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PREFACE 

This text has been prepared to meet the need for an elementary 
introduction to the basic ideas of electromagnetic theory, employ¬ 
ing the rationalized MKS units. It is intended as first-course mate¬ 
rial for either juniors or seniors, and the only prerequisites are 
calculus and the fundamentals of alternating-current theory. In 
the treatment of this subject the development has been built up 
gradually, beginning with the necessary vector algebra. Many 
illustrative examples and problems have been included to aid in the 
presentation of the material and to provide sufficient practice in its 
application. The chapters on wave guides have been included to 
serve as an application of the theory and are not intended to be, in 
any sense, complete. One chapter on the basic ideas of antennas is 
included as an introduction to that field of application. The text 
is prepared to serve as an introduction to the more advanced treat¬ 
ments of the subject, of which there are many. 

In preliminary form the text presented here has been success¬ 
fully used through two semesters in the Electi^cal Engineering 
Department of the State tAiiversity of Iowa. It is believed that 
the changes and additions resulting from this trial period have made 
the book into a practical instrument for teaching electromagnetic 
theory to electrical engineering students. 

The author wishes to express appreciation to Professors G. F. 
Corcoran and H. R, Reed of the University of IMaryland and 
E. M. Lonsdale of the State University of Iowa for many valuable 
suggestions and aid given in the course of the preparation of the 
manuscript for this book. 

L. A. Ware 
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Chapter I 

INTRODUCTION TO 

VECTORS 

Summary 

In this chapter the basic ideas of vector algebra are introduced. 

After a short discussion of the nature of vectors and their represen¬ 

tation, the subjects of addition and multiplication are treated. 

Because scalar and vector products are used extensively in elec¬ 

tromagnetic theory, examples are given which apply to electricity. 

The triple scalar and vector products are introduced, and the 

process of differentiation is defined. This chapter lays a founda¬ 

tion for/the treatment in Chapter II of the operator del and its 

applications. 

" 1-1. SCALARS AND VECTORS 

Electromagnetic theory, which forms the basis of so much of 

modern communication engineering, depends upon the methods 

of vector analysis for its expression in its more useable forms. This 

chapter is concerned primarily with the development of the basic 

operations of vector analysis and will, wherever possible, provide 

illustrations of its application to electricity. 

The student is already familiar with the more basic concepts 

involved. For instance, the distinction between a vector and a 

scalar is met in every-day life. A simple illustration is provided by 

the work done on a weight to lift it to a certain position, and the 

force of gravity acting upon it in that position. Thus, in Fig. 1-1, 

the work done in lifting the weight W to the position shown is a 

scalar quantity since it is merely a statement of work accomplished 

without any reference to any directions or path over which the 

weight may have been moved. On the other hand, to say that the 

force of gravity acting on the body is 10 lb is an incomplete state- 
3 
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ment unless the direction of this force is specified. Thus the two 
statements would have to be somewhat as follows: 

Work: TF - 25 ft-lb 
Force: F = 10 lb in a downward direction 

The first is a scalar, and light-face type will be used to represent 
scalar quantities. The second is a vector, and bold-face type will 
be used for vectors. 

W-25 ft-lb 

For purposes of further illustration a number of common scalar 
and vector quantities are listed below: 

Scalars Vectors 
Energy Veldcity 
Mass Field intensity 
Charge Force 
Volume Current density 
Time Area 

Gravitational and Distance or 
electrical potential displacement 

1-2. REPRESENTATION OF VECTORS 

The previous section presents a fundamental problem. How 
will it be possible to specify directions for vectors? In Fig. 1-2 is 
shown a direct^ quantity or vector, V, imbedded in a 3-dimen- 
sional coordinate system with axes, x, y, and z. The vector V, 
lying in the position shown, extends from o to c. The position c, 
the end of the vector, could just as well have been specified by 
following the path; oabCy which follows along the x, y, and z axes 
in order. Now oa is a vector in the x direction, ab is a vector in 
the y direction, and be is a vector in the z direction. Since both 
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paths, oc and oabc, arrive at the same destination, they are con¬ 
sidered as being equivalent, and a vector equation can be written. 

oc = oa + ab + be. (1-1) 

The vector V can now be specified as follows. Give the com¬ 
ponents oa, ab, and be with the understanding that they lie along 
the Xy y, and z axes respectively. The system given in equation 
(1-1), however, is awkward and it is necessary to develop some 
more convenient representation. By referring to Fig. 1-2, it is 

Fig. 1-2. Representation of a vector in rectangular coordinates. 

seen that oa can be written as Vx which means the projection of V 

on the X axis, or the x component of V. This is similarly true of 
Vy and F,. Now, if we assume that these components are known, 
the vector can be written 

V = 7* (along x) + Vy (along y) + F, (along z). 

Now by introducing an abbreviation for the terms (along x), (along 
y)y etc., the expression can be greatly simplified. The standard 
abbreviations are: 

i = (along x)y 

j = (along y), 
k = (along 2), 

which are unit vectors, or vectors of unit length and are used merely 
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to indicate direction. The expression for V then becomes 

V = + Wv + kF,. (1-2) 

This expression means that V is the sum of three components whose 

lengths are F*, Fy, and F, and whose respective directions are 

i, j, and k. 

Equation (1-2) leads now to two important ideas. On the 

right side of the equation are written three terms in the form of 

products, such as iF*. Here i is a vector of unit length and F* is a 

scalar. In order for the expression to mean what we have intended, 

it is necessary for this product to mean merely a vector in the x 

direction of length F*. Thus the product of a scalar and a vector 

is a vector. As an illustration, the product of V ~ i2 + j6 — k5 

by the scalar, A = 3, is 

AV = 3(i2 + j6 - k5) 

= i6 + jl8 - kl5, 

which is a vector in the direction of V but three times as long. 

Further, the length of V, written F, is given by geometry in the 

following form: 

F = \/olF+W 

= ‘s/oa} + ah'^ + bc^ 

= + F/- + r;-. (1-3) 

An alternative method of representing a vector is to define 

direction cosines as follows. Let the angle between the vector and 

the X axis be a, that between V and the y axis be and that between 

V and the z axis be y. Then if the length of V, F, be stated and the 

angles, or their cosines, are given, the vector is completely specified. 

The cosines of the angles are direction cosines and are usually 

written as follows: 

cos a = ly 

cos /? = m, 

cos y = n. 

An identity involving them can be immediately derived from equa¬ 

tion (1~3). Let it be noted from Fig. 1-2 that 

F* = F cos = IVy 

Fy = F cos ^ = mVy 

F, = F cos y = nF. 
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Then substituting into equation (1-3) leads to 

V = + mW^ + 
= V 

or 

= 1. (1-4) 

1-3. ADDITION AND SUBTRACTION OF VECTORS 

The concept of addition of vectors has already been made use of 

in connection with Fig. 1-2. Here it was stated that the vector V 

was the sum of three components, each of which was a vector. 

Thus there is set up a definition of vector addition which may be 

stated somewhat as follows: The sum of a numhe^ of vectors is the 

diagonal resulting when the vectors concerned are 'placed end to end in 

their correct directions and the beginning point and end point are 

connected by a straight line. In other words, in Fig. 1-2 the vector 

V is the sum of iFx, jFy, and kF,. Now it is to be shown that if 

the component vectors themselves are arbitrary vectors a simple 

rule can be applied to find the sum. Thus if 

A = iAx + ]Ay + k.4„ 

and 

B = \Bx + ]By + kB„ 

then 

C = A + B 

= i{Ax + Bx) + ]{Ay + By) + k(Ax + B,). 
Refer to Fig. 1-3 where two vectors A and B are shown with their 

components in two dimensions only, in order to simplify the presen- 
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tation. The vectors are drawn end to end, and their components 
are marked on their respective coordinate systems. It is easily 
seen that the vector C is the sum of vectors A and B. Inspection 
of the diagram shows that 

Cx = oa + ad 
= Ax “h be 
= i4x + Bx, 

Cy = dc + ce 
= i4y + By. 

Therefore, 
C = iCx + iCy 

= i(Ax + Bx) + ]{Ay + By), 

or more generally, 

C = iC, + jCy + kC. 
= i{Ax + Bx) + j(Ay + By) + k(A, + B,). (l-S) 

Now if a vector, or any component of a vector, is negative it merely 
appears in the equations with a negative sign. Thus the law for 
addition of vectors also covers the process of subtraction by using 
the ordinary laws of algebra. Thus if C = A — B, then 

C - i{Ax - Bx) + j(Ay ~ By) + k{Ax - Bx). (1-6) 

1-4, ILLUSTRATIVE EXAMPLES: VECTOR ADDITION 
AND SUBTRACTION 

Example 1. Let it be required to find the components and sum of 
the two following vectors in terms of direction cosines. 

.Vector A: 10 in. long, I = 0.3, m = 0.5, n = 0.811; 
B: 5 in. long, I = 0.7, m = 0.3, n = 0.648. 

The components will be as follows: 

Ax = 0.3(10) = 3 in.. Ay = 0.5(10) = 5 in., 
Bx = 3.5 in,. By — 1.5 in.. 

Ax = 0.811(10) = 8.11 in.; 
Bx = 3.24 in. 

Thus the two vectors are written as. follows: 

A == i3 + j5 + k8.11, 
B « i3.5 + jl.6 + k3.24, 
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and the sum will be 

C = A + B = 16.5 + j6.5 + kll.36. 

The length of this vector is given by 

• C = V42.3 + 42.3 + 129 = 14.6 in. 

Example Z. Let it be required to find the difference C' = A — B. 
The equation is written 

C' = A - B = 1(3 - 3.5) + j(5 - 1.5) + k(8.11 - 3.24) 
= -10.5 + j3.5 + k4.87, 

which has a length of 6.02 in. 

Example S. A river flows SE at 10 mph, and a boat floats upon 
it with its bow pointed in the direction of travel. A man walks 
upon the deck in a direction to the right and perpendicular to the 
direction of the boat’s movement. (See Fig. 1-4.) His walking 
speed is 3 mph. Find his velocity with respect to the earth. 

Take the x axis toward the east and the y axis to the north. 
Then the boat’s velocity will be 

Vt = 110 cos 45® - jlO cos 45® 
= 17.07 - j7.07. 



10 ELEMENTS OF ELECTROMAGNETIC WAVES 

The man's velocity with respect to the boat is 

Vm == ~i3 cos 45° — j3 cos 45° 
= -i2.12 - j2.12. 

Then the absolute velocity is the sum 

Va6« = i(7.07 - 2.12) ~ j(7.07 + 2.12) 
= i4.95 - j9.19 = 10.44 Z-61.7° mph, 

where Z — 61.7° is the angle of Vab* referred to due east as a reference. 

1-6. SCALAR MULTIPLICATION 

Thus far it has been seen that the operation of addition of 
vectors is relatively simple. A slight amount of complication enters 

Fig. 1-5. Scalar multiplication of vectors. 

the picture, however, when multiplication is introduced. There'are 
two kinds of multiplication, scalar and vector. Scalar multiplication 
is so named because the result of such operation is a scalar. The 
definition is as follows: 

A • B = AB cos d, (1-7) 

This multiplication is also at times called a dot product because of 
the dot used to indicate the operation. The angle d is the angle 
between the vectors A and B, This product has many simple 
applications. Thus in Fig. l-5a it is seen that if a force is applied 
to a sled, as shown, at an angle $, from the horizontal, the work done 
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is well known to be TF = FS cos B, Using the above definition of 

scalar product, this is the same as IF = F • S. In this simple case 

the advantage of vector notation is merely its brevity. 

In Fig. l-5b let the vector A represent the area outlined and p 
the flow of rain in ounces per second per square inch normal to the 

direction of fall. Then the amount of water in ounces per second 

passing through the area will be pA cos <t>, or simply p • A. 

In this connection it is well to point out that areas are represented 

by vectors drawn perpendicularly to the area and with a length equal 

to the area. This will be considered in more detail in the pext section. 

1-6. VECTOR PRODUCTS 

Another type of multiplication which is even more useful than 

the scalar product is vector multiplication. This is defined as 

A X B = AB sin B, 

where 0. is again the angle between the vectors. This product is 

also called the cross product. It is defined to be a vector, and so, to 

be strictly correct, the equation should be written 

A X B = nAB sin B. (1“8) 

Thus both sides of the equation have a vector nature, and n is a 

unit vector in the appropriate direction or sense. The appropriate 

direction must be defined. In Fig. 1-G two vectors are shown, 

A and B. To simplify the argument the coordinate system is 

oriented so that the vectors lie in the x-y plane. The product AB 

sin B is equal to the area of the parallelogram oach because 

area = (oh) (ad) = BA sin B. 

Thus the length of the vector representing the vector product is the 

area. It seems, therefore, that the area may be represented by a 

vector. It is now necessary to decide upon its direction. In the 

previous section a vector was used to represent a certain area and 

it was drawn perpendicular to the surface, if for no other reason 

than that the direction perpendicular to the surface is the only 

definite directional characteristic of the surface. In order to con¬ 

form to certain conventions, some of which will be met later on, the 

direction of the vector will be taken in such a manner that if the 

product is written A X B, then the direction of advance of a 

right-hand screw turned from the first vector to the second through 
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the smaller angle will be the direction of the vector. Thus in Fig. 
1-6 the product C = A X B is shown along the positive z axis. 
This rule for finding the direction of the product is known as the 
**right-hand rule” and is very useful in electricity. Some illustra¬ 
tions of this product will be useful. In Fig. l-7a is shown a wire 
carrying a current in a magnetic field. It is already known from 

Fig. 1-6. C = A X B. 

more elementary considerations that the force per unjt length on the 
wire is given by F = IB sin 6, This can be written as 

F = I X B. 

Note that in the cross product the I was written first, thus causing 
the direction of the force to be along the positive z axis and con¬ 
forming to the kno^ effects of currents in magnetic fields. It 
will be observed that the simple statement F = I X B, when 
properly interpreted, tells the magnitude of the force developed 
per unit length of wire and the direction of this force. If, for 
example, in Fig. l-7a, B = 0.20 weber/m^, / = 20 amp, and 
$ = 60®, then 

F = I X B = k(0.2)(20) (0.866) = 3.464 newtons 

per meter length of wire directed along the +z direction. 
In Fig. l-7b a wire is moving with velocity v in the magnetic 

field B, which is everywhere directed in the +x direction. The angle 
between B and v is 6y and the voltage generated per unit length of 
wire is vB sin 0, or in vector notation, e = v X B, provided the 
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wire is perpendicular to B, If the straight conductor is not per¬ 
pendicular to the B direction, then the conductor can be resolved 
into two components, one lying parallel to B and one perpendicular 
to B. From elementary considerations of induced voltages, the com¬ 
ponent lying in the direction of B has no voltage induced in it because 
this component does not cut across the B vectors. 

There remains now the problem of fixing definitely the effect of 
writing the vectors in equation (1-8) in a certain order. As written 

, (a) (b) 
Fig. 1-7. Two cross products, F = I X B, and e = v X B. 

there, it was seen that n is a unit vector along the positive z axis. 
This vector has previously been taken as k. Now if A and B in 
Fig. 1-6 are interchanged, with A along the y axis and B in the old 
A position, then an application of the sign rule (the right-hand rule) 
indicates that the direction of the product A X B is along the 
negative z axis. Thus it appears that a reversal in position of the 
vectors will change the sign of the product. This is written as 

A X B = -B X A. (1-9) 

In this connection it is well to point out that for the scalar product 
the order of the vectors makes no difference, that is, 

A • B = B • A. (1-10) 

Refer to equation (1-7). 
The discussion of multiplication is here interrupted to permit 

a brief consideration of unit vectors, after which the study of 
multiplication will be resumed in §1-8. 
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1-7. UNIT VECTORS 

The three standard unit vectors, i, j, k have been mentioned 
before. It is now necessary to derive a few simple relations among 
them to facilitate future work. In Fig. 1~8 are shown these vectors 
in a right-hand coordinate system. A right-hand coordinate sys¬ 
tem is one where i X j = k as distinguished from a left-hand sys¬ 
tem where i X j = — k. 

y 

Fig, 1-8. A right-hand system of unit vectors, i, j, and k. 

On the basis of what has been presented in §1-5 and §1-6 con¬ 
cerning scalar and vector products, it is now a simple matter to 
write down the products for pairs of these unit vectors. 

i • i = (1)(1) cos 0® = 1 = j • j = k • k, 
i • j = (1)(1) cos 90° = 0 = i • k = j • i = j • k 

= k i = k • j. 

This information for scalar products can be presented as follows: 

i j k 
i 1 0 0 

j 0 1 0 
k 0 0 1 

By referring to Fig. 1-8 it is easily seen that 

i X i = (1)(1) sin 0° - 0 = j X j = k X k, 
and 

iX j = (l)(l)sin 90°-k, 

remembering the right-hand rule. Similarly j X i = — k, etc. 
The vector products may be conveniently presented as follows: 
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Second term : i j k 
First 

^ i ' 0 k -j / (1-12) 

i 0 i 
k ^ 'j —i 0 

1-8. MULTIPLICATION OF VECTORS {RESUMED) 

Equation (1-7) presents the result of scalar multiplication as 
A • B = cos B. By the use of the unit vectors it is now possible 
to present another form of this multiplication which, in many cases, 
is more convenient. Thus, write: 

A = \Ax + }Ay + k^z, 
B = iBx + ]By + 

Then an algebraic multiplication, using dots, produces the result: 

A • B = i • + i * }A^By + i • )s.A:,B, + 
j • lAyB, + j • ]AyBy + j * k^,B, + (1-13) 

k • lA.Bx + k • \A^By + k • \iA^B,. 

But, on reference to equation (1-11), it is found that all but three 
of these terms are zero. Thus 

A • B = AxBx + AyBy + A^Bg, (1—14) 

The same two vectors may be used to obtain another expression 
for vector product. It is necessary only to rewrite equation (1-13), 
using crosses instead of dots. One should be especially careful 
that unit vectors be written always in the correct order. The 
equation thus obtained is 

A X B = i X lAxBx + i X jA^By + i X k.4;,i5, + 
* j X lAyBx + j X }AyB,f + j X ]^AyBx + 

k X lA.Bx + k X iA,By + k X kA^B^y 

which on reference to ecjuation (1-12) becomes 

A X B = 0 + kAxBy - jAxBx - 
kAyBx -f- 0 lAyBg + 

jAgBx —■ lAgBy + 0 
= i{AyBx “ A^By) + i(A^Bx - AxBA + k{AxBy - AyBx). 

(1-15) 

This expression may be presented in another form also. It will be 
found on expansion that 
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A X B = i j k 
A. A, A.. (1-16) 
Bx By Bz 

% 

It will be found later that the form (1-16) is very useful. 

1-9. ILLUSTRATIVE EXAMPLES: PRODUCTS 

Example Given two vectors represented by 

A = i2 + j2 + kO, 
B = i3 + j4 - k2, 

find the dot and cross products and the angle between the vectors. 

A • B = (2)(3) + (4)(2) + 0 = 6 + 8 + 0 = 14 

= AB cos 0] 

A = ^2* + 2^ = 2.83, 

B = \/3* + 4* + 2^ = 5.39. 
Therefore, 

® ^ 2.83(5.39) ^ 

d = 23.2®, 

i j k 
A X B = 2 2 0 

3 4-2 
= i(-4) - j(-4) + k(8 - 6) 
= -i4 + j4 + k2, 

|A X B| = Vie + 16 + 4 = 6 
= AB sin B, 

““ ® = 2:83^5:3^ = 
Thus, again, 

e = 23.2’^ 

Example 5, Show that A X B is at right angles to A. 
If these vectors are at right angles then the scalar product 

should be zero. Thus 

A = 12 + j2 + kO, 
A X B - -14+j4 + k2, 

A • A X B = -4(2) + 2(4) = 0. 

Thus the vectors are perpendicular as they should be in a vector 
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product. In a similar manner it can be shown that B • A X B is 
zero, thus indicating that A X B is also perpendicular to B. 

1-10. TRIPLE SCALAR PRODUCT 

The triple scalar product is written A X B • C. In this product 
the operation A X B must be performed first because if B • C were 
performed first we would be left with a cross product of a vector and 
a scalar which is meaningless. In order to evaluate the triple 
scalar product refer to Fig. 1-9. Here A X B, based on previous 
statements, is equal to the base of the parallelepiped. Now 
A X B • C is equal to the base multiplied by C cos d. This is the 

AxB 

Fig. 1-9. The product A X B C. 

volume of the parallelepiped. Any face of the parallelepiped could 
be used for the base and it is easily shown that 

AXBC = ABXC = BCXA = -BXAC 

~ Ax Ay Ax 

Bx By Bx. (1-17) 
Cx Cy Cx 

1-11. TRIPLE VECTOR PRODUCT 

This product is defined as 

(A X B) X C = X (A X B) X (B X A). (1-18) 

The operation in the parenthesis must be performed first. By 
performing the operations indicated it is easy to show that 

(A X B) X C = (A • C)B -- (B • C)A. (1-19) 

See Prob. 1-9 at the close of this chapter. 

1-12. DIFFERENTIATION OF A VECTOR 
If 

A = lAx "f" jAy "f" kAg, 
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then 

since i, j, and k are constant in direction and magnitude and as such 
are not functions of the independent variable t with respect to which 
differentiation is being performed. 

The differential of a vector is also a vector and is represented in 
Fig. 1-10. 

Fig. 1-10. Representing the differential of a vector V. 

The derivatives of dot and cross products are now easily derived. 

+ AyBy + A,B,) 

A 4- A 4. A 

— H 4- A 
-It w 

To show that 

(1-21) 

(1-22) 

is straightforward and is left as an exercise for the student. Since 
the time derivative of a time-varying electric field is of considerable 
importance in the study of electric waves, a simple numerical 
example will be given by way of illustration. If the field intensity 
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vector E is varying sinusoidally, it might be represented in a par¬ 
ticular case as: 

E = 1400 sin + j800 sin o)t + kO v/m. 

Let it be required to find the current density directed along the 
+2/ axis (namely, Jy) which is associated with E, if the medium 
(assumed to be isotropic) has a dielectric constant or relative per¬ 
mittivity of 11.31 and w is 5 10^ rad/sec. 

The electric flux density vector D is related to the intensity 
vector E as D = €o€rE, where co is the absolute permittivity or the 
permittivity of free space and €r is the relative permittivity of the 
medium through which E is directed. In rationalized mks units 
(where the electric flux emanating from a coulomb of charge is 
taken as one coulomb of electric flux) co has a value of l/(367r 10^). 
Therefore: 

D = 

Dy = 10“^^ [800 sin (5 10®)^] coulombs/m^, 

= 10-1» [40 10'« cos (5 10y\ amp/m^ 

or 

Jy = 40 cos o^t amp/m^ (directed along +y). 

The current density dD/dt, which is associated with a time-varying 
electric field, is known as a displacement current density to dis¬ 
tinguish it from ordinary conduction curreut density. The physical 
phenomena involved will be discussed in more detail after the sub¬ 
ject of ^‘operators’' has been considered. 

1-13. PROBLEMS 

1-1. Two vectors, P and Q, are given: P = 12 + j3, Q = 
13 — j4. Find the sum, P + Q, and the difference, P — Q. 
Solve graphically and compare results. 

1-2. What vector added to A = 13 — j5 — k2 will produce 

C = 1 + j + k? 
1-3. A plot of land has the shape of a parallelogram, one 

boundary line running east G miles and another directly northwest 
5 miles. Using methods given in this chapter, find the area. 

1—4. Given P = 1 -f- j -h k, and Q =13 j5 “b kA, find A 
such that P and Q will be perpendicular. 
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1-6. Given P = i + j2 + k3, Q = i — j2 + k2, find the angle 
between the vectors. 

1-6. Prove that P = i + j4 + k3 and Q = i4 + j2 — k4 are 
perpendicular. 

1-7. Find the cross products of the vectors given in problems 
1-4 and 1-6. 

1~8. A = i3, B = i2 + j4. Find A X B and sketch the three 
vectors. 

1-9. Prove that equation (1-19) is correct. 
1-10. Derive equation (1-22). 

I-IL Show that IP* Py P, 

P X 0 • R = Q* Qy Q,. 
P. Ry P. 

1-12. Given A = i4, B == i2 — k3, ' C = j3 + k3, find A X 
(B X C) and (A X B) X C and compare the results. 

1-13. A section of current-carrying conductor 0.40 m long is 
lying in the x-z plane and so oriented that the current is properly 
specified in magnitude and direction by the vector I = i30 + 
jO + k30 amp. A uniformly distributed magnetic field which is 
defined by the magnetic intensity vector, H = ilOO + jlOO + kO 
amp/m is present in the same region as that occupied by the current- 
carrying conductor. Find the total force, Ft, in vector form acting 
on the 0.40 m length of current-carrying conductor assuming a 
free-space medium where /ir = 1, and Avorking in the rationalized 
mks system where juo = 10”^. (B = /^oMrH.) 

1-14. ShoAV that the vector force. Ft = i(—0.00151) + 
j(0.00151) + k(0.0pi51) newton in Prob. 1-13 is directed at right 
angles to both th^ H vector and the I vector. Draw a vector 
diagram illustrating the I, H, B, and Ft vectors including thereon 
the absolute magnitudes of the four vectors in mks units. (B = 

goMrH.) 

1-16. An electric field specified by the intensity vector 

E = i(12.57 sin o)t) + j(12.57 sin u)t) + kO v/m 

is assumed to be uniformly distributed in free space, (w = 10* 
rad/sec.) Find the displacement current in amperes through an 
area which is represented by the vector 

A = 0.30(i + j) m2. 

Solve this problem in the rationalized mks system of units. 



Chapter II 

APPLICATION OF 

OPERATORS 

Summary 

The operator del^ V, is introduced and through it, the operators 
known as grad^ div^ and curl are defined. The Laplacian operator 
is then defined, and for each operator a number of illustrations are 
provided. 

2-1. OPERATORS 

In the preceding material, and for that matter, in all applications 
of mathematics, use has been made of operators. The student is 
already familiar with operators in many forms. Some of the more 
common ones are: 

sin, sinh, log, In, d/dt, X , J, etc. 

Each one of these symbols, and many others, merely indicates that 
a certain operation is assumed to be performed or is to be performed 
on the quantity specified. For instance sin x means that the follow¬ 
ing function of x is understood: x — x^/^ + x^/120 — • • • , or 
it may be thought of as the relationship of certain sides of a triangle 
in which x is one of the angles. The operator X as used in this 
book means the application of the procedure given in equation 
(1-15). The operator d/dt means that the derivative of something 
is to be obtained. Operators are shorthand symbols in mathematics. 

Reciprocal operators are those which effectively cancel each 
other. As an illustration we have J and d/dt^ or + and —, etc. 
Thus / (x + 1) dx = xV2 + X + C, and (d/dx) (xV2 + x + C) = 
(x + 1), the original function, or in general 

^ //(x) dx = fix) 

21 
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However, the operations are not always strictly reciprocal because 
of integration constants, etc. For instance / {d/dx) (x^) dx will 
not yield unambiguously x^, but yields x^ + C where C would have 
to be determined. 

It must be kept in mind that operators are very common and 
that there is nothing particularly mysterious about them. They 
are what they are defined to be. With this brief introduction to 
operators in general we are ready to introduce a few new ones which 
are useful in vector analysis as applied to electromagnetic fields. 
The most important of these new operators is “deF^ which is 
written T. This will be taken up in the next section. 

2-2. THE DEL OPERATOR 

The operator del is used to represent j:he combination of opera¬ 
tions presented as follows: 

V = (2-1) 

It means nothing by itself, but operating upon a function of x, y, 
and 2, its character is definite. It is really made up of a combina¬ 
tion of two kinds of operators: direction operators, i, j, k, and 
differentiation operators. Thus del, operating upon a scalar 
function of x, y, and 2, would yield a vector. Let </> be a scalar 
function of x, y, 2. Then we define 

The term grad is introduced here because it is an alternative way 
of expressing the application of V to a scalar. They are equivalent. 
The term grad comes from the word gradient which is a common 
term in the treatment of electromagnetic fields. Equation (2-2) 
can be regarded as defining both V and grad. By definition the 
operator V (equation 2-1) has all the properties of a vector and 
may be used as such in other operations. 

If </> in equatiqn (2-2) is a f^ctipii ^at at allj)oints of space 
merely has a definite magnitude but no direction associated with 
itjs called a sjsalajLfield of whicb^^ potential fieldJs a special case. 
A scalar field is represented by the work done in lifting a body to 
certain points in space against the force of gravity. The value of 
the work at each point will not have any relationship to any par- 
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ticular direction. The force of gravity at any point in space, 
however, is a vector field. Since the force of gravity is proportional 
to the space rate of change of the potential, it is easily seen that the 
gradient of the potential is proportional to force. Thus, in this 
case, a vector field may be obtained by taking the gradient of a 
scalar field. 

It can be shown that the gradient is perpendicular to the 
surfaces representing equal potentials, ^^et {<t> = constant) repre- 

Fig. 2-1. Cross sections of two equipotential surfaces. 

sent an equipotential surface, the cross section of which is shown in 
Fig. 2-1. On the basis of this diagram the following equations can 
be written: 

d<t, = ^-±dx + ^ 
d<j> 
~dz 

dz = 0, 

because d</> (shown in Fig. 2-1) is taken along an equipotential 
surface and hence d<t> represents zero change in </>. Also 

ds = i dx + j d2/ + k dz. 

Now write by definition 
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The dot, or scalar, product of and ds becomes 

which is identical with which is equal to zero. Therefore, 
• ds = 0, and since ds and d4> may have been taken in any 

direction on the surface {<t> — const.), the term V<^ must be per¬ 
pendicular to the surface. 

2-3. ILLVSTRATIVE EXAMPLES: THE DEL OPERATOR 

Example Jf. As an illustration, consider the electric field between 
the plates of the condenser shown in Fig. 2-2. Let the distance 
between plates be d meters and the voltage across the plates, V 
volts. Then the potential field will be represented hy <l> = ay where 
a is to be determined. When y — d^ 4> given as V volts, and 
therefore, a = V/d volts/meter. Thus <l> = Vy/d which is a 
scalar field. Now apply the del operator to <t> and obtain, from 
E = -V4>, 

E = -V4> 

/. d , . d . , d\V 
■ “V 
= -'d v/m. 

This is a vector field and represents a magnitude and direction at 
every point. The magnitude is — F/d volts per meter and the 
direction is along the negative y axis, as one would expect from 
elementary considerations. 

Example 2, A scalar field is given as </> = + z — Find 
the gradient and its magnitude at the point 2,1,3. Applying 
the del operator we obtain 

T<t> = i(2x ~ y) - jx + k 
= i3 - j2 + k. 

The magnitude of this gradient at 2,1,3 is 

|V<#^ = V(4 - ly + 2^ + 12 = 3.74. 

Example S. In Fig. 2-3 is shown' the cross section of two con¬ 
centric cylindrical conductors which are maintained at a potential 
difference of 1000 v. The radius of the outer conductor is 0.10 m. 
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Fig. 2-2. Electric field intensity, E, between flat plates. E = —V4>. 

Fig. 2-3. Coaxial cable illustrating Example 3. 

Let it be required to find the field intensity, E = - V<#., at points 
(0.025, 0), (0, 0.025), (0.0177, 0.0177) on the surface of the inner 
conductor. It is known that the potential in the space between 

conductors is given by 

0 = —721 In lOVa:* 4- y^- 
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'No potential variation exists along the z direction. 

E = = 721 (i , + j -7 j-- „) v/m. 
\ + 2/V 

At x = 0.025, y = 0; E = i28,850 v/m. 
At X = 0, 1/ = 0.025; E = j28,850 v/m. 
At X = 0.0177, y = 0.0177; E = 20,400(i + j) v/m. 

It will be observed that in each case is directed at right angles 
to the surface of the inner conductor and that the constant magni¬ 
tude of 28,850 v/m agrees with the value of the E field vectors at 
the surface of the inner conductor as found by more elementary 
methods. 

After generalized coordinates have been considered, problems 
involving cylindrical geometry of this kind will be handled in 
cylindrical coordinates. 

2-4. THE DIVERGENCE OPERATOR 

When the operator V is written immediately before a scalar 
we have seen that a vector is the result of the indicated multiplica¬ 
tion and this product^' is defined as the gradient. If V is written 
before a vector using a dot to indicate a scalar product, a scalar 
results, as will be shown, and it is defined as ^Mivergence.’' Given 
a vector V, the divergence is written 

div V = V • V 

dj, 
dx 

d . . d , , 
^ dx dy dz^ ) 

4. 4- 

dy dz 

(iF, + iVy + kF.) 

(2-3) 

This is immediately seen to be a scalar. Its physical significance 
can be appreciated by considering the following discussion of the 
equation of continuity. 

In Fig. 2-4: an elementary cube is shown in a cartesian system of 
coordinates.'^ Let it be assumed that fluid is flowing through this 
volume as indicated by the arrow V, V being the mass per unit time 
per unit cross section and thus equal to the density multiplied by 
the velocity, or V = 5v, where d may be variable. 

The mass of material which flows into the face AEHD is Vx dy dz 
per unit time. Since at the face opposite (that is, at BFGC) the 
value of Vx may have changed, the material flowing out per unit 
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time is [V^{dV Jdx) dx\dy dz. Thus, the accumulation of 
material between the faces of the cube will be the excess of the in¬ 
flow over the out-flow, or 

— (fa; j dy dz = — dx dy dz. 

Now this procedure may be followed for the flow in the y and z 

Fig. 2-4. Divergence in a particular case where V = 6v, 6 being variable. 

directions, yielding similar expressions. The total net increase, 
considering all three components, will then be: 

( dx + dVj, 
dy + dz 

I dx dy dz. 

Dividing this expression by the volume of the element there is 
obtained the increase of material per unit time per unit volume, or/ 

\ dx dy dz / 

from equation (2-3). 

-T • V (2-4) 

2-6. ILLUSTRATIVE EXAMPLES: THE 
DIVERGENCE OPERATOR 

Example 4. Given a waterfall as shown in Fig. 2-5, determine 
the divergence of the velocity at a point y below the reference level 
0 from which all the water may be considered as falling. Since the 
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water is assumed to be falling in a gravitational field of g accelera¬ 
tion, the velocity is written as 

V = iO -f j 4- kO. 

Applsring the divergence operator, we have 

_ BVy 
V • V = 

dy 

Thus, the divergence decreases as y increases^ 

Fig. 2-6. A waterfall where the velocity is v. v = j \^2gy. 

Example 5. Water flows along a river bed in such a way that the 
horizontal velocity increases from zero as one rises above the bot¬ 
tom. If the water is flowing in the x direction and the y axis is 
upward, determine whether there is a finite value of div v. v may 
be written 

V = iv* + jO + kO, v, = my, 
V — imy. 
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Therefore, 

Vv = -m2/ =0. 

Thus, the velocity vector has no divergence in this particular case. 
Example 6. An explosion occurs in such a way that at every 

point in space the velocity of gas is proportional to the distance 
from the center and directed outward. Find the divergence of the 

gas velocity. Refer to Fig. 2-6. In this figure, y* ~ ox, Vy = apj 
and Vm = az. Therefore 

and 

V = iax + jay + ka^, 

V'V = a + a + a = 3a. 

Thus, at every point in space the divergence of the velocity is 
constant and positive. 

Example 7. Given an electric field in which free charges are 
present, determine the divergence of the flux density. Suppose 
there are p positive coulombs per cubic meter; then the excess of 
lines leaving any cubic meter volume over those entering is p mks 

lines. Thus, 
V • D = p. (2-5) 

If the charge per unit volume is zero then this equation reduces 
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to 
V • D = 0. (2-6) 

Example 8. Given a magnetic field in a free space region, find 
the divergence of flux density vector B. Since there are no free 
sources of magnetic lines in the space, there can be no lines originat¬ 
ing in any dx dy dz volume in this space. Thus, there can be no 
excess or deficiency of lines leaving an elementary volume. Thus 

V • B = 0. (2-7) 

which is an important characteristic of magnetic fields. 

2-6. THE LAPLACIAN OPERATOR 

It has been seen that the operation produces a vector. 
Accordingly, it is possible to operate on the vector by ‘‘del-dot^’ 
and obtain a scalar, V •V<t). The value of this is determined as 
follows: 

and 

V<l> = i 
d<t) .d<i> .d<t) 

+ ’sP + ‘‘'5i’ 

T . + ?!♦ + 2^. 
^ dx^^ ^ dz^ 

(2-8) 

This operator on </> is called the ^^Laplacian^’ and is generally 
written V2(= V • V). It is a scalar operator and can be applied to 
vectors as well as scalars in the same way that the scalar multiplier 
a can be applied to both scalars and vectors to produce a<l> and aV. 
Applying the Laplacian to V we obtain: 

dx^ 
V2V = ^ + 

d^Y 

dy^ 
d^Y 

dz^‘ 
(2-9) 

An important expression for the Laplacian is obtained as follows 
Write equation (1-19) as shown below, using equation (1-18) and 
remembering that ordinary algebraic multiplication can be per¬ 
formed in any order. 

C X (B X A) = C(B * A) - (C • B)A. 

Replace C and B by the operator V. Then, 

T X V X A = v(y • A) ~ (V • V)A • 
= VV • A V^A, 

or 
V^A = VV*A-VXVXA. (2-9a) 
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The Laplacian enters into the expression of a particularly 
important equation whose usefulness will appear later. This is 
Poisson^s equation which can be developed as follows: It is known 
that the electric field intensity is expressed as 

(1) E = 

Also, equation (2-5) expresses the relation between D and p as 

(2) V • D = p, 

where p is the volume charge density at the point under considera¬ 
tion. From equation (1) 

-T<^) = 

where € is the dielectric constant, (t = eo^r). Therefore, 

(3) 

From which 

— V • 
V D 

€ 

P 

€ 

V20 = P 

6 
(2-9b) 

This is Poisson^s equation. If p = 0, that is, if the space is free of 

charges, then 
== 0. (2-9c) 

Equation (2-9c) is known as Laplace^s equation. Both Laplace’s 
and Poisson’s equations will be useful in future work because a 
large portion of our knowledge of ele(*tric fields is contained in the 

concise statements; = 0, and = —p/e. 

2-7. ILLUSTRATIVE EXAMPLES: THE 
LAPLACIAN OPERATOR 

Example 9. Find where <i> = x* + 31/2 — z*. 

^-2x, 
dx ’ 

_ o 

- fl 
ay2 ’ 

1? = - dz2 
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Therefore, 
rv = 2 + 6 - 2 == 6, 

from equation (2-8), 

Example 10, Find where V = i(x^ + y^) + j(y^ + + 
k(x^ + z^), 

SV 
— == i2z + 0 + k2x, 
dx 

~=i2y + i2y, 

dV 
— = j2z + k2z, 

Therefore, 

by equation (2-9). 
= i4 + j4 + k4, 

2-8. CURL OR ROTATION 

The physical significances of gradient and divergence are rela¬ 
tively easy to visualize, at least for certain applications. Curly 
however, is somewhat more difficult although there are cases where 
its significance can be seen. Curl is defined as follows: 

i j k 
± ± ± 
dx dy dz 
Fx Vy F. 

^ ^ 4. k ~ 
dz / ^\dz dx J \dx dy J 

(2-10) 

It is best to consider this operation from a purely mathematical 
standpoint and not to attempt to visualize what is meant, at least 
in complicated cases. Its significance in a few simple cases, how¬ 
ever, win be worked out to present a rough picture. In general, 
the term ‘‘rotation’^ is most descriptive. Anything having simple 
rotation has a value of curl associated with it. Thus the velocity 
of points on the end of a rotating shaft has a finite value of curl. On 
the other hand, fields which appear to have no rotation sometimes 
have a value of curl, and also sometimes fields which seem to have 
simple rotation have no curl. 
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2-9. ILLUSTRATIVE EXAMPLES: CURL OR ROTATION 

Example 11, Refer to Fig, 2-7, where the end of a rotating shaft 
is shown. The velocity r of point P is rev, where cv is the angular 

velocity. The x and y components of this velocity are as follows: 

Vx = —ro) sin 0 = —evy, 

Vy = ro) cos B = (vx. 

The vector expression for velocity is now 

i-Vx + py — —levy + ](vx, 

i j k 

AAA 
dx dy dz 

— cvy wx 0 

iO “h jO k(co -4“ to) 
k2a>. 

Thus, the curl of velocity of particles in a rotating shaft is simply 
twice the angular velocity and is represented by a vector parallel 

X 

Fig. 2-7. End view of a rotating shaft. 

to the axis of rotation. It should be noted here also that the curl 
is the same for all points in the shaft. 

Example 12, Refer to Example 5. Here, horizontal flow of 
water is the only motion present. However, that there is really a 
rotation or curl is seen by the fact that if a water wheel were placed 
somewhere in the water, a rotation of the wheel would result 

V = 

V X V = 
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because water is flowing past it faster on the upper side than on the 
bottom. In this example, v = imy and the curl is found as follows: 

V X V 

i j k 

A 
dx dy dz 

my 0 0 

= iO + jO — km — km. 

Accordingly, there is a curl whose direction is horizontal, and 
perpendicular to the velocity. 

Fig. 2-8. Magnetic field intensity, H, at a distance r from a straight 
current-carrying conductor. 

Example IS. Consider Fig, 2-8 where the magnetic field about a 
wire is represented. In a manner similar to Example 11, we may 
write:* 

* The equations which follow are based upon the equation 

H = 

1 
27rr 

which gives the field intensity about a current-carrying conductor in the 
mks system of units. The student may be more familiar with the equation 

H = 
r 

where H is in gilberts per centimeter, I is in abamperes, and r is in centi¬ 
meters. This equation in emu may be easily changed to mks units by 
noting the following relations which are presented in Chapter III. 

amperes _ gilberts _ q ^ centimeters 
abamperes * amperes * meters 
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Tj —I sin 6 

= ~^y 
2rr^ 

= (jr^^amp/m, 

„ I COS 6 

— 

^ (x^ + ?/2)25r 

djh ^ -l[{x^ + y^) - V{2y)\ 
dy ^TTr^ 

_ -/(x^ + 2/* - 22/^) 
2irri ’ 

^ /[(x^ + ?/^) - x(2x)] 
5x 2irr« 

_ /(x^ + j/2 - 2x2) 
25r?-4 

Thus, 

Curl H = iO + jO + k 

= 0. 

x2 + T/2 + a;2 

Accordingly, although there appears to be a rotation involved, there 

is no curl. 
Example 14. If the magnetic field within the wire is considered, 

however, a different picture results and curl is found to exist as 
shown below. In Fig. 2-9 the end of a wire of radius a is shown 
where H at any point is given as 

H = 
27rr 

ffx 
Ir sin B 

2ira^~ 

Therefore, 
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27ra2' 

„ Ir cos 6 
~ 2wa^ ' 

= J±. 

-I dHy 
2xo2' dx 

dH, 
dy 2xo2 

Thus 

and a curl exists. 

V X H = k —2, 
X02 

Fig. 2-9. Magnetic field intensity, H, inside a current-carrying conductor. 

Curl may also be ^looked upon as the limit of the ratio 

integral of a quantity around a closed path 
area of the surface enclosed by the path 

when the area approaches zero. This will be shown to give the 
appropriate value for one special case. Consider the rotating 
shaft of Fig. 2-10. The velocity along cd is ViO), and that along 
ba is rio). The velocities along ad and be are zero. The integral 
of V around the closed path abeda then is 

—Ti^do) + 0 + + 0 = do){r2^ — ri2). 

The area of the enclosed surface is 

irr2^0 wTi^B _ 6 

2x ~ 2 
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The ratio becomes 

= 2«. 
2 (r2^ - ri^) 

Since this is independent of r and 6, its limit as r2 -*> ri and 0—^0, 
is still 2w. This agrees with the value of curl given previously in 
Example 11. 

2-10. PROBLEMS 

2-1, A scalar field is given by <l> = + 2xy + 2. Find the 
gradient. 

2-2. Let R = io: + + k2, with R“ = x^ + y‘^ + z^, (a) Show 
that V/?** = (b) Find a function </> whose gradient is R. 

2-3. If A is a constant vector show that V(A • R) = A, where R 
has the value given in Prob. 2-2. 

2-4. Find where <t> is given in Prob. 2-16. Find the diver¬ 
gence of this gradient. 

2-6. Find V(V • P) where P is given in Prob. 2-20. 
2-6. Fx = sin y, Vy = Vz = 0. Sketch the field of V and find 

its divergence and curl. 
2-7. Two infinite planes are separated by 10 cm. At a point 

Ay taken as the center, an incompressible liquid originates at the 
rate of 100 cm®/sec. The liquid flows outward radially from the 
center, completely filling the space between the plates. Find the 
divergence of the velocity of the liquid at a point some distance r, 

(> > 10 cm) from the center. 
8-8. Vz, = Vy = I/yjx^ + 2/^. Sketch this field and find its 

divergence. 
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find its divergence and curl. 
2-10. Find the curl of the gradient of P — 1000 — x* — y^. 
2-11. Find the divergence of the curl of the vector field given 

in Prob. 2-6. 
2-12. Let H == i2x^ + K^xy + y^) + k3x. (a) Find the curl 

of H. (b) Find the divergence of the curl of H. 

Fig. 2-11. a flat cathode and plate assembly illustrating Prob. 2-23. 

2-13. Find V X (V X P) where P is given in Prob. 2-20. 
2-14. Using the method given at the end of §2-9, find the curl 

of the magnetic field H outside of a wire carrying a current I. Use 

the mks system of unite. 
2-16. The gravitational potential field may be represented by 

^ = G + my, where G and m are constants. Find its Laplacian. 

2-16. Find T^<t> where <t> = + xy^ + y* + 3z. 
2-17. Find the Laplacian of P where P = — In r. (Use two 

dimensions.) 
2-18. Find the Laplacian of P = 1000 — x* — y^. 
2-19. Find the Laplacian of P where P = 1/r. (Use two 

dimensions.) 
2-20. Find where P = i(x* + y*) + j(^ + y) + k. 
2-21. Prove that equation (2-9a) is.correct by direct expansion. 
2-22. Given a sphere of h meters radius containing a negative 

electric charge which is increasing at such a rate that div J = a, 
where J is the current density, find the time rate of change of charge 
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density within the sphere, and the total current flowing out of the 
sphere. 

2-23. Given the space between a plane cathode and a plate as 
shown in Fig. 2-11, assume that the planes are of infinite extent 
and that the potential of the cathode is 0 and of the plate, +300 
V. Let the charge density be p given by p = l/(l + lOOx). 
Applying Poisson^s equation, find the field intensity at any point 
between the cathode and plate. Assume that 6r = 1. 

2-24. Repeat Prob. 2-23 for p = 0, and for p = Qo, a constant. 



Chapter III 

THEOREMS AND 

LAWS 

Summary 

The basic operators having been introduced, they are now used 
to formulate the theorems and laws necessary for a complete 
description of the electromagnetic field in the time-varying state. 
A discussion of units is provided, followed by a presentation of the 
ideas of potential, both scalar and vector. Gauss’s and Stokes’s 
theorems are introduced on this basis and they lead directly to a 
formulation of the four laws of Maxwell. 

3-1. BASIC LAWS IN LINE-INTEGRAL FORM 

Some of the mathematical tools which are most useful in analyz¬ 
ing scalar and vector fields were considered briefly in Chapters I 
and II. Emphasis was placed upon the mathematical techniques 
involved rather than upon the physical significance of the symbols. 
Attention will now be' directed toward the laws governing scalar 
and vector fields and the fundamental equations of electromagnetic 
theory. 

It is assumed that the reader is familiar with the circuital law 
of magnetism which in line-integral form reads: 

^ H • ds = 4ir/ (in unrationalized units), (3-1) 
or 

K • ds = J (in rationalized units), (3-la) 

where H is the magnetic field intensity which, by definition, is the 
negative of the magnetic potential gradient, 

ds is the displacement along the path of integration, and 
/ is the total current linked by the closed path of integration. 

40 
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That integration is to be taken along any closed path in equations 
(3-1) and (3-la) is indicated by the closed loop around the integral 
sign. The matter of rationalized and unrationalized units will be 
considered in a later section of this chapter. 

In a similar manner, a knowledge of Faraday^s emf law in 
line-integral form is assumed. 

^E-ds = E= -^ (3-2) 

where E is the total voltage induced around the closed path by the 
time rate of change of magnetic flux, {d<i>/dt), linking the closed 
path. E is the symbol employed here for the electric field intensity 
which by definition is the negative of the electric potential gradient. 

Although scalar potentials will be considered in some detail 
later, attention will be called at this time to the fact that the essen¬ 
tial scalar potentials employed in circuit analysis are: 

1. magnetomotive force (usually expressed in amperes or 
ampere turns). 

2. electromotive force (usually expressed in volts). 
The analyses of electric and magnetic fields are, however, better 
carried out in terms of the gradients of the two scalar potentials, 
namely: 

H = — V mmf (called magnetic field intensity), (3-3) 
and 

E = — V</) (called electric field intensity). (3-4) 

In order that the basic equations of electromagnetic theory may be 
generally applicable to any system of units, it is desirable to express 
the magnetic field density or magnetic flux density (</>/A) as: 

B = poMrH = mH = |, (3-5) 

where /xo is the permeability of free space which possesses dimen¬ 
sions and as such possesses a numerical value which is 
dependent upon the particular system of units employed, 

and 
Hr is the relative permeability of the medium which pos¬ 

sesses the same value irrespective of the system of units 

employed. 
In a similar manner, it is desirable to express the electric flux 

density as: 
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D = ^ = to«rE = «E, (3-6) 
A 

where €o is the permittivity of free space; 
€r is the relative permittivity or dielectric constant of the 

medium, and 
^ is the electric flux; and A the area through which the flux 

is passing. 
The quantities B and D are, in one sense, mathematical con¬ 

cepts because they do not lend themselves directly to experimental 
verification. These concepts are, however, extremely useful in 
simplifying many calculations and since B and D are linearly related, 
respectively, in isotropic media to the physically realizable vectors 
H and E, the B and D vectors are accepted as defined quanti¬ 
ties. Their definitions are given by equations (3-5) and (3-6), 

respectively. 
In arriving at the fundamental equations of electromagnetic 

theory in differential vector form, certain purely mathematical 
concepts will be invoked. The reader should not expect diagrams 
or even physical interpretations of the concepts which come from 
the field of pure mathematics. As the text proceeds, an effort 
will be made to distinguish between the contributions of physics 
and those of pure mathematics. Before proceeding, however, the 
matter of units must be settled upon. 

3-2. RATIONALIZED AND UNRATIONALIZED CGS UNITS 

The subject of units is a disagreeable one but it is also an essen¬ 
tial one from an engineering point of view. It is disagreeable 
because so many different systems of units are available and each of 
the commonly used systems has certain distinct advantages within 
prescribed limits. 

The unrationalized ab-cgs system of units, for example, is 
rather ideally suited to elementary magnetic field calculations, 
particularly in those cases involving spherical or cylindrical geom¬ 
etry. It will be remembered that, in this system of units, mo == 1. 
That is, 

B' (in maxwells/cm^) = H' (in gilberts/cm) (3-7) 

in free space, and 

mmf (in gilberts) = 4t/o6, (3-8) 
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where I ah is the total current linked by the path around which the 
mmf is measured expressed in abamperes. [See equation (3-1).] 

For example, the magnitude of H in the region outside and at a 
distance x from a long straight current-carrying conductor is, 
according to equation (3-1), 

^ gilberts/cm. (3-9) 

Thus by using the gilbert as the unit of mmf rather than the 
abampere, certain expressions for H become more simplified than 
would otherwise be the case. 

There is, however, no basic reason why the abampere might not 
have been selected as the unit of mmf in the ab-cgs system. From 
equation (3-8), it is plain that the abampere as a unit of mmf is a 
unit which is At times as large as the gilbert. If H were to be 
expressed in abamperes per centimeter in equation (3-5), the same 
value of B (in maxwells per square centimeter) could be had if 
/mo were given the value of At rather than unity as in the unra¬ 
tionalized ab-cgs system. The rationalized ab-cgs system of units 
is characterized by the use of H in abamperes per centimeter and 

Mo = 47r. 

In the field of electrostatics, the unrationalized stat-cgs system 
is widely used, and we presume that the reader is reasonably 
familiar with this system of units which comes into being as a 
result of making €o = 1. It will be remembered that in this system 
of units, electric flux is defined in such a manner that At lines of 
electric flux emanate from each statcoulomb of charge, the primary 
unit of charge in the stat-cgs system. That is, 

yp = AtQ^ (cgs lines of electric flux). (3-10) 

Again there is no basic reason (other than wanting to have eo equal 
to unity) why electric flux might not have been specified in stat- 
coulombs of electric flux, or, what amounts to the same thing, in 
statcoulombs of projected charge. In most of the material that 
follows, electric flux will be considered as projected charge and will 

be expressed: 

yp = Q (in rationalized units). 

The concept of electric flux then takes on a physical significance 
that it might not otherwise have. The parent charge Q might, for 
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example, be residing on a conductor like an antenna, but its effect 
in the free space surrounding the antenna can best be described and 
manipulated mathematically in terms of the parent chargers 
projected effect, namely, electric flux. 

A statcoulomb of electric flux is plainly a unit of flux which is 
47r times greater than the stat-cgs line of flux. Thus the stat¬ 
coulomb per square centimeter (D' = Q/A) is a unit of flux density 
which is 47r times greater than the stat-cgs line per square centimeter 
(D = 47rQ/A), If now we wish to find E (still in statvolts per 
centimeter) in terms of D = Q/A [for example, by means of 
equation (3-6)], €o will have to be given the value of l/(47r). Thus 
the rationalized stat-cgs system of units is characterized by the facts 
that the electric flux density is expressed in statcoulombs per 
square centimeter, and that €o = 34^. 

Inasmuch as both electric and magnetic phenomena are to be 
interrelated in the same equations presently, it is plain that a 
common system of units must be employed. If a cgs system of 
units is to be employed, either the stat-cgs or the ab-cgs system 
might be employed but not both. One fairly common cgs system 
used in electromagnetic theory is the unrationalized stat-cgs sys¬ 
tem, sometimes referred to as the Gaussian system of units. In 
this system all ab-cgs quantities are transformed to their equivalent 
stat-cgs values on the basis that 

statcoulombs 
abcoulombs 

(as a ratio) = 3(10^®) = c, 

where c is the velocity of light expressed in cgs units. 
Although the Gaussian system of units is well suited to theoreti¬ 

cal derivations, it is not well suited to practical calculations where 
the unit of electric potential is the volt and the unit of electric 
current is the ampere. The Gaussian system will be employed in 
this text in some problems so that the reader may be conversant 
with this system, but only after a working knowledge of the ration¬ 
alized mks system is assured. Hereafter, the rationalized mks 
system will be referred to merely as the mfcs system. 

a-3. MKS UNITS DERIVED FROM UNRATIONALIZED CGS 

UNITS 

It appears that more of the literature is being written in mks 
units now than at any previous time. If we accept the premise 
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that the present trend will continue, this in itself is some justifica¬ 
tion for using mks units. In any case, it is the only system of 
units in common use in which all the following advantages can be 
obtained: 

1. It permits the direct use of volts as a measure of emf; hence 
the use of E in volts per meter. 

2. It permits the direct use of amperes as a measure of mmf; 
hence the use of H in amperes per meter. 

3. It permits the direct use of D = Q/Ain coulombs per square 
meter; hence the use of dD/dt in amperes per square meter. 

4. It ties together in a common system of units the electric 
and magnetic field equations. 

The price to be paid for the advantages listed above is the rather 
awkward numerical expressions for fiQ and eo in the general relation¬ 
ships stated in equations (3-5) and (3-6). It will be shown pres¬ 
ently that 

pio = 47r 10“^ henry/m (in mks units), 

(in mks units). 

If we assume a working knowledge of the unrationalized ab-cgs 
system of units (where mo = 1) and decide that we would like to 
express H in amperes per meter and still keep B in webers per square 
meter, then by the use of equation (3-5) we note that 

B (in webers/m^) _ MoMrH (in amperes/m) 
B (in maxwells/cm^) IjiXrH (in gilberts/cm)^ 

or 

Mo (in mks) 
webers gilberts centimeters 

maxwells amperes meters 

10-^ 

47r 

10 
100 = 4x10-7. 

That Mo in mks units has the dimensions of henrys per meter (on a 
one-turn basis) may be seen as follows. From equation (3-5) 

or 

Avebers _ amperes 
square meters meters ^ 

_ webers 1 
amperes meters 



46 ELEMENTS OF ELECTROMAGNETIC WAVES 

where, on a one-turn basis a weber of flux linking with one ampere 
of current constitutes the elementary definition of a henry of 
inductance. 

If we assume a working knowledge of the unrationalized stat- 
cgs units (where €o = 1), and decide that we would like to express 
D in coulombs per square meter keeping E in volts per meter, then 
by the use of equation (3-6) we note that 

or 

D (in coulombs/m^) _ €o€r E (in volts/m) 
D (in cgs lines/cm^) 1 (in statvolts/cm)^ 

€o (in mks units) 
coulombs statvolts centimeters 

47r statcoulombs volts meters 

^_100 
127r 109 300 

1 
SGttIO®* 

That €o in mks units has the dimensions of farads per meter may be 
seen as follows. From equation (3-6), 

or 

coulombs _ volts 
square meters ^ meters 

_ coulombs 1 
volts meters^ 

where coulombs per volt constitutes the accepted definition of 
farads. 

A consequence of using any rationalized system of units is that 
Coulomb’s inverse square law must be written as 

f — — Q1Q2 

^ 47r€o€r^^ 47r€r2^ 
(3-11) 

where r is the distance of separation between the centers of charge. 
As applied to mks units, this law becomes 

/ = 
9 IO9Q1Q2 

€rr^ 
newtqns, (3-1 la) 

where Q\ and Q2 are the magnitudes of the charges expressed in 
coulombs and r is the distance of separation expressed in meters. 
The newton is the primary unit of force in the mks system of units 
and is the equivalent of 10® dynes or 0.2247 lb. 
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potential are joined to form a surface, the surface thus formed 
would be a surface of equal elevation above sea level. The inter¬ 
sections of these surfaces with the earth’s surface are the well known 
contours employed in survey maps. 

The absolute electric potential of any point in an electric field 
is defined as being numerically equal to the work done in bringing 
a unit positive charge from a region of zero potential to the point 
whose electric potential is being specified. Thus an electric poten¬ 
tial field, <t>y is a scalar field which, if specified throughout a region, 
may be represented by <^ = f{x,y^z). Here the scalar <l> represents 
electric potential and V<t> = —E represents the electric potential 

Fig. 3-1. Representation of E and V<j) between parallel plates. 

gradient. Thus is a vector which is directed normal to the equi- 
potential surfaces and in the direction of increasing </>, whereas E 
is, by definition, equal in magnitude to the force on the unit test 
charge and in the same direction as this force. 

Every potential field has a gradient, and the force acting upon 
the test body, unit mass or unit charge, is given by the negative 
of this gradient. This is, f = — V<^). That the force on the unit 
positive charge in an electric field is the negative of the gradient 
can be seen from a simple example using the condenser plates of 
Fig. 2-2. If the *upper plate is at a potential of +F volts with 
respect to the lower plate and the separation is d meters, the electric 
potential may be expressed as <!> = Vy/d volts. The gradient 
then becomes V</) = jF/d volts per meter, a vector quantity which 
is in the positive y direction. From elementary considerations, it is 
clear that a unit positive charge (a coulomb in this case) would 
experience a force equal to V/d newtons directed in the negative y 
direction. Thus, 

f = = -V<i> = +E. 

See Fig. 3-1. 
In a corresponding manner it may be seen that whereas the 
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gradient in a gravitational field is directed upward, the force acting 
on the unit test mass is directed downward. 

Indirectly, the gradient defines the spacing between the equi- 
potential surfaces; the greater the gradient, the closer to one another 
are the equipotential surfaces, assuming, of course, that the equi- 
potential surfaces in question differ in potential from one another 
by the same increment. An illustration of this may be seen in any 
good contour map. 

A Note on Scalar Magnetic Potential Difference 

If scalar magnetic potential difference, between two points in 
space, is defined in terms of the work done in moving a unit positive 
magnetic pole from one point to another, then scalar magnetic 
potential difference is analogous to scalar electric potential difference 
and a similar equation applies which may be written as follows. 

H = (3-12) 

where F is the magnetic potential and H is related to the current 
.through equation (3-la). 

From equation (3-12) we recognize H as a vector which equals 
in magnitude the grad F and is opposite in direction. Let this 
general discussion be applied to the cylindrical field surrounding 
the current-carrying conductor of Fig. 3-2. Here F will be assigned 
a zero value at the point x = r, y = 0 + . Now proceeding a along 
circular path of r meters radius where H = —It/2nrr for a distance 
of %rr meters in the positive direction, we have from equation 
(3-12), 

H = 
dF 
ds 

or 

F = ~^Hds 

= A 2^ = /.. (3-13) 

Thus the point (r,0—) may be considered as being at a magnetic 
potential of /, amperes relative to the reference of F = 0 at (r,0+). 

Although the procedure given above is open to misinterpreta¬ 
tion, it is useful in locating planes of equimagnetic potential. For 
example, if VF is integrated along the circular path for a distance 
of say 27rr/8 meters, the value of F is /,/8 amperes higher in mag- 
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netic potential t^ian at the reference point (a: = r, 1/ = 0+). Since 
the argument in this case is independent of the magnitude of r, the 
plane of equimagnetic potential (/*/8 amperes) is readily visualized 
as a plane surface, the cross section of which is indicated by the 
F = /,/8 line in Fig. 3-2. 

Fig. 3-2. Magnetic potential about a current-carrying conductor. 

It will be shown later that the magnetic field can be described 
better in terms of a vector potential field than in terms of a scalar 

potential field. 

3-6. EVALUATION OF </> FROM V<t> AND ONE KNOWN VALUE 
OF 0 

It has been shown that the gradient of a scalar 0 is a vector 
which defines the maximum space rate of increase of the point 
function 0. This vector is known if its magnitude, 

V(l!) + (^) + {^) ’ 
and its direction cosines are specified, or if d0/dx, d<t>/dy^ and b^/bz 
are specified. In either case the gradient may be reduced to the 

form previously given: 

_ j i . d0 , • 50 , - d0 
V,A = grad<A = i^ + J^ + k-. (3-14) 
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As in geometry where a line is determined by df{z)/dx and one 
value of f(x), it is possible to determine the scalar field <^, if V<t> and 

one value of <l> are kno^vn. 
Although the general procedure has been discussed previously, 

it will be illustrated here by means of an electric potential gradient 
expressed in mks units. Consider the concentric cylindrical con- 

Fig. 3~3. Representation of E and V<t> between coaxial conductors. 

ductors shown in Fig. 3-3 and assume that Er is known and that the 
potential of the outer conductor is zero. If 

1, 180 180 
= v/m, 

r + V 

then 

or from the x component, 

-180x 

and from the y component, 

dx = —90 In {x'^ + y^) + Ci 

It is plain that Ci = C2 = c and that at the point (0.1,0), or any 
other point in the outer conductor, where = 0, c may be evaluated 
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as 
c = 90 In (0.1)^ = —414 v, 

0 = [-90 In (x2 + y^) ~ 414] v, r2 ^ x ^ ri, r2 ^ 2/ ^ 

If (x^ + y^) is constant, then <t> is constant and the cross sections 
of the equipotential surfaces which would appear on Fig. 3-3 would 
be circles, the centers of which are at the origin. This result could, 
of course, have been anticipated from the symmetry of the conduc¬ 
tor surfaces. As a check on the numerical result, let us calculate 
the potential of the inner conductor as: 

</>0-01 

and 

-90 In (0.01)2 __ 414 = (-.180)(~4.6) - 414 = 414 v, 

^0.01 

01 = I - 
Jo.l 

Ex dx 

0.01 jgQ 

dx 

= -180 In ^ = 414 V. 

3-6. CONDITION FOR VECTOR V TO BE Vit> 

Although every scalar potential field has a gradient associated 
with it, it is not true that every vector field is a gradient of some 
scalar field. The problem then arises as to whether or not a 
specified vector field can be the gradient of some scalar field. In 
other words, is the vector 

V = iFx + Wv + 

the gradient of some scalar field <t>? If it is, then the scalar field 
0 may be found by methods which have been considered previously. 

This problem will be approached by stating the theorem 

curl grad 0 = V X V0 = 0. (3-15) 

The proof of this theorem is straightforward and is left as an 
exercise for the student. (See Prob. 3-2.) A careful consideration 
of equation (3-15) will shoAv that if the curl of a vector is zeroy then 
the vector may be considered as V0. 

Another way of approaching the problem is to note that if a 

scalar field exists, then 

d4> . ^<t> . d(t> 
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d<t> = Vxdx + Vy dy + V, dz, 

must be an exact differential in the sense that 

dV, _ dJVy 
or 

d^<t> d^<t> 

sy dx dx dy dy dx 

dVy 
or 

d^-<i> d^<P 
dz 

= 

dy dy dz dz dy 

dV. _ dj_. 
or 

d'‘<j> d^<t> 
dx dz dz dx dx dz 

This is equivalent to saying that 

dV. _dVy_ 
dy dx ^ ‘ 

dz dy ' 

dx dz 

or that curl V is zero if is an exact differential, as it must be if (j> 
is to represent a scalar potential field. 

Accordingly the problem is solved as follows. If a vector 
V is to be tested to determine if it can be the gradient of some scalar 
field </>, merely determine the curl of the vector V. If the curl turns 
out to be zero then the vector in question is the gradient of </> and, 
theoretically, <#> may be determined. In this case 0 is said to be a 
lamellar field, or irrotational field. Examples of this type of field 
will now be given. 

3-7. ILLUSTRATIVE EXAMPLES: THE LAMELLAR FIELD 

Example 1. Given V = — ia?/ + jax, is this vector the gradient 
of some scalar field <f>, and if so what is the form of <t>? A sketch 
of the vector field is shown in Fig. 3-4a. 

T X V = 

1 

dx 
-ay 

J 

ax 

k 

dz\ 
0 

= k(a + a) = k2a 9^ 0. 

Therefore no scalar field exists of which V is the gradient. 
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If, however, the vector V is changed slightly in form to be as 
follows: V = iay + jox, then it is easily determined that curl V = 0 

\y \y 

(a) (b) 
Fig. 3-4. To be used in connection with Example 1. (a) Curl 9^ 0. 

(b) Curl = 0. 

and <t> exists. (See Fig. 3-4b.) For this case <t> can be determined 
as follows: 

V(t> 

dx 
d(t> 

dy 
d(t> 

dz 

Upon integration of these three equations 

</) = ayx + Cl, 
0 = axy + C2, 
0 = C3. 

Thus it is seen that 0 = axy + C is the required scalar field as can 
be determined by finding V0. Notice that C is arbitrary and thus 
there are innumerable fields which satisfy the conditions. 

Example 2, It is kno\vn that the force on a body is given by 
F = —j6/y. Find the potential field, if one exists. First find 
curl F. If this is zero, then from what has been said above the 

gradient of 0 will be —jfi/y. Thus 
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V XF = 

i i k 

^ A ^ 
dx dy dz\ 

y 
0 

= 0. 

Therefore, 

Accordingly, 

^ dx^^dy^ dz 

= iO - j - + kO. 
y 

d<i> 
Jy 

<t> 

-6 
y 

-Kt) 

Example S. Given 

E = i 

dy 

— 6 In j/ + C. 

180x , . 180j/ , , „ . 
+ J „T-L4r2 + 1^0 v/m. o;^ + 2/2 x^ + 2/2 

This is the vector which specified the negative of the potential 
gradient in Fig. 3-3. Its curl is 

1 

dx 
180x 

3 

dy 
I80y 

k I 

_aj 
dz\ 

0 
^2 +.y^ x2 + y2 

= 0 + 0 + k 
-180y2a: 

+ 180x2?/ 
_(X2 + ?/2)2 (a;2 + y2) 

Thus the test shows that <t> exists and as shown in §3-5, 

= [ — 90 In (x2 + 2/*) — 414] v. 

J=0. 

3-8. VECTOR POTENTIALS 

In the case of the electrostatic field, the scalar potential <t> was 
given a very definite physical significance but certain ambiguities 
arose when a corresponding attempt was made for the magnetic 
scalar potential. Physically, one should not expect to find an exact 
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correlation between the electric and magnetic fields because they 
differ in several important respects. For example, magnetic lines 
of force (H lines) always form closed paths whereas electric lines of 
force (E lines) originate at positive charges and terminate at 
negative charges. The fact that the magnetic lines always close 
on themselves implies that no true magnetic charges exist; hence 
the divergence of the magnetic field is everywhere zero. 

The concept of vector potential which is to be employed later in 
connection with the magnetic field is, unfortunately, not susceptible 
to easy physical interpretation. At least for the present, vector 
potential should be accepted as a useful mathematical tool which 
comes into being when we write 

div curl A = V*VXA=0. (3-16) 

The proof of this statement or theorem is simple and is left as an 
exercise for the reader. (See Prob. 3-7.) 

Equation (3-lG) is used to define vector potential in analogy to 
the scalar potential which was defined by equation (3-15). Thus 
if the divergence of a vector, B for example, is zero, then B may be 
considered as the curl of some vector field A. The field A is the 
vector potential field, A field of this kind is called solcnoidaL In 
many cases the vector potential may be determined in a manner 
analogous to that used to determine scalar potentials, but it must be 
recognized that scalar and vector potentials, although they may be 
derived from the same vector field, are not at all similar. All 
magnetic fields are solenoidal since V • B = 0. See equation (2-7). 

Consider the B field which is associated with the H field shown 
in Fig. 3-2. In this case H = —/z/27rramp/m, where the minus sign 
indicates that current is directed along the — z axis. 

B = i 

VB = 

27r(x“ + i/) 
— 2iiLyx 

+ 3 + ^0 webers/m2, 

+ 

' 27r(.r2 + 2/2) 

2ixl,xy 

2ir{x^ + y^y^ 27r(.r2 + y^y 

A vector potential A exists, therefore, and 

V X A = B 

= 0. 

= 1 + 3 
■llIzX 

2t{x^ + i/2) • J 27r(x2 + i/2) 
+ k0. 
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The vector A is defined to the extent that we know now that 

dAt _ dAy 
dy dz 

dA^ _ dA, 
dz dx 

dAy __ dAx 

dx dy 

jllzV 

2w{x^ + y^y 

— fihx 
2Tr{x^ + y'^y 

0. 

If now we arbitrarily select Ax — Ay ^ 0 throughout the field, we 
find that 

A, = ^ In {x^ + ,/), 

and that 

A = iO + jO + k ^ In (x- + y‘^) webers/m. 
47r * 

Therefore, the loci of the equivector potentials are circles, the 
centers of which are at the origin. Since the magnetic vector 
potential is defined indirectly as V X A = B in this case, we know 
that A is dimensionally equivalent to magnetic flux per unit length. 
As a result of the definition V X A = B, we find that A is closely 
related to the magnetic flux linking the conductor per unit length 
of conductor, since 

<t>ext per u.l. I' 
I 

B dr 

2x7 

IJlIz. filz, 

s'"'-2;'" 

where ri is the radius of the conductor. Thus the magnitude of A 
in this case is 

-4 = <t>ezt per u.l. + a constant, 

where the constant is y.lzl2'K In ri. Considered as a vector, A is 
directed along the z axis, that is, opposite in direction to the current 
source. 

If the magnetic vector potential had been defined in such a 
manner that 

V X A' = H, 
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then 

A' = iO + jO + k ^ In {x^ + y‘^) amp. 

The magnetic vector potential A' is dimensionally equivalent to 
current, and it is in this form that magnetic vector potential will be 
encountered later. It should be noted, however, that the A' 
employed here implies that the current source (7) takes the form of a 
steady or direct current or, at the most, a relatively low-frequency 
alternating current. As might be anticipated, certain modifications 
in A' are necessary when the current source alternates rapidly. 

3-9. ILLUSTRATIVE EXAMPLES: VECTOR POTENTIAL 

Example 4- Determine the vector potential corresponding to the 
field V = ix A- iy k22. First, to test for the existence of a vector 
potential, find the divergence. 

T • V = ̂ 1 + 1 

Thus a vector potential exists and 

T X F = ix + 

From equation (2-10): 

(1) 
dF, dFy 

dz 

(2) 
aFx 
dz 

- : 

dx 

(3) 
dF„ 

_ ^ 
dx 

It is seen immediately that F is arbitrary to a great extent. Thus 
Fy, for example, can be set equal to zero. Then 

Therefore, 

-22. 

F. = X1J + f{x,z), 

Fx = 2yz + f'{x,z). 

The two equations satisfy (2) if / and f are the same functions. 
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Thus, 
F = i[2yz + f{XyZ)] + jO + k[xy + f{x,z)]. 

The simplest result is 

F = i2yz 4- kxy. 

Example 5. V = j2 + ky. Find both a scalar field and vector 
field associated with V, The test for scalar field is curl V == 0, 
which is easily seen to be true. It is evident also that div V == 0. 
Thus both potential fields exist. 

For the scalar field: 

V<t> 

d(t> 
dx 

, . d<t> , I 

= iO + j2 + ky, 

= 0, 

Therefore, 

<t> 

For the vector field 

zy + C. 

curl F = = iO -f 32 + 

From equation (2- -10): 

(1) 
dy 

_ ^ 
dz 

= 0, 

(2) 
dF, _ ^ 
dz dx 

2, 

(3) 
djy _ djy 
dx dy = y- 

Again, an arbitrary selection may be made and Fy and F, will both 
be taken as constants, Ci and Ci. Then, 

dFy 
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Therefore, 

Fs = ^+ f{x,y), 

F. = ^+rix,z). 

These two values of jP* will be the same if f{x,y) = —y^/2 and 
f{x,z) == z^l2. Then, 

“ "2 ”2 
Accordingly, 

F = i + jCr + kC,. 

It is to be noted that there is no similarity between these two 
potential functions and also that a great number of vector potentials 
can be found. The vector potential is determined uniquely only 
if six partial derivatives and one value of the potential are given. 

3~10. GAUSS'S THEOREM 

Gausses theorem relates the volume integral of the divergence 
to the surface integral of the vector over the volume. It is a 
theorem that can be visualized quite easily as follows. It has been 
seen that the term div V indicates the excess of outward flux over 
inward flux per unit volume. Thus the total excess of outward 
flux over any volume is / V • V dy where dv is the differential of the 
volume. This excess of outward flux must, of course, flow through 
the surface of the volume in question and, accordingly, must equal 
the integral of the normal flux over the surface. This is expressed 

as ^ V • da where da is the differential of area and the integral ^vith 

the s indicates integration over the entire surface. Thus it is seen 
that Gauss's theorem may be expressed 

J v -dsL = J* V Vdv. (3-17) 

This theorem is also known as the divergence theorem. 

3~11. ILLUSTRATIVE EXAMPLE: GAUSS'S THEOREM 
Example 6. A simple illustration of Gauss's theorem that will 

aid in visualizing its nature is the following. Assume a sphere 
about the origin of coordinates as center, having a radius of 0.5 m. 
Assume that the sphere is filled with an electron gas so that the 
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electric charge density is —0.0010 coulomb/m®. It is clear, to 
begin with, that the number of mks lines of electric flux, or coulombs, 
entering radially into the sphere per square meter will be 

= -0.000167 coulomb/m*. 

The negative sign indicates that the electron gas is a sink. The 
divergence of the vector field is 

V • V = —0.001 coulomb/m®. 

According to equation (3-17), this is to be integrated over the 
volume. This is simply 

Then, 
(-0.001)i^(0.5)3 = -0.000523. 

J] V • da = -0.000523. 

Since the flux is all perpendicular to the surface, this can be written 
simply 

J] Vda = F(4ir)(0.5)* = -0.000523. 

Accordingly, 

V = = -0.000167 coulomb/nl^ 
TT 

which is the same as given in the first equation in this section. 

3-12. STOKESES THEOREM 
It has been explained in Chapter II that the curl is a vector 

quantity associated ^yith a point and that its magnitude can be 
determined by taking the limit of the ratio of the line integral of 
the vector around an area to the area itself. Occasionally there 
arises the problem of determining the surface integral of the curl of 
some vector. The above statement suggests a way of getting the 
answer, not by performing the integration on the curl, but merely 
by integrating around the boundary of the area. Stokes’s theorem 
states the equality of these two integrals as 

J(V X E) • da = ^ E • ds. (3-18) 

This theorem will be proved in two dimensions by the use of 
Fig. 3-5. This will hold for one component. The other two could 
be derived by a repetition of the procedure. In Fig. 3-5 let C be 
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the boundary of the surface luider consideration and let oabco be an 
elementary rectangle on the surface whose sides are dx and dy. 
First determine the line integral of E around this rectangle, pro¬ 
ceeding in a counterclockwise direction. Along oa we have Ex dx. 
Along ah the field is that at o plus the change due to a transfer to the 
right through a distance dx. This is Ey + (dEy/dx) dx. Then the 
integral along ab is [Ey + (dEy/dx) dx] dy. We proceed along he 
in a negative direction and the integral is, in a similar manner, 

Fig. 3-5. Illustrating Jv X E • rfa = • (is. 

— [^x + {dEx/dy) dy] dx. The integral along co is —Ey dy. The 
integral around the entire rectangle becomes: 

Ex dx ”1- dx — Eydy 

(3-19) 

where dx dy is the area of the rectangle. Dividing by this area we 
have the curl (in this case the z component), as we have seen before. 
Equation (3-19) expresses the curl multiplied by an elementary 
area. This is equal to the line integral of E around the area. Now, 
suppose that we wish to integrate the curl over the surface C in 
Fig. 3-5. We begin by adding one more rectangle, adeb. The 
new line integral will equal the sum of the line integrals around the 
two rectangles, but we see immediately that the line integrals along 
ab will cancel so that the total line integral is only that around 
oadehco. This process of adding rectangles can be continued 
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indefinitely until the boundary C is reached. At that point it is 
found that the summation or integral of the curl over the entire 
surface turns out to be the line integral around the boundary, and 
the effects along all of the internal common boundaries have can¬ 
celed out. Therefore, equation (3-18) may be expressed. 

3-13. ILLUSTRATIVE EXAMPLES: STOKESES THEOREM 

Example 7. Consider the curl of the velocity of water in the 
river as described in §2-9, Example 12. It is given as V X V = 
—km. Assume a section of the river to be 1 m long, reaching from 
the bottom where the velocity is zero to the surface where the 
velocity is my. Let y = lA meters, and m = 2. Then the integral 

/V X V • da - -2(1)(1.4) = -2.8, 

because the vector da is parallel to the unit vector k. The integral 
of V in the positive direction around this area is as follows: 

along the bottom 
upward on downstream side 
upstream at the surface 
downward on upstream side 

F(l) = 0(1) = 0 
0(1.4) = 0 

-2(1.4)(1) = -2.8 
0(1.4) = 0 

-2.8 

The total integral is —2.8, agreeing with the integral of the curl. 
Example 8. Refer to §2-9, Example 14. The curl is constant 

and equal to I/wa^. Its integral over the cross section of the wire 
is simply the product and is (//7ra^)(7ra^) = I. Thus • ds 
(around the surface! of the wire) ==//(27ra) ==/, by Stokes's 
theorem. Therefore, H = I/2nray agreeing with the kno^vn value 
of the field at this point. 

These two illustrations do not demonstrate the usefulness of 
the theorem but merely serve to aid in a better understanding of 
its meaning. Better applications will be given later. 

3-14. MAXWELL'S FIRST LAW 

For the development of Maxwell's equations^it is advisable to 
resort to certain experimentally determined results. For his first 
law we will make use of equation (3-la) ^yhich is equivalent to 
Ampere's law. Thus we have at the oxiU 

' ds «= (3-20) 
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The current I is the total current flowing through or linking the 
path of integration and, in general, may be written 

/ = J • da (3-21) 

as a surface integral of current density J. Thus equation (3-20) 
becomes 

fH * ds — ^ J ‘ da. (3 22) 

Now from Stokeses theorem, the left part of this equation may be 
replaced by the integral of the curl with the following result: 

J] V X H • da = J J • da. (3-23) 

The two equal integrals are taken over the same area so that, 
necessarily, the integrands must be equal as follows: 

V X H = J. y (3-24) 

This states that the curl H at any point is equal to the current 
density at that point. If there is no current, the curl is zero and the 
field is irrotational or lamellar. 

At this point an example will be useful in further discussion. 
Let there be assumed a magnetic field H = —iy + jx. Find the 
current density at all points. 

V X H 

i 
_a 
dx 
-y 

j 

dy 
X 

k 

dz 
0 

= k2 = J, 

from which J = k2. Thus, for this case the current density is posi¬ 
tive and constant over all space. 

In this simple example it is noted that, assuming a certain H, 
a current in the direction of positive z axis was obtained. A careful 
consideration of this will show that on account of conventions 
introduced earlier, the well-kno^\^l right-hand rule is adhered to. 
Consider Fig. 3-6. By sketching a few H vectors, it is seen that the 
direction of H is counterclockwise about the z axis. Application 
of the right-hand rule indicates that the current producing this 
field should be along the positive z axis, as it is sho^\^l to be by the 
equation. Thus the results of equation (3-24) are in agreement 
with the usual sign convention. 
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Equation (3-24) expresses Maxwell’s first law. However, 
Maxwell daimed that this equation is fundamental to general 
electromagnetic theory only if J is the total current density for either 
varying or nonvarying fields. In other words, J must, in general, 
be made up of the sum of the conduction current and the displace¬ 
ment current. It is now necessary to determine this total current 
density so that equation (3-24) can be written in its general form. 
The total current density J is defined in such a way that div J = 0. 
That div J must equal zero is seen from the fact that 

div J = V • V X H = 0. 

The conduction current density i is, of course, part of this total 
current density.* That the div i 7*^ 0 (and thus i itself) cannot meet 

Fig. 3-6. Sgn convention in Maxwell’s first law, 

the requirement for J, is clear when one considers a simple con¬ 
denser. If a surface C, Fig. 3-7, is drawn about one plate of a 
condenser, it is clear that when the condenser is charging, {dE/dt 
finite) current is flowing onto the plate through the surface C and 
thus charge is accumulating, but no conduction current flows out 
through the surface. Accordingly, for this simple case, the diver¬ 
gence is not zero. If i does not meet the requirement in even one 
case, it is not suitable for the total current density J. Thus we can 
say that the true curient density J is 

J = i + I, 
* In these sections i is being used as conduction current density. This 

will not cause confusion because the unit vector i does not occur here. 
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where I is now some current density which must be added to i in 
order to meet the conditions, and which is to be determined. 

Accordingly, we may write 

V X H = i + L 

Taking the divergence of both sides and rearranging, remembering 
that V • V X H = 0, we obtain 

V i = -V I. 

Now i is the conduction current density and by the definition of 
divergence, the term V • i means the net current outflow from a 
unit volume. Current is the time rate of change of charge and. 

Fig. 3-7. Example of the continuity of current through the surface C. 

since charge must be conserved, this net current outflow must equal 
the rate of decrease of charge in the unit volume. This is expressed 

by 
-dp 

dt 

where p is the charge density and the negative sign indicates a 
decrease. Thus 

V • i 
-dp 

di 
Therefore, 

From equation (2-5), 
V • D = p. 

From which 

^ = V— = v-l 
dt dt 
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Thus 

From this information we can write 

V X H = i 
^ dt 

Two simple changes will now convert this equation into its usual 
form. The conduction current i is the ordinary electron flow and 
is given by i = o-E, where a is the conductivity of the medium and 
E is the electric field intensity. D is the flux density and is written 
€E, where E has the same meaning as above and € is the dielectric con¬ 
stant. By making these two substitutions, equation (3-24) can be 
written 

T X H = <rE + «(3-25) 
Ot 

This is the usual differential form of Maxweirs first law. 

3-16. MAXWELUS SECOND LAW 

The second law of Maxwell has already been touched upon in 
Chapter II and is really an expression of fundamental definitions. 
Mathematically, it is expressed as 

V • D = p. (3-26) 

The reasoning which lies at the basis of this law is as follows. 
If p is the volume charge density in space, then in each unit volume 
under consideration there will be p units of charge. According to 
our fundamental ideas each unit charge gives rise to one unit of 
electric flux, or one coulomb of flux. Thus out of the unit volume, 
there will flow p lines in excess of those that may be entering. 
However, this is the definition of divergence which makes it possible 
to write an equality between V • D and p. Note that p is the net 
density of positive charge. In the case of electrons, p would be 
written as a negative quantity whereupon the divergence becomes 
negative. A point where the divergence is negative is called a 
sink, i.e., a point where lines disappear. If the divergence is posi¬ 
tive, the point is called a source. 

Maxwell’s second law is really con^^-ined in his first law, since 
the second may be derived from equation (3-24) as follows. By 
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taking the divergence of (3-24), 

vvxH = o = 'rj, 

where J is the total current density. Accordingly, 

or 

-VD = - Vi = 
dt dt 

On integrating and rearranging we obtain 

V • D = p + C. 

The constant C is evaluated by taking a special case of one unit 
charge in a unit spherical volume. The number of lines (coulombs) 
leaving the small sphere is unity, and by definition the divergence 
is equal to this quantity. Thus C = 0. This development is a 
repetition of the previous argument in a slightly different form and 
amounts to the same thing. 

3-16. MAXWELUS THIRD LAW 

The third law of Maxwell relates the curl of the electric field 
intensity to the time rate of change of flux density. This at once 
brings to mind that basic experiment in which an emf is generated 
by changing a magnetic field. See equation (3-2). This funda¬ 
mental experiment will be used to derive the equation which 
expresses the third law. In Fig. 3-8 let C be a single turn of wire, 
which may have infinite resistance as far as we are concerned, 
oriented in any way in space. Let there be an arbitrarily oriented 
magnetic field which cuts this loop. It is shown in the diagram 
as being positive in direction. If the magnetic field is changing, 
the resultant electric field will fill all the space, and the configura¬ 
tion may be illustrated as shown where B and E represent the 
general directions of the fields. 

First, the total emf around the loop in the positive direction 
will be determined. This is clearly the line integral 

• ds. 

If this is to be related to the rate of change of the magnetic field, 
we know from the experiment mentioned above that, the same emf 
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will be given by the expression 

dt 

It is necessary to inspect this expression carefully to see that it is 
indeed the same as the line integral. In the first place, d4>/dt is the 
emf generated in a single turn by the changing flux, in volts. Sec¬ 
ond, if 0 is increasing (a positive derivative) it means that flux lines 
are cutting through the wire toward the interior of the loop and the 
generated voltage is around the loop in a clockwise or negative 

Fig. 3-8. Illustrating ^ E • ds = — d<t)/dt, 

direction. Therefore, in order to obtain the same emf a negative 
sign must be used. 

With these adjustments, it is then possible to write the equality 

^E ds = - (3-27) 

The left side of this equation will be changed by using Stokes’s 
theorem and for <f> will be substituted its equivalent 

/Bd.. 
Making these changes, we have 

(3-28) 
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These two integrals are performed over the area of the loop in both 
cases and accordingly the integrands are equal. Therefore, 

(3-29) 

This is the expression of MaxwelFs third law. It states that wher¬ 
ever there exists a time rate of change of flux density, there will be a 
consequent electric field intensity produced. 

It happens that an effective rate of change of flux may be caused 
in one or both of two ways: either by a real change in flux density 

Fig. 3-9. For use in deriving equation (3-31). 

with respect to time, or by a movement or velocity of the coordinate 
system through the magnetic field. In general, then, a term involv¬ 
ing this velocity should be added to the right-hand side of equation 
(3-29). Let a magnetic field and wire be represented as shown in 
Fig. 3-9 where the coordinate system and wire are to have a velocity 
in the x direction of v. For a stationary system 

T X E = - (3-30) 

Assume that ffB/dt is positive and equal to A, then the electrical 
field intensity induced in the wire is E as shown, in the positive 
z direction. That this is true may be seen by taking the special 

case already illustrated where 
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or 

and 

or simply 

k 

dz 
E. 

= 0, = C + Kx,z), 

E^ = A^+ J{y,z), 

Eg = AyX + C, 

V X E = -)Ay = 

1 J 

^ A 
Ido: dy 
0 0 

= 1 
,^g , dEg 

dy ^ dx ^ 

which is a positive quantity. A motion of the coordinate system 
will not affect dIB/dt. However, a velocity v of the system through 
the field in the x direction will induce in the wire an emf, (v X B), 
which will be in the same direction as E. Thus the actual field 
intensity generated is 

E' = E + V X B. 

Solve this equation for E and obtain 

E = E' - V X B. 

By substituting this into equation (3-30) and rearranging, there is 
obtained the general expression 

nTl 

V X E' - VXvXB = 
ot 

or 

V X E' ^ - V X V X B • (3-31) 

3-17. MAXWELUS FOURTH LAW 

Like the second law, this one has also been touched upon in 
previous sections. It is the expression 

V • B = 0, (3-32) 

which states merely the fact that flux lines are continuous. In 
other words the number of flux lines entering a given volume of 
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space must equal the number leaving. Accordingly, the divergence, 
which expresses the excess of lines leaving over those entering, is 
zero. The basis of this law is really the fundamental definition of 
flux as met with in physics and elementary electrical engineering 
courses. 

Maxwell’s fourth law is contained in his third as shown in the 
next expression. Take the divergence of both sides of equation 
(3-30) and obtain 

V • V X E = 0 = - ^ (V • B), 

or 

From this, on integration, it appears that 

V • B = constant = Ci. 

However, to evaluate Ci, it is merely necessary to note that there 
must have been a time in the past when B was zero and without 
divergence. Therefore, the divergence must still have that value 
(since it is a constant) and Ci = 0. Accordingly, 

V • B = 0. 

3-18. PROBLEMS 

3-1. What is the mmf rise once around the C path of Fig. 3-10, 
expressed in gilberts? in amperes? Assume that 60% of the total 

magnetic potential rise takes place along the straight portion of the 
C path and that the magnitude of the H vector is constant over the 
semicircular part of the path, and find the flux density in webers 
per square meter at point P in the figure. (It is recognized that the 
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assumptions made here are not accurately fulfilled in a practical 
case.) 

3-2. Prove that curl grad = 0. 
3-3. Find <t> if grad <l> = j6/y. <!> = 100 v when y == 0.01 m. 
3-4. V == Lc + Is this the gradient of a scalar field 

<t> and if so, find <t>, 

3-6. V = i —. + j —+ kO. Find a scalar field, 
Vx^ + 2/^- 

if it exists, of which this is the gradient. 
3-6. V = ilO + jO + kO. Find the scalar field of which this 

is the gradient with the restriction that it must be zero for x — y = 
2=0. 

3-7. Prove that div curl F = 0. 
3-8. Find the magnetic vector potential, based on H, at a point 

0.2 m from the center of a wire carrying a current of 20 amp. 
3-9. Find the scalar and vector potential fields for the constant 

vector, V =i5 + j5. 
3-10. Find the vector fidd F for V = jz + ky if it is required 

that Fg = Fy = 2. 
3-11. Assume that a sphere of radius a meters is filled with an 

electron gas in such a manner that the divergence of the flux lines, 
div D = mr, where m is a constant and r is the distance from the 
center. Using Gausses theorem, find the normal flux per unit area 
at the surface of the sphere. 

3-12. Show that Stokeses theorem is true for a closed path out¬ 
side of and not including a wire carrying a current 7. Let the 
path be made up of two radial lines and the connecting arcs such 
that the included angte is about 30®. 

3-13. Assume that H is given at all points of space by the equa¬ 
tion H = iy. Find the current density and sketch a few H and J 
vectors. 

3-14. Given a section of a conducting cylinder shown in Fig. 
3-11. Between the plane faces A and B a constant potential 
difference V is maintained. Find the distribution of current 
density in the material. 

3-16. If, in Prob. 3-14, the total current is 500 amp, find the 
current density at a point 1.25 in. from the center of the cylinder. 

3-16. Suppose that all space is filled with a magnetic field such 
that B = iat^. Find a possible electric field produced, with the 
restriction that Eg — Eg — 0. 
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3-17. Using the more general equation involving velocity of 
the coordinate system find a possible electric field produced if 
B = ka and v = ivq. Solve also for B = ka^ and the same velocity. 

Let Ex ~ Ex ” 0. 
3-18. Show that in a parallel plate air condenser the current 

flowing into the condenser under the influence of a voltage V sin 
0)1 is equal to the displacement current in the space between the 

-'T 
/ 

/ 

Fig. 3-11. For use in connection with Prob. 3-14. 

plates. Let dimensions of the condenser be: area, A square meters, 

and plate spacing, d meters. 
3“19. Given a condenser with two plates separated by a dielec¬ 

tric. The area of the plate is A square meters, and the distance 
between them is d meters. The dielectric constant is = 3, and 
O’ = 10*”^^ mho/m^. A voltage V = at is> applied across the plates. 
Find the total current, the conduction current through the dielec¬ 

tric, and the displacement current. 



Chapttr IV 

PLANE WAVES 

Summary 

Beginning wth the Laws of Maxwell, the wave equation for a 

simple plane wave is derived and solved. Its transmission charac¬ 
teristics are determined, and it is shown ho^v the magnetic com¬ 
ponent of the field may be found from the electric component, and 
vice versa. The subjects of energy in the field and power flow are 
considered, and Poynting^s radiation vector is introduced. 

4-1. THE WAVE EQUATION 

The necessary equations have now been derived to allow an 
introduction to the study of the simplest of the electromagnetic 
waves, the plane wave. This will be approached by using Maxweirs 
equations and other ideas which will be introduced as they are 
needed. 

Maxweirs equations are repeated here for convenience. 

V X H = <rE + « §• 
ot 

(4-1) 

VXE- -.f. (4-2) 

V • B = 0. (4-3) 

V • D = p. (4-4) 

It IS assumed generally that these equations are well established. 
Most discussions begin by considering them as fundamental and 
acceptable without argument, such as the relation 2 -f 2 = 4. 
An inspection of these equations in general leads us to the following 
initial conclusions. 

1. Wherever there exists a changing electric field, there must 
also exist a magnetic field, and vice versa [from equations (4-1) and 
(4-2)1. 
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2. The magnetic field is solenoidal, that is, magnetic lines do 
not end. 

3. Electric flux lines terminate on charges and the electric field 
is solenoidal only where the charge density is zero. 

The important point here is that electric and magnetic fields pro¬ 
duce each other. From this fact alone one might suspect that 
there would occur some sort of propagation. Thus far, however, 
we have no quantitative information on such a propagation, and 
the details must be obtained from the mathematical development. 

These equations really involve six possible dependent variables, 
E, H, e, /X, a, and p. However, for obtaining the first general pic¬ 
ture of the wave nature of the electromagnetic field, it will be 
assumed that p = o- = 0 and that pr = = 1; that is, p and € have 
the values of free space. Thus we are, in effect, localizing the 
possible phenomena to space containing no matter, such as inter¬ 
stellar space, but for all practical purposes space containing air only 
is essentially equivalent to free space so far as electromagnetic wave 
propagation is concerned. The two variables E and H are too many 
because, for simple presentations, we would like only one dependent 
variable. Accordingly, one of these will be eliminated by the 
following process. 

For this simplified case, the equations (4-1) and (4-2) reduce to 

VXH=«o^- (4-5) di 

VXE=-mo^- (4-6) 

First, take the curl of equation (4-6) and then, recognizing that the 
order of differentiation does not matter, the following is written. 

V X (V X E) = -Mo^ (V X H). (4-7) 

Equation (4-5) may be substituted into this. Then, 

, a ( aE\ 1 am .. 
VX(TXE). (4-8) 

since = 1/cl The left side of this equation is simpli6ed by 

using equation (2-9a). 
1 a^E 

T X (T X E) = T(V • E) - T^E (4-9) 
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Now, since p = 0, and D = coE, we find from equation (4-4) that 
V • E = 0. Therefore, 

(4-10) 

This is the wave equation for free space and involves all the 
components of E. It can be written in any one of the various 
coordinate systems and in each system is subject to simplification 
by suitable orientation. For the present, cartesian coordinates 
will be employed. (See Chapter V for a discussion of general 
coordinates.) 

4-2. THE WAVE AND ITS VELOCITY 

Equation (4-10), written out in terms of its components, is as 

follows: 

_ 1 
dx^ dz^ dt^ ' 

d^Ey d^Ey d^Ey _ 1 d^Ey 
dx^ dy^ dz^ dt^ ' 

d^E, d^E, d^Er _ 1 ^^E^ 
dx^ dy^ dz^ dt^ ' 

These equations provide for an electric field with the electric 
intensity vector in any direction, and for variations with respect 
to Xy y, Zy and t, A simple plane wave will now result if the following 
restrictions are applied. Allow only a y component of E and assume 
no variations in either E or H with respect to y and z. Accordingly, 
equations (4-11) will reduce to 

d^Ey ^ 1 d^Ey 
dx^ dt^ 

(4-12) 

This represents a considerable simplification but does not limit the 
argument. The conclusions derived from this equation are appli¬ 
cable to a more general solution of equation (4-10) and the only 
limitations are as before stated; 

p = = 0, and €r == Mr ~ 1* 

The solution of equation (4-12) is, in general, 

== /i(^ + ^0 4" /j(^ (4-13) 
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which can be shown easily to be the case by direct substitution. 
We shall be interested principally in sinusoidal functions, so for 
present purposes Ey will be taken to be simply 

Ey = A cos — ct) = A cos (cat — fix), (4-14) 

Equation (4-14) represents a wave traveling in the positive x 
direction.* A plot of the equation for a given instant of time, 
^ = 0, is shown in Fig. 4-1. At a slightly later time the curve will 
be displaced somewhat toward the right of its original position as 
shown. In order to determine the velocity of the wave, note that 
if attention is centered on a point such as at a: = 0, (^ = 0), where 

Fig. 4-1. Representations of Ey = A cos {o)t — fix) for f = 0, and i > 0. 

the magnitude of the wave has its positive crest value, it will be 
necessary to increase x as time elapses in order to maintain this 
crest value. Thus, in order to move along the x axis with the wave 
always at its positive crest value, {o)t — fix) must be kept at the 
value zero or some multiple of tt, that is, nr where n is any integer. 

Thus, 
(at — ^x — fict — jSx = 0, TT, 27r, etc. 

Thus, 

~ X = 0, 
TT 27r 

W T etc. 

or. 
x — ct + constant. 

The velocity is given by 

* It will be shown in Chapter VI that this wave, upon striking a con¬ 
ducting surface, will result in a reflected wave which travels in the negative 
X direction, that is, a wave defined by cos (<al + fix). 
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^ _ d{ci) 
dt dt = c, (4-16) 

and it appears that the velocity of the wave is equal to the velocity 
of light (3 10® m/sec). That this velocity will be the same in the 
more general case where all components of the coordinate system 
are considered is seen by the fact that by turning the coordinate 
system one can always cause the wave to travel along the positive 
X direction, and since velocity cannot be a function of the type of 
coordinate system used it must be the same and equal to c in any 
direction. 

It was seen above that only one part of the solution (4-13) was 
used. The remaining part represents a wave which travels in the 
negative x direction. Otherwise the argument remains the same. 

It now appears that equation (4-12) represents a wave filling 
all space and traveling in the positive x direction at the velocity 
of light. This wave has a component in the y direction which varies 
as time passes. Thus the ‘^vibrationis perpendicular to the 
direction of propagation and the wave is known as a transverse 
wave. It is a plane wave because a surface passing through all 
points of equal phase would be a plane. This plane, for the case 
considered here, is perpendicular to the x axis. 

4-3. THE ASSOCIATED MAGNETIC FIELD 

It was stated previously that a changing electric field produces 
a magnetic field. If such is true then the above development should 
lead to a magnetic field intensity associated with Ey, The electric 
field intensity given by equation (4-14) can be substituted into 
equation (4-5) leading to 

V X H = <01; cos (w« - dx) (4 -16) 
dt 

= — jtoAw sin {ut — ffx), 

which must equal the j component of curl H. Curl H is given by 

V X H 

i ' j k 
d d d 

dx dy d4 
H. 

= 1 (^Jh _ 
■ dx / 

— —itoAu sin (cirf — fix). 

+ k 

(4-17) 
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It has already been specified that all changes with respect to z are 
zero. Therefore 

= ^€oco Sin {(Jit — jSx), 

which, upon integration, yields 

Ht = —COS {o)t — 0x) 

= A ^ ^ COS (ut - I3x). (4-18) 
\Mo 

Three important observations are made from this equation. 

Fig. 4-2. Illustrating Ey = A cos {tat — ^x) and H, = A cos {cat — fix). 

1. Ey and //, are in time phase with one another. 
2. The electric and magnetic field intensities are in space 

quadrature, that is, perpendicular to one another. 
3. The ratio of Ey to Hy is a simple constant in free space and 

equals 377 ohms. 

Another observation can be made which is useful later. The 
electric and magnetic components are in such direction that the 
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product E X H yields a vector in the direction of propagation. 
The waves are represented in Fig. 4-2. 

4-4. THE EQUATIONS FOR ARBITRARY Mr AND €r, {a = 0) 

In the preceding development it was assumed that €r = Mr = I- 
To obtain the equations for arbitrary values of €r and Mr, it is neces¬ 
sary only to substitute into the above equation € and m for €o and mo, 
and thus we have 

d^Ey 

dx^ 
€M* 

d^Ey 

dt^ 
(4-19) 

Note that the velocity of the wave turned out to be the square root 
of the reciprocal of the coefficient of the second derivative with 
respect to L Accordingly, the velocity of the wave in the new 
medium is 

« = -4= = -7^- (4-20) 
V^rMr 

This indicates that the velocity will be less than the velocity of light 
in any medium where either or Mr or both are greater than unity. 

The relationship between the magnitudes of Ey and H, is also 
affected. The solution of equation (4-19) by analogy with the 
previous solution is 

Ey = A cos (o)t — fix), (4-21) 
where 

^ ~ ~ -%/Mr€r = 0) a/m€- (4-22) 
V c 

From equation (4-21 )£ using equation (4-1) with or = 0, 

dE 
^ dt 

—jcAoj sin {o)t — fix) 

and on integration, 

Hg = cos {(at — fix) 
fi 

cos — fix). (4-23) 

It is interesting to note the order of magnitude of the electric and 
magnetic intensities. With Mr = «r == 1, these are such that if Ey 
is given as 377 v/m, then the magnetic intensity is 1 amp/m. 
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Whereas 377 v/m is an appreciable voltage intensity, 1 amp/m is a 
very weak magnetic field in practical cases. The ratio of intensities 
is as follows: 

Ey = = /MrMO 

H, yjereo' 

Thus for arbitrary values of Mr and €, this ratio may deviate quite 
widely from the value 

= 377 ohms. 

4-6. ENERGY IN THE ELECTROMAGNETIC FIELD 

It is well known from previous work in electricity that electric 
and magnetic fields represent stored energy. For instance, it is 
known that the stored energy in a condenser is 

_ CV^ ^ QV 
2 2 ' 

(4-24) 

where C is the capacitance, V is the potential difference across the 
plates, and Q is the charge on one plate. This equation may be 
used to obtain an expression for the energy stored per unit volume 
in an electric field. We shall take as a condenser two small plates 
of area da, each coinciding with a portion of two equipotential 
surfaces separated by a distance ds. See Fig. 4-3. Let these plates 
be so placed that all the lines of flux leaving one plate (no more and 
no less) pass through the volume in question to the other plate. 
Let the flux density in the space be D, and the dielectric constant, 
6. The charge on each plate is then D • da because Q = ^ = D • A. 
The differential energy for this elementary condenser then becomes, 
according to equation (4-24), 

dW — • da E * ds = ^DE da dsy 

since the angle between both D and da, and E and ds is zero as shown 
in Fig. 4-3. It will be remembered that D = cE. Therefore, 

dW = da ds. 

The energy per unit volume then becomes (e/2)E^ on dividing by 
dv { — da ds), or in any volume, the energy is 

W, iJe.*, (4-25) 
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In order to calculate the energy stored in a particular magnetic 
field, use will be made of a toroidal coil as shown in Fig. 4-4. The 
student is already familiar with this coil and with the equation 
relating the flux to the current. Let the coil be made of a great 

Fig. 4-3. An elementary condenser formed of portions of two equipo- 
tential surfaces. 

many turns of fine wire wound very closely together so that effec¬ 
tively the thickness of the conducting wall is infinitesimal. Let the 
current per turn be I amperes, and the turns, N, The cross section 
of the toroidal core is da and the mean length around the coil is /. 

Fig. 4-4. A special magnetic field for obtaining equation (4-27). 

The relative permeability of the core material is Mr- The total flux 
through the coil is then 

NT 
^ — B da ^ pkH da ^ n 
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from which 

NI = 
<l)t 

K da 

The total energy in a magnetic field is known to be 

LP 
W = 

2 ’ 

and from the ordinary definition of self inductance 

r _N<t> _ N^H da 
T T ’ 

Accordingly, the differential of energy in the field for this elemen¬ 
tary volume is 

_ 1 Nfill da -2 

- 2 7 

= I dail) 

= ^ IP dv. 

This is the energy in the element of volume I da = dv. The energy 
per unit volume is 

^ //^ (4-26) 

and the energy in any volume is 

^ J IP dv. (4-27) 

By means of equations (4-25) and (4-27) it is now possible to 
derive an equation for the power conveyed by the electromagnetic 
wave. Consider a small closed surface in space and let the vector 
P represent the power flow out through this surface per unit area. 
The total power flow (in joules per second or watts) out through the 
surface is given by the integral over the entire surface, 

£P da. (4-28) 

Now, the total energy in this elementary volume is, from equations 
(4-25) and (4-27) 

i/ (mH* + *£’) dv. (4-29) 
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The rate of decrease of this stored energy is 

-§llj J P • da. (4-30) 

The equality must be true because the rate of decrease must equal 
the out-flow given by expression (4-28). Now perform the indi¬ 
cated differentiation and obtain 

- J 
Now since {dH/dt) and tE (dE/dt) represent merely the scalar 
values of rates of change, it is possible to express them as the scalar 
products of the vectors. Then expression (4-31) becomes 

In free space we may make substitutions from Maxweirs equation 
for the derivatives. Therefore, expression (4-32) becomes 

/[H • (V X E) - E • (V X H)] dv. (4-33) 

It can be shown that 

V • (E X H) = H • (V X E) - E • (V X H). (4-34) 

Applying this to expression (4-33) and referring to equation (4-30), 
we have 

• (E X H) dVj 

which equals 

j] (E X H) • da (4-35) 

by Gauss’s theorem, and since the integrals are over the same 
surface, we obtain equation (4-36) which expresses the power flow 
per unit area in the electromagnetic field. 

P = (E X H) joules/sec/m*, or watts/m^ (4-36) 

The vector P is known as the Poynting vector. It is well 
named because not only does it give the value of the power but also 
its direction is the direction of the flow of power. Note that its 
direction is the same as the direction of travel of the wave as men¬ 
tioned at the end of §4-3. 
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4r-6. ILLUSTRATIVE EXAMPLES: ENERGY IN THE 
ELECTROMAGNETIC FIELD 

Example i. In a space in which ju, = 1, €r = 4.6, an electric 
field is given by 

Ey = \.Z cos {(Jit — 0x)y 

where / = 10® cps. Find the velocity of the wave, the value of 
the wavelength, the expression for and the value of Ey/Hg. 

This velocity will be less than the velocity of light as indicated 
by equation (4~20). From this equation 

3 10» , . / 
V = —7= = 1.4 10® m/sec. 

V4.6 

From equation (4-22) may be found. 

. 10® 

^ v 1.4 10® 
= 0.0449 rad/m. 

From this result the wavelength is 

. _ 2ir _ 27r 

^ '~T ~ o:m49 
= 140 m. 

Equation (4-23) may be used to obtain Hg, In this equation 
A = 1.3 v/m. 

Hg = 1.3 cos {(Jit — Px) 

= 1.3 cos {oit - fix) 

Accordingly, 
= 0.0074 cos {(Jit — fix) amp/m. 

Ejl 
Hg 

1.3 
“0.0074 

176 ohms. 

Example 2. In the preceding example, determine the power 
flow through a cross-sectional area of 10 cm^. Poynting^s vector, 
equation (4-36), may be used for this calculation. Since this 
equation gives power in watts per square meter, the required result 
will be 

P = 0.001 (E X H) = iO.OOlfivi/,, 
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because Ey and i/, are mutually perpendicular and the right-hand 
rule for direction is used to obtain the unit vector i. Thus, using 
peak values for Ey and 

P = 0.001 (1.3) (0.0074) 
= 9.62 microwatts in the positive x direction. 

It should be recognized here that when peak values are used for Ey 
and Hgy the peak power is obtained. If the entire expressions for 

Fig. 4-5. A wire carrying a current /, to be used in Example 3. 

Ey and Hg were used, then power as a function of x and t would 
result. Both treatments are used in subsequent material. 

Example 3. A conductor is 0.05 m in radius and is carrying a 
current of 2000 amp in the positive x direction. The conductiv¬ 
ity of the material is 5.8(10^)mho8/m®. Find the power flow 
through the surface of the conductor per meter length of wire and 
its direction. 

At the surface of the wire the magnetic field will be given by 

2000 
2ir(0.05) 

6360 amp/m. 

This field is in the direction shown in Fig. 4-5. The current density 
in the wire is 
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^ ^ (0"()5)V "" amp/m2. 

The field intensity in the plus x direction is, from J = o-E, 

JJ, J 254,500 ^ Anyionc / L = — = -= Q ■ = 0.004395 v/m. 
a 5.8 10^ ' 

By the expression for Poynting^s vector 

P = EH sin 

where d is the angle between E and H and is 90® in this case. Thus 

P =-i(0.004395)(6360) 
= 27.95 watts/m^. 

Let this be multiplied by the area of 1 m length of wire which is 
A = 27r(0.05) = 0.314 m^. Then the total power is 

Pt = (0.314) (27.95) = 8.78 watts. 

This power crosses the boundary of the wire and, by the right-hand 
rule, is directed along the radius into the wire. 

This result can be easily checked by the usual PR expression 
for 1 m of wire. The resistivity is 

1 10-^ 
^ <r 5.8 

The resistance of 1 m of wire then becomes 

The power is 
P, = PR = 2.195 10“® (4)10« 

= 8.78 watts. 

This example shows that it is possible to look upon power trans¬ 
mission as a field phenomenon since the power dissipated in 1 m of 
the wire on account of its resistance is the same as the power flowing 

into the wire from the field. 

4-7. PROBLEMS 

4-1. Show that equation (4-13) is a solution of equation (4-12). 
4-2. Assuming a given electric field intensity of 

Ey = 10 cos {(at — fix), 
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where the intensity is in volts per meter and the frequency is 10®, 
find the associated magnetic field and P and v for the two cases: (a) 
free space, (b) er = 3.5, Mr — 1- 

4-3, Beginning with equations (4-1) and (4-2), show that 
equation (4-19) is correct. 

4-4. Show that equation (4-34) is correct. 
4-6. Find the Poynting vector P for the two cases of Prob. 4-2. 
4-6. If b is equal to unity in = ^4 sin b{x — ct), find the 

wavelength and the frequency. 
4-7. Prove that E and H are perpendicular no matter what 

function of (x — ct) is assumed as the solution. 
4-8. Determine the fraction of the total energy conveyed by the 

electric field if €r = 4 and Mr == 1. 
4-9. Show that, if fiH (dH/dt) is the scalar value of the rate of 

change of if, it is just as well represented by mH • (dH/di), 
4-10. Determine, in any manner, the electric and magnetic 

fields between coaxial conductors of radii a and b. (a < b). Using 
Poynting^s vector, show that the power conveyed by the field 
between the conductors is given by F/, where V is the potential dif¬ 
ference between the conductors, and I is the current per conductor. 

4-11. An electric field component is given as 

E = (jAi + kA2) cos (w< — ^x) 

where Ai = 3,0, and A2 = 4.0 v/m. In this space 6^ = 3, Mr = 1, 
and/ = 10® cps. Find: (a) the value of (b) direction and velocity 
of propagation; (c) expression for H. 



Chapter V 

CYLINDRICAL AND 

SPHERICAL COORDINATES 

Summary 

This chapter is devoted to i:he development of expressions for 
grady diVy curly and the Laplacian in a general curvilinear coordinate 
system, because, in many applications, fields in cylindrical and 
spherical space must be considered. It is shown how, from this 
system, the expressions for cartesian, cylindrical, and spherical 
systems may be easily derived. 

6~1. GENERAL CURVILINEAR COORDINATES 

Thus far the treatment of the subject has intentionally been 
restricted to the familiar cartesian system of coordinates. There 
are many applications, however, in which the problem is greatly 
simplified by treatment in some other system, principally cylindrical 
or spherical. This is true even though the equations in these 
systems sometimes appear more complicated. As an illustration, 
the solution of the problem of transmission of electromagnetic 
waves through cylindrical tubes naturally fits into the cylindrical 
system of coordinates. 

There are three ways in which expressions for gradient, diver¬ 
gence, etc., may be developed in the curvilinear systems. 

. *1l. a transformation may be made from the cartesian system. 
2. Derivations may be made in each system separatel3^ 

Derivatives may be made in a general curvilinear system from 
which the expressions for the different systems may be obtained 
by a simple substitution. 

The third of the methods will be used here. It will be found that 
by its use it will be equally easy to obtain expressions for cartesian, 
cylindrical, spherical, and other coordinate systems. 

91 
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A general curvilinear orthogonal system is characterized by the 
fact that, in general, the edges of the elementary volume are 
curves, and the lengths of the edges are the products of a factor 
and the differential of the coordinate unit. Also, the edges are 
mutually perpendicular. Reference to Fig. 6-1 will help to clarify 
the procedure. The edges of the elementary volume are the dis¬ 
tances X dp, jjL dq, and v ds, arranged in this order in a right-handed 
system. Note especially that, in general, the differential of the 
coordinate is not a length in the same way that dd is not a length 

1. 

1, 
Fig. 5-1. Elemental volume in general coordinates. 

and must be multiplied by some factor in order to produce a length, 
just as do is transformed into a differential of length by multiplica¬ 
tion by r. Thus X dp is a length which can be identified with any 
particular coordinate in a particular system by assigning appro¬ 
priate definitions to X and p. As an illustration, in the cartesian 
system X = 1, p = x, producing dx; in the cylindrical system 
X == 1, p = r, producing dr, etc. At this point a list of these 
identifications will be given. Refer to Fig. 5-2. 

\ p q y 8 
Cartesian 1 x I y 1 z 
Cylindrical 1 r r ^ 1 z 
Spherical 1 r r ^ (r sin ^ 

If the reader is unfamiliar with the scheme of general coordinates 
as proposed here, he will find that a careful study of Fig. 5-2 will 
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reveal the reasons for the various identifications listed in (5—1). In 
Fig. 5-2b, for example, the three differential displacements which 
are mutually orthogonal and which characterize the familiar 
cylindrical coordinate system are: 

dr = \ dp 
r do = fi dq 

dz — V ds 

In a like manner, in Fig. 5-2c, the three differential displacements 

Fig. 5-2. Rectangular, cylindrical, and spherical systems. 

which are mutually orthogonal (say at point a) and which charac¬ 
terize the spherical coordinate system in general coordinates are: 

dr — \ dp 
r do — p dq 

r sin 0 dip — v ds 
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It is now necessary to assign unit vectors to this system in order 
to specify directions. These will be as follows: 

For the X dp direction, the unit vector is Ip. \ 
For the m dq direction, the unit vector is 1^. J (5~2) 
For the v ds direction, the unit vector is 1,. j 

Now we are prepared to make use of this system of coordinates 
for deriving the various operator expressions. 

5-2. THE GRADIENT 

Gradient has been defined as the rate of change of a function 
with respect to the distance in the required direction. Accordingly, 
in general coordinates, it becomes 

\ dp M dg V ds 
(5-3) 

Note here that, for each component of the gradient, the change in 
the scalar <t> along each of the orthogonal directions (Ip, Ig, and 1,) 
is divided by the change in the distance along the appropriate axis. 
Equation (5-3) will now be written over into the three fundamental 
systems by the use of the list of identifications (5-1) and (5-2). 

Cartesian System 
, . dif> 

However, it has been usual to replace the I’s, in this system, as 
follows: 

Therefore, 

i is written for 1, 
j is written for ly 
k is written for 1, 

V<t> 
. d<i> . d<t> 
dx'^^dy 

(6-4) 

which is identical with equation (2-2). 

Cylindrical System 

_ 1 1 
de ^ “ dz 

(6-6) 

Note again that here k has been written for 1,. 
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Spherical System 

^ ^0 r sin 0d<p 

95 

(5-6) 

6-3. THE DIVERGENCE 

In the derivation of the general expression for divergence, only 
one component will be worked out. On the basis of this one, the 
other components can be readily written down. In Fig. 5-3 are 
shown tWo opposite sides of an elementary volume. The field V 
exists in the space occupied by the volume and the component of 

V, with which we will be immediately concerned, is Fp. The vector 
component Fp enters the face oahc and emerges, after some possible 
change in value, from face defg. The influx is 

influx = Vptiv dq ds, (5~7) 

The outflux at the opposite face is, in general, the influx plus any 
differential change caused by movement to a new position along the 
p axis. Thus the outflux becomes 

V„^v dq ds + X dp. 

but since p, g, and s are independent, and X, /x, and v may be func¬ 
tions of the coordinates, we may write the outflux as 

Vptxv dq ds + dp dq ds. (5~8) 
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By subtracting expression (5-7) from (6-8), 

6XC6SS(p component) 
^ d(F^ ^ 

(5-9) 

Now, because of the symmetry of the terms, the other two com¬ 
ponents can be written down immediately by a suitable cyclic 
change in the symbols. Thus, 

and 

excess (q component) 
d{V„P\) 

dq 
dq ds dpf (6-10) 

excess(* component) 
d{V 

ds 
ds dp dq. 

The total excess will be the sum of these three components and this 
sum represents the change in V which results from the passage of 
the field V through the elementary volume \^xv dp^ dq ds. If this 
sum is then divided by the volume of the element, Xpv dp dq ds, the 
divergence is, by definition: 

= _L (5-12) X)Lip dp dq ds J 
This can now be written in the three systems by the use of the lists 
(5-1), (5-2), 

Cartesian System 

Here X, p, and v have constant magnitudes equal to unity. 
Hence, 

V • V 
dx dy dz ' 

(6^13) 

Cylindrical System 

Here p = r and as such p is a. function of r. It follows that 

T-V 

-H' 

d(F,r) ^ 5(F,) ^ d{V, 
dr 

dr 

dd + {V.r)] 
dz J 

^ dd ^ dz 

Hr ^ Zr ^ 4. £1.' 
dr r r dd dz' 

(&-14) 
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Spherical System 

It will be recalled that in the spherical coordinate system, 
X = 1, M = r, = r sin p = r, g s = (jo. These substituted 
into equation (5~12) produce 

V • V = 
sin d L 

sin e) d{Ver sin 6) d(Fyr)1 
* dr dO dtp * J- 

The expansion of this expression is entirely straightforward and is 
not repeated here. The result is 

^ ^ 1 d(Frr^) 1 d(Ve sin $) 
dr r sin 0 dS 

6-4. THE CURL 

+ dV. 
r sin 6 dtp (5-15) 

The derivation of the expression for curl in the general coordi¬ 
nate system follows a procedure which has been used before. It is 

Fig. 5-4. For derivation of curl in general coordinates. 

based on the fact that curl is the limit of the ratio of the line integral 
of a vector around the periphery of a surface to the area of the 
surface. As in the case of the divergehce, only one component will 
be derived from which the others can be written out by using the 
cyclic property of the symbols as previously mentioned. 

The line integral of V in a positive direction around the ele¬ 
mentary rectangle of Fig. 5-4 is determined as follows: 

along oa, inline integral)oa = FpX dp; 
along CO, (line integral) ro = —F^p dg 
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Now along ah the line integral is that along oc plus the increment 
added owing to the transfer to the right through a distance X dp. 

Thus, 

along ah, (line integral) = V^ju dq + - dpy 

but p and q are independent so, 

(line integral) ab = dg + 

Similarly along fee, 

dp 
dq dp. 

dV X 
(line integral)6c = — Vpk dp-dq dp. dq 

The line integral around the area is then: 

(line integral)* = Vp\ dp — Vq ^idq + Vq^idq + dVnH 
dp 

Vp\ dp — dp dq 

dp dq 

dp dq _ 

dq 

I dp dq. 

Dividing by the area, X^t dp dq, we have the s component of the curl. 

curl. 
dVq^ _ dFpX] 

dp dq 

By a cyclic change of the symbols the other components may now 
be written. 

Accordingly, 

- ^ [w - + 

Again the substitution of the appropriate letters for X, /x, p, p, q, 
and 8 will produce the expressions for the curl in the three principal 
coordinate systems. 
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\ = \, IX = \, V = p = X, q = y, 8 = z. 

Cylindrical 

(5- 17) 

The procedure for writing out the various expressions is now 
well enough understood so that the following relations will be 
written down without detailed derivation. The equation for curl 
in cylindrical coordinates is 

Spherical 

V X V = 
r 

_d 
dr 
Vr 

u 

dd 
rV, 

k 
r 

dz 
V. 

V X V = Ir 

r® sin $ r sin 6 
h 
r 

1 A A 
dr 69 dip 
Vr rVe r sin dV^ 

(5-18) 

(5-19) 

6-6. THE LAPLACIAN 

In writing the Laplacian in general coordinates it is sufficient to 
notice that it is given by the expression 

V^<t> = V • V<t> = div grad </>. 

Before going farther it is well to point out here that this operator 
is defined also when applied to a vector even though W has no 
meaning by itself. Thus we may have the Laplacian of a vector 
written as 

V^A, 

which is important in subsequent material. The general form of 
the Laplacian may be obtained by combining expressions (5-3) and 
(5-12), the V<l> of equation (5-3) being substituted for V of equation 
(5-12). When this is done the following is easily obtained. 
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= J_ f^_9m 
^ * \nv [dp \X dp) dg dg/ as \ V ds jj' 

This equation written out in the three systems is as follows: 

Cartesian 

Cylindrical 
dz^ 

_d^<t> Id4>, I d^4> 
dz^ 

(5-21) ' 

(5-22) 

Spherical 

V^4> = “2 I IT ) "f 2—=—Q \ ^ TZ ) dr \ dr) r^^vaddBy dO) 

. 1 _ ^ 
sin^ (J d(p^ 

(5-23) 

When the Laplacian operator is applied to a vector, however, 
a somewhat unexpected difficulty arises. If A is substituted for 4> 
in equation (5-20), there will appear such terms as dk./dr, etc., 
which will involve derivatives of unit vectors. This difficulty does 
not arise in the case of cartesian coordinates, for the unit vectors, 
i, j, and k are fixed in magnitude and direction at all points of space. 
However, this is not true in general in the other systems. For 
example, note that in Fig. 5-2c, at points a and 6, the unit vectors 
are not in the same direction, indicating a change in the unit vectors 
with a change in the coordinates. Accordingly, derivatives of unit 
vectors with respect to the coordinates must be defined. These 
will be considered under the appropriate systems below. 

Cartesian 

Here i, j, and k are constants and the Laplacian becomes simply, 
from equation (5-21), 

Tf*A = — 4- — + — 
^ dy^ ^ dz^ 

.15^4+ 
dx^ dx^ 

+ k 
d^A, 
dx^ + 

dy^ + J dy^ + k 
d^A. 
dy"^ + 

+ j 
.d^Ay 

d2* 
+ k 

d^A. 
dz^ 

+ }V*Ay + kV*A.. (6-24) 
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Cylindrical 

If A is substituted for 4> in equation (5-20), the derivatives of 
1,, 1*, and k with respect to r, B, and z will appear. Let these 
derivatives be evaluated first. Reference to Fig. 5-2b will lead to 
the following results immediately. 

dr 

dr 

dr 

= 0, 

= 0, 

= 0, 

dU 
dz 
dk 
Je 

= 0, 

- 0, 

(5-25) 

The partial derivatives dlr/dO^ and d\e/^0 may be found by the 
use of the diagram, in Fig. 5-5. From Fig. 5-5a we have the 

Fig. 5-5. Representation of derivatives of unit vectors in the cylindrical 
. system. 

vectors oa and oh such that the difference between them is 

which is a vector in the I9 direction and has a magnitude of 
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11,1 do = do. Thus, 

or 

~ = 1*. (5-26) 

In a similar manner in Fig. 5-5b it is seen that the difference between 
the two unit vectors is 

which is in the direction — Ir and which has a magnitude of dS as 
in the previous example. Thus, again 

or 

= -IrdO, 

'-k = (^27) 

Equations (5-25), (5-26), (5-27) may now be used to work out 
the expansion of (5-20) for a vector A. The following result is 
obtained after considerable mathematical manipulation. 

Ir 

2dAQ 

de + 2dAr 

r2 de + 

Spherical 
(5-28) 

In the spherical coordinate system the derivatives of the unit 
vectors are found in a manner analogous with that used above. 
The nonzero derivatives are as follows: 

ae 

ae 
^ = 

a<p = —(Ir sin B le cos 6). 

a<p 

dtp 

= sin 6j 

= 1^ cos Of (5-29) 

The application of these derivatives to the expansion of expression 
(5-20) for a vector is long and involved and the result, not being of 
immediate importance, is not given here. 
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5-6. PROBLEMS 

5- 1. Given two concentric cylinders with radii 3 and 5 cm. 
The outer cylinder is at a potential of 1000 v and the inner one is at 
zero. If €r = 1, find the potential and electric field intensity at 
any point between the cylinders, using Laplace’s equation. 

6- 2. Given an isolated sphere of radius a with a charge +Q on 
it. If the surrounding space has a relative permittivity, Cr, find 
the electric field intensity at all points, using Laplace’s equation. 

6-3. Two parallel plates of a condenser are separated by d 
meters, and have an area of A square meters each. If the charge 
density per unit area on each plate is +m and —m respectively, 
use Laplace’s equation to obtain the electric field intensity at any 
point between the plates and the capacitance per unit area. 

6-4. Using cylindrical coordinates find the curl of the magnetic 
field between concentric conductors if the radii are a and b. (a < b) 
Assume a current I flowing in the inner conductor. 

6-6. Find the curl of the magnetic field within a wire carrying a 
current /. 

6-6. Starting with equation (5-12), show that 

V V = ^ -h - —^ + 1 
dr r r dO r tan 6 r sin ^ dip 

6-7. Show by use of equations (5-3) and (5-12) that both 
equations (5-20) and (5-22) are correct. 

6-8. Show by means of reasoning similar to that employed in 

§5-3, that the s component of the ‘‘excess” is dp dq. 

See equation (5-11). 
6-9. Show by means of a diagram similar to that given in Fig. 

5-4, that the q component of curl as given in equation (5-16) is 
correct. 

6-10. Show that equation (5-23) is correct. 
6-11. Show that equation (5-28) is correct. 
6-12. Show that the expressions for derivatives of unit vectors 

given under equations (5-29) are correct. 
6-13. Two charged plates are set at an angle 6, as shown in Fig. 

5-6. The charges on the plates are +Q and —Q and the areas are 
A units each. Find: (a) the electric field intensity between the 
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plates; (b) the distribution of charge density on the plates. Assume 
no fringing effects. 

6-14. Given a coaxial cable whose radii are a and 6, (a < 6). 
Assume an electron cloud in the space between the conductors 

Fig. 5-6. For use in connection with Prob. 5-13. 

whose density in coulombs per cubic meter is given by — mr, where 
a < r < 5. Find the electric field if the potentials at r = a, and 
r = 6 are 0 and 100 v, respectively. Assume that €r = 1. 



Chapter VI 

REFLECTION PHENOMENA IN 

PLANE WAVES 

Summary 

The main thread of the argument is again taken up in this 

chapter, and the boundary conditions leading to reflection phe¬ 

nomena are treated. The simpler case of normal reflection against 

a perfect conductor is first considered, followed by a discussion of 

the resulting standing wave, and power-flow phenomena. Next, 

normal reflection against a general boundary is discussed and also 

the special case of reflection against a dielectric for which tha con¬ 

ductivity is zero. This is followed by a treatment of the waves 

in a conductor resulting from an incident wave, and the depth of 

penetration is defined. The chapter ends with a short discussion 

of the effect on the standing wave produced by an imperfect con¬ 

ductor, and Anth an extensive example illustrative of a number of 

the points brought out in the chapter. 

6-1. BOUNDARY CONDITIONS 

In preparation for an introduction to surface effects and reflec¬ 

tions it is necessary to consider briefly the effect on electric fields 

produced by passage through a boundary. If the electric fields on 

either side of a boundary are known, the magnetic fields can be found 

by methods previously considered. 
First consider an electric field perpendicular to the surface of a 

material having specified values of tr, Mp» and <r. Refer to Fig. 6-1 

in which a dielectric plate lies between condenser plates so that it is 

perpendicular to the lines of flux. Then, V • D = 0 where there are 

no charges such as at the boundary at o. Accordingly, if a small 

volume be considered which contains the point o, it is seen that as 

many lines of flux leave it as enter. Therefore the normal D must 

be continuous through the boundary. This leads immediately to 
105 



Fig. 6-2. Continuity of tangential component of E at a dielectric 
discontinuity. 

the effect on E because in the space above a, E = D/^i, whereas 
below the surface in the dielectric E = D/€2. In other words, the 
normal electric field intensity decreases on passing into a medium 
of higher dielectric constant, and vice versa. 

For the purpose of investigating the tangential component of 
E, refer to Fig. 6~2. Consider a small section of the boundary at 
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a. To the left of the boundary the field intensity is E" and to the 
right it is E\ The length and width of the rectangular section are 
respectively m and n. The line integral of E around the rectangular 
path must be given by the value d<t>/dt where </> is the flux threading 
the area. The line integral is the sum of the following components: 

Thus 

But </> 

Along abj {E'')m, 
Along 6c, (0)n. 
Along cd, ( — E')m. 
Along da, (0)n. 

(E" - E')m = 

Bmn, therefore 

{E" - E’) = n 

Now, in the limit when we are right at the boundary, Ji = 0. 
Thus, by substituting 0 for n above, we have 

(E" - £") = 0, 

or 
E'^ = E', 

This indicates that the tangential components of E at a boundary 
must be continuous, that is, the same on both sides. However, the 
tangential component of D changes at a boundary, because in the 
case under consideration, for example, to the left of the boundary 
where the dielectric constant may be taken as 6i, D = €iE, while to 
the right where € is €2, D = C2E. Thus the tangential component 
of D increases on passing from a medium of low tr to one of higher 

A similar argument will show that the tangential components of 
H are continuous across a boundary and thus that tangential B will 
increase on passing from a material of low relative permeability to 
one of higher permeability. 

Since V • B = 0, it is also clear that at a boundary the normal 
component is continuous. The argument is the same as that 
applied to D above. 

6-2. EXPONENTIAL NOTATION: GENERAL EQUATIONS 

In Chapter IV a simple treatment of plane waves in non-con¬ 
ducting space was presented. It is now advisable, on the basis of 
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the introduction given, to change the method of treatment slightly 
in order to treat more carefully the problem of reflection and trans¬ 
mission in general. This discussion will begin with equations 
(4-1) and (4-2) and will repeat in a slightly different manner some 
of the procedure followed in Chapter IV. Rewrite equations (4-1) 
and (4-2) as follows: 

VXH = + (6-1) 

TXE- (6-2) 

In the text material to be covered later only sinusoidal variations 
with time will be considered. Thus it is helpful to eliminate from 
the above equations the differentiations with respect to time. As 
a matter of convenience this will be done by substituting for E and 
H, above, the terms 

E = 

and 

H = 

w'here the exponential terms contain all the reference to time, and 
the script 8^s and 3C^s now are only functions of x, y, and 2.* The 
exponential can be used as the time function because 

= cos wi + j sin 

It is immediately seen that the substitution of is equivalent to 
the substitution of sine and cosine functions. That includes 
an imaginary term j sin is not a source of difficulty because when 
all work has been completed and a practical answer is desired, the 
imaginary terms may be discarded. The reason for the use of 

is the simplicity of its differentiation and the ease with which 
it is handled in the subsequent material. 

If this substitution be made into equations (6-1) and (6-2) we 
obtain 

V X (6-3) 

where it must be remembered now that 8 and X are no longer func¬ 
tions of t. The last term is obtained from 

* See: Communication Circuitsf L. A. Ware and H. R. Reed, John Wiley 
and Sons, New York, 1044, p. 205. 
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Ji ^ _ JiP 

— c8e^'"* = ; 
dt ot 

= ja)€8e^"* + 0. (&-4) 

Equation (6-2) now becomes 

V X 8e^“' = -i/xwSCe^"*. (6-5) 

Now divide out the exponential and rearrange equations (6-3) and 
(6-5) to give 

V X 5C = ((T + ia)€)8, (6-6) 
and 

V X 8 = -j/iw3C. (6-7) 

In these equations it must be carefully noted also that the j used 
is merely the usual \/— 1, namely a 90° time operator, and is not 
even remotely related to the j unit vector considered in earlier 
matter. The letters will be distinguished by writing the above j in 
light face type. 

The solution of equations (6-6) and (6-7) can now be found as 
outlined in Chapter IV. Write them as 

V X 5c = .48, (6-8) 
and 

V X 8 = jB5c, (fr-9) 
where 

.4 = + ja;€. (6-10) 
and 

B — (6-11) 

By taking the curl of equation (6-9) and using equation (6-8), 

V X (V X S) = J5V X 3C 
= ABl. 

Now in a manner similar to that used on equation (4-8) 

V»8 = -ABE, 
= +j<oiu((r + ju)«)S 
= — jffwnjS 
= -b% (6-12) 

where 
b = \/ (6-13) 
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In an exactly similar manner an equation involving CfC can be 
derived. It is found to be the same expression as equation (6-12). 

(6-12a) 

This is the general wave equation and involves all the parameters 
which may occur in the field (except t which has been eliminated). 
The equation, however, is true for expressions involving t also, that 
is, the equation could just as well be written in block letters. 

6-3. ILLUSTRATIVE EXAMPLES: EXPONENTIAL NOTATION 

The material of the preceding section is somewhat clarified by 
presenting a few simple illustrations of the operations involved. 

Example 1, First, let it be required to show that the real part 
of (d/^Oe'"* is the same as the derivative of the^ real part of e'"', 
that is, the derivative of cos o)t. 

— = jo)(cos cot + j sin cot) 
at 

= jct> COS cot — CO sin cot. 

and the real part is — w sin oot. Now the derivative of the real part 
of 6^’"* is 

cos cot CO sin cot, 
ot 

which is the same as above. 
Example 2, As a second illustration assume that Ae^ is the 

solution to the following equation, with the understanding that 
only the real part is tb be retained. 

g + 6V-0. 

Substitution oi y = into the equation results in 

+ b^At^ = 0, 
from which 

and 

or 

a =» ±jb, 

y = Aie^^ + 

Virtat) = Ai cos bt + At cos bt = A' cos bt. 
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Now assume directly that the solution to the equation is 

y = B cos at 

Substitution into the original equation results in 

or 

Thus 

—Sa® cos at + b^B cos at = 0, 

a = iib. 

y ^ Bi cos bt + B2 cos (—60 
== cos bL 

which is the same as arrived at above. 
The foregoing examples illustrate the use of the exponential in 

simple cases, but they do not show the simplification which may 
result from its use in more complicated problems. As the student 
becomes more familiar with the use of the exponential, its value 
will become more apparent. 

6-4. REFLECTION FROM PERFECT CONDUCTORS 

To serve partly as a review, equation (6-12) will be applied to 
the previously treated plane wave in non-conducting space. By 
analogy with the previous treatment we shall pick 8y as the only 
component of electric field intensity present and shall assume no 
variations with respect to y and z so that partials with respect to 
y and z are zero. Referring to equation (4-11) and using the right- 
hand side of equation (6-12), we can now write 

= -6=6. (6-14) 

All the other terms are zero. It will be noted that this is a con¬ 
siderable simplification and occurs only because we arbitrarily fix 
the position of the 8 vector and effectively specify the direction of 
propagation. 

The solution to this equation is known to be 

8y ~ 80S®* • 

From this and equation (6-14), 

8oa*e®* = -6*806®*, 
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or 
a* = -h\ 
a = ±jfe 

= ±j — jo-w/i. (6-15) 

The solution including the time term is then 

Ey = (6-16) 

where Ei and E^ are constants of integration. 

Fig. 6-3. Reflection of a wave against a perfect conductor. 

In this section v^e are concerned with a medium to the left of the 
boundary in Fig. 6-3 where <t is zero. Therefore b = w which 
is the same as the ^hich appeared in Chapter IV, and 

Ey = (6-17) 
= jBi[cos {o)t — hx) + j sin {o)t — bx)] + 

JS?2[cos {(at + bx) + j sin {cat + bx)], (6-18) 

from which, as stated above, the imaginary terms are to be removed. 
Then 

Ey = El cos {(at — bx) + E2 cos {(at + bx), (6-19) 

The two terms on the right represent two waves, one traveling 
in the direction of positive x and the other in the direction of nega¬ 
tive X. For reflection against a perfect conductor, the first term 
will represent the incident wave and the second, the reflected wave 
as in Fig. 6-3. At the boundary the tangential electric field 
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intensity Ey must be zero because just inside the conductor the 
conductivity is infinite and the material cannot support an electric 
intensity of any amount. Thus at x = 0, 

Ey = El cos (at + E2 cos (at 0, 
and 

El = —J5/2. (6~20) 

It is seen immediately that the electric field is reflected with a 
reversal of phase. 

This general situation is shown in Fig. 6-4 which represents the 
two waves, the incident wave Ei^ and the reflected wave £^2, after 
the initial transient period has been passed. The waves shown at a, 
as well as in the subsequent diagrams, should be considered aS 
extending indefinitely to the left, in the negative x direction. At a 
is shown the condition at a time which may be taken as < = 0. It 
is seen that at all points to the left of the origin, the resultant 
amplitude is zero. At b where (at = tt/S, the wave Ei has progressed 
t/8 radians to the right, and the reflected wave E2 has moved t/8 
radians to the left, creating a condition where the resultant ampli¬ 
tude at X = — X/4 is beginning to build up in a negative direction. 
Note that conditions are always such that at x = 0, the amplitude 
is zero, thus meeting the boundary condition imposed by the perfect 
conductor. At x = — X/2 the amplitude is still zero, and at 
X = — 3X/4 the amplitude is positive. At c this progress has con¬ 
tinued. An inspection of the waves for values of (at up to tt will 
indicate clearly that the resultant amplitude at x = —X/4 oscillates 
between values of — 2A and +2A where A is the amplitude of each 
wave. At points x = —X/2, —X, etc., the resultant amplitude is 
at all times zero. Thus a standing wave is produced, so called 
because effectively it does not move in space since the nodes, or 
points of zero resultant amplitude, are fixed. It is thus seen that, 
whereas a wire of unit length placed parallel to the electric vector 
at any point where an incident wave alone is progressing will have 
induced in it an effective emf equal to A/\/2, a wire placed in the 
space to the left of x 0 in Fig. 6-4 will have induced in it an 
effective emf which will depend on the position of the wire. Thus 
at X — —X/2, zero emf will be induced, whereas at x = —X/4 the 
effective emf will be 2A/\/2 = y/2A, Accordingly, a simple 
method exists of detecting standing waves and of determining the 
wavelength, because if a wire were moved from the position x = 0 
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Ei^Acos{^t“"Px) I 
Ez^Acos 

Fig. 6-4. Representation of a standing wave caused by a perfect reflector. 

to the left, reading continuously the induced emf, the first node 
would be found at a: = 0 and the second at a; = — X/2. A measure¬ 
ment of the distance traversed then is known to give X/2, and X 
can be calculated. This is, of course, true of movement from 
X = —X/2 to X = —X, or, in general, movement from one position 
of zero amplitude (or maximum amplitude) to another of zero 
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amplitude (or maximum) will be over an integral number of half¬ 
wavelengths. 

6~6. THE MAGNETIC COMPONENT 

The total electric field intensity in the space outside the conduc¬ 
tor of Fig. 0-3 is given by 

Ey = Ei[cos (ojf — hx) — cos {oit -|- bx)]. (0-21) 

Now the magnetic wave can be found from this by using equation 
(4-2). 

™ = - - V X E, 
at M 

i j k 

dH ^ _ 1 a A 
dt fjL dy dz 

0 Ey 0 

y ox 

= — k - Ei[b sin {o)t — bx) + b sin (wf -f bx)] 

= —k - £^i[sin (cot — bx) + sin (cot + bx)]^ 

H = —k — £'i[ —cos (ojt — bx) — cos (cot + 6x)], (0-22) 
COfJL 

[cos (o)t — bx) + cos (o)t + bx)], (0-23) 

because 

Now in free space, 

b — CO 

307r 10^ 

y Ak 10“^, 
so IIz turns out to be 

Hz = 4" amp/m, (6-23a) 
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if El is expressed in volts per meter. Equation (6-23) indicates 
that the magnetic wave is reflected without a change of phase 
because of the similarity in signs of the cosine terms. 

It is essential that a clear picture be formed of this wave. A 
trigonometric transformation applied to equation (6-21) gives 

Ey = 2Ei sin bx sin u)t. (6-24) 

This is known as a standing wave for it will be noted that there are 
values of x for which Ey never has any value but zero (except in the 
initial transient period during which the ^wave is being set up). 
(See Fig. 6-4). Thus the wave does not move in space. Such 
points are known as nodes and occur at 

ut nw 

Now 1/V7t€ = y, the velocity of the wave, and 

Thus 

y _ 
0} 2Trf 2^ 

(6-25) 

(6-26) 

From this it is seen that nodes occur at multiples of X/2, and, of 
course, a node occurs at a: = 0, where the reflection takes place, as 
stated above. 

A trigonometric transformation will also simplify equation 
(6-23) and the result is ' 

COS bx cos ojt. 

Immediately it is seen that there is a 90° phase difference between 
the resultant magnetic and electric waves. However, the magnetic 
wave is, of course, also a standing wave. 

Additional insight into this wave is obtained by calculating the 
Poynting vector for the field. The power is 

P = (E X H). 

In this simple case the product, E X H, merely becomes 

Eyllt sin 90° = EyH^y 
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and 

- yfi E*’ “ 

Ei^ (cos bx sin bx){cos cjt sin cot) 

sin 2bx sin 2wt. (6-27) 

This equation indicates that there are planes across which no power 

is transmitted. These planes occur at 

or 
2bx = 0, —TT, —2tj etc., 

(6-28) 

where n is an integer. When n = 0, the node at the reflecting 

surface is obtained. Between these planes, however, there is found 

to be an oscillation^of energy back and forth along the x axis. Thus 

consider the point at 2bx = 7r/2. Here the sine is 1.00, and 

P = Ei^ sin 2cot watts/m^. (6-29) 

Thus, as time passes, P is alternately positive and negative. When 

Ey is a maximum, Hz is zero and all the energy is in the electric field 

and in a position in space corresponding to the position of the elec¬ 

tric wave. Some time later the electric field becomes zero and Hz 
is maximum when all the energy is stored in the magnetic field and 

in a different region because of the phase difference between Ey 
and Hz. 

6-6. ILLUSTRATIVE EXAMPLE: THE 
MAGNETIC COMPONENT 

Example 3. Let it be assumed that an incident wave, Ci = 0.202 

cos (cot — bx) volts/mctcr, is propagated through a space where 

= 3.5 and Mr = 1, and strikes perpendicularly a perfect reflector. 

Let it be required to find the reflected magnetic wave, its velocity 

of propagation, and the position of the power node nearest the 

reflector (not x = 0), if / = 10® cps. Equation (6-23) may be used 

to obtain the reflected magnetic component. It will be 

COS («< + bx), 

= (0.202) cos (a,« + bx), 

= 0.001 cos (cot -h bx) amp/m. 
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In order to find the velocity of propagation it is necessary to deter¬ 
mine h. This is given by equation (6-15) where cr = 0. Thus 

but this is cu/v, so 

V —^ = 1.605 10* m/sec. 
\/3.5 

This is, of course, the same as the expression for velocity of the 
wave as previously given in Chapter IV. 

The position of the nearest power node is obtained from equation 
(6-28) by setting n = 1, giving x = “X/4. The wavelength is 
given by the standard equation, = /X, or 

Thus 

_ 1.605 10« 
^ / 10« 

1.605 m. 

X 
1.605 

4 
—0.401 m. 

6-7. REFLECTION FROM A GENERAL BOUNDARY 

In treating the more general case where the reflecting boundary 
may have any value of €3, /ia, and <r, use will be made of the general 
equation (6-16). The two parts of the equation will be written 
as follows: 

incident wave, ei = (6-30) 
reflected wave, 62 = (6-31) 

where Ei and E2 are the amplitudes of the waves. Let the magni¬ 
tudes of the incident and reflected magnetic components be repre¬ 
sented by Hi and H2 respectively, and it has already been seen from 
§6-5 that for medium (1), 

Hi = . £ El, (6-32) 
\ Ml 

Hi = - Ei. (6-33) 
\Ml 

In these equations subscripts 1 and 2 refer to the transmitted and 
reflected components respectively, in medium (1), while subscripts 
refers to the medium to the right of the boundary (medium 3). 
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Now, for future use, by analogy with transmission line work, 

we define an impedance 

ft - Vt; - 
li - --J? - 

The term Z may be considered as the impedance of the medium 

through which the wave is traveling. Its unit is 

volts/meter 

amperes/meter 
= ohms. 

In free space the value of Z is 377 ohms. 

Fig. 6-5. Reflection of a wave against an imperfect conductor. 

Consider Fig. 6-5 where an incident wave Ei is meeting a con¬ 

ductor at X = 0. Because the medium to the right of a: = 0, 

medium (3), can now support an electric field intensity on account 

of its finite conductivity, it is possible that Ei will produce not only 

a reflected wave E2 but also a transmitted wave E^. According to 

§6-1, the tangential components of E and H at the surface must be 

continuous. Therefore, 

El E2 = Ezy \ 
and \ (6-36) 

Hi + //2 = //s. ) 
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The three E waves may now be written as follows: 

incident, \ 
reflected, > (6-37) 

transmitted, J 
where bi has been shown to be w \/juiei in a region where a = 0. 
See paragraph just above equation (6-17). It is now necessary to 

write the H components in terms of the E components. This has 

already been done for Ih and H2. See equations (6-32) and (6-33). 

It is seen from equation (6-22) that the magnitude of the trans¬ 

mitted H wave is given by 

Hz = — Ez, (6-38) 

where 63 is the more complete expression given by equation (6-15) 

involving a. 
From equations (6-15) and (6-38) the impedance of the con¬ 

ducting material is defined as 

El = 

Hz yjcuVaCa ~ 

(6-39) 

From this equation it is seen that Z3 is complex and involves a 

phase shift between Ez and Hz- This will be referred to later. 

It is now possible to derive the reflection equation which will be 

valid for medium (1), with <r = 0, and a conductor as medium (3). 

Substituting the values of // from equations (6-34), (6-35), and 

(6-39) into equation (6-36), there results 

E\ E2 — Ezf 

El ^ El = El 
Zi Zi “ Zz 

from which 



REFLECTION IN PLANE WAVES 121 

Let 

and this becomes 

In the above, it must be kept in mind that the £J^s, /I^s, Z^s, and K 
may be complex quantities. 

Before going farther it is well to briefly consider the meaning of 

this equation as it ties in very well with previous material. In the 

first place, \i K = 1, that is, if Z3 = Zi, there is no reflected wave, 

(2) 

Fig. 6-6. Use of ^‘377-ohm” cloth to reduce standing waves. 

as one would expect, because then the boundary becomes non¬ 

existent.* On the other hand, U K — 0, that is, if Z3 = 0, for a 

perfect conductor where <r = ^, E2 becomes —Ei which we found 

previously to be the case. Equation (6-40), however, is very 

* An application of this principle is the use of the so-called 377-ohm 
cloth for the purpose of matching a conducting wall to free space for the 
elimination of reflections. See Fig. 6-6. Here the wall, (4), is a perfect 
conductor and as such W’ould set up standing weaves to the left of it in the 
absence of the screen (2). However, if the screen is in place and set at a 
distance from the wall of one quartor-W'avelength, where the intensity of 
the electric field is a maximum, the standing wave in medium (1) can be 
eliminated provided the screen has the proper intrinsic, or characteristic, 
impedance. It is found that this impedance must be that of the medium 
(1), here considered as free space. Thus the Z of the cloth is 377 ohms per 
unit area. See the following reference: Fields and TFares in Modem RadiOf 
S. Ramo, and J. R. Whinnery, John Wiley and Sons, New York, 1944^ 
p. 277. 
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general and takes care of cases where both Zi and Z3 may be com¬ 

plex although here only Z3 is allowed to be so. 

Now it is necessary to determine £3. This is obtained easily 

from the same two equations and is 

El K 1 
(6-41) 

This is clearly consistent with equation (6-40) because if iC = 0, 

then the transmitted wave must be zero. Also if there is no dis¬ 

continuity at the boundary, Z3 = Zi, A' = 1, E^ = Ei^ which 

means that the original wave is transmitted unchanged. 

We now have a means of crossing the boundary and can con¬ 

sider in some detail the transmitted wave. 

6-8. REFLECTION OF WAVES AGAINST A DIELECTRIC 

In the event that both mediums (1) and (3) are dielectrics with 

<r = 0, rather simple relations are obtained for reflected and trans¬ 

mitted components. In this case 

which is a real number and may be greater or less than unity. The 

reflected electric wave is given by eciuation (6-40) 

£2= E,. (6-43) 

From this it is seen that if K is less than unity a reversal of phase 

results, whereas if /C > I, there is no reversal. The limiting case is 

thus given as follows: 

for reversal, M3C1 < 

for no reversal, 

The transmitted wave amplitude is given by equation (6-41) Avhich 

indicates that the transmitted component remains at all times in 

phase with the incident wave at the boundary. 

As an illustration, consider an incident wave ci = cos {oil — bix) 
in a medium where eri = 3.5 and Hri = 1, striking a dielectric where 

€ri = 3.0 and /irs = 1- From these data 
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From equation (6-43) 

= 0.0384, 
1.08 + 1 

and from equation (6-41) 

The velocity in the medium (1) will be 

vi = —= 1.605 10^ m/sec, 
\/3.5 

and in medium (3), 

Vs = 

Vs.o 
= 1.73 10® m/sec. 

6-9. WAVES IN A CONDUCTOR 

If a wave meets a conductor whose conductivity is not infinite, 

we have seen that Es (and i/3) will have finite values which, from 

equation (6-41), can be expressed in terms of the incident wave 

amplitude as 

Es 
2KEi 
K + l 

(6-44) 

From equation (6-37) the transmitted wave is 

electric component, 

Es 
magnetic component, 

(6-45) 

To begin with, a great simplification will result by noting that for a 

reasonably good conductor such as Cu, Ag, and Al, 

bs = ’—j(To)fjLs (6-46) 

on account of the very large value of the o* term relative to the €3 

term. 

Consider, for example, a conductor which has a conductivity 

of 0.001 times the conductivity of copper. (For Cu, <r = 57.8 10® 

mhos/m’). At a frequency such that w = 10® rad/sec we have, 

from equation (6-15), 
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bt = ■^(10'«)4x 10-^ (10»)(10'')4t 10"’ 

= Vll-1 - j72.6 (10^. 

Thus it is obvious that, even in this material of relatively low con¬ 

ductivity, it is permissible to use the approximate expression for b 
given by equation (6-46). 

From equation (6-46), 

bz = \/ —j \/<T00fXz (6-47) 

= s(l - j) (6-48) 

where 

larcojjiz 

®" \ T”' (6-49) 

and from equation (6-39), neglecting the cs term. 

V-J N 
(6-50) 

\CU/X8 

/w/U3 1 

- V .r v^-’ 
(6-51)* 

By using ecjuation (6-48)f the third expression (6-37) becomes 

(6-52) 

or the real component is • 

Eze~*^ cos {cot — sx). (6-53) 

This is an interesting equation because it states that the transmitted 

wave will be damped on account of the exponential term, and the 

♦ The question may arise in this connection as to why the imaginary 
part of this result is not discarded since it has been done in certain other 
cases. The answer is that the j appearing in equation (6-51), and in cer¬ 
tain other equations, did not enter through the assumption of as the 
law of time variation. It is only the imaginary part arising from the time- 
variation assumption which is thrown away. In this connection it is of 
interest to note the following. In the j entering through the 
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velocity will be a function of the frequency and conductivity. The 

numerical value of s for copper at cu = 10^ rad/sec, for example, is 

1905 m“^, which shows that = 1 at a distance of 0.525 mm into 

the conductor. 

The propagation constant^ by analogy with transmission lines, 

can now be defined by using expression (6-52) and written 

The term (s + js) in this expression is known as the propagation 

constant, and is usually written as 

7 = « + 

where a is the attenuation constant and 0 is the phase constant. It 

may be noted that for transmission of the wave in metals, a — 
and furthermore, that the attenuation is extraordinarily high as 

compared with transmission line attenuation. 

The magnetic component of the transmitted wave may be found 

by dividing expression (6-52) by Z3, obtaining 

because 

yloil 

jlg 
COM3 

1 + 3 COM3 

_1_ _ 
rTi" VI’ 

(6-54) 

7 ( = a -h j/3) should remain but the imaginary part arising from the 6^"^ is 
to be discarded. It will be shown that the real part of is the same 
as 6’"')'* cos co^ 

g—yarg/fa)* — g-ar— 

= g—axgjHwt—0t) . 

or the real part is 

Now 
e“®* cos (cof — /3x). 

e:“'y» cos cos ml 

= s“®* (cos fix — j sin px) cos cof 
= e"*** cos wt fix 
= e“®* cos (cot — Px). 

In the first development the j term was discarded, and in the second, it was 
not discarded because the assumption did not require it; however, the 
result was the same. In future material it is instructive to note in all cases 
what happens to the j operator. Such attention to this detail will gradually 
increase one^s familiarity with the peculiarities of this operator. 
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The real magnetic component now becomes 

(reoZ) = cos • (6-55) 

It is seen that the magnetic component is damped in the same way 

and at the same rate as the electric component. Also there is now a 

45° displacement between the two waves. The magnetic com¬ 

ponent lags the electric component. 

6-10. TRANSMISSION IN METAL 

The depth of penetration of the wave into the metal is defined 

as that distance x (= 5) which causes the exponent of the exponen¬ 

tial in equation (6-53) to become unity. That is, the depth of 

penetration is defined as the distance traveled before the magnitude 

of the wave has dropped to l/e of its initial value. Thus 

sb = 1, or 

b 
2 

(6-56) 

For all reasonably good conductors this distance is very small at 

high frequencies. In order to obtain an idea of the magnitude of 

this depth, b is plotted against w for copper in Fig. 6-7. In this 

example we have 

a = 57.8 (10®) mhos/m®, 

M3 = 47r 10-’, 
3 (10®) m/sec. 

The velocity in the metal is very low and is given by reference 

to equation (6-52) as 

_ O) _ 

8 
(6-57) 

where s is the coefficient of x in the imaginary exponent. In Fig. 

6-7 the velocity in copper is also plotted against w. It must be 

kept in mind that equations (6-56) and (6-57) are valid only where 

the CO term in equation (6-13) is at least 10 times as large as the co* 

term. 

In connection with transmission in metals it is also of interest 

to find the magnitude of Zz, One should expect it to be very low, 



REFLECTION IN PLANE WAVES 127 

Fig. 6-7. Variation of 6, v, and Zz for copper as a function of oo. 

on the basis of known characteristics of copper. From equation 

(6-51) 

_ ohms. (6-58) 

This impedance is also plotted against co in Fig. 6-7. 

6-11. THE REFLECTED WAVE 

The incident wave has already been given as 

of which the real part is 

E\ cos (o)t — hix). (6-59) 

Now by equation (6-40) 
K - 1 
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and 

(!+;■) -M+jM, 

where 

M - (6-«0) 

and ei and /xi refer to medium (1). 

By substituting M + jM for X, we have 

K - I _ -1 j2M 
K + I 2M + 1^ 2M + 1 

= -l+i23/, (6-61) 

because M is extremely small, permitting one to disregard terms in 

For example in a copper conductor at a frequency of 10'° cps, 

M = 6.93 (10-^). 

Now we obtain 

E2 I +j2M), (6-62) 

which indicates that the reflection does not take place with an exact 

reversal of phase as it did for a perfect conductor, but with a change 

of phase of slightly less than 180°. It is of interest to determine the 

angle between an exact reversal and the approximate true position 

of 1^2. This angle is given by 

e = tan-> 2M = 2M = 

= rad (6-63) 

because of the equality of mi and m3 in this case. This angle becomes 

of the order 0.008° for copper at 10'°cps. This is certainly negli¬ 

gible and, accordingly, any good conductor may be considered as a 

perfect reflector as far as the conditions in medium (1) are practi¬ 

cally concerned. 

6-12. ILLUSTRATIVE EXAMPLE: REFLECTED WAVE 

Example 4- Assume that an incident \yave is given by 

Cl = El cos (w( — bix). 
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This wave strikes normally upon a surface of aluminum. The 
parameters are as follows: Ex — 1 r/m, €ri = 3.0, ixrz = 1, o- = 35.3 
(10®) mhos/m®, / = 3 (10®) cps. Find the following: (a) the 
transmitted electric amplitude, Ez\ (b) the transmitted magnetic 
amplitude, IIz\ (c) the depth of penetration, d; (d) the reflected 
magnetic amplitude. Hi] (e) the incident power; (f) the transmitted 
power; (g) the velocity of the wave in the metal. 

First, calculate s, Zi, Z3, and K. 

6.47 (10®) m-'. 

Zx = ” 218 ohms. 
Vs 

^3 = (1 + J) = 0.0183(1 + J) ohm ^3 = (1 + i) 

0.0259 Z45° ohm. 

Z3 0.0259 Z45° 
Zi ' 218 

= 0.000084 + j0.000084. 

= 0.000119 Z45‘ 

(a) From equation (6-41), 

= 2A'(J) 
K + 1’ 

= 23.8 (10-^) Z45° v/m, 

which is very small in magnitude relative to Ei and 45° ahead of 

Eu (Note that /( < < 1.) 
(b) Equation (6-45) gives the magnitude of the magnetic com¬ 

ponent as follows: 

_ F., _ 23.8 (10-^) Z45° 
Zi 0.0259 Z45° 

= 9.2 (10“’) amp/m. 

(c) The depth of penetration, d, is given by equation (6-56): 

• 5=1= _l_ 
s 6.47 10’ 

= 1.543 (]0-«) m. 
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(d) The reflected magnetic component is given by 

rj _ F2 _ Ei( — l + j2M) El 
”” —Zi ~ -Zi “ Zi 

= 2^ = 0.00459 amp/m, 

which is nearly in phase with Hi. 
(e) The incident power is obtained from Poynting's vector and 

the values of Ei and Hi. Hi is given by equation (6-34). 

Hi = ^ = ^ = 0.00459 amp/m; 

H = IE X HI = ExHx = 1(0.00459), 
= 0.00459 watt/m^, 

as a peak value, or 
Pav = 0.00229 watt/m* 

(f) The transmitted power is 

P = E X H. 

However, it must be noted here that Ez and H3 are out of time phase 
by 45® so, by analogy with a-c theory, it is necessary to multiply 
the product of \Ez\ and I//3I by the cosine of the angle between 
them. Thus 

P = \E^^Hz\ cos 45® 
= 23.8 (10-^) 9.2 (10-3) (0.707) 
= 155 (10-«) watt/m2 

or 
Pav = 77.5 (10-^) watt/m^. 

(g) The velocity in the metal is given by equation (6-57). 

_ _ / 2(27r)(3)10« _ [300 
\35.3 (10«) 47r (10-7) ^35.3 

= 29,100 m/sec. 

6-13. NOTE ON THE REFRACTIVE INDEX 

The student who has had some contact with optics will no doubt 
ask how the constants y and € are related to the refractive index 
which, in optics, describes the action of a wave crossing a boundary. 
This relation is worked out as follows. 
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The refractive index is defined as the ratio of the velocity of the 
wave in a vacuum to the velocity in the medium under considera¬ 
tion. The velocity in a vacuum is 

V = ^ 

v" Mo€o 

The velocity V2 in the medium can be determined in general by the 
use of the complete expression for 63 applied to the third expression 
(6^37). 

= Z - 5 tan-‘ — (6-64) 
z coe 

=^A+jB. (6-65) 

Now, by using expression (6-37), the electric wave is represented by 

(6-66) 

from which it is seen that the velocity will be given by 

From equation (6-64), 

A = \/co/u cos 

-4^ 

6 tan- 
Z C0€ ' 

(a)€ + Vwh- -j- ff’*), 

and 
u 

4 

Now the refractive index becomes 

" ■ vsi 

For the special case of <7 = 0, 

n = \/tlrtr- 

(6-67) 

(6-68) 

(6-69) 

(6-70) 
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6-14. PROBLEMS 

Table of conductivities 
Unit: mho/m^ 

Ag(r = 61.2 10« 
Cu (7 = 57.8 10^ 
A1 cr = 35.3 106 

6~1. An electric field intensity vector passes from one dielectric 
having an Cr = 3 into another where tr = 5.5. The electric field is 
at an angle of 35® to the surface of the dielectric in the first medium. 
What is the angle between the surface and the field in the second 
dielectric? Is it the same for both D and E? 

6-2. A plane sinusoidal wave is traveling in a space where 
fjLr = 1, and €r = 3.5. (a) Find the velocity of the*wave. (b) How 
much of the total power, expressed as a percentage, is conveyed by 
the electric component? 

6-3. A plane sinusoidal electric wave of unit amplitude is 
traveling in a medium where Mr = 1 and €r = 3. This wave reflects 
from a perfect conductor. Find the amplitude of the reflected 
magnetic component. 

6-4. A plane sinusoidal wave for which JSi = 1 v/m is traveling 
in a medium in which /ir = €r = 1. The frequency is 10*^ cps. The 
wave reflects from a perfect conductor placed normal to the direc¬ 
tion of travel. Find the positions of the three planes nearest the 
reflector across which no resultant energy is transmitted in the 

steady state. 
6-6. Show that tfce two terms under the radical in equation 

(6-13), namely and aco/i, are dimensionally equivalent. 
6-6. An incident wave is expressed as 

6i = cos {cct — bx) 

where / = 10® cps. This wave meets a boundary of silver and is 
partially reflected and transmitted. In the silver, €r = Mr = 1. 
Find: (a) amplitude of the transmitted electric wave at the surface; 
(b) velocity of this wave. 

6-7. For Prob. 6-6, find E2 from equation (6-40). 
6-8. For Prob. 6-6, find the complete expression H, for the 

magnetic component in the metal at the surface. 
6-9. For Prob. 6-6, find the depth of penetration into the metal. 
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fr~10. Determine the depth of penetration at w = 10^ rad/sec in 
a sheet of iron, the resistivity of which is 10 times that of copper 
and the relative permeability of which is 100. 

6~11. Determine the depth of penetration into a medium the 
conductivity of which is 10"^ that of copper if /itr = = 1, and 
CO = 10^®. {Note: The complete expression for 63 must be used 

here.) 
6-12. Show that s as defined in equation (6-49) is dimensionally 

equivalent to (length)”^ 
6-13. Using Poynting^s vector, find the maximum and average 

power flow into the metal per unit cross section for Prob. 6-6. 
6-14. In Prob. 6-6, calculate the power flow in the incident 

wave and compare with results of Prob. 6-13. 
6-16. Discuss the nature of the composite wave in medium (1) 

of Prob. 6-6. Is it a standing wave? Are there any planes across 
which energy does not pass in the steady state? 



Chapter VII 

WAVES GUIDED BY 

PARALLEL PLATES 

Summary 

To provide a simple transfer to the treatment of rectangular 
wave guides, the subject of waves guided by parallel plates is 
introduced. The restricting effect on the electromagnetic field 
caused by the presence of the plates is brought in through the 
boundary conditions which apply. After the components of the 
TEM mode are written down there follows a discussion of the power 
transmitted. Next, the TE mode of transmission is defined and 
treated at some length to determine the components of the field, 
the properties of transmission, and the configuration of the field. 
Power relations are treated briefly. Finally, the TMi mode of 
transmission is touched upon. 

7-1. GENERAL CONSIDERATIONS 

In the preceding chapters, plane waves in space with no bound¬ 
aries except perhaps a reflecting wall have been treated in a very 
elementary manner. Now, as a simple introduction to guided 
waves, the transmission of a wave between two infinite parallel 
conducting plates will be considered. This will serve as a simple 
introduction to the subject of wave-guide transmission. More 
complete analyses may be found elsewhere for those who wish to 
pursue the subject farther.* 

* A. B. Bronwell and R. E. Beam, Theory and Application of Micro- 
waves^ New York, McGraw-Hill Book Coi, 1947. 

Marchand, Nathan, Ultrahigh Frequency Transmission and Radia¬ 
tion^ New York, John Wiley and Sons, 1947. 

S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio, New 
134 
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The conducting planes shown in Fig. 7-1 lie in the xz plane 
of a cartesian coordinate system and the separation of the planes, 
one from the other, is symbolized as d. Since the space between 
the parallel plates is the region under consideration and since 
cartesian coordinates are employed, Maxwell's equations already 
derived for cartesian coordinates are suitable for use here. For 
the present, we shall assume an* absence of free charge carriers 
in the region between the plates (cr =0), in which case the general 
wave equation takes the form 

, a^E __ a2E 

dx^ dz^ 

In this form of the wave equation, E is to be interpreted as a func¬ 
tion of X, y, 2, and t. The manner in which the electromagnetic 
field is introduced into the free-space region between the parallel 
plates will define the mode of propagation and the particular com¬ 
ponents of E which are present in any specified mode of propagation. 

7-2. TRANSVERSE ELECTRIC-MAGNETIC OR TEM MODE 
OF PROPAGATION 

In the absence of the Ex and Hx components of the electro¬ 
magnetic field (in Fig. 7-1), both the electric and magnetic fields 
will be transverse to the direction of propagation, assuming that 
the direction of wave propagation actually takes place along the x 
direction. Under these conditions, the mode of propagation is 

called the TEM mode. 
Probably the simplest way in which to introduce an electro¬ 

magnetic field into the region in question is to connect the terminals 

York, John Wiley and Sons, 1944. 
R. I. Sarbaclicr, and W. A. Edson, Hyper and Ultra-High Frequency 

Engineering^ New York, John Wiley and Sons, 1943. 
J. A. Stratton, Electromagnetic Theory^ New York, McGraw-Hill 

Book Co., 1941. 
H. H. Skilling, Fundamentals of Electric 17at;es, New York, John 
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of an oscillator (or other a-c generator) to the conducting plates. 
This potential difference will in turn establish a y component of the 
electric field, Ey, In the absence of Exy E», and the TEM mode 
of propagation can be shown to exist. In thinking about the 

Fig. 7-1. Infinitely extended parallel plates. 

restriction Ex = Ez — Hx = 0, it may prove helpful to consider the 
arrangement shown in Fig. 7-2, where the conductors of a coaxial 
cable which are separated by a distance d are energized in the usual 
manner, namely, by the application of a time-varying voltage 
between the two conductors. 

Fig. 7-2. Cross section of coaxial cable in which 

With the restriction Ex — Ez — Hx — 0, and with the further 
restriction that BEy/dy == BEy/Bz = 0, equation (7-1) becomes 

B^Ey B^y 
dx^ ’ 

(7-2) 

where Ey is a function of x and t only. 
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The solution of equation (7-2) of primary interest to us is that 
which yields propagation in the +x direction, namely, 

Ey — A cos (oit — jSx), (7-3) 

where A is an arbitrary constant which depends for its value upon 
the magnitude of the potential difference impressed upon the con¬ 
ducting plates, and jS = w \/m6- 

The fact that equation (7-3) is a solution to equation (7-2) may 
be verified by direct substitution of Ey, as given by equation (7-3), 
into equation (7-2). During this process is evaluated as 
We learn from equation (7-3) that Ey can exist as a traveling wave, 
the phase velocity of which is 

X _ 0) _ 1 
(7-4) 

In case /Xr = = 1, the phase velocity is equal to the velocity of 
light, 3 (10*) m/sec. 

Although equation (7-3) represents a solution to the wave 
equation, a more informative discussion of the TEM mode of 
propagation will result from a detailed examination of Maxwell’s 
equations subject only to the restriction 

fix = E. = - = (7-5) 

Then 

dEt dlh 
dz ** dt 

yields 

dEu 
= 0. (7-6) 

dz 

dE, dliy 
dz dx ^ dt 

yields 

Ily = 0. (7-7)* 

dEy dEx dH. 
dx ^ dt 

* In this connection we disregard any magnetic or electric field com¬ 
ponent which does not vary with time. 
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yields 

or 

yields 

since 

dH. 
dy 

dEy _ dH. 
dx ^ at ’ 

d^y _ am. 
ax* ^ dt dx 
dHy _ dE^ 
dz ^ dt 

Hy = 0. 

an. 
= 0. 

dH, _ an. dEy 
dz ax ^ ~dt 

yields 
_ an. dEy 

ax ^ dt ' 
or 

am. d^Ey 
dx dt ‘ a^* 

dHy dH, aE. 
dx dt * at 

(7-8) 

(7-9) 

(7-10) 

yields 
0=0. (7-11) 

From equations (7-8) and (7-10), the form of the wave equation 
given in (7-2) follows directly. That is 

d-^Ey d^Ey 

ax* a<* ■ (7-2) 

This equation may be solved by letting Ey = where 8^, is a 
function of x only. Equation (7-2) then reduces to 

dx^ 
(7-12) 

where it is reasonable to assume that E>yx will take the form 
In this case, 7 would play the same role as in ordinary transmission 
line theory. Substituting 6yx = into equation (7-12) results 
in 

(7-13) 
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and 

7 = = j/?. 

By taking the real part of 

we obtain 
Ey = 

Ey = A cos (a>( — /?x), 

(7-14) 

(7-3) 

which is the solution in which we are particularly interested. 
If the region between the plates is free space or air 

Ey = A COS w (7-15) 

where c is the velocity of light. 
From equation (7-8) it follows that in free space 

dH, 1 dEy Aco . /, x\ 
dt Mo ox fjLoC \ c) 

or 

^ cos « + K (7-16) 

where fci is zero for the reason referred to in the footnote for equation 
(7-7). 

It will be observed that is in time phase with Ey, Further¬ 
more, Ht represents the entire magnetic field in this case since 
was originally restricted to zero to obtain the TEA! mode of trans¬ 
mission and Hy was found to be equal to zero from equation (7-7). 
Since Ex and Ez have been assumed to be equal to zero throughout 
this discussion, it follows that Ey represents the entire E field. The 
Poynting vector (E X H) is directed along the axis and has a 
magnitude equal to 

p = cos* « - 0 watts/m*. (7-17) 

The time-averaged value of power transmitted per meter length of 
the z-axis is 

^ AH /co .. 
(7-18) 

The same result as that obtained above might be had in terms of the 
potential difference between the conductors and the conduction 
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current in the conductors. These are the quantities normally 
employed in calculating transmitted power in conventional circuit 
arrangements. From equation (7-15), it is plain that the maximum 
voltage between the conductors is 

Vmax ~ Fy(jmax)d = Ad VOltS, (7—19) 

since Ey does not vary along the y direction. 
The conductor current associated with Hz may be found by 

applying the circuital law of magnetism to a rectangular loop which 

H-0 
Fig. 7-3. Rectangular loop used to evaluate Z*. 

will encompass the conductor current along a unit length in the 
2 direction. (See Fig. 7-3) 

(7-20) 

In thinking about this evaluation of hy it may prove helpful to 
consider the coaxial arrangement shown in Fig. 7-2. 

The time-averaged power associated with the voltage between 
conductors, equation (7-19), and the conductor current, equation 
(7-20), is 

P av — ^V n 

watts/m of z axis. (7~21) 

If the impedance of the parallel-plate transmission system is 
defined on a per-unit-length basis as Ymaz/lmaxy then the impedance 
per meter length of z axis is 
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z/u.l. = ^ 
* max 

= l20Td ohms. (7-22) 

The characteristic impedance of the coaxial cable shown in 
Fig. 7-2 is 

Zo = = 60 In ohms, (7-23) 

if a free-space region between the conductors is assumed and if the 
ohmic resistance of the conductors is neglected. The impedance 
per unit length of z axis is 

Z/u.l. = 2jrR2 I^GO In ohms. (7-24) 

In writing the above equation, the fact is observed that the per- 
unit-length impedances combine in parallel to form the characteris¬ 
tic impedance of the cable, namely, 60 In {R2/R\). 

Since* 

as R2 approaches an infinitely large value. Therefore 

Z/u.l. = 1207r(ft2 ~ Ri) = 1207rd ohms, (7-25) 

* In order to obtain this type of expansion for Ih x, one may express 

\ — z 
= 14-2-1-2" + 

and 

Letting z 

-In (1 -2) =^+1' + ^' + 

(X - 1) 

- = In X = ^ + 
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the same result as that obtained for the parallel-plate transmission 

system. [See equation (7-22).] 

7-3. THE TRANSVERSE ELECTRIC OR TE MODE 
OF PROPAGATION 

The wave known as the TE wave or mode is characterized by 
the fact that it possesses only one component of the electric vector 
and that in a transverse direction relative to the direction of propa¬ 
gation. If we wish to distinguish between the TEM mode shown 
in Fig. 7-1 and the TE mode, then the E field of the latter must be 
directed along the z axis in Fig. 7-4. E^ — Ey = 0 m the TE 

Fig. 7-4. The wave 8, = Ae^’y^ sin iiry/d) between parallel plates. 

mode. This is equivalent to postulating a source (or generator) 
at a: = — « and a sink (or load) at x = + oo. It is recognized, of 

course, that no practical generator can establish precisely the E 
which is here postulated. One might, however, consider that a 
sinusoidally varyingt potential difference is applied to a pair of 
widely separated condenser plates at x = ~ qo in such a manner 
that the E field in the vicinity of the origin (in Fig. 7-4) is directed 
only along the z axis. 

Since only cosinusoidal variations with respect to time are to be 
considered, the derivatives with respect to t will be written as 
follows: 

d 

Assuming that the space between plates shown in Fig. 7-4 is an 
insulator (<r = 0), the wave equation for the TE mode is 
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dx^ dy^ 
= — ojV^S*. (7-26) 

The direction of motion of the wave will be taken as along the 
positive X axis, and, since the planes of equal phase are parallel to 
the yz plane, there is no change with respect to z. Accordingly, 
the derivative of Eg with respect to z will be zero. 

From equation (6-7), 

V X 8 = —jco/i 5C, 

or 

5c = i — (V X 8), (7-27) 

from which 5C (or H) may be found once 8 is determined. 
A solution of equation (7-26) will be obtained by assuming 

8* = with the boundary conditions fixed by the fact that 
both at 2/ = 0, and i/ = rf, 8^ must be zero because of the proximity 
to the perfect conducting planes. Also y must be positive to 
prevent the possibility of infinite amplitude at x = oo. Thus 

and 

Then 

or 

or 

Thus 

dx ’ 

dx^ 

dy 

dy^ 

7® + a* = — wV* 

a* = —7* — £oV<- 

a = ±j Vy* + = ±i&- 

The solution then becomes 

8, = [.4is''^ + Ajs-’'’"]. 

(7-28) 

(7-29) 
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Applying the boundary conditions, we obtain two equations from 

which AI and A 2 may be determined. 

0 = Ai + A2, (7~30) 
0 = (7-31) 

From equation (7-30), 

Ai = -A2( = A0, 
and equation (7-31) becomes 

0 = 

= A sin 6d, 
from which hd = nir, or 

6 
nir 

(7-32) 

where n is any integer or zero. The value of n is defined by the 
mode of excitation which is assumed. The solution (7-29) now 
becomes 

8. Az'"^^ sin (7-33) 

where A is a constant depending on the magnitude of the excitation 
voltage. The space variation of 8z along the y direction is shown 
in Fig. 7-4 for the case of n = 1. The boundary conditions require 
that 8, = 0 at V = 0 and at 2/ = d. 

From equation (7-28) the term 7 may be found. 

7^ + coV = 

or 

r = + - a,V« = ±j0, (7-34) 

where 

0 1 2 = (7-34a) 

By analogy with conventional long-line theory, 7 is the propagation 
constant and 0 is the phase constant. 

The complete solution now becomes, using equations (7-33) 
and (7-34), 

E, = sin (7-36) 

where 7 has the positive value in equation (7-34). The positive 



PARALLEL PLATES 145 

value is used, otherwise when y is real, the wave becomes infinite 
at a: = 00. If 7 is real, a rapid damping of the wave occurs. On 
the other hand, if 7 is imaginary we have a wave propagated in the 
positive X direction as noted in a previous section. If 7 is imagi¬ 
nary, the real part of the solution can be written as follows: 

Ez = A cos {o)t — fix) sin (7-36) 

where fi has the value given in equation (7-34a). 

7-4. PROPERTIES OF THE TE WAVES 

From equations (7-4) and (7-34a) it is easily seen that the phase 
velocity of the wave is given by 

V 

- 

nV 
”5^ 

In free space where = l/c^ 

V 
1 

nV 

(7-37) 

(7-37a) 

Immediately, one peculiarity of these waves in free space is noted. 
The phase velocity is higher than the velocity of light except for 
one case, that of n = 0, when the velocity will be equal to c. In 
the limiting case where 1/c = riTr/wd, the velocity becomes infinite. 
It should be noted that we are speaking of the phase velocity, that 
is, the velocity of a crest of the wave in steady state. It can be 
shown that wave groups are not transmitted at this velocity but 
at a rate lower than c (in the case of waveguides).* 

* An expression for the group velocity mentioned here is easily derived 
for a rather simple combination of two waves. This simple treatment is 
sufficiently general because any combination of waves can be built up by 
combining waves two at a time and using the principle of superposition. 
I^et the two waves be given as 

and 
ti = A sin {o)it — fiix)y 

1*2 = A sin (o)2t — fi2x)f 

where a>2 differs very sHghtly from wi, and fi^ differs very slightly from fi\. 
Thus we can set W2 — wi = dw, and fi^ — fix — dfi- Let these two waves 
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The condition c = oid/nir is the boundary condition between 
free transmission and attenuation, for suppose that d, or w, is 
decreased just sufficiently to cause expression (7-37) to become 
imaginary, then y in equation (7-35) immediately becomes real and 
attentuation rapidly decreases the amplitude of the wave. Thus 
this condition is used to define a critical or cutoff d or / which marks 

be superposed so that 

i — ii -f 12 — A [sin (o)it — fiix) -h sin (o)2t — 02x)]. 

This equation is readily simplified by a trigonometrical transformation into 

(coi “h <4)2)^ i — 2A sin 
4" (ct)2 — CJi)t — (02 — 0\)x 
- cos -r;- 

== 2A sin (oii — 0x) cos 
Kdoi) - x{d0) (a) 

where co = (wi + aj2)/2 and 0 = (0i 02)/2, 
Now equation (a) represents a wave whose amplitude is the variable 

function 

2A cos 
t(do}) - x(d0) -^-, (b) 

and whose frequency and wavelength are the means of those of the two 
original waves. The expression for amplitude, expression (b), also repre¬ 
sents a wave moving in the positive x direction, whose radial velocity is 
w' = dw/2, and whose phase constant is 0' — d0/2. From these two 
expressions the velocity of the crest of the composite wave or wave group is 

_ oj' _ dw 

"^^0'^ T0 
(c) 

This is known as the group velocity, and, as an illustration, the group 
velocity will be determined corresponding to equation (7-37). 

or 

dw 2 L d* J 

dw I r. 
d0 u)H€ \ d^ 

(7-37b) 

It is thus seen that the velocity of light is the geometric mean between the 
phase velocity and the group velocity for the wave guide. 
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the dividing line between transmission and no transmission. For 
free space these cutoff values are 

or 

j _ riTTC _ riTTC _ nc 
^ " 2f (7-38) 

(7-39) 

For a given frequency, d must be larger than the critical value, 
equation (7-38), for transmission, or, for a given separation, / must 
be larger than the critical value, equation (7-39). 

9 (10^®) cm/sec 

Fig. 7-5. Phase velocity vs frequency for three TE modes of excitation 
in Fig. 7-1. 

The velocity of the wave as a function of / is shown in Fig. 7-5 for 
the parameters d == 10 cm, n = 1, 2, 3. 

In Fig. 7-~6, /o is plotted vs d for n = 1, 2, 3. In this diagram 
transmission results only for combinations of / and d which lie to 

the right of the curve. 
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Fig. 7-6. Cutoff frequency vs separation of plates for three TE modes. 

7-6. THE MAGNETIC FIELD COMPONENTS OF THE 
TE WAVE 

If 8, from equation (7-33), is substituted into equation (7-27), 
the 5C field may be obtained. Thus 

3C = j — { V X sin ) (7-40) \ a / 
i j k 

1 A A A 
= 7 — dx dy dz 

CJU 

0 0 sin 
a 

It has been seen that in order for transmission to take place y 
must be imaginary. Since interest lies only in that case, y will be 
written as j0. Then the complete magnetic components become 
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= i ~ cos (7-42) 

or for the real part, 

Hzf^real} = ~ 1®^) COS (7-43) 

Also 

flf = zM g,M-/Jx) gin » (7^4) 
o)fi a 

or for the real part. 

Hy(^real) = -— COS (o)t — fix) slu (7-46) 
co/x a 

In similar terms, equation (7-30) is repeated here 

Ezireai) = ^ COS (w^ “ (Sx) siu • (7-46) 

7-6. CONFIGURATION OF THE FIELD 

It is seen immediately that there are three components of the 
field present, Hx, and Hy. It thus appears that there exists a 
component of H in the direction of propagation. This provides a 
basis for calling this type of wave an H wave, a name used inter¬ 
changeably with TE in a number of texts. 

A very great number of possible field configurations exist 
depending upon the value of n. However, in this elementary 
introduction, the case for n = 1 is the only one to be considered. 
If n = 1 is substituted into equations (7-46), (7-45), and (7-43), 

we obtain 

E. = A cos {cjt — px) sin 
d' 

(7-47) 

Hy 
_ -pA 

cos {o)t — /5x) sin 
d' 

(7-48) 

and 

Hz 
— Air 

and 
sin (o)t -• fix) cos 

d 
(7-49) 

where 

P = 
v* 

(7-50) 

or in free space, 

(7-50a) 
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from equation (7-34). It is clear that the time-varying field, E,, 
which has been postulated will give rise to a displacement current 
directed along the z axis and that a small enclosing path located 
in the x^y plane will have a finite value of mmf acting around it. 
The shape of the H field in the x-y plane may be determined as 

follows. See Fig. 7-7. The slope of the magnetic lines at any 
point is 

^ ^ Hy 
dx Hx 

= — cot {o3t — fix) tan 
TT a 

or 

cot ^ dy — — cot {wt — fix) dx. (7-51) 
d IT 

When equation (7-51) is integrated, the following result is obtained. 

sin ^ sin (co( — fix) = C, (7-52) 

in which C is an integration constant. This equation gives the 
shape of the magnetic loops in the field. Its actual use is left as an 
exercise. 

7-7. THE POWER TRANSMITTED BY THE FIELD 

It is easy now to apply Poynting^s vector to the expressions 
(7-47) and (7-48) to obtain the power transmitted along the tube. 
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The Et and Hy components are the only ones contributing to power 
transmission in the x direction. Components Ez and Hz give only 
power transmission perpendicular to the x axis, and for the values 
of Ez and Hz given by equations (7-47) and (7-49) respectively it 
is a simple matter to show that the time-averaged value of the 
product EzHz is zero. Hence no average power is transmitted 
along the y direction. 

Since Ez and IIy are perpendicular, Poynting’s vector becomes 

p = i cos^ (o3t — fix) sin^ 
osy a 

because (k X j) = “i. If this expression is multiplied by dy and 
integrated from ?/ = 0 to i/ = :i, we obtain the power transmitted 
per unit width of the guide. The result of this integration is 

P = cos^ {wt - 0x), (7-53) 

or the average power transmitted is obtained by averaging over one 
cycle. 

Pav = watts. (7-54) 
4a)jLt 

7-8. DIFFERENTIAL EQUATION FOR THE TMi WAVE 

The mode of transmission considered above is known as the 
TEi mode, the subscript referring to the value of n. In the TMi 
mode, by analogy, we would expect to set n = 1 in the solution for 
a wave which has the following general configuration. In the first 
place we expect that the only component of H present will be 

taking the place of the previous Ez component. It is known from 
previous work that the electric and magnetic fields are perpendicu¬ 
lar, so it appears that the only E components present will be Ez 
and Ey. Thus the general configuration of the TMi field is know n. 
Again a sinusoidal variation with respect to t will be assumed. 

Since there exists only one component of H, it is convenient to 
find, first, a solution for it in general terms. Then from it the 
electric components Ez and Ey will be determined. The boundary 
conditions. Ex = 0 tit y = 0 and y = will then be applied, w^here- 
upon all the field components wdll be known. 

In order to solve for Hz it is necessary to solve equation (6-12a) 
which will reduce to the following for the conditions outlined above: 
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dx^ dy^ 
(7-55) 

After an expression is obtained for 3C„ 8 can be found from equa¬ 
tion (4-1). 

e = _ i- (V X 5c). (7-56) 

By analogy with equation (7-29) we can immediately write down 
the solution to equation (7-55) as follows: 

X, = (7-57) 

where y will be replaced by jfi and is 

(7-58) 

from equation (7-34). We have already decided to treat only the 
case for n = 1, so n has been omitted in writing equation (7-58). 

The field 8 is determined now from equation (7-56) using 
expression (7-57) for X,. 

i j k 

A A A 
dx dy dz 

= - iBijhz^y - Bijbe-^^y) + 
(jje 

+ Bze-^*^)]. (7-59) 
Thus 

8, = ~ 8“^^* (Bisj^ - (7-60) 

and 

Gy = — e-’'’* (7-61) 

we 

The boundary condition must now be applied to equation (7-60): 

0 == Bi — B2 

0 = -- ^28“"'^. 

Therefore, 

B 
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sin bd = 0, 
from which 

bd = nx 
or, setting n = 1, 

(7-62) 

as in the case of the TEi wave. 
The components now become 

Ex = 

Dl. 

E, = 
^iiut—0x)^^j{Ty)/d _j. g— 

Hx = 
D 

_£j(wf—/3x)^gj(Tv)/d £--j(Tv)/d^ 

2 ^ 

or the real parts are 

Ex{r«»l) 
Bit Try 

--j Sin U^t — /3x) sm 
a 

(7-63) 

Ey(r«al) = - cos (o)t — fix) cos -y> 
0)6 a 

(7-64) 

7/*(real) = B cos {(j)t — fix) cos (7-65) 

7-9. PROPERTIES OF THE TMi WAVE 

Since b and for this wave are the same as for the TEi wave, the 
transmission properties, velocity, and critical or cutoff values of 
d and / are given by the equations of §7-4. 

7-10. CONFIGURATION OF THE FIELD 

By a method similar to that used before, the shape of the electric 
field ‘Moops^^ may be determined. The slope of the electric lines 
at any point is given by 

^ ^ = —— cot {(jjt — Px) cot (7-66) 

The equation of the curve is given by solving this equation for y. 
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ttxi 
cos sin {(jdi — ^x) == C, (7~67) 

where C is a constant of integration and depends upon the location 
of the loop. 

7-11. POWER TRANSMISSION IN THE TMi MODE 

From equations (7-64) and (7-65) the power is obtained by 
using Poynting’s vector. 

P = E X H. 

The components contributing to transmission in the x direction are 
Ey and Since they are perpendicular, P becomes, very simply, 

P = cos^ {oil — ^x) cos^ —• (7-^8) 
die a 

This equation, integrated from ^ = 0 to 2/ = d, and averaged over 
one cycle, gives the following expression for the average power 
transmitted per unit width of the guide. 

Pav = —A—~ watts. (7-69) 

7-12. THE TEM MODE OF TRANSMISSION 

In writing equation (7-62) for the TMi mode, n was set equal 
to unity. However, there is another very simple possibility, that 
of setting n = 0. If this is done, it amounts to replacing r/d 
( = 6) by zero in equations (7-63), (7-64), and (7-65). By doing 
this, there results 

E. = 0, \ 

Ey = ^ COS («< 
0)6 

(7-70) 

Hm — B cos (wt — fix), I 

However, has a very simple expression for n = 0, obtained from 
equation (7-34). It is 

(8 = « v^. (7-71) 

The above equations then become: 

E, = 0, (7-72) 

Ey = Byjj COB («< - /3x), (7-73) 

H. = B cos (cot - 0x). (7-74) 
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It is immediately noted that the x component disappears, and 
we obtain the same result as in §7-2. The velocity becomes the 
velocity of light, and the guide no longer acts as a high-pass filter. 
Note that B y/\il^ — A, 

7-13. PROBLEMS 

7-1. If 8 = kAe-'y^e"'*', find X by using equation 

5c = j— (V X £). 

7-2. Given the following parameters for a TE wave between 
parallel plates, d = G cm, / = 2/o, A = 1, n = 1. Find: (a) /o, 
(b) Vj the phase velocity. 

7-3. In Prob. 7-2, plot Eg vs y and vs Xy assuming that t = 0. 
Repeat for cot = t/2. (When plotting against y let x = 0, and 
when plotting against a: let ^ = d/2.) 

7-4. Find //* and Hy for Prob. 7-2, and plot each vs x and y. 
Observe the same restrictions as in Prob. 7-3. 

7-6. Plot an H loop for Prob, 7-2 at ^ = 0, with the requirement 
that it pass through the point x = 0.2 cm, and y = S cm. 

7-6. Find the maximum power flow per unit area in the field of 
the guide of Prob. 7-2. 

7-7. Show by direct substitution that 

//^ = —^ sin {u)t — ^x) cos ^ 
uoaiJL a 

is a solution of 

7-8. Show by direct substitution that 

E = ™ cos {cot — fix) cos ^ 
co€ a 

is a solution of 

V^E = 
d^E 

7-9. Given the following parameters for a TMi wave between 
parallel plates, d = 10 cm, / = 2/o, 5 = 1. Plot an electric field 
loop passing through point x = 0.2 cm and y = 7.5 cm at < = 0. 

7-10. Find the phase velocity of the wave in Prob. 7-9. 
7-11. In Prob. 7-9, plot Eg and Ey vs x and y assuming t = 0. 

(When plotting vs x, let y = d/2, and when plotting vs y, let z = 0.) 



156 ELEMENTS OF ELECTROMAGNETIC WAVES 

7-12. The TEM mode is being transmitted between plates 10 
cm apart. B = 1, and / = 10®. Find the power transmitted 
per unit width of the guide. 

7-13. A Zo is defined as follows: Zo = E,fHy. Calculate Zo in 
ohms from equations (7-47) and (7-48) for / = 1.5/o, d = 10 cm. 

7-14. Find the maximum power flow per square meter in the x 
direction based on equations (7-47) and (7-48) for conditions as 
given in Prob. 7-13. 

7-15. According to equations (7-47) and (7-49) there is a power 
flow in the’jrdirection. Find its average value per square meter 
for the conditions of Prob. 7-13. 



chapter Vllt 

RECTANGULAR 

WAVE GUIDES 

Summary 

This chapter continues the discussion of Chapter VII by adding 

two more conducting walls, thus forming a rectangular guide. The 

properties of the TE modes of transmission are derived. The 

TEo.i mode is treated specifically, and the field configuration and 

expressions for power and for characteristic impedance are deter¬ 

mined. On the basis of the equations for the TEo.i mode relations 

for currents in the guide walls are derived. The TEi.i mode is 

considered briefly. 

8-1. THE DIFFERENTIAL EQUATIONS FOR THE TE MODES 

In Chapter VII it was shown that an electromagnetic wave can 

be transmitted between two parallel plates and that the variation 

with X and t, the direction of propagation, and time, respectively, 

can be expressed by the exponential product 

(8-1) 

where y is known as the propagation constant and is expressed in 

general as 

7 = a + (8-2) 

where a is the attenuation constant and jS, the phase constant. In 

the preceding chapter, it was found that with perfect conductors, 

a was zero if the frequency was above some critical value known as 

the cutoff frequency. It might be expected that transmission of 

some kind will still result even if walls are added so that we have a 

rectangular tube instead of an infinite plane. That the addition 

of walls to form a rectangular guide may be considered possible is 

seen by reference to Fig. 8-1 where the end of such a guide is shown, 
167 
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with an electric line drawn for the TE mode. The addition of 
boundaries at ab and cd would not seem to do violence to any 

fundamental principles, since the electric lines could terminate on 
charges on these boundaries and are perpendicular to the surfaces, 

as required. It is also now obvious that if walls are added as shown 
the electric line could be drawn in either the tj or z direction equally 
well because the tube presents the same aspect to either field. If 
this mode seems to be a possibility, it seems that equations could 

Fig. 8-1. Rectangular wave guide with inside dimensions p and q. 

be set up which will predict them. It will be found that such 
equations in general will indicate an infinite number of possible 
modes of transmission. The specific one treated in some detail 
in the following pages will be the one in which the electric lines are 
drawn parallel to the y axis, a mode known as the TEo.i. 

We begin with equations (4-11), boldly making the assumption, 
which by this time may seem somewhat reasonable, that the varia¬ 
tions with respect to x and t are given by expression (8-1). With 
this substitution, equations (4-11) become 

— w 

— W VcS,. 

(8-3) 

(8-4) 

(8-6) 
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These equations provide for the existence of all three components 
of 8, (or E). The solutions will divide themselves into two main 
groups, those in which 8, = 0, and those in which 3C, = 0. The 
groups are known respectively as the TE and TM groups, for the 
same reason as given in Chapter VII. The set to be considered 
here is the one containing the TE modes. In this set the TEo.i 
mode is the most important and will be worked out in some detail, 
whereas the TEi.i mode will be considered briefly. The TM modes, 
having little practical importance, are omitted but may be handled 
in an exactly similar method. 

When &x = 0, we are left with only equations (8-4) and (8-5). 
These two equations are exactly the same in form so that when a 
solution is obtained for one it can also be applied to the other. Let 
these two equations be rci^resented for the present by the following; 

— (wV« -b y^)Q 

-h^Q (8-fl) 

(coV< + T^) 

where Q may represent either 8„ or 8,. This is the equation which 
will lead to all the TE mode solutions. 

d^Q d^‘Q 
dy^ dz'^ 

8-2. SOLUTION OF THE TE MODE EQUATION 

Equation (8-G) involves two variables, y and z. It can easily 
be solved by assuming a solution as follows: 

Q = KZ, (8-7) 

where T is a function of y only, and Z a function of z only. Sub¬ 
stituting (8-7) into equation (8-6) there is obtained 

or 

4. V 
dy^ 

-h^YZ, 

1 1 d-Z _ 
Y dy^ Z dz^ 

(8-8) 

Now the two terms on the left are entirely independent of each 
other, and their sum must be {—h^). Thus each term is a constant, 
and we have the following, where M and N are constants’. 
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and 

1 d^Y 

Y 
1 ^ 

Z dz^ 

-M\ 

-N\ 

+ AT* = h\ 

From the above equations we have 

d^Y 

dy^ 
d^Z 

dz'^ 

-M^Y, 

-N^Z, 

(8-9) 

(8-10) 

(8-11) 

of which the solutions are known to be circular functions. Thus 

and 

or 

Y = A' cos My + B’ sin My, (8-12) 

Z = C cos Nz + D' sin Nz, (8-13) 

Q = (A' cos My + B' sin My){C' cos Nz + D' sin Nz) 
= &y. (8-14) 

The boundary conditions are 8, = 0, when z = 0, p. To meet this 
boundary condition, equation (8-14) indicates that 

Therefore 

and 

or 

Therefore 

C cos Nz + D' sin Nz = 0, z = 0, p. 

C = 0, 

Np = nir, (n = 0, 1, 2, 3 . . . ), 

= (.4 cos My A- B sm My) sin 
rvKZ 

P ’ 

(8-15) 

(8-16) 

where A = A'D', B = B'D', and in which A, B, and M are to be 

determined. 
Now 8, could be determined in the same manner, but if the 

expression were obtained it would contain undetermined constants 
and the work of correlating the two solutions would be somewhat 
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involved. It is better, at this point, to go back to Maxwell’s 
equations (4-1) and (4-2) and obtain, from them, relationships 
among the components so that they can be found from equation 
(8-16). It is first necessary to obtain the expression for because 
our only other boundary condition, that is, 8, = 0 when y = 0 and 
y = q, must be applied to it. 

Equations (4—1) and (4-2) will now be written out in terms of 
components, using the substitution (8-1) and <r = 0, Remember 
that, for the present, E* = 0. 

dH, _ dHy 
dy dz 

dHr _ ^ 
dz dx 

dHy dH^ 
dx dy 
dE, dEy 
dy dz 
dEy dE. 
dz dx 

dEy dEy 

dx dy 

The component 8, in terms of 8„ can be quickly obtained by the 
use of equations (8-17), (8-21), and (8-22). First solve (8-21) for 
Ky and (8-22) for 3Ci. Differentiate both and then obtain 8, 
through the equality (8-17) as follows. From equation (8-21), 

jutEy 

jufEy 

joSfEy 

— j0)HHy I 

— jwnHy 

—jojltll. 

dXy 
dy 

dXy 
dz 

dKy 

dz = 0, 

+ ySCz = jojf&y 

-y5Cy - dXy 

dy 

dy 
d&y 
dz — jWfjOCy, 

y&! = —jiatiXy, 

— yC,y = —junXz. 

(8-17) 

(8-18) 

(8-19) 

(8-20) 

(8-21) 

(8-22) 

= j — 8., 

from which 

^ . y_ 

dz ^ dz (8-23) 

From equation (8-22), 
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Then using equations (8-16), and (8-17), 

d&t _ _ 
dz dy 

= — ^{A cos My + B sin My) sin 

= (AM sin My — BM cos My) sin 
mrz 

and on integration, 

when y = Oy q. Therefore, 

sin My — B cos My) cos = 0, (8-25) 
7lir p 

and 

or 

Therefore 

B = 0, 

Mq = rnTTy (m = 0, 1, 2, 3, • * •)> 

M = ^. 

^ mp . . miry nirz 
--L ^ sm —- cos- 

nq 

From equation (8-16), 

= A cos —- sin 
rrnry . nirz 

V 

(8-26) 

(8-27) 

(8-28) 

(8-29) 
and, of course, 

= 0. 

Thus we have determined all components of 6. The propagation 

constant can now be calculated from equation (8-9). 

+AT. = 

= a?V€ + 7^, 
or 

7m,1 - (.+(8-30) 

We are primarily interested in conditions for good transmission, 
that is, with a = 0. Accordingly, we are restricted to the imagi¬ 
nary value of the radical in equation (8-30). Therefore we may 
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write 

(a + = j “ (7) ’ 

or 

/3m.« = , (8-31) 

which is the phase constant for any TE mode, TE,„.„. 

8-3. THE MAGNETIC COMPONENTS OF THE TE MODES 

The magnetic components may be obtained by the use of 
equations (8-27), (8-28), and (8-29) in connection with equations 
(8-20), (8-21), and (8-22). First from equation (8-20), 

3fC. = L 
cj/i \dy dz ) 

—jA (mVv , mr\ 
= —— I —~ H-I cos My cos Nz 

o)fx \ nq^TT p / 

Ap 
= -J (jiyimr 

(a)V« + 7^) COS My cos Nz, (8-32) 

from equation (8-9). From equations (8-21) and (8-27) we have 

nn _ jy p 

= —7* — — A sin My cos Nz. 
COM M 

From equations (8-22), (8-28), 

(8-33) 

A^ 
-j —- cos My sin Nz. 

COM 
(8-34) 

Now it is possible to collect, all in one place, the six components 
of the field in their complete form, that is, with the variables x and 
t restored and with the imaginary parts discarded. First 

fix = 0. (8-35) 

From equation (8-28), remembering that y = jfi, 

Ey = cos My sin Nz, (8-36) 
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or 

Eyf^rcai) = A COS (o)t ~ ffx) COS My sin Nz, 

From equation (8-27), in a like manner, 

TYIT) 
- Egf^real) = — 4 ^ COS (ojf — sin Afy COS Nz. 

From equation (8-32), 

Hg = —j (coV€ + cos Mt/ cos Nz^ 
osiinir 

or 

i4p 
Hx^reai) = —^ (^V^ — /S^) siu (c*)^ — /5x) COS My cos A^2:, 

CJfJLTlTr 

x(real) = -^ + ^^) («*>^ ““ COS My COS A^Z. 
^ OJfiTlT 

or using equation (8-31), 

H . - ^ 

From equation (8-33), 

Hy^reai) = ^ — COS (o)t — /9x) sin My cos A^z, 

and from equation (8-34), similarly, 

Hz — —j — cos Afv sin Nz, 
WfJL 

or 
A8 

Hurral) ~ <^^3 {wl — fix) COS My SIH Nz. 

(8-37) 

(8-38) 

(8-39) 

(8-40) 

(8-41) 

(8-42) 

(8-43) 

(8-44) 

»-4. CHARACTERISTICS OF THE TE TRANSMISSION 

Equations (8-31), (8-35), (8-37), (8-38), (8-40), (8-42), 
and (8-44) give us all the information concerning the modes of 
transmission under the TE classification. The modes are specified 

by stating the value of m and n. Thus there may exist modes 
TEo.i, TEi.o, TEi.i, TEi,2, etc. The TEo.i mode is the first to be 
considered here. In the first place, equation (8-31) gives us much 
information about the actual transmission, the other equations 
having to do only with the field configuration. From equation 
(8-31) may be obtained information concerning the cutoff fre¬ 
quency, phase velocity, and wavelength in the guide. 
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The cutoff frequency is that frequency below which p becomes 
imaginary making 7 real and thus resulting in a case of high atten¬ 
uation. The limiting case is expressed by setting the quantity 
under the radical in equation (8-31) equal to zerq. Thus 

coo •v^ = + N\ 

or 

/o = 
2 \/Hi +(| 

(8-45) 

where v is the phase velocity in this space and equals the velocity 
of light, c, if €r = Mr = 1- The cutoff frequency fo is thus a func¬ 
tion of the mode through m and n and a function of the dimensions 
through p and q. On account of the reciprocal relationship between 
fo and the dimensions, only small tubes are suitable for high fre¬ 
quencies. The tube acts like a high-pass filter^ passing only fre¬ 
quencies above fo. 

The phase velocity in the guide is given by 

CO 
(8-46) 

From this equation it is seen that the phase velocity is always 
greater than the corresponding phase velocity in free space having 
the same values of m ancTlT The lowest value which Vp can have 
would be obtained by setting m = n= 0, or p=g = 00, in which 
case 

Vv = 
1 

CO V MC 

= V. (8-47) 

This V is equal to or less than the velocity of light, depending upon 
the values of Hr and €r. 

The wavelength in the guide becomes 

2ir 2t 
(8-48) 
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8-6. ILLUSTRATIVE EXAMPLE: CHARACTERISTICS OF THE 
TE TRANSMISSION 

Example 1. Let it be assumed that a tube is given with p “ 0.03 
m, and q = 0.02 m. Bequired to find the cutoff frequency /o and 
the phase velocity and wavelength for a frequency of 1.5/o for the 
TEo.i mode. The cutoff frequency is given by equation (8-45), and 
for the TEo.i mode, m = 0, n = 1. In the space within the guide. 
Hr = tr - 1, and t) = c. Thus 

3(10^) _1_ 
0.03 /o - 5(10*) cps. 

Now /3 will be calculated for use in equation (8-46) to find the phase 
velocity and in equation (8-48) for the determination of the wave¬ 
length. (|/« = 1/c* for this case, and / = 7.5 10®) 

^ /4t*(7.5)*(10‘») _ /jr y 
^ V 9(io‘») y^o.osy 9(10‘») 

= 117.1 rad/m. 

From this, the velocity becomes 

25r(7.5)10* , 
Vp = —iif~l— (10*) m/sec. 

and the wavelength is 
2x 

117.1 
= 0.0536 m. 

The corresponding wavelength in free space is 

. ^ 3(10^) 
7.5(10®) 

0.04 m. 

Comparing these values it is seen that in the same way as with 
waves guided between parallel plates, the velocity is considerably 
above the velocity of light and the wavelength is longer than in 
free space. 

8-6. THE TEo.i MODE 

The equations given above are applicable to the general TE„»,n 
mode. In this section the field components and field configuration 
will be considered for the TEo.i mode. In this mode, as we have 
seen, m = 0, and n = 1. Accordingly we have for equations 
(8-45), (8-46), and (8-48) the following special forms: 
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/o(O.l) — (8-49) 

(8-50) 

The wavelength in the guide is 

^fl(O.l) = — (8-51) 

The components of the field will be obtained from equations (8-35), 
(8-37), (8-38), (8-41), (8-42), and (8-44) by substituting m = 0, 
n = 1, Af = 0, and N = Tr/y. First, of course, 

E, = 0. (8-52) 

E, A cos {(at — fix) sin ~y (8-53) 

E, = 0, 

H. 
At . 

= -Sin ((at — fix) cos — > (8-54) 
o)iip V 

H, = 0, (8-55) 

H, 
Afi 

= — cos {(at — fix) sin —; (8-56) 
co/x V 

where 

from equation (8-31). It is seen that there are only three com¬ 
ponents in the TEo,i mode, one longitudinal component and two 
transverse. The electric field is entirely transverse, having no 
longitudinal component. Thus the symbol TE is used meaning 
^Hransverse electric.” In Fig. 8-2 is presented a diagram of these 
lines for one half-wavelength in the guide. At the point a where 
z = p/2, x = 0, 2/ = g/2, and taking < = 0, the fields are 

Ey = A, (8-57) 
H, = 0, (8-58) 

UH 
(8-59) 
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These components are shown by arrows and it is to be noted that 
Ey and Hz are in the appropriate directions to produce power flow 
in the +a: direction, according to Poynting’s vector. At this point 
there is no longitudinal component of H. A half-wavelength 

Fig. 8-2. General configuration over one half-wavelength of the TEo.i 
mode. 

further down the guide where fix — tt, and still at the center, as at 
the point c, it is found that the fields have reversed. 

Ey = -A, 
Hz = 0, 

(8-57a) 
(8-58a) 

(8-59a) 

Here the Poynting vector is still in the +x direction. At the point 
where 0x = ir/2, represented by b and d, the fields are 

Ey = 0, (8-57b) 

H, = -^co3-, (8-581)) 
COjUp p 

Hz = 0. , (8~59b) 

At the center of the guide where z = p/2, Hz = 0, but at the sides 
it has a value such that at « = p, 

wpip 
(a positive quantity), 
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and at 2 = 0, 
Att 

Hx --(a negative quantity). 

These vectors are shown also, and the diagram thus becomes con¬ 
sistent with the idea that the magnetic lines are continuous loops. 

y 

Fig. 8-3. Variation of Ey, //*, and 
Hm in the TEo.i mode across a guide 
at various values of x. 

Wall of guide 

8 m s B s Bi R ■ B B 
m R m B B m ■ B B 

8 8 i M 
i^r n 8 H ■> 

8 H B ■ M m 11 n 1 
19 H S 8 s ■ Is ■ s a H 8 
01284667 

Wall of guide X 

Fio. 8-4. Magnetic lines of force in a rectangular guide. TEo.i mode. 
(Modified by permission from Communication Circuitsby L, A, Ware 
and H, R, Reedy published by John Wiley and SonSj Inc.) 

In Fig. 8-3 these three components are plotted in various ways in 
order to present a better idea of the field configuration. Refer 
to Chapter VII where a similar discussion occurs concerning loops 
in the parallel plate guide. The form of the magnetic loops for the 
TEo,i mode is shown in Fig. 8-4. 
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a-7. POWER TRANSMITTED BY THE TEo.i MODE 

The power transmitted by the TEo.i mode per unit cross section 
of the guide is given by Poynting’s vector 

P = E X H watts/m^. 

The only field components which will contribute to longitudinal 
transmission are Ey and Hz. Accordingly, using equations (8-53) 
and (8-56) we obtain 

P = i cos^(a)< — ^x) sin^ —• (8-60) 
co/x p 

This is the same as obtained for the parallel-plate guide of Chapter 
VII. The time-averaged value of power density is 

P = 
2o3fX 

sin^ 
wz 

(8-61) 

The total power is obtained by integrating over the cross section 
of the tube 

Pt 
. ,7rz, , 

fo p 

(8-62) 

This equation should be compared with equation (7-54). The 
voltage at which the guide operates may be considered as the rms 
value of the potential difference between the lower and upper wall. 
The peak value of field intensity is A, Thus the potential difference 
becomes 

V max — 

or the rms value is 

Aq 
V. (8^63) 

Equations (8-62) and (8-63) may now be used to find an impedance 
which will be defined as the characteristic impedance and repre¬ 
sented by Zo. It will be a real quantity and is such that 
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Thus 

Zo = ^ = ohms. (8-65) 

This characteristic impedance is seen to depend upon the dimensions 
and upon the frequency. It can be varied in value by changing q 
which does not change the other transmission properties, except 
attenuation. Characteristic impedance can also be defined as the 
ratio of Ey^max) to Hz^max)- This produces a simpler form but, in 
general, a different value for the characteristic impedance from 
that given by equation (S-65). 

Zo' = ~ ohms. (8-66) 

This equation produces the same value for Zo as given above only 
in case the guide is half as high as it is wide, or p = 2g. Equation 
(8-65), however, comes nearer to conforming to our usual ideas of 
impedance of transmission lines. 

Power will be transmitted also in the z direction but such power 
merely reflects back and forth, and since the walls are assumed to 
be‘perfect conductors, it does not represent any power loss. This 
can be seen by noting that the average value of EyHx is zero because 
the average value of cos x sin x is zero. 

8-8, ILLUSTRATIVE EXAMPLE: TEo.i MODE 

Example 2. Let it be assumed in Example 1 that the guide is 
transmitting 10 kw at the frequency of 7.5(10^) cps. Required to 
find the value of Zo by the use of both equations (8-65) and (8-66) 
and the maximum voltage across the guide. From Example 1, 
0 = 117.1 rad/m. For the space in the guide, p = ptoPr = 47r(10~^). 
From equation ''8-65) 

_ 2(0.02)47r(10-7)27r(7.5) 10® 

117.1 (0.03) 
= 674 ohms. 

From equation (8-66) 

r? / _ 2x(7.5)(10*')4irl0-» 
117.1 

= 505 ohms. 
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From equation (8-62) 

Thus 

and 

A^ = 
4a)iLLPt 

PVQ 
(4)49r(10-7)2T(7.5)(109)(10,000) 

117.1(0.02)(0.03) 
3.37(10i«). 

A = 184,000 v/m, 

Aq = Vmax = 3680 v. 

8-9. CURRENT FLOW IN THE WALLS OF THE GUIDE 
In speaking of wave guides it is not usual to treat specifically 

the currents which flow in the guide walls. Accordingly, one 

Fig. 8-5. A half-wave length of guide with sides removed, showing 
currents flowing into lower plate and one magnetic field loop. 

is likely to forget or overlook the fact that the guide really is a 
transmission line with transverse voltages and longitudinal currents 
flowing as in the ordinary parallel-wire line. This fact was touched 
upon in §8-7 where some transmission line ideas were used. 

In this article some of the currents flowing in the guide will be 
calculated and certain developments will be based upon them. 
As seen in §7-2, the current flowing in a conductor surface adjacent 
to a tangential magnetic field is easily determined by integrating 
the magnetic vector over the distance involved. In Fig. 8-5, four 
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currents may thus be calculated, all those indicated by ii, ts, and 
flowing into the lower plate of the half-wave section of guide. 

Along the edges oa, and be, the magnetic field is given by 

Hz = — cos (oit — fix) sin —? 
WM V 

where x is to be set at the value zero for the path oa, and at \g/2 
for the path be. The time t will be taken as zero, that is, the value 
giving maximum Hz. Thus at a: = 0, 

and at a; = X^/2, 

„ Afi . TTZ 
Hz = — sin —) 

COM V 

„ Afi . TTZ 
Hz --- sin — 

COM V 

(8-67) 

(8-68) 

The current, i\, is now determined by integrating equation (8-67) 
over the range 2 = 0 to p. This is 

■r 
= 

OilXTT 

Afi . TZ , 
— Sin — dz 
COM v 

(8-69) 

According to equation (8-68), the current t2 will be the same except 
for sign and the total longitudinal current entering the half-wave- 
length plate is 

/x = amp. (8-70) 
cofiir 

The current flows into the plate from the wave-guide sections before 
and after the section shown. Simultaneously there is an opposite 
and equal flow of current in the upper plate at the ends marked 
A and B. It should be recognized that the current distribution 
from z = 0 to p is not uniform but, of course, follows the same law 
as the magnetic field, because at all points the current and magnetic 
field are proportional. 

The currents iz and flowing into the plate from the sides of the 
guide are determined from the expression for H^, 

Hx = sin (wt — fix) cos —• (8-54) 
COMP P 

For Zs, 25 = 0, and the integration is from x = \g/2 to zero, with 
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t = 0, along CO. Therefore, 

— At • a ^ tz = - I sin fix ax 
WMP Jx./2 

= Mil. 
fioiiip 

For iij equation (8-54) becomes, along a6, (at z = p), 

(8-71) 

H, = ^ sin fix, (8-72) 
mV 

and accordingly will result in an equal current flowing into the plate 
from the right. Thus the total lateral current is 

4i47r 

fimV 
(8-73) 

8-10. THE CHARACTERISTIC IMPEDANCE 

Using equation (8-69), it is now possible to define a third char¬ 
acteristic impedance based upon the fact that in transmission lines 
it is the impedance, Zo = V/I, at any point of an infinite line 
operating under steady state conditions. The rms potential dif¬ 
ference between the upper and lower plates at 2 = p/2, is given by 
equation (8-63) as Frm, = Aq/\/2. The current expression (8-69) 
gives the maximum value on account of the selection of ^ = 0, so 
the rms current is 

IrmM — 
(jOyLT 

(8-74) 

Thus a characteristic impedance can be defined as 

Zo 
CO/XTT ^ _ 

y/2 V2Afip 

(8-75) 

It will be noted that this is still different from the two previous 
expressions for Zo. 

8-11. CURRENT CONTINUITY 

On referring again to Fig. 8-5, it is seen that current is flowing 
from all sides into the lower plate in the same way as into the plate 
of a condenser. If the condenser analogy holds here, then the 
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total current 

It' = /* + /. = ^ ^ 
(jjfiir poifxp 

W/X \ TT Pp/ Pt 

must equal the maximum displacement current in the dielectric 
between the plates.. To test this, equation (8-53) will be used for 
the electric field between the plates. 

Ey = A cos (cot — Px) sin 
ttz 

(8-53) 

The flux density at any point is 

Dy = Ae cos {(*>i — Px) sin —> 
V 

and the displacement current density becomes 

dDy 
r = 

dt 
— sin {o)t — px) sin 

TTZ 

(8-77) 

(8-78) 

This must be integrated over the surface of the plate, as follows, 
to give It- 

It = ^ Aeo} 

_ 4i4€wp 

rp 
si 

*/x = 0 tJz^O 

ttZ 
sin {wt — Px) sin — dz dx 

V 

cos 0)^. (8-79) 

The maximum value occurs at ^ = 0, and is 

It = (8-80) 

which agrees with equation (8-76) in both magnitude and time 

(phase). 

8-12. THE TEi.i MODE 

The TEo.i mode which has been treated in some detail above 
IS the most commonly used because of its simplicity and the fact 
that, at the same frequency, no other mode may exist in the guide. 
However, in order to present a better picture of the general TE 
modes, the TEi.i mode will be briefly considered. The TM modes 
are omitted because of the fact that they are not extensively used 
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in practice. Also the procedure for deriving the TM modes is 
almost a repetition of that for the TE modes. 

For the TEi.i mode we may first go back to the equations 
(8-45), (8-46) and (8-48) and obtain the following for an air 
dielectric in the guide (m = 1, n = 1): 

/o(l.l) ~ 

and 

It is immediately seen that these quantities are dependent upon 
both dimensions of the guide. 

The components of the electric field may again be found from 
equations (8-35), (8-37) and (8-38). 

E, = 0, 
Ey ^ A cos {(Jit — fix) cos ^ sin (8-84) 

Et = - cos {(j)t — fix) sin ~ cos — • (8-85) 
9 q V 

There are thus two components of the electric field instead of one 
as before. Both of these, however, are transverse, as required. 
The magnetic components are obtained from equations (8-41), 
(8-42), and (8-44). 

(8-86) 

Hy = COS {<at — fix) sin — cos (8-87) 
oifjtq ^ ^ ' q p ^ ^ 

Hg = — cos (cat — fix) cos — sin —> 

cofi Q V 

and all three components are present. 

(8-81) 

/ 
o 

r - O'- 
1 

O' 
(8-82) 

(8-83) 

(8-88) 
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8-13. CONFIGURATION OF THE TEi,i ELECTRIC FIELD 

The equations of the preceding section indicate that the electric 
field is a 2-dimensional field perpendicular to the direction of 
propagation as the name TE requires. The magnetic field is, in 

Fig. 8-6. Configuration of electric lines in the yz plane in a guide trans¬ 
mitting the TEi.i mode. 

general, 3-dimensional. The shape of the electric lines can be 
found as follows, in a manner similar to that used previously. 

dz Em 

= — - cot — tan —j 
V q V 
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or 

tan — dy = — - tan ~ dz, (8-89) 
q V P 

On integration of this equation, there is obtained 

cos — cos — = C, (8-90) 
q V 

where C is a constant depending upon the location of the electric 
line under consideration. In Fig. 8-6 a few of these electric lines 
have been plotted for a guide with dimensions p = 10 cm, q == 6 cm. 
It should be kept in mind that the magnetic lines must always lie 
perpendicular to the electric lines at every point. 

fr-14. POWER TRANSMITTED BY THE TEi.i MODE 

Poynting^s vector will give the power transmitted per unit area 
of the guide. If all components listed above are included in this 
calculation, it will be found that the component Hx contributes 
nothing to the power transmission and could therefore be omitted. 
However, the complete expression will be written out here. 

i j k 

P = E XH = Ex By (8-91) 
Hx Hy Hr 

or 

Px = EyHr - ErHy 

cos^ (w( — /3x) cos^ — sin2 — + , q V 

cos^ {(at — fix) cos^ — sin^-h ^ sin 

-^ cos^ {(at — px) sin^ — cos^ — 
wAig" q V 

which, on integration over the cross section of the guide and averag¬ 
ing over one cycle, becomes 

(8-92) 

This is the power flow along the axis of the tube, that is, in the 
X direction. The power flow in the y and z directions can be deter¬ 
mined as follows, from equation (8-91), 
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P„ = E.Hz - EM. 

wnq 5,' + 
COS {(Jit — 0x) 

sin {(Jit — fix) sin — cos — cos^ —• (8-93) 
g q p 

On account of the cos (co^ — fix) sin (co< — fix) product, this becomes 
zero when averaged over one cycle. Thus no net power is trans¬ 
mitted in the y direction. Similarly, 

Pn ExPy — Eyllx 

— A^irp 

(Jill 
cos {(Jit — fix) sin {(Jit — fix) 

2 cos^ — sin — cos — 
7r2 

V 

tz 

T 
(8-94) 

The average of this is also zero for the same reason as above. Thus 
the only power transmitted is given by equation (8-92). This 
should be compared with equation (8-62) remembering that the two 
fi^s involved are not the same. 

8-16. PROBLEMS 

S-1. A rectangular wave guide is given with the following 
dimensions: p = 3 cm, g = 1 cm. The mode to be transmitted is 
the TEo.i and the frequency is 1.5/o. Let A in equation (8-53) be 
10® v/m. Find the components of the electromagnetic field at 
z = 1.5 cm, y = 0.5 cm, for x = 0.0 and x = 2.0 cm. Let t = 0. 

8-2. For the conditions of Prob. 8-1, find Zo (by three methods) 
for / = l.l/o, 1.5/o, and 2.0/o. 

8-3. For the conditions of Prob. 8-1, find for / = l.l/o, 

1.5/o, and 2.0/o. 
8-4. For the conditions of Prob. 8-1, find \g for / = l.l/o, 

1.5/o, and 2.0/o. 
8-6. For Prob. 8-1, calculate the average power in watts being 

transmitted at frequencies of 1.5/o and 2.0/o. 
8-6. Minimum attenuation for a rectangular guide occurs when 

q/p = 1.18. Assume that this change is made in the guide of 
Prob. 8-1, leaving p = 3 cm, and find the new value of Zo by equa¬ 
tions (8-65) and (8-75). 
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8~7. What is the disadvantage of operating as mentioned in 
Prob. 8-6? Find the absolute minimum frequency which can be 
transmitted in this tube. 

8-8. Assume that the tube of Prob. 8-6 is transmitting 5 kw. 
Find the total rms voltage across the tube and the equivalent cur¬ 
rent flow based on the equation Pt = VI. Compare this current 
with that given by the equations of §8-9. 

8-9. A guide with dimensions p = 6 cm and g = 3 cm is trans¬ 
mitting power in the TEo.i mode at a frequency of 2/o. (a) Find 
the rms value of longitudinal current if the value of A is 5000 v/m. 
(b) Find the rms total current flow into any half-wave plate of the 

guide. (See §8-9.) 
8-10. Given a tube with p = 5 cm and q = 2 cm. (a) Find the 

cutoff frequencies for both the TEo.i and the TEi.i modes, (b) 
Using a frequency of one and a half times the higher of these cutoff 
frequencies, determine the ratio of powers transmitted in the two 

modes, that is, Po.i/Pi.i- 
8-11. For the guide of Prob. 8-10, plot a set of four E curves as 

shown in Fig. 8-6, one of which is to pass through the point p = 0, 
z = 2.4 cm. Use the TEi,i mode. 

8-12. Equations (8-87) and (8-88) may be used to obtain the 
equations of the yz projection of the magnetic lines. Derive this 
equation and plot a curve for the guide of Prob. 8-10 passing 
through the point y = 0.5 cm, z = 2.5 cm. 

8-13. Using the equations of §8-11 and the fact that the maxi¬ 
mum voltage across the center of the guide is Ag volts, find the 
effective capacitance'of a half-wave section of the guide. Com¬ 
pare this ^^dth the ordinary capacitance of the two plates if the side 

walls were not present. 



chapter IX 

RADIATION 

Summary 

The subject of radiation begins by a discussion of potentials 
and the presentation of a suitable expression for retarded potential. 
On the basis of the retarded potential, which depends upon the 
current flowing in the antenna, the action of an antenna of very 
short length is studied, including a brief treatment of radiation 
resistance. Using the equation for the very short antenna, the 
properties of the half-wave antenna are derived and an expression 
for radiation resistance written down. A short treatment of the 
receiving loop antenna is presented in the last part of the chapter, 
and the directional effects are investigated. 

9-1. DYNAMIC POTENTIALS 

Previously obtained results indicate that an electromagnetic 
wave can be propagated through space of any kind. It seems that 
this propagation is the result of the mutual action of varying electric 
and magnetic fields. However, thus far, there has been no dis¬ 
cussion of the means of establishing these waves. This subject is 
to be considered under the title of Radiation which concerns 
itself with the establishment of electromagnetic waves as a result 
of currents flowing in circuits, and as an introduction, it is conven¬ 
ient first to consider more carefully the general subject of potentials. 

Specifically, unique potentials will first be found from which 
E and H may be determined. The discussion begins by first listing 
MaxwelFs equations again, for convenience, and by calling atten¬ 
tion to the two relations for potentials previously presented. 

Maxwell’s equations are 

V X H = <tE + « 

181 

(9-1) 
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V X E = -^ S 
at 

(9-2) 

V • E = -, 
t 

(9-3) 

V • H = 0. (9-4) 

The two potentials already mentioned are, first, the scalar potential 
<t> from which E is found, 

E = -V<t>. (9-5) 

and the vector potential A from which H is determined, 

H = V X A. (9-6) 

The potential <f> is not suitable, however, for the general case of 
time-varying fields represented by equations (9-1) to (9-4). That 
this is true may be seen by taking the curl of equation (9-5). 

V X E = -V X = 0. (9-7) 

This is identically zero. However, according to equation (9-2), it 
must be equal to 

dH 

a finite quantity if the field is changing. Thus <t> cannot be used. 
Some other potential function must be found and if one should 
think, by analogy with equation (9-6), that some vector potential 
could be used he is soon disillusioned because, if 

then 
- E = V X G, 

V-E = V VXG=0. 

But by equation (9-3) this should be proportional to charge density. 
Thus a pure unadulterated vector potential cannot be used. 

In the meantime, however, we note that equation (9-6) is 
entirely satisfactory because from it 

vh = ttxa = o, 

agreeing with equation (9-4). Equation (9-6) does not uniquely 
define the vector potential because there are many vector fields 
whose curls are equal to H. Nevertheless, we begin by accepting 
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A as the vector potential and will substitute equation (9-6) into 
equation (9-2) 

X
 

>
 1 II X
 

>
 (9-8) 

or 

X
 

+
 

II p
 

(9-9) 

Now, since the curl is zero, there exists a scalar potential F such 
that 

E + Mf (9-10) 

or 

W
 

II 1 1 (9-11) 

This expression for E in terms of both a scalar field F and the 
vector field A is satisfactory because it satisfies equation (9-2), and 

is made to satisfy equation (9-3) as follows. Substitute expres¬ 
sion (9-11) into equation (9-3). 

-V VF - = 
at € 

or 

M ^ • A = - (9-12) 
Ot € 

The substitution of expressions (9-11) and (9-6) into equation 

(9-1) gives 

V X V X A = V(V • A) - = j, - eV ^ - */x (9-13) 

where jc = crE, the conduction current density. Equations (9-12) 
and (9-13) relate p, jr, E, and A but are somewhat complicated. 
Furthermore, the potentials are not yet definitely defined since 
many A^s would satisfy the equations, and F’s may differ among 
themselves by a constant. Thus one more relation is needed to 
connect F and A and, arbitrarily but wisely, we pick the following: 

(9-14) 
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By using this expression, equations (9-12) and (9-13) may be 

rewritten as follows; 

(^16) 

= (9-16) 

The potentials F and A given by equations (9-15) and (9-16) are 
called the dynamic potentials because they apply to fields which are 
changing in time. 

9-2. SPECIAL CASES 

Certain special cases of equations (9-15) and (9-16) are of 
interest. 

Case Jf. p = 0. Equation (9-15) reduces to th6 wave equation. 

In this case the potential F is propagated with the velocity l/y/Ju. 
Case 2. jc = 0. Equation (9-16) reduces to the wave equation 

and the potential A is propagated with the velocity 1 /\/m«. 
Case 3, Variation with respect to t very low or zero. Equations 

(9-15) and (9-16) reduce to 

vw = - ?, (9-17) 

which is Poisson^s equation, and 

V^A = -jV (9-18) 

Case 4- Time variation as (= cos cat + j sin cat). If we 
assume steady-state conditions with this specific variation with 
respect to time, which is very common, it is possible to write both 
E and H in terms of A alone in a rather simple manner. Equation 
(9-14) becomes 

V • = — t — Jgi"' 
ot 

from which 

CF = i — V ■ a, (9-19) 
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and equation (9-11) becomes 

8 = w * s — i/iwS, 

or 

and of course, 

E (9-20) 

H = 6'“' (V X 5). (9-21) 

Thus both E and H are given in terms of a single potential function 
A (= 

9-3. THE SOLUTION OF THE EQUATION 

In any practical case the values of cr and may be known and 
it may be required to obtain E and H. Thus, solutions to equations 
(9-15) and (9-16) must be had from which we may determine 
E and H. An inspection of these equations with reference to §9-2 

indicates that the disturbance travels at a velocity of 2;, (= l/\/m^)* 
If r, which is the distance in a spherical coordinate system from the 
source of disturbance, is very small, the time effects are negligible 
and the potentials can be written as follows: 

and 

F = 

A = 

Jeg*. (9-22) 

(9-23) 

where the integration is to be performed throughout a volume 
enclosing the source of disturbance whether it be a time-varying 
charge or a current variation. The student is already familiar 
with the simple expression for potential of a fixed charge. It often 
appears in basic electrical engineering courses in the cgs system of 
units as follows: 

where <t> is in statvolts, Q is in statcoulombs, and r is in centimeters. 
If this equation is transformed to the mks system, using 6 for free 
space, the following is obtained. 
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<t> = 
A. 
Akt 

where 4> is now in volts, Q is in coulombs, and r is in meters. On 
changing the Q to charge density, p(<), and allowing it to be a func¬ 
tion of time, as indicated, we obtain 

^ 

which can be integrated over the volume enclosing the charge to 
obtain equation (9-22), 

F = / p(<) 
47rr 

dr, (9-22) 

where F is now the total potential in volts produced by the summa¬ 
tion of all the elementary charges under consideration. Equation 
(9-23) can be written do^vn by analogy. 

Because of the finite velocity of propagation, it would be 
expected that the effect at any distant point will be expressed in 
similar form but proportional to the state of affairs at the source 
at an earlier time^ — (r/y)], allowing for the time required for 
transmission. Thus it might be expected that the new potentials 
are given by 

and 

(9-24) 

(9-25) 

where p[t — ir/v)] and ]c[t — (r/v)] mean functions of [t — {r/v)] 
and are not products. 

As a further discussion of the A potential, consider the case of 
the thin straight wire oriented along the x axis of Fig. 9-1. From 
equation (9-25) we may write down 

(9-25a) 
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where now the volume integral is, in effect, an integration along 
X because of the infinitesimal diameter of the wire, and I is the 
current carried by the wire. It is observed that the vector poten¬ 
tial at a point r from the origin is considered to be a function of 

— (r/t;)] in order to account for the finite length of time [^' = {r/v)] 
required for the effect of the change of antenna current to reach 
the point in question, at a distance r from the antenna. Since only 
linear current densities are to be used here, the form (9~25a) of 

Fig. 9-1. Magnetic potential produced by a short wire. 

the solution for A* is applicable for our needs. The only justifica¬ 
tion which need be made for equations (9-25) and (25a) is that 
they represent solutions to equation (9-16) which agree with 
experimentally determined results. 

It will be remembered that a similar situation is encountered 
even in the steady-state d-c evaluation of H in the vicinity of a 
short segment of current-carrying conductor. From Ampere^s law 

H = 
lie sin e 

J-a/2 47rr2 
dx. 

The justification usually given for the use of this equation is that 
it serves to give results which agree with experimentally determined 
results. 
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9-4. RADIATION FROM A SHORT WIRE 

In Fig. 9-1 is represented a wire of length a carrying a current 
1 sin coL The current function which must now be used in equation 
(9-25a) is 

so that we have 

sin (t) ^ = I sin (o)l — j3r), 

(9-26) 

where = co/v. Now let a be very small compared to the distance 
r and to the wavelength, X. Then the integrand is practically 
constant over the range of integration and equation (9-26) becomes 
simply 

^ sin (ut - /3r), 

from which, referring to Fig. 9-1, 

Ar = — sin (wt — fir) cos 0. 
4xr 

Ae = — sin ((*)t — fir) sin 6. 

(9-27) 

(9-28) 

(9-29) 

(9-30) 

Now, according to equation (9-6), the magnetic field is given by 

sin ^ hs cos (cot — fir) + - sin (cot -fir) • (9-31) 

The electric field can be found either by using Maxwell’s 
equation or from equation (9-11). In order to use equation (9-11), 
it is necessary to find F which can be done through equation (9-14), 
as follows; 

^ - 7 V • A, (9-32) 

and from (9-11), 

(9-33) 

Adt — n (9-34) 
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Using the expression for the components of A above, this finally 
results in the following: 

ET Id 
B.-j-jCO. 

T 
E$ = -i— sin B 

4:Tr 

sin (o)t — fir) — 
cocr^ 

cos (ojt - 0r) . 

wfjL COS (o)t — fir) sin (o)t — fir) — 

o)er‘ 
cos {o)t — fir) 

(9-35) 

(9-36) 

In order to wri^ equations (9-31), (9-35), (9-36) in terms of the 
wavelength, the following substitution will be made: 

X _ 27r __ 27r 

Now we have 

fila sin 

Er = 

Ee = 

j^cos {(at — fir) + sin {cat — fir) . 
47rr 

nla(a cos 6 
'^r 

^ila(a sin 6 
4^r 

X 
- sin {(at — fir) — cos {(at — fir) 

]■ 
cos {(Jit — 0r) — 2^ sin (00/ — /3r) — 

4tV= 
cos {(Jit 

= 0. 

-M • 

(9-37) 

(9-38) 

(9-39) 

These equations give the electromagnetic field at any point a dis¬ 
tance r from the wire, the only restriction being that r be great 
enough so that the approximate integration of equation (9-26) 
holds. In radio work we are usually concerned with the field at a 
considerable distance from the antenna. The next section will 
treat this specific case. 

9-6. THE RADIO FIELD 

At a considerable distance from the current-carrying wire, r 
becomes sufficiently large that X/r and its powers are negligible. 
This means that the electric component Er drops out rather rapidly 
leaving only and Ee which become 
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fj — cos (w< — fir). (9 -40) 
wr 

Ti 0)1 CL fJL SID S • . a \ /f\ >1 '1 \ Ee =-z-cos (o)t — fir). (9-41) 
4irr 

These equations state that the electric and magnetic components 
are such that the direction of propagation, given by Poynting's 
vector, is in the positive r direction. 

Fig. 9-2. Field patterns on a power basis: (a) from equation (9-63), for 
a half-wave dipole; (h) from equation (9-42), for a short wire. 

The power, from Poynting’s vector, becomes 

Pr = 

At a great distance from the source, the wave is practically a plane 
wave traveling outward at the velocity of light (for free space). 
The power at any distance Is inversely proportional to the square of 
the distance, indicating that there is no decrease in the total flow 
of power since the area is proportional to the square of the distance. 

Equation (9-42) also throws some light on the shape of the 
radiation pattern. As far as the directional coordinates are con¬ 
cerned, Ee and depend only on 0, and in the same way. Thus, 
in equation (9-42) the pattern is given by plotting 

p = sin^ Oj 

as shown in Fig. 9-2. Propagation will be equal for all values of 
ip so that the pattern is really the figure formed by rotating the 
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curve p = sin* B about its vertical axis, giving a doughnut-shaped 
volume. 

The field quite near to the antenna, but not too near, is given 
by the last terms of the brackets in equations (9-^37), (9-38), (9-39). 
Thus, at close range, 

M - M- (9-43) 

= -.3^3^3- COS {oit - fir). (^44) 

^ — XVw/a sin B , ^ ^ 
^(9-45) 

It is noted here that Ee and are 90° out of phase so that the 
radially transmitted power is alternating in character. These 
components make up the induction field, and since they decrease 
as the square or cube of the radius, they soon disappear in compari¬ 
son with the radiation components of equations (9-40) and (9-41) 
which only decrease as the first power of r. 

9-6. RADIATION RESISTANCE 

The radiation resistance of an antenna can be defined as that 
value of R which multiplied by the square of the current flowing in 
the antenna gives the total power radiated. In order to calculate 
R it is necessary to evaluate 

Pda 

over a sphere whose center is at the antenna and whose radius is 
large enough to make valid the equation (9-42). The integration 
is easily accomplished as follows: 

/Pda = /EXHrfa 

^ T' 1X030 sin* B 
Jo KhrV* 

Da^fxo)0 cos* (o)t — 0r) 

Da'^fxo30 

6ir 

cos* {o3t — j8r)(27rr* sin B) dB 

o I sin* B dB 
ox Jo 

cos* {o)t — 0r), (9-46) 

The elemental area, da = (2xr sin 0) r dB, employed in theintegra- 
tion is shown in Fig. 9-3. 
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Fig. 9-3. Representing elemental area on a spherical surface for use in 
obtaining equation (9-46). 

The average power becomes 

P av 
r-a-tiw0 

12ir 
watts. 

However, this average power must be given by 

Pav = IK„R, 
or 

=?^ohms, /*,// bw 

which, in free spac^, is 

ft = SOir^ ohms. 

(9-47) 

(9-48) 

(9-49) 

9-7. THE HALF-WAVE DIPOLE 

In microwave work the half-wave dipole is a very common and 
comparatively simple form of antenna. Such a dipole is repre¬ 
sented in Fig. 9-4, where it is seen that it is made up of two quarter- 
wave antennas placed end to end and fed in the middle in such a 
manner that the current flow at any point in the antenna at any 
instant is given by 

. j %ry . 
i — I cos sm ut 

A 
*= 7 cos /3y sin wd. (9-60) 
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This current distribution is represented by the curve in Fig. 9-4. 
It must be kept in mind that this is an assumed current distribution 
and does not necessarily conform exactly to facts. The error in the 
final result, however, is not significant. 

A half-wave antenna is no longer small compared to a wave¬ 
length and, therefore, the procedure here is to calculate the con¬ 
tribution provided by each elementary length dy of the antenna 
according to previous equations and then to integrate the results over 
the actual length of the antenna. Since we are interested now only 

in the field at a considerable distance from the antenna, the basic 
equation to be used is equation (9-41). 

dEt = — cos (co/ - /3«), (9-51) 
47r5 

where the length a has been replaced by dy, and r replaced by s. 

The term /' is the coefficient of sin a>< in equation (9-50). From 
equations (9-50) and (9-51), there is obtained 

^ wm/ cos sin ^ . v , 
Ee = I —--cos {wt — fis) dy. (9-52) 

J-X/4 4x5 

If r (and accordingly, s) is very large, s may be replaced by r in the 
denominator. However, s must be retained in the cosine term 
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because here its difference from r can greatly affect the value of the 
cosine. The distance s can be written in terms of r (refer to Fig. 
9-4) as follows: 

s = r — y cos B, (^53) 

Thus equation (9-52) becomes 

E. - 
sine 
Trr J_x/4 J-.X/4 

The integral can be written as 

cos cos ^ ffr + fiy cos 6) dy, (9-54) 

/~x/4 
(»-55) 

where g — cos 6, and h — cjt -- 0r. Thl^ough a trigonometrical 
transformation, equation (9-55) can be integrated easily and will 
result in the following expression for Ee. 

Ee 
IjJiO) 

2^ 
cos {o)t — fir) 

sin $ 
(9-56) 

Now, in free space, the ratio of to is a constant and equal to 

\/fi/e as seen from previous material. [See equations (9-40), 
(9-41)]. Thus can be written as follows: 

IT - 4 
cos 

cos {cot — fir) 
(? cos 

sin B 

75— cos (ot — fir) 
Zirr 

cos (^cosfl) 

sin B (9-56a) 

9-8. RADIATION RESISTANCE FOR A X/2 DIPOLE 

The average power radiated by the dipole can be calculated 
from Poynting's vector as follows: 

COS 

sin* d ' 
cos* (ut - fir), (9-67) 

or the total power Is given by 

P, - / P • da - P, da, (^68) 
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where the integral is taken over a sphere whose radius is r, (> > X). 

cos^ {ut — fir) 

‘ 2ir'V6 
cos* (to< — fir) 

Jr cos* ^ cos ^ 

0 sin* e 

J[ cos* (^ cos 0) 
I -^^-5—f- de. 
0 sm d 

’inrr’^ sin 0 dfi. 

(9-59) 

(9-60) 

The value of the definite integral is 1.219. See Prob. 9-7. There¬ 
fore, 

_ 1.2197* C 
\t t{average) 

= Rl\ff 

= ?:I1 
2 ■ 

Accordingly, since \/a/« = 377, 

1.219(2)377 
R = 

4ir 
= 73.1 ohms. 

(9-bl) 

(9-62) 

This is the usual value taken for the input resistance to a half-wave 
dipole, and is to be matched by the transmission line feeding the 
antenna. It should be noticed that this quantity is a constant 
for a half-wave di-pole and, accordingly, is the resistance for different 
sizes of antennas depending on frequency. As an example: 

/ 

J^ngth of 
antenna R 

10« 150 meters 73.1 ohms 
10' 15 73 1 
10» 1.5 73.1 
10^ 0.15 73.1 
lO'O 0.015 73.1 

0.0015 73.1 

The field pattern on a power basis is given by plotting 

V = sin* 6 
(9-63) 

vs 0. This field pattern, a, is presented on Fig. 9-2 so that a com- 
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parison can be made easily with that for an antenna of elementary 
length. 

9~9. LOOP ANTENNAS 

The use of a loop as a receiving antenna provides a relatively 
simple example of some of the ideas which have been treated in the 
preceding section. There are two ways in which the process of 
reception by a loop may be handled. One is to find the emf induced 
in the loop by the electric component of the radio field and the other 

Fig. 9-5, Reception by using a loop antenna. 

is to calculate the induced emf from the changing magnetic com¬ 
ponent of the field. 

It is assumed that the loop is so placed that two of its sides are 
parallel to the electric component of the field. In these two sides 
will be induced an electric intensity equal to the field intensity, and 
the total emf available can be determined by integrating around 
the loop. 

Let a loop be as shown in Fig. 9-5, placed so that its sides dc 
and ah are parallel to the electric field components, and its plane 
at an angle of a with the direction of propagation. Let it be 
assumed that the maximum field intensity is Eq and that the fre¬ 
quency is /. The induced emf in side dc is mEo cos ((at ~ ffr). The 
emf along the side ab will lag behind that at dc by an angle given 
by 710 cos a. The emf^s at da and cb are, of course, equal and 
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opposite, and thus cancel. The total instantaneous emf induced 
around the loop will then be 

or 

e = mEo[cos {cct — jSr — n/S cos a) — cos (co^ — fir)] 

= 7nEo{2) sin — fir — ^ cos sin cos 

= 27nEQ sin sin — fir cos 

Eef/ = \/2 mEo sin cos 

E^ff = 2mJSo(e//) sin cos 

(9-64) 

(9-65a) 

(9-65b) 

This is the one turn. For iV turns, equation (9-65) is to be multi¬ 
plied by N, 

In order to obtain the maximum induced voltage at the antenna, 
it is necessary to set 

or 

nir TT 3ir Stt . 
^ cos ot — 2^ 2 ^ 2 ^ etc. <9-66) 

n 
X 3X 

2 cos 2 cos a 
; etc. (9-67) 

This result seems obvious enough since in Fig. 9-5, if maximum 
induced emf in the loop is to be desired, the field along dc must be in 
the direction d-c, and the field along ab must be in the direction 6-a, 
or just reversed. This condition is, of course, met by placing dc 
and ab one half-wavelength apart in a radial direction. 

In order to treat the problem by the use of the magnetic com¬ 
ponent, refer again to Fig. 9-5 and consider that the position of the 
point d is ro units from the origin. The B field, which is given by 
multiplying expression (9-56a) by is perpendicular to the paper. 
It is now necessary to integrate this expression over the area of the 
loop to find <l> and then to determine the emf through the equation 

d<t> 
Tt' 

(9-68) 

A simplification may be made immediately in equation (9-56a) 
by noting that, in integrating over the small area at a great distance 
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from the origin, the r appearing in the denominator may be con¬ 
sidered a constant, ro. The integration then will appear as follows; 

tft = Bo f”'*'’* cos {at — jSr) dy dr, (9-69) 
Jro J{d) 

where Bo is the maximum magnetic field density at ro. Now the 
integration in the y direction from d to a is very easily performed 
by merely multipljdng by m. Then we have 

<t> = mBo f“ cos {at — fir) dr 
Jro 

== —[sin {cat — fivo — nfi cos a) — sin (cat — firo)], (9-70) 

and from equation (9-68), the instantaneous voltage becomes 

€ cos — ffro — nfi cos a) — cos {cot — /^ro), 

which through the same transformation applied to obtain equation 
(9-64), becomes 

2<jmBo . 
e = —T— sin 

Now, 

and 

cos sin — jSro — ^ cos a^- 

so 

Bo — fiHof 

H. - ^ 

== 2mEo sin cos sin — Pro — ^ cos (9-71) 

which is the same as equation (9-64), since r = ro, and will reduce 
likewise to equation (9-65b).* 

* In relation to the problem of antennas, the following question may 
arise concerning the calculation of induced voltages by the electric and 
magnetic fields separately: **If both fields may be used to calculate the 
induced emf and if both give the same result, why is it that the actual 
induced voltage is not twice that produced by a single field?*' 

That such is not true may be seen in the following discussion. Refer 
to Fig. 9-6. Here the wire IF is in an electric field of a certain intensity 
E volts/meter. We have seen in previous chapters that the tangential 
component of £ just outside a conductor must be equal to the field inside 
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The directional effect of the antenna is easily derivable from 
equation (9-65). For instance, if a = 90®, Ee// is zero for all 
values of n, thus providing a means of determining direction to the 
transmitter. However, for a large antenna, other zeros may occur 

Fig. 9-6. The induced voltage in the wire may be calculated from either 
E or H, (B). 

so that this is not a safe criterion. The small loop antenna, to be 
treated in the next section, gives a definite indication of direction. 

9-10, THE SMALL LOOP ANTENNA 

Except for very high frequencies, a loop antenna with n equal 
to one-half a wavelength is not practical. Thus there is some 
interest in loop antennas whose dimensions are very small compared 
to a wavelength. If, in equation (9-65b), n is made small, the 
equation reduces to 

the surface of the conductor. Thus the field intensity inside the wire can¬ 
not be different from the actual field itself. Therefore, the induced emf 
may be calculated on the basis of the E field alone. 

Further insight into this may be obtained. It is known that the power 
transmitted by the electric field is equal to the power transmitted by the 
magnetic field; also that the induced voltages are the same. These two 
fields may be thought of as two generators in parallel supplying power 
to the antenna as a load. Like generators in parallel supply a voltage 
equal to that of each generator. The power taken will then depend on the 
impedance of the antenna or load, as is the case with parallel generators. 
Thus, again, the induced emf is that produced by each field alone. 



200 ELEMENTS OF ELECTROMAGNETIC WAVES 

E^/ = 2mEo(,jf) y cos a 

e= —^ ^o(.//) COS a volts for one turn, (0-72) 

where A is the area of the loop. This equation ^yil\ apply to any 
shape of loop as long as the largest dimension is small compared 
to a wavelength. Here it is quite easy to see that for a = 90® zero 
signal will be received and, further, that if a = 0®, maximum signal 
is received. As mentioned above, these conditions are not neces¬ 
sarily met in the case of a large loop antenna. 

0-11. PROBLEMS 

0-1. Integrate equation (9-54). 
9-2. A half-wave dipole is absorbing 1 kw from the supply 

line. Find the field intensity in microvolts per meter at a position 
where r = 5 miles, and $ = 45®. Repeat for d = 90°. (/ = 800 

mc/sec.) 
0-3. In Problem 9-2 find the power radiated per square meter 

at r = 5 miles and 6 = 90® and compare with the value which would 
be obtained if the power were radiated equally in all directions. 

0-4. A certain radio field has a frequency of 10® cps and a field 
intensity of 100 ^v/m. A rectangular loop of a single turn, 5 in. by 
6 in., is used to pick up this field and is oriented in such a way that 
the 6-in. side^ are parallel to the electric component and the plane 
of the coil is parallel to the direction of propagation. Find the 
rms voltage supplied by the loop. 

0-6. A certain short antenna has a length of X/10 and is radiat¬ 
ing at 10^ cps with a maximum current in the antenna of 5 amp. 
Find the distance r at which the induction field Ee has the same 
magnitude as the radio field E^. Let 0 = 90®. 

0-6. At a point in space where the electric field intensity is 500 
Mv/m, rms, there is placed a small loop antenna of one turn. The 
area of the antenna is 4 in.^ and it is placed so that its plane is 
parallel to both the direction of propagation and the electric vector. 
The frequency is 3(10*) cps. (a) Find the magnetic flux threading 
the loop at any instant, (b) Find the rate of change of this flux 
and thus the induced voltage as a function of time. 

0-7. Show by graphical means that the definite integral in 
equation (9-60) has the value 1.219. 
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Theorem, Gauss’s, 61 
Stokes’s, 62, 64 

377-ohm cloth, 121 
TMi wave in parallel guides, 151 

configuration of the field, 153 
power transmitted, 154 

properties of, 153 

Transformation of units, 44-47 

Transmission in metal, 126 
Triple scalar product, 17 

Triple vector product, 17 
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MKS, 44 

transformation of, 44-47 
unrationalized, 42 

Unit vectors, 5, 14 
cross product of, 14 
derivatives of, 101, 102 
dot product of, 12 

Vector field, 23 

Vector potential, 56, 57, 59 

Vector products, sign convention in, 
13 

Vectors, 3 
addition of, 7 

multiplication of, 15 

representation of, 4 

subtraction of, 7 
unit, 5 

Velocity in a metal, 126 
Velocity of coordinate system, effect 

of, 72 

Wave, velocity of, 78 
Wave equation, 76, 78, 135 

solution of, 77, 109 
Wave guides, parallel-plate, 134 

rectangular, 157 
Waves in a conductor, 123 
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