Additional points on the line can be set by direct sighting.

8. Layout of Circular Curve

Required. To establish the P.C. and P.T. of a simple curve and set points at intervals along the curve.

Procedure. (1) Lay off both tangents from the P.I., thus locating the P.C. and P.T. (2) Set up the transit over the P.C.; set vernier at zero and foresight on P.I. Unclamp the upper motion and sight at the P.T. if visible; the deflection angle of the long chord should equal $1 / 2$ the external angle Δ. (3) From the previously computed list of deflections, lay out the points on the curve using the proper deflection angle and subchord or full chord as required.

Hints and Precautions. (1) If the back tangent has been stationed the P.C. may be set from the nearest station. (2) When the survey is to be carried ahead the transit may be set up over the P.T. and the curve laid out from it, thus saving a set-up. (3) When setting a transit point or an accurate point on the curve (P.O.C.), the backsight should be checked and the deflection turned with the telescope plunged in both the inverted and direct positions, the point being set as in double centering for a straight line.

Set-up on Curve. When all the stations of a curve are not visible from either the P.C. or P.T., a transit point must be set at some point on the curve (P.O.C.) and the transit moved up to it. (1) Locate the P.O.C. (2) Set up over the P.O.C. backsight on the P.C. with a zero reading on the vernier. (3) Plunge the telescope, and turn the telescope inward until the vernier reading (deflection) for the P.O.C. is reached. The line of sight will then be tangent to the curve. (4) Lay off the deflections for the points to be set as computed in the original list.

Note. Any other station than the P.C. may be sighted provided the proper deflection is used. The following rules apply:

Rule I. When the transit is set on any point on a curve, an auxiliary tangent to the curve at that point may be found by sighting at any station on the curve with the deflection of the station sighted laid off on the proper side of zero and turning the upper motion until the vernier reading (deflection) for the point occupied is reached.

Rule II. When the transit is set on any point on a curve (including the P.C. or P.T.), any other point on the curve may be set by sighting at any point on the curve with the deflection for the point sighted laid off on the proper side of the vernier and turning the upper motion in the proper direction until the vernier reading (deflection) for the point to be set is reached.

SAMPLE NOTES

Fig. 23.

Leveling *

ALLOWABLE ERRORS

Rough leveling for rapid reconnaissance or preliminary work; sights made up to 1000 ft .; rod readings to tenths; no attention paid to balancing backsights and foresights.

Suggested maximum error in feet $= \pm 0.4 \sqrt{\text { distance in miles. }}$
Ordinary leveling as required for most engineering works; maximum sights 500 ft .; rod readings to hundredths; backsights and foresights roughly balance for both length of shots and uphill and downhill work; turning points on reasonably solid objects.
Suggested maximum error in feet $= \pm 0.1 \sqrt{\text { distance in miles. }}$

[^35]Accurate leveling, for principal bench marks; maximum sights 300 ft .; rod readings to thousandths; backsights and foresights paced and balanced; rod waved; bubble centered for each sight; turning points on very solid objects; level set very firmly.

Maximum error in feet $= \pm 0.05 \sqrt{\text { distance in miles. }}$
This error is the same as allowed for third-order leveling, Corps of Engineers, U. S. Army.

Distances

By stadia, 1:750 maximum allowable error.
By tape, 1:5000 maximum allowable error for ordinary work.

Transit and Tape Traverses

Linear error of closure $=\sqrt{(\text { sum of latitudes })^{2}+(\text { sum of departures })^{2}}$.
The precision of transit traverses is affected by both linear and angular errors of measurement. Many factors affect the precision, and it can be expressed only in very general terms. The following specifications give approximately the maximum linear and angular errors to be expected when the methods stated are followed. If the surveys are executed by well-trained men, with instruments in good adjustment, and under average field conditions, in general the error of closure should not exceed half the specified amount. The specifications apply to traverses of considerable length. It is assumed that a standardized tape is used. .

Class 1. Precision sufficient for many preliminary surveys, for horizontal control of surveys plotted to intermediate scale, and for land surveys where the value of the land is low.
Transit angles read to the nearest minute. Sights taken on a range pole plumbed by eye. Distances measured with a 100 -ft. steel tape. Pins or stakes set within 0.1 ft . of end of tape. Slopes under 3% disregarded. On slopes over 3\%, distances either measured on the slope and corrections roughly applied, or measured with the tape held level and with an estimated standard pull.
Angular error of closure not to exceed $1^{\prime} 30^{\prime \prime} \sqrt{n}$, in which n is the number, of observations. Total linear error of closure not to exceed $1 / 1000$.
Class 2. Precision sufficient for most land surveys and for location of highways, railroads, etc. By far the greater number of transit traverses fall in this class.
Transit angles read carefully to the nearest minute. Sights taken on a range pole carefully plumbed. Pins or stakes set within 0.05 ft . of end of tape. Temperature corrections applied to the linear measurements if the temperature of air differs more than $15^{\circ} \mathrm{F}$. from standard. Slopes under 2% disregarded. On slopes over 2\%, distances either measured on the slope and corrections roughly applied, or measured with the tape held level and with a carefully estimated standard pull.
Angular error of closure not to exceed $1^{\prime} \sqrt{n}$. Total linear error of closure not to exceed $1 / 3000$.

Class 3. Precision sufficient for much of the work of city surveying, for surveys of important boundaries, and for the control of extensive topographic surveys.

Transit angles read twice with the instrument plunged between observations. Sights taken on a plumb line or on a range pole carefully plumbed. Pins set within 0.05 ft . of end of tape. Temperature of air determined within $10^{\circ} \mathrm{F}$., and corrections applied to the linear measurements. Slopes determined within 2%, and corrections applied. Tape held level, the pull kept within 5 lb . of standard, and corrections for sag applied.

Angular error of closure not to exceed $30^{\prime \prime} \sqrt{n}$. Total linear error of closure not to exceed $1 / 5000$.

Class 4. Precision sufficient for accurate city surveying and for other especially important surveys.

Transit angles read twice with the instrument plunged between readings, each reading being taken as the mean of both A and B vernier readings. Verniers reading to $30^{\prime \prime}$. Instrument in excellent adjustment. Sights taken with special care. Pins set within 0.02 ft . of end of tape. Temperature of tape determined within $5^{\circ} \mathrm{F}$., and corrections applied. Slopes determined within 1%, and corrections applied. Tape held level, the pull kept within 3 lb . of standard, and corrections for sag applied.

Angular error of closure not to exceed $15^{\prime \prime} \vee \bar{n}$. Total linear error of closure not to exceed $1 / 10,000$.*

DETERMINATION OF TRUE NORTH

OBSERVATION ON POLARIS

Procedure. Set up transit over a point. Observe Polaris at A or B, when the elongation remains constant-a 20minute period during which Polaris appears to move vertically and actually varies not more than 0.1 minute from the elongation. Depress telescope and set a point ahead. Turn off the angle in Table 19 to give the true north.

Fig. 24.

[^36]

There are two sets of lines on the isogonic chart, Fig. 25, which may be distinguished in two ways: (1) the isoporic lines are much smoother than the isogonic lines; (2) the isoporic lines are numbered in minutes and the isogonic lines in degrees.

The isogonic lines or lines of equal declination (also called "lines of equal variation of the compass") are drawn for January 1940. East of the agonic line, the lines are solid, signifying that the north end of the compass needle points west of true north; west of the agonic line they are dashed, and the compass points east of true north. The lines are drawn to show a smoothed distribution; in the more disturbed regions, the sinuosities of the lines must be regarded as an indication of irregularity rather than as a close representation of the declination.

Magnetic declination is subject to gradual change, the rate of which depends upon time and place. The annual rate of change prevailing from about 1934 to 1940 may be estimated from the isoporic lines. These lines are solid in regions where the prevailing declination was increasing, and dashed in regions in which the declination was decreasing. Note that, when an isoporic line crosses the agonic line, its sign changes.

Vernier

Accurate readings on scales will fall somewhere between rather than on the subdivision marks on a scale. The vernier is a supplementary scale designed to aid in evaluating these fractional overages.

It is an adjacent scale against which slides the main scale as illustrated in the figure at the right. The zero of the vernier scale becomes the point from which the reading on the main scale is taken. The divisions of the vernier are a little smaller than those on the main scale. Thus 10 subdivisions on the vernier scale equal 9 subdivisions on the main scale.

The refinement is given by reading to the nearest subdivision on the main scale opposite the zero on the vernier and looking along the scale until the point is reached where the subdivisions of the vernier scale and the main scale appear coincident.

From Tracy, Surveying: Theory and Practice, by permission of the author and John Wiley \& Soms. For instance, in the two scales illustrated, if the major subdivisions on the main scales are tenths of a foot, the reading of the scale marked E would be 0.345 ft . The reading of the scale marked F would be 0.407 ft .

INSTRUMENTS AND THEIR ADJUSTMENTS*

Cross section of Gurley transit.
25. Compass glass cover in metal bezel ring.
26. One piece truss standard.
27. Telescope level.
28. Adjusting nuts for telescope level.
29. Eyepiece cap.
30. Knurled ring for eyepiece focusing.
31. Capstan screw for adjusting cross-wires.
32. Clamp screw for telescope axle.
33. Objective slide adjusting screw.
34. Objective focusing pinion.
35. Objective cap.
36. Side (or longitudinal) level vial.
39. Center pin.
40. Limb centering screws.
41. Screw-plate to spindle.
42. Capstan nut-north (or transverse) vial.
44. Spring guard to north vial.
45. Plate level post.
46. Top plate.
47. Screw-plate to standard.
49. Index pointer for magnetic declination.
50. Limb.
51. Socket.
52. Limb clamp.
53. Screw-clamp sleeve to socket.
54. Clamp sleeve.
55. Clamp collar.
56. Spider, or four-arm piece.
57. Leveling screw nut.
58. Spindle.
59. Half-ball.
61. Jack or plummet chain.
62. Bottom cap.
64. Washer-end of spindle.
65. Shell.
66. Keeper screw.
67. Limb clamp plunger.
68. Locking screw-head to stem of clamp screw.
69. Clamp screw head.
70. Screw-tangent hanger to plate.
71. Vernier glass.
72. Screw-vernier to plate.
73. Screw-limb to socket.
74. Needle circle.
75. Bezel ring.
78. Screw-v.c. vernier to standard.
79. Axis tangent screw stem.
80. Head, axis tangent screw.
81. Locking screw-head to stem of axis tangent screw.
82. Telescope.
83. Collet, for cross-wire adjusting.
84. Telescope level vial.
86. Nut-end of spindle.
87. Half-ball set screw.
88. Capstan adjusting screw in standard cap.
90. Needle lifter screw.
91. Needle lifter housing.
92. Screw-compass to plate.
93. Screw-cover ring to standard base.
94. Nut-top of plate level post.
95. Take-up screw to limb tangent
96. Gib-leveling head clamp.
97. Spacer ring.
98. Cover ring.
99. Plate level adjusting spring.

[^37]

Cross section of Gurley dumpy level.

Parts for Gurley Dumpy Levels

1. Eyepiece cap.
2. Eyepiece focusing ring.
3. Capstan screw for adjusting cross wires.
4. Eyepiece body.
5. Objective focusing pinion.
6. Objective slide centering screw.
7. Dust shield.
8. Main tube head.
9. Objective cap.
10. Objective pinion body.
11. Objective pinion screw.
12. Bar.
13. Leveling head.
14. Leveling screw.

15A. Leveling screw bushing.
16. Leveling screw cup.
17. Bottom plate.
18. Leveling screw keeper screw.
19. Shell set screw.
20. Leveling head clamp.
21. Telescope level.
22. Telescope level vial.
23. Capstan adjusting nuts for telescope level vial.
24. Shell or outer bearing.
27. Collet for cross-wire adjusting screws.
29. Post for adjusting telescope level.
33. Spindle.
34. Half ball.
35. Screw for half ball.
36. Nut, end of spindle.
45. Eyepiece centering ring.
47. Eyepiece centering screw.
48. Cross-wire reticule.
49. Diaphragm in slide.
50. Objective slide centering ring.
51. Babbit, slide centering ring.
52. Main tube.
54. Inner ring, objective setting.
55. Objective lens.
56. Outer ring, objective setting.
57. Babbit, for objective end.
58. Objective slide.

Quarter section of Gurley wye level.

Parts for Gurley Wye Levels

1. Eyepiece aap.
2. Cover ring, covering eyepiece centering screws.
3. Capstan screw, for adjusting cross wires.
4. Wye rings.
5. Cover ring, covering objective slide adjusting screws.
6. Objective focusing pinion.
7. Wye pin.

7A. Wye clip stop pin.
8. Dust shield.
9. Sunshade.*

11A. Wye capstan nuts (upper).
11B. Wye capstan nute (lower).
12. Level lateral adjusting screw.
13. Wye bar.
14. Leveling head.
15. Leveling screw.
16. Leveling screw cup.
17. Bottom plate.
20. Leveling head clamp.
21. Telesoope level complete.
22. Telescope level vial.
23. Vertical adjusting capstan nuts for telescope level.
24. Eyepieoe focusing pinion.
25. Sleeve for eyepiece.
26. Eye end ring.
27. Collet, for cross-wire centering screws.
28. Screws for telescope level hanger and post.
29. Telescope level post.
30. Spline.
31. Spindle head.
33. Spindle.
34. Half ball.
35. Screw for half ball.
39. Hanger for telescope level.
40. Wye complete.
42. Babbit ring, in sleeve for eyepiece.
43. Eyepiece.
44. Bubbit, in eyepiece centering ring.
45. Eyepiece centering ring.
46. Collet, for eyepiece centering screw.
47. Eyepiece centering screw.
48. Cross-wire reticule.
49. Diaphragm in slide.
50. Slide centering ring.
51. Babbit, slide centering ring.
52. Main tube.
53. Binding ring.
54. Inner ring, objective setting.
55. Objective lens.
56. Outer ring, objective setting.
57. Babbit, for objective end.
58. Objective slide.
59. Objective cap.*

[^38]
Hints on Adjustments

Before proceeding with any adjustment, read the following suggestions carefully.

Making the Adjustments. Do not attempt to perfect each adjustment the first time as succeeding adjustments may disturb those already made. It is better to keep repeating the entire series until a final check shows each adjustment to be perfect.
Inspection of Instrument. Before adjusting any instrument, clean it thoroughly. Dirt in bearings will not permit a true adjustment. If adjusting screws or nuts are dirty they will not hold adjustment very long. Damaged or worn screws should be replaced by new factory parts as soon as possible. Damaged or worn bearings or damaged structural parts should be repaired and refitted at the factory. Clamps, tangent screws, and tangent springs should be clean and the clamp arm should be examined to make sure there is no indentation where the tangent screw presses. Be sure that the instrument is correctly assembled and that the holding screws are set up solidly but not overstrained. The telescope should be clean, the lenses showing objects sharply and without astigmatism. Be sure that the object lens is tight in its setting and that the setting is screwed tightly in its tube. All axis bearing caps should be screwed up to the proper tension. The proper fit of the telescope axle and the elimination of "walk" is very important. Check the level vials to see that they are firm in their cases. Examine the shoes on the tripod to make sure they are tight.

Select a Suitable Location. Established offices should provide a substantial pier or wall bracket wherewith to support the instrument when adjusting. Targets and scales should be set at convenient distances and elevations. In a limited space, particularly indoors, telescopes focused at infinity should be set up for use as collimators. On construction work an adjusting site should be selected, targets erected and a stake driven to define the instrument position if a tripod and not a permanent support is used. In selecting such sites, avoid places where the line of sight would pass over a railroad track or paved highway, near a heated building, or through successive areas of light and shadow. Protect the instrument from wind and direct rays of the sun, particularly when they strike only one side of the instrument at a time.
Setting up the Instrument. Select a spot where the ground is firm and dry so that moving around the instrument will not disturb it. If the instrument is set on a floor of concrete, brick or stone, make sure that there are no loose sections. Chip holes in a smooth floor to prevent the tripod points from slipping. After screwing the instrument to the tripod, loosen the tripod bolts, then tighten them, in order to remove all residual torque in the tripod head. This helps hold the transit on line. Tighten the leveling screws firmly, but do not force them.

Transits

The adjustments of transits are as follows:

1. Parallax.
2. Rectify cross wires.
3. Collimation at distant focus.
4. Collimation at minimum focus.
5. Telescope axis.
6. Telescope level.
7. Plate levels.
8. Vertical circle vernier.
9. Center eyepiece.
10. Balance compass needle.
11. Straighten needle
12. Center pivot.

Description of Transit

The transit, as generally constructed today, serves to measure angles in azimuth and in altitude. It, therefore, consists of two divided circles or limbs, one of which rotates about a vertical axis and the other about a horizontal axis. Each graduated surface is made perpendicular to its axis of rotation. The pointer of the instrument is a telescope, supported by standards and plate, the plate carrying the indices or verniers. The spindle, carrying the plate and standards, and the socket, carrying the horizontal limb, constitute the "centers" which rotate about each other and within the bearing of the leveling head.

The "centers" or vertical axis is made plumb by two spirit levels mounted on the plate. These levels are adjustable, and they can be readily checked by reversal about the centers.

The telescope is mounted with an axle which rides in bearings on top of the standards. For the axle to form a horizontal axis it must be at right angles to the vertical axis, and adjustment is provided for raising or lowering one end of the axle.

The pointer of the telescope is an optical line of sight passing through the optical center of the objective lens and the intersection of the cross wires. This is commonly called the line of collimation. The cross-wire ring is made adjustable so that the line of collimation can be adjusted at right angles to the horizontal axis or telescope axle.

In order to provide a datum for altitude angles, a spirit level is attached to the telescope so that its axis can be adjusted parallel to the line of collimation.
A clear understanding of the relationship between the various axes of a transit is helpful in performing adjustments. Those outlined can be performed by the instrument man; detailed instructions are given on succeeding pages. Errors of eccentricity should be corrected at the factory. Errors of parallax are due to improper manipulation.

1. Parallax. Parallax is eliminated by correct focusing of the objective lens on the cross wires.

Owing to differences in eyesight among individual users, it is necessary also to focus the eyepiece on the cross wires. Strictly speaking, this is not an adjustment but rather a manipulation that should be performed each time an accurate pointing is desired. Since incorrect focusing will affect other adjustments involving the use of the telescope, it is listed herein as the first adjustment, and it is important that every detail be followed carefully.
(a) Sight through telescope and make preliminary focus of eyepiece on cross wires. Turn knurled ring at eye end of telescope, until wires appear black and sharp. (On some transits turn eyepiece cap or possibly an eyepiece pinion on side of telescope.)

Eye should be relaxed and time of setting should be brief, otherwise the eye may accommodate itself to the telescope rather than the telescope become adjusted to the eye. If both eyes can be left open, a better focus will be obtained.
(b) Focus the objective lens on a clearly defined, well-lighted target about 300 ft . away. Turn the objective focusing pinion slowly backward and forward of the position of focus, at the same time wagging the head. Observe for apparent lateral movement between target image and cross wires. Stop focusing at the point where no lateral displacement appears. Disregard sharpness of image and of cross wires. It is this objective focusing which is important in the elimination of parallax.
(c) If necessary to sharpen the image, refocus the eyepiece slightly. It will be found that the cross wires also will be more distinct.
(d) Further focusing of the eyepiece will not be necessary unless the eye tires or a different observer uses the instrument, in which event paragraphs b and c should be repeated.
(e) On surveys of a high order, paragraph b should be followed on all pointings if the observer wishes surely to eliminate parallax error due to focusing.

It may be pointed out that a young man has more trouble than an old man in getting an eyepiece properly focused. This is due to the greater "accommodation" of the younger eye. The above procedure tends to produce a relaxed and normal condition of the eye when setting the final focus of the eyepiece. Furthermore, greater difficulty is experienced with low magnification and with the simple eyepiece of the inverting telescope.
2. Rectify Cross Wires. To make the vertical cross wire perpendicular to the telescope axis.
(a) Sight through telescope and set one end of the vertical cross wire on a sharply defined point A, Fig. 26.
(b) Elevate or depress telescope so that vertical wire traces over point. If wire coincides with point throughout its length, its position is correct.
(c) If not, slightly loosen all four capstan screws, located on eyepiece end of telescope.

(d) Move cross-wire ring around, in proper direction, until test shows that vertical wire exactly traces point. Hold screw driver against each of the collets and tap lightly against it.
(e) Tighten capstan screws and check.

Fig. 26.
3. Collimation at Distant Focus. To make the collimation plane of the vertical cross wire perpendicular to the telescope axis.
(a) Set up and sight vertical wire on a sharply defined point A (see Fig. 27), 200 or 300 ft . away.
(b) Transit the telescope and set a point B at approximately the same elevation and distance as A.
(c) Laave the telescope reversed, rotate the transit plate a half turn, and again sight on A.
(d) Again transit the telescope (bring it to its normal position), and set point C.
(e) Mark a new point E, one-quarter the distance from C to B.
(f) By turning the horizontal capstan screws shift the vertical cross wire until it is set on point E.
(g) Again set on A and repeat until instrument will make both points, B and C, coincide at D.
(h) Check rectification of vertical wire (refer to section 2).
4. Collimation at Minimum Focus. In most Gurley transits the objective slide rear bearing is adjustable, so that the slide can be made to move parallel to the line of collimation and make it accurate for sighting at all distances. This adjustment is carefully made in the factory and, barring accident to the transit, should require no changing. With Gurley transits having inner-slids focusing any correction necessary can be made in the field; others should be returned to their makers. With internal focusing telescopes this construction is not permitted.
(a) Set up and sight vertical wire on a sharply defined point, 200 or 300 ft away.
(b) Place a horizontal scale or rod about 6 ft . in front of telescope (not nearer than point of minimum clear focus), and so that it appears just under the horizontal cross wire in the field of view, without moving the telescope.
(c) Focus on scale and read vertical wire intersection.
(d) Turn transit plate a half turn, transit telescope, and again set vertical wire on distant point.
(e) Without moving telescope, focus on nearby scale and read vertical wire intersection.
(f) If second reading (e) coincides with first reading (c), the objective slide is in adjustment with the vertical wire.
(g) Turn nearby scale or rod to vertical position in field of view and repeat readings using horizontal wire intersection. If two readings coincide, the objective slide is parallel to the horizontal wire.
(h) If not, correct for half the error by moving the rear bearing ring of the objective slide up or down or to the right or left as required. Turn slotted screws near or in telescope axis, using screw driver. Turning screw clockwise draws ring towards screw. Loosen opposite screw first. With an erecting telescope, actual movement should be opposite to apparent movement. With many telescopes, screws are on a 45° angle with respect to the cross wires; hence they are to be turned in pairs in order to move the bearing ring as required.
(i) Repeat sections 3 and 4 until the conditions of both are satisfied.

Fig. 27.
5. Telescope Axis. To make the telescope axis perpendicular to the vertical axis or spindle.
(a) Set up transit.
(b) Sight on a high point A (see Fig. 28).
(c) Depress telescope and set point B on ground, in front of instrument.
(d) Rotate instrument 180° and transit telescope.
(e) With telescope in reversed position, again sight on point B.
(f) Elevate telescope and note point C.
(g) Note a new point D halfway between B and C.
(h) Raise or lower the right end of the telescope axle until the vertical cross wire intersects the halfway point D, when elevating telescope from point B.

To raise or lower the telescope axle turn the right-hand threaded capstan headed screw which is to be found under the standard cap on the right-hand side. Turn clockwise to raise, counterclockwise to lower.

Fig. 28.

Before raising:
On old-model Gurley Transits: Loosen cap screws.
On late-model Gurley Transits: Loosen capstan screw on top of standard.

After adjusting:
On old-model Gurley Transits: Tighten the two cap screws equally until there is sufficient friction on the axle bearing to keep the telescope end from dropping under its own weight. On some models, laminated shims have been placed under the standard cap. In such cases the cap screws should be set up solidly. If the telescope transits too freely, remove laminations from the shims until the proper braking action is arrived at. Check and adjust the cap screws on the left-hand standard so that these provide equal braking power on both ends of telescope axle.

On late-model Gurley Transits: Tighten the two capstan screws on top of standards. Adjust both screws equally until there is sufficient braking action on the axle to keep the telescope end from dropping. Check and adjust the capstan screws on the left-hand standard so that they provide equal braking power on both ends of telescope axle.
(i) Check and repeat until transit will make points A and C coincide.
6. Telescope Level. To make the axis of the bubble parallel to the line of sight when the latter is horizontal.

> The "Four Peg" Method

For the "Two Peg" method, see p. 274
(a) Drive four stakes, A, B, C, and D, in line and exactly equidistant, from 50 to 100 ft . apart (see Fig. 29).

Fig. 29.
(b) Set up the transit at A.
(c) Bring the bubble to the center of the telescope level.
(d) Read the elevation of the line of sight on a rod held at both B and C, calling the first reading R_{1} and the second R_{2}.
(e) Set up the transit at D.
(f) With the bubble in the center of the telescope level, read the rod on C, calling it R_{3}.
(g) Add R_{1} to R_{3}, subtract R_{2}, and set target on rod to this result.

$$
R_{4}=\left(R_{1}+R_{3}-R_{2}\right)
$$

(h) Hold rod on B.
(i) By means of the axis tangent motion, incline the telescope until the horizontal wire intersects the target.
(j) Raise or lower one end of the bubble tube, by turning the capstan nuts, until the bubble returns to the center.

Reversion Vial: A procedure simpler than the peg method can be employed if the telescope level vial is of the reversion type.
(a) Set up transit, sight on level rod about 100 ft . distant, and center bubble.
(b) Read level rod (middle horizontal wire).
(c) Rotate instrument 180° in azimuth, transit telescope, again sight on rod, and center bubble.
(d) Read level rod.
(e) Average readings b and d. Set horizontal wire to average reading on rod. Center bubble by capstan adjusting nuts.
7. Plate Levels. To make the bubble tube axes perpendicular to the vertical axis or spindle.
(a) Set up transit on tripod.
(b) Rotate transit plate so that each bubble is in line with a pair of opposite leveling screws.
(c) Bring plate level bubbles to the center in both tubes.
(d) Turn the plate through 180° in azimuth.
(e) Note the amount that the bubbles move from the center.
(f) Raise or lower one end of each bubble tube as required to bring the bubbles back one half the amount they moved off.

To raise or lower one end of the bubble tube: On transits having capstan nuts above and below level tube, use adjusting pin to raise or lower both nuts as required. Do not force together so as to spring bubble tube.

On transits having a slotted screw at top of adjusting post, use adjusting pin to raise or lower only the capstan nut, underneath the tube. Coiled spring inside tube supplies proper tension. Adjust end of tube which will keep slotted screw about flush with top of tube.
(g) Level up and repeat the above until both bubbles remain in the center when rotating them 180°. Check and correct the bubbles alternately.
8. Vertical Circle Vernier. To make the vertical circle (or arc) read zero when the line of collimation is horizontal.
(a) Level up transit carefully, using telescope level.
(b) Center bubble of telescope level, using axis tangent motion. Check bubble adjustment, section 6 .
(c) Inspect vernier and vertical circle to see if zeros of each coincide.
(d) If not, slightly loosen screws which hold vernier to standard.
(e) Shift vernier until zeros coincide.
(f) Tighten vernier screws and check.
T wo-Vernier Vertical Circle. To make the vertical circle read zero when the line of collimation is horizontal.
(a) Level up transit carefully, using telescope level.
(b) Center bubble of telescope level, using axis tangent motion.
(c) Turn capstan headed screw until zeros of one vernier and vertical circle coincide.

To make zeros of verniers read 180° apart.
(a) Make line of collimation horizontal and also one vernier read zero as described above.
(b) If opposite vernier does not read zero, slightly loosen the screws which hold that vernier to the vernier frame.
(c) Shift vernier until zeros coincide.
(d) Adjust spacing between vernier and circle until end graduations on vernier match with limb.
(e) Tighten vernier screws and check.

Beaman Stadia Arc Indices. To make indices read zero when vernier reads zero.
(a) Set vernier to read zero on limb.
(b) If indices H and V do not read zero, slightly loosen index screws.
(c) Shift indices until they both read zero.
(d) Tighten index screws.
9. Center Eyepiece. To make the cross wires appear in the center of the field of view. This adjustment is not an essential to accuracy but is of convenience to the observer.
(a) After the cross wires have been adjusted, observe whether they appear in the center of the field.
(b) If not, unscrew the entire eyepiece from the telescope, turning raised rim ahead of knurled ring.
(c) Move the eyepiece slide in proper direction (opposite to apparent direction) by means of opposing flat headed screws in eyepiece. Estimate the amount of movement necessary.
(d) Replace the eyepiece in telescope and, if necessary, repeat until the eyepiece is properly centered.
10. Balance Compass Needle: The compass needle is balanced horizontally, as near as possible, for the locality to which it is sent. The metal spring or bright coiled wire on the south end of the needle slides along the needle to enable the instrument man to do exact balancing in the field. The needle should be tested for balance when the instrument is moved from one locality to another. Balancing at the office, particularly in a large building, will prebably not give satisfactory results.
(a) Level up the instrument.
(b) Release the needle on its pivot.
(c) Remove the compass glass by pressing the palm of the hand flat on the glass and turning counterclockwise.

Some transits have a set screw in the bezel ring, which should be removed before turning ring. This is located in either the NW or SE quadrants. If glass is tight, tap around bezel ring with handle of screw driver to loosen threads. The compass glass cannot be removed from between the standards on some Gurley transits without first detaching the vertical axis tangent bar which is held to the standard by two screws. However, it is unnecessary to remove the compass glass entirely when making adjustments.
(d) Note the dip of the needle, raise one side of the compass glass, and carefully remove the needle. Slide the counterbalance along the needle toward the high end.
(e) Lower the needle on its pivot point as gently as possible.
(f) Repeat until the needle balances.
(g) Replace the compass glass, taking care not to cross the threads. Finish turning with index pointer at N position. Replace locating set screw.
(h) Raise the needle from its pivot until ready to use.
11. Straighten Needle. To make both ends of the needle read 180° apart in one position. This makes both ends and the center of the needle lie in the same vertical plane.
(a) Set up compass, lower needle gently on the center pin, and remove the cover glass.
(b) With a small splinter of wood, bring the north end of the needle exactly opposite the north zero mark of the circle.
(c) Read the south end of the needle.
(d) Rotate the needle a half turn and bring the south end exactly opposite the north zero.
(e) Read the north end of the needle.
(f) If the two readings agree (paragraphs c and e) the needle is straight.
(g) If not, correct for half the error by bending the needle.
(h) Repeat the test until the needle is straight.
12. Center Pivot. To make both ends of the needle read 180° apart in all positions. This brings the pivot point exactly in the center of the compass circle.
(a) After straightening needle, bring north end of needle exactly opposite the north zero mark of the circle.
(b) Note whether south end of needle reads zero.
(c) If not, correct for the whole error by bending the center pin in a direction at right angles to the needle. Use wrench, carried in spare parts kit, to bend center pin.
(d) Rotate the needle a quarter turn, bring the north end opposite a 90° mark, and note whether the south end of the needle reads 90°.
(e) If not, correct for the whole error by bending the center pin in a direction at right angles to the needle.
(f) Repeat the above, reading first at the zero and then at the 90° marks, until both ends of the needle read alike in both positions.

Adjustments of Wye Levels

Levels

The adjustments of Gurley wye levels are as follows:

1. Parallax.
2. Rectify cross wires.
3. Collimation at distant focus.
4. Collimation at minimum focus.
5. Telescope level vial.
6. Wyes.
7. Center eyepiece.

Adjustnents of Dumpy Levels

The adjustments of Gurley dumpy levels are as follows:

1. Parallax.
2. Telescope level vial.
3. Rectify cross wires.
4. Collimation at distant focus.
5. Collimation at minimum focus.
6. Center eyepiece.

A level is an instrument used to determine the position of all points in a horizontal plane. It consists of a collimated line of sight adjusted parallel to the axis of a spirit bubble. This fundamental description should be kept in mind when adjusting and using a level of any type.

The type of level is determined from the structural arrangement of the parts necessary to adjust the axis of the bubble parallel to the line of sight and the convenience of keeping the bubble centered when taking a reading.

With the wye level, the telescope is provided with two accurately machined bearing rings, truly circular and of equal diameter, separated by about half the length of the telescope. These rest in wye bearings which are adjustable in the wye bar, which is permanently fixed at right angles to the vertical spindle. Two level posts attached to the telescope (usually underneath) carry the level vial, the position being fixed by adjusting nuts, usually at both ends.

With the dumpy level, the telescope, bar, and spindle are assembled as one unit, the workmanship being such that the axis of the telescope is closely perpendicular to the vertical axis of rotation or spindle. Level posts may be attached either to the bar or to the telescope, these carrying the level vial with adjusting nuts at both ends.

This difference in construction between the wye and dumpy level determines a difference in adjustment procedure. Thus, with the wye level, the collimated line of sight is made concentric with the wye rings by rotating the telescope in the wyes and adjusting the reticule carrying the cross wires. By reversing the telescope rings end for end in the wye bearings, and by adjusting the level vial in the level posts until the bubble
holds its central position in both positions of the telescope, the bubble axis is made parallel with the wye rings and thereby parallel with the collimated line of sight. As long as this parallelism holds, it is possible to do accurate leveling with a wye level, provided the level bubble is made central by the leveling screws each time a reading is taken. For convenience in keeping the bubble centered when pointing the telescope in a new direction, the wye adjustment is provided, which, by reversing the telescope about its spindle and by adjusting the wye nuts, makes the bubble axis, also the collimated line of sight, perpendicular to the spindle, or axis of rotation. When making the latter adjustment, the telescope slide should be moved by the focusing screw until the objective end of the telescope balances the eyepiece end. This position of the slide should be noted and the slide brought back to it when subsequently leveling up the instrument. Any movement of the slide from this position changes the balance of the instrument and may cause the bubble to run. This condition does not indicate a change in adjustment, since nothing has been done to change the parallelism between the bubble axis and the collimated line of sight. Therefore such a run of the bubble should be corrected by the leveling screws.
In adjusting the dumpy level, the construction necessitates a different procedure. The level bubble axis is first made perpendicular to the spindle or axis of rotation by reversing the telescope end for end about the spindle, centering the bubble by the level post adjusting nut. The collimated line of sight is then brought parallel to the bubble axis by the peg method of adjustment, the details of which are given on p. 274. For careful adjustment the objective slide should be at the position of balance, and any subsequent run of the bubble should be compensated for by the leveling screws, as explained under the wye level paragraph above.
When using a level, the adjustment or parallelism between bubble axis and collimated line of sight is important but it is equally important to make sure that the bubble is centered each time a reading is taken. To assist in this purpose, various devices from a simple mirror to a complicated prism system are used to enable the observer to see the position of the bubble at the time he reads on the rod.
The tilting type of level has been devised to assist the observer in keeping the bubble centered without recourse to the leveling screws. In addition to the change in balance caused by focusing on rods at different distances, there are other factors which cause a bubble to run without disturbing the fundamental parallelism between bubble axis and line of sight, especially so if a sensitive bubble is used.

The tilting level (used for precise leveling) has a double bar, one part attached parallel to the telescope, the other part at right angles to the spindle. The two bars are arranged to pivot one on the other, being separated by a slow-motion screw with opposing spring. A circular or bull's-
eye level on the bar or leveling head serves to plumb the spindle. Final leveling with each reading is done by centering the bubble by the slowmotion screw. Such levels are generally provided with a reflecting device so that both bubble and rod image are visible at the same time.

Tilting levels may be either of the dumpy or of the wye type. In the dumpy type, the parallelism between the bubble axis is established by the peg method of adjustment. In the wye type, the telescope is made with wye rings and with a reversion type of level attached to the side. The advantage of the wye or reversible type of tilting level is the ease of adjusting the line of collimation and the level bubble.

The relative advantages of the wye and dumpy levels boil down to a matter of individual preference. The dumpy level with fewer parts is supposed to remain in adjustment over a longer period of time. However, its adjustment is dependent upon a well-fitted spindle and socket.

The advantage claimed for the wye level is that the adjustments can be checked readily by one person (the dumpy level requires the assistance of a rodman in making the peg adjustment). The principal objection is that the adjustments are dependent upon the wye bearing rings being truly circular and equal in diameter. Since the rings are exposed to wear and to possible damage, some engineers feel that they cannot be sure of the adjustment unless the peg method is used anyway.
For construction engineering the compact solidarity of either the wye or the dumpy level gives these types the preference. However, for accuracy and speed on long lines of differential levels the tilting type is superior.

1. Parallax. See parallax adjustment for transit, p. 261.
2. Rectify Cross Wires. To make the horizontal cross wire perpendicular to the vertical axis or spindle. The vertical wire is set perpendicular to the horizontal wire by the maker.
(a) Set up a level on tripod. Set one end of horizontal wire on a sharply defined point A, Fig. 30.
(b) Turn level slowly about its spindle, so that horizontal wire traces over the point. Wire should coincide with point throughout its length.
(c) If point appears to trace dotted line $A B$, Fig. 30, slightly release pressure on capstan screws. Turn all four capstan screws only slightly and by equal amounts.
(d) Gently tap capstan screws in direction to close angle between horizontal wire and dotted line $A B$, Fig. 30. Rotate cross-wire ring (test, paragraph b above) until horizontal wire exactly traces point from A^{\prime} to B^{\prime}, Fig. 30.
(e) Tighten capstan screws (all four equally), and check.
3. Collimation at Distant Focus. To make the line of sight (collimation) pass through the axis of the wye rings.
(a) Set up level on tripod, remove wye pins from clips, and raise clips so that telescope is free to rotate.

Fig. 30.

Fig. 31.
(b) Set intersection of cross wires on a well-defined point (A, Fig. 31), about 300 ft . distant.
(c) Carefully rotate the telescope halfway around in its wyes, and note whether the intersection of the cross wires still covers the point.
(d) If not, move the telescope by leveling and tangent screws until the error seems to be one-half corrected.
(e) Move the cross-wire ring, using each pair of opposite capstan screws successively, until the error is entirely corrected and the cross-wire intersection now covers the point (C, Fig. 31).
(f) Repeat the rectification (2) and collimation (3) of the cross wires until both adjustments are correct.
4. Collimation at Minimum Focus. To make the objective slide move parallel to the line of collimation when racked in or out for focusing on distant or near targets.

This adjustment may be checked on any telescope but can be corrected only on Gurley inner-slide focusing telescopes. It is not on internal focusing telescopes or on the external focusing telescopes of other makes. It is primarily a factory adjustment and, barring accident, should need no correction in the field.
(a) Set up level on tripod, remove wye pins from clips, and raise clips so that telescope is free to rotate.
(b) Check adjustment of the line of collimation (3) for a remote target.
(c) Unscrew the cover ring in center of telescope, exposing the flatheaded screws for adjusting the rear bearing of the objective slide.
(d) Set intersection of cross wires on a well-defined point about 15 ft . distant.
(e) Carefully rotate telescope halfway round in its wyes, and note whether the intersection of the cross wires still covers the point.
(f) If not, move the telescope by leveling and tangent screws until the error seems to be one-half corrected.
(g) Correct the remainder of the error by turning the flat-headed screws with a screw driver until the cross wires intersect on the point. Adjust first one pair of screws and then the other. Loosen one screw and tighten the other.
(h) Repeat sections 3 and 4 until the conditions of both are satisfied.
(i) Replace cover ring.
5. Telescope Level Vial. To make the axis of the bubble parallel to and in the same vertical plane with the axis of the wye rings. As long as this adjustment and section 3 are correct, accurate leveling can be done with the instrument.
(a) Hold level sideways with spindle horizontal, and turn focusing screw until level balances. Then set up on tripod, clamp telescope over two diagonally opposite leveling screws.
(b) Remove wye pins and raise wye clips.
(c) Bring bubble to center of tube (see Fig. 32).
(d) Lift telescope out of wyes, turn end for end, and replace in wyes. Note whether bubble remains in center of tube (see Fig. 33).
(e) If not, bring bubble halfway back to center by the leveling screws.
(f) Correct balance of error by turning the capstan nuts at eyepiece end of bubble tube until bubble returns to center (see Fig. 34).

Fig. 33.

(g) Rotate telescope in its wyes, about 30° either side of the vertical, and note whether bubble remains in center of tube.
(h) If not, bring bubble all the way back to center by turning the lateral capstan screws on each side of the bubble tube post at the objective end of the level.
(i) Repeat the vertical adjustment, as given under section 5, paragraphs c, d, e, and f above.
(j) Check alternately until both the lateral adjustment and the vertical adjustment of the vial are correct.

Note: Bubble will run if balance is changed, by running objective slide in or out. This does not indicate adjustment is out. See p. 269.
6. Wyes. To make the axis of the wyes perpendicular to the vertical axis or spindle.

This adjustment is made as a convenience, rather than as a necessity. Accurate leveling can be done if the bubble is in adjustment, and is centered by the leveling screws before each rod reading.
(a) Set up level, rotate about spindle until telescope is over two diagonally opposite leveling screws, and bring bubble to the center of tube (see Fig. 35). Check telescope bubble adjustment, section 5, very carefully. Telescope slide must be in position of balance.

(b) Rotate level about spindle 180°, and note whether bubble remains in center of tube (see Fig. 36).
(c) If not, bring bubble halfway back to the center by the leveling screws. Raise or lower one end of the wye bar, until the bubble returns to the center, by turning a pair of capstan nuts at either end of the wye bar.
(d) Repeat until the bubble remains in center of tube when rotated about spindle (see Fig. 37).
7. Center Eyepiece. To make cross wires appear in center of field.

This is not essential to the accuracy of the work, but it is a convenience to the observer to have the cross wires appear in the center of the field.
(a) Set up level, and observe whether cross wires appear in center of field.
(b) If not, unscrew cover ring between cross wires and eye end of telescope.
(c) Turn the flat-headed screws with a screw driver until the cross wires appear in the center of the field.

Adjust first one pair of screws, and then the other. Loosen one screw and tighten the opposite one. Correct in a direction opposite to the apparent error.
(d) Replace cover ring.

Adjustments of Dumpy Levels

1. Parallax. See parallax adjustment for transit, p. 261.
2. Telescope Level Vial. To make the axis of the bubble perpendicular to the vertical axis or spindle.
(a) Set up level on tripod, rotate about spindle until telescope is over two diagonally opposite leveling screws, and bring bubble to center of tube.
(b) Rotate level about spindle 180°, and note whether bubble remains in center of tube.
(c) If not, bring the bubble halfway back to the center by the leveling screws.
(d) Correct balance of error by turning capstan nuts at either end of bubble tube, until bubble returns to center.
(e) Alternate over both pairs of leveling screws until the bubble remains in center of tube when rotated about spindle.
3. Rectify Cross Wires. To make the horizontal cross wire perpendicular to the vertical axis or spindle. Vertical wires are set by the maker at right angles to the horizontal wire.
(a) Set up level on tripod, and set one end of horizontal cross wire on a sharply defined point (A, Fig. 30).
(b) Turn level slowly about its spindle, so that horizontal wire traces over the point. If wire coincides with point throughout its length, its position is correct.
(c) If not, slightly loosen all four capstan screws located on eyepiece end of telescope.
(d) Move cross-wire ring around, in proper direction, until test shows that horizontal wire exactly traces point ($A^{\prime} B^{\prime}$, Fig. 30).
(e) Tighten capstan screws and check.
4. Collimation at Distant Focus. To make the line of sight parallel to the axis of the bubble.

> The "Two Peg" Method

For the "Four Peg" method, see p. 264.
(a) Set up level at some convenient point A, Fig. 38, holding rod at C, distant at least 100 ft . With instrument carefully leveled and bubble in center of telescope level, read rod on C, calling the reading R_{c}.
(b) Locate point B directly behind instrument and so that distance $A B$ equals $A C$.
(c) Point telescope toward B, bring bubbie to center of telescope tube, and take rod reading R_{b}.
(d) Set up level beside point B, so that eyepiece of telescope is directly over point. Level up carefully, bringing bubble to center of telescope tube.

Fig. 38.
(e) Point eyepiece of telescope toward rod at B, and read through objective end of telescope, calling this reading R_{d}. If more convenient, measure along the outside center line of telescope.
(f) Add to R_{d} the difference between the first readings $\left(R_{c}-R_{b}\right)$.
(g) Set rod target to this result, and hold the rod on point C.
(h) Move the cross-wire ring up or down until the horizontal wire cuts the target, by turning the vertical pair of opposite capstan screws.
(i) Check by again reading rod on B, computing rod reading for C, and observing whether horizontal wire cuts the target.
5. Collimation at Minimum Focus. To make the objective slide move parallel to the line of collimation when racked in or out for focusing on distant or near targets.

This adjustment may be checked on any telescope but can be corrected only on Gurley inner-slide focusing telescopes. It is not on internal focusing telescopes or on the external focusing telescopes of other makes. It is primarily a factory adjustment and, barring accident, should need no correction in the field.
(a) After doing section 4, set up level about 15 ft . from B (Fig. 38) toward C, which is the same distance away.
(b) On old-model Gurley dumpy levels unscrew the cover ring in center of telescope, exposing the flat-headed screws for adjusting the rear bearing of the objective slide.
(c) Level carefully and read rod C.
(d) Rotate level and focus on rod B. Moving objective slide out will probably cause the bubble to run, owing to the change in balance. Bring the bubble to the center by turning the leveling screws.
(e) Set target on rod B to proper reading to give true difference in elevation ($R_{c}-R_{b}$) ap-determined in section 4. Cross wires should bisect target at this setting.
(f) If not, turn the flat-headed screws, moving the rear bearing up or down, until the horizontal wire cuts the target.
(g) Check sections 4 and 5 alternately, until both are correct.
6. Center Eyepiece. To make the cross wires appear in the center of the field of view. This adjustment is not an essential to accuracy but is of convenience to the observer.
(a) After the cross wires have been adjusted, observe whether they appear in the center of the field.
(b) If not, unscrew the entire eyepiece from the telescope, turning raised rim ahead of knurled ring.
(c) Move the eyepiece slide in proper direction (opposite to apparent direction) by means of opposing flat-headed screws in eyepiece. Estimate the amount of movement necessary.
(d) Replace the eyepiece in telescope, and, if necessary, repeat until the eyepiece is properly centered.

Taping

Changes in Temperature

Correction in feet $=C \times L\left(T-T_{s}\right)$.
$C=0.0000065$ for steel tape.
$C=0.00000056$ for invar. tape.
$L=$ length of tape in feet.
$T=$ temperature in degrees Fahrenheit at which tape is used.
$T_{s}=$ temperature at which tape was standardized ($62^{\circ} \mathrm{F}$. or $68^{\circ} \mathrm{F}$.).

Variation in Tension

Correction in feet $=\frac{\left(P-P_{s}\right) L}{A E}$.
$P=$ tension applied.
$P_{s}=$ standard tension (10 to 15 lb .).
$L=$ length of tape in feet.
$A=$ cross section area of tape in square inches (light steel tape $=$ $0.0025 \pm$; heavy steel tape $=0.01 \pm$).
$E=$ modulus of elasticity in pounds per square inch ($30,000,000$ for steel tapes).

Sag

Correction in feet between points of support $=\frac{W^{2} L}{24 P^{2}}$.
$W=$ weight of tape in pounds between supports (a light tape $=1.0 \pm$ lb . per 100 ft .; a heavy tape $=3.0 \pm$ per 100 ft .).
$L=$ length in feet between supports.
$P=$ tension used in pounds.

MAPPING

PLOTTING TRAVERSES

1. Plotting by Protractor

Procedure. Fix position of first line, and lay off its length $A B$ by

scaling. Orient the protractor at the forward point B; lay off the deflection angle to the succeeding line, and draw a light line of indefinite length. Scale off the given distance $B C$ to the next traverse point C, etc.

Hints and Precautions. Orient the position of the first line so that the succeeding lines will not run off the paper. Carefully check the deflection angles as to their direction right or left. Calculated bearings should check reasonably with observed magnetic bearings. When azimuths or calculated bearings are used, a meridian line may be drawn through each station and the direction of the succeeding line laid off from the meridian.

2. Plotting by Tangents

Procedure. Fix position of first line, and lay off its length $A B$ by

scaling. Prolong the line $A B$ some convenient distance, to form a base line $B b$. Erect a perpendicular $b b^{\prime}$ of sufficient length. Scale off the distance $b b^{\prime}$ equal to the length of the base line $B b$ multiplied by the natural tangent of the deflection angle. Draw a line from B through b^{\prime} to define the direction of $B C$, etc.

Hints and Precautions. Time and accuracy can be gained by laying off the base line $B b 10 \mathrm{in}$. in length and scaling off the natural tangent along the perpendicular with an engineer's scale. Because the 50 scale has more graduations than the 10 scale, it is customary to scale off onehalf the natural tangent with the 50 scale. Scale all distances and erect all perpendiculars carefully. Where the deflection angle is greater than 90° the perpendicular is erected by measuring the base line back on the course from the last point and scaling off the tangent for 180°-the deflection angle. When the deflection angle is greater than 45°, erect a perpendicular from the last point set, scale off a $10-\mathrm{in}$. base line, and erect a line parallel to the last course, along which scale off the cotangent of the deflection angle. Check all plotted angles with a protractor. For in-
creased accuracy the base lines may be made 20 in . and the tangents scaled direct with the 50 scale. For checking the erected perpendiculars the diagonal distance on the hypotenuse of the $10-\mathrm{in}$. sides should scale 14.14 in.

3. Plotting by Chords

Procedure. Proceed the same as in plotting by tangents except that, instead of erecting a perpendicular at the end of the $10-\mathrm{in}$. base line, describe an arc of $10-\mathrm{in}$. radius. Scale the chord distance $b b^{\prime}$. Draw a

line through $B b^{\prime}$, and plot the distance $B C$. The length of the chord $b b^{\prime}$ is equal to $20 \cdot \sin 1 / 2$, the deflection angle.

Hints and Precautions. In swinging the $10-\mathrm{in}$. arc use a beam compass or improvise one by inserting a needle point and a pencil point exactly 10 in . apart in a thin strip of wood. If a table of chords is available no computations are necessary. Check the plotted angles with a protractor.

4. Plotting by Rectangular Coordinates-Latitudes and Departures

Procedure. (1) Transpose the survey data to a computation book as shown in the sample form on p. 247. (2) Compute the latitudes and departures of the courses, and, if a closed traverse, balance the survey. Assume one of the traverse points as the origin of coordinates, calculate total latitudes and departures, and check the computations. (3) Determine the size of the enclosing rectangle, the four sides of which pass through the eastern, western, northern, and southern points of the traverse. (4) Plot the enclosing rectangle to required scale on drawing paper, estimating its position on the sheet by means of a small-scale sketch. Place the traverse symmetrical with the sheet (the sides of the rectangle may or may not be parallel to the edges of the paper). (5) Test the accuracy of the plotting by scaling the length of diagonals. Plot the reference meridian, and plot and check the reference parallel. (6) Construct coordinate lines (other meridians and parallels) so that the area will be divided in squares with sides less than the length of the scale to be used. Number each of these lines with its distance from the reference meridian or parallel. (7) Locate each traverse point by plotting its lati-
tude and departure. (8) Check the length of the traverse lines connecting the points by scaling, and check the angles with the protractor.

Hints and Precautions. Accurately construct the meridians and parallels. After the enclosing triangle has been constructed and adjusted by trial the other lines should be plotted entirely by scaling. Do not use a T-square and triangles in the usual way but use straightedges only. The best way to lay out the rectangle and coordinates is with a beam compass and steel straightedge, checking all rectangles by diagonals. If the southwest corner of the enclosing rectangle is taken as the origin of coordinates, all the total latitudes and departures will be positive.

Practical Applications. Plotting by coordinates is the best method for plotting most traverses. When the area of a closed traverse is to be computed the latitudes and departures are necessary. The size and shape of the drawing can be determined before plotting. Errors of plotting are not cumulative. The method of checking is simple, and in closed traverses the survey is balanced before plotting.

PLOTTING TOPOGRAPHY

1. Stadia Topography by Protractor

Procedure. First lay out the traverse from which topography was taken. To facilitate plotting use a full circle protractor and a scale that can be pinned at the center. Orient the zero of the protractor on the line to the point on which the transit was sighted in the field. Move the scale to the horizontal angle desired and lay off the horizontal distance.
Hints and Precautions. One way of marking points as they are plotted is to note the elevation; another is to note the number of the point. Points which are to be connected should be connected before beginning a new station, i.e., points along a road, corners of a building, etc. When each traverse point occupied requires the plotting of a considerable number of points, speed and accuracy will be attained by two persons working as a team, one reading the notes and the other plotting the points.

MAPPING SYMBOLS *

* From Tracy, Surveying Theory and Practice. John Wiley \& Sons.

2. Topography from Cross Sections

Procedure. Indicate the line of cross sections by drawing a light line on the map. Scale off the distance right or left from the base line and mark the elevation.

Hints and Precautions. Orient the base line so that right on the map corresponds to right in the notes.

GENERAL TABLES AND INFORMATION

LAND MEASURE *

A rod is $161 / 2$ feet.
A chain is 66 feet or 4 rods.
A mile is 320 rods, 80 chains, or 5280 feet.
A square rod is $272 \frac{1}{4}$ square feet. An acre contains 43,560 square feet. An acre contains 160 square rods An acre is about $2083 / 4$ feet square.

* From Water Works \& Sewerage, Vol. 91, No. 6, June 1944.

TRIGONOMETRIC FORMULAS*

Functions of Angle	Opposite	Adjacent	Hyp
$\begin{aligned} & \sin =O p \div H y p \\ & \cos =A d \div H y p \\ & \tan =O p \div A d \\ & \cot =A d \div O p \\ & \text { sec }=H y p \div A d \\ & \text { cosec }=\text { Hyp } \div O p \end{aligned}$	$\begin{aligned} & \text { Hyp } \times \sin \\ & \text { Ad } \times \tan \\ & \text { Ad } \div \cot \\ & \\ & \text { Hyp } \div \text { cosec } \end{aligned}$	$\begin{aligned} & \text { Hyp } \times \cos \\ & \text { Op } \div \tan \\ & \text { Op } \times \cot \\ & \text { Hyp } \div \text { sec } \end{aligned}$	$\begin{aligned} & O p \div \sin \\ & A d \div \cos \end{aligned}$ Ad \times sec Op \times cosec

[^39]

Given	To Find	Formula
$a b$	A	$\tan =a \div b \cot =b \div a$
$a b$	B	$\cot =a \div b \tan =b \div a$
$a c$	A	$\sin =a \div c \operatorname{cosec}=c \div a$
$a c$	B	$\sec =a \div c \sec =c \div a$
$b c$	A	$\operatorname{cosec}=c \div b \sin =b \div c$
$b c$	B	$a \cot A a \div \tan A$
$A a$	b	$b \operatorname{cosec} A \quad a \div \sin A$
$A a$	c	$b \sec A \quad b \div \cos A$
$A b$	a	$c \sin A \quad c \div \operatorname{cosec} A$
$A b$	c	$c \cos A \quad c \div \sec A$
$A c$	a	
$A c$	b	

Given	To Find	Formula
$b p w$	f	$\sqrt{(b+p)^{2}+w^{2}}$
$b k v$	m	$\sqrt{(b+k)^{2}+v^{2}}$
$b k p$	d	$b w(b+k) \div[v(b+p)+w(b+k)]$
$v w$	e	$b v(b+p) \div[v(b+p)+w(b+k)]$
$\left.\begin{array}{l} \text { bfk } \\ \text { pow } \end{array}\right\}$	a	$f b v \div[v(b+p)+w(b+k)]$
$\left.\begin{array}{l} b \mathrm{~km} \\ \mathrm{pow} \end{array}\right\}$	c	$b m w \div[v(b+p)+w(b+k)]$
bkpıw	h	$b v w \div[v(b+p)+w(b+k)]$
: afw	h	$a w \div f$
cmv	h	$c v \div m$

Given	To Find	Formula
$b p w$	f	$\sqrt{(b+p)^{2}+w^{2}}$
$b n w$	m	$\sqrt{(b-n)^{2}+w^{2}}$
$b n p$	d	$b(b-n) \div(2 b+p-n)$
$b n p$	e	$b(b+p) \div(2 b+p-n)$
$b f n p$	a	$b f \div(2 b+p-n)$
$b m n p$	c	$b m \div(2 b+p-n)$
$b n p w$	h	$b w \div(2 b+p-n)$
$a f w$	h	$a w \div f$
$c m w$	h	$c w \div m$

Given	To Find	Formula
$b p w$	f	$\sqrt{(b+p)^{2}+w^{2}}$
$b w$	m	$\sqrt{b^{2}+w^{2}}$
$b p$	d	$b^{2} \div(2 b+p)$
$b p$	e	$b(b+p) \div(2 b+p)$
$b f p$	a	$b f \div(2 b+p)$
$b m p$	c	$b m \div(2 b+p)$
$b p w$	h	$b w \div(2 b+p)$
$a f w$	h	$a w \div f$
$c m w$	h	$c w \div m$

Given	To Find	Formula
$A B a$	b	$a \sin B \div \sin A$
$A B a$	c	$a \sin (A+B) \div \sin A$
$A B b$	a	$b \sin A \div \sin B$
$A B b$	c	$b \sin (A+B) \div \sin B$
$A B C$	a	$c \sin A \div \sin (A+B)$
$A B C$	b	$c \sin B \div \sin (A+B)$
$A C a$	b	$a \sin (A+C) \div \sin A$
$A C a$	c	$a \sin C \div \sin A$
$A C b$	a	$b \sin A \div \sin (A+C)$
$A C b$	c	$\dot{b} \sin C \div \sin (A+C)$
$A C c$	a	$c \sin A \div \sin C$
$A C c$	b	$c \sin (A+C) \div \sin C$
$B C a$	b	$a \sin B \div \sin (B+C)$
$B C a$	c	$a \sin C \div \sin (B+C)$
$B C b$	a	$b \sin (B+C) \div \sin B$
$B C b$	c	$b \sin C \div \sin B$
$B C \cdot$	a	$c \sin (B+C) \div \sin C$
$B C c$	b	$c \sin B \div \sin C$
$a b c$	S	$(a+b+c) \div 2$
$a b c s$	A	$\sin 1 / 2 A=\sqrt{(s-b)(s-c)} \div b c$
$a b c s$	A	$\cos 1 / 2 A=\sqrt{s(s-a) \div b c}$
$a b c s$	A	$\tan 1 / 2 A=\sqrt{(s-b)(s-c) \div s(s-a)}$
$a b c s$	B	$\sin 1 / 2 B=\sqrt{(s-a)(s-c)} \div a c$
$a b c s$	B	$\cos 1 / 2 B=\sqrt{s(s-b) \div a c}$
$a b c s$	B	$\tan 1 / 2 B=\sqrt{(s-a)(s-c) \div s(s-b)}$
abcs	C	$\sin 1 / 2 C=\sqrt{(s-a)(s-b)} \div a b$
$a b c s$	C	$\cos 1 / 2 C=\sqrt{s(s-c)} \div a b$
abcs	C	$\tan 1 / 2 C=\sqrt{(s-a)(s-b) \div s(s-c)}$
$a b c s$	d	$\left(b^{2}+c^{2}-a^{2}\right) \div 2 b$
$a b c s$	e	$\left(a^{2}+b^{2}-c^{2}\right) \div 2 b$
$A a b$	B	$\sin =b \sin A \div a$
Aac	C	$\sin =c \sin A \div a$
Bab	A	$\sin =a \sin B \div b$
$B b c$	C	$\sin =c \sin B \div b$
Cac	A	$\sin =a \sin C \div c$
Cbc	B	$\sin =b \sin C \div c$
$A b c$	$1 / 2(B+C)$	$90^{\circ}-1 / 2 A$

Given	Fo Find	Formula
$A b c$	$1 / 2(B-C)$	$\tan =\left[(b-c) \tan \left(90^{\circ}-1 / 2 A\right)\right] \div(b+c)$
$A b c$	B	$1 / 2(B+C)+1 / 2(B-C)$
$A b c$	C	$1 / 2(B+C)-1 / 2(B-C)$
$A b c$	a	$\sqrt{b^{2}+c^{2}-2 b c \cos A}$
$B a c$	$1 / 2(A+C)$	$90^{\circ}-1 / 2 B$
$B a c$	$1 / 2(A-C)$	$\tan =\left[(a-c) \tan \left(90^{\circ}-1 / 2 B\right)\right] \div(a+c)$
$B a c$	A	$1 / 2(A+C)+1 / 2(A-C)$
$B a c$	C	$1 / 2(A+C)-1 / 2(A-C)$
$B a c$	b	$\sqrt{a^{2}+c^{2}-2 a c \cos B}$
$C a b$	$1 / 2(A+B)$	$90^{\circ}-1 / 2 C$
$C a b$	$1 / 2(A-B)$	$\tan =\left[(a-b) \tan \left(90^{\circ}-1 / 2 C\right)\right] \div(a+b)$
$C a b$	A	$1 / 2(A+B)+1 / 2(A-B)$
$C a b$	B	$1 / 2(A+B)-1 / 2(A-B)$
$C a b$	c	$\sqrt{a^{2}+b^{2}-2 a b \cos C}$

Given	To Find	Formula
$d r B$	b	$d \sin ^{2} B$
$d r B$	f	$r \sin 2 B$
$d r B$	e	$d \sin B$
$d r b$	Ang B	$\sin B=\sqrt{b \div d}$
$d r b$	f	$\sqrt{b(d-b)}$
$d r b$	e	$\sqrt{d b}$
$d r e$	Ang B	$\sin B=e \div d$
$d r e$	b	$e^{2} \div d$
$d r e$	f	$e \sqrt{d^{2}-e^{2}} \div d$
$b B$	r	$1 / 2 b \div \sin B$
$e B$	r	$12 e \div \sin B$
$b f$	Ang B	$\tan B=b \div f$

Given	To Find	Formula
$b f$	r	$\left(f^{2}+b^{2}\right) \div 2 b$
$f e$	Ang B	$\sin B=\sqrt{e^{2}-f^{2}} \div e$
$f e$	r	$1 / 2 e^{2} \div \sqrt{e^{2}-f^{2}}$
$b e$	Ang B	$\sin B=b \div e$
$b e$	r	$1 / 2 e^{2} \div b$
$r x y$	Ang B	$\cos 2 B=\left(\sqrt{r^{2}-x^{2}}-y\right) \div r$
$r x y$	b	$r+y-\sqrt{r^{2}-x^{2}}$
$b r x$	y	$b+\sqrt{r^{2}-x^{2}-r}$
$b r y$	x	$\sqrt{r^{2}-(r+y-b)^{2}}$
$b r y$	r	$\left[x^{2}+(b-y)^{2}\right] \div(2 b-2 y)$
r	Circ	$6.2832 r$
$r D$	Arc a	$.0174533 r D^{\circ}$
$r D$	Arc a	$.0002909 r D^{\prime}$
$r D$	Arc a	$.00000485 r D^{\prime \prime}$
r	Area	(ircle $=3.1416 r^{2}$
d	Area	Circle $=0.7854 d^{2}$
c	Area	Circle $=0.0796 c^{2}$
$a r$	Area	Sector $=0.5 a r$
$a r f h$	Area	Segment $=0.5$ ar $-f h$

TABLE 20. NATURAL TRIGONOMETRIC FUNCTIONS *

Deg.	Min.	Sine	Covers	Coseo	Tan	Cotan	Secant	Versin	Comine		
0	0	0.00000	1.00000	Infinite	0.00000	Infinit	1.0000	0.00000	1.00000	80	0
	15	. 00436	. 99564	229.18	. 00436	229.18	1.0000	. 000001	. 999999		5
	30	. 00873	. 99127	114.59	. 00873	114.59	1.0000	. 00004	. 99996		30
	45	. 01309	. 98691	76.397	. 01309	76.390	1.0001	00009	. 99991		15
1	0	. 01745	. 98255	57.299	. 01745	87.290	1.0001	. 00015	. 99988	88	0
	15	. 02181	. 97819	45.840	. 02182	45.829	1.0002	. 00024	. 99976		45
	30	. 02618	. 97382	38.202	. 02618	38.188	1.0003	00034	. 99966		30
	45	. 03054	. 96946	32.746	. 03055	32.730	1.0005	. 00047	. 99953		15
2	0	. 03490	. 96510	28.654	. 08492	28.685	1.0008	. 00061	. 99939	88	0
	15	. 03926	. 96074	25.471	. 03929	25.452	1.0008	. 000077	. 99923		45
	30	. 04362	. 95638	22.926	. 04366	22.904	1.0009	. 00095	. 99905		30
	45	. 04798	. 95202	20.843	. 04803	20.819	1.0011	. 00115	. 95885		15
3	0	. 05234	. 94766	19.107	. 05241	19.081	1.0014	. 00137	. 99863	87	0
	15	. 05669	. 94331	17.639	. 05678	17.611	1.0016	. 00161	. 99883		45
	30	. 06105	. 93895	16.380	. 06116	16.350	1.0019	. 00187	. 99813		30
	45	. 06540	. 93460	15.290	. 06554	15.257	1.0021 .	. 00214	. 99786		15
4	0	. 06976	. 93024	14.336	. 06993	14.801	1.0024	. 00244	. 99756	86	0
	15	. 07411	. 92589	13.494	. 07431	13.457	1.0028	. 00275	. 99725		45
	30	. 07846	. 92154	12.745	. 07870	12.706	1.0031	. 00308	. 99692		30
	45	. 08281	. 91719	12.076	. 08309	12.035	1.0034	. 00343	. 99656		15
5	0	. 08716	. 91284	11.474	. 08749	11.430	1.0038	. 00381	. 99619	85	0
	15	. 09150	. 90850	10.929	. 09189	10.883	1.0042	. 00420	. 99580		45
	30	. 09585	. 90415	10.433	. 09629	10.385	1.0046	. 00466	. 99540		30
	45	. 10019	. 89981	9.9812	. 10069	9.9310	1.0051	. 00503	. 99497		15
6	0	. 10453	. 89547	9.8668	. 10510	9.5144	1.0055	. 00548	. 99452	84	0
	15	. 10887	. 89113	9.1855	. 10952	9.1309	1.0060	. 00594	. 99406		45
	30	. 11320	. 88680	8.8337	. 11393	8.7769	1.0065	. 00643	. 99357		30
	45	. 11754	. 88246	8.5079	. 11836	8.4490	1.0070	. 00693	. 99307		15
7		. 12187	. 87818	8.2055	. 12278	8.1443	1.0078	. 00745		83	0
	15	. 12620	. 87380	7.9240	. 12722	7.8606	1.0081	. 00800	. 99200		45
	30	. 13053	. 86947	7.6613	. 13165	7.5958	1.0086	. 00856	. 99144		30
	45	. 13485	. 86515	7.4156	. 13609	7.3479	1.0092	. 00913	. 99086		15
8	0	. 13917	. 86083	7.1853	. 14054	7.1154	1.0098	. 00973	. 99027	82	0
	15	. 14349	. 85651	6.9690	. 14499	6.8969	1.0105	. 01035	. 98965		45
	30	. 14781	. 85219	6.7655	. 14945	6.6912	1.0111	. 01098	. 98902		30
	45	. 15212	. 84788	6.5736	. 15391	6.4971	1.0118	. 01164	. 98836		15
9			. 84357	6.3924		6.3138	1.0125	. 01231		81	
	15	. 16074	. 83926	6.2211	. 16286	6.1402	1.0132	. 01300	. 98700		45
	30	. 16505	. 83495	6.0589	. 16734	5.9758	1.0139	. 01371	. 98629		30
	45	. 16935	. 83065	5.9049	. 17183	5.8197	1.0147	. 01444	. 98556		15
10	0	. 17365	. 82635	5.7588	. 17633	5.6713	1.0154	. 01519	. 98481	80	0
	15	. 17794	. 82206	5.6198	. 18083.	5.5301	1.0162	. 01596	. 98404		43
	30	. 18224	. 81776	5.4874	. 18534	5.3955	1.0170	. 01675	. 98325		30
	45	. 186	. 81348	5.3612	. 18	5.2672	1.01	. 01755	. 98245		15
11		. 19081	. 80919	5.2408	. 19438	5.1446	1.0187	. 01837	. 98168	79	0
	15	. 19509	. 80491	5.1258	. 19891	5.0273	1.0196	. 01921	. 98079		45
	30	. 19937	. 80063	5.0158	. 20345	4.9152	1.0205	. 02008	. 97992		30
	45	. 20364	. 79636	4.9106	. 20800	4.8077	1.0214	. 02395	. 97905		15
12	0	. 20791	. 79209	4.8097	. 21256	4.7046	1.0223	. 02188	. 97815	78	0
	15	. 21218	. 78782	4.7130	. 21712	4.6057	1.0233	. 02277	. 97723		45
	30	. 21644	. 78356	4.6202	. 22169	4.5107	1.0243	. 02370	. 97630		30
	45	. 22070	. 77930	4.5311	. 22628	4.4194	1.0253	. 02466	. 97534		15
18	0	. 28495	. 77505	4.4454	. 23087	4.8815	1.0268	. 025683	. 97487	77	0
	15	. 222920	. 77080	4.3630	. 23547	4.2468	1.0273	. 02662	. 97338		45
	30	. 23345	. 76655	4.2837	. 24008	4.1653	1.0284	. 02763	. 97237		30
	45	. 23769	. 76231	4.2072	. 24470	4.0867	1.0295	. 02866	. 97134		15
14	0	. 24108	. 76808	4.1836	. 24988	4.0108	1.0306	. 08970	. 97080	76	S
	15	. 24615	. 75385	4.0625	. 25397	3.9375	1.0317	. 03077	. 96923		45
	30	. 25038	. 74962	3.9939	. 25862	3.8667	1.0329	. 03185	. 96815		15
	45	. 25460	. 74540	3.9277	. 26328	3.7983	1.0341	. 03295	. 96705		5
15	0	. 25888	. $7 \leqslant 118$	8.8687	. 26795	8.7320	1.0858	. 03407	. 96598	78	0
		Comine	Verain	Secant	Cotan	Tan	Cosec	Covers	Sine	Deg	Min.

From 75° to 90° read from bottom of table upwards.

[^40]TABLE 20. NATURAL TRIGONOMETRIC FUNCTIONS-Continued

Deg.	Min.	Sine	Cover	Cosec	Tan	Cotan	Secant	Versin	Cosine		$\begin{array}{r} 0 \\ 45 \\ 30 \\ 15 \end{array}$
16	0	0.25882	0.74118	3.8637	0.26795	3.7320	1.0353	0.03407	0.96593	75	
	15	. 26303	. 73697	3.8018	. 27263	3.6680	1.0365	. 03521	. 96479		
	30	. 26724	. 73276	3.7420	. 27732	3.6059	1.0377	. 03637	. 96363		
	45	. 27144	. 72856	3.6840	. 28203	3.5457	1.0390	. 03754	. 96246		
16	0	. 27	. 72	8.6280	. 28674	8.4874	1.0403	03874	. 96126	14	0453015
	15	. 27983	. 72017	3.5736	. 29147	3.4308	1.0416	. 03995	. 96005		
	30	. 28402	. 71598	3.5209	. 29621	3.3759	1.0429	. 04118	. 95882		
	45	. 28820	. 71180	3.4699	. 30096	3.3226	1.0443	. 04243	. 95757		
17	0	. 29237	. 70763	3.4203	. 30573	3.2709	1.0457	. 04370	. 95630	73	$\begin{array}{r} 0 \\ 45 \\ 30 \\ 15 \end{array}$
	15	. 29654	. 70346	3.3722	. 31051	3.2205	1.0471	. 04498	. 95502		
	30	. 30070	. 69929	3.3255	. 31530	3.1716	1.0485	. 04628	. 95372		
	45	. 30486	. 69514	3.2801	. 32010	3.1240	1.0500	. 04760	. 95240		
18	0	. 80902	. 69098	8.2361	. 32492	3.0777	1.0515	. 04894	. 98106	72	0453015
	15	. 31316	. 68684	3.1932	. 32975	3.0326	1.0530	. 05030	. 94970		
	30	. 31730	. 68270	3.1515	. 33459	2.9887	1.0545	. 05168	. 94832		
	45	. 32144	. 67856	3.1110	. 33945	2.9459	1.0560	. 05307	. 94693		
19	0	. 38557	. 67443	8.0715	. 34433	2.9042	1.0876	. 05448	. 94552	71	0453015
	15	. 32969	. 67031	3.0331	. 34921	2.8636	1.0592	. 05591	. 94409		
	30	. 33381	. 66619	2.9957	. 35412	2.8239	1.0608	. 05736	. 94264		
	45	. 33792	. 66208	2.9593	. 35904	2.7852	1.0825	. 05882	. 94118		
20	0	. 34202	. 65798	2.9238	. 36397	2.7475	1.0612	. 06031	. 93969	70	0453015
	15	. 34612	. 65388	2.8892	. 36892	2.7106	1.0659	. 06181	. 93819		
	30	. 35021	. 64979	2.8554	. 37388	2.6746	1.0676	. 06333	. 93667		
	45	. 35429	. 64571	2.8225	. 37887	2.6395	1.0694	. 06486	. 93514		
21	0	. 85837	. 61163	2.7904	. 38388	2.6051	1.0711	. 06642	. 93358	69	0453015
	15	. 36244	. 63756	2.7591	. 38888	2.5715	1.0729	. 06799	. 93201		
	30	. 36650	. 63350	2.7285	. 39391	2.5386	1.0748	. 06958	. 93042		
	45	. 37056	. 62944	2.6986	. 39896	2.5065	1.0766	. 07119	. 92881		
82		. 37461	. 62539	2.6698	. 40403	2.4751	1.0785	. 07282	. 92718	68	00453015
	15	. 37865	. 62135	2.6410	. 40911	2.4443	1.0804	. 07446	. 92554		
	30	. 38268	. 61732	2.6131	. 41421	2.4142	1.0824	. 07612	. 92388		
	45	. 38671	. 61329	2.5859	. 41933	2.3847	1.0844	. 07780	. 92220		
28	0	. 39078	. 60927	2.8593	. 42447	2.3559	1.0864	. 07950	. 92050	67	0453015
	15	. 39474	. 60526	2.5333	. 42963	2.3276	1.0884	. 08121	. 91879		
	30	. 39875	. 60125	2.5078	. 43481	2.2998	1.0904	. 08294	. 91706		
	45	. 40275	. 59725	2.4829	. 44001	2.2727	1.0925	. 08469	. 91531		
24		. 40674	. 59326	2.4588	. 44523	2.2460	1.0948	. 08645	. 91355	66	$\begin{array}{r} 0 \\ 45 \\ 30 \\ 15 \end{array}$
	15	. 41072	. 58928	2.4348	. 45047	2.2199	1.0968	. 08824	. 91176		
	30	. 41469	. 58531	2.4114	. 45573	2.1943	1.0989	. 09004	. 90996		
	45	. 41866	. 58134	2.3886	. 46101	2.1692	1.1011	. 09186	. 90814		
25	0	. 48262	. 57738	2.3662	. 46631	2.1445	1.1084	. 09368	. 90631	65	0453015
	15	. 42657	. 57343	2.3443	. 47163	2.1203	1.1056	. 09554	. 90446		
	30	. 43051	. 56949	2.3228	. 47697	2.0965	1.1079	. 09741	. 90259		
	45	. 43445	. 56555	2.3018	. 48234	2.0732	1.1102	- 09930	. 90070		
88	0	. 48887	. 56168	2.8812	. 48778	2.0503	1.1126	. 10121	. 89879	64	0453015
	15	. 44229	. 55771	2.2610	. 49314	2.0278	1.1150	. 10313	. 89687		
	30	. 44620	. 553880	2.2412	. 49858	2.0057	1.174	. 10507	. 89493		
	45	. 45010	. 54990	2.2217	. 50404	1.9840	1.1198	. 10702	. 89298		
27	0	. 48899	. 54601	2.2087	. 30982	1.9626	1.1828	. 10899	. 89101	68	$\begin{aligned} & 0 \\ & 45 \\ & 30 \\ & 15 \end{aligned}$
	15	. 45787	. 54213	2.1840	. 51503	1.9416	1.1248	. 11098	. 88902		
	30	. 46175	. 53825	2.1657	. 52057	1.9210	1.1274	. 11299	. 88701		
	45	. 46561	. 53439	2.1477	. 52612	1.9007	1.1300	. 11501	. 88499		
88	0	. 46947	. 83058	2.1800	. 58171	2.8807	1.1829	. 11705	. 88895	68	9453015
	15	. 47332	. 52668	2.1127	. 53732	1.8611	1.1352	. 11911	. 88089		
	30	. 47716	. 52284	2.0957	. 54295	1.8418	1.1379	. 12118	. 87882		
	45	. 48099	. 51901	2.0790	. 54862	1.8228	1.1406	. 12327	. 87673		
82	0	. 48481	. 81819	2.0827	. 55482	1.8040	1.1488	. 12838	. 87488	61	0433015
	15	. 48862	. 51138	2.0466	. 56003	1.7856	1.1461	. 12750	. 87250		
	30	. 49242	. 50758	2.0308	. 56577	1.7675	1.1490	. 12964	. 87036		
	45	. 49622	. 50378	2.0152	. 57155	1.7496	1.1518	. 13180	. 86820		
80	0	80000	. 50000	2.0000	. 67735	1.7830	1.1547	. 18389	88608	60	-
		Coaine	Verain	Secant	Cotan	Tan	Cosec	Covers	Sine	Des	Mis

From 60° to 75° read trom bottom of table upwarde.

TABLE 20. NATURAL TRIGONOMETRIC FUNOTIONS-Concluded

Deg.	Min.	Sine	Covers	Cosec	Tan	Cotan	Secant	Versin	Cosine	60	
30	0	0.50000	0.50000	2.0000	0.57735	1.7820	1.1547	0.13897	0.86608		0
	15	. 50377	. 49623	1.9850	. 58318	1.7147	1.1576	. 13616	. 86384		45
	30	. 50754	. 49246	1.9703	. 58904	1.6977	1.1606	. 13837	86163		30
	45	. 51129	. 48871	1.9558	. 59494	1.6808	1.1636	. 14059	85941		15
31	5	. 51504	. 48496	1.9416	. 60086	1.6648	1.16	. 14288	. 85717	88	0
	15	. 51877	. 48123	1.9276	. 60681	1.6479	1.1697	. 14509	. 85491		4
	30	. 52250	. 47750	1.9139	. 61280	1.6319	1.1728	. 14736	. 85264		30
	45	. 52621	. 47379	1.9004	. 61882	1.6160	1.1760	. 14965	. 85035		15
82	0	. 62992	. 47008	1.8871	. 62487	1.6008	1.1782	. 18198	. 84805	58	0453015
	15	. 53361	. 46639	1.8740	. 63095	1.5849	1.1824	. 15427	. 84573		
	30	. 53730	. 46270	1.8612	. 63707	1.5697	1.1857	. 15661	. 84339		
	45	. 54097	. 45903	1.8485	. 64322	1.5547	1.1890	. 15896	. 81104		
88	,	. 54464	. 45536	1.8381	. 64941	1.6899	1.1984	. 16183	. 83867	57	
	15	. 54829	. 45171	1.8238	. 65563	1.5253	1.1958	. 16371	. 83629		
	30	. 55194	. 44806	1.8118	. 66188	1.5108	1.1992	. 16611	. 83389		
	45	. 55557	. 44443	1.7999	. 66818	1.4966	1.2027	. 16853	. 83147		
34	0	. 65919	. 46081	1.7888	. 67451	1.4826	1.2062	. 17096	. 82904	66	0453015
	15	. 56280	. 43720	1.7768	. 68087	1.4687	1.2098	. 17341	. 82659		
	30	. 56641	. 4335	1.7655	. 68728	1.4550	1.2134	. 17587	. 82413		
	45	. 57000	. 43000	1.7544	. 69372	1.4415	1.2171	. 17835	. 82165		
85	0	. 875	. 42642	1.748	. 7002	1.42	1.2208	. 18085	. 81915		0453015
	15	. 5771	. 42285	1.7327	. 70673	1.4150	1.2245	. 18336	. 81664		
	30	. 588070	. 41930	1.7220	. 71329	1.4019	1.2283	. 18588	. 81412		
	45	. 58425	. 41575	1.7116	. 71990	1.3891	1.2322	. 18843	. 81157		
36	0	. 68779	. 41281	1.7018	.72654	1.3764	1.2361	. 19098	. 80902	B4	0453015
	15	. 59131	. 40869	1.6912	. 73323	1.3638	1.2400	. 19356	. 80644		
	30	. 59482	. 40518	1.6812	. 73996	1.3514	1.2440	. 19614	. 80386		
	45	. 59832	. 40168	1.6713	. 74673	1.3392	1.2480	. 19875	. 80125		
87	0	. 601	. 39	1.6616	. 753	1.32	1.2581	. 20	8	53	0453015
	15	. 60529	. 39471	1.6521	. 76042	1.3151	1.2563	. 20400	. 79600		
	30	. 60876	. 39124	1.6427	. 76733	1.3032	1.2605	. 20665	. 79335		
	45	. 61222	. 38778	1.6334	. 77428	1.2915	1.2647	. 20931	. 79069		
38	0	. 61566	. 38484	1.6243	. 78129	1.2799	1.2690	. 211	. 78801	52	0453015
	15	. 61909	. 38091	1.6153	. 78834	1.2685	1.2734	. 21468	. 78532		
	30	. 62251	. 37749	1.6064	. 79543	1.2572	1.2778	. 21739	. 78261		
	45	. 62592	. 37408	1.5976	. 80258	1.2460	1.2822	. 22012	. 77988		
39	0	. 688	. 370	1.5890	. 80	1.2849	1.2868	. 22	15	51	0453015
	15	. 63271	. 36729	1.5805	. 81703	1.2239	1.2913	. 22561	. 77439		
	30	. 63608	. 36392	1.5721	. 82434	1.2131	1.2960	. 22838	. 77162		
	45	. 63944	. 36056	1.5639	. 83169	1.2024	1.3007	. 23116	. 76884		
40	0	. 64279	. 85721	1.6857	. 83910	1.1918	1.305	. 23396	. 76604	50	$\begin{array}{r} 0 \\ 45 \\ 30 \\ 15 \end{array}$
	15	. 64612	. 35388	1.5477	. 84656	1.1812	1.3102	. 23677	. 76323		
	30	. 64945	. 35055	1.5398	. 85408	1.1708	1.3151	. 23959	. 76041		
	45	. 65	. 34	1.5	. 8	1.1	1.3200		. 75756		
41	0	. 65606	. 34894	1.5242	. 86929	1.1504	1.3250	. 24529	. 75471	49	0453015
	15	. 65935	. 34065	1.5166	. 87698	1.1403	1.3301	. 24816	. 75184		
	30	. 66262	. 33738	1.5092	. 88472	1.1303	1.3352	. 25104	. 74896		
	45	. 66588	. 33412	1.5018	. 89253	1.1204	1.3404	. 25394	. 74606		
42	0	. 66913	. 83087	1.4945	. 90080	1.1106	1.8456	. 25686	. 74814	48	$\begin{array}{r} 0 \\ 45 \\ 30 \\ 15 \end{array}$
	15	. 67237	. 32763	1.4873	. 90834	1.1009	1.3509	. 25978	. 74022		
	30	. 67559	. 32441	1.4802	. 91633	1.0913	1.3563	. 26272	. 73728		
	45	. 67880	. 32120	1.4732	. 92439	1.0818	1.3	. 26568	. 73432		
48	0	. 68800	. 81800	1.4663	. 93251	1.0724	1.3678	. 26865	. 73135	47	0453015
	15	. 68518	. 31482	1.4595	. 94071	1.0630	1.3729	. 27163	. 72837		
	30	. 68835	. 31165	1.4527	. 94896	1.0538	1.3786	. 27463	. 72537		
	45	. 69151	. 30849	1.4461	. 95729	1.0446	1.3843	. 27764	. 72236		
44	0	. 69466	. 80534	1.4896	. 96569	1.0865	1.3902	. 28086	. 71984	46	0453015
	15	. 69779	. 30221	1.4331	. 97416	1.0265	1.3961	. 28370	. 71630		
	30	. 70091	. 29909	1.4257	. 98270	1.0176	1.4020	. 28675	. 71325		
	45	. 70401	. 29599	1.4204^{4}	. 99131	1.0088	1.4081	28981	71019		
45	0	70711	29889	1.4142	. 10000	1.0000	1.4148	. 29889	. 70711	46	0
		Cosine	Versin	Secant	Cotan	Tan	Cosec	Cover	Sine	Deg.	Min.

From 45° to 60° read from bottom of table upwards.

TABLE 21. LOGARITHMIC TRIGONOMETRIC FUNCTIONS *

Deg.	Sine	Coeec	Versin	Tangent	Cotan	Covers	Secant	Cosine	Deg
0	- 2418		6.18271	8.24192		10.00000	10.00000	0.00000	80
1	8.24186	11.75814	6.18271	8.24192	11.75808	9.99235	10.00007	9.99993	88
8	8.54282	11.45718	6.78474	8.54308	11.45692	9.98457	10.00026	9.99974	88
8	8.71880	11.28120	7.13687	8.71940	11.28060	9.97665	10.00060	9.99940	87
6	8.84358	11.15642	7.38667	8.84464	11.15536	9.96860	10.00106	9.99894	88
8	8.94030	11.05970	7.58039	8.94195	11.05805	9.96040	10.00166	9.99834	85
6	9.01923	10.98077	7.73863	9.02162	10.97838	9.95205	10.00239	9.99761	81
7	9.08589	10.91411	7.87238	9.08914	10.91086	9.94356	10.00325	9.99675	88
-	9.14356	10.85644	7.98820	9.14780	10.85220	9.93492	10.00425	9.99575	82
9	9.19433	10.80567	8.09032	9.19971	10.80029	9.92612	10.00538	9.99462	81
10	9.23967	10.76033	8.18162	9.24632	10.75368	9.91717	10.00665	9.99335	80
11	9.28060	10.71940	8.26418	9.28865	10.71135	9.90805	10.00805	9.99195	78
18	9.31788	10.68212	8.33950	9.32747	10.67253	9.89877	10.00960	9.99040	78
18	9.35209	10.64791	8.40875	9.36336	10.63664	9.88933	10.01128	9.98872	77
14	9.38368	10.61632	8.47282	9.39677	10.60323	9.87971	10.01310	9.98690	76
15	9.41300	10.58700	8.53243	9.42805	10.57195	9.86992	10.01506	9.98494	75
16	9.44034	10.55966	8.58814	9.45750	10.54250	9.85996	10.01716	9.98284	74
17	9.46594	10.53406	8.64043	9.48534	10.51466	9.84981	10.01940	9.98060	78
18	9.48998	10.51002	8.68969	9.51178	10.48822	9.83947	10.02179	9.97821	72
19	9.51264	10.48736	8.73625	9.53697	10.46303	9.82894	10.02433	9.97567	71
30	9.53405	10.46595	8.78037	9.56107	10.43893	9.81821	10.02701	9.97299	70
81	9.55433	10.44567	8.82230	9.58418	10.41582	9.80729	10.02985	9.97015	69
88	9.57358	10.42642	8.86223	9.60641	10.39359	9.79615	10.03283	9.96717	68
88	9.59188	10.40812	8.90034	9.62785	10.37215	9.78481	10.03597	9.96403	67
84	9.60931	10.39069	8.93679	9.64858	10.35142	9.77325	10.03927	9.96073	66
25	9.62595	10.37405	8.97170	9.66867	10.33133	9.76146	10.04272	9.95728	68
86	9.64184	10:35816	9.00521	9.68818	10.31182	9.74945	10.04634	9.95366	64
87	9.65705	10.34295	9.03740	9.70717	10.29283	9.73720	10.05012	9.94988	68
88	9.67161	10.32839	9.06838	9.72567	10.27433	9.72471	10.05407	9.94593	62
38	9.68557	10.31443	9.09823	9.74375	10.25625	9.71197	10.05818	9.94182	61
30	9.69897	10.30103	9.12702	9.76144	10.23856	9.69897	10.06247	9.93753	60
81	9.71184	10.28816	9.15483	9.77877	10.22123	9.68571	10.06693	9.93307	88
32	9.72421	10.27579	9.18171	9.79579	10.20421	9.67217	10.07158	9.92842	68
88	9.73611	10.26389	9.20771	9.81252	10.18748	9.65836	10.07641	9.92359	87
81	9.74756	10.25244	9.23290	9.82899	10.17101	9.64425	10.08143	9.91857	56
35	9.75859	10.24141	9.25731	9.84523	10.15477	9.62984	10.08664	9.91336	85
86	9.76922	10.23078	9.28099	9.86126	10.13874	9.61512	10.09204	9.90796	84
87	9.77946	10.22054	9.30398	9.87711	10. 12289	9.60008	10.09765	9.90235	58
38	9.78934	10.21066	9.32631	9.89281	10.10719	9.58471	10.10347	9.89653	88
88	9.79887	10.20113	9.34802	9.90837	10.09163	9.56900	10.10950	9.89050	51
40	9.80807	10.19193	9.36913	9.92381	10.07619	9.55293	10.11575	9.88425	50
41	9.81694	10.18306	9.38968	9.93916	10.06084	9.53648	10.12222	9.87778	49
48	9.82551	10.17449	9.40969	9.95444	10.04556	9.51966	10. 12893	9.87107	48
48	9.83378	10.16622	9.42918	9.96966	10.03034	9.50243	10.13587	9.86413	47
41	9.84177	10.15823	9.44818	9.98484	10.01516	9.48479	10.14307	9.85693	
48	9.84949	10.15052	9.46671	10.00000	10.00000	9.46671	10.15052	9.84949	45
	Cosine	Secant	Covars	Cotan	Tangent	Versin	Cosec	Sine	

From 45° to 90° read from bottom of table upwards.

* From Kent, Mechanical Engineers' Handbook, Power Volume, John Wiley \& Sons.

TABLE 22. MINUTES INTO DECIMALS OF A DEGREE*

,	$0 \times$	10"	15*	$20{ }^{\circ}$	80°	40°	45*	80°	,
0	. 00000	. 00278	. 00417	. 00556	. 00833	. 01111	. 01250	. 01889	
1	. 01667	. 01944	. 020883	. 022422	. 025500	. 02778	.022917	. 03055	
2	.033333	. 03611	. 03750	. 03888	. 04167	. 04444	. 04588	. 04722	
8	. 05000	. 052278	. 05417	. 055556	. 058838	. 06111	. 062450	. 08389	
4	. 066867	. 06944	. 07083	. 072228	. 07500	. 07778	. 07817	. 04056	
5	. 08333	. 08611	. 08750	. 08889	. 09167	. 09444	. 09583	. 09722	
6	. 10000	. 10278	. 10417	. 10556	. 10833	. 11111	. 11250	. 11389	
7	. 11667	. 11944	. 12083	. 122428	. 12500	. 12778	. 12917	. 13058	
8	. 13333	. 13811	. 18 T50	. 13889	. 14167	. 14444	. 14583	.14722	
9	. 15000	. 15278	. 15417	. 15556	. 15833	. 18111	. 16250	. 16389	
10	. 16867	. 16944	. 17083	. 17222	. 17500	. 17778	. 17917	18056	10
11	. 18333	. 18611	. 18750	. 18889	. 19167	. 19444	. 19583	.19722	11
12	. 20000	. 20278	. 20417	. 20556	. 20833	. 21111	. 21250	. 21389	12
13	. 21667	. 21944	. 22083	. 242328	. 22500	. 22778	. 22917	.23056	13
14	. 23333	. 23611	. 23750	. 23889	. 24167	. 24444	. 24583	.24722	14
15	. 25000	. 25278	. 25417	. 25555	. 25833	. 26111	. 26250	. 263889	15
16	. 26667	. 26944	. 27088	. 27222	. 27500	. 27778	. 27917	. 28056	16
17	. 28338	. 28611	. 28750	. 28889	. 29167	. 29444	. 29588	. 29722	17
18	. 30000	. $302 \sim 8$. 80417	. 30556	. 30833	. 31111	. 81250	. 81888	18
19	. 31667	. 81944	. 82083	. 32222	. 82500	. 32 IT78	. 32917	. 33056	19
20	. 83333	. 83611	. 33750	. 33889	. 34167	. 84444	. 34583	. 34722	20
2	. 25000	. 85778	. 85417	. 35556	. 85833	. 36111	. 86250	. 86389	21
22	. 366667	. 36944	. 37083	. 872222	. 87500	. 87778	. 37917	. 38056	22
23	88933	. 88611	. 38750	. 38889	. 89167	. 89444	. 89583	. 39722	23
24	. 40000	. 40278	. 40417	. 40558	. 40833	. 41111	. 41250	. 41389	24
25	. 41667	. 41944	. 42083	.4222	. 42500	. 42778	. 42917	. 43056	2
26	. 433333	. 43611	. 43750	. 43889	. 44167	. 44444	. 44583	. 44722	26
27	45000	. 45278	. 45417	. 45555	. 45833	. 46111	. 46250	. 46389	27
28	. 46667	. 46944	. 47088	. 47222	. 47500	. 47778	. 47817	. 48056	28
	48333	. 48811	. 48750	. 48889	. 49167	. 49444	. 49583	.4972\%	29
30	. 50000	. 50278	. 50417	. 50558	. 50838	. 51111	. 51250	. 51389	30
81	. 51887	. 51944	. 52088	. 52222	. 52500	. 52778	. 52917	. 53056	81
82	. 533333	. 53611	. 53750	. 53889	. 54167	. 54444	. 54588	. 54722	32
33	. 55000	. 55278	. 55417	. 55555	. 55838	. 56111	. 56250	. 56389	38
84	. 56667	. 56944	. 57083	. 57222	. 57500	. 57778	. 57917	. 58056	84
85	. 58383	. 58611	. 58750	. 58889	. 59167	. 50444	. 59588	. 59722	85
88	. 60000	.602\%8	. 60417	. 60556	. 60833	. 61111	. 61250	. 61889	36
3	. 61687	. 61944	. 62083	. 62222	. 62500	. 62778	. 62917	. 63056	87
	. 63333	. 63611	. 63 T50	. 63889	. 64167	. 64444	. 64583	.64722	88
89	. 65000	.65278	. 65417	. 65556	. 65833	. 68111	. 66250	. 66389	89
40	. 68667	. 66	. 67083	.67222	. 67500	. 67778	. 67917	. 68058	40
	. 68333	. 88811	. 68750	. 68889	. 69167	. 69444	. 69583	. 69722	41
	. 70000	.70:778	. 70417	. 70556	. 70833	. 71111	. 71250	71389	48
43	. 71667	. 71044	. 72083	. 72222	. 72500	. 78778	. 72917	. 73058	43
1	. 78338	. 73811	. 73750	. 78889	. 74167	. 74444	. 74588	. 74722	44
	. 75000	. 75278	. 75417	. 75558	. 75833	. 76111	. 76250	. 76389	45
	. 76667	. 78944	. 778083	. 77222	. 77500	. 77778	. 77917	. 78056	48
	. 78338	. 78811	. 78750	. 78889	. 79167	. 79444	. 79588	. 79722	47
	. 80000	. 80278	. 80417	. 80556	. 80883	. 81111	. 81250	. 81389	48
	. 81667	. 81944	. 82083	. 82222	. 82500	. 82778	. 82917	. 83053	49
0	. 83338	. 83611	. 83750	. 83888	. 84167	. 84444	. 84583	.84722	50
	. 85000	. 85278	. 85417	. 85558	. 85883	88111	. 88250	. 86389	51
	. 86667	. 86944	. 87083	. 87223	. 87500	. 87778	. 87917	. 88056	58
	. 88833	. 88811	. 88750	. 88889	. 88167	. 89444	. 89588	.89722	58
	. 80000	. 00278	. 90417	. 90558	. 90833	. 91111	. 91250	. 91389	54
	. 91687	. 91944	. 82088	. 922222	. 82500	. 92778	. 92917	. 99058	55
	. 83888	. 98611	. 23750	. 98889	. 94167	. 94444	. 94588	. 94722	56
	. 95000	. 95278	. 95417	. 95355	. 95833	. 96111	. 96250	. 98389	57
	. 96687	. 96944	. 87088	. 87222	. 97500	. 97778	. 97917	. 98056	58
	. 88388	. 98811	. 88750	. 88889	. 99167	. 99444	. 29588	. 98722	89
	0^{*}	10"	15°	20°	80°	40°	45*	60*	,

[^41] Sons.

TABLE 23. LOGARITHMS OF NUMBERS *

n	0	1	2	3	4	5	6	7	8	9
10	00000	00432	00860	01284	01703	02119	02531	02938	03342	03743
11	04139	04532	04922	05308	05690	06070	06446	06819	07188	07555
12	07918	08279	08636	08991	09342	09691	10037	10380	10721	11059
13	11394	11727	12057	12385	12710	13033	13354	13672	13988	14301
14	14613	14922	15229	15534	15836	16137	16435	16732	17026	17319
15	17609	17898	18184	18469	18752	19033	19312	19590	19866	20140
16	20412	20683	20952	21219	21484	21748	22011	22272	22531	22789
17	23045	23300	23553	23805	24055	24304	24551	24797	25042	25285
18	25527	25768	26007	26245	26482	26717	26951	27184	27416	27646
19	27875	28103	28330	28556	28780	29003	29226	29447	29667	29885
20	30103	30320	30535	30750	30963	31175	31387	31597	31806	32015
21	32222	32428	32634	32838	33041	33244	33445	33646	33846	34044
22	34242	34439	34635	34830	35025	35218	35411	35603	35793	35984
23	36173	36361	36549	36736	36922	37107	37291	37475	37658	37840
24	38021	38202	38382	38561	38739	38917	39094	39270	39445	39620
25	39794	39967	40140	40312	40483	40654	40824	40993	41162	41330
26	41497	41664	41830	41996	42160	42325	42488	42651	42813	42975
27	43136	43297	43457	43616	43775	43933	44091	44248	44404	44560
28	44716	44871	45025	45179	45332	45484	45637	45788	45939	46090
29	46240	46389	46538	46687	46835	46982	47129	47276	47422	47567
30	47712	47857	48001	48144	48287	48430	48572	48714	48855	48996
31	49136	49276	49415	49554	49693	49831	49969	50106	50243	50379
32	50515	50651	50786	50920	51055	51188	51322	51455	51587	51720
33	51851	51983	52114	52244	52375	52504	52634	52763	52892	53020
34	53148	53275	53403	53529	53656	53782	53908	54033	54158	54283
35	54407	54531	54654	54777	54900	55023	55145	55267	55388	55509
36	55630	55751	55871	55991	56110	56229	56348	56467	56585	56703
37	56820	56937	57054	57171	57287	57403	57519	57634	57749	57864
38	57978	58092	58206	58320	58433	58546	58659	58771	58883	58995
39	59106	59218	59329	59439	59550	59660	59770	59879	59988	60097
40	60206	60314	60423	60531	60638	60746	60853	60959	61066	61172
41	61278	61384	61490	61595	61700	61805	61909	62014	62118	62221
42	62325	62428	62531	62634	62737	62839	62941	63043	63144	63246
43	63347	63448	63548	63649	63749	63849	63949	64048	64147	64246
44	64345	64444	64542	64640	64738	64836	64933	65031	65128	65225
45	65321	65418	65514	65610	65706	65801	65896	65992	66087	66181
46	66276	66370	66464	66558	66652	66745	66839	66932	67025	67117
47	67210	67302	67394	67486	67578	67669	67761	67852	67943	68034
48	68124	68215	68305	68395	68485	68574	68664	68753	68842	68931
49	69020	69108	69197	69285	69373	69461	69548	69636	69723	69810
50	69897	69984	70070	70157	70243	70329	70415	70501	70586	70672
51	70757	70842	70927	71012	71096	71181	71263	71349	71433	71517
52	71600	71684	71767	71850	71933	72016	72099	72181	72263	72346
53	72428	72509	72591	72673	72754	72835	72916	72997	73078	73159
54	73239	73320	73400	73480	73560	73640	73719	73799	73878	73957
	0	1	2	3	4	5	6	7	8	9

* From American Civil Engineers' Handbook by Merriam and Wiggin, John Wiley \& Sons.

TABLE 23. LOGARITHMS OF NUMBERS (Continued)

n	0	1	2	3	4	5	$6{ }^{\circ}$	7	8	9
53	74036	74115	74194	74273	74351	74429	74507	74586	74663	74741
56	74819	74896	74974	75051	75128	75205	75282	75358	75435	7551
57	75587	75664	75740	75815	75891	75967	76042	76118	76193	76268
58	76343	76418	76492	76567	76641	76716	76790	76864	76938	77012
59	77085	77159	77232	77305	77379	77452	77525	77597	77670	77743
60	77815	77887	77960	78032	78104	78176	78247	78319	78390	78462
61	78533	78604	78675	78746	78817	78888	78958	79029	79099	79169
62	79239	79307	79379	79449	79518	79588	79657	79727	79796	79865
63	79934	80003	80072	80140	80209	80277	80346	80414	80482	80550
64	80618	80686	80754	80821	80889	80956	81023	81090	81158	81224
63	81291	81358	81425	81491	81558	81624	81690	81757	81823	81889
66	81954	82020	82086	82151	82217	82282	82347	82413	82478	82543
67	82607	82672	82737	82802	82866	82930	82995	83059	83123	83187
68	83251	83315	83378	83442	83506	83569	83632	83696	83759	83822
69	83885	83948	84011	84073	84136	84198	84261	84323	84386	84448
70	84510	84572	84634	84696	84757	84819	84880	84942	85003	85065
71	85126	85187	85248	85399	85370	85431	85491	85552	85612	85673
72	85733	85794	85854	85914	85974	86034	86094	86153	86213	86273
73	86332	86392	86451	86510	86570	86629	86688	86747	86806	86864
74	86923	86982	87040	87099	87157	87216	87274	87332	87390	87448
75	87506	87564	87622	87679	87737	87795	87852	87910	87967	88024
76	88081	88138	88195	88252	88309	88366	88423	88480	88536	88593
77	88649	88705	88762	88818	88874	88930	88986	89042	89098	89154
78	89209	89265	89321	89376	89432	89487	89542	89597	89653	89708
79	89763	89818	89873	89927	89982	90037	90091	90146	90200	90255
80	90309	90363	90417	90472	90526	90580	90634	90687	90741	90795
81	90849	90902	90956	91009	91062	91116	91169	91222	91275	91328
82	91381	91434	91487	91540	91593	91645	91698	91751	91803	91855
83	91908	91960	92012	92065	92117	92169	92221	92273	92324	92376
84	92428	92480	92531	92583	92634	92686	92737	92788	92840	92891
85	92942	92993	93044	93095	93146	93197	93247	93298	93349	93399
86	93450	93500	93551	93601	93651	93702	93752	93802	93852	93902
87	93952	94002	94052	94101	94151	94201	94250	94300	94349	94399
88	94448	94498	94547	94596	94645	94694	94743	94792	94841	94890
89	94939	94988	95036	95085	95134	95182	95231	95279	95328	95376
90	95424	95472	95521	95569	95617	95665	95713	95761	95809	95856
91	95904	95952	95999	96047	96095	96142	96190	96237	96284	96332
92	96379	96426	96473	96520	96567	96614	96661	96708	96755	96802
93	96848	96895	96942	96988	97035	97081	97128	97174	97220	97267
94	97313	97359	97405	97451	97497	97543	97589	97635	97681	97727
95	97772	97818	97864	97909	97955	98000	98046	98091	98137	98182
96	98227	98272	98318	98363	98408	98453	98498	98543	98588	98632
97	98677	98722	98767	98811	98856	98900	98945	98989	99034	99078
98	99123	99167	99211	99255	99300	99344	99388	99432	99476	99520
99	99564	99607	99651	99695	99739	99782	99826	99870	99913	99957
	0	1	2	3	4	5	6	7	8	0

TABLE 24. DECIMAL EQUIVALENTS OF COMMON FRACTIONS *

The given deeimals are the parts of inches corresponding to fraction of inches in first column: aiso, the parts of feet for the fraction of inches in third column.

* From Peele, Mining Engineers' Handbook, John Wiley \& Sons.

SURVEYING SIGNALS *

Except for short distances a good system of hand signals between different members of the party makes an efficient means of communication. The number of signals necessary will depend upon the kind of work and the nature of the country. A few of the more common are given below:
"Right" or "Left." The arm is extended in the direction of the desired movement, the right arm being extended for a movement to the right and the left arm for a movement to the left. A long, slow, sweeping motion of the hand indicates a long movement; a short, quick motion indicates a short movement. This signal may be given by the transitman in directing the chainman on line, by the leveler in directing the rodman for a turning point, by the chief of the party to any member, or by one chainman to another chainman.
"All Right." Both arms are extended horizontally and the forearms waved vertically. The signal may be given by any member of any party.
"Plumb the Flag" or "Plumb the Rod." The arm is held vertically and moved in the direction that the flag or rod is to be plumbed. It is given by the transitman or leveler.
"Give a Foresight." The instrumentman holds one arm vertically above his head.
"Establish a Turning Point" or "Set a Hub." The instrumentman holds one arm above his head and waves it in a circle.
"Give Line." The flagman holds the flag horizontally in both hands above his head and brings it down and turns it to a vertical position. If he desires to set a hub, he waves the flag with one end in the ground from side to side.
"Turning Point" or "Bench Mark." In profile leveling the rodman holds the rod horizontally above his head and then brings it down on the point.
"Wave the Rod." The leveler holds one arm above his head and moves it from side to side.
"Pick up the Instrument." Both arms are extended downward and outward, then inward and up, as one would do in grasping the legs of the tripod and shouldering the instrument. It is given by the chief of the party or by the head chainman when the transit is to be moved.

Care should be taken to make the signals so clear that they may be readily understood. Where long sights are taken or where the peculiar color of the background renders hand signals indistinct, colored flags similar to those of railroad trainmen may be used to good advantage. Of course the color should be in contrast with that of the background. Red can be seen very well against snow, and white can be distinguished clearly against the dark green of the forest.

* From Raymond E. Davis, Manual of Surveying for Field and Office, 1915.

INDEX

A

A soils, 110, 111
Absorption of aggregates, 33, 136
Adjustments, levels, 259, 268-276 transits, 259-267
Admixtures, concrete, calcium chloride, 18
Age-strength relation, concrete, 33
Aggregate, 134-137
batching plant, 8
cement finishing, 21, 22
colorimetric test, Fig. 17
field testing, 134-137
fineness modulus, 135
mechanical analysis, 134, 135, 141
quantity in concrete, 24-39
report form, 137
sampling for bituminous paving, 139
concrete, 10
sieve analysis, $134,135,141$
silt and clay in, 135
storage and handling, Fig. 16
surface water, 33
tables, bituminous paving, 153156, 159
voids in, 136
water absorption, 33, 136
Air-entraining cement, 20,37
unit weight test, 12
Airports, borings for, 100,106
reports, inspectors, 184,185
stakeout, 200
Analysis, aggregate, sieve, 134, 135
bituminous paving, 141
soils, by origin, 112
mechanical, $124,125,133$
right-angle soil chart, 112
Angles by repetition, 243,244
Arc definition curves, 202, 203
length for unit radius, 211
welding, 64-71
Area, average end, 234
double end, volumes, 235-239
double meridian distance, 244-247
formulas, 216, 283, 288
pavement surfaces, 155
reinforcement per foot of width, 41
Asphalt, reports, 164
sampling, 139

Asphalt, tables, 152-159
tests, 140, 141
use of, 150, 151
Atterberg limits, soils, 110, 113, 114
Augers, 99, 101
Average end areas, 234
A.W.W.A. pipe, cast-iron, 175

B

Backhoe, 3
Basalt, 50, 51
Batch plant inspection, concrete, 14
Batching computations, 24, 34-39 plant, 8
Batterboards, structures, 197
Beams, American Standard Steel, 55 concrete, minimum width, 40
Bearing capacity, piles, 85-87 soils, 82
Bituminous paving, aggregate tables, 153-156, 159
areas of surfaces, 155
asphalt at $60^{\circ} \mathrm{F}$., 156
use of, 151
bitumen required for, 152
bituminous material, use of, 150 , 151
check list for inspectors, 141
correction table, bitumens, 158
distributor tables, 157
equipment for inspectors, 141
field density, 141
linear feet per ton of aggregate 155
mechanical analysis, 141
mix-in-place, 143
pat test, 140
pay items, 146, 149
penetration, Macadam, 145
test, 140
percentage of bitumen, 141
plant mix, 146-149
prime coats, 142
reports, $160-164$
road mix, 143
road oil, use of, 150
sampling, 139
seal coats, 143
tables, 150-159

Bituminous paving, tack coats, 143
tar, use of, 150
tests, 141, 150
weight of aggregate, 156
Borings, 99-107
log, 107, 131, 132
Bridges, 75-80
borings for, 100
Brownstone, 52
Bucking-in with transit, 248
Bulldozer, 4
Butt welds, 66, 67

C

Calcium chloride, sampling for concrete, 11
California bearing ratio, 120, 130
Cast iron, identification, 71
pipe, 175-177
C.B.R., 120, 130

Cement, air-entraining, 20, 37
-asbestos pipe, 166, 179
-factor, 37
finishes, 21, 22
high-carly-strength, 18
in concrete mixes, 24-39
report forms, 47,48
sampling, 10
storage and handling, 14, Fig. 16
water ratio, 23
Center eyepiece adjustment, levels, 273, 276
transit, 266
Centrifuge moisture equivalent, soils, 111
Channels, structural steel, 55
Chapman flask, 117
Check lists, bituminous paving, 141149
concrete, 13-21
foundations, 84
grading, 138
masonry, 49
painting, 81,82
pile driving, 84
sanitary construction, 165
steel, structural, 53, 54
welding, 70-71
wood and timber, 94, 95
Chord definition curves, 204, 205
lengths, circular curves, 206. 210
plottting by, 278
Circular curves, 202-216
arcs, length for unit radius, 211
Clamshell bucket, 3
Classification of soils, 108-125
réport on, 129, 133
Clay, definition, 108
identification, 108, 109

Clay, in aggregate, 135
pipe, 167, 168
report, 181
Cold-weather concrete, 17, 18
Collimation adjustment, levels, 270, 274, 275
transits, 262
Colorimetric tests, Fig. 17
Compaction of soils, 123
calculation, 127
inspection, 138
Compass needle adjustment, 266, 267
Compressor, 9, 189
Concrete, 10-48
accelerating admixtures, 18
age-strength relation, 33
aggregate batching plant, 8, Fig. 16
absorption, 33
surface water, 33
air-entraining cement, 20
batch plant inspection, 14, Fig. 16
batching computations, 24, 34-38
cement factor, 37
check list for inspectors, 13
cold weather, 17, 18, 21
construction joints, 17
curing, 17
equipment for inspection, 13
exposed surfaces, 17
field inspection, 15, 19
field sampling, 10
field testing, 12
finishing floors, 21, 22
machine, 9
pavements, 20
form inspection, 15, 19
frost protection, 18
high-early-strength cement, 18
load tests, 18, 42
material, inspection, 14
transporting, 15
mixes, 23-38
mixing, 15,19
paver, 7
paving, 19
pay items, 18
pipe, 170-174
report, 181
placing inspection, 16, 19
ready mixed, 16
reinforcement, 15,19
inspection, 39-41
reports, 43-48
sand-aggregate ratio, 24
sand colorimetric tests, Fig. 17
slump, recommended, 23
test, 12
subgrade, 19
tag for samples, 13
transit mix, 8, 15

Concrete, unit weight test, 12 water content, 23
Construction, equipment, 3-9
joints, concrete, 17
stakeout, 197-201
Contractor's daily report, 188
Correction, table, bituminous materials, 158
prismoidal, 240, 241
tangents and externals, 209 taping, 276
Corrugated metal culverts, 169
Crane, 3
Cross wire adjustment, level, 270, 274 transit, 261
Crossovers, 233
Cubic yards, aggregate required, paving, 154
Culverts, inspection of existing, 76 pipe, 169, 172-174
Curing, age-strength relation, 33 concrete, 17
less than $70^{\circ}, 34$
liquids, samples of, 10
Current, welding, 70
Curves, 202-232
arc definition, 202, 203
areas, 216
chord definition, 204, 205
circular, 202-212
layout, circular, 249, 250
transition, 217-226
vertical, 227-232
maximum curvature, roads, 204
metric, 212
minimum curvature, roads, 204
parabolic, 227-232
railroad, 204
short-radius, 213-215
spiral, 217-226
transition, 217-226
vertical, 227-232
Cypress, Tidewater Red, 90, 91

D

Decimal equivalent of common fraction, 296
Deflections, curves, 203, 206, 210, 215
Density, bituminous paving, 141
calculations, 126, 127
of soils, 117-123
Departures, latitudes and, 244-247
plotting, 278, 279
Double-end area volumes, 235-239
centering, 248
meridian distance, 244-247
Drag line, 3
Dumpy level, 257
adjustments, 268-270, 274-276

E

Earthwork computations, 234-241
Effective size, soils, 125
Electrodes, welding, 68, 69
Elongation of Polaris, 252, 253
Equipment, bituminous-paving inspectors, 141, 142
concrete inspectors, 13
construction, 3-9, 189-191
grading inspectors, 138
masonry inspectors, 49
pipe-laying inspectors, 179
sanitary inspectors, 165
structural-steel inspectors, 53
welding inspectors, 70
wood inspectors, 94
Errors, allowable for surveys, 250-252
Expansion joint filler, sampling, 10
Expense record, 183
Externals, for circular curves, 202-213
for transition curves, 217-226
for vertical curves, 227-232

F

Field moisture equivalent, density test, 120-123
soils, 111
Fillet welds, 65-67
Fineness modulus, 135
Finish, concrete floors, 17, 21, 22
pavement machine, 9
Fir, Douglas, 90, 91
Floor finishes, concrete, 21, 22
load tests, 18, 42
Forms, concrete, 15, 19
removal of, 15
Fort Peck sampler, 103
Foundations on soil, 82-84
borings for, 100
piles, 84-88
Frogs, 233
Frost protection, concrete, 18
Fuller's rule, 24
Functions, of 1° circular curve, 208
of transition curves, 224, 225
trigonometric, 289-292

G

Gage, wire and sheet metal, 58, 59 wire mesh, 39
Gallons, bitumen required, paving, 152
Gneiss, 50, 52
Grader, motor patrol, 4
Grading, 138
Granite, 50, 51
Gravel, definition, 108

Gravel, identification, 108, 109
Greenheart, 90, 9i

H

Hardwoods, 92, 93
Hemlock, Eastern, 90, 91
Highways, see Roads
Hooks for reinforcement, 40
Horizons of soils, 109

I

Inspection, bituminous paving, 139 164
bridges, 75-80
concrete, $10-48$
grading, 138
masonry, 49-52
painting, 81,82
pile driving, 84-88
pipe laying, 179,180
soils, 99,133
steel, structural, 53-63
timber, 89-96
welding, 64, 74
wood, 89-96
Inspectors' check lists, bituminous paving, 141-149
concrete, 13-21
foundations, 84
grading, 138
masonry, 49
painting, 81,82
pile driving, 84,85
pipe laying, 179,180
sanitary, 165
structural steel, 53,54
welding, 70, 71
wood and timber, 94, 95
Inspectors' report forms, airport runways, 184, 185
bituminous paving, 160-164
bridges, existing, 78, 79
concrete, 43-48
general construction, 186, 187
pile driving, 88
pipe laying, 181
soils, 126-133
structural steel, 60-63
welding, 62, 63, 72-74
wood preservation, 96
Inspectors' time record, 182
Invar tape, 276
Iron, identification, 71
Isogonic chart, 254, 255

J

Job power, 189-191
Joint assemblies, concrete pavements, 19

Joint filler, sampling, 10 sealer sampling, 10

K

Knots, rope, 98

$$
L
$$

Land measure, 283
Larch, 90, 91
Latitudes and departures, 244-247 plotting, 278, 279
Layout, circular curves, 249, 250
construction, 197-201
transition curves, 217-226
vertical curves, 227-232
Length, transition curves, 219
Level, adjustments, 268-276
allowable errors, 250, 251
dumpy, 257
notes, 194, 242
wye, 258
Lime for mortar and masonry, 49
Limestone, 51, 52
Lineal shrinkage, soils, 111, 114
Linear feet covered, paving, 155, 157
Liquid limit, soils, 110, 113
Load tests, concrete, 18, 42
piles, 87
soil, 82,83
Logarithms, numbers, 294, 295
trigonometric functions, 292

M

Macadam, 145
material required, 159
Manila rope, 97
Maple, 93
Mapping, 277-282
Marble, 50, 51
Marking concrete samples, 11, 13
Masonry, equipment for inspector, 49
identification of stone, 50-52
mortar for, 49, 50
preparation for painting, 81, 82
Maximum density, soils, 117-119
McKiernan-Terry pile hammers, 86
Engineering News formula, 85, 86
Mechanical analysis, aggregates, 134 , 135
bituminous paving, 141
soils, $124,125,133$
Mesh reinforcement, 39
Metric curves, 212
Minutes in decimals of a degree, 207, 293
M.I.T. soil clessifictation, 109

Mixer, concrete, 7, 8

Mixes, concrete, 23-39
Mixing concrete, 15,16
ready-mixed, 16
Mix-in-place, bituminous, 143
Moisture determination, calculations, 126, 127
soils, 115-123
Moran and Proctor sampler 103
Mortar for masonry, 49
Muck, 108

N

Natural trigonometric functions, 289291
North, determination of, 252
Notes, surveying, 193, 194, 242, 250
Numbers, logarithms of, 294, 295

$$
0
$$

Oak, 92
Omitted side problem, 247, 248
Optimum moisture, soils, 117-119

P

Painting, 81, 82
Parabolic, curves, 227-232
Parallax adjustment, 261
Pat test, sheet asphalt, 140
Pavement, bituminous, inspection of, 139-164
concrete, inspection of, 19
concrete paver, 7
finishing machine, 9
reports, 46-48, 160-164
Pay items, bituminous paving, 146, 149
concrete, 18
Payroll record, 183
Peat, 109
Penetration macadam, 145
material required, 159
Penetration test, asphalt, 140
Piles, driving, $84-88$
inspection of existing, 75, 76
Pine, Eastern white, 90, 91
long leaf yellow, 90, 91
short leaf yellow, 90, 91
Pipe, cast-iron, 175, 176
cement-asbestos, sewer, 166
water, 179
check list for inspectors, 179,180
clay, 167, 168
concrete, 170-174
corrugated metal, 169
joint materials, water, 177
laying, 179, 180
reports, 181

Pipe, stakeout of, 201
steel, 178
Pipe line, stakeout, 201
Piston samplers, 103
Placing concrete, 16
Plant mix, bituminous, 146-149
Plaster, preparation for painting, 82
Plasticity index, soils, 110, 114
Plate adjustment, transits, 265
Plotting, topography, 279-282
traverses, 277-279
Polaris, elongation, 253
observation of, 252
Power shovel, 3
P.R.A. soil classification, 110, 111

Preservation, wood, report, 96
Prime coats, bituminous, 142
Prismoidal corrections, 240, 241
Proctor needle plasticity test, 117-119
Profile map, soils, 104, 105
Protractor plotting, 277, 278
Pulvi-mix, 6
Pumping, concrete, 17
Pycnometer, 116

Q

Qualification test, welders, 65
Quicklime, 49

R

Radius, circular curves, 202-206, 210215
transition curves, 217-226
Railroad, crossovers, 233
curves, 204, 205
frogs, 233
stakeout, 199
switches, 233
turnouts, 233
Ready-mixed concrete, 16
Reinforcement, area per foot, 41
beam widths for, 40
hook dimensions, 40
inspection of, 15, 19
mesh, 39
sampling, 10
sizes of, 40
Report forms, aggregate analysis, 137
airport runways, 184, 185
bituminous paving, 160-164
bridges, existing, 78, 79
concrete, 43-48
contractors, daily, 188
expense record, 183
general construction, 186, 187
payroll, 183
pile driving, 88
pipe laying, 181

Report forms, soils, 126-133
steel, structural, 60-63
time sheet, inspector's, 182
welding, 62, 63, 72-74
wood preservation, 96
Road mix, bituminous, 143
Roads, borings for, 100, 104
stakeout, 198
Roller, sheepsfoot, 5
tandem, 6
three-wheel, 5
Rope, knots, 98
strengths, 97
wire, 97

S

Sag curve, 228
in taping, 276
Sampling, bituminous paving, 139
concrete, 10,11
soils, 99-107
Sand, colorimetric test, Fig. 17
definition, 108
for concrete, Fig. 17
identification, 108, 109
sampling of, 10
storage and handling, Fig. 16
Sand-aggregate ratio, 24
Sandstone, 51, 52
Sanitary construction, 165
pipe, 166-181
Schist, 50, 52
Seal coat, bituminous, 143
Seconds in decimals of a minute, 207
Section modulus, steel, 55-57 wood, 89
Sewer pipe, cement-asbestos, 166
clay, 167, 168
concrete, $170,171,174$
laying, 179, 180
Shale, 52
Sheet asphalt, pat test, 140 sampling, 139
Short-radius curves, 213-215
Shovel, 3
Shrinkage limit, soils, 110, 114
Shrinkage ratio, soils, 111, 114
Sieve analysis, aggregate, 134, 135 soils, 124, 125
Signals for surveyors, 297
Silt, definition, 108
identification, 108, 109
in aggregate, 135
Sisal rope, 97
Skimmer, 3
Slate, 52
Slump test, 12
recommended, 23

Soft woods, 90, 91
Soils, 99-133
airport test pits, 106
analysis of, 108-125
Atterberg limits, 110, 113
augers, 99, 101
bearing capacity, N.Y. City code, 82
borings, 99, 100, 107
C.B.R., 120
centrifuge moisture equivalent, 111
Chapman flask, 117
classification, 108-125
compaction recommended, 123
inspection, 138
effective size, 125
exploration, 99-107
field density test, 120-123
field moisture equivalent, 111
foundation inspection, 82-84
horizons, 109
hydrometer analysis zone, 109
identification of principal types, 108, 109
lineal shrinkage, 111, 114
liquid limit, 110, 113, 114
load tests on, 82,83
mechanical analysis, 124,125
M.I.T. classification, 109
mixtures, 112
moisture-density relations, 115119, 123
moisture determination, 115, 116, 117
optimum moisture, 117-119
origin of, 112
plastic limit, 113, 114
plasticity index, 110, 114
P.R.A. classification, 110, 111

Proctor needle, 117-119
profile map, 104, 105
pycnometer, 116
reports, 126-133
right-angle soil chart, 112
samplers, 100,102
sampling, 99-107
shrinkage limits, 110,114
shrinkage ratio, 111, 114
sieve analysis, 124,125
size of samples, 100
sounding rod, 99,102
specific gravity, 116,117
subgrade, 111
test pits, 99-101, 106
uniformity coefficient, 125
unit weight test, $120-123$
U.S. Bureau of Soils, grain sizes, 109
wash borings, 99, 102
Sounding rod, 99,102

Specific-gravity determination, aggregate, 134
soils, 115-117
Spiral curves, 217-226
Spruce, Eastern, 90, 91
Stadia notes, 193, 194
tables, 195, 196
Stakeout, circular curves, 249, 250
construction, 197-201
transition curves, 217-226
vertical curves, 227-232
Standard beams, structural steel, 55
Steel, bridges, existing, 76
gages, 58, 59
identification, 71
pipe, 178
reinforcement, area per foot, 41
beam widths for, 40
hook dimensions, 40
inspection of, 15, 19
mesh, 39
sampling, 10
sizes of, 40
structural, 53-63
check list for inspectors, 53, 54
equipment for inspectors, 53
reports, 60-63, 72-74
sections, 55-57
tape, 276
Storage, concrete aggregates, Fig. 16
Structures, stakeout, 197
Subgrade, classification of, 111
for concrete pavement, 19
Summit curve, 227
Surface, exposed concrete, 17
for painting, 81, 82
water on aggregates, 33, 134
Surveying, adjustments, 256-276
airfield stakeout, 200
angles by repetition, 243
areas, double end, 235-239
double meridian distance, 244-247
bucking-in, 248, 249
building stakeout, 197
curves, 202-232
arc definition, 202, 203
areas, 216
chord definition, 204, 205
circular, 202-212
layout of, 249, 250
maximum curvature, roads, 204
metric, 212
minimum curvature, roads, 204
parabolic, 227-232
railroad, 204
short-radius, 213-215
spiral, 217-226
transition, 217-226
vertical, 227-232

Surreying, decimal equivalent, common fractions, 296
double centering, 248
double end area volumes, 235-239
double meridian distance, 244-247
earth work, 234-241
elongation of Polaris, 252, 253
errors, allowable, 250-252
highway stakeout, 198
instruments, 256-276
isogonic charts, 254, 255
land measure, 283
layout, 197-201, 249, 250
level, adjustments, 268-276 notes, 194, 242
logarithms, numbers, 294, 295
trigonometric functions, 292
mapping, 277-282
minutes in decimals of a degree, 293
north, determination of, 252, 253
notes, 193, 194, 242, 250
pipe line stakeout, 201
Polaris, 252, 253
prismoidal corrections, 240, 241
railroad stakeout, 199
railroad turnouts and crossovers, 233
signals, 297
stadia tables, 195, 196
stakeouts, 197-201, 249, 250
taping, 276
three level sections, 234
topographic, 193, 194
transit, adjustments, 260-267
notes, 193, 194, 250
problems, 243-252
stakeout with, 197-201
traverse, areas, 244-247
plotting, 277-279
trigonometric formulas, 283-288
trigonometric funstions, 289-292
vernier, 255
Switches, 233
Symbols, mapping, 280, 281

T

Tack coats, bituminous, 143
Tag, beam and cylinder, 13
Tangents, for circular curves, 202-213
for transition curves, 217-226
for vertical curves, 227-232
plotting by, 277, 278
Taping, 276
Tar, sampling, 139
tables, 152-159
tests, 141
use of, 150
Telescope adjustments, levels, 272,274 transit, 263-265

Tension for taping, 276
Test pits, 99-101, 106
Tests, beams, concrete, 11
bituminous paving, 140, 141
colorimetric, Fig. 17
concrete, reports on, 45-48
cylinders, concrete, 11
load, on piles, 87
on soil, 82,83
of soils, 113-123
slump, concrete, 12
unit weight, concrete, 12
welding, 65
Three level sections, 234
Timber, 89-96
Time sheet, inspector's, 182
Tons, aggregate required, paving, 153
Topography, mapping, 277-282
notes, 193, 194
plotting, 279, 282
stadia tables, 195, 196
surveys, 193
symbols, 280, 281
Transit, adjustments, 260-267
allowable errors, 251,252
notes, 193, 194, 250
problems, 243-252
stakeout with, 197-201
Transit mixers, 8,16
Transite pipe, 166, 179
Transition curves, 217-226
Trap rock, 50, 51
Traverses, double meridian distance, 244-247
errors, allowable, 251, 252
notes for, 193, 194
omitted side, 247, 248
plotting, 277-279
Trencher, 7
Trigonometric formulas, 283-288
functions, 289-292
Turnouts, 233

U

Uniformity coefficient, soils, 125
Unit weight test, aggregate, 136
concrete, 12
soils 120-123
U.S. Bureau of Soils, classification 109

V

Vernier, 255
Vertical curves, 227-232
circle adjustment, transit, 265
Volume, bituminous materials, 156 , 158
double end area, 235-239
paving aggregates, 156

W

Wash borings, 99, 102
Water, absorption by aggregates, 33, 136
maximum for concrete, 23
sampling for concrete, 11
surface, on aggregates, 33, 134
Water-cement ratio, 23, 25-32
Weight, bituminous materials, 156
paving aggregates, 156
pipe, 166-179
Welding, 64-74
acceptable profiles, 67
current, 70
defective profiles, 67
electrodes, 68, 69
equipment for inspection, 70
fillet weld gages, 67
positions, 66
processes, 64, 65
qualifications of welder, 65
reports, 62, 63, 72-74
weld characteristics, 66
Wire gages, 58, 59
mesh, 39
rope, 97
sampling, 10
Wood, 89-96
Wye level, 258
adjustments, 268-274

Y

Yield of concrete, 34-39

[^0]: Marking Samples-All Materials
 Place one tag inside container, and attach one tag firmly outside. Record all shipments and data in field book. Mark tags with than routine; vendor's or manufacturer's name and brand name if any; location or part of structure affected to send report; any other pertinent information. See Fig. 17 for sample tag.

 Aggregates. Kind; quantity in source; name of plant pit or quarry, and location.
 Reinforcing. Lot number; markings on rods.
 Test Cylinders and Beams. Date molded; station or location in structure; mix proportions; W/C ratio, gallons per sack; cement, sacks per eubic yard; slump; unit weight, pounds per cubic foot; cement brand, type, mill, and car number; type and source of aggregate, by whom made. Note. Use envelope-style tags inside envelope tag.

[^1]: * Does not apply to transit-mix concrete.

[^2]: *From Portland Cement Association.
 \dagger The coarser the aggregate, the less free water it will carry.

[^3]: * Where specially anchored bars are used, haunch width may be narrowed.

[^4]: * Very seldom used commercially.
 \dagger Malleable iron should always be bronze-welded.

[^5]: * From Toncan Culvert Manuf. Assoc.

[^6]: * A.S.T.M. D-420, C.A.A. Specs.
 \dagger P.R.A., U.S.E.D., A.A.F., C.A.A.

[^7]: * From A.S.T.M. Specifications.

[^8]: * Engineering Manual, O.C.E., War Dept.
 \dagger Engineering News-Record, Aug. 31 to Sept. 28, 1933, R. R. Proctor.

[^9]: * Adapted from Public Roads, Vol. 22, No. 12 by Harold Allen, Public Roads Administration.

[^10]: Samples of aggregates, bitumen, and mixture shipped to laboratory at least once a week.

[^11]: * From Pocket Reference for Highway Engineers, Asphalt Institute.

[^12]: * From Pocket Reference for Highway Engineers, Asphalt Institute.

[^13]: * From Pocket Reference for Highway Engineers, Asphalt Institute.

[^14]: * From Principles of Highway Construction, Public Roads Administration,

[^15]: * From Principles of Highway Conotruction, Public Roads Administration.

[^16]: * From Principles of Highway Construction, Public Roads Administration.

[^17]: Remarks:

[^18]: b The average actual inside diameters of pipe having the nominal thickness of barrel shown in Table 53 may be smaller than the nominal sizes．
 －Prom Robinson Clay Products Co．

[^19]: a The distance from the canter line of the reinforcement to the nearest surface of the concrete has been assumed in the design tables as 1 in .
 b Where two tines of steel are specified, a single line placed elliptically may be used, and the area of this shall be at least 50% of the total steel area specified
 in the design table. Note. For weights and laying lengths, see Table 57 .

[^20]: ${ }^{a}$ The distance from the center line of the reinforcement to the nearest surface of the concrete has been assumed in the design tables as $11 / 4 \mathrm{in}$. for pipe with a shell $21 / 2 \mathrm{in}$. or more in thickness.
 ${ }^{b}$ For 2 lines or elliptical reinforcement provide 1-in. cover.
 ${ }^{c}$ Test loads for sand-bearing tests shall be $11 / 2$ times those specified in this table for the three-edge-bearing tests.
 ${ }^{d}$ From Universal Concrete Pipe Co. for tongue and groove pipe.

[^21]: * From Universal Concrete Pipe Co.

[^22]: * From Eshbach, Handbook of Engineering Fundamentals, John Wiley \& Sons, 1936.

[^23]: * From Principles of Highway Construction Applied to Airports, Flight Strips and other Landing Areas for Aircraft, Public Roads Administration.

[^24]: * Adapted from Dietzgen's Railroad Curve Tables by Eugene Dietzgen Co.

[^25]: *Reference Transition Curves for Highways by Joseph Barnett, P.R.A.

[^26]: * Adapted from O'Rourke, General Engineering Handbook, McGraw-Hill.

[^27]: * Adapted from Transi ion Curves for Highways by Joseph Barnett, P.R.A.

[^28]: * Adapted from Transition Curves for Highways by Joseph Barnett, P.R.A.

[^29]: * Used by most state highway departments and Public Roads Administration. Recommended for roads and airports.

[^30]: * From American Civil Engineers Handbook" by Merriman and Wiggin.

[^31]: * Adapted from Davis, Manual of Surveying, McGraw-Hill.

[^32]: * Adapted from Davis, Manual of Surveying, McGraw-Hill.

[^33]: * Adapted from Davis, Manual of Surveying, McGraw-Hill.

[^34]: * Adapted from Davis, Manual of Surveying, McGraw-Hill.

[^35]: * Adapted from Urquhart, Civil Engineering Handbook, McGraw-Hill.

[^36]: These data may be secured annually from the current Nautical Ephemeris or similar source. * From War Department, Surveying Tables.

[^37]: * From Surveying Instrument Manual, W. \& L. E. Gurley, Troy, N. Y.

[^38]: * Not illustrated.

[^39]: * Data by American Bridge Co., from Manual of Structural Design by Singleton.

[^40]: * From Peele, Mining Engineers' Händbook, John Wiley \& Sons.

[^41]: *From Ives, Seven Place Natural Trigonometric Functions, John Wiley \&

