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PREFACE

The book is an elaboration of lectures given at The National
University of Peking in the fall and winter of 1934-35. It is
intended for students who have completed a course in Advanced
Calculus, but have not as yet entered on the study of the Theory of
Functions, either real or complex. Emphasis is laid on the new
methods, and these are illustrated by many and varied applications,
and numerous exercises. % .

Chapter T deals with Vthe con'verg'ence of infinite series. The
student has hitherto been concerned chiefly with the results of
limiting processes, the applications of the Calculus. As the next step
he needs training in the more abstract use of simple limits as applied
to problems of a purely analytic nature. He needs to live in this
new domain of thought, in which the limiting process is the central
idea. And he needs to work many simple problems, in which the
existence of the limit is the chief end.

Chapter II. The Number System. The student has thus far
taken the system of real numbers for granted, and worked with
them. He may continue to do so to the end of his life without
detriment to his mathematical thought. Thus he may omit this
chapter altogether, taking the Theorem of Continuity, §5, as a
postulate, but noting, of course, the definitions and theorems of
§§6,8,10. On the other hand, most mathematicians are curious,
at one time or other in their lives, to see how the system of real
numbers can be evolved from the natural numbers. Dedekind’s answer
is not the only one, or even the simplest one for the beginner; but
it is one no mathematician can ignore and to which, probably,
most mathematicians will give first place.

With Chapter III, Point Sets, begin the new concepts which are
fundamental in the Theory of Functions of Real Variables, and this
chapter may form the starting point for the beginner, so far as any
logical difficulties go. The concept: function, is treated in §§3, 4,
and now comes the definition of Zmit, § 5. The proofs chosen for
the Three Theorems on Continuous Functions may well be criticised.

iii
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Should not the writer pick out the method most easily accessible for
the student (say, the method of nested intervals) and use that one
method systematically? This is precisely what the student should
do, using these other proofs as exercises. Let me say right here
that the only way in which the student can hope to attain mastery
of the subject, is to write his own book. He should take each
theore n by itself, state it in his own language, and prove it as the
author ought to have proved it for that student’s needs. The clearer
the presentation in a text-book 1is, the worse for the student who
would rely on reading. The student must himself produce his own
independent proofs of the main theorems, in writing, and then come
back again and again to his own presentation, as he walks to a
lecture or strolls throuzh his favorite haunts in this enchanting city.
First, the conten: of the theorem; secondly, the method of proof,
must go over into his flesh and blood. It is a question of habits of
thought, and habits are formed by repetition.

To cone back to the three theorems on continuity, the student
should ultimtely dominate all the methods set forth. But it is enough
at the begzinning to have one method of proof for each theorem, and
the choice is left to him. Iet it be said that no one can teach the
student the Theory of Functions. Tor the Theory of Functions is a
habit of thought, not a set of rules to be applied like the formulas
of differentiation.

In saying these things we have really forecast the whole study
of the uniform question. The difficulty with uniform continuity
and the uniform convergence of series and integrals lies not so much
in the definitions, and in the statement and proof of the theorems,
as in recognizing a double-limit question when it arises in practice.
For these questions are not labelled:—*“Here is a double-limit.”
It is on this account that especial pains have been taken both to
illustrate the situation geometrically by graphs, and analytically to
formulate the situation as a

lim [ lin s (n, m)] = lim [lim s (n,m)]

n=eo m==00 m=eo0 =00
question. It is with deep regret that the writer feels forced to treat
systematically the double-limit questions for proper integrals. The
student, after iastering Chapter V on Uniform Convergence of
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Infinite Series, should find his own questions for the proper definite
integral:
b

J.f(.r, a)dz,

a
and treat them independently. He can still do this, in the main,
by reading only casually what is said in the text of Chapter 1X and
then at once setting about his own individual elaboration of this
whole subject. Even the case of improper integrals:

j flz a)dz,

can be treated in like manner, and it is not till the question of the
reversal of order of integration in the iterated improper integral

j'dxj:f(x,y)dy
a b

arises, that he needs specific guidance. Here, again, however is an
opportunity for independent thought. Let him do Chapter 1X with
a minimum amount of help from the book.

But method is not the sole topic, nor should it appear to the
student as an end in itself. His taste in anélysis must be cultivated,
and to this end, what better material than the elementary functions,
developed out of their differential equations and leading to their
expansion into series of fractions and infinite products; the T- and
B-functions with their integrals and products, and a first suggestion
of asymprotic expansions ; Fourier’s series and the develop nent problem,
with an example of a di nt series, uniformly summable; Faurier’s
integral, with applicationts, and extension to functions of several
variables ; finally, differential equations, total and partial.

This last subject has the widest ramifications in pure and
applied mathematics, and courses of the nature of rule of thumb are
everywhere current. Two things the student needs 1o know in
advance, namely: the intrinsic meaning of a differential equation, and
the existence theorems governing the solution in a restricted regzion.
The proof of the latter affords opportunity for expounding, on the
hand of this important application, the greatest single method in all
science — the Method of Successive Approximations.
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The plan of publishing these Lectures was first suggested to me
by my old friend and pupil, and present colleague at Peita, Professor
Kiang Tsai-Han, who has accompanied their preparation with warm
interest and generous support.

It is a pleasure to express my deep appreciation of the efficient
cooperation of the University Press, The National University of Peking,
in this difficult task of mathematical composition. My former Assistant,
Mr. Hsii Pao-lu, was most helpful in preparing the type-written copy
for press. My present Assistant, Mr. Sun Shu-Peng, has been of
inestimable service to me in seeing the book through the press. His
keen interest in securing accuracy of detail, and his excellent
common sense, have made him a most extraordinary helper in this
undertaking.

PeirING
December 17, 1935
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FUNCTIONS OF REAL VARIABLES
Chapter 1
Convergence of Infinite Series

§1. Definitions. Let uy, uj, us, -+ be any set of numbers
proceeding according to a definite law. Form the sum:

Sa=Uyt+ u + ' + upy,
and allow 7 to increase without limit. If s, approaches a limit, denote

the latter by U:
lim s, = U.

n=>"

The expression
‘1) uo + ul + ‘e
is called an infinite series (or, more simply, a series). It is said to
be convergent if s, approaches a limit, U; and this number U is
assigned to it as its value. U is sometimes called the sum, but this
nomenclature is unfortunate, since it is impossible to add an infinite
number of terms together.

If s» approaches no limit, the series is said to be divergent, and
no number is assigned to it as a value.*

A familiar example of a convergent series is the geometric pro-
gression
2) a+tar+a?+ -,

where r is numerically less than unity. Here,

3) s,.=a+ar+'°°+ar"'1=‘ZT"'_:ﬁ‘!;r-’-l
and
lim s, = -2
n=a0 -r
Hence
4) L —atarta+--, lr| <1

1—r

8 To certain divergent series values are attached through other convergent pro-
cesses, some of which will be considered later.
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A further example is the series

whose value is 1. Here,
w= (=) () e () ()

or

wmioph mat

The early mathematicians thought that a series must converge if
the general term approaches 0 as its limit: lim u, = 0. But thisis

n=00
not the case. As an example, consider the harmonic series,

1 1
6 14+—=4+—=+---.
) to gt
It is possible to find n terms, the sum of which will exceed any
given number, no matter how large. For, obviously,
1 1 1 1
mrl T mre  tmEm 2
since these terins (except the last) exceed respectively the terms
1 f 4+ 4 1 (to m terms),
m+m m+m m <+ m

and the value of this sum is #. So we see that, striking in any-
where in the series, we can add a definite number of terms which
will yield a sum greater than #, and hence s, increases without limit
as n increases. Thus the harmonic series diverges.

TitkoREM. A necessary condition for the convergence of an
infinite series is, that the general term approach 0 as its limit.

To deny the truth of the theorem is to assert that there exists a
posilive constant, h, such that, no matter how large m be chosen,
there will always be a term, up, for which

I Up l > h, P > m.
But here is a contradiction. Mark off .an interval about the point
U, extending from ?—f u? U+e ‘ Since Ume U Udte
sn approaches U as i8 limit, the points s, = PR H
will all remain within this interval when n




CONVERGENCE OF INFINITE SERIES 3

is greater than a suitably chosen integer, p:
U—-e<s, <U + ¢, r=En

Here, ¢ may be any positive quantity. Choose € =% A There
will be a term u, such that

lup| > &, P> p
Now, sp—; lies in the interval (U — ¢, U + €). But, since

Sp = Sp1 t+ Up,

sp lies outside the interval. From this contradiction follows the truth
of the theorem.

EXERCISES

1. If the series 1) converges, show that the series

7 Um + Upyy +

converges, where m is any fixed integer.
2. If the series 7) converges, show that the series 1) converges.
3. If the series 1) converges, show that the series

8) kuy+ ku + -+,

where k is any fixed number, converges.

4. Is the converse of the theorem of Question 3 true? Prove
your answer to be correct.

§2. Comparison Tests for Series of Positive Terms.
Series whose terms are all positive or 0 can be tested for convergence
by the following theorem.

Direcr ComparisoN Test vOR CONVERGENCE Let

u +uy + e, 0 = u,,
be a series of positive (or zero) termns to be tested for convergence. Let
a+a + -, 0 = a,,

be a series known to converge, and let

I
N

u, = ap, m
Then the given series converges.
Consider the sums:

Sn=1up+ 1+ + upy,
Sn=ay+ ay + +-* + an;.
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If m = 0, we have:

Sn é Sn.
Let 4 be the value of the a-series. Then

Sp = A
Hence

sn = A

Thus we have in s, a variable which always increases (or remains
constant) as n increases, but which never exceeds a fixed number, 4.
Such a variable always approaches a limit, U, which in general is
less than 4, but may, in particular, = A.

The truth of this statement is plausible if we think of s, as rep-
resented by a point on a line — the scale of numbers. For, these points
move to the right — if they move atall —as U 4
n increases. But they never pass beyond et et
the point 4. They must, therefore, con- St %2 5 $n
dense on some point, U, to the left of 4, or possibly on A itself.

An arithmetic proof of this basal priuciple will be given later.
At present, we accept it as granted, and formulate it as a

FuNoamexTaL Prixcrenr. If s, is a variable which always
increases or remains the same as n increases, but never exceeds
some fized number, A :

i) Sn = Snaa;
ii) sn = A,
then s, approaches a limit, U:
lim s, = U.

Moreover, U = A.

To complete the proof of the Test for Convergence it remains
to remove the restriction that m = 0. For an unrestricted m, observe
that
sn=ug+uy + - tupg tuntumpy oy, m<n
The variable

Um + Umyy + * 0+ Unm—ph
approaches a limit when % increases indefinitely, as has already been -
proved. But s, differs from this variable merely by an additive con-
stant. Hence s, approaches a limnit, and the proof is complete.



CONVERGENCE OF INFINITE SERIES 5

We have made use of the fact that if each of two variables
approaches a limit, their sum approaches a limit. The truth of this
theorem is obvious geometrically. An arithmetic proof will be given
latter.

Ezxample. Consider the series

141 L
+1+ a + +
Compare its terms, beginning with the third, with those of the con-
vergent geometric series,
t

2+..

L4
2

(34

Since
1:2:3++(n+1) > 2:2----2 (to n factors),
it follows that
1 1
— L <«
"+ 1)1 27
and hence the given series converges.
Direct CovpanrisoN TesT ¥OR DIVERGENCE. Let
ay+a +- -, 0 = a, m = n,

be a divergent series, and let

1A

a;, = up, m
Then the series
uo + ul + e
diverges.
The proof is left to the reader.

EXERCISES

Test the following series for convergence or divergence.

1 1+1+1+
. 51
2 14— ++ +
3 5
1
5 14 =+ +
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4. ar+art+ar® +- -+ ar +---, 0=r
2

5 x+—§—+ 4. 0=~
6 10

6 24 I+ I
3

2 4 6
7. x x z 4.
1+I2+1+x*+1+1:"+
8. Prove the theorem:— Given the series
uy +u +---, 0 = u,, m = n

If nu, approaches a limit as n becomes infinite, and if this limit is
positive, the series diverges.

9. Show that the series

1 1
1+x+2+x

+..o

diverges for all values of x for which it is defined:
—oo <z < + 00, zF#F —=1,=2,---.

10. Given the series:

1A

Uy +uy +-ce, 0 = u, m n.

If " u, approaches a limit as n becomes infinite, and if this limit
is less than 1, the series converges:
im Vus =y < 1.
n==x
But if y > 1, the series diverges.
11. Given a power series:
a4+ ayx + agx® 4+, 0<ay m=n
Let
lim ,’V _a: =p > 0.
==
Then the series converges for all values of z such that 0 = z < 1/p.
What if { @, becomes infinite?
12. Given a series:

w4yt 0 < uy m

1A
Bl
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If
Un < =
log > Y\v m = "- = n,
Unty
where y is a positive constant, the series converges.
§3. A General Test-Ratio Test. Let
ay+a +---, 0 < an, m = n,
be a convergent series, and let
u + oy -, 0 < uy, m = n,
be a series to be tested for convergence. If
Untl < 4nhl , m=n,
Un an

the u-series converges.
Proof. By hypothesis,

Unt) = _Omh

............

Umik < Amik
Umyk—-) Amtk—)

Multiply the % inequalities together. Thus

Umik = Am+k
—— ",

Um am
u
up, = -a,.
am

The factor un/am is a constant. Hence the series whose general term
is (um/am) an converges, and consequently the u-series converges.

In the proof, we have nade use of the theorem that if each of
two variables appruaches a limiit, their product approaches a limit.
‘The proof of this theorem will be given later.

DivERGENCE TesT. Let
ay+a +--, 0 < a, m

A

n,
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be a divergent series, and let

ug + uy + e, 0 < up, m = n,
be a series to be tested for divergence. If
a u
n41 __<= n+1 , m _5— n,

an Un
the u-series diverges.

The proof is similar to the foregoing, and can be left to the
reader.
To illustrate these theorems, let the a-series be the geometric
series
a+ar+ar+---, 0 < a 0<r<t.
Then

Qn4y
an

=r.
We are thus led to the familiar
First Tesr-Ratro TrsT. If
Uy + uy + e

be a series whose terms from a definite point on are all positive,

and if

. u
lim 22 =, < 1,
n=x Un

the series converges. But if + > 1, the series diverges. If r =1,
there is no test.

For, we can choose r between r and unity, » < r < 1, or
1 < r < r, and then the hypotheses of the general theorem will
be fulfilled.

If » =1, the w-series may converge and it may diverge, as is
seen from the two examples:

1
1+ itz (convergent)
1 1 .
1 — = (divergent)

2 3
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EXERCISES
1. Show that, if
lim log—— =g, (0 < Uy, m = n)
n=n Uniy

the series converges when ¢ > 0, and diverges when ¢ < 0.
2. Show that if

1 = Y (0 < up, m = n)
Un

the series diverges.

§4. Cauchy’s Test by Integration. It happens in simple
important cases that the function u, of the discrete variable n admits
useful interpolation for a continuous argument z. Thus

1 1 1

ot _ etc.
n' n? nlogn’

are interpolated by the continuous functions
1 1
) - _i_" etc.
z z? z log z

Cauchy devised a simple method for determining the convergence
of such series.

CoNVERGENCE TEST. Let f(x) be a positive, continuous, de-
creasing, monotonic function,

f@h zfamz 0 o<
Form the integral

L.

S @

[
If this integral converges, the series

uo + ul + e
converges. If the integral diverges, the series diverges.

The proof follows immediately from inspection of the figure,
p- 10. For obviously
m4r L]
Umis + Umig +°* F Umpr = ff(x)dx éff(x)dx.
' m

m
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When this last integral converges, the sum satisfies the hypotheses of
the Fundamental Principle of Y

§2, 4 being the value of the N
integral, and so the series con-

verges. tm| Uit X
On the other hand, 0 m m+1 mtr
m+r
ff (x)dz é Um + Um4 4+ Um+r—1-
m

If, then, the integral diverges, the series diverges.
Ezample. Consider the harmonic series,

{4+ +
2 "3

Here, f(z) =1/,

z
fi:- =logz — log m.
m

Hence the integral in question diverges and the series diverges.
On the other hand the series

1 1
1+-§};+’§+°", 1 <p,

leads to the function 1/2” and to the integral

RSP N I S —
o > p—1lL m/! zP-1
The crucial integral is thus seen to converge, and so the series
converges.
Appraisal of the Error. Cauchy was much interested in
appraising the error made in computing the value of a series, when
one breaks off with the m-th term. Let

U=u1 t+u+ =8+ ra,

T'n = Ungy + Ungn +°

) A=ff(z)dz.
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Then
rm= A= rmy.
But

Tmep = 'm = Um.

Hence we obtain the following formula for the appraisal of the error:
rm= A4 — 8up, o< <1
Thus
U=sn+ A - 0un,
and we may stop adding terms as soon as we come to one which is
less than the limit of error assigned.
Consider, in particular, the series:
i ._1_. 1 <p

n=al n’
Here,
1 1

™ kP T mrey T

1
A= f =k

Thus the error made by breaking off with the m-th term:

) 1 1 1
mElt gt
is given by the equation:
I U P
rm“p_m—1 mp_l ;;v
and
_ 1 1 1 1 )
U=1+ o+t —s e R
=1+_1_+...+ 1 1 1,0
27 (m—1)»  p—1 mr? mP '’
0 <o < 1.

Let it be required to compute the value of this series for p = 1.01
correct to {5. Here the first term less than 4 is 1077, Hence
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1 {
5m—1=39:1+‘éT_0‘1 +-- 4+ W

A has the valye:

_ 1 1
A"om 10001

and it remains to compute the sum sy.

= 97.72,

ExtRrer s

1. Show that the exact conputation of the term um can be
avoided by using the formula:

m—y = A + Oup, 0< 0 <1,
where A4 has the same value as before, but 8 is different. Thus
U=sp + A4+ 0un.
2. Study the series
(edid
2P ' 3P

when p = 1.001. How many  terms must be taken, in order that
the error made by dropping the remainder may be less than 1? How
many, if the approximate formula for the remainder be used? Com-
pute the value of the series correct to the nearest integer.

5. Show that the series

1 1
Zloge T 31083

+.-.

diverges.
4, Show that the series

1 + 1
2 (log2)? = 3(log3)”

+...7 1<P‘

converges.
5. Treat the series

1
Z nlogn(loglog n)?’
and generalize.
6. Apply Cauchy’s test to the geometric series,
atar+or?+---, 0<a 0<Zr
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7. Prove the theorem:— Given the series:
g+ uy + e, 0 = u,, m = n
If im n? u, =0, 1 < p
n=x

the series converges. Here, p is a constant.

8. Show that the series

1 1 1
14z +2P+z+5"+‘x

+--, 1<Pv

converges for all values of z for which its terms are defined:
—w<Lzx<L 4 oo, z # —1, —2P =37 ..
§5. Tests in Case lim upyy/u, = 1. When

lim Egﬂ = 1’
n=x Unp

the First Test-Ratio Test fails. For example, if
1

u e
n npi

lim #%41 = 1,

n=x Up

regardless of the value of p. Now, if p is very large, 1011% say,
the early terms of the series drop off rapidly. But the convergence
of this series cannot be established by comparison with a geometric
series,

1
n—p<ar‘".

For, no matter how large a be taken, and no matter how near to
unity » < 1 may be chosen, the inequality will ultimately point the
other way, since

lim z? ¥ = 0.

=00
It is easy, however, to develop limit tests which will apply to
series which converge or diverge commensurately with the series

1
;1—'"
Here,
Gnyy . n" 1 T=1=-L
= (+n) 1-L£ 4r,
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where rn is of the order 1/n%
Hence,*

lim n (1—%:;1) =p.

n-=oo

Consider now a series such that

lim n (1 —ﬁﬂ) = p.

n=x Un
First,let p > 1. Choose 1 < p < p. 1 P P
Then, for large values of n, the variable ' Hit it

n (1 - a:'“) will be near p

n
and
— Unp ;
n(l un) will be near p.
Hence
— Gnn — Unn =
n(l a")<n(1 un), m = n,
and thus
Unay o~ nn m=n

Un an

We see, then, that the u-series converges. Similarly, if p < 1,
it appears that the u-series diverges. We are thus led to the following

SeconDp TesT-RaTiO TEST. Let

u + u +--, 0 < uy, m

A

n,

# It is not necessary to base this result on the binomial series, or even Taylor’s
Theorem with the Remainder (carried to the quadratic term). Write

n(l— Il ) = — n .
an 1

n
Now, the limit

tm (27 =1

=0 z

is shown at once by the C:lcnlus to be —p, and we are through.
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be a series such that
Iim n(l—ﬁ"—"-’l) =p or+ o or — oo,
n=x Un

If p > 1 or + oo, the series converges. If p < 1 or — oo, the
sertes diverges. If p =1, there is no test.
.The test for divergence can be made somewhat sharper. For, if

n(i—ﬁu:ﬂ)

n—1 Ung1
n Un

A
A

1, m n,

then

A

On the left stands the test-ratio of the harmonic series. Hence the
u-series diverges.
EXERCISES
In the following exercises,
U +u +--
shall be a series whose terms ultimately become and remain positive.
(It would do as well, of course, if the terms were ultimately to be-

come and remain negative.)

1. If

lim[n—(n+1)-u£:'_l']=o‘or+ooor-—oo,

n =00

show that the series

i) converges when o >0 or + oo;

ii) diverges when ¢ <0 or — oo.

2. If
lim n log u"=¢ror+000r—00,
n=c0 Unty

show that the series
i) oonverges when ¢ > 0 or + oo;
ii) diverges when ¢ <0 or — oo,

3. ' If the test-ratio is of the form:
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where
im nr,=0,

n=x
and ¢ is a constant, show that the series will converge if ¢ > 1 and
diverge if ¢ < 1.
§6. Kummer’s Criterion. One of the earliest attempts to
obtain general criteria for convergence and divergence is found in a
paper by Kummer® of the year 1835. Let

1) uy+uy 40, 0 < up, m = n,
be a series to be tested for convergence. Let P, Pnyy, *-- and a
be any set of positive numbers. Form the expression:
Pn Un P
2 o = — ( R+l 1) .
) n p 2 1)t
On writing this equation for n=m, m+ 1, -, m+ r — | and
adding, we find:
3) ©Om + Omy + 0t Omyrg =
Pru Pmyru
mm __ m+4r Ym4-r —_ um-H —_— um+2 — 0 b - um+r~
a a
Hence
4) Un41 + Um4o 4+ 4 Umgr =
Pmu P u
m %m __ m+r m+r—0m_@np+1'—”'_mm+r—l'

a a

Lemva.  If positive numbers Pm, Pmyy, **+ and a positive
number a, can be found, such that wn Z 0, m = n; ie. if

P,
5 o=l (PuyYu, 0<u m

HA

then the u-series converges.
For, from 4) we infer that
Prmum ’
a
and since the right-hand member is constant, the theorem is proved.

Ungy + 00 Umpr <

The condition 5) is equivalent to the following:

6) 0<as= P2 — Py,
T Ungy

* Journal fir Mathematik, vol. 13 (1835) p. 171.
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This condition will surely be fulfilled whenever

p,- %
Unyy

"Pn+1

approaches a limit and this limit is positive:

'lli;nx[P,, u'::l—P,.ﬂ ]=e¢>0

For, it will then be possible to choose an a between 0 and o, and
s0, from a definite point 7 =m' = m on, we shall have 6) holding.

We are thus led to the following test for convergence, which
however, without any restrictive hypothesis relating to the signs of
the terms, applies to any real series.

Testr rOR CONVERGENCE. Let
uo + ul + Py

be any real series. If positive numbers P, Pmyy, -+ can be
Sfound such that the variable

Un
b, = Pnyy
Ungy

approaches a positive limit @, or becomes positively infinite:

7) m[P,.u’:;—Pm]=a>o, or = + oo,

then the u-series converges.

For it is obvious that u,/uny; must ultimately become and res
main positive, and so the series, from a definite point on, must have
its terms all of the same sign.

Tesr FOR DIVERGENCE. Let

U+ U+, 0 < uy, m = n,
be a given series. Let Pm, Py, -+ be a set of positive numbers
such that the series

1 {
Pt Pon

diverges. If the variable

8) e

Pn Un "‘Pnﬂ
Un4
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approaches a negative limit ¢ or becomes negatively infinite:
9) 1im{P,,l"--P,Hl }=a < 0, or=— oo,
n=x Unyy

then the u-series diverges.
Proof. From a definite point on, n = p = m, we shall
have :

P — P, < 0.

Unyy
Hence
i < i"’ﬂ , » é n.
Py Un :

But the left-hand side is the test-ratio of a divergent series, 8). This
proves the theorem.

A sufficient condition for divergence is, that
Pru, — n+1 Un+ = 0,
provided the series 8) diverges.

A set of useful choices for P, is the following:

1. Pp=1. This gives the First Test-Ratio Test.

2. Pp=n. This gives the Second Test-Ratio Test.

3. Pn=nlogn. This given the Third Test-Ratio Test. etc.

EXERCISES

1. Assuming that the series

1 1 1
Z:’ 2 nlogn ’ znlognloglogn’ ete.

have been shown to be divergent by Cauchy’s test, § 4—or otherwise
—apply the Second, Third, etc. Tests for Convergence and Divergence
to the series

1 1 1
Z nP’ Z n (log )P’ z n log n (log log n)”’

§7. Continuation. Discussion. Given any convergent series
1), it is always possible to find a set of positive P,’s and a positive
a such that @, = 0. "For 3) is equivalent to the relation
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Prir tnir = P tum
— a(wm + omp + "+ Omyr—y
+ Umiy + Umgo 0 Umgr).
If, then, o, = 0 is the general term of a convergent series, a > 0
can then be so chosen that the right-hand side of the equation will
always be positive, and Pmy, can then be determined from this equa-
tion (P, > 0, arbitrary at the start).
Moreover, the P, and a can be so determined that
P,
Unty
will approach any positive limit; o. For, let

- L

wp = uﬂ+ls
and determine the P, accordingly. Then 2) gives
Pn U —Pﬁ+l=2aa
Uny)
and it is sufficient to set 2a = @.

Secondly, given any divergent series 1), a set of positive P,’s can
be found such that the series

i 1
ne=x0 P"
diverges and the variable

Up
Unyy

Py — Pnyy

approaches an arbitrary negative limit, o.
In fact, we need only determine the P,’s fromn the relation:

Pt P =0 <O

Unyy
Here,
Ppyy iy, = Proup 4+ ("U)"n+l .
From this equation follows:
Pm+r Umyr = Pm Um + ("’0‘) (u,,..,.l + o 4 Itm+r).

Thus a set of positive P,’s is determined. Will the series

X
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diverge? It will. For, strike in anywhere and add terms:

1 1 1
= F =
Pyyy Dy Pyio
Let
A=Pmum+(_ ”)(um+l+”'+uﬂ)'
Then

1 — Uiy k
Pk A+ (=) (g + -+ k)

oy bt

L >
Puy  Pyys Puy,

Upiy + Upgo + -0+ U )
A+ (—0) (py + g + -+ Unso)

By taking p large enough we can bring this last fraction as near to
1/(—a) as we please, and so, in particular, make

1 1 1. 1
* Pysy oo Py © 2(—0)

Hence the series X 1/P, diverges, and this completes the proof.

Py

To sum up, then: An arbitrary series, 0 < un, m = n, can
be proved convergent by the Convergence Test, or divergent by the
Divergence Test, it the Pp’s be suitably chosen.

Thirdly, for the divergence test, it is not enough to demnand
merelv that a set ol positive [’,’s can he found such that

Un
-P, n — 'niq
Uny)

approaches a negative limit. For, if the wu-series be a convergent
series of postive terms and we determine Py’s as in the last case,
these P,’s will all be positive. But the series X 1/P, will now
converge.

§8. Alternating Series. Turorem. The series

Ug— Uy + s — -, 0 = u, m = n,

converges if

1A

i) Unpy = Un, m n;

i1) - lim u, = 0.

n==»
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Proof. Form the sums:
Son = (Uo - ul) +ot (1‘211—2 - u‘ln—-!)v
Somp1 = U — (1 — 1) — -+ — (Uppmy — 12y)-
Observe that, since

1) Son+l = Son + Uop, R S L,
So Sg Sy S5 83 51

2) Sap = Sop41 -
Now, s,, steadily increases with n, or remains constant; and Ssn '
steadily decreases with n, or remains constant. It follows, then, that
5) Sop = S1.

Consequently, by the Fundamental Principle of §2, s,, approaches a
limit:

lim s, = Uj.

n=xs
Similarly, s,,4, approaches a limit:

lim syp4q =Us.
n=x

Finally, because of i) and ii), these two limits are equal:
LTI = Uz.
Consequently s, approaches this common limit, U:

lim s, = U,

n=x
and thus the theorem is proved.

The Lrror. Since s, with increasing n, continually jumps over
its limit U (or coincides with it), we see that the error due to
breaking” the series off at any point, does not exceed numerically the
value of the first term in the remainder.

Examples :
1 1
a_) 1_5—!-..*.5_....
1 1
b) 11—t =
Vi Vs
¢) 1 1 |

TTog2  3logs | Tlogé
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1 1
d — .
) log log 4 log log 5 +

How many terms of the first series are needed to obtain the value

correct to 57 how many of the last?

§9. Series with Positive and Negative Terms at Plea-
sure. Let

1) uy + uy +---
be any series whatever. Set
Cm =0 + 3 4+ 'y,
Tp=wy + wy + 0+ wp,
where v, vy, - denote the positive terms, taken in order as they
come, and where the negative terms are —w,, —w,, *-+. Then
S =Uy + uy 4+ + upy
can be written in the form:
2) Sh =0 — 7
where, in particular, if no positive terms have appeared, we agree to
write 0¢ = 0; and similarly for =,.
As n increases, the series
5) vy + Uy A
4) wy +wet -

may converge or they may diverge — it is not necessary to think of
the case of a finite number of positive or negative terms as an ex-
ception, for any sum may be regarded as an infinite series, all of
whose later terms are 0. Thus if 1) is the series

1 1
5) 1—-2—+?—"',

both the series 3) and 4) diverge; but 5) converges by §8. It is
clear, however, that if both the series 3) and 4) converge, the vari-
able s, will approach a limit because of 2), and so the series 1)
will converge. We are thus led to the

Tueorem. A sufficient condition for the convergence of a
series

-~

6) wo o+t
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is the convergence of the series of absolute values:
7) lugl + 1 | +---
Proof. Let

Se=lup| + g |+ + luaey .

Then
Sn=10m+ 7
Let A4 be the value of 7). Then
T é ~41 Tp é A,

and hence, by §2, both the series 3) and 4) converge.

A series 1) whose absolute value series converges is said to con-
verge absolutely, or be absolutely convergent. Other convergent
series are called conditionally convergent. In the case of these latter
series, both the series 3) and 4) diverge. It will be shown later
that the termns of an absolutely convergent series may be rearranged
at pleasure without changing the value of the series. But if the
series converges conditionally, a new series can be constructed from
its terms, which will converge toward any preassigned value what-
ever, or diverge toward +co, or diverge toward —oo; Chap. VII, §2.

Test-RaTio Tesr. If the series

llo+ll1+"', lln#O, m§n,

be given, and if its test-ratio unyy /un approaches a limit:

him Un4y =7,
n=cc Up
then the series
i) converges, if |l <15
ii) diverges, if lrl>1.

Proof. If | | < 1, the series of absolute values converges. For,

= luan |
|un|

Unt1
Un

1

and the left-hand side of this equation approaches a limit, namely,
=l

If, on the other hand, || >1, it follows that u, does not
approach 0 as its limit. For, from the proof in §3, |us| does not
approach 0.
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The more refined test-ratio tests of §5 help in establishing the
absolute convergence of a series, but are useless if the series converges
couditionally.

Finally, we observe that it is sufficient for convergence to de-
mand that

1A

"—"ﬂ—}<y<1, m = n,

Un

where y is a constant; i.e. not to impose the restriction that a limit
exists. But the limit form is the one that is useful in practice, and
for that reason should be given first place.

CovparisoN Tesr. Let

uo + ul + ce
be a series to be tested for convergence, and let
a0+al+”‘$ aﬂ¢0$ mény

be an absolutely convergent series. If up/an approaches a limit:

lim Y1 exists,
n=» dp -’
then the u-series converges absolutely.
For, since wu,/an approaches a limit, it follows that | u, |/ a, |
must also approach a limit. Denote the latter limit by L, and

choose L' > L. Then, from a definite point on,

A

R L, p=n

Hence
lun| < L'|anl.
The series whose general term is this last expression converges, and
this fact yields the proof.
Divercexce Test. Let
uo + ul + Oy
be a series to be tested, dnd let N
ay+ap+---, 0 < ap, m = n,

be a divergent series. If up/an approaches a limit not 0:

. Un

lim =L # 0,

n=x dp

»
then the u-series diverges.




10.

11,

13.

14.

CONVERGENCE OF INFINITE SERIES

EXERCISES

Test the following series for convergence:

1.2 | 123 | 1-2-3-4
1002 T 71006+ oot

+..-

Q100 3100 4100
ottt
32 33

3
st Tt

—— —

+ -, 0 < a

Va 1/au+r Va+2r
log(1 +7) +log(1 +72) +log(1 +7r°) +---,

HA
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15. log (1 +§) + log (1 +—j—) +log (1 +-‘55)+~-.0§:..

z 2 e
16 lOg(l—T) +log (1—;2—5) +]og (1—g§)+..
§10. Infinite Products. Let f, f}, - - - he any set of numbers

proceeding according to a definite law. Form the product

Pn =f0'fl R f"—l'
If fu # 0, m = n, and the variable
Py r = fofmrr o Sfmerg
approaches a limit different from 0:
im pm,r = Pm # 0.
r=co
then the infinite product
fofi -
is said to converge and the number
P =1lim p,

n==x

is assigned to it as its value:

P=fofifor-.

For example, the infinite product

1:3 24 3-5
2:2 33 4-4
converges, since the product

13 .24 r—tr+1y_1r+t
Pir=1 = 2.9 3.3 ( ) - )

approaches a limit different from 0, and so

113 24 35

2 22 33 44

On the other hand, the infinite product

diverges. For here
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12 r 1
Por = 3 TR T A
approaches the limit 0.

These high handed definitions are surprising. Their justifica-
tion lies in the demands of practice. There are no infinite products
with an infinite number of vanishing factors in any known domain
of mathematics. To admit such for consideration would complicate
the theory — cui bono? — Again, to admit as convergent an infinite
product which vanishes without any onme of its factor’s vanishing
would break with the analogy with the products of ordinary algebra,
For these reasons, and others, we have thrown such infinite products
into the discard of divergent products.

From the definition of convergence follows immediately that the
factors of a convergent infinite product ultimately become and remain
positive.

Turorem. A necessarry and sufficient condition for the con-
vergence of an infinite product:

fo'fl'f2' e

lies in the convergence of the‘infinite series:

log fin + log frmgr + -+,
where m is swtably chosen.

a) The condition is necessary. Hypothesis: the product cen-
verges, or

Pmyr = frm fmyr 0 0 fmar 2
approaches a limit not 0; moreover, m may and shall be so taken

that f; > 0, m = n. Conclusion: the series converges. Proof: let

s = 10g fn + 1og fimss ++++ 108 frnsros
Then

sp = 10g pm, r.
Since pm, » approaches a limit P, > 0, and since logz is a con-
tinuous function, it follows that log pm,, approaches a limit, and
hence the series converges. We observe in passing that

log P = log fin + l0g frnpy + -+
b) The condition is sufficient. Hypothesis: the series converges;
i.e. lim s, exists, Conclusion: the product converges, Since
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Pm,r = €
and since € is a continuous function, it follows that e~ approaches
a limit:

lim &5 = ¢Sm .
r=x

where
Sm =log frm + log frmu + .
Finally, this limit cannot be 0 because the exponential function is
positive for all values of the argument.
COROLLARY. A necessary condition for the convergence of an
infinite product is, that
lm fp = 1.
Je—
For this reason it is often convenient to set
fa=1+ a.
Thus the infinite product appears in the form:
(T4+a)(t+a)--
CoNVERGENCE TEST. A sufficient condition for the convergence
of the infinite product
(1 +a)(1 +a) -
is the absolute convergence of the series:
ag+a +-- .
We may omit any factors in which a, = 0, since such influence

the convergence of neither the product nor the series.
Consider the series:

log(1 + ap) + log(1 + @)+~
Apply the Comparison Test of §9. Since

lim log (1 + x)
=0 z
exists, it follows that log (1 + an)/a. approaches a limit as n becomes
infinite, and so the series of logarithms converges. Hence the infinite
product converges.
It is not true that the mere convergence of the a-series will
insure the convergence of the product. For example, the product
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1 1 1
) {t+—=]) | -——= )
(=733 (-77)
is easily seen to diverge by use of the series of logarithms. But the
series

1 1
—_——t
Vo V3
converges. Nevertheless, if the a’s be restricted not to change sign
we can obtain a divergence test.

DiveErGenceE Test. If
ao + a + “ee

is a divergent series whose terms from a definite point on are all
of one sign, the infinite product

(14 a)(1 + a) -

dwverges.
The notation for an infinite product is:
II fm
n=0
EXERCISES

Test the following infinite products for convergence.

LR R ()

©
—
p——

|
| -
N
—
Pt

+
[EN SN
~
P
_

]
YN
S

_ _i_)
2nrn+1)?/ "
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7. Study the Binomial Series:
1+ mz+L(’";ll1-2+...,
1:2
determining its convergence in all cases.

8. Show that the infinite product

o

1+ r)n+ (c— ab) T R S
ng@.. (a+n)(6+n) ) ab# =l =8 =5 e

diverges toward 4+ oo when r < —1; converges, when r = —1; and
diverges toward 0 when —1 < r.

§11, The Hypergeometric Series:

_ ab ala + 1) b(b + 1)
F(a'b’c’x)—i-*-C'l x+ C(C+1)1‘2 xg+

This series includes some of the important elementary functions;
but it also defines a class of more general functions. which arise not
infrequently in practice and whose properties have been studied by
means of the theory of functions of a complex variable.

Some simple specializations of the series are the following,
(1 +x)n=F(—n)bybs“x);
log(l + x) =z F(1,1,2, — z);

tan“.t:xF(—;-, 1,%,—1‘2);

e = lim F(l,b,z.%).

We propose to discuss the convergence of the series in all cases,

First of all, we must impose the restriction: ¢ # 0, —1, —2, - - -,
for otherwise no series is defined.

Next, when either @ or b is 0, —1, —2, -, the series breaks
off with a finite number of terms, thus reducing to a polynomial,
and so, considered as an infinite series, converges for all values of =z.

There remain, then, the cases:
abc#0—1-2 -
For what values of  # 0 will the series converge?
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The general terin’is easily formulated:

a(a+1)~--(a+n—-1)b(b+1) (b+n-—-1)
clce+ 1) (c+n—1)1-2:

Thus

Upg (a +n) (b + n)
w (c+n)(+ ")

Its limit is z, and so the series converges absolutely in the interval

-1 < zx<1,

and diverges outside this interval.
There are still two points in doubt, namely z = + 1, —1, for
each of which the test-ratio |tny1|/ |ua| approaches the limit 1.
The Point x = + 1. Here, we can use the Second Test-Ratio
Test in Kummer’s form, §6. Since

u, _ (c+n){1+n)
Unyy (a+n)(d+n)’

we have:

o

. _(n+1)[lc—a—b)n—ab]
" ) RO I

and thus ¢ is seen to have the value:
=c—a—b
Hence if
0 <c—a—b the series converges;
¢—a—5b < 0, the series diverges.

When ¢ —a — b = 0. the test fails, and we proceed to the next
test. Here,

u"——n+1logn+1=

nlogn
Unyy

’ (t? +n ) o -
\"+“[(a+n)(b+)l° — log n+1]—

_(n+1)[log(n+1)—logn+ ablogn ]

(a +n) (b + n)
The limit of this variable is seen to be —1, and consequently the
series diverges.



32 FUNCTIONS OF REAL VARIABLES

To sum up, then: In the case x = + 1 we have
i) Convergence, when 0 < ¢ — a — b;
i1) Divergence, when c—a—b = 0.
The Point x = — 1. Here

Ungy

— _(la+n)(d+n)
Un (c+n)(1+n)’

and the series ultimately becomes an alternating series. When
0<¢c—a—b,
the series converges absolutely. When

c—a—b=0,

we have:

lunr| _  _ (4 +1)n + (c — ab)

[un | c+n(1+n °
where

r=c—a—5b=0.

Let

2 = — 1+ 7)n+ (c —ab)

" c+mU+n) °
Then

lu::kl =1+ am)(1 + amp) (1 + ampr—)

The infinite product

H(l + ay,)

n=m
diverges toward + co when r < — 1, and consequently u, does not
approach 0 as its limit; the wu-series diverges.
When r = — 1, the infinite product converges, and again the
u-series diverges, for the same reason as before.
But when » > — 1, the infinite product diverges toward 0.
We have:

i) L o 4, pEn
unl

i) lim u, = 0.
- n=o0

Consequently the wu-series converges conditionally.
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To sum up, then:— When 2 = — 1, we have
i) Absolute Convergence, when 0 <c—a-—bk
i1} Conditional Convergence, when —1 < c¢—a—5 = 0;
il1) Divergence, when c—a—>b = —1.

The student should supplement his work on this chapter with a
fresh and careful study ol the chapter on Infinite Series in the
Author’s Introduction to the Calculus (Chap. XIV) and also with a
renewed study of the chapter on [Indeterminate Forms in the
Advanced Calculus (Chap. X.)



Chapter 11
The Number System

§1. The Problem. We take the natural numbers 1, 2, 3, - -,
for granted. We think of them as collections of individuals, like a
bag of marbles; but we define \hem as marks, like 1, 2, a, b, etc.
The representation of such a number by means of a base, as:

347 =3 x 102+ 4 x 10 + 7,
is not a part of the concept, number.

We assume the idea of addition as known, whereby out of the
two numbers. a and b, a third is formed:

c=a+b
We think of two bags of marbles emptied into a third bag.
Furthermore, we define subtraction as solving the equation:
a+ x=b, when a < b,
and write:
r=5b—a.
Multiplication we also take for granted. By ab we mean the
nuwnber b added a times:
ab=b+b+ -+ + b (a times)
Divison consists in solving the equation
ax = b,
when b 1s a multiple of a.

It will also be convenient to point out that both subtraction and
division, wheun possible, are unique; and furthermore to adjoin the
theorem (proved by Enuclid’s algorithm of the greatest common divi-
sor) that a natural number can be represented in one and (except
for the order) but one way as the product of its prime factors:

a:pll‘ pé'«' ...pf"'.

A corallary of this theorem should also be noted:— If @ and &
are relatively prime to gach other, and if ac is divisible by b, then
¢ is divisible hy .
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Inequality. We also assume as known what is meant by a < b,
a > b, and point out that
i) if a < b, then b > 4, and conversely;
ii) ifa < b, b < ¢ then a < c;
i) if* a < band c < d, then a+c < b + d,
iv) if*™ a < b and ¢ < d, then ac < bd;
v) if a < b, then na > b, for a suitable n.

The Formal Laws of Algebra. For the numbers and the pro-
cesses above considered the following Jaws hold without exception:

1. A+ B =B+ A, Commutative Law for Addition;
II. 44(B+C)=(A+B)+C, Associative Law for Addition;
1L AB=BA, Commutative Law for Multiplication;

Iv. ABC)=(4B)C, Associative Law for Multiplication;
V. 4(B + C)= 4B + AC, Distributive Law.

By an algebraic equation is meant an equation of the form:1
@+ a1t ap=b,
where the coefficients are any numbers of the particular domain in
question.
This equation includes the equation
1) a+ x=1>,
which we et in defining subtraction; and also
2) axr = b,
appearing in division.
We now proceed to extend the number syste: so that Equation
2) will always admit a solution.

The Concept: Number. What is a “number”? We have been
so used to the numbers 1, 2, 3, 4, -+ fron earliest childhood; that
we take them for granted; and also the simpler fractions, like §, &, §.

# If a = b and ¢ = d, where at least one of the upper signs holds, then
at+e¢ < b+d
## If a = b and ¢ = d, where at least one of the upper signs holds. then
ac < bd.

+ Later, when the number system has been eunlarged to include the number
0, we shall set b =0 and require that ap # 0.
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But what is 1/2—, 1/——1 ? The answer lies in the concept of a class
of objects, or as it is sometimes technically called: a logical class.
The whole numbers are a case in point; for, any two numbers, a
and 3, of this class are either equal or unequal. And for the objects
of this class we have two processes — addition and multiplication,
whereby respectively any two objects, a and b, determine a third
c(=a+ b or = ab).

Now, we proceed to enlarge this class — or, better, to define a
more comprehensive class, containing the whole numbers as a sub-
class — our object being to provide ourselves with a number system,
i.e. a logical class, in which addition and multiplication are defined,
such that, whatever numbers a and b may be in the new system,
division is always possible; i.e. Equation 2) always has a solution.

§2. Fractions. Consider the logical class, or set of elements,

(m, n),
where m, n are any natural numbers. The element is the mark
(m, n) itself, and we will speak of it as a number and refer to it
by a single letter, as
A = (ay, ar), B = (b, by), X =(z,y5), etc.

Equality. Two numbers, 4 = (a,a,), B = (b, b;) shall he
said to be equal, when

a by, = ayby.

We write

A = B.

It follows from the definition that if

A=B
then

B=A;
and if

A =B, B =_C,

then

4 =C.

If 4 = (m,n), then does A also = (Am, An), where X is any
natural number; and also, in case m and n are both divisible by X:

ca=(3.3).
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Let A be so chosen .that

m n
| = | = —
m X n N
are prime to each other. Then
A = (m!' n)

is said to be in reduced, or normal form.
If B = (b, by) is any number which is equal to A,
A4 = B,
then by=pm!, by = pn!,
where p is a natural number.
Inequality. We say that
(m,n) < (m',n),

when
mn! < m'n.

37

Relations i)—v), §1, are then seen to hold in the present system.
Addition®* By the first combination (erste Verkniipfung) we

mean the following. If A = (a;,a,), B = (by,b,), then
A4 ® B=(a1hy + ay by, aby).

(Read: “A with B”.) A ‘“combination” is essentially a function of
two variables: f(4,B), having properties which result from the

specific definition.

The Commutative and the Associative Law follow at once:

I ADB=B@A4;

1I. AB{BECi={4E@® B} DC.
Mutiplication. By the second combination we mean:

A4 ® B = (a; by, a5 by).

It is also commutative and associative:

1. A®B=BQ A,

Iv. ARIBR®CIi={4® B! X C.
Finally, the Distributive Law holds:

\£ ARXIBOBCI={ARWB{®R{4QC}.

Proof, by direct computation.

# It would be better to consider first multiplication, as being simpler.

an order is less in harmony with the procedure in the later cases.

But such
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Division. We are now in a position to prove that division is
always possible and unique. Given the equation:
1) 4 & X =B,
to solve for X = (xy, z,).

Here, we have as a necessary and sufficient condition:

2) ay b2 Xy = Qs bl Xo.
Obviously, one solution of 2) is:

x = ax by, Zo = ar by,
Let

7 = Az, o = Azg,

where z;, xare prime to each other. And now the number X =(z1, x3)
is seen to be a solution of 1), and the only one, any two numbers
that are equal being regarded as identical. For the most general
solution of 2) is x; = y.x{, Ty = 'Lxé, and 2) is both necessary and
sufficient.
Idemfactor. There exis's a number I = (1, 1) such that
I®RA4d=4, A X I=A,

where A4 is any numker of the system; and only one such number.
The Natural Numbers as a Sub-Class. Within the present

class of numbers there is a sub-class which can be identified with

the natural numbers. If we associate the number (a, 1) with a:

(a. 1) — a,

then the first and second combinations will also correspond respectively
to addition and multiplication. For, if

(a,1) & (6,1) =(c, 1)

then a+b=c;
and if
(a.1) & (b,1) = (c, 1),
then ab =c.
We can. therefore, replace the number (a,1) by a in all com
putations, and furthermore write, as a matter of notation:

-

() = = -
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Thus the present class reduces to the natural numbers and the posi-
tive fractions.

The “first combination” and the ‘‘second combination”, together
with the notation & and &), have now served their purpose of set-
ting forth precisely in what “addition” and *‘multiplication” consist
as applied to fractions. We may, therelore, henceforth discard them,
and write 4+ and X as signs for the processes we have so carefully
defined; e.g.

S5 16 175+ 192 _ 367
2 35 420 420 °

(=

5 « 16 g0 _ 4
12735 420 21’
Between any two numbers, a and b, (a < b) of the present
systern there lies a numiber of the system. For, the number

_atbd
2
has the property that
a<c<hbh

Hence there is an infinite set of numbers lying between a and .

There is no least number. For, if a he any number, then $a
also is a number, and 32 < a.

By the distance between a and b, where a < b, shall be meant
the number b — a.

If a be any number of the system, then there are numbers
larger than a and arbitrarily near a; and also numbers less than a
and arbitrarily near a. For, let € be chosen arbitrarily small and,
in particular, let € < a. Then the number ¢ — ¢ is less than a
and distant only € from a. And, similarly, 2 + ¢ > a and distant
only € from a.

Finally, if a be a number of the system, however small; and G,
a number, however large, then a natural number m can be found
such that

ma > G.
For, let

P p
a=L, G=—
q Q



40 FUNCTIONS OF REAL VARIABLES

(both taken, for definiteness, in reduced form). Then the inequality
we wish to establish is, that
p
mp -
q Q
By definition, this inequality holds if
mpQ > gP.
Here pQ and gP are natural numbers, and an m can always be
found to satisfy this condition —e.g. m =¢P + 1.

§3. Negative Numbers. Consider a new logical class, or
class of elements, (a,b), where a, b are fractions.* Two of these
numbers,. (a, b) and (a’, b'), shall be said to be equal.

(a7 b) = (a" b,),
if
a+ b =a +b.
It follows that
(a+ X, b+ X)=(a,b),
where X is any fraction; and also
(@a= X, b—2A)=(ab),
so far as both a — X and 5 — XA have a meaning. Moreover, these
are obviously the only numbers equal to (a,5).

An arbitrary number of the system can evidently be reduced to
one or the other of the forms (a, 1), (1, a).

Inequality. By definition:

(a,b) < (a’,b')
if a+d < a +5b

Addition. The first conbination shall be defined as follows. If
A= (al, a-z) and B = (bl‘l b2), then

A® B =/(a; + by, as + by).

* The component elemeuts, a, b, etc. might equally well be’ natural num-
bers; i.e. we can introduce the negative whole numbers in this way before
proceeding to fractions. On the other hand, we might postpone the intro-
duction of the negative numbers till the positive irrationgls had been defined,
and then a, b. etc. would be positive irrationals. — The notation ( ) has, of
course, nothing to do with the () of § 2, which has now been discarded. Let
the student replace it by [ ], writing [a, b], etc., if this form is more agree-
able to him.
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'The Commutative Law,
ADB=B® 4,
and the Associative Law:
ADIBBEC i =14DB!DC,

are seen to hold.

Subtraction. Let it be required to solve the equation:

4@ X =B
Let X = (x,25). Then
(@ +x1, ap + 35) = (by, by).

Hence
a+x+b=a +x+b,
and so
T =a+b
zo=a; + by

These equations are both necessary and sufficient. Hence sub-
traction -— defined as the inverse of addition — is always possible and
unique. The difference, X, is denoted as follows:

X=BCA.
The Number 0. The number

Ay = (a, a)
has the property that

A0®A=A» A@A():A,
where A is any number of the system. It is denoted by 0, or (a, 2) = 0.

The number A/, called the negative of A, is defined by the
equation:

AP A =0.
If 4 =(a,b), then A’ = (b, a).
Furthermore,
A =00 4.

It thus becomes natural to attach to the sign © a new meaning,
defining © A as the negative of 4. Observe that the sign S is now
used in two senses —once, as a functional symbol in a function of
two variables,

f(4,B)=B O 4;
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and again as a functional symbol in a function of one variable,
old)y=4"=2 4.

This explains the meaning of —a in ordinary alzebra.* It is
the negative, a’, of a; the number which, when added to a will
give 0. But @ may be positive, negative, or 0, and —a is not neces-
sarily a negative number.

The equation

AP X =B
can be solved conveniently by means of A/, the negative of 4. For,
a necessary oondition for X is, that

A PDABDX =4 & B.
Hence
0D X =4 & B,

or X=Bd4A.
Conversely, this condition is sufficient.

The Law of Signs. To avoid the ambiguity in the use of the
sign ©, replace © in the second sense by /. Thus if 4’/ is the
negative of 4, we will write:

Al =397 4.
Observe that
EEeA)=4; ADE'B)=40OB; A2(EO'B)=4PB.
We find by direct computation that
C'4@B)=Cc'4® (@' B)=Cc'408B,
' U4OB)=C' 4B B;
e E&ABB) =40 B;
€@ 4CB)=40B.

These identities justify the ordinary rules for the use of the
minus sign in Algebra. They show clearly the two meaning: of that
sign in such transformations as

—{a—b+c)=—a+b—c
Here, the first term on the right, —a, is the negative, a/, of a. The
last minus sign is capable of two interpretations:

# In the lines that follow, our references to ordinary algebra are purely
for illustrative purposes. The systematic connection with ordinary algebra
will be made at the closevof the paragraph.
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i) it may be the & of
(—a+d)Sec;
il) it may be the &/ of the negative of ¢, ¢! = =/ ¢; the plus
sign being omnitted:
(—a+b)E(E')=—a+bC' e
Multiplication. The second combination is defined as follows,
It A= (a;.a) and B = (b;,b,), then
A B = (ab + asbs, a1 b, + a5 by).
It is at once obvious that the Commutative Law holds:
AX® B=BX A.
‘The Associative Law,
A BRCI=1'4B & (.
is also true. For, compute the left-hand side; it is:
(a;bycy + ayboco + asbyco + as by cq,
aybyco + aybyey + ayhycy + ashycy).
Next, observe that, on the right,
fA®BIQRC=CKRSIBRX 41

It is, therefore, enough to note that the ahove expression is unchanged
when the a’s and the c’s are interchanged.

Finally, the Distributive Law,
AQIBBCI=140BI®:4@CH,
is shown to hold by direct computation.

The Idemfactor. The number

I=(a+1,a)
has the property that
ARI =A, I®A=A.

It will be shown presently that it is the only number that has
this property for all A’s, and that even for a particular 4 # 0 it is
unique.

This number is, for multiplication, what 0 is for addition:

ABO=0 A=A
Divison. let it be required to solve the equation

A® X =B.
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It A4 = (a;, a) be any number # 0; i.e. a; # a,; then there
exists a number A’ such that
AR A" =1, or A'®A=1I
We wish, namely, to solve the equation:
(a1, @) & (21, 7) = (X + 1,X),
where A is arbitrary. Thus
a x; + ayxe =X + 1,

dy ) + ayzy = A,
Hence either i):

{(a"{ — &)z = \(ay — a) + a
(af — @) 2, = X (a; — a5) — as
if @) > a, and A is so chosen that
A (al - a?_) > a,.
Or ii): if @ < a,, then
{(ag— @A)z =A(ay —a)) —q
(a3 —a)) zy =X (ay — &) + a»
X\ being so chosen that
A(ay — a)) > a.
When, however, 4, = a, = ¢, the equations reduce to

CII+C$2=X+1
cx) +cxy = A

These equations never admit a solution.
Returning, now, to the equation

A& X =B,
assume that 4 7% 0. Then a necessary condition for X is, that
AARAZX=4'"®B
or IRX=4"R¥B
or X=BXRA .
Conversely, this condition is sufficient.

Thus division is always possible when 4 # 0. WMoreover, it is
unique. In particular, then, J is unique.
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Finally, if the product of two numbers is 0, then one of the
factors is 0. For, it B=0, 4 % 0, then X = 0.
Relation to the Fractions. The present number system contains
a sub-class of numbers, namely, the numbers (a + 1, 1), which,
together with the four species, are holoedrically isomorphic with the
fractions. By this we mean that if we relate
A=(a+1,1) with aq,
and so
B=({b+1,1) with b;
then
A@B=@+5b+22)
will correspond to a + b and
AX B=(ab+1,1)

will correspond to ab. Moreover, if
A < B, then a < b

Thus the numbers (a + 1, 1) of this sub-class obey precisely the
same laws of combination (equality, inequality, the four species) as
do the fractions, §2, and we may, then, write interchangeably
(a+1,1) and a, @ and 4+, &) and X, etc.

The remaining numbers of the class, except 0, are the so-called
‘“negatives” (see above) of these. For, any such number can be
written in the form:

A=(1, a+ 1),
and its negative, A/, is:

A=c"'4=(@a+1,1) =a,
or
A= a=—a.
Observe that we are herewith defining —a. The number 0 is its
own negative: — 0 =0.

The numters (g, b) for which @ > b are called positive numbers;
those for which a < b, negative numbers. The number 0 is neither
positive nor negative.

The numbers of our present system reduce, then, to the fractions,
a = p/q, of §2, which we shall henceforth refer to as the positive
fractions; their nezatives, — a = — p/q, which we shall call the
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negative fraciions; and 0. This numnber system is called the system
of the commensurable or rational nwmbers.

The absolute value of a positive number or zero is defined as
the number itsel.:

| 4] =4 if 4= (ad) and a = b.
The absolute valne of a negative number is its negative:
| 4] =A"=(b,a), it 4= (a,b)and a < b.
Inequalities. The relations of inequality. §1, 1), ii), iii), hold

in the present number system; but iv) and v) lapse. Instead of vi)
we have, however:
) {ifa<b and ¢ > 0, then ac < bc;
iv
if a<b and ¢ <0, then ac > bc.
§4. Irrational Numbers. The Cut. Anong the numbers
thus far considered — the positive and negative fractions — there is

no number that can solve the equation:
=2

For suppose x =z m/n were a root. Then

2
m =2
R} el }
o
or
o
m? = 2n,

Here is a contradiction. For, each prine factor of the left-hand
side appears an even number of times, but on the right, 2 appears
an odd number of times.

It we consider an arbitrary positive fraction, its square is either
less than 2 or greater'than 2. In the first case, we put it into the
class of nunbers whose elements we denote by a;; in the second
case we put it into the class of numbers whose eleinents we denote
by ay,. 'Thus we have a partition of all the positive fractions into
two classes, and each a; is less than any a,:

a < a.

Such a partition Dedekind called a cut. More generally, let any
criterion be given whereby the cominensurable numbers fall into two
classes, an arbitrary number a; of the first class being less than any
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number @, of the second class. For example, every [raction, @, has
the property that any other fraction is either less than a4, and so
belongs in the class of the a;, or is greater than a, and so belongs
in the class of the a,. The number a itself may be assigned to
either class. But the class of cuts is more comprehensive than
the class of the commensurable numbers. There will be in general
no largest a; nor smallest a,.

Dedekind considered the logical class consisting of all cuts. This
is the class of the irrational numbers. let the mark

(ay, a5)
refer to such a cut. It— the mark — shall be called a number, and
it may also be denoted by a single letter, as
A = (ay, ay).
Here, the mark A is the number.
Equality and Inequality. Two numbers, 4 = (aj, a,) and B=
(by, by), are defined as equal:
A = B,
it a = b, b, = a,
no matter how ay, a5, by, by be chosen from their respective classes.
At most one of the lower signs can hold.

We say,
4 < B or B > 4

if it be possible to find a particular b, = bI and a particular a, = a;
such that
a; < b.

Rational Numbers. Those numbers (a;, a;) for which there is
a largest a; (call it @) or a smallest a, (call it @) <hall be identified
with the rational numbers: (aj, a,) = a.

Those numbers (a;, @;) for which some a; is positive are called
positive numbers; those for which an a, is negative, negative numbers.
The number (— @5, — ;) is the negative of (a;, @), and is writ-
ten — (a;, a;). The number 0 is neither positive nor negative.

By the absolute value of (ay, a,) is meant the number itself,
when it is positive or 0; its negative, when (a3, a) <0. It is
denoted by the symbol:

IAI =|(a1'a2)l'
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§5. The Theorem of Continuity. The present number
system has the property which Dedekind characterized as continuity.
It is embodied in the following

Turorem. Let sy, so, -+ be a set of numbers such that

1) Sn = Sn1s
i1) sm = A
Then there exists a number U such that
a) s = U, n=12" .
b) Yy < Sn m = n,
where y is any number less than U:
y < U,

and m is a corresponding integer.

Proof. Let a; be a fraction exceeded by some s, (and so by all
later ones). Consider the totality of such fractions. Let a, be any
one of the remaining fractions. Then the number

U = {(a;, a))
has the properties a) and b). For, first, if U did not satisfy Condi-
tion a), there would be a number
s > U,
and between s, and U, a fraction c:
U<c< sp.
Because ¢ < sy, ¢ is an a;. This is impossible because every
aq = U
Secondly, if Condition b) is not fulfilled, then
sh =y
for all values of n. Choose a fraction, c, between y and U:
y<c<UU.
Then s, < ¢, and hence ¢ is an a;. This is impossible because
every @, = U. The proof is now complete.

Decimal Fractions. Let M be any integer — positive, negative,
or 0— and let aj, a5, - (0 = a, = 9) be any set of whole num-
bers proceeding according to a definite law. Then the mark

M.ajay---,
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which is understood as an abbreviation for the mark:
M + TtoE

is know as a decimal fraction. Thus 3.1415926 - - - is a decimal
fraction. If we set

sp=M+ O+ - 107

and identify this number with the s, of Dedekind’s Theorem, the
value of the decimal is defined as the corresponding number, U.

Conversely, to an arbitrary number A4 corresponds a decimal
fraction whose value is 4. For, let M be the largest integer which
is less than 4. Choose a; so that

- a + 1
M+—0<A A E M+ ==,

and so on.

§6. Convergence. Limits. The Fundamental Theorem.*
By the neighborhood of a point 4 = (a;, ay) are meant the numbers z,

7 < x < 9,
where y; < A and y, > A are arbitrary. By the e-neighborhood of
A is meant the neighborhood, where € is a positive fraction and
71 =(ay — €,a, — ¢), Yo =(ay + ¢, a5 + ¢).

Let M,, M., - be a succession of point sets** having the follow-
ing property. To a positive fraction € chosen at pleasure there
corresponds an integer m and a point &, of M,, such that the

#It may seem an error of judgment, in these Lectures, to introduce at
this point a theorem which, in the scientific development of the student,
clearly belongs in the chapter on Point Sets. Still, scientific perspective may
on occasion become more important than the principles of pedagogy, and the
fact that this theoremn is more fundamental than even the Four Species for
irrational numbers entitles it to rank these processes. The beginner will do
well to read this theorem and its proof with an open mind, but not, at this
stage, to give it more thought than his imagination readily supplies. He can
come back to it after finishing the chapter on Point Sets. but he should think
aof its place in the science as here, rather than later.

## cf. Chap. III, §1. It is merely the conception or definition of a point
set with which we are here concerned.
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e-neighborhood of £, contains the set Al,, if » = m. The point
sets My are then said to converge as n = co.

THEOREM 1. Let My, M., -+ be a convergent sequence of point
sets, Then there exisis a number U such that an arbitrary e-neigh-
borkood of U contains all the later My, (n = m).

Proof. Let a; be a [raction that is exceeded by some point of
M, for all values of n {from a definite point on; i.e. for n = m,
where m depends on a;. Consider the totaliiy of such fractions a.
Let a; be any fraction not an a;. Then the a;, a, define a cut:

7= (a, ay).

This number U has the properties of the I/ of the theorem. Tor,
let €/ be a positive fraction < %€, and let g, £4 be the numbers m,
& corresponding to €/ by the hypothesis of convergence. Then M,
lies in the €/-neighborhood of £/, when n = p.  But the points of
this neighborhood lie in the e-neighborhood of 7. For if it extended
above the-latter, there would be fractions a; > U; and if it extended
below the latter, there would be fractions a, < U.

Definitica of a Limit. The number U is defined as the limit
of the numbers x constituting M, , as n becomes infinite.

Turorem 2. Let My, M., - - - be a convergent sequence of point
sets, and let Ny, N, -+ be a second sequence, the points of N,
being all contained in M, Then the second sequence converges and
has the same Limit as the first.

In the foregoing definitions and theorems the point sets M, have
been made to depend on a single integer, n. It is obvious that they
may equally well depend on variables which in a more general sense
approach limits; cf. the definition of Function in Chap. I, §3. It
is enough for our present purposes to consider a single extension,
namely, to an aggregate of point sets M, where n and ¢ are natural
numbers, and where the earlier condition m = n is now replaced by
the pair: m=n, 1 =g

§7. Addition of Irrationals. The sum* of two numbers,
A = (aj, a;) and B = (b, b,), shall be defined as the number C =

(clv 02):
14 + B = C,

# We now drop the expression “first combination”. meaning by “sum”
the same thing.
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where
aq=a + b, Co = ay + by;
or
(a1, as) + (by, by) = (@) + by, as + bo).

Tt is understood that each a; is combined with each b; to yield the
c;; and similarly for c,.
To justiry this definition observe first that

¢ < ¢,

since

a < ay, by < b,
Secondly, to an arbitrary positive fraction, €, there correspond
a c) and a ¢y such that
cé < cll + €.
For, to an arbitrary ¢/ > 0 there correspond the relations:
a; < al + e bé < {'l' + ¢
Hence
ay + by < a| + b+ 2¢,
and it remains only to set
e/ =4%e, c{::a;+b,'. c£=a£+b5.
Finally, the ¢;, co exhaust all the fractions with posiib]){ one exception.

Addition obeys the Comunutative Law:

I A+ B=B+ A4;
and also the Associative Law:
1. A+(B+C)=(1+B)+C.
It is obvious that
A+0= 4, 04+A4=A4,

where .4 is any number.

Subtraction. The inverse >f addition is subtraction. The pro-
blem is to solve the equation:

4+ X =B.
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Consider first the case B == 0. It is obvious that one solution is:

A = (— as, —a,).

Thus

A4+ A" =0.
let A" be an arbitrary solution:

A+ A" =0.
Then

A+ A+ 4"=1,

and since

A+ 4=0,
it follows that

A" = 4.

Hence A! is unique.

Proceeding now to the general case we find as a necessary con-
dition :
A'+ 4+ X =4+ B,
X=B+ 4.
Thus X can be no other number; and we see that, conversely, this

number is a solution. Hence subtraction is always possible and
unique.

Observe the inequalities:

i) |l4+B| = |4|+|Bl,
i) [$14]—1Bl}] = |4+ B
i) If |l4—-X| = H,

then A—H =X = A+ H,

and conversely.

§8. Limit of the Sum of Two Variables. Let M, M,,---
and Ny, N,,--- be two convergent sequences of point sets. Let X
be a point of My, and Y a point of N, Form the sequence of
point sets Py, Py, ---, where Pp consists of the points X + Y.
Then Py converges, and
lim P, =lim M, + lim N,
n=x n==c0 n=co

or
im(X + ¥Y)=1limX + lim Y.
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We wish to show that, to an arbitrary* ¢ > 0, there cor-
responds an m such that
|+ V—-X~=Y| < ¢ m = n,
where X and Y are points of My, N, and m = n.
We know that, to any € > 0, there corresponds an m such that
|U-X| < ¢, |\ V=Y < ¢,

where X, Y are points of M, Nn, and m = n. Hence

U+ V—-—X—-Y|<2¢.
If, then, we choose ¢/ = } ¢, the proof is complete.

We could equally well have defined an aggrezate of point sets
P,y made up of the points X of M, and Y of Ny, and shown in a
similar manner that

lim Pny =1im M, + lim N,.
n=s0

(n, =00, o) g=x

§9. Multiplication of Irrationals. The product of two real
numbers, A4 = (a;,a,) and B == (b;, b,), shall be defined as follows.

et fractions be chosen at pleasure :

€6 = € = -, lim ¢, = 0;
n=m

m%qgg"', hmqn=0
n=oo

let ap (p =1, 2) be any point of the e, neighborhood of A, §6,
and let b, (=1, 2) be any point of the 7, neighborhood of B.
Iet | ! = M, consist of the points
x = apby
Then these points approach a limit,
U = (u, uy),

as n becomes infinite. This number is defined as the product of A
and B:
U= 4B,

(al’ a2) (bh b‘.Z) = llm g ap b(/ ;.

® Now that addition has been defined it is obviously henceforth immaterial
whether we require ¢ to be a positive fraction or an arbitrary positive
rumber. ,
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For, let a,b, lie in M, and let ap, by, lie in any My,

m = n, and so, also, in M,,.

Since
lap —ap] < 2¢€m, | 6ir — by | < 29m,
it follows that
ay = ap + ¢y, 8] < 2em,
bl = by + Lo, & < 2qm

Hence
ap bjr — apby =by by + apls + &) Lo
Now, there is a constant G such that
lay| < G, 5| < G
for any ap, by under consideration. Consequently
| @} byr — apby|l < G2 em + 29m) + 4 €m m.
1f, now, a positive fraction ¢ be chosen at pleasure, m can be so
determined that
G2em+29m) +demnm < c.
Consequently the e-neighborhood of a point & of M,,— namely,
t = apby-—contains all the points of each later M, (m < n) and
so the sequence of point sets M, converges.
Idemfactor. There is one number of the system, namely :
I = (a, a,), a =1 < a,,
which has the property that
IA=AI= A4,
where A4 is any number of the system; and I is unique, as will
appear from the uniqueness of division. [ is the number 1.
The truth of the Commutative Law:

L AB=ZBA,
is obvious from the definition. The Associative Law :
1L (AB)C = A4(BC),
is also true. For, let fractions
An = Anyrs ,}:2 An =0,

be chosen arbitrarily, and let ¢, (r =1, 2) be a point of the A,
neighborhood of C = (¢j, ¢;). Let M consist of the points
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x = ap by cr.
Then it is shown exactly as before that these points x approach a
limit,

V=1im{abyc}.

n==x

This number, 7, has the value I/C, where U = AB. For, the
definition of the latter product is as follows. Let U = (u;, u,). Let
fractions

Pn = Penti s lim Pn = 0,

n==co

be chosen, and let ux, (# =1, 2) be a fraction lying in the p.
neighborhood of UJ. Let ¢, as before, lie in the An-neighborhood
of C. Tnen N, shall consist of the points urcy, and

UC=1lim}urcr}.

n=oo

Since the points a, b, for a given n include all the fractions
lying in a certain neighborhood of the point {J = A B, it is clear
that the pn, can be so chosen that the pn-neighborhood of U will
include only such fractions ux as are contained among the above
apby. When this is done, the points of the set { uz ¢, | for a given
n are all contained among the points of the set { a, by c,} correspond-
ing to the same n. Thus the { ur ¢, } are sub-sets of the { a, b, cr |,
and hence, by Theorem 2 of § 6, their limits are equal, or:

V=UC=(4B)C.

On the other hand, 7 is invariant of the order of the factors,
ap, by, ¢r. Hence

V=(BC)A,
and since the commutative law holds,
V =A4(BC).

Thus the Associative Law is established.

Division is the inverse of multiplication and is expressed by the
equation :
AX = B, 4 # 0.
First, let B = I, the idemfactor, 7 = 1:
AX = 1.
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One solution of this equation is the following. let a set of fractions

be chosen :

v
v

€y €9 N lim €y = O,

n=oco
and let ¢ < | 4|. Let .4 =(a, ay), and let M, be the points
1/ap (p =1, 2) where ap lies in the ¢, neighborhood of 4. Then
the sequence of point sets M, M,, --- converges. For, let a, a§

be any two points of My, and let G be a positive fraction < | 4] — €.
Then

11 _ e
ap al apal ’
and hence
a —a
= alm T < 2
Denote the limit by A’:
Ad' = A4 =1.
It is called the reciprocal of A, and is unique. For if
' A4" =1,
then A'A44" = 4,
or A" = 4.
Turning now to the general equation,
AX =B,
multiply by A’:
A'1X = A'B,
X =BA'.

Thus division is always possible when 4 z 0. Moreover, it is
unique. For, if

AX=A4Y,
then AAX =447,
and so X=Y.

Multiplication has been defined and the foregoing properties have
been established, independently of addition — in fact, the whole treat-
ment could precede addition. We turn now to the last of the five
formal laws, which combines both addition and multiplication.
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The Distributive Law :
AB+C)=A4AB + AC.
Here, if A4 = (a;,a5), B = (b, b,), and C = (¢, ¢;), the left-hand
side is, by definition :
A(B + C) =rl:1£l{ ap (by + ¢,) }.
On the right,
AB:}i_nl{apb,,}, AC::’E{r;fa,,,ch.

By the theorem of §7 and Theorem 2, §6 the first of these
three limits is equal to the sum of the last two, and this proves the
theorem. Thus the five formal laws of algebra hold for irrationals.

The System of Real Numbers. By this is meant the class of
numbers defined above as cuts, plus the four species defined for these
numbers. This number system has the property that a product
vanishes when and only when one of the factors vanishes.

§10. Roots. Inequalities. From the definition of a number
as a cut follows at once that the equation

"= a, 0 = a,

admits one and only one positive root (or 0):

z=ya.

For, let 2, be any positive fraction such that

a < a3,
and let @; be any other fraction. Then

z = (a, a5)
is a solution of the equation, and the only solution which is not
negative.

Inequalities. Any two numbers of the system of real numbers
are equal or unequal, and if @ < b, then b > a. Moreover, if
n<band b<c, then a< c. Between any two numbers, a < b,
lies @ number, ¢: @ < ¢ < b. Also, if 0 < a and 0 < b, there
is a natural number n such that na > .

The student will find it convenient to have firmly in mind the
turther relations : —
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1) Ifa< bandc = d, thena+c < b +d.
=

1) If 0 a< band 0 = ¢ < d, then ac < bd.

ka < kb, if 0 < k;
i) If a < B, then{
ka > kb, if kK < 0.
iv) If 0 = a < b, then
Y a < Vb and ot < b
v) la+b| = lal+ bl
vi) [tlal=1b1{|l = la+b]

vii) If la— x| = &, then
a—h = x = a+h,
and conversely.

§11. Retrospect. Starting with the natural numbers and the
four species, we proceeded to the positive fractions, and thence to the
negative fractions, thus obtaining the system of rational numbers.

From this point we introduced the irrational numbers by means
of the cut. The definitions of equality and inequality, and of addi-
tion, were most natural and simple. Even before addition was de-
fined, it was possible to formulate and prove the fundamental theorem
concerning limits, and thus the basis for all analysis occupies the
first place in the development of arithmetic. Multiplication derives
its definition from this principle.

On the other hand one might reasonably seek to create the
number system first. Addition is defined naturally by means of the
definition of number as a cut:

(a1, @) + (b, by) = (ay + by, ay + by).
One would like to define multiplication in the same manner:
(a1, @) (by, bo) = (a1 by, @y by).

But this is impossible when we start with the system of (positive and
negative) rational numbers, since the fractions ) b; and a5, do
not define a cat.

There is a way cut. Introduce the irrational numbers after the
fractions; i. e. before the negative numbers have been defined. Then
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the above definition of multiplication is valid. We thus obtain the
system of positive real numbers. The negative numbers can now
be defined precisely as before, and we arrive at the system of real
numbers.

What have we lost by this method? Nothing of a logical nature;
nothing of simplicity in the small. But in the large*there is a lack
of unity in the definition of the real numbers. There was no lack
of unity in the definition of the system of rational numbers (positive
and negative fractions, and 0). And there is no lack of unity when
we advance from these to the real numbers by the cut. There is ne
lack of unity when we introduce the fundamental principle of limits
even before the definition of addition. And from here on the devel-
opment leaves nothing to be desired in point of simplicity.

All this has, however, an apologetic sound. Our views are ex-
pressed in negatives. It is important to make clear the positive rea-
sons which justify the course we have followed. These are:

I. The Cut. The phenomenon of the partition of all the

numbers of the system before us into two classes, the a; and the as,

with
a < as,

appears again and again in the most elementary and important con-
siderations one meets in practice. It is natural, then, to seize on
this mathematical manifestation as the defining element in extending
the number system to its final scope. In Physics, that definition is
best which lies closest to the heart of the phenomena to be analyzed,
and this principle has its counterpart in Mathematics.

II. Limits. The prime object of extending the number system
is continuity and the existence of a limit. If it were not for these
phenomena, we could get on very well with the system of rational
numbers (positive and negative fractions, and 0). Since the notion
of the limit is the cause for generalizing arithmetic, its place is
naturally the earliest possible one — immediately after the definition of
the new numbers. From the point of view of scientific perspective,
then, this arrangement leaves nothing to be desired.

So we need make no apology to the beginner for leading him
over a path that is hard lor his tender feet. He is being trained in
the most important methods of the science, and his efforts will be
rewarded by the acquisition of insight and power in analysis.
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The Method of Regular Sequences. It is possible to introduce
irrationals by a method which is, perhaps, more convenient for the
beginner. Suppose we have established the system of rational numnbers.
By a regular sequence is meant a set of these numbers, a;, a,,
ag, *** having the property that, if € be a positive fraction chosen
at pleasure, there corresponds an integer m such that

|an —aw | < ¢ m =< nn.

The regular sequence is now made the element of a new logical
class, the real numbers, If, in particular, there is a rational number,
a, such that, to an arbitrary positive fraction € corresponds an integer
m, for which

la —ap| < e, m < n,

this regular sequence is identified with a; ie. set equal by defini-
tion to a. If not, a new numher is introduced. In either case,
the element of the logical class is the mark which consists in the
regular sequence.

Two regular sequences, 4 = (aj, @s, -**) and B = (by, by, * - *),
are defined as equal if to an arbitrary positive fraction e corresponds
a natural number m such that

|an—bpd < ¢, =
The number A is defined as less than B,
4 < B,

if there are a natural number m and a positive fraction & such that
an + b < by, m =< n.
By the sum of two numbers,
C=4+B,
is meant the regular sequence
C=(a, + by, a» + by, ---).
Subtraction is always possible and unique :

A—B=(a,— by, ay— by, *-*).
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The product of two numbers,
C=A4B,
is defined as the regular sequence
C=(aby, ayby, ).

Division by any number but 0 is always possible and unique :

2= [fm, fmn L]
bm ' bm+1 ’

The justification for each of these definitions; i.e. the requisite
convergence proof, is simple.

Thus the System of Real Numbers — the definition of irrationals
and the extension of the four species to the new numbers—is
established. The method has the advantage of simrlicity in detail. It
is well for the student, after a first study of the method of Dedekind,
to work it through in all detail. He will then return to the former
method with increased power and greater zest.

The method of regular sequences is a middle-of-the-road method.
It is an easy way to reach the mountain top. The traveller buys his
ticket and takes the funicular. Many people prefer this mode of
travel. But some like a stiff climb over rocks and across streams, and
such an ascent has its advantages if the heart is good and the muscles
are strong.



Chapter III
Point Sets. Limits. Continuity

§1. Definitions. By point is meant the expression (21, * *, Zn)-
The numbers z; are called its coordinates. A point in space ot
n dimensions may be thought of as corresponding to it. But this
idea is introduced merely for the convenience of geometric intuition,
—not as an essential part of the concept. Any collection of points,
defined so as to be recognizable, is called a point set. Each point is
called an element of the set.

Ezxamples. When n = 1:

a) The proper fractions.

b) The continuum a < r < b.

c) The line segment a < = £ b.

d) The incommensurable numbers between 0 and 1.

e) The natural numbers.

f) Their reciprocals, 1, %, %, ---.

g) The numbers 1, %, %, --- and 0.

h) The positive numbers.

i)  All the real numbers.

j) A finite set of points, like 0, 1.

When n >> 1:
k) The open square, when n =2:
—-1<z< 1, —1<y< 1
1) The closed square, when n = 2:
-1 £zxz=1, -1y £ 1
m) The rational points of space: (zy, * -, #n), where the zi’s

are all fractions.
n) The surface of the unit (hyper-) sphere:

B4+ +ri=1
o) The interior of the unit (hyper-) sphere:
A+ad+ 4 < L

Distance. By the distance between the points (a, ***, tn) and
(by, **+, bn) is meant the number :

D=1vTa—b)+ % (an— b
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Bounded. A point set is bounded if the distances of its points
from a fixed point are all less than some fixed number.

Finite. A finite point set is one consisting of a finite number
of points.

Open Set. If to an arbitrary point (a;, -+ -, a@n) of the set there
corresponds a positive number %, dependent in general on (a), such
that all points (z, * -, x,) for which

a—h<xxg<a+h, k=1,---,n,
belong to the set, the set is called an open set.

Neighborhood. By the neighborhood of a point is meant a con-
nected open set including the given point. It is usually a simple
region, like a square or a circle with the point as its centre.

Cluster Point. A point A is called a cluster point or point of
condensation of a set if an arbitrary neighborhood of A4, no matter
how restricted, contains points of the set distinct from A.

Isolated, Discrete. A point A4 of a set is called isolated if
within a suitably chosen neighborhood of .4 there are no other points
of the set. A point set is said to be discrete if all its points are
isolated; cf. Examples e), f), j).

Boundary Point. A boundary point of a set is a point in every
neighborhood of which there is a point of the set and also a point
not belonging to the set. ‘The point itself may or may not belong
to the set.

Closed Set. A set is closed if it is hounded and contains all
its boundary points.

Standard Element. By this is meant the point set (zy, ***, Tn)s
where

ay—hy < 53 < ap + hy, 0 < By, k=1, n
The point (a;,* -, @) is called the centre. The boundary points of
a standard element are those points (3, -, y») for which

ak-hkéykéak+hky k=1a"'vn7
at least one lower sign holding. The closed set consisting of a stand-
ard element and all its boundary points shall be called a standard box.
Connected. An open set, M, is said to be connected if it has
the following property. Let 4 and B be any two of jits points. Then
there shall exist n 4+ 1 points of the set, Py =4, Py, *, Pny,
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P, =B, and n standard elements, Ry, Ry, -+, Rp—y, where the
centre of Ry is Py and R; lies in M, such that R; contains Piy,
k=0,1,+, n—1.

Dense. A point set is everywhere dense in an open set if each
point of the latter is a cluster point of the former. It is intrinsically
dense if each of its points is a cluster point.

Perfect. A set is perfect if it is closed and intrinsically dense.
A closed interval, 2 £ z £ b, is an example of a perfect set. But
a perfect set does not necessarily contain any open set whatever;
cf. §2.
LiNear PoInT SETS

Upper Bound. Upper Limit. A linear point set, i.e. a set for
which n =1, is said to have an upper bound if there is a fixed
number A such that

z £ 4,
where x is any point of the set. Any larger number, B > A, is
also an upper bound of the set.

If A belongs to the set, or if there are points of the set in
every neighborhood of A, then A is the upper Limit (or least upper
bound) of the set.

When the upper limit is a point of the set, it is called the
maximum.

For example, the number 2 is an upper bound of the proper
fractions. The number 1 is their upper limit. But the set has no
maximum.

It is obvious how lower bound, lower linit or greatest lower
bound, and minimum should be defined.

Turonem 1. A linear point set which has an upper bound,
has an upper limit.

Let a; be a fraction, to the right of which lies a point of the
set. Consider the totality of such fractions. Let a, be any fraction
not an a;. Then these two classes of fractions define a cut, (g, ay),
and thus determine a point, U = (a;, @;). This point is the upper
limit of the given point set. For,

i) it is an upper bound. Suppose there were a point £ of the
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set, s'ich that £ > U, Then there would be a fraction, a, between
U and &:
V< a < &,
This fraction would by definition be an a:
a = a,
Thus we have the contradiction of an @) > U.

ii) U is the least upper bound. For, suppose 4 < U were an
upper bound. Then there would be a fraction § between A4 and U:

A< B< U

But B would by definition be an a,, and so we should have the con-
tradiction of an a, < U

Similarly, a linear point set which has a lower bound, has a
lower limit.

By a finite interval is meant a point set
a< < b

to which may be added one or both of the end points.

THeoreM 2. TrE WEIERSTRASS-BorzaNo TurOREM. An in-
finite linear point set which lies in a finite interval, has at least
one cluster point.

Consider the points z of the line, such that, if 2’ be any one
of them, only a finite number of points of the given set (in particular,
none whatever) lie to the left of . This point set is bounded from
above. It has, therefore, an upper limit, G. This point, G, is a
point of condensation. For otherwise it would be an isolated point
of the set, or not belong to the set at all. In either case, there
would be a point z to the right of G.

The theorem is true for a point set in space of n dimensions.
It can be proved conveniently by means of the Covering Theorem, § 11.

§2. An Example. Consider the interval 0 £ z = 1. From

it we proceed to remove
certain points. The point —SE———SEEEE——E——
po Py I Lo

set we thus construct con-
sists of the points that remain,
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Step 1. From the middle of the interval remove the points of
an interval of length

1
ll=X—€-k,

where 0 < X £ 1 is a constant chosen once for all. More precisely,
the points removed are those for which
1 1 1 1

—é_—_2_11<x< 2+2l1.

Step 2. From the middle of each of the remaining intervals
remove an interval whose length, L, is such that

{
L42L=X——X
1+ 24 P
More precisely, the points removed are those for which
1 1
a—~—2-— L <z < a-}--al:_,,

where a denotes successively the mid-point of each interval remaining
after the first step.

n-th Step. From the middle of each of the intervals remaining
after the (n — 1)-st step remove an interval of length l,, where

L
n+ 2

Those points which remain, no matter how large n be taken,
constitute the set we undertook to construct.

The set is perfect, for it is closed, and each of its points is a
cluster point. It is, however, dense in no interval, for an arbitrary
interval contains intervals which have been rermoved.

The sum of the intervals removed up to the (n + 1)-st step

L+2L+22L+ - 42" 1y=X—

approaches a limit, namely, A, as n increases.

The points of the set can be enclosed in a finite set of intervals,
the swun of whose lengths, however, will exceed the value 1 — A.
If A =1, this suus can be made arbitrarily small. But if A < 1,
this is not the case.

Curiously enough, the points of the set admit a simple arith-
metic expression when A = 1. They are the numbers

& &y &
x=0.a.lm2¢3---=31+;_22+5_:+
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expressed in the triadic system, where the a’s take on at pleasure
the values 0, 2.
Incidentally, these points can be transformed on the points of the
closed interval, but not in a one-to-one manner. Let
1
Bn = — Op,

and consider the number y expressed in the diadic system as

Bi B Bs
y=0.81B:8; " =-§+§+§+

It is obvious that every number y of the interval

0y=1
is thus obtained at least once, but some points are obtained twice.
Thus we have a transformation of the points of a closed interval on
the points of a perfect set which is nowhere dense in any interval
some points of the former set even going over into two points of the
latter.

§3. Functions. Let an arbitrary point set M in space of n
dimensions be given. Let (zj, -, z4) be any one of its points, P.
Let a number y be assigned to P by any law whatever. Then y is
called a function of P:

1) Y =f(1:1, S, Tn)

Represent y as a point of the linear manifold, N;. Then the
law whereby the function is defined establishes a transformation® of
the points of M on the points of N;. This transformation can be
represented by the aid of the surface (i.e. hypersurface, manifold).
defined by 1) in space of n + 1 dimensions. Call it . In the
simplest case, n =1, X is a curve, provided that M is an interval.
But it is not this manifold apart that expresses the idea of the func-
tion. It is only when we relate it to the manifold M and think of
it as the collection of points which have gone out of M by the
given transformation, that we reproduce the entire conception of the
Sunction. Thus when n =1 we may draw the picture of the set
of vectors parallel to the jy-axis, the initial point lying in (z, 0) and

® Carathéodory begins his account of the conception of a function with the
words: Der moderne Begriff einer Funktion deckt sich mit dem einer Zuordnung.
Cf. his Porlesungen iiber reclle Funktionen, p. 71, § 83.
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the terminal point in (z, y). This manifold of vectors, localized as
stated, does give a complete account

of the conception of the function. Y
The locus of their terminal points is

the manifold 2. But X by itself * )
does not yield the conception of the
function. It is only when we think
of ¥ as defining the set of vectors,
that we arrive at the basal idea of
function.

On the other hand, since the manifold 2 does determine uniquely
the set of vectors, it yields a means of defining or representing the
function. The function is the set of vectors. The manifold ¥ stands
in a one-to-one relation to the concept: function, and for many pur-
poses can be used to represent the function, with the consciousness

of the vectors.
We have spoken only of the case of single-valued functions. The
extension to inultiple-valued functions is obvious.

At the beginning, we spoke of y as the function. Thus we

should say: The value of the function

) y=x+1,
when x =1, is 2. This is a different meaning of the term. Both
meanings exist side by side in common parlance, but no confusion of
ideas arises from these two uses of the word.

§4. Continuation. In the last paragraph we thought of the
domain of definition of the function as a point set; and \r;le trans-
formed each point P> of the set on a point y of the linear manifold.
We may express this idea trenchantly by saying: y is a point func-
tion, and write:

1) ¥ =f(P)

We may generalize this idea by beginning with a set of mani-
folds. For example, we might take an arc of a curve, like-an arc
of a circle, or an arc of a continuous curve that has no tangent
(Chap. IV, §2) or an arc of a simple Jordan curve (Chap. VII, § 10)
and then inscribe a broken line. These broken lines would serve as
an illustration of such a set of manifolds as we have in mind We
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might attach to each element (i. e. each broken line of the set) a
number, namely, its length, y. Thus a transformation of the ele-
ments of this set of manifolds on the points of a linear manifold
would be defined, and this transformation gives us an extended idea
of the concept function. If welet M refer 10 any one of the broken
lines, we could write suggestively

2) y=f(M),

and call ¥ a function of M.

Again, consider an arbitrary bounded point set § in the plane.
Let M be a polygon, or a number of polygons, each set M contain-
ing the points of § in its interior, and each member of a given set
M being bounded by lines parallel to the axes. More precisely, these
lines shall be chosen from the lines
2 Sl Tt
where n is a natural number and p, ¢ are whole numbers. To each
of these sets M we could attach ithe number y which represents its
total area®, and thus each M would be transformed on a point of a
linear point set. This transformation may be taken as an example of
the extended concept function.

Another example is given by removing the requirement that the
sides of the polygons lie along the lines 3), and allowing them to be
any parallels to the axes.

These examples illustrate the generalization of the concept func-
tion, which we will now formulate as follows. Consider a collection
of point sets 4. Each A4 may be any point set one pleases to define
in space of n dimensions. The totality of these A4’s shall be referred
to as the manifold, %, of the A’s. To each A shall be attached a
number, y. Thus the elements A of % are transformed on the points

# For purposes of illustration we could also take as y the total perimeter,
or the sum of all the diagonals.
On the other hand, S might be an arbitrary manifold in space, and M, a
polyhedron containing S; its sides, or faces, lying in the planes:
= EP’_’ N y= 2-1"-, z= 2%.
The extension to space of any number of dimensions is now obvious.
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of a line. This transformation is a concept which we denote as a
Sunction. We write:

y=f(01),
and say that y is a function of 4. The manifold & is the domain

of the independent variable, A; or the domain of definition of the
function.

A third extension of the concept function is the following. We
start, as in the last case, with a manifold # of point sets 4, and
now we assign to each 4 a point set B according to any law what-
ever. Denote the manifold of the B by 8. Then this transformation
of ® on B through 4 —> B shall also define the concept function.
Thus in polar reciprocation a plane determines a point.

§5. Limits. e begin with the simplest case of a function,
y y =f(a)

defined in the points x of a linear set 4. Let a be a cluster point
of A.

By the &-neighborhood of the point 4 we mean the point set
(8)a: a—8 < r< a+d,
or, what is the same thing, the points x for which
x—al < 4.
By the abridged &-neighborhood of a we wnean the point set
(8); obtained from (8); by removing the point a; i.e. the point set

(&) 0 < |z—al < 4.

Definition. The function f(z) shall be said to approach a
limit when x approaches a if to an arbitrary positive € there corre-
sponds a & such that

1f@) —fE" 1 <¢

! are any two points of (§), which lie in ..

!

where 2/, 2’

According to the theorem of Chap. II, §6 there then exists a
nwmnber b such that, to an arbitrary e-neighborhood of b,
(€),: ly=>bl<g

there corresponds an abridged d-neighborhood of a, (§),, with the
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property that the value y of the function for an arbitrary z of 4
lying in (J); is a point of (e),, or:

[b—f@)] < e 0< |z—al| < &,
where z lies in 4.
Conversely, if f(x) has the latter property, then it approaches a
limit.
The number b is called the limit, and we write :
2) lim f(x) =b.

=&

Relgtion to the Earlier Definition. The relation of the present
definition of a function’s approaching a limit to the earlier defini-
tion of the limit of a point set is as follows. Here, we start with
a variable point set, narnely, the points { z{ of 4 which lie in the
abridged d&-neighborhood of a4, ie. in (d),. This point set, {z},
approaches a limit, namely, a, as d§ approaches 0, by the definition
of Chap. II, §6.

By means of the function 1) this point set { z{ is transformed
into a point set {y |, depending on 8. And now the function 1) is
said to approack a Limit if this latter point set, { y}, approaches a
limit in the earlier sense.

Notation. This symbol, Equation 2), shall have the following
meaning : 1) it asserts that f(z) approaches a limit as x approaches
a; i.e. it vouches for the existence of a limit; and ii) it asserts that
the value of the limit is the number b.

THEOREM. Let A4, be a sub-set of A having a as a cluster
point. If f(x), regarded as a function whose domain of definition
is A, approaches a limit, when x approaches a, then f(x), regarded
as a function whose domain of definition is Ay, will also approack
a limit, when x approaches a, and the two limits will be equal.
But the converse is not true.

Unilateral Approach. If the points of A near a lie above a:
ie. if z = a4, and if f(x) approaches a limit, we may write:

3) lim f(x);
r=at

with a similar definition for

4) lim f(z).
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If, on the other hand, f(z) = b, we may write:
5) lim f(z) =b*
r=a

Similarly, if f(z) £ b, we may write:
6) lim f(x)=10".
r=a
Of course, definitions 5) and 6) can be combined in all possible
ways with 3) and 4).
Becoming Infinite. The function is said to become positively

infinite:
lim f(z) =
r=a
if to a number G chosen arbitrarily large there corresponds a & such

that
G < f(z),
where z is any point of (§), which lies in A.

The corresponding definition for becoming negatively infinite,
lim f(x) = — o0,
r=a
is obvious.
We say, f(x) becomes infinite :
lim f(zx) = oo,
r=a
if | f(x)| becomes positively infinite.
A npecessary and sufficient condition that f(z) become infinite,

or positively infinite, or negatively infinite, is that

im——=0, or & 1 0t or lm—t-=o0-

— f(x) — F (@) 2=a f(2)
The independent variable x may of course approach a unilaterally.

Poles. When a function f(x) becomes infinite at a point a, it
is customary to say that the function has a pole at @, and to write:

fla)=oo.
No statement is thereby made as to whether the function is defined
in the point &, or if it is, what its value there is. Thus if

f(r)=;1:-. z # 0;
f(0)=0.
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it is true that

£0) = oo and  £(0)=0.

The last equation states the value of the function when x = 0. The
first equation has no concern with the value of the function when
x = 0. It makes a certain assertion about the function when z # 0.

Independent Variable Becoming Infinite. Hitherto we have
considered only the case that the domain of definition A4 of the
function f(zx) has a cluster point z == a. If A4 has no upper bound,
we say that f(z) approaches a limit when x becomes infinite (more
precisely, positively infinite) if to an arbitrary positive € there cor-
responds a number G such that

| fE)—f(@)] < e
for any two points z/, z/! of A, lying in the interval
G < =z

This interval is the analogue of the abridged &-neighborhood (&) of
the point x = a. There then exists a number b as before, such that

[o—flx) | < ¢ G < z;
and we write :
lim f(z)=b
=0

or, more precisely H
lm' '] ) = b.

The definition

T====X
is now obvious; as are also the
definitions Y,
lim f(z) = b*, etc. 7Y S —
Tamo b i e eemmm TR :t
EXERCISE ] S =

Tllustrate each of these de- !
finitions by a suitable figure,
carefully defined, such as is
suggested by the diagram.

g R,
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EXERCISES*

1. Show that the function
y =xsin g

approaches the limit 0 when x approaches 0.

2. Show that
]im T = 0, lim ———1——] _— 1_
z=0t | +e7 z=0" 1+e7

3. Does the function
y=xsinx
become infinite when z = o0?
4, Show that the function
y=x+2 sinzx
becomes infinite when z = co.
Does this function steadily increase as x increases?

5. If f(x) approaches a limit as x approaches a, and if
4 < f(z) < B,
show that
A4 £ lim f(x) £ B.

6. Let f(x) approach a limit when x approaches @, and let
there be no (), in which f(z) is constant. To a given ¢ cor-
respond infinitely many values of §. Show that, for any given e
below a certain positive coustant: € < %, these §’s form a hounded
set, and this set has a maximumn.

§6. Bounded Functions. A function f(xy,-+, z,) is said
to be bounded at the point P if every neighborhood of P contains
a point of the domain of definition . of the function and further-
more there exists a certain neghborhood U of /> and a positive con-
stant M such that

V flap x| < M
for all points of 4 which lie in u.

# In these Exercises, which serve solely as illustrations, the properties of
the elementary functions are assumed. A systematic developement of these
functions will presently be given.
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Thus the function
1
1) ¥y = sin —
T

is bounded at the point x = 0. Again, the function

2) y = -, 0<zs1
x

is bounded at every point of its domain of definition.

A function is said to be bounded in a region if the region
contains a point of A4, and if there exists a positive contant M such
that

[ flznvm) | < M
for all points of .4 which lie in the region.

Thus the function 2) is bounded in every point of its domain
of definition, but it is not bounded in that domain.

A function may be bounded at a point, as

1
¥ =sin—
z
at the point £ = 0, or it may have a pole at the point. as

_ 1

Y=z
at the point z=0. But Y
these two cases do not ex- A
haust all the possibilities. ! \
Consider the function \

.1
sin 7

3) y= pal x # 0. ., .

This function is obviously ’/f\ /\ R |

not bounded at the point ./ 9 \ .
z =0, for sinl =1 when N .
z = 1/(} + 2r), and the X 2
function has the value " /

=+ ok “ U

But the function does !
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not have a pole at the point x = 0, For, sinl =0 when z = 1/kr,
and so the function vanishes there. Hence it does not become
infinite when x approaches 0.

We see, then, that the behavior of a function at a point involves
a three-fold classification:

i) The function may be bounded at the point;

i) It may become infinite there; or

ili) It may neither be bounded nor become infinite there.

Oscillation. Let a function be bounded in a region. Let G be
its upper limit and K, its lower limit. The difference :

D =G -K,
is defined as the oscillation of the function in the region.

Let a function be bounded at a point a, and let & be so chosen
that the function is bounded in (d8);. The lower limit of the oscil-
lation D for such regions (d)s is defined as the oscillation of the
fanction in the puint a.

§7. Three Theorems on Limits. Tutorem 1. If each of
two variables, X and Y, approaches a limit, their sum approaches a
limit, and the limit of their sum is equal to the sum of the limits:

Iim(X+Y)=1limX + lim Y.

We will prove the theorem for the case of functions of a single
variable  with a cluster point z =a of the domain of definition,
M. The proof admits of immediate generalization to all the higher

cases that arise in point functions.
Let the limits of X and Y be 4 and B. Let

] X=4d4+¢, Y=B+9.
Then ¢ and g are infinitesimals; i.e. variables which approach the

the limit 0. More precisely, to an arbitrary € > 0 there corresponds
a positive 4 such that

1) 1]l <e 0<|z—al <4, z in M.
Similarly,
2) Inl<e 0<iz—al<d, z in M.

We may, however, without loss of generality drop the prime, setting
8’ =48, because a given & can always be replaced by any smaller
positive &.
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We wish to prove that, to a positive € chosen at pleasure there
corresponds a positive § such that

3) |A+B—(X+Y)|<e O0<|zr—al<d, =zxin M

Now the €’s that appear here —the ¢ of 1) and 2), and the ¢
of 3)—are of different origins. The first ¢ (call it €’) is a number
at our disposal. We can choose it to suit our purposes. But the
second € pertains to the conclusion. It is given us, as it were, by
our adversary, and we have to meet it,—to find a & that will
match it and make 3) a true relation. In other words, we have to
prove that to the € of our adversary corresponds a positive & such
that 3) is true, or:

4) [C+q]l<ce 0< |z—al < §,
it being understcod henceforth that x lies in M.
To do this we infer from 1) and 2) that

[el+1nl<2d, 0<|z—al|<4d.
Furthermore,
e+l = |21+1n]
Hence
it+q|<ed, 0< |z—al <.

If, then, we choose our €’ so that 2 ¢/ < ¢, the relation 4) will
be fulfilled, and thus the theorem is proved.
Tueorem II. If each of two variables, X and Y, approaches
a limit, their product approaches a limit, and the limit of their
product is equal to the product of their limits:
lIm (XY)=[lim X][lim Y].

We wish to prove that to an arbitrary positive € corresponds a
positive § such that
5) |AB—-XY | < 0<|z—a| <.
And we know that, when we decide on an ¢’ >0, we can find a
é > 0 such that
el < €, 9] < ¢, 0< |z—al|l <.
Now,

XY=AB + Bl + A9+ {n.
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Hence
|AB—XY|=|Bt+Aq+Ln]

S BiIC +idllal+[Llilal S [14]+|B[+¢]¢

It remains merely to show that we can choose our €’ so that
this last expression is less than our opponent’s €. This can be done
conveniently by first restricting ¢’ to be < 1, and then restricting
¢’ further by the condition :

(|41 +|Bl+1)e = e

Thus the proof is complete.

Turorem Il If eack of two variables, X and Y, approaches

a limit, and if lim Y # O, then the quotient X/Y approaches a
Umit, and the limit of the quotient is the quotient of the limits:

lim (Z(_) = limX

Y/ lmY’
The relation which here corresponds to 3) and 5) above, is:
X

6) g———? < e, 0<|z—al <.
Now,

4_X _A4_ A+t _An—Bt

B Y B B4y BY
First choose & so that

[ Y| >1%1|B]|

Then

4 _X| o gldallal+1Bl-]L]

B YI™ B2

and the remainder of the proof presents no difficulties.

EXERCISES
1. If X approaches a limit, and if C is a constant, then
lim (X + C)=1lim X + C;
Jim (CX)= Clim X;
nm%=l—ir%f, provided lim X # 0;
lim X7 = (im X ).
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2. If Xy, -+, X, are vanables, each of which approaches a
limit, and if Cy, + -, C, are constants, then

liHl(CIXI + -+ Can) -'—_-Cllile + - + CnliHan.
3. If, furthermore, £, - -, E, are constants, then

Cl Xl +"‘+Cn Xn=g1_limX1 +"‘+Cn].lan
E1X1+"'+Ean E,lile +"'+Enlian’

E lim Xy + -+ Enlim X, 5 O.
4. Show that, if f(x) is a function which is bounded at the
point x = a, and if
lim ¢(x) =0,
r—a
then
lim f(2) ¢ (z) =0,
5. If G(x) is a polynomial in x:
G(x)=cox" + 2" + -+ n;.

and if X is a variable which approaches a limit, then G (X) ap-
proaches a limit, and

lim G(X)=c¢, (lim X)* 4+ ¢; (lim XY™ 4+ 4¢,.

6. State and prove an analogous theorem relating to the quotient
of two functions:

¢ (2) '
S (x)
7. 1f each of the variables Xy, X, -+, X, approaches a limnit,
and if F(xy, -+ -, x») is a polynomial, then
F(X11 DY X’l)

approaches a limit.

8. In only one of the foregoing questions is an e-proof required.
Which one is it?

9. Each of Questions 1 — 7 contains one or more existence
theorems. Did you prove the convergence, i. e. the existence of the
limit, each tine?
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§8. Continuous Functions. Let f(x) be a function defined
in the points of a set 4, and let x =a be a cluster point of 4.
The function is said to be continwous in a if i) f(x) approaches a
limit when z approaches a; ii) the value of this limit is f(a):

lim f(z) = f(a).

By § 4 this means that, to a positive ¢ chosen at pleasure, there
corresponds a 8§ > 0 such that

| fla)—f(2)] < e lz—al < 8, z in A.

The function is said to be continuous in A4 if it is continuous
in every point of 4.

The region 4 will usually consist of an interval, open or closed,
finite or infinite. By a closed interval (a,b) is meant, we recall,
the set of points

a=<z=0b

The definition may be illustrated geometrically as follows, Fig.,
p. 73. Plot the point (z,y)= (a,b), where b= f(a). Draw the
horizontal parallels

ry=b+e, y=b—e
The point (a,b) lies within the strip bounded by these lines. And

now the definition says that there is a vertical strip bounded by the
lines

z=a+d, r=a—2§
such that, when x lies between a — & and a + #, the corresponding
point (z, ) lies in the rectangle common to these two strips.
Ezxample 1. Consider the function :
fl@)==, when z is rational;
f(z)= —=x, when z is irrational.
This function is continuous for x = 0, but for no other value of z.
Ezxample 2. The function:
f(z) =1, =z irrational;
f(z) =0, x rational,
is bounded. It is discontinuous for all values of x.
Example 3. Let f(x) be defined in the interval 0 = z = 1
as follows:
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i) fO)y=f1)=1;

) 1y 1

i1) f(g'-) =5

iii) 7 () —_-gl!_, p=1,245;

..........................

) (&)=

where p/n! is a point of the interval, in which f(z) has not yet
been defined.

Finally, f(z) =0, x irrational.

This function is discontinuous for all rational values of x, and
continuous for all irrational values.

Ezxample 4. The function ¢(x) obtained from the function
f(x) of the preceding example by periodicity :

o (2) =f(z), 0< zr = 1;
oz +1)=9¢(2), —0 < < o,

Tueorem 1. If f(x) is continuous in the point x =E, then
f(z) is bounded in this point.

If f(&) # 0, then f(x) does not change sign or vanish in the
neighborhood of = =£%. More precisely:

If f(E) > c, then

c < f(x)

. in a certain neighborhood of E.

If f(&) < ¢, then

f@) <c

in a certain neighborhood of E.

The proof follows from the fact that

fE)—e<f@<f®)+e |z—El<d  xin A,
on setting € = | f(§) —c|.
THEOREM 2. . continuous function of a continuous function is

a continuous function.
More precisely, let y = ¢ (z) be continuous in a given point
set A, and let
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u=f(y)
be continuous in a point set B. Let { y | be the point set defined
by the values of ¢(x). Let B contain { y{. Then the function

u=fle(z)]

is continuous in A.
The proof is left to the reader.
EXERCISES

1. If f(x) and ¢(x) are continuous in the point £ =a or in
the region 4, then

i) f(o) + o(=),
i) f(z) ¢(x),

are continuous there. Moreover,

i) WACIR

¢ (a)
is continuous in @ or in a point & of A, provided ¢(a) # 0 or
e # 0.
2. The function
y==x

is continuous for all values of z. Give a careful e-proof of this
theorem.
3. The function
y=2" n=2734 -,
is continuous for all values of x. Prove this theorem without the
use of €’s, employing only the theorems of Question 2 and §7.
4. Every polynomial in z is continuous for all values of x.
5. A rational function
R(x) =L
¢ (x)
where f(z) and ¢(r) + 0 are any polynomials in z, is continuous
for all values of x for which ¢(z) # 0.
6. If a function is continuous in a closed interval and vanishes
there, show that its roots form a closed point sct.
Is the theorem true il the interval is bounded, but not closed ?

-

Give an example.
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7. Plot the graph of the function:
1
f(x)=x sin—, z # 0,
z
f0)=o.

Prove that the function is continuous for all values of x. Assume

that sinx is continuous and bounded.

§9. Three Theorems on Continuous Functions.
TueoreM 1. A function f(x), continuous in a closed interval,
a = x £ b,
is bounded.

Assume the theorem false. Divide the given interval, (a, b),
into two equal subintervals. Then the theorem must be false for
at least one of these. let

a £z £ B

be such an interval. If there is a choice, take, for definiteness, the
left-hand interval.
Repeat the reasoning, subdividing (a;, B;), and denoting a sub-
interval in which the theorem is false by
o ;<—_ x é B2.
If there is a choice, take, for definiteness, the left-hand interval.

Proceeding in this manner we obtain a succession of numbers

Oy :

o £ oy £ 00, an < B
and a second succession :

B =B =", Bn > a;.

Moreover,

>~
|
]
A

37:"'@" =

These numbers determine a point £ such that
ap = £ £ Bn.
Since f(x) is continuous in z = £, we have:

1fE)—f@] < e lz—&] < &,
If@ < [fE |+ lz—&| < 8.

or
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Let m be so chosen that
Bm —a, < 4.

Then the interval (&m, 8) lies within the interval (¢ — &, & + &),
and here is a contradiction ; for in no interval (a,, B,) is the func-
tion bounded. This proves the theorem.

Remark. Observe that the theorem is not true for an infinite
interval, — witness the function

y=ux

And it is not true for a finite interval which is not closed ; witness
the function

1
y=-—, o< x££ 1.
x

THEOREM 2. If a function f(x), continuous in a given interval,
changes sign, it vanishes at a point of the interval.

In this theorem it is not necessary that the interval be closed.
It is enough that it be connected; i.e. if a and b are two of its
points, then the closed interval (a,b) shall belong to the given
interval.

Let a be a point of the interval. If f (a) =0, we are through.
If not, f(x) must change sign to the right of a or to the left of a.
Suppose the former is the case. Then there will be an interval, .

a £ xr<y
in which f(x) does not change sign; Theorem 1, § 8. Let £ be the
upper limit of all such numbers, £. Then £ is an interior point
of the interval of definition, and
fE)=o.

For, it f(£) # 0, then there will be a certain neighborhood of &£ in
which f(x) will not change sign. But this is in contradiction with
the assumption that £ is the upper limit.

Turorem 3. 4 function f(x), continuous in a closed interval,
a =< zx < b,
has a maximum and a muumum.
By a maximum is here meant a value, M, taken on by the

function in one or more Points of the interval, and not exceeded in
any point:
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f& =M for some &, a
S =M for every r, a

Similarly for a minimun.

A
o~

= b;

b.

A
R
IIA

For example, the function
Y = const.

has a maximum in every point x =& of the interval; and it also
has a minimum in every point.
Again, the function

f@) ==, 0= = 1,
flx)=1, 1< = 2
fl@)=3—2, 2< =3
has a maximum in each of the points 1 = £ = 2 and a minimum

in z=0, 3.
Proof. Consider the point set {y{, where

y=f(2).
Tt may consist of a single point. In any case, by Theorem 1, it is
bounded. Let M denote its upper limit.
The theorem asserts that the point set has a maximum, i.e.
that M is a point of the set.
Assume the theorem false. Then f(a) < M. Let y be a
number between f(a) and M:

fla) < y < M.

flz)y—y=0
has roots, by Theorem 2, and these form a closed set, by §8, Ex. 6.
Let £ be the smallest root.

The equation

Assign to y a succession of values :

Nn< Y < v, lim yp= M.

n- -
The corresponding roots will have the property :
£1<£2<"', £n<b.
Hence &, approaches a limit:

lim En = E’

n=x



86 FUNCTIONS OF REAL VARIABLES

and £ is a point of the interval (a, &), since this is closed. It follows,
then, from

In -_—f (En)

and the continuity of f(x), with the aid of §5, Theorem, that
lim y,=1lin f(En) =f(lim &n)

M=f(£), g.e.d.

EXERCISES

or

1. Prove Theorem 1 by the method used for Theorem 2; i.e.
begin with an interval a £ z = £, in which f(x) is bounded.
Prove Theorem 2 by the method used for Theorem 1.
Give two new proofs of Theorem 3.

Devise a new proof tors Theorem 1.

The same for Theorem 2.

Prove the following theorem. Il.et f(x) be positive in every
point of a closed interval, and let it have the lower limit 0. Show

oo R oo

that there is a point of the interval, in every neighborhood of which
the lower limit is 0.

7. Let f(x) be defined in the interval
a< xr = b,
and let it be bounded from above. Let it have no maximum. Show

that a set of values zy, vs, - exists having ¢ as their sole cluster
point and such that

Lm f(x) =G,

Zp=c
where G is the upper limit of the function f(x).
8. If the function

y=f(z
is continuous in the interval
a<x=2Db
and is monotonic increasing :
f(r') < f(.t"), g < 2,
show that the inverse function :
z=F(y),

is monotonic increasing and continuous.
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§10. Uniform Continuity. To say that a function, f(z),
! means that to a positive ¢ chosen at
pleasure corresponds a & > 0 such that

I f@)—flx)| < ¢ lz—2]| < &  x,in 4

Let €, once chosen, be held fast, and consider the 4’s correspond-
ing to the different points z’ of 4. These 8’s will in general be
different for different z’s, and even when the maximum is chosen

is continuous at a point x

each time, it may sink below an arbitrarily chosen positive constant,
h. For example, if

i
f('r)::_v 0< =1,
x

the value of & obviously drops below any given & for some values
of 2.

But this is not the case, for example, with the function

The worst points z/; i.e. those for which & has its smallest value,
are obviously those for which the graph of the function is steep-

est— here, 2/ = 1. And so we can set
1

= —¢,

2

and this & will fit any 2z’ of the interval.
We are thus led to the following

Definition. A function f(z) is said to be uniformly continuous
throughout its domain of definition, 4, if to an arbitrary positive ¢
there corresponds a fized positive § which will apply to any poimt
z' of 4:

1) | fl@)—fE)] < ¢ jlz—2"| < &; x,x in Ad;
&, independent of r, .

THrROREM. A function f (x) which is continuous at every point
of a closed interval (a,b):

afx=b

is uniformly continuous throughout that interval.
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Proof. Let € be an arbitrary positive number, once chosen and
then held fast. We wish to show that a positive constant. §, exists
such that

2) I floy—f@h| < e 'r—af| < 4, r. 2 in A
When a subinterval

A d £ x =V, afd <V Zb

is such that, for some fixed §’ > 0, where 8’ depends on 4’; but
not on ., 2’, the relations hold :

I fo=f@h] < ¢ le—a" < &8, 2, 2" in A,
we shall say that 4’ is of Class (¢). This is the particular ¢ chosen
at the outset. It does not change in the reasoning that follows.

If two intervals, 4" and 4", each of Class (¢), overlap, it is
obvious that the composite interval made up of .4’ and 4” is also
of Class (e).

There exist intervals of Class (¢). For, since f(zx) is continuous
at x =a, we can choose ¢ =% ¢ and then find a §; > 0 such that

lf@)—fla)] < ¢, 0Lz —a< d,
Then

If&—-fla)] < €, 05 —a< §,
Hence

| fl@)—f@)] < 2 =¢

0L r—a< §, 0= —a< i,
If, then, we choose y so that a << y < a + &, the interval
3) a< =y

will be of Class (¢).

Consider the totality of intervals 3), y now being unrestricted,
which are of Class (¢). Let £ be the upper limit of the y’s. We
will show that £ = b, and that & is a y.

Since f () is continuous at £, we can choose ¢/ =% ¢ and then
find a 8, > 0 such that

I f@)—-f@E)] < ¢, lx—ti < &, zin A.
We now infer as above that
IfQ)=fE"N] < ¢
[z2—=&| < &, ° |=t| < &, z, 2 in A
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Thus if & be chosen between 0 and &;, or: 0 < &; < &), the
interval
4) E—48 < x =< E+46, z in 4,
will be of Class (e).

On the other hand, there is a value vy, of y arbitrarily near &,
and so, in particular,

E-81 < n

Thus the interval 3) for y =y, overlaps 4). Hence £ =5 and b
is a y. This proves the theorem.

Second Proof. The theorem can also be proved as follows.

Assign to each point z of the interval the maximum value of & for
which

| f@)—=f)] < ¢ lz—=2| < 4, 2 in A.
Here, € is the fixed value chosen at the start. Thus a positive
function, & = & (x), is defined in each point of the interval. We
wish to show that its lower limit is positive. Suppose it were O.
Then the point set (z,d) in the (x,y)-plane would have a cluster
point (c,0). In fact, if (a,0) is not such a point, let the interval
a < x= yZ b be free from cluster points. The upper limit
of y is a point ¢, corresponding to a cluster point.

This leads to a contradiction. For, the function being continuous
in ¢, we have:

1fle)—=flx)| < ¢, lx—c| < §/, x in 4,
also :

| fle)—f")] < ¢, |2 —c] < &, 2 in A.
Hence

|fl@)=fla)| < 2¢€,

where x is any point of the interval
1 1
C—-é'a' <z < c+—2—8',

and |x—2/| < #4', both points,  and r/, lying in 4. Now
choose ¢/ =%¢. Then & (r) = %4’ throughout this interval, and
so (c, 0) cannot be a cluster point of the set.

Third Proof. Still another proof can be given by means of
the Covering Theorem, § 11. Begin as in the Second Proof with the
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system of maximum 4’s. Then the interval can be covered by a
finite number of overlapping intervals :

E—8(8) < z < E48()
where £ takes on successively each of a finite number of values. If
& is the length of the shortest interval common to two consecutive
overlapping intervals,
1
—h £ &(z
3 (z)

tor every x of the total interval.
EXERcISEs*
1. Show that the function
=
14 22
is uniformly continuous in its domain of definition.
2. Is the function
fla)=¢
uniformly continuous i) in its domain of definition? ii) for positive
values of z? iii) for negative values of z?
3. Show that the function
y=log x
is uniformly continuous in the region 1 £ z < + oo.
4. Is the function v z uniformly continuous?
5. If a function is uniformly continuous, is it bounded?
6. If a continuous function is bounded, is it uniformly con-
tinuous?
7. If f(x) is uniformly continuous in the interval
a £ x<b,
show that it approaches a limit when x approaches &.
8. If f(z) is continuous in each point of the interval
a<z=b
and if f(z) approaches a limit when x approaches @, show that
S () is uniformly continuous in the above interval.

* In working these Exercises make use of what you know about the
Calculus.
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9. Show that a continuous periodic function is uniformly con-
tinuous.

§11. The Covering Theorem. To each point z of a closed
pownt set { x| let an interval rr including this point be assigned.
Then it is possible to include all points of { x| in a finite number
of tnese intervals rs.

Let a and b be respectively the minimum and the maximum
points of {x}. Let (a,y):

-

a = xr =

Y
be an interval which can be covered by a finite number of intervals
rz. Such intervals exist, for any interval (2, y) included in », is
one. Let £ be the upper limit of the y’s. Then £ =5 and b is
a9y

For, since the interval 7y extends beyond £, it is impossible for
£ to be < b Hence £ =b. Consider the interval »;. It extends
to the left of b, and so £ cannot be merely an upper limit for the
¥’s — it must itself be a y. This completes the proof.

Second Proof. A second proof, more convenient in space of n
dimensions, is the following. Let x be any point of {z}. Then a
certain §-neighborhood

o: x,,—6‘<£,,<x,,+8, k=1,---,n,

is contained in 7. But a larger neighborhood, not even contained
in 7z, may be included in some

other 7,». Let & be the upper T

limit for the &’s corresponding to —t———+ —
the point (z); denote the corre- 5 ¥

sponding ¢ by 0.

It is obviously sufficient to show that {x} can be covered by a
finite number of o.’s. This will surely be so if the lower limit of
8. is positive. If this were not true, there would be a point () of
{z}, in every neighhorhood of which &, sank below an arbitrary
preassigned e. But this is impossible, since such a neighborhood
would come to lie within o,.

§12. The Axiom of Choice. Iet {x} be a bounded infi-
nite linear point set. We have proved that it must have a point of
condensation, x =c (Weierstrass-Bolzano Theorem, §1). It would
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seem, then, clear that we can pick out a subset, z, x5, * - -, from its
points such that

Iim z, =c.
n==co

For, let z; be any point of the set distinct from c¢. Choose
¢ < |c— x| and mark off an interval

c—e< < c+e.

Choose a point z, of the set lying in this interval and distinct from
c. Then choose a smaller interval and repeat the process. Thus a
succession of points z), Zp. x3, * - - i1s determined.

Now comes the difficulty. In the process just described we have
assumed an infinite number of independent choices. What we need
is a law whereby the n-th point is determined before n is named.
We do not know, for example, what the n-th digit in the decimal
expression for v/ 2 is; but each digit is determined before we say
what n shall be.

There seems to be no means of laying down such a law in the
general case of the point set just considered. And yet, the existence
of such a set of x, seems highly plausible —it would be little short
of perverse to deny its existence. Moreover, an important part of
modern analysis has been built up on the tacit assumption that such
a set exists.

Zermelo was the first to point out this lacuna. He met the
difficulty by introducing a new axiom, which may be formulated as
follows.*

THE AXI0M 07 CHOICE. Let each point set A in space of n
dimensions determine a point P of that space. Then there exists
such a determination whereby P is a point of A.

The word determine is here used in the same sense as in the
case of defining a function. Each point set 4 is transformed into a
point P by a law such that, when .4 is named subsequently, the law
already has its answer, P. 'Thus, to each 4 might correspond the
origin of coordinates. And now the axiom says that, in this manifold
of laws, there is one whereby P is a point of 4 for each A.

# Cf. Carathéodory’s presentation of this subject, Reelle Funktionen, p. 33.
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Thus the determination of P in A does not come after A has
been named, but assigns P to A before A enters the specific con-
sideration in hand. Or, still in other words, whenever we select a
point set A4, one of its points, P, has already been determined, and
is waiting for us.

Returning now to the example with which we opened the dis-
cussion, let us proceed more systematically, beginning with a set of
positive decreasing €’s:

0 < ey < €p lim ¢, =0,
and defining intervals
Ry: c—e < r < c+ €
let 4, be the subset of the given set which lies in Rp, the point ¢
excepted :
0< |z—c| < e z in An.

And now, by the Axiom, there already exists a point xp of Ap;
it does not have to be chosen after we arrive at A, It is already
there to meet us.

These x,’s define a function of n having the property that

le—zn| < € m £ n,
and so x, approaches ¢ as its limit:*
Iim z,=c.
=00

A further illustration of the use of the Axiom appears in the
proof of the following

THEOREM. An arbitrary infinite point set M in space of n
dimensions contains an infinite denumerable set P, Py, -+

Proof. Begin with M. To it is assigned a point P by the
Axiom. Let this be the point P;.

Let A, be the point set consisting of M less the point P;.
Then there is already waiting for us, by the Axiom, a point P of
Ay. Let this be the point P,.

Repeat the process, taking as 4, the point set A, less P,. Then
a point P of A, is already determined by the Axiom. This shall be

# In this proof, it may happen that the z,’s corresponding to two different
values of n are equal. For a given n, only a finite number of such coincid-
ences are possible, and they may all be avoided by replacing the total set of
intervals R, by a suitably chosen subset.
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the point P;. And so on. We see that the point P, existed before

we began, just as the n-th digit in the decimal for 1/ 2 existed be-
fore we began.

EXERCISES*

1. The Weierstrass-Bolzano Theorem. Extend the theorem to
point sets in space of n dimensions. Begin with the plane and divide
it into squares by the lines

_P _ 9
= Y=o
Consider those squares which contain an infinite number of points of
the set in their interior and on their boundary. Devise some way of
picking out such a square so as to avoid the error of the Auswahls-
prinzip (Principle ot Choice). Carry the proof through in detail, and
generalize.

2. The &-Neighborhood of a Point and a Point Set. Extend
the definition given in Chap. II, §6 and Chap. III, §5 to a point
and a point set { x} in space of n dimensions by means of the standard
element,

ap— 8 < 7 < a; + 4, k=1, -, n

3. Convergence. leta sequence of point sets { x| in space of n
dimensions: M;, M,, -+ be given, their points being denoted by
() = (xy, ***, xa). Then M, shall be said to converge when k = co
if, to an arbitrary positive € corresponds an integer m and a point
(&) =(&;, -+, En) of My, such that each My (m = k) lies in the
e-neighborhood of ().

Show that there then exists a unique point (a) = (a;, - -, @n)
such that to an arbitrary positive e corresponds an integer m for
which M, lies in the e-neighborhood of (a) when m = k.

The point (a) is called the limit of | x{ or M;:

lim {2z {=(a) or lim M, = (a).

k=

* These Exercises need not all be worked at this stage. It is well for the
student now to extend his horizon. He may well leave the detailed study of
this subject until he has becomne familiar with the application of the theory
he has already studied.
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4. Limit of a Function. Let f(x, -, x,) be defined in the
points of M}, Question 3, and let

'.7’=f(-7"h"' ., Zn).
Let {5} be the succession of point sets N, corresponding to M. If
N, converges, the function f(zy,---, ) is said to converge, and
its limit is defined as lim Nj = b:
im f(xy, - -, z5) =0
(z)= aj
By this last equation is meant: i) that f (xy, * *+, z») converges
(existence of a limit); ii) that the value of the limit is .
5. FExtend the definition of Question 4 to the case that M
lies in a plane and

lim x; = a, lim 7j = co.

I=:0 J=x

Generalize for the two-dimensional case.

6. Give a generalization of Question 5 for higher spaces.

7. When is a function f(z, - -+, ) said to be bounded, i) in
a point; ii) in a region? When does the functirn have a pole in a
point ? Y
8. Define continuity for a function f(zy, -+, zn).
9. In what points are the following functions continuous?

— 3
D OZTYw) EX o) ST
z+y 4+ y? 4y

10. What of the functions in Question 9 approach limits when
(z, ) approaches (0, 0)?

11. Show that the function

rr

z+ y?
approaches a limit along each straight line through the origin.

12. Extend Theorems 1 and 2 of §8 to functions of several
variables.

15. Show that a rational function :

(I]. M) xn)
?(xlv R 1',.) ’
where f(z;, **, 2») and ¢(zy, ***, zs) are polynomials prime to
each other, is continuous at all points at which it is defined.

R(xh 0t xn) =
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14. Does R(z), ‘-, zn), Question 13, have a pole at a point
in which ¢ (z;, - -, z,) vanishes?

15. Extend Exs. 1 and 6, §8, to functions of several variables.

16. Extend Theorem 1, §9, to functions of several variables.

17. The same for Theorem 3, §9.

18. Theorem 2, §9, can he generalized as follows. Let
Sf(zy,+ -+, ) be continuous in a connected region of n-dimensional
space. Let it be posilive at one interior point of the region, and
negative at another. Then the function has a root in the region.

19. Generalize Exercise 6, §9.

20. Generalize Exercise 7, §9.

21.  Uniform Continuity. A function f(x, -, ), defined in
the points of a point set A, is said to the wuniformly continuous
there if to an arbitrary € > 0 corresponds a & > 0 independent of
(z) and such that

]f(rly "',In)—f(r{, "'71;)| < €,

where (z') is any point of .4 and (x) is any point of 4 within the
d8-neighborhood of (z').

State and prove the generalization of the Theorem of § 10 for
this case.

22. If a function f(xr, -*-, x,) is uniformly continuous in an
open region, R, and if P is a boundary point of R, show that the
function approaches a limit when (z) approaches P, always remain-
ing in R. Asswne only such boundaries as are analogous to the
surface of a polyhedron in space, or a simple regular curve in the
plane, Chap. VII, §10. Begin with the case n=2.

23. If the definition of the function in Question 22 be sup-
plemented by setting it equal in each boundary point to the limit
which it approaches there, show that the extended function is con-
tinuous in the closed region.

24, 1f f(x), -, x,) is defined in the points of a closed set,
A, and is positive, show that there is a point of 4, in every neigh-
borhood of which the function comes arbitrarily near its lower limit.

25. Covering Theorem. Extend the Covering Theorem to a
closed set in space of n dimensions, and prove it.



Chapter IV

Derivatives. Integrals. Implicit Functions

§1. Derivatives. Leta function f(x) be defined in the neigh-
borhood of a point, x = x;. Form the difference-quotient :

" flao & A2) = flap)
’ Ax

where x, + Ax is a point of the above neighborhood, distinct from
z,. If the quotient approaches a limit as Az approaches 0, the
function is said to have a derivative, or be differentiable, at the
point x,. We write:

2) Iim f(I" + A7) —f(xo) =D,y :f’(:ro) .
Qdr=0 Ax )

If the ratio 1) approaches a limit when Ax approaches 0 passing
only through positive values, f(zx) is said to have a forward deriv-
ative. And similarly for a backward derivaiive. 1f, and only if,
these two are equal, will f(x) have a derivative in the point x,.
But if z, is an end point ot the domain of definition of f(x), then
Jf(z) is said to have a derivative in the point xz, if the forward or
backward derivative exists.

If a function has a derivative in a point, the function is continuous
in the point. But the converse is not true, as will presently be shown.

If the difference-quotient 1) becomes infinite as Az approaches
0, the function is said to have an infinite derivative. In particular,
we may have

im ot (%o + Ax) — f(xg) _
Ar=0+ Ax

+ oo, or =— 00;

and similarly for lim Ax = 0~. When, however, we say of a func-
tion that it has a derivaitive, we shall use the word only in the
sense of a proper derivative, and exclude the case that the difference-
quotient becomes infinite.

If f(z) has a derivative at every point of an interval, open, or
not, the function is said to be differentiable in the interval.
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Ezxample 1. The [unction

y::lxl’ — 00 < x < oo, y:'xl
is continuous for all values of x. It
has a derivative when = % 0. In the
point x = 0 it has a forward derivative,
the value of which is + 1; and a back-
ward derivative with the valoe — 1.
Since + 1 # — 1, the function has no
derivative at the origin.

Example 2. 1If, however, we take as the domain of definition
the interval
0 £ z< + oo,
or, again, the interval
— < =20,
the function
y =zl

has, in each case, a derivative at every point.

ry=z Yy =-x

EXERCISES
1. If a function has a forward derivative at a point, and also
a hackward derivative at the point, show that it is continuous at the

point.
2. Show that the function*

fo) ==, z# 0;
S0)=0

# Again we point out that we are using the elementary functions only for
the convenience of illustration. The examples could be constructed without
them. The theory is in no wise dependent on them. The elementary func-
tions will presently be developed systematically.
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is continuous for all values of x, but that, at the point x = 0, it
has no derivative.

3. If each of two functions. f(x) and ¢ (x), has a derivative at
the point r = a, show that each of the functions

f@) + ¢l2), f(x) ¢(2)

has a derivative there, also. And the same is true of the function

(z)
pz)’
provided ¢ (a) # 0.
Give an explicit reference to each theorem you use in the proof.
4. Show that the function
y=z
has a derivative for all values of z.

5. The same for

Yy =c,
where ¢ is a constant.
6. Prove:
Dox" = nzx™
where n is a natural number.

7. Show that a polynomial:
Gx)=ayx" +a x" 1 4+« + ay,
has a derivative.

8. Show that a rational function:

where G (x), F(z) are polynomials, in general has a derivative.
What are the exceptions?
Are G(x), F(x) any two polynomials? Answer explicitly.
9. 1If the tunction
zf(x)
has a derivative at a given point, zy # 0, and if f (z) is continuous
there, show that f(x) has a derivative there.

10. In Questions 3/9 an e¢-proof was required in three cases.
What were they ?



100 FUNCTIONS OF REAL VARIABLES

§2. Continuous Function without a Derivative. Con-
sider the function

1

1) { f(x)=xsin;, x # 0;
Sf(0)=0.

It is continuous at the origin, but it has no derivative there. For,

Sl +-A7) — fla) sin —L . 7, .
Az Ax AN

and this variable approaches no limit, /\ /]

but oscillates between + 1 and — 1 [\{\ x
as Ar approaches 0. U'%

On the other hand, the function ‘/' i
1
(x) = 2*sin —, z 3# 0;
2) { S P . y )
fo)y=o . .

has a derivative at the origin, since A meeenl x
0
/-

Sz + Az) — f(=zg) — Az sin 1 \/ "\\\\

Ax Az’ 7

and this variable approaches the limit 0.
Observe, however, that

tan » = D,y = f'(z)
is not a continuous function. For,

f’(x):stin-l—-—cos—-i-, z# 0,
x x
and when x approaches 0, this function approaches no limit. The
explanation is simple, when one looks at the graph. For, as a point
P moves along the curve, approaching the origin, the tangent oscil-
lates and approaches no linit —why should it? Nevertheless, the
curve has a tangent at the origin.

The function

5 { f () =z;'sin:1:-, *# 0;
' f()=0
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has a derivative for all values of z, but the derivative does not remain
finite at the origin. Its value at the origin is 0.

It is easy to form an example of a continuous function which
fails to have a derivative in the points of a set everywhere dense;
Weierstrass®* was the first to give an example of a continuous func-
tion which nowhere has a derivative. An example simpler to follow
in detail has recently been given by Perkins.**

§3. Rolle’s Theorem. Let ¢ (x) be continuous in the closed
interval

a< r £ b
and let
¢(a) =0, ¢(b) =0.
Let ¢ (x) have a derivative at the interior points,
a < z < b
Then the derivative vanishes at an interior point:
¢ (X) =0, a< X < b
y=¢()

a X .
o N\ X h

Proof. If ¢(x):=0, the truth of the theorem is obvious. In
all other cases the function will take on positive or negative values,
or both. Hence the function will have a maximum or a minimum
inside the interval; Chap. III, §9, Theorem 3. Suppose it has a
maximum at x = X. Then

e (X +h) £ ¢(X)

for all values of A numerically small. Thus

¢ (X + h) — ¢(X) { =0, 0<h
h =0, h < 0.

* Cf. C. Wiener, Journ. fiir Math. vol. 90 (1881) p. 221.
#® F. W. Perkins, Amer. Math. Monthly vol. 34 (1927) p. 476.
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Since ¢ (x) by hypothesis has a derivative at x = X, this difference-
quotient must approach a limit as A approaches 0. The forward
derivative is £ 0; the backward derivative is = 0. Hence the

derivative is 0, g.e.d.

The importance of this theorem lies in the fact that its proof is
purely arithmetic, not based on geometric intuition, but solely on
the theory here developed analytically.

§4. Law of the Mean. Let f(r) be a function continuous
in the closed interval a £ x £ b, and let it have a derivative at
each interior point: a < x < b. Then

Sf®) — fla) = (b — a) f(X), a< X < b;
Sfla+k)=f"(a) + hf'(a + 0h), 0< 6 <1

Proof. Form the function:

e(@)=(x—a) [f) = fa)] - (b—a) [flz) - fla)]
This function satisfies all the conditions of Rolle’s Theorem. Hence
its derivative,

¢ () =f(6) — fla) — (b — a) f'(2),
must vanish within the interval:
FX)=fB) ~fl@—-(b-a)f(X)=0, a< X<b

From this equation the theorem follows at once.

Again, a theorem the truth of which is, geometrically, intuitively
obvious — for must not a tangent
be parallel to the secant, or ¥

L8218 = oo

— has been proved arithmetically
with the analytic means here at i
our disposal. :

As a first application consider ©| @
the theorem that a function f(z)
whose derivative vanishes identically, is a constant. let z and a
be two points such that the closed interval (a, z) lies in the domain
of definition. Then

f@) = fla) = (z — a) f1(X)=0.

f(b)=£a)

Ouf —mmemfmm e
]
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A corollary of this theorem is the fact that if two functions,
S(x) and ¢ (z), have the same derivative,

f! () = ¢' (2),
they differ by a constant:
fl@)=¢() +c
§5. Differentiation of Composite Functions.  Differ-

entials. Iet
u=fly)

be a function of y, defined in the neighborhood of the point y = ¥,
and having a derivative in that neighborhood. Let
y=¢()

be a function of z, defined in the neighborhood of the point x = x,
and having a derivative in that point. Finally, let

¢ (x0) = yo.
Then u, regarded as a function of x:

u=fle()],
has a derivative in the point z = z,, and

D:u= Dyu D.y.

For, let
Ay = ¢z + Az) — ¢ (xy),

where | Az | < h and & is so chosen i) that the points
lz—z | <R
lie in the second neighborhood and ii) that the point y, + Ay lies
in the first neighborhood. Then, by the Law of the Mean,
Au=f(yo + 8y) = f(>) =f' (5o + 0 Ay) Ay.
Hence

u _ g Ay

When Az approaches 0, the right hand side approaches a limit,
provided that f'(y) is continuous :

. ’ A.’)’ = kK ’ . A
lim (7o +887) 2% Al;n=1of (o0 + aAy)AI;r:o—LAx

= f'(70) ¢' (o).
This proves the theorem under the restriction mentioned.
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The proof given in the elementary treatment of the Calculus by
writing

is not general, since Ay may vanish for values of Ax # 0 in every
neighborhood of the point Az = 0. For example,

¢(x)=c,
where ¢ is a constant. Here, Ay =0, and so for no value of Ax
can we divide by Ay.
It is possible to meet the difficulty and establish the theorem
without any restriction. Let

v(ay) = Liret AA-? mACOR Ay # 0;
v (0) = f ().
Then the equation:
Au N Ay
Az v (Ay)

is true for all values of Az considered. Now, the function y (y) is
continuous at the point y = 0. Hence the right hand side of this
equation approaches a limit :

g;r:(’\y(Ay) Az =/ (7o) ¢' (o),

and the proof is now complete.

Differentials. Tt is to the theorem just proved that the differ-
entials, regarded as an aid to differentiation, owe their value. For,
by definition,

dy =D,y Ax,
when z is the independent variable. Moreover, when x is the in-
dependent variable, we define dx as equal to Azx:

dx = Ax.

Hence

dy = D,y dxz,
when z is the independent variable. And now, by the theorem just
proved, it follows that this equation is true when x and y are both
functions of. ¢ : ]

Yy =f(x)v xT=¢ (t)°
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For, Dy =D:y D:x,
and by definition :
dy = D,y At, dx = D;z At.
§6. Taylor's Theorem with a Remainder. et f(x) be
continuous in the closed interval

a< zxz=Zb
Let f(x) have derivatives of the first n + 1 orders,
f, (1‘), f" (x), Y f ntl (x)’

at all interior points of the interval; a < < b. Then
h? 7
f(xo+h) =fl‘x0)+hf,(x0)+2_lf"(xc)+ “ee +’_l.?fn)(xo)

prtl
+ (n+1)!
where xy, o + h are any two points of the interval.

£ (z) + O B), 0<8 <1,

The proof is given in the Calculus; cf. for example the Author’s
Introduction to the Calculus, p. 431.

§7. Functions of Several Variables. Let

u—__-;f(xh "',xn)

be a function defined in the points of an open region R in the r-dimen-
sional space of the variables (x, * - -, 2»). The concepts: convergence,
limit, continuity have already been defined, Chap. III, end, Exercises
2/8, pp. 94/95. The partial derivatives of u at the points of R are
defined in the usual manner; e.g.

ou = lim f(xl + Axy, 15, -, .‘t,-,) —f(xhxzv <c, Tn) .

ZEN Az, =0 Ax
If u= f (x, y),
we shall write the derivative in either one of the rotations:
7
_au_ = fz(z,y) or Ji(= ), etc.
x
Similarly:
%u
—— =Sor(z, ) or Sz (z, ), etc.

oxdy
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The proof that
Pu__ u_
0xdy dyodx
under suitable restrictions — the existence and continuity of f (x, y),
JSr(x,¥), fer(x, ¥) is sufficient — will be given in Chap. IX, §6.

If there is only one independent variable, n = 1, the derivative
becomes an ordinary, or total derivative:
du
‘i_t .
But it would be inconvenient to make an exception in this case, and
so we write

du
at

when occasion arises.

Law of the Mean. Let the function f(x;, -, z,) be defined
in the region
‘R: |z —ay | < Ap, k=1, n,
and let it have partial derivatives of the first order there. Let
Ihkl<A4k, k=1,--~,n.
Then the difference
f(al + hl’ cvvy, an + hll) _f(al» R an)
can be written in the form:
f(al +hl’ as +h2' *t*y an +hn)_f(alva2+h2v MY an""hn)
+ flay, ay + by, -+, an + bn) — flay, ap, a3 + by, *++, an + hn)
+f(a1v ttty Gpg, Gn + hﬂ) —f(al’ ‘s -y, an)
Applying the law of the mean for functions of a single variable

to each of these differences we arrive at a first form of the Law of
the Mean for functions of several variables:

1) f(a1+hl' tt an+hn‘} —f(ah Y a’l)

n
= Z hi frelay, - <@gy 8 + Op hpy @gyy + aaas *y Gn + k),
=1 :

0 < 6 < 1.
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From this result we infer, as a first application, that if the
partial derivatives are bounded in the point (a), the function is con-
tinuous there. But the theorem would not be true without the
restriction, as appears fromn the example:

I‘.’.+),‘."’
£(0,0) = 0.

With the aid of the Law of the Mean the theorem relating to
Change of Variables (Theorem 1) is established, and by means of it
in turn a more symmetric form of the Law of the Mean is obtained
in case the partial derivatives are continuous in R. Let

{ flo ) ==Y (x,5) # (0, 0);

F@)=f(ay+thy, -, an+ thy), 0 ¢t £ 1.
Apply the law of the mean to F(¢):
F(1)— F(0) = F'(9), 0 <0< 1.
Hence
3) Slay +hyy oo an + by) — flay, -+, ap)

=Xk filay + 0k, - ay+0hy), 0< 9 <1,
k=1

In this form the law is easily remembered. It holds for more
general regions. Let § be a region which contains in its interior
the points of the line

T =ay + th, k=1, -, n, 0

I
A

Then the above proof applies and the theorem is true.
THrOREM 1. CHANGE OF VARIABLES. Let

u=f(yn " rn)
be. continuous, together with its partial derivatives of the first order,
in the neighborhood of the point (y) = (b); i.e. B: (by, * -+, bn).
Let

Sak(xlv""x"l)’ k=1,+,n,
be continuous, together with its partial derivatives of the first order.
in the neighborhood of the point (z) = (a); and let

orlay, -+ am) = by, k=1, .n
Let
Y =¢k('th cr e, Tm), k=1,--,n,
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be substituted in the function f(yy, -+, yan), u thus becoming a
Sfunction of (xy, ** -, xm). Then

du _ du dy,

L.y Ou Oyn
2z, 9y, oz T

i Oyn Oxp

It is of fundarental importance to observe, in this last formula,
what the independent variables are. There are two classes :
Class A4, the (zy, -+, 1) ;
Class B, the (yy, ", yn)
Those partial derivatives in which an z, appears below the line, assume
a function of the variables of Class 4 ; those in which a y appears
below the line, assume a function of the variables of Class B.
The student will do well to illumine this last formula, writing
each z,, say, in red ink, and each yj in blue.
For the proof of the theoremn the student is referred to treatises
on the Calculus; cf. e.g. the Author’s Advanced, Calculus, Chap. V.
Differentials. Let
u =f(xl, )
be defined in the above region R and possess partial derivatives of
the first order there. Let (z) and (x 4 Ax) = (z; + Axy, * -,
Zn + Azy) be any two points of the region. Then

Au=f(x, + Az, -+, Tn + Azp) — f(zy, -+, )

can be written by the Law of the Mean, 1), in the form:
5) Au=f Az, + -+ + faAzs,

where f; denotes the value of fx formed for the mean point of that
formula.
If, in particular, the derivatives f} (1, ***, ) are continuous
in R, set _
Je=Sfe+ Ln k=1,---,n

where f; is formed for the point (x). Thus

_ du du
6) Au = a_xl A.tl + + a.’t,l Ax,.

+ 8 Az + 00 + LAz
The first line on the right is called the principal part of the
infinitesimal Au and is defined as the differential of u:
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7) du = 9 Ar, + - + Ou gy
ox, O0xp

The differential of each of the independent variables x; 1s defined
as the increment,
dxy = Axy, k=1, n
Thus 7) becomes:

_ 0Ou Ju
8) du = 7z, drey +--+ Fr dx,.

And now the fundamental theorem about differentials is, that 8) is
true, no matter what the independent variables may be.

More explicitly, consider the change of variables defined above,
the notation being that of Theorem 1. Then

n
=Y -2 dye,
9) du F] . Y a

a==1

the ya being the independent variables. Secondly,

10) d)’a Z oz, _’Ya dxr,

r=1

the x, being the independent variables. Now, when the z, are the
independent variables,

m

11) du= 2 .(% dzr,
r

r==1
By Theorem 1,

z 9, Y dep = ’Z’ 2 3_ya ax: dz,.

a==1

The left-hand side of this equation is equal to du as given by 11).
The right-hand side is equal, by virtue of 10), to du as given by
9). Hence 9) is true, regardless of whether the independent variables
are those of Class A4 or Class B, and that is what we set out to
prove. The result can be stated as

THEOREM 2. DIFFERENTIALS. Let
u=f(yn, " yn)
and let a change of variables:

J’k=¢k(11y""1’m). k=1v"°a"1'
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be made under the conditions stated above. Then
du
Oyn
regardless of whether the independent variables are those of Class A
or Class B.

Remark. Since the differentials of the independent variables by
definition are the same as the increments, they are arbitrary. Hence
an equation :

12) du=—aa—;—dyl +o 4 dyn,

Aydzy ++ -+ Apdzy = By dzy ++ - + Bpdz,

where z;,---, zp are the independent variables and A«, Ba are any
functions of (zj, - -, zp), leads to the inference that

Aa=Ba, a=1,"',P.
§8. Integral of a Continuous Function. Let f(x) be a

function, continuous in the closed interval
a<l x < b

Mark the points z = p/2" where n is a natural number and p = 0,
+1, £2,---. For a fixed n, those points which lie within the
interval shall be denoted by :

a<l< <z < x, < b
Furthermore, set

xH = a, b= xvy;
A.l']‘=xk+1'-1']‘, k=0, 1, <o, v; AI]‘=2'".

Let I;: be any point of the interval (e, b), which lies in the closed

interval (z;, z441):

!
xp = x = Tpt1-

Form the sum:*
q
S = f(x;S) AI*,
p
where p is either of the numbers 0, 1; and ¢ is v — 1 or v. When

n. becomes infinite, the sum S approaches a limit, I, and I is defined
to be the value of the definite integral

# When there is no point of division within the interval, S still is defined
if p=0, g=1. For other values of p,q let S= 0.
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b
f f(z)dz,
a
or
b 7
f f(z)dz = lim 2 f (zz) Az
a = k=p

To prove the convergence we proceed as follows. Let M, my
be the maximum and the
minimun values of f(x) ;
in the closed interval '
(zg, Tp41). Assume first M| |
that f(x) > 0 and let M, ; my
m be't}}e maximum and 1, a P 3 z 5, Topt
the minimum of f(z) in +—* + 1et] Tert A
(a, b):

m= flx) £ M
Form the sum:
Tn = 2 M]‘ AI]‘.
k=0

As n increases, T, decreases or remains unchanged :

Tn _2= Tn+l'
But

TpZ Y mAz, Z m(b—a)
k=0

Hence T, approaches a limit, Chap. II, § 5:
lim T, = I,.
n==c0

Similarly, the sum )
V=

th = 2 my Az,
k=1

increases with n, or remains constant:

in = tht1s
and vt
th £ ZMAI;‘ £ M(b—a)-
k=1
Hence t, approaches a limit:

lim th = Iz.

n=oo
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Moreover,
th & Th,
and hence
I o _§ I 1.
Finally,
I 9 = [ 1.

For, .

v=—1

Tn— Iyp = Z (Mk— mk) AJ'k + MoA.Z'o + ]vaAI\,.
k=1

Since f(zx), being continuous in the closed interval (a,bd), is
uniformly continuous, Chap. III, § 10, it follows that, to a positive
€ chosen at pleasure, there corresponds a positive d such that

I f@)—f@) ] <e |lz=2| <8 22 i (ab).

If, then, Az;=2"" is less than #, the first sum is less than
¢ (b —a). Hence

To—ta < e(b—a)+2M 27,

Now
I, £ Ty th £ I,
and so
0= Il—I2 < e(b—a)+2]W 2,
Hence

Turning now to the sum S we see that

v—1 9

2 mAn = Y fl@)An £ 2 M, Az,
=1 k=p k0

Since each of the extreme sums approaches the common limit
I =1, =1, it follows that the sum S approaches this same limit.

It remains to remove the restriction f(xr) > 0. Let C be a
constant such that the function

p@)=f(x)+C
is positive in (g, ). Form the sums:

7

q
Y o) An =Y, flar) Arg + Clag — ).
k=p =p

The sum on the left converges when n becomes infinite, as has just
been shown. The last term on the right approaches a limit. Hence
the sum § coverges here, also.
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From the method employed in formulating this existence theorem
follow at once two corollaries.

CoROLLARY 1. LAw OF THE MEaN:
3
jf@a:@—@fuxa<px<h
a

For, obviously :

b
b—a)m éff(x)dx £ (b-a) M,

the lower signs holding only when f (z) = const. =m = M. If we set

I
Jf@a:@—@n

then m< Y < M,

unless f(z) is a constant. Hence the function

f@) -7,
which is continuous in the closed interval (a, b), changes sign there,
and_so has a root, =X, within the interval, Chap. III, §9,
Theorem 2. — In the excepted case, X may have any value within
the interval.

CoroLLARY 2. If a < ¢ < b, then

ff(x)d~t=jf(x)dt+jf(x)dx.

The proof is immediate, thanks to the formulation of the exist-
ence theorem, and may be left to the student.
We are now in a position to prove the following

CoNVERGENCE THEOREM. Let f(x) be continuous in the closed
interval (a,b). Let the interval be divided in any manner into n
subintervals by the points

a< < <L xp) < b,
and let zy £ a, b £ zp; let
’

! .
Ay =234 —Tp, 3 S 2% £ Tpg, 3 in (a,b).
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Then the sum
q
z f (xi) Ay,
k=p

where p =0 or 1and q=n — 2 or n — 1, approaches a limit for
n = oo, provided the longest Axj approaches 0.
The value of this limit is the value of the definite integral:

»
q
lim 2 f(x,:) Az, = ff(a:) dx.
n=o0 k___p -
Proof. Consider first the case: zy=a, 2, =b, p=0,9=n— 1.
The general case then follows at once. By Corollaries 2 and 1,
B et [Z321 ne1
ff(x) dr = Z ff(x) dr = Zf(Xk)Axk,
=0 k=0
a Ik
x < X < Ty
Hence
: & ’ & '
ff(x) dxr — z flxp) Ax = 2 [f(X3) = f(zp)] Axy.
k=0
a

k=0

Since f(x) is continuous in the closed interval (a, J), it is uni-
formiy continuous, and so

[ f(X) = flzh] < ¢ | Az | < 4.
Thus

< ¢(b— a),

5 n-1
[ras= ¥ fahan
b= k=0

and the theorem is proved.

On the basis of the Convergence Theorem one may define the
definite integral as the limit of the more general sum which appears
in this theorem. In any case, the definite integral is the mark:

b
f f(z)d=.
a
Its value is the limit approached by the sum in question, and this
number is represented by the same mark.
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Fxtension of the Definition. 1f b < a, the definite integral
shall be defined as follows:

» a
;/‘f(x)dx=—.bff(x)dx.

If @ £ ¢ £ b, then, by definition:

‘/\cf(x)dx=0.

Hitherto we have considered only functions f () defined in every
point of a closed interval. We now extend the definition to the case
that, in a finite number of points, the function is not defined or
discontinuous ; being continuous, however, in all other points, and
bounded in the interval. In particular, the interval may be open at
one or at both ends, as

a< r<b;

but it must be bounded. The above definition of the definite in-
tegral, and the Convergence Theorem, apply to such functions, with
the obvious modification that no zj can be chosen at a point where
f (&) is not defined, and that a maximum (minimum) may have to
be replaced by an upper (lower) limit.

Indefinite Integral. Let f(x) be continuous in the open or
closed interval (a,b) and let F(x) be a function whose derivative is
equal to f(z):

F' (x) = f (x).
Then F(x) is called the indefinite integral of f(z).

One such function is
x

F(z)= ff(t)dt.

a

For, by the Law of the Mean.

r+dz
F(xr + Ax) — F(x)=ff(t)dt=Axf(x+0Az).

z

lim Fz+82) = F@) _ j £(z 4 0A2) = f (2).
Az=0 Az Ar=0
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The most general function is (Chap. IV, §4):
ﬂ@:J}mm+a
a

EXERCISES
Let the functions f(z), ¢ (z), etc. be defined in the closed in-
terval a £ x = b, with the possible exception of a finite number
of points. Let them be continuous except at most for a finite number
of points, at each of which the function may or may not be defined.
And let the functions be bounded in the interval.
Prove the following theorems :
) b
1) fcf(x)dx::c S (z)dxz,
a a

where ¢ is a constant.

b b b
2) f[f(r)+¢(x)]dx=ff(x)d:r+j¢(x)dx.

2 2

3) f(x)dxl < [1f@ld=
Jrwei= S
b b b

9 | JU@re@la|s firmias flew
5) F(x):ff(t)dt
is continuous, a £ r < b.
6) %j}mw=ﬂn

provided f(¢) is continuous at ¢ = .

b
7) J @ az=f®)-fla)
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provided f'(x) is a function belonging to the class here considered,
and f(x) is continuous, a = z < b.

13 b b
8) f F@) ¢ (@) dr = f@) p(z) | - f ¢ (2) f' (@) dz,

provided f'(z), ¢’ (x) belong to the class of functions here considered,
and f(x) ¢ (x) is continuous, a < = = b.

Obtain a generalization of 8) for certain discontinuous functions.
Suggestion :

b Exe1 3
9) f F@) ¢ (=) dx=; F@ek) | - f ¢ () f(z)dx.
a g';" a

§9. Implicit Functions. In the Calculus we learn how to
differentiate an implicit function. Thus if

1) F(z, y, z) =0,
2 os_ _F 0z _ Fp
ox Fz a.')’ Fz

But how do we know that Equation 1) has a solution; i.e. defines a
function? If, for example,
F(u,z) = u?® + =%,
the equation
Fluz)=0
is true for v = 0, u = 0; but for no other value of x does it have
a root.
Again, if
F(u, x) = u?® — 22,
then the equation
F(u,z)=0
is satisfied by the two single-valued functions:
u=uz, u=—ux;

and in the neighborhood of the origin both functions must be retained,

to give the complete solution. So, even when the equation
F(uz)=0

has a solution, there is no guarantee that the solution will be given

by a single-valued function.
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When 1 was a student, I learned in Williamson’s Differential
Calculus (the best seller of that day) that the envelope of a family

of curves,
Sz, y,a)=0,

is found by differentiating partially with respect to a :
of _
70 O

and then eliminating & between the two equations. Thus the family
of circles:
(r—a)+y2=r?

have an envelope obtained by differentiating partially :

—2(zx—-a)=0,
and then eliminating a :
yr=r
or
y=r, y=-r

But I wondered what would happen if the equation of the family
were thrown into the equivalent form :

¢@y)=a;
or in the case of the example:
z—a=+ V72—t

The rule led to 1 =0, and that did not seem quite right; but
it did not disturb Williamson, if indeed he had ever thought of
it. Youth is iconoclastic, and the Method of Envelopes was one of
the Articles of Faith, in those days, to which I could not sub-
scribe.

The reader will have gathered from these remarks that there is
real need of an answer to the question: When does the equation

F(u,x)=0

or
Fluzy, -, 2,) =0

define a function u# of x or xy, -+ -, 2,2 We proceed to the answer.
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§10. The Existence Theorem.* Let
1) F(uyxa)’v”')
be a single-valued, continuous function in the neighborhood (A) of
the point (uo, oy Yos " ') :

lu—uy| < 4, lz—z)| < A4 |y—yol <4 0< A;

and let
2) F (uy, 29, 00 *++) = 0.

Let F (u, x, y, ) possess first partial derivatives, and let
them be continuous, in the above region (A).

Finally, let
oF

“’a?" - -_-Fu(uo,xo,)’m °e ) # 0.
Then: the equation :
3) Fu,z,y,++:)=0
has the following solution in a certain neighborhood of the point
(02 Zo» yor =+ ) —
There exists a function,

n u=g(ny, )
single-valued and continuous in a region
lz—zy| < B, |ly—y|l < b, -, 0 < h £ A4,
and having the properties:
a) ¢ (Zg, y00 ***) = 140, lo(z,y, )| < 4;

b) When ¢ is substituted for u in F, this function vanishes
x'dentically:
5) Flo@y, ), zy 1= 0;

c) The only roots (u,z,y, -++) of Equation 3) which lie in
the region

lu—u| < 4, |lz—=z| < h ly—y| < h---
where 0 < A' = A, are those for which
6) u=¢@(x,y ).

* The first proof of the theorem, under narrower hypotheses, is due to
Cauchy, Turin Memoir of 1831; cf. Ezercices d'analyse vol. 2 (1841) p. 65.
In its present formulation the proof was given by Dini, A4nalisi infinitesimale
vol. 1 (1877/78) p. 162.
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Finally, the function ¢(x,y, ) has continuous derivatives of
the first order given by the rule of the Calculus.

Proof. We will begin with the case that (z, y, «+*) reduce to
a single variable z:

7) F (u, x).

Here, we can follow each step by a geometric representation.
The region (A)is interpreted by the interior of a square with its
verlices in the four points (uy £ A, o = A). Let

0 < F, (1, xo).
Since Fy (u, x) is continuous, it is possible to find a subregion (A4'):

lu—uy| £ A, lz—xzy| £ A, 0< 4' < 4,
in which

8) 0 < F, (i, ). u 77 ;

‘
“'V":Of"f

And now consider the func-
tion 7) along the line x = xy:

9) F (u, ;). %’W

This is a function of the single :

argument, u, which vanishes for —J— 1 === === x
" . 0 Lh x z 1k

u =u, and has a positive deriva- g

tive when
w—A' < u<uy+ 4.

Hence

10) 0 < F(u + 4, xy), F(uy— A, xy) < 0.

Secondly, consider the function of z:
F (llo + A’, .Z').
For x = z, it is positive, and since it is continuous, it must remain
positive in a certain neighborhood of this point:

11) 0 < Fluy+ A, x)
when
Io—h1<x<.'l'o+h1, 0<h1_S_A’,
Similarly,
12) Flup--4',2) <0
when zg—hy < x < 9 + ho, 0< hy £ A

Let 2 denote the smaller o‘f the two numbers &y, As.
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It is now easy to give the proof of the existence of a solution of
the equation
13) F(u,z) =0,
for which zry —2 < z < xp+2and uy— A < u < uy + A

Let z = 2’ be chosen arbitrarily in the interval

14) g —h < x < xy+ A
Consider the function F(u,x) for this value:
F(u, 2.

We have here a function of the single variable u:

uy—A' £ u £ uy+ A,
which is negative when u =uy — A’ and is positive for u = uy + 4.
Since it is continuous, it must vanish in this interval. Moreover, it
cannot vanish but once. For, if it had two roots, &/ < u”, then by
Rolle’s Theorem

F.(U,z"y=0, U< U< .

But this is in contradiction of 8).

We have thus established the existence of a root u of Equation
13) for each x of the interval 14), and

uy—A' < u < uy+ A

Moreover, we have shown that there is only one such root. Thus
we are led to a function
15) u=¢ (),
defined in the interval 14), single-valued, and such that
16) uy—A' < ¢(z) < uy+ A"

And this function satisfies Equation 13).
This completes the proof of the Existence Theorem. It remains
to establish the continuity of ¢ (x) and the existence of a derivative.
The next step, then, consists in showing that ¢ (z) is continuous.
First, it surely is continuous at the point x = xz,:

lo(z)—@(x)| < ¢ lx—2,] < 8.

For A' can be chosen as small as we wish and hence, if € is less
than the above A4’, a new 4’ = ¢ can be selected.
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Secondly, let =/ be an arbitrary value of z in 14), and let
w' =¢(z'). Tnen all of the hypotheses of the Existence Theorem
are fullilled in the neighborhood o the point («/,2"). In particular,
then, the solution must be continuous at the one point, x = z!. But
the solution is unique, and so coincides with the function 15) near
this point. This completes the proof of continuity of the function
¢ (x).

Remark. Up to the present we have made no use of the hy-
pothesis of the existence of the partial derivative 9 F/dx; nor have
we used the continuity of dF/du, except to justity 8). It is enough,
then, to assume the existence of this latter derivative, and the
inequality 8).

Differentiaiion. The proof of the existence of a derivative of
the function go(x) is the same as is given in the Calculus. It is
enough to consider the point x =z, We have, by the Law of the
Mean :

F(uy + Au, x; + Ax) = Au Fy (uy + 0Au, x, + 0Ax)
+ Az Fp(u4y + 0Au, vy + §Azx) =0,

Au _ _ Fr(up+ 0Au 20+ 6402)
Ax Fu (uo -+ eAll, Xy =+ BAI) '

The division is possible for values of Ax suitably restricted, since
the corresponding values of Au are also numerically small, and

F,(u, x) is continuous and different from 0 at (i, x,). Hence
Au _ Fz(up, )

lim = .
Ar=0 AZ Fu (ug, xo)

EXERCISES
1. Carry through the proof in the next case,
F(u,z, y)=0.
First, write out the theorem in detail for this case. Illustrate the
region (A4) by a cube with its vertices in the eight points (u, £ 4,
zg £ A4, yy £ A4). Draw the space figure with ruler and pencil or

pen. Draw in the smaller cube ({’) in less prominent lines. Then
put in the region

iu—uolg_{’, Tz —x9l < A, i_}’"‘_‘Yo]</l
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in red pencil or ink, or other colored lines that will make it stand
out,

2. TInsert at each point of the proof carried through in the text
a precise reference to the theorem used, and make a list of all such
theorems, which have been illustrated by the present applications.

3. Show that the equation

W+ 2u+ e* 7 =cos(x — y + u)

defines a single-valued function

u =gz, y),
continuous for all values of the arguments, x and .

4. Give an analytic proof of the theorem in the general case,
observing the geometric significance of each step in space of n
dimeusions.

5. Assuming that the function F(u, x, y, - +) has continuous
derivatives of the second order, and satisfies the other conditions of
the theorem, prove that the function ¢(x,y, ---) has continuous
derivatives of the second order. Generalize.

6. Show that, under the conditions of the theorem, there exists
a subregion

)
R: lu—uy| £ B, lz—xy| = 4

and a positive constant k' such that, if

F(u, ;) =0, (4, ;) in R,
the equation
F(u x)=0

admits a solution
u=¢(x; 1)

defined throughout the interval
-k < x—x <K,
and having the properties of the function ¢ (r) of the theorem.
§11. Simultaneous Systems of Equations. Le:
1) Fi(uy, vy ups 2y, -, ), i=1,---,p

together with its first partial derivatives, be continuous in the
neighborhood of the point (by, *+ -, bp; ay, * -+, an) and vanish there:

F‘(bh“',bp; al,"'yan):()a i=l’...’P‘
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Let the Jacobian,

oF,  dF
du, dup
J: 000000000000
2F,  9F
du, du,
be different from 0 there:
J(bh Tty bp; alv tt an) # 0
Then there exist p functions:
5) ui=¢i(x17“.1xn)) i=11“'~p0

continuous in the neighborhood of the point (ay, - -, an) and taking
on the value b; there :

bi=¢i(ah“'1 an)y %y P;‘
and such that, when substituted in the functions Fi, they cause
these to vanish identically :

i:l,.-

Fi[sol(xl?' N '7In)1' ° '1¢p(x11' Y xn);xl” ‘ ‘vxn] == 01 l =1»' * "P‘
Furthermore, the only roots of the simultaneous system of
equations
4)
which lie in the neighborhood of (b, -
given by Equation 3).
Finally, the functions ¢; (z, -
tives of the first order, given by the ordinary rules of the Calculus.

i=1,"',Py

-, ay) are those

Fi(ult“'v up;xls"'axn):()v

by ay,

*, Tn) possess continuous deriva-

Consider the simplest case: p=2, n=1:

5) F(u,v,2) =0, ® (u,v,2)=0;
aF oF
du ov %0
oo ae |7
du Ov

and denote the point by (ug, vg, Zy)-

simultaneous solutions of Egs. 5),

We wish to show that the
which lie in the neighborhood of

this point, are given by two functions,

6) u=gx),

v=y (z),
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each continuous in the neighborhood of x =z, and taking on the
respective values u, v, in this point.

The functions F, and F, cannot both vanish in the point
(ug, 19, 1), for otherwise J would vanish there. Let

7) Fu (uo, Vo, 1:0) # 0.

Then the equation

8) F(u,v,2)=0

can be solved for u by the Existence Theorem of § 10:
9) u=o(v,z),

and moreover all the roots of 8) which lie in this neighborhood are
given by 9). Thus Equation 9) is eguivalent to the first equation 5)
in the sense that the two equations:

Fluv,z)=0, u=o (v, x)
have the same roots in the neighborhood of (i, vy, zg).

Fromn this fact it appears that the roots of the simultaneous
system 5) coincide with the roots of the simultaneous system :

10) u=ow(v,2x), ®(u,v,2)=0.
A necessary condition for such a root is that
11) Olw(v,z), v,z]=0.

And conversely, any root (v, z) of 11), lying in a suitable neighbor-
hood of (vy, xy), will lead to a value of u through 9), lying in the
neighborhood of u = w,, the tripel (u, vy, ;) being a root of 5).

1t remains, then, to solve Equation 11). Let

Glv,z)=0[w(v,2), v, 2]

Then
Gu (‘U, I) = ¢u g: + Qu.
From 8)
aﬁ) — Fp
ov F,’
and hence
Gy(v, z) = ;u .

Thus
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J(u(\v Vo xﬂ)_ ?a_. 0

Golvo, z) = Foy (uq, vg. 2,)

and moreover G (v, x) is seen to fulfil all the other conditions of the
Existence Theorem of §10. Hence Equation 11) is equivalent to the
equation

v =¥ (z),
where () is a function continuous in the neighborhood of the
point x = x; and taking on the value v, there. Let

¢ @) =o[y) =]

Then the functions
u = ¢(x), v = (2)
fulfill all the conditions of the Existence Theorem we set out to
prove.
The extension of the proof to the case p = 2, n = n requires
no modification. When p > 2, the method of mathematical induction
can be used. The partial derivatives of F, cannot all he 0. let

Z_ﬁ # 0.
Then the equation
Fy(uy, ~»+, up; 2y, *++, x0) =0
can be solved for u,:
12) U =@ (U, **, Up; Ty, "+, Tn).

This equation, combined with the last p — 1 equations 4), is equi-
valent to the original systen 4). And now a necessary condition for
a simultaneous solution of 4) is, that (u, - - -, Up; Xy, ", Tpn) be a
solution of the p — 1 equations:

15) Fi[(ﬂ(l‘g,"’,l‘p; xly”'txn)fu‘,)_v"‘sup; xl,"'yxn]’:‘o,
1 =2, 0, p.
The Jacobian of this system is seen to have the value

_J

8 F 1/ a uy
and so does not vanish at the point (by, -+, bp; 4y, *+*, as). Thus
all the conditions of the Existence Theorem before us are seen to be
fulfilled for the system of p — 1 equations 13).
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Conversely, any solution of 13), suitably restricted as to neigh-
borhood, leads through 12) to a solution of the original system 4),
and this completes the proof.

Remark. In the foregoing proof we have made no use of the
derivatives 0F;/0x;. Hence these need not exist. They are not
needed till the next step.

Differentiation. Returning to the case p=2, n=1 we can
prove the existence of derivatives as follows. Let

Au= ¢ (xy + Azx) — ¢ (xy), Av =y (xy + Ax) — Y(z).
From the law of the mean,
Fluy+ Au, vy + Av, 2+ Ax)=AuF, + Av F, + Ax F, =0,
D (uy + Au, vy + Av, 2y + Ax) = Aud, + Av &, + Ax ., =0,

where F,, ---, ®,, --- are formed for mean values of the argu-

ments, as
F,(uy + 0Au, vy + 8A0, x4 + 0AX), etc.

Since J (uy. vg, xp) # 0, it {ollows that

I F, Fy I
l o, &, |‘
formed for these values, will not vanish if Ax is suitably restricted.
Hence
Fx Fv l Fu F:
Au e o, Av ¢, O,
Arx F, F, Ax F, F,
o, 2, o, o,

formed for the ahove mean values. It is obvious that the right-hand
sides approach limits as Az approaches 0, and hence ¢(z), ¥ (x)
possess derivatives given by the ordinary rules of the Calculus.

§12. The Inverse of a Transformation. Let a transfor-
mation be given:

1) }’i :fi(xh'",xn), i=1v”'9"'

where fi(x,, - -, xa), together with its derivatives of the first
order, is single-valued and continuous in the neighborhood of the
point (ay, -+, a,), and let

bizfi(al”"tan)v i=1a""n'
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Let the Jacobian :
2 3(y1 )
o(xy, **+, Zn)
be different from 0 in this point. Then the equations 1) admit a
solution of the form:
5) -‘ti=¢i(_’)’1"“')’n), i=1y.“sn’
where @i (yy, **, yn) is single-valued and continuous in the neigh-
borhood of the point (by, - - -, by), having continuous derivatives of
the first order with non-vanishing Jacobian.
For, form the equations :
Fi('tl' T Zns Y ""}’n) Efi(l'l, tt J-'n)—)’i=0.
=1, n
Identify these functions F; with the F; of the theorera of §10,
where p =n, where u; is replaced by z;, and where the former x; is
replaced by y;. Then all the hypotheses of the former theorem are
fulfilled, and the conclusion is a proof of the theorern in hand.
In case the Jacobian 2) vanishes, a single-valued continuous
inverse 3) may still be possible; witness the example :

_y::p‘g, _1;:)/‘

But the derivatives of the inverse functions ¢ cannot be continuous.
For it is a property of Jacobians that®

Ouy, -y un) _ Oy, oy un) oy )
a(rl""axn) a(ylv”'7yn) a(z‘.l*v Y xn)

and hence, in particular, in the case of the transformation 1):
a(ylv ) _}’n) a(xh T, -Tn) — 1.
3(171, tr, ) a()’lv R )’n)

If, however, the Jacobian 2) vanishes identically, a single-valued
inverse is never possible; cf. § 13.

§13. Identical Vanishing of the Jacobian. Let f(x, v),
¢ (1, v) be two functions which, together with their first derivatives,
are continuous in the neighborhood of a point (i, v5), and let their
Jacobian vanish identically :

® Cf. Jordan, Cowrs d’analyse, vol. 1 (1893) p. 89.
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1) _-L_.a( ,gp) ==

0 (u, v)
Then f and ¢ are connected by a functional relation :
2) Q[f (), ¢(u,v)] = 0.
For, let
3) z = f(u,v), y=e¢u,v).

If fu fo both vanish identically, then f(u,v)= const. and we are
through. Assume, then, that

oL = fuwv) * o

Let (u;, ;) be a point of the above neighborhood, in which

4) Su(uy,v) # 0.

Then it is possible to solve the first of the equations 3) for u in the
neighborhood of this point:

5) u=o (v, )

Let us substitute this value in the second equation 3):

6) y=¢lolvx),v]

The function on the right does not depend on v:
oy _

g v

For,

dplw(vx)z] _  de
ov Pu dv + o

9o _ _ S

v
ov Su
and from 1) it follows that 7) is true. Thus
ry=¥()

is true for all values of x and y given by 3), or
o,v) = ¥[f(yv)]

and that is what we set out to prove. The generalization is im-
mediate : —
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‘THEOREM. Let
8) fi(ult”'vup; xl?”'o-rn)a i=11“'v P-
be continuous, together with their first derivatives with respect to

uy, * U, in the neighborhood of a point (by, -+, by ay. -+, an),
and let the Jacobian

9) (fu - fp)

3wy, - -,

in all p+ n arguments. Then these p functions are connected by
an identical relation of the form:

10) Q(fu . fo)=0.
More precisely, let
vi =fi(u, ), i=1,-,p
c1 = fi (b, a).

Let (¥, d) be a suitably chosen point of the above neighborhood,
arbitrarily near to (b, a) and let

¢ =fi(¥, a).

Then there exists a function Q(yy, -, ¥p), continuous to-
gether with its first derivatives in the neighborhood of the point
(y) = (¢') and vanishing there, but having at least one first de-
rivative different from 0 there, and such that 10) is true for
all (u, x) in the neighborhood of (V',a').

Although (%', «’) can be taken arbitrarily near to (b, a) there is
no reason to assume that it can be made to coincide with this point.

Certainly, in the corresponding case of analytic functions of several
complex variables, this is not true.*

A generalization of the foregoing theorem for the case that the
matrix of the determinant of the Jacobian 9) is of order less than
p— 1 is given in the Funktionentheorie, 1. c. §23.

14. Solutions in the Large. The theorems of §§10-13
relate to solutions in a restricted region, the extent of which is not
given explicitly at the outset, but is contained implicitly in the
hypotheses of the theorems. Thus the results hold in the small (im

® Cf. Osgood, Funktionentheorie II, Chap. 2, § 22.
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Kleinen). There are no general methods for dealing with these ques-
tions in preassigned regions; i.e. in the large (im Grossen). Never-
theless there is a certain class of cases in which theorems in the
small, when supplemented by uniform properties and the covering
theorem of Chap. III, § 11, do lead to results in the large.
Cousider, for example, the theorem of §10. Let us add to the

hypotheses the requirement that

oF
1) 0<%—

in (A4). Consider a subregion

AY Mu—uy| = A, |z—zg| £ 4, 0< 4 < A
Let (1, ;) be any interior point of (A’). Then there passes through
(w4, 7;) a solution of the equation

2) F(u,z) =0,
namely,
3) u =9 (x),

where the curve represented by 3) meets the houndary of () in
two points, the function ® (r) being single-

valued and continuous in a certain interval / \/ \?

L =z=6

where
xo—A, é El < £2 = Io"‘A’.

There are obviously eight possibilities illus- \ /\ /

trated in the accompanying diagram.

The proof is as follows. According to § 10, Ex. 6 there exists
a positive constant 7y such that, if (x;, z;) is a root of 2) lying in
('), then a solution of 2) is given by the equation

4) u=¢(z)

where xry — hx .—_<— x § xy + hl'

Thus starting with an arbitrary 1ot (1), x;) of 2), which lies inside
of (A'), we can proceed a distance of %, forward, and also a distance
of k; backward. If the curve 4) still lies within (4'), we can now
apply the equation 4) to an end-point of the arc already obtained,
thus continuing the function ¢ (.r), and then repeat the process. Since
we make progress each time by a distance %; along the axis of z,
after a finite number of steps we must reach the boundary of {A4').



Chapter V

Uniform Convergence

§1. Series of Functions. Consider a series of functions:
1) w (z) + ua (2) + -
Let each term be continuous in the closed interval

a < x £ b

and let the series converge in each point of the interval. Denote the
value of the series by f(r); then
2) f@)=u (@) +u(z)+ -+~

It is natural to think of the limiting fur;ction as continuous —

partly from experience, for the power series we have met in the
Calculus and used for computation, represent continuous functions;

partly because the approxination curves,

3) ¥ = su(x),
where
4) sn(x) =u (1) + o0 + un (),

are all continuous and so would seem necessarily to approach the
limiting function

5) y=f(x)
in the manner indicated in the figure.
7
o « 5

More fully analyzed this assumption consists of two parts: — first,
that the limiting locus is a continuous curve; and secondly that, if
this curve be embedded in ever so thin a strip, all the later approxi-
mation curves will come to lie within this strip.

Both parts of this assumption, however, are wrong, as is shown
by the following examples. »
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Example 1. Let s,(x) be defined as suggested by the accom-
panying figure, namely®

1 Y,
sn(x) =1 — nr, 0§x§;;
1
sp(x) =0, —< =1
n
Here, 1
lim s, (x) =0, 0l<x=s 1,
n=oo x
lim s, (0) = 1. o 1 1

Thus we have an example of a convergent series of continuous
functions which converges toward a discontinuous function,

Sfx)y=0, I<zxr=1;
O =1.

Example 2. Let s,(x) be defined as suggested by this figure:

1 Y
sp(x) = 2nx, 0=z =—; L e e e mmeamaa-
Qn "
1 1 .7
sp () = 2 — 2nax, — < xr = —, '
2n n 1 :
1 5
Sn (.‘l‘) =0, — <z =1 :
n :
: +—
Here, o 4 L 1
lims, (z) = 0, 0=zx=1,
n=x
and the limiting function,
f(-t) = 01 0==x£= 1,

is continuous. We have, then, it is true, a convergent series of con-
tinuous functions representing a continuous function. But the con-

# We point out again that not only does an infinite series determine the
sum of its first n terms, but conversely any variable s; has corresponding to
it an infinite series for which it is the sum of the first n terms; namely, the
series:

u = sy, Uy =S =81, ***y Up=Sp— Spq.
It is, therefore, immaterial whether we think of the series as given by the
up or the su.
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vergence is mnot like that represented in the figure of p. 132. If a
small strip be constructed about the limiting locus,

y=f=0, 0==z=1,

the later approximation curves, no matter how great n, will fail to
remain within this strio.

If, then, we wish to secure the kind of convergence suggested
by the figure of p. 132, a further restriction is needed, and this
leads us to wuniferm convergence, defined in the next paragraph.

§2. Uniform Convergence. Definition. Let
1) u () + w(x) + «--
be a series whose termns are defined in the points of an arbitrary
infinite point set, .4. The series is said to converge uniformly if,
to a positive number € chosen at pleasure there corresponds a natural
number, m, independent of r, such that

| s (£) — s (2) | < ¢, m = n, n'.
Here,
sn(2) =w (2) + -+ + un (2),
and x is any point in A.

Two consequences of the definition are expressed in the follow-
ing theorems. The property of a series embodied in either theorem
might have been chosen as the definition, and then the other
theorem, and the definition actually laid down, would form the two
complementary theoremns.

TuroreM 1. A necessary and sufficient condition for the
uniform convergence of the series 1) is that, to a positive number
€ chosen at pleasure, there correspond a natural number m, inde-
pendent of x, such that

| $map(2) = sm (2) | < ¢, p=1,23,---.

If the series 1) converges, let the remainder be denoted by r,(z):
2) S (@) = sa(2) + ra(2).

THEOREM 2. A necessary condition for the uniform convergence
of the series 1) is that, to a positive number ¢ chosen at pleasure,
there correspond a natural number m, independent of x, such that

lrn(l"|<€, mén-
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If the series 1) converges, then this condition is conversely
sufficient.

The proofs of these theorems are immediate, since the student is
now thoroughly familiar with what is meat by a necessary condition,
and what is meant by a sufficient condition.

Ezxample. The geometric series
1) 14+x4224 -0
converges uniformly in any interval (a, b) which together with its
end points lies within the interval (— 1, 1):
-1 <a<g<bd< 1.

For, a number & can be found such that

la[, [l € h < 1.
In the interval
—h=Sx=h
the remainder of the series,

rn(x)=£,

obviously satisfies the inequality:

[ Zn | < K,
'1—x| ~ 1—h
Now, choose m so that

hm
-r <
Then

[m@E)] <e m=n, g.e.d.

Observe, however, that the series 1) does not converge uniformly
in the interval
2) -1 <x< 1.
If it did; i.e. if
| s (2) = sn(2) | < ¢ msEn,
then it would follow, on setting n/ =n + 1, that

2] < e m S n
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But m cannot be so chosen that
|zm ] < ¢
for all points of the interval 2), since

lim 7 = 1.

r=1=
The series 1) does, however, converge absolutely in the interval
2). We see, then, that absolute convergence does not insure uniform

convergence.
EXFRCISE
Show that the series
-2+ 22—+ =25+ -
converges absolutely in the closed interval
0=x=1

Observe that the terms are all = 0.

Prove that the series converges uniformly in an arbitrary interval

0==x=h, 0<h < 1;

but that it does not converge uniformly in the interval 0 = x = 1.

Plot accurately the first four approximation curves, using different

colors — green, yellow, blue, red. Represent the limiting locus by a
firm, black graph.

§3. Weierstrass’s M-Test. A sufficient condition for the
uniform convergence of a series is the following.

Tur M-Test. The series 1) of §2:
U (2) + us (2) + -+,

converges uniformly in the point set A if a convergent series of
positive (or zero) constants

M, +M,+ -, 0= M,
can be found such that
un (x) | = M, p=n,

where p is a number independent of z.

Proof. From the convergence of the M-series follows that to
an arbitrary € > 0 corresponds an m = p such that

My + -+ My < ¢ m = n, n
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Since
s (2) = $n (%) = gy (2) + -+ + ww (2),
we see that
lsn'(l')"'sn(x)l = 'un+l(x)l + -+ lun'(x)l

= Mn+1+ cor 4+ My

and hence

| sut () = sp ()| < ¢, m=mnnr.

This proves the theorem.
Example. Consider the series

sin x sin2x sin3x

gt Tt
The series
1 1 1
preEteEt

is known to converge. Set.
1
M, =~.
n n2
Then the M-Test shows that the series converges uniformly for all
values of z.

EXERCISES
1. Show that the series

1 . 1-3 .
— 2 Y4 4 are
1+2k2sm¢+2'4ksm¢+ ,

where % is a positive constant < 1, converges uniformly for all
values of ¢.

2. Does the series

b o
DI

converge uniformly in the interval —3 = z = {? In the interval
-1 <z <1? Why?

3. Prove that the series

2 (an cos nx + by sin nx)
n==l

ccaverges uniformly for all values of x if the series
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i an, Z bn

both converge absolutely.

4. Show that the series
. 2 a8
+x+ o + 31 + -
converges uniformly in any bounded interval, but in no unbounded
interval.
§4. Continuity. Turorey, Let the terms of the series
w (2) + w(2) + -+
be continwous in the closed interval
a=< x <5
and let the series converge uniformly in this interval. Then the
Sfunction f (x) defined by the series
S@=u @)+ u(x)+ -
is continuous.

Let xy be an arbitrary point of the interval. We wish to prove
that to an € > 0 chosen at pleasure corresponds a § > 0 such that
1) | f@) = flx)] < lz—z] < 8.

By hypothesis, to an arbitrary ¢/ > 0 corresponds an m indep-
endent of x such that
2) lrm(x)] < ¢ m=n,

for all points x of the interval. In particular, then, since
S (@) = sn(2) + ra(2),

we see from 2), on setting n = m and writing the resulting inequal-
ity first for xy, then for z, that

3) | f(zo) = sm(zo) | < €.
4) ' f(@)=sm(z) | < ¢

On the other hand, m being now a constant, we infer from the
continuily of the un(x) the continuity of the sum, s, (), of a fixed
number of them. Hence

5) | sm (@) = sm(23) | < ¢, lz—z,| < 4.
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Combining the inequalities 3), 4), 5) according to Chap. II, § 10
we obtain the relation:

6) | flz)— flz) ]| < 3¢, |z — x| < 4.

If, then, we choose €', which is at our disposal, equal to %e¢, the
relation 6) becomes the relation 1) which we wished to establishe.

EXERCISES
1. Let

w (2) + wp (2) + -+
be a serics whose terms are defined in the points of an arbitrary
infinite point set M, and let the series converge uniformly in M. Let
x = ¢ be a cluster point of M, — regardless of whether ¢ is a point

of M or not. (In particular, ¢ may be the point c0.) Let each
term approach a limit as x approaches c:

lim u, () = U,
r=C

Then
i) The series of limits:
Ul + L]2 4o
converges.

* It is well worth the student’s time to study this theorem and its proof
geometrically, interpreting the condition of uniform convergence:

sm(x) — e < 5, (x) < sm(x) + ¢

as meaning that all the later approximation curves lie in the strip bounded
by the curves
¥y =sm(z) — ¢ y=sm(z) + ¢
Then narrow the strip by choosing a new ¢/ ¢,
and show eometrically what happens. Y
From a geometric appreciation of what is
going on analytically it is possible to see that
the limiting locus must be a contiouous curve,
and then to establish this result rigorously by
analysis; i.e. by means of the inequalities which
define continuity and uniform convergence. (0] a b
The details are given in the author’s Funk-
tionentheorie, vol. I, Chap. III, § 3; and also in the Bull. Ainer. Math. Soc. ser.
2, vol. 3, Nov. 1896.
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ii) The function f(x) defined by the series,
S@) =u (@) +up(x) + -+~

lin f (z) = 4.

converges:

iti) The limit of the series, namely A; and the series of the
limits, namely
B=U+0Up+ -,
are equal, or
4=B8B.

The result can be written compactly in the form:

lim f(z) = limy (z) + limu, (z) + ---.
z=c =c r=c

2. When m is a natural number,

- (- (-5

m
1 — =1 1
( +m) T+ 1-2 * 1-2-3
+ -+ to m-+ 1| termns.
Prove that
1 m
(1+‘;)

approaches a limit when m = oo, and that

, 1\m 11
,f,’ffi.('+m) =141+ 4o+

3. Let the factors of the infinite product

0

1[1+uﬂ(l‘)]

n==

be continuous in the closed interval a = z = b. Let the series
(@) + (@) + o
satisfy an M-test:
lu”(x)|§M’h mén;
2 My, convergent. Show that the product represents a continuous
[unction, f (x); and that
13

f@ =111 +u@)]¢),

n=1

where p is fixed, and ¢ () is contiriuous and does not vanish.
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4. Prove that the infinite product
L) 1.2
x 1 ——
nI=]1 ( nz)

represents a continuous function, f (z), for all values of x. Show
that f(z) has its roots in the points z =0, £ 1, £ 2,---, and that

limM exists and # O,

=nZT—n
n being any integer.

§5. Power Series. Consider the power series
1) g+ ayx + ay2® + ¢+

For a particular value of x different from 0, 2 # 0, let its terms
be bounded:

lanz"] = G.
Set | z'| = X. Then
jan] = GX™.
For an arbitrary x such that || < X the series 1) converges
absolutely. For
[zly"
n| — . n < [ Shadiiy
lanz"| = lanl-|zl" = 6 (5 )

The series whose general term is this last expression is a convergent

geometric series, and the theorem is proved. Let the result be re-
stated as

TueoreM 1. If the terms of the power series
ay+ ayx + ay® 4+

and bounded for a particular ' # 0, the series converges absolutely
for all x in the interval |z | < |7 |.

A power series may converge for all values of z, like

or it may diverge for all x # 0, like
z+21 224318 -0,
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In all other cases the points for which the series converges constitute
an interval:
— R < x < R,

together with one, bhoth, or neither of the end points.
For, let £ be a positive number for which the series converges.
The point set | £ { is bounded, since by hvpothesis the series diverges

, 1
for some r = z. ",

It cannot, therefore, converge for a £ > |
because of Theorem 1.

Let R be the upper linit of the point set {£{. Then this is
the R of the theorem. We will forinulate the result as

Tueores 2. The domain of convergence of a power series
which converges for some, but not all values of x # 0, is an
interval

— R <z < R,
to which one or both of the end points may still have to be
adjoined.

For the interior points of the interval the series converges ahso-
lutely. For the end points all conceivable behaviors occur.

The term ‘‘convergent power series” is used by some writers to
describe a power series which converges for values of = # 0.

The interval {— R, R) of Theorem 2; or in case the power
series converges for all values of z, the point set — o0 < x < oo,
is called the interval of convergence.

So much for the plain convergence of a power series. 'We turn
now to the question of uniformn convergence.

TuroreM 3. A power series converges uniformly throughout
any subinterval (a, b) which together with its end points lies within
the interval of convergence:

—R < a<b<RB.
For it is possible to choose a positive number % so that
lal, |b] < B < R.
In the point x = k the power series will converge absolutely:
laoi +lay b+ lag|B®+ -,

a convergent series. If, then, we set
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| an | k" = Mh,
the conditions of the M-test will be fulfilled in the interval
—h = x = h
and so the theorem is proved.
It has already been pointed out in §2 that a power series does

not in general converge uniformly in its interval of convergence. In
certain cases it may do so, as:

z
+m -1 z=1

x

12

+

t IH
] %]

The terms of a power series are continuous for all values of z.
It follows, then, by the aid of § %+ and the theorem just proven that
a power series represents a continuous function throughout any sub-
interval (a, b) of its interval of convergence. This is not the same
thing as saying that it represents a continuous function throughout
its whole domain of convergence; but it is true, nevertheless, that
it does.

THEOREM 4. A power series represents a continuous function
throughout its whole domain of convergence.

Let 2’ be any interior point of the interval of convergence,
(— R, R). Itis then possible to choose the interval (a, ) so as to
include 2 in its interior. Hence the function defined or represented
!, But 2’ was any

interior point, and so the theorem is proved for a4l such points.

by the power series will be continuous in =z

But this is not the complete theoremn. Consider, for example,
the series
x> 28

rT— =4 ==, -1 < z=1

2 3

We have not shown that the function is continuous in the
point x =1 of the domain of convergence, nor can we show it by
the M-test, since the series

1 1

1__2__;.?_...

does not converge absolutely.
In a remarkable paper, on the Binomial Series, Abel supplied
precisely the proof that is needed here. It depends on a lemma
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which he introduced and which is of importance in many branches
of analysis; cf. §6. First, however, one last theorem on power
series.

TueoreM 5. If a power series vanishes identically in the
neighborhood of the origin, each coefficient-is 0.

Let
ao+a1:c+a21:2+ e

be a power series which converges in a certain region, — R < z < R,
and let it vanish for all values of x for which — h < =z < A,
where 0 < & = R:

0=ao+alx+a2x2+ N
Set x = 0. Hence gy = 0. And now
O=agqrz+ar’*+ - =x(gg +az+ ),

where this last power series converges, — R < x < R; Chap. VI
§1. It follows, then, that

O=a+az+ -, 0<]|z|<Hh

This series represents a continuous function, by Theorem 4.
Let x approach 0 as its limit. Then

0=a,.

On repreating the reasoning it appears that am = 0, and this
completes the proof.

CoroLLARY. If two power series,
a+axr+ayx®+ -,
by + bz +byx®+ -,

have the same value at all poinis in the neighborhood of the
origin, then corresponding coefficients are equal:

an = by, n=0,1,2---.
For, their difference can be represented as a power series,
(ag— bo) + (g — b)) x + (ag — by) 22 + - - -,

which vanishes identically in the neighborhood of the origin.



UNIFORM CONVERGENCE 145

EXERCISES
1. If
a+artagx®+ -
converges in the interval (— R, R), show that
a; + Qa?_x + 5(131'2 4 e
converges in the same interval.

2. If a power series converges in a certain interval and vanishes
at the origin, but does not vanish identically, show that it has no
second root in the neigborhood of the origin.

3. In the older books Theorem 5 was often proved as follows,
and this proof was copied in the school algebras. Set x = 0. Hence
ay = 0, and so

O=aqx+az®+-.

Divide through by z, thus getting:

0=al +a2.'22+ tr.
Now set x =0 again; thus 4 =0. And so on. What is wrong
in this proof ?

4. After the error mentioned in Question 3 was pointed out,
the writer of the school algebra modified his proof by saying: *“In
the equation

O=a +ayx+ -,
let x approach 0 as its limit. Then 0 = 4;.” What assumption was
he making here?

5. Given a power series:

ay + a x + a4,
If

1
l'ylan|<’;' 0<h, m

show that the series converges when — & < z < h.

1A

n,

6. Show that the power series of Question 5 will converge for
all values of x if and only if

lim;¥ [a,| = 0.
n==oco
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§6. Abel’s Lemma.* I

1) Sk=up +uy + o+,
and let
2) a = s = A, k=1,2,- -, n
Let
3) € = €= " Z & = 0.
Then
4) Ga = u + eu + o0+ uy = oA
Proof. Since
Uy =8y, Uy =S5 — S, *°°y Illp = Sg— Sn—,

we can write:
Gu + eu+ o+ equp =
s+ (s —s)+ - + €(sn— spy) =

(e — €) sy + (€3 — €3) 89 + +++ + (€ney — €1) gy + €0 5n.

Muluply the k-th relation 2) through by €; — €44y, £ =1, 2,-- -,
n— 1; the n-th by €; and add. The result is the relation 4)
which the Lemma calls for.

Application. Let the power series 1), § 5 converge for r = r # 0.
Then it converges uniformly in the closed interval from x =0 to
xr=r.

We wish to prove that, to an arbitrary ¢ > 0, corresponds an
m, independent of x, such that
5) | @mpy 27+ oot amyp | < g, p=12,"",
where 0 S r = rorelse r = x = 0.

From the hypothesis of convergence for x = r follows that
— € < amp r™H 4 o g Ay p 2™t < € p=1,2-

x m+h -
Now choose u; = ampx ’™*; ¢ = (——) - Then

r

x \ M x\ mH

CE) e ()
r r
x| mp x\ M
+ (7) am+p"m+" = (-r_) ¢,

* Jowrnal fiir Mathematik, vol 1 (1826) p. 311.
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. x \ MmH
or, since 0= (—-) =1,
r

6) — & = aup 2N+t amyp TP = €

If, then, we take 0 < ¢’ < ¢, 5) will follow from 6).
Thus the proof of Theorem 4, §5 is now complete.

ExERcises

1. It can be shown by mathematical induction that

costr—cos(n+ }r
2sint x ’

sinx + sin2x + -+ + sinnxr =

r # 2k,
Prove that the series

sin r sin 2x
1 * 2

converges uniformly in any interval (a,b) which together with its
end points lies within the interval 0 < =z < 2 7.

+ “ee

2. The same for the series
¢ sinx 4+ ¢;sin2x + -+ -,
where
==, limec, = 0.

n=—=x

3. Show that

cosnr —cos(n+ 1)z

5 tesztcos2r - foosnz= 2(1 — cosz)

4. What can you say about the uniformm convergence of the
series

cosxr  cosl2x .,
a) 1 + ) + ?
b) cpcosx +cycosx 4 -0 ?

§7. The Binomial Series. In the noted paper cited in §6
Abel discussed the series

1) 1+mx+—m%i)x2+“-,

making no assumptions about the function it may represent.
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If m is a natural nuuber, the series breaks off with a finite
numnber of terms and so converges for all values of x. Its value is,
by the bincmial theore:n,

2) (1 + )™
For any other value of /n the series converges in the interval
-1 <zr<i
and diverges when |z | > 1. Denote its value by f (m, z):
3) f(m,x)=1+mx+—rf-(';l.—;-gxg+"°, -1 < xr< 1.
Give x such a value and hold it fast. Then
4) Sflm+ n,z)=f(m z)f(n z),

as we will now show.
Denote the binomial coefficient by my:
_mm—=1)---(m—k+1)
5) my = 1-2 --- &
Then the series that define the factors on the right of 4) can be
written:

f(max)=1+mlx+m2x2+...;
fnz)y=14+nmzx+na2*+-

These series can be multiplied together by the theorem of Chap.

VII, §5:
6) fmz)f(n,z)=1+(m +n)x+ (my+mn +n)a>+4---

We wish to identify this latter series with the one for f(m + n, z):

7) fm+nz)=1+m+nyz+(m+n)pz®+---.

This can done expeditiously as follows. Observe that the coef-
ficient of z* in 6) is a polynonial G;(m, n) of degree not higher
than £ in each argument. The same is true of the series 7). Now,

when m and n are natural numbers, Equation 4) is true, because
of 2):

8) Gy (m,n) = (m + n);.
Hence 8) is true for all values of m and n by the following theorem.
An Algebraic Theorem. Let
QT+ a4 o oap,
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be a polvnomial which vanishes for m 4+ 1 distinct values of the ar-
poi
gument: x =&, £, -+, £, Then each coellicient ay = 0. )
Suppose the theorern fulse. et ap he the hrst coetticient that
# 0. It surelv will not he a,. Now

ay R Qo xm - + ot am = a, (l’ - S,) el — E;\

Set xr =&, and this last expression must vanish. But no factor
vanishes, and here is a contradiction.
Secondly, let

G, y)=dy(y)x™ + A (3) 2™+ - + An (),
where
Ak ( Y) — bov]n);z + l’l k ).n—-l 4 oo+ bnlk) ,

be a polynonial which vanishes in each point (z, y) = (&;, ;).
where £, &, -, Em are m + 1 distinct munbers, and likewise
No» N> *" s Na are n + 1 distinct
numbers. Then each eoefficient

b = 0. " A

For, give to » an arbitrary
value 75, and hold it tast. 'Then

M
G (x, 3;) vanishes for £, £,, - -,
&m. Hence each .4, vanishes: a
A () =0, k=0,1, -, m. !
k) m 5 £ 3 T

Hold 4 fast and let n; run through
the n 4+ 1 values ny, 7. *- . 9a.  Thus we see that each b/* =
The proof of the relation 4) is now complete.

The tunction, f(m, r) -can be evaluated on the husis of the
functional equation 4} anl the continuity of the funrtion :mherent in
its expression bv means of the series. First, a diuression

On the Functional Fquaiion:*

9) Flx+y)=F(x)F{y).
Let
Fix), —co L r< o,
be a solution.

* Cauchy treated this and allied functional equations in the Cours d'caalyse
algebrique of 1821; Chap. 5.
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i) If F(x) vanishes for a single value of x:.

. F(xo) =0,
then
F(x)=0.

For, set ¥ = x,. Then
F(z + x) = F(z) F(x) =0
for all values of z.

ii)) Excluding the case just considered, we see that

0 < F(x), —o0o < < o0,
For

F(z) = F(%) F(-;-)
iii) Again. excluding Case i), let x = y = 0. Then

F(0) = F(0)2.
Since F (0) 5% 0, it follows that

10) F(0) = 1.
Let

11) F(1)=a.

Then

F@2)=F(1)F(1) = a?

F(3)=F@Q)F(1) =a’,
and, generally,
F(m)=a" m=0,12.---.

Next, let x =y =.} Then
F)=F®)FQ@)
F(3) = al.
Since obviously
Flry+ 2y + 2p) = F(xy) F(xy) *+ - F(zn),
it follows that
12) F (—-) = a% .

n

That a positive n-th root of any positive number exists—and only
one such root-— was shown in Chap. II, § 10.
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We now infer that

m m
13) F (-;; ) =an,
where m and n are any twe natural numbers.
Let y = — 2. Then
F(0) = F(x) F(— =),

—-_1

14) F(—2)= )
Thus we arrive at the result that
15) F (&) =4,

where £ is any commensurable number.

Continuity. Concerning the continuity of F(z) we know
nothing. We readily see, however, that if 7 (x) is continuous for
a single value, x = z;, then F(z) is continuous for all values of
z. For,

F(zy + k) — F(z)) = F(x) [F(h) — 1]
If the left hand side approaches 0 with 4 for a single zg, it follows
that
lim F(h) = 1.
k=0

Hence the left hand side approaches 0 for an arbitrary xy.
The Function f(m,x). Identifying the function f(m,z) with

F(m) we see that

flmz) =0 + 2)7,
or

16) (1+x)"'=1-l-mx+_m_(l'1'_._;_1)r2+...

for all rational values of m.

On the other hand the series 16) represents a continuous func-
tion of m for all values of m. For, it converges uniformly in any
bounded interval, and its terms are continuous. Let M be any posi-
tive constant. Then '

mim—1)-(m—k+1)
12 - & #| =

M(M+1)“'(M+k"'l)|xlk=Mk' lmléM’
12+ k




152 FUNCTIONS OF REAL VARIABLES

and the series

M+ M, + -
is shown at once to converge. Hence® f(m, z) is continuous in the
interval (— M, M).
Let m = m’ be any value of m. Then M can be so chosen
that m’ will lie within the interval (— M, M). Hence f(m, x) is
continuous in the point m', and the theorem is proved.

The Function a*. Let a be any positive constant less than 2. Set

14+ x=a, x=a— 1.
Then
-1 < xr <1,

and this is a value of x such as we have been considering.

1t follows, then, that for such a value of a there is a function
of m, continuous for all values of m and coinciding with

am

for all commensurable values of m. We define a™ for irrational values
of m as equal to this function. Thus the function 4™, or a7, is
single-valued and continuous for all values of the exponent, m or =z,
if 0 < a<2

If a = 2, let

al = 1 .
a
Since
al™ = —a—lm—

when m is rational, and since a’” is continuous and positive for all
values of m, it follows that there exists a function continuous and
positive for all values of m, and coinciding with 4™ when m is
rational. We define @™ as equal to this function when m is irra-
tional.

Thus the function a* is defined and continuous for each positive
value of a. Moreover,

a*tr = a* o?,

On the other hand we have found the most general continuous

solution of the functional equation 9):

F(r) = a*, a=F(1); or F(zx)=0.
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The Functions €, logz, . With the aid of the results just
obtained, together with the Exercises that follow, it is possible to
develop systematically the theory of the functions

e, log z, "

The reader will find in profitable to make this study later. A better
first approach to these functions, however, is through the integral;

Chap. VI.

EXERCISES
1. If x is a constant numerically less than unity, show that

) 2
lim t+om=1_ =42
m=0 m 2 3
2. If F(x) is a continuous solution of the functional equation
9), show that
lim Fh) -1
. h==0
exists.
3. Show that a continuous solution of the functional equation

9) has a derivative:

4P cF),
dr
where
. Fh) -1
= lim ——~—— |
c hlfr; i

4. Prove that
143" 1 1
: 1 — — . —_— e
i“n(-*_fb) 1+1+21+5!+

when @ becomes infinite, passing through all real values numerically
greater than 1.

5. Asswning the properties of the functions €%, log z, developed
in Chap. VI, discuss the functional equation:

F(z+y)=F(2)+ F(y)
Show that its most general continuous solution is:
F(x) =cx, — 00 < g < o0,

where ¢ is a constant.
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§8. Integration of Series. Let a convergent series of con-
tinuous functions he given:

1) f@) =y @)+ + -, a

IA
8

IA
Kl

Can it be integrated term-by-term? i.e. will

2) jf(x)dx:jul(x)dx+ju2(x)dx+...

be a true equation?
Let us analyse this question in detail. There are really three

questions here rolled into one:—

a) Will the series
)

3) ful(-t)d—t+fl£«_),(x)dx+

converge ?

b)  Can the function f(r) be integrated? i.e. does

4) j fz)dr

have a meaning?
c¢) If the answers to Questions a) and b) are both affirmative,
will Equation 2) be true?

Consider the approximation curves,

5) Y = Sn (I)’
where
sn(z) =u (2) + ++° + us ().
They are all continuous, and so
3
f sn(x) dx
e

means the area under the n-th curve.
Consider the series 3). Let

e b
6) S,,=‘/ ul(‘.z')dx+--~+fu,.(.z)dz.
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The series 3) converges if S, approaches a limit; and conversely.

Now
i ' 3

7 Sp = fs,. (r)dx.

Hence Question a) is the question of whether the area under the
curve 5) approaches a limit.

Example. let X
1 A
sn(z) = 2nhpz, 0o=zr= —; .
2n X
sn(x) =2h 2nhn,x ! < zr< 1 :
x) = - y 37 rs —; :
" " " 9n n h’"
= ! < E +— I
Sn(x) —_01 ;' < zx = 1. O _zL' -;l'- i

The series 1) converges, and

flx)=0, 0= =r

A

1.

The value of Sy is the area of the isosceles triangle, or

_hn
T on’

Sn

We have not yet said how k, shall vary with n. Suppose, for ex-
ample, that

i) ks =n% Then

and the series 3) diverges. So, naturally, there cannot be any ques-
tion of integrating it term-by-term. — Suppose, however, that
i) hr=1/n. Now,
i
2y'n
The series 3) converges, and its value is 0. On the other hand the

integral 4) converges, and its value is 0, too. So here the series 1)
can be integrated term-by-term.— Lastly, let

n =
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iii) hn, = n. Consequently

Sp = i
The series 2) converges; but its value, #, is not equal to the integral
4), or 0.
We see, then, that even though each side of equation 2) may
have a meaning, it does not follow that the equation is true.
A sufficient condition for integrating a series term-by-term is
the following.
THEOREM. Let the terms of the series
w (x) + uy (x) + -
be continuous in the closed interval
a=zx = b,
and let the series ccnverge uniformly in this interval. Then the
series can be integrated term-by-term:

f@=u @) +u()+ -

ff(x)dx::ful(x)da}+J§u2(x)d,+

Proof. The function f(z) is continuous; Theorem, § 4. So the
integral

8) jf(r)dx

has a meaning. Next, let
f(@) =sa(z) + ra(z).

Then, the functions s, (x), rn (z) being continuous, we have:

jf(x)dz—jsn(x)dx=jr,.(.z‘)dz.-

Since the series converges uniformly,
|r,.(x)|<e, mén.

Hence

b

f ra(x) dz

b
_s_f.|r,.(,~.)|dx<(b—a)e, m = n
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1t follows, then, that

jf(r)dx - .'/’..Sn (x)dx

< (b— a)e. m

HA

n,

and so i) the series of integrals converges; and ii) its value is the
integral of the series, or 8).

EXERCISES

1, Show that a power series can be integrated term-by-term.
State this theorem precisely.

2.7 Prove :
jvm=§[‘+ (3)7 %+ (53) e+
(532) e+ ] osk<u
~3 Prove:
JrEE a= - (1 - (35 -
;“%%)555—] 0=e< 1.

4. Give a new example of a series of continuous functions which
does not converge uniformly, and still can be integrated term-by-
term.

3. In e-proofs like the above we have hitherto used two €’s —
the € of our adversary, and the ¢! of our own. Throw the prool
of the Theorem of the text into that form.

6. Let

ay+ ayx + a1 + -
be a power series which converges when 0 = x < k, but diverges
for x = h. Suppose, however, that the series
h2 hf’.

a0h+a1-§ +a2—5-+

converges. Show that the former series can be integrated term-by-
term in the interval 0 = r = A.
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Formulate precisely each item, or detail, in the theorem you are
asked to prove.

Example: ’

5
7. Consider the series of the Theorem proved in the text. Show

that the series
z 2z
ful(x)da:+fu2(z)dx+
a a

converges uniformly in the interval (a, b).

1
9=1— —
log 1 2+

8. Does the series for which
1
14+nz’

converge uniformly? Can it be integrated term-by-term?
Plot the first few approximation curves.

0

1A
1A

1,

sa (z) = x

9. The same for
_ 2n%zx
@@ =ee 0

A
8]
1A

10. Show that the series
1 1 1
tr2 Fr2tTEra2t
converges uniformly in the interval 0 = z < oo. Can it be in-
tegrated from 0 to oo?

11. It can be shown (cf. Chap. VIII) that the function

Sn(x):___su;x_'_smf.t e L sinnz

is bounded for all values of n and z. Show that the series

sinx |, sin2x
T ot

can be integrated term-by-term throughout any interval.
12. Prove that the series

« 2=z

can be integrated term-by-term.
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§9. Differentiation of Series. Let a convergent series of
differentiable functions be given:

1) f@=u (@) +uE)+ -, a

1A
8

1A
o

Can it be differentiated term-by-term? i.e. will
2) f1@) =ui(z) + w @) + -
be a true equation?

This qucstion, like the corresponding one for integration term-

by-term, consists of three parts: —
a) Will the series

3) ul (z) + ug (z) + ++-
converge?
b) Can the function f(x) be differentiated? i.e. does
4) flxg + Az) — f(x)
Ax

approach a limit when Ax approaches 0?
c) In case the answers to Questions a) and b) are both affirma-
tive, will 2) be a true eqution?
Consider the approximation curves
5) y =sn(x),
where
sn(x) =u () + -+ + up ().
Each one has a tangent at every point, and so
5; (x0)
means the slope of the n-th approximation curve at the point x = ;.
Consider the series 3). Let
6) Sn(x) = uj (@) 4+ + u, (2).

The series 3) converges at a point z =z, if S,(x,) approaches a
limit; and conversely. Now

7) Sn (2) = s, (2).

Hence Question a) is the question of whether the slope of the curve
5) at a point x = xy approaches a limit.
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Ezxample. Let*

S,.(x)=1—q_—f,—2—x2-, —oo L x < oo,

The series 1) converges and

2j
F@=o. ‘A
The function S, (z) is here: 7|O *

A + 2222

At the origin,
Sx(0) =1, lim §, (0) = 1.
n==x

Thus the series of the derivatives, 3), converges. The function
f(z) has a derivative at the point z = 0:
f’ 0)=0.
But the derivative of the series, namely, f'(0) = 0; and the series
of the derivatives, namely,
1=u{(0) +u3(0) + ---,
are not equal.

A sufficient condition for differentiating a series term-by-term
is the following.

TwuroreM. Let the terms of the series
8) u (z) + wp(x) + -+
have continuous®® derivatives in the closed interval
a=xr=b,
* Ta plot the curve
x
r=1 + n222’
begin with the curve:
=_F
rEIF A
Then make the transformation of similitude,

x
o == S o Y.

#% The restriction of contiguity can be removed by means of a different
proof, cf. § 10.
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and let the series converge. Let the series of the derivatives,
9) uy (2) + ug(z) + -+,

converge uniformly in the interval. Then the series can be differ-
entiated term-by-term:

10) f@)=u (@) +u(x) + -
11) _f'(r)=u{(x)+uz'(x)+---

Observe all that the theorem contains. It is first and foremost
an eristence theorem respecting the derivative of f(x). It asserts
that, at an arbitrary point x = x’ of the interval, the variable

12) f&+ Ax) — f()
Ar

approaches a limit as Ax approaches 0. Finally, it identifies the
derivative f’(z) with the value of the term-by-term derivative series.

Proof. Let
13) ?(I)=u;(r)+ué(x)+....

The function ¢ (z) is seen to be continuous by §4. And by §8 the
series 13) can be integrated term-by-term:

x z z
14) fgp(x)dx:fu{(x)dz+fué(x)d:c+
Zo Zo Zo

=[u () —u(x) ] + [ (z) —wp(z0) ] + -+~

By hypothesis, the series 8) converges for x = z,:

15) [ (zo) = uy (z9) + up (zo) + -+
On adding 14) and 15) we find:
Jo@ar+fler=u @+ mE@ -
Jo
Hence

flo)= J.gp(x)dx + (o).



162 FUNCTIONS OF REAL VARIABLES

The function on the right of this equation has a derivative, since

d x
d—;f(p(x)dx:(p(x).
z,

Therefore f(z) has a derivative, and
S (z) = ¢ ().
This completes the proof.

We could have stated and proved a more general theorem, since
we have used the hypothesis of the convergence of 8) only for a
single point. If, then, we had demanded that 8). converge in one
point, x = x,, of the interval, our proof would have shown that 8)
necessarily converges in the whole interval.

But this formulation of the theoremn would be unfortunate for
the needs of practice, since in the applications of the theorem one
always knows in advance that the series 8) converges, and so this
other formulation, by stating and proving what is known before
hand, would have distracted attention from the main hypothesis,
which one must show is fulfilled, namely, the uniform convergence
of 9).

It has turned out that the series 8) converges uniformly. But
this property would not help in the formulation of a sufficient con-
dition. The series of the above Example converges uniformly, but
it cannot be differentiated term-by-term.

Example. A power series can be differentiated term-by-term. Let
16) a+azr+ayzt+ -
converge in the interval
—R < z < R.

Consider the term-by-term derivative series:
17) a1+2a2x+5a3x2+---.‘
Its terms are continuous and it converges in the above interval; §5,
Exercise 1.

Let z’ be any point of the interval. It is possible to find a posi-
tive nurnber A such that |2/| < 2 < R. In the interval (— &, k)

the series 17) converges uni‘formly. Hence 16) can be differentiated
term-by-term in the point z’. But 2z’ is any point of the interval.
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Observe the order of choice: — first, z/; then the interval
(= A, h). It would not be possible to prove the theorem by applying
the test to the interval (— R, R), since a power series does not in
general converge uniformly in its interval of convergence.

Remark. The corresponding theorem in the complex domain
is simpler. If u,(z) is analytic in a two-dimentional region S of the
complex z-plane, and if the series

w (2) + u (2) + -+

converges uniformly in S, then it defines or represents a function
f (z), analytic in 8, and the series can be differentiated term-by-term

in S.
EXERCISES

Show that the following series can be differentiated term-by-
term.

- 2z
1. 3 .
n—x
n=1

2. z@_ﬁ.

3. i[

n=1tn—2x n]
B

z [log(i +;:-) —xlog (1 + ;11-)]

n=1

>

Show that the series
1 1 1
= - +
Ve Va+r Va+2r

o)}

-—

converges uniformly in the interval 0 < a < + o

6. Show that the series of Question 5 can be differentiated
term by term.

7. If, in Ex. 3, §4, us(z) has a continuous derivativd and the
series

up (z) + uy (2) + -~
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satifies an M-test, the function f(x) will have a derivative given by
the series

[ (z) _i Uy (z)

f@ St tmE@)
provided no factor vanishes.
Complete the theorem for the case that a factor vanishes.

§10. Double Limits and the s(n, m)-Theorem. The
foregoing cases of the continuity of a series, its integration term-by-
term, and its differentiation term-by-term, are examples of double
Limits. Thus, for continuity, we start with a convergent series of
continuous functions:

f(1)=u1(x)+u2(x)+ e

and inquire when f(z) will approach a limit as x approaches x,
that limit to be f(z,):

1) lim f (2) = f (z0).

Now
S () = lim s, (z),

and so the left hand side of 1) can be written:

2) ix‘r:xo[rl'i:is,,(x)].

On the other hand, the right hand side of 1) can be written as

3) lim [lim Sn (:r:)]

n=x< & r=2,

For, sp(z) is continuous at £ = x; and so

$n (zo) = lim s, (2) ;
2z,

£ () = lim o (20):

The question of continuity reduces, then, to the question of
when the double limits 2) and 3) will be equal, or

4 Jim [ lim o ()] = fim [ Jim sn(2)].
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Again, in integration term-by-term, the question is: When will

5) f(’lai;gs,,(x)) dx'—:rl‘i:mmfs,,(.t)dx?

a

Since the definite integral is itself by definition a limit, we have
here, too, the formulation of the problem in terms of the equality of
two double limits.

And, thirdly, in difterentiating a series term-by-term. Here,

TN — s . sn(r + Az) — sa(x)
G o [in e et
whereas
6b) uy (z) + ug(x) + -+

= lim [ Yim sn(z + Ax) — sp(z) ]
neoo L An—0 Ax
That two double limits are not in general equal, even when
both exist, has appeared time and again in the foregoing paragraphs.
But if this is the point to be illustrated, a far simpler example can
be given. Consider the function

=2z +3y 0 < 0< v
?(’v}’) x+y ’ x, Y
Here,
lim ¢ (I' y) = 5'
zx=0
and so
i h s =3.
}}3 [ im ¢ (z y)]
But

lim ¢ (z, y) = 2,
=0

lim [ lim ¢ (, 7) ] = 2.

Thus each of the double limits converges, but their values are
not the same.

The short proof given in the older books on the Calculus for
the theorem :
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9%u __ 2%u
dxdy ~ dydx
was based on the assumption that, when each of two double limits

exists, their values are equal. And the same criticism holds for
applying the rule for determining the limit $:

. fl@ . fl@
fm oy = im o

a second time, when f’(a) =0 F'(a)=0, thus arriving at the
result:

lim M = lim

z=a F (-T) r=a

' (z)
() etc.
It was not until the middle of the last century that this procedure
was justified by sound proofs.

The following theorem has a wide range of applications in ques-
tions relating to double limits. It is an outgrowth of the theorem of
§ 4, Exercise, and it will be convenient to state it first in that

restricted form. The notation, s(m, n), is so chosen as to suggest the
sum of the first n terms of a series,

w (m) + uy(m) + -+,
whose terms depend on a parameter, m:
sn(m) =u (m) + -+ + un(m),
s (m, n) = sp (m).

Turorem. Let s(m,n) be a function of the two natural
numbers, m and n, which satisfies the following conditions:

a) s(m,n) approaches a limit when n becomes infinite:
lim s (m, n) = f (m).
n==>3

b) s(m,n) approaches a limit when m becomes infinite:

lim s (m, n) = Sa.

c) s(m,n) converges uniformly, when n = co:
| stm,n') = s(m,n)| < ¢, v=nnr,

hd
where v does not depend on m.
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Then:
i) f (m) approaches a limit, when m = oo

lim f(m) = 4.

ii) S, approaches a limit, when n = oco:

Iim §, = B.
n==00
iii) A4=B.
Or:
T i [t ],
o Jm [imetnm =i [im (]

Proof. In Condition ¢) let m = oo:
8) [ S —Sn| = ¢ v = n,n.

Hence S, approaches a limit; denote it by B:

lim S, = B.
nN=x
In 8) let n’ = o0
a) |B—Ss| = ¢, v = n

In Condition c) let n' = oo:

8) | f(m)—s(mn)| = ¢ v=mn
Finally, let p be so determined that
7 [8& —s(mv)| < ¢ p=Em

On writing a) and B) for n =v and combining with y) we
have:

|B—f(m)| < 3¢, p=m
Hence f(m) approaches a limit, 4; and 4 = B.

Both theorem and proof admit an immediate generalization as
follows. Let {x} be an arbitrary point set having a cluster point
x ="a, or extending to + ©© (a= + ) or to — o0 (2= — ).
Similarly, let {y} be a point set with y =& as cluster point (in
particular: b= 4 00, — c0). Let s(z,y) be a function defined for
each point z of {z} and for each y of {y}, where z, y are chosen
arbitrarily and independently. And now the hypothesis is:
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a) ;ina s(z, ) shall exist; denote it by f(x).

b) lim s(z, y) shall exist; denote it by ¢ (y).
r=a

o Islxy)—s@y)l < e {gé%;r::;é:,

where 4 is independent of z.
The conclusion is:

i) f(x) approaches a limit:

lim f(x) = A.
it) ¢(y) epproaches a limit:
lim = B.
;dsv(y)
iii) A4 = B.
Or:
. . : =% K ’ .
9) gna[lylglbs(ry)] yg[gs(xy)]

Remark. From the hypotheses of the theorem it does not follow
that in Condition c¢) the réles of m and n can be reversed. It can,
indeed, be inferred that, to an arbitrary positive €, correspond two
numbers, p and g. such that

|s(mn') —s(mn)| <-¢ pP=mm g = nn
If we set n! =n, we get: )

|s(myn) —s(mn)| < ¢ p=mm; g=n
But ¢ depends in general on €. As an example let
10) s(m,n) = o) (:/m) .

Of course, there is nothing paradoxical in this situation. The
existence of a two-dimensional limit, as

11) lim s(m, n),
(my B =(c<y )

does not in general carry with it the existence of either of the one-
dimensional limits:

12) lim s (m, n), lim s(m, n).
nE=3x me=e0
Example: ) )
13) s(mn)= Snm | sinn

n m
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And conversely, the existence of both these one-dimensional limits
is not enough for the existence of the two-dimensional limit 11):—

Example:

14) s(m, n) = nm

n?® 4+ m? -’
The uniform condition c¢), combined with the one-dimensional limit
12,), does insure the existence of the two-dimensional limit 11).

A Further Extension. Let {x} denote a point set in space of
n dimensions, and let (a, -+, a@,) be a cluster point of the points
(x1, "+ +, zn) of the set. Let {y} be a point set in space of m
dimensions, and let (), *++, bn) be a cluster point of the points
(71, "+, ym) of this set. In particular, one or more of the a’s may
be infinite, a; = + o0, — 00, or co; and similarly for the &’s.

Let s(z,y)=s(x, ", xn; 71, °**» yn) be defined for each
point (x) of {x} and for each (y) of {y}, where (z) and (y) are
chosen arbitrarily and independently.

The last form of statement of the theorem can be interpreted as
it stands for the present case. But to avoid so much abbreviation we
will say —

Hypothesis :

a lim s(xq, "y Ty vy, "y
) ) (1 ny N1 _)’m)

shall exist. Denote it by
Fz oo, zn)

b lim x’...'x; ’uoo’
) Jm s(x ns X1 ym)

shall exist. Denote it by
@ (1 w0 m)-

C) '3(3’1,“’,In:_‘Y{"",y,:.)"-"(x'h"'sl’n:,’)’1»"'»}’m)‘< €,

0< |yi—bi| <8 0<|y—tel <8, k=1,-m
where & is independent of (zy, - -+, Zn).
Conclusion :
i) f(z, *+*. zn) approaches a limit:
Lm f(z,+*:, zn) = 4.

(z)e= @)
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il) @ (¥, ', ¥m) approackes a limit :
lim ¢ (yy, "+, ym) = B.

=)
1ii) A= B.
Or
10 lim [ 1 e sy ] =
) rz)l:(la)[ )ty sl s 1 4 "')]

lim [ Hm sz, cve. To: 47, » o ]
(7=t L (B)=(a) (11 y Ty )1y , ym)

ExERcISE

Show that, in the s (m, n)- Theorem, Condition c) can be re-
placed by the following: —
c) s(m,n) satisfies the relation:

|stm,n!) —s(m,n)| < ¢, r=m, v = n,nl,

where p and v both depend on e.
The conclusion will be the same as before.

§11. Application: Differentiation of Series. The theorem
of §9 is adequate for the needs of practice. If is of interest, however,
to note the following

THEOREM. Let the series
1) u () + up(2) + -
converge in the interval

a< < b
Let u,(x) have a derivative and let the series
2) U () + uy () + -+

converge uniformly in an arbitrary subinterval whose end points
lie in the interval. Then the function

3) S@=u () +u(z)+ -

has a derivative and

4) F@)=u @) +wm@)+ .
Proof. let

5) sn(x) =*‘u1 () + 4+ un(x).
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Let 7 and xy + Az be two points of the interval. Let

n
smnﬂ=ZW%+Aﬂ—WM)

k=1 Ax
Then i lim s(Azx,n) =5, ;
) am_ s (A7, m) = sp (zo)
ii) Jim s(A:r, n) =f(x°+A't)"'f(ro)
n=x Azx ?

and we wish to show that

6) lim hm s (Az,.n) ] = hm [lun s(Ax, n) ]

n==x

“This conclusion will be justified if

i) |s(Az,n)—s(Azx,n)| < ¢, v = nn,

where € > 0 is arbitrary and v is independent of Ax. Now:

7) s(Ax, n') — s(Ax,n) = i, u (xo + Ax) — u; (x9) .

—n+1 Ax

Let ¢{x) = sp (x) — s (x).
Then the right hand side of 7) has the value

¢ (xy + Ax) — @ (x,)
Ax

= ’0’(1'0 + aAI) =

s (zo + 0AZ) — s (xo + 0AT).

Because of the uniform convergence of the series 2) we have :

Lsw () = 2 ()| < &

171

n,n,

where v is independent of x, no matter where x lies, and hence

when, in particular, x = x, + 8Az. This completes the proof.

The theorem is more general than the test of §9 in that it

does not presuppose the continuity of the derivatives u;, (x).

It is less

general in that it demands the convergence of the series 1) for every

7~ instead of for a single x. The theorem is found in Harnack’s

Differential- und Integralrechnung, §129.
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§12. Condensation of Singularities. In the examples of
non-unifor.nly convergent series hitherto considered, the removal of
the neighbornood of a single point of the interval of definition of the
terms yields a new interval, in which the series converges uniformly.
This situation is not characteristic for the general case. A series of
continuous functions may converge toward a continuous function:

@)=y (z) + w(x) + -, a =-x = b,
and yet the convergence may be non-uniform in every subinterval:
a=d ==V =0

If is easy to construct such examples by a Method of Condensa-
tion of Singularities, due to Hankel. Such an example is studied
in the Author’s Funktionentheorie, vol. I, 1928, p. 92, and illus-
strated by graphs. Starting with the function
1) y =v(z) =v2 ze =,
the graph of which is readily plotted, form the function
2) ¢n(x) = Y (nsin® rx).

It is now easy to plot the graphs of the functions:

1 1
ry=¢alx), y= g%(Q!x), .7’_:‘3_':?71(5!1'),

Form the series, the suun of whose first n terms is:
1 1
5) Sn(x):¢n(x)+a¢n(2!x)+ e +;'-go,,(u!z).

This series converges to the value 0 for every x, but it
converges non-uniformly in every interval.

A further important application of this Principle is to the forma-
tion of non-analytic functions of real variables. A function of the
real variable, z, is said to be analytic at a point, x = x,, if it can
be developed into a power series in the neighborhood of the point,
i.e. developed by Taylor’s Theorem. The classical example, due to
Cauchy, of a function which is continuous, together with its deriva-
tives of all orders, and yet cannot be developed by Taylor’s Theorem,
is the following:

~ {f<x)=e‘fz z# 0,
4
) flo)y=o.
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I'or the point x; = 0 all the derivatives vanish, The Taylor’s ex-
pansion :

2
f(xo) + z f1 () + Qi!f"(l'o) + -

converges, but it represents, not the above function, f (x), but the
function 0.

Cauchy’s example has this pecularity in only one point. It is
easy, by Hankel’s Principle, to construct examples of functions which
have derivatives of all orders in every point, but which cannot be
developed by Taylor’s Theorem in any interval. Such an example is
the following, Let

5) ¢ (z) = f (sin rx),
where f(x) is the function 4). Then

1
5) @) = 3, £

is the desired function; l.c. p. 126.

ExERCISES ON CHAPTER V.

1. Show that the series:
-]
Z r*(a, cos n8 + b, sin n8),
n=1
whose coefficients a,, b, are bounded, represents a function which is
continuous, together with all its derivatives, within the circle r < 1,

and statisfies Laplace’s Equation:

2%u du 2%u __
S e T
2. Let
e+ + -
be a convergent series. Show that the series:
sh¢ sh 2¢
Ysha sha '€ 2sh2a -

converges upiformly in the interval 0 = ¢t = a.
3. Does the series

> 2
Yme

ne=1
converge uniformly : °
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i) in the interval — ¥ =< z = %?
il) in the interval — 1 < = < 1?
iii) in the whole interval — oo < x < co, the points x =0,
+ 1, & 2, -++ having been rernoved ?
4. Let the series

u () + w(z) +--
converge uniformly in the interval
a=zxz<b
and let it converge in the point x =b. Show that it converges
uniformly in the closed interval

asSzx=b
5. let
fl@&)=u(z) + u(z) + -+

be a series which converges uniformly in the interval

a =z < b,
the terms being continuous in the closed interval ¢ = » = b.
Show that f(x) approaches a limit when x approaches b.

6. Let ¢ (zx) be defined in the interval 2 < z < b, and let
the sum
¢1(z) + @2 (2) + -+ + @alx),

regarded as a function of x and n, be bounded. Let
& = dy = 0, lim &, = 0,
be a set of constants. Show that the series

@191 (7) + ap@p(2) + -+
converges uniformly.

7. Let ¢, (x), ¢p(x), - -+ be defined in the interval a < z < b
and let

ow (%) = ¢u(2), n< n';
lim @,(x) =0.
Pe=o
Let ¢, c5, + - be a set of constants such that
a+c+ -+
is bounded, n = 1, 2, ---. Show that the series
g (x) + crpo(z) + -

converges.
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Give an example of such a series which does not converge
uniformly.

State a sufficient condition, that the series converge uniformly.

8. Let f(x,a) be a function which, for each a of an infinite
point set A4, is defined for every value of x in the interval

a=zx=h
Let @y be a cluster point of A, not belonging to 4. Let f(z,a)
approach a limit when (z, &) approaches (z,, &), where z, is an
arbitrary point of the interval (a,5), and « is restricted to the point
set 4. Denote the limit by ¢ (z):
o=, lm flxa)
Show that ¢ (x) is continuous in the interval (a, ).

9. Prove, furthermore, that the function f(z,a) of the pre-
ceding question converges uniformly as a approaches a,.

Is the converse proposition true?—namely: If f(x, a) is defined
in the points a = x = b, & in 4, and if f (z, @) converges uniformly
as o approaches ay, then f(z,a) approaches a limit when (z,a)
approaches (zy, &), where z) is an arbitrary point of the interval
(a,b) and a is restricted to the points of 4.

10. Can a function which is everywhere discontinuous approach
a limit i) non-uniformly; ii) uniformly?



Chapter VI
The Elementary Functions

§1. The Trigonometric Functions. The noblest branch of
Physics is Geometry, or the physical science of space. Next in im-
portance, in the physical sciences, is Kinematics, or the science of
motion. The most important class of motions is that of oscillations —
the oscillation of a point, the vibration of a membrane, a wave in a
three-dimensional region of space. The simplest case is that of Simple
Harmonic Motion, dominated by the differential equation:

d’x o _
pre + n?zx =0.
It we change the variable from ¢ to =, where
r=nt,
the new equation becomes :
&2z
=0.
dr? tz

It is this differential equation which dominates the whole class
of phenomena known as waves, and so it is natural to enquire what
the functions are which constitute its solution. We will change the
notation and write the differential equation in the form :

(A) % +y=0.
By a solution of this equation in a given interval is'meant a

function,
y=f()
which has a second derivative at each point of the interval and satisfies
the differential equation; i.e. causes the left-hand member to vanish
identically:
f"(@) + f(z)=0.

1t is clear that such a function admits continuous derivatives of
all orders. For, f'(x) exists by hypothesis, and is continuous, since
f" (x) exists. Moreover, f”(x) is continuous, since

S (@)= —f(a)
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Next, f''(z) exists and is continuous, since this last equation has
on the right-hand side a function witn a continuous derivative. And
so on.

Solution by a Power Series. As the interval of definition we
will begin with one including the point x = 0, and enquire whether
there be a solution given by a power series,

y=a+azr+az+---
Suppose this is the case. Then

d? —
Irzz=2a2+5-2a3x+ e tn(n—Na, 224 o

A necessary condition is obtained by adding these two series. The
result is a power series that vanishes identically. Consequently each
coefficient must vanish.

ay + 2-1a, =0, a + 3:2a3 =0,

as + 4-3a, =0, ag + 5-4a; =0,

The coefficients a; and a; can be chosen arbitrarily. The re-
maining coefficients are then determined uniquely. Thus, if g, =0,
a; =1, we find the series

Both of there series converge for all values of z and so define
two functions :

3 2
s(x)_:x_g!_.{.g'_._ cee

2 x2  zxt
c(x):I__Q-—'-.{.Z!-_—.-.

Conversely, these functions are solutions. For each of them,
when substituted in the differential equation (A), is seen to satisfy
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it. Or it would be possible to start with the equations for the
coefficients and show that each step can be retraced.
The function s(z) is odd, and c(x) is even:

2) s(—x)= —s(x), c(—z) =c(2).
Moreover,
s(0) =0, c(0) = 1.
The Derivatives of s(x), c(z). Observe that

3) s(z) = c(x), d(zx) = —s(x).
Hence [ SI(I) — C(.ZL‘),

s'(z) = — s(x),
K Mz) = — c(z),

)= s(x),

and now the further derivatives repeat themselves periodically in
blocks of four.

The Addition Theorem. From this property and from the
continuity of the functions s(x), c¢(z) we now infer by the aid of
Taylor’'s Theorem with the Remainder that s(z) can be develoved
about an arbitrary point, x = x;:

R B
8) sz +h)=s(n) +clm)h—slx) g —cln) 57+
The right-hand side can be written in the form:

Y (R

3 >
bt (1= B E ).
Hence we see that )
6) s(xy + k) = s(xy)) c(B) + c(z) s (R).

A similar relation holds for ¢ (zy + %). Since xy and & are both
arbitrary, we may write more symmetrically :
7 { s(u+ v) =sw)c(v) + c(1)s(v).
) c(u+ v)=clu)c(r) — s(u)s(v).

Thus we have obtained the Addition Theorem for these two
functions.
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The Pythagorean Identity. Differentiate the function:
s(x)2 4 c(x)?:

;; [8(3-')2 + 0(1')2] = Q[S(I)C(x) - c(x)s(x)]Eo,

Hence
s +c(x)2 =k
Setting £ = 0, we find: %k =1. Hence
8) s(x)2 +c(x)2=1.
We shall see a little later that it is reasonable to describe this

relation as the Pythagorean Identity.

Roots of s(z), ¢(x). The function c¢(x) has a positive root.
For, suppose this were not so. Turn to the function s(z). Since
s(0) = 0, and, by hypothesis,

sS(x)=c(x) > 0,

it follows that s(x) is positive and increasing for all positive values
of x. By the Law of the Mean

c(x) =cla) — (xr — a)s(X), a< X < x
Ifa >0,

0 < s(a) < s(X),
hence
c(zr) < c(a) — (x — a) s(a).

But the right-hand member is negative for large values of z, since
s(a) > 0. From this contradiction follows that c¢(x) has a positive
root. Let p/2 be the smallest positive root of ¢ (x).

Further Identities. Periodicity. From the Addition Theorem
it follows that

9) s(x+%) = c(x), c(x+’2i) = — s(z).
Furthermore,

10) s(z + p) = — s(a), clx + p)=—c(z)
and finally :
11) s(z + 2p) = s(x), c(x + 2p) = c(x).
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This last identity shows that the functions s(x), ¢ (x) admit the
period 2p. It remains to show that this is a primitive period.

The function ¢(x) is even, and hence —p/2 is the first negative
root. The graph of the function

y =c(x)
in the interval — p/2 < z =< p/2 /11<
is, then, as shown. From this
graph we obtain the graph of £ ol £ ‘
y =s(x), 0=2z=p,
by the transformation rys()

iz TN
=z 4+ \/io

and the relations
c(zj—%) =-—c(.1:’+—§) = s(a").

Since s(z) is an odd function, the graph in the interval :
—-p2=x=0

is found by rotating this arch about the origin through 180°,
Finally, the periodicity gives the complete graph.
That 2p is a primitive period is now easily shown. For, let o
be any positive period. Then
s(z + o) = s(x).
Hence, in particular,
s(0) =s(0)=0.
Thus © must be a multiple of p. But the odd multiples are not
periods. The figures for s(z) and c(x) are found on p. 196.
The Simultaneous Equations: s(zr) = &, c¢(r) =f. Let k have
any value between — 1 and 1, inclusive:
—-1=hr=1.
The equation
12) c(x)=4
has two distinct roots in the interval —p < z =< pif -1<h<

14

and these are equal and opposite, z, and Ty = —ux. If h =1, there
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is a single root, z =0; and if A= —1, the roots are + = p and
— p. Only one of these latter, however, should be counted, because
of the periodicity. — Similarly for s(x).

It a, B are any two numbers such that

13) a4+ gi=1,
the equations
14) s(x)=a, c(x)=8

admit one and only one solution in the interval
0=x<2p
or, generally,
a =z < a+2p,

where a has any value whatever. For, consider the second equation
in the interval
-p <z =p

It admits twe distinct roots, x; and z,, where
Ty = — Iy,

if —1 < B <1 But s(e)==—s(z) 7 0, and so only one
of these satisfies the first equation.
— The cases § = 1, — 1 are dealt
with direstly. They do not form
an exception.
Definition of Angle. Con-
fider two directed line segments Pl (=l )
in the plane, P; P, and P| Pj.
By the angle, 0, fron P; P, to
P! P} shall be meant any solu- F1:(z12n)
tion of the simultaneous equations:

Py: (23, 73)

Pz:(l'z-)’z)

(6) = y3 =i — (7 = 7)
4 =K
Ty — Iy Ya— N

[ ! -
£(8) = k! Y2 — 01 Ty — X

Yo =1 Ty — 2
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k=1 (z3 =2+ (s =y vV (& — 2 + (52 — 1)

The definition is jinvariant of the transformations of the principal
group (Hauptgruppe) i.e. translations, rotations, and stretchings; but
a reflection carries 8 over into — @. Moreover, @ is invariant of the
choice of -P;, P, on a given line, provided merely that the sense of
the vector P P, is preserved; and similarly for P{, Pj. Finally,
the vectors P; P, and P{ P, can be replaced by any equal vectors.
— The proofs of all these statements are simple, and are'left to the
reader.

In particular, then, the lines P, P, y
and P{ P} can always be replaced by
two radii of the unit circle; the first,

drawn to the point (1, 0), the second, ¥ g
to the point (x, 7). The definition then of = £
gives :

16) c(0) = x, s(8) = y.
Thus a unique value of 0 = 6 < 2p
is obtained.

Equality of Angle and Arc. The nwnber 8 thus defined is
equal to the length o of the arc of the unit circle, measursd from
(1,0) in the sense corresponding to the increasing ordinate near this
point.  For,

do*> =dr* + dy* = [ () + s'(0)* ] d6> = 16?2,
17) do = df.

Angles in Geometry. In Elementary Geometry an angle is
defined as the figure made by two lines which have an extre.nity in
common. Each “line” may be a line segment or a ray.

To such an angle is assigned a number — its
measure — by choosing an arbitrary angle as the unit
and applying it to the given angle in the usual way.

It is this number which we have defined above as -
the anzle 6, with the usual extension of the definition to positive and
negative angles.

The functions s(8) and (@) are now seen to be identical with
the sine and cosine as ordinarily defined in Trigonometry :

18) s(0) =sn 0, c(0) =cos 8.

/
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The General Solution of Equation (A4). let
r=flz)

be any solution of Equation (4) in the neighborhood of the point
x =a. Then two constants, ¢; and ¢y, can be so determined that
the solution

¢(x) = ¢y sinx + ¢y 008 x,
together with. its first derivative, will tally with f (x) at z = a:
fla)=r¢;sina + ¢, cos a
f'(a)=c cosa—cysina
since the value of the determinant is — 1. Thus the solution
y(x) = f(z) — ¢(z)
is such that
\l’(a) =0, \V (a) =0.
Hence ¢ (a) = 0 for all values of n.
Now, any solution of (A4):
vy = F(x),

can be developed by Taylor’s Theorem about an arbitrary point
x =c. For,

F®(z)=% F(x) or =+ F'(x),

according as n is even or odd, and so Taylor's Theorem with the
Remainder applies. Hence y (z) =0, and the theorem is proved.

§2. The Logarithmic Function. The definition of the log-
arithm which leads most easily to the properties of this function, is
by means of the integral. ILet

x
1) Imn=‘/i£, 0<z< o
!l x

This function will, or course, turn out to be the natural logarithm
of z. But we are not assuming any knowledge of special functions,
except what has already been shown regarding the rational functions
—-in particular, their continuity — and so it is better to use a nota-
tion that suggests logx without the danger of taking for granted
properties not yet established.
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From the definition follows at once that
2) L(1)=0; La)<0, 0<a<; L{a)>0, a>1.

Y

L A4 x

(0] 1 x

TuroreM 1. The function L(x) is continuous for all positive
values of z. It has a derivative, given by the equation:

3) L'(z) = %

TuecreM 2. The function is monotonic increasing:
4) L(z) < L(y), < y.
For, by the Law of the Mean,
LO)=L(z) +(y—2) L'z +6(y — 2)],

and L'(z) is positive for all values of the argument.

COROLLARY. From

Sollows that L= =10
wSs

Turorem 3. THE FunNcTiONsL RELATION. The function L(x)
satisfies the functional equation:
(4) L(x) + L(y) = L(xy)
Sor all possible values of the arguments.

Let the left-hand side of Equation (4) be written in the form:

\/' dt 'dr
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In the second integral, change the variable of integration:

t=xr.

J' dr dt
Hence we see that

'dt 'dr ‘dt 'dt dt
R b
. r

This last intezral has the value:

xy

s dt
J - = L(zy)
T

and the theorem is proved.

Thus

By setting y = 1/x in (4) we find:
1
L =) = = 0.
(z) + I (x) L(1)=0

or

1
5) L (:) = — L(2).
By setting y = x in (A4) we find:
L(z*) =2 L(x).
Similarly,
6) L (2 =nL(z),

where n is any natural number.

TuroniM 4. The function L (x) becomes positively infinite
for z = + oo, and negatively infinite for x = 0%:

L(4 o0) = + oo; L(0Y) =~
Set + =2 in 6). Then
L(2") =nL(2).

Now, 2”7 bexones infinite with n, since 27 > n. The right-hand
side becomes infinite with n, since L(2) > 0. The function L(x)

is monotonic increasing. This proves the theorem for x = + oo.
The proof of the second part follows from 5).
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§3. The Exponential Function. The function L(x) adinits
an inverse, defined and continuous for all values of the argument.
Denote it by E(x):

1) y=E@) if zx=L(y).

Tt is clear that

Moreover,

Tneorem 1. AppITIoN TurOREM. The function E(x) admits
the Addition Theorem:
(B) Elx + y)= E(2) E(y).

This relation is the precise counterpart of (A), §2. Vor, let x
and y be any two real numbers. Then the equations:

u=E(x), v=E(y),
admit unique solutions, for u and v are both positive :
x = L(u), y = L(v).
Now, by §2, Theorem 3:
L(u) + L(v) = L(w).
Hence
z + y = L(w),

and so, by definition :
E(x + y) = uv,

or
E(x + y)=E(z) E(y), g.e.d.
THEOREM 2. The function E(x) admits a derivative,
4) E'(x) = E(x).
For, if
y = E(x), then x=L(y);
and if

y + Ay = E(z + Ax), then r+Ar=L(y+Ay)
Thus i
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Az=Ly+Ay)—L(y)=ay L'(y +0)
Ay — 1
Az L'(y +0ay)
Now, E(x) is continuous, (Chap. III, §9, Ex. 8) and so Ay
approaches 0 as Az approaches 0. Hence the right-hand side of this
last equation approaches a limit as Ax approaches 0:

. 1 1
1 = .
am Ly + 08y) T'(»)

But . 1
L'(y)=—.
7) >
Hence
D:y =y,
or
E'(z) = E (z), g.ed.

THEOREM 3. The function E(x) can be expanded by Taylor’s
Theorem for all values of the argument :

k2
5) E(Io+h)=E(Io)+hE'($0)+’2—;E”(Io)+ s

The proof is given in the Caleulus, and need not be repeated

here.
In particular, let z;, =0, & = z. Because of 3) and 4),
2 I

Thus 5) turns out to be nothing more o~ less than the Addition
Theorem :
E(xy + k) = E(x;) E \h).

Observe that we have here an independent proof of the Addition
Theorem.

The Function a*. We have, incidentally, a new proof for the
existence of roots, 1/ a, where a > 0 is any number. By definition,

b={"a if b = a.
In Equation 6) of §2 set n=¢, x = 5. Then
L(b%)=qL(d),
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L) =~ L(a),
q

1 1
7) a?=FE|—L(a) |.
[71@]
Equation 6) of §2 is now seen to hold for all rational values
of n:
2
8) L (av) =L 1(a), 0< a
q
Hence
? P
9) ai=E|=L(a) |.
[5r@]

Now, the function
E[z L(a)]
is continuous for all values of z, and so we can define the function
a® by the equation:
10) a®* =E[xL(a))

From this equation follows that
11) L(a*) = x L (a),
or Equation 6) of §2 holds for 0 < z < o, —co < n < oo,

The Natural Base, e. The functional equation (B) is precisely
the one studied in Chap. V, §7. Hence it appears that, if we
define the number ¢ as E (1):

12) e=E(1),
the function
13) E(z) = €.
The number e can be computed from the series 6):
14 LI R
) °= 21 " 31
or e=2. 71828 18284 59045 - -

The function E (x) having thus been identified with &7, its
inverse, L (z), is seen to be log x by the usual definition of the latter

function:
12) L(x) = log z.
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§4. A Simpler Analytic Treatment. The foregoing treat-
ment of the Elementary Functions has the advantage that it links the
trigonometric functions with the simplest of oscillatory motions, thus
emphasizing their periodicity at the outset; and it yields the proper-
ties of the logarithm with a minimum amount of computation.

From the standpoint of pure analysis, however, one must admit
that there is no simpler limiting process than that of power series.
It is possible to make the differential equation
1) dy _

dx
the point of departure and to sesk a solution in the form of a power
series. We arrive immediately at a particular solution:

2 3

x~ X
2) E(x)=1+x+2—!+5—!-+~~-

The derivative of this function has the value, from Equation 1):

3) E'(x) = E(x).
Now follows the developability of this function by Taylor's
Theorem:
h2
4‘) E(Io-i‘h):E(Io)‘*‘hE’(Io)+§"‘E”(xo)+ et
Hence

E(zy + &) = E(x,) E(h),
and herewith the Addition Theorem :
5) E(x + y)=E(zx) E(y),

The theory of this functional equation leads at once to the
identification of E (x) with ¢*:

6) E(x)=¢€.
In particular, then:
7) E(z) > 0, — 00 £ x £ oo

8) E(—o0)=0%, E(0) =1, E(+ o0) = + wo.
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The existence and the properties of the function 4%, and the
treatment of the logarithm as the inverse function, follow without

The Trigonometric Functions. The use of imaginaries is so
familiar to the electrical engineer of the present day, that the
v =1 can no longer be regarded as a mathematical fiction, even by
the practical man. If, then, starting with the traditional equation

9) €% = cos ¢ + isin g, i=y -1,
we define two new functions by the equations:
& — o T
S = -
(=) 23
& + P

Cl@) = —5 >

~-we prove immediately by elementary algebra that these functions have
the properties:

1) { S(x+y)=8) C(y)+ Cx)S(y)
Clx+y)=C(x) C(y)— S(z)S ()
12) $'(x)=C(z), C'(z)=—S8(x).
13) SR+ C(x)2=1.
2 P
S(I):I—g-"-l-s—!—"'
14) 2
C(x):l—g—!-l'z"—"‘

Finally, the periodicity is established as in §1, and by means
of the angle these functions become identified with sin z, cos x:
15) S(z) =sin x, C(z) = cos z.

§5. Partial Fractions. Development of cotx. The
functions tanx, cotx, secz, cscxr can be represented by infinite

series which are analogous to the representation of a fraction by par-
tial fractions. The fundamental equation is the following:

1 - 2z
(A) rcotrx:;-—nz-lm.
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This equation can be obtained immediately from the develop-
ment of a function into a Fourier’s series; cf. Chap. VIII, §1. An
elementary deduction can be given by means of de Moivre’s Theo-
rem :

_ m(m—1)

135 cos™"2¢ sin2¢ +

cos m ¢ = cos™ ¢
m(m—1)(m—2) (m— 3)

% cos™ g sintp — .-

m(m—1)(m—2)

sinme@ = mcos™ ¢ singp — cos™ 3 g sind

3!
+-..
We see that cot m¢ is a rational function of tan ¢ :
tmo— £ane)
wrme G (tan @)

Let mbe odd: m = 2p + 1. The function on the right is a proper
fraction, as is seen by allowing ¢ to approach the limit =/2; for
then the left hand side approaches 0 as tan ¢ becomes infinite.

We proceed to represent this fraction by means of partial frac-
tions. The degree of the denominator is obviously not greater than
m. On the other hand we can write down m distinct values of
—7/2 < ¢ < 7/2, for which cot m ¢ becomes infinite, namely :

¢=09 i:9 ﬂ:gf') MY i f’
m m m
Consequently,
) = — tan * Ty)...
G(tang) = tang (ta.n¢ tanm)(tanso+tanm)

We thus find :
B Ay
cotme = _
L Ny
m
To determine the coefficients .4, multiply through by sin m ¢
and then let ¢ approach the limit kx/m. All the terms on the
right approach 0 except the term in ., which takes on the indeter-
minate form 0/0. The limiting value is found by the usual method
of the calculus. Thus
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3 1
Aymcosk = . Ay = — sec? kw

kT m m
m

coshkmr =

sec

On setting m ¢ = x we obtain the final formula:

" sec? AT
m
1 cot r = .
) z,‘ x kw
k==* mtan — — mtan —
m m
or: ;
X x
w 2 sec? S, mtan —
2) cotz = -+ Z . —
- -
mtan = k=172 tan®>— — m?tan® —
m m m

Allow m to become infinite. The terms on the right of 2)
approach limits, and it would not have occurrel to the mathena-
ticians of even a hundred years ago to question the inference that

A" ==t

1 oo
3) otx=—; Z

This result is correct, but it requires proof.

The right band side o 2) can be regarded as an infinite series
whose terms depend on m (x is a constant, # * k=) and which
converges for* m =1,3,5,-"

S(m) =uy(m) + u;(m) + -

The terms of this series approach limits as m = co; namely, the
corresponding terms of 3). And now the series of the limits, i.e.
the right-hand side of 3). and the limit of the series, i.e. the left-
hand side of 3), will be equal if the series converges uniformly; cf.
Chap. V, §4, Ex. 1. or §10. That this is the case can be shown
by an M-test. We have already chosen z. Let 4 > !x|. Then

A

x
lmtan——‘</1, my m.
m

¢ It may happen that for small values of m the function tan ;% is not
defined. In that case, begin with a larger m; i.e. letv = m.
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On the other hand, the function f(z):

f(x) smx 0<r§1,r—
2
1 s =1

is continuous and positive in the closed interval (0, = /2), and hence

its minimum value, &, is positive. Hence

T
I<z= —.
T=1
If, then, we set
IW]‘ =—.—2,/,4-—;- ko é k»

Eriht— 420

we have here an M-test. This completes the proof. — On replacing
x by rz, the development 3) goes over into (A).

Corresponding developments for the tangent can be obtained,
either by the same method or by a change of variable, x = § — z/;
or still again by means of the identity :

T'hus : tan x = cot x — 2 cot 2.
g f > ;-
4) E o 20(2n+1)‘—x-’
5 tma=— 2: + 572”; + sz +
2y -2 () -= () -+
The identity
—,—1—=00t-—-—(‘0tx
sin

leads to the development:

r 1 ox 2x 2x
— e - — 5 +-.-
6) sinrx x l—x'-"+ 22 — 2 32 — o2

And now a change of variable gives:

7) LA P R~y I

52_1... 52 —
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Linear Denominators. In one respect these formulas are lacking
in simplicity : the denominators are factorable. If we had tried to
use Equation 1) instead of Equation 2), we should have arrived at a
series whose terms are

1

r—kr '

1 1
Ytk XAivE

k

But the series

do not converge.
It is possible to obviate the difficulty by writing :

.rz-fj;:ztz:[x-—lkr +&] +[x+1kr ——1:1;]’
Thus ’ . - ) )
g o=+ 3 [ Fo i [+ X [ A ]

The introduction of the additive term 1/kr or — 1/kz seems
artificial. How did we come to think of it? A satisfactory answer
can be given if we start, not with the cotangent, but with the square
of the cosecant. Proceeding as before we find that

1 _ 1 hed 1 < 1
sinr 22 +n§1 (x — nr)? +n§1(r + n'r)?

and this equation can be written in the simpler form:

oo

9) csctx = 2 1

— o r —nw)’

Consider any interval,

—A4d=x= Ad
The series:
3 1 S 1
Z T Eweae A<

converge uniformly in this interval, and their terms are continuous

Hence . .
- 1 hat ‘ dx
_—.' d ——1 -———-—-" —
:’]‘EM (x —nr) * IZJ(x—nr)'

_EI

rT—nzw r]'
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with a similar expression for the other integral. Now transpose the
omitted terms in 9), so that the left hand side becomes:
m—
csc’xr — l S S

* n—mt1 (z—n7)
That indefinite integral of this function, which approaches 0 as z
approches 0, must be equal to the sum of the two integrals we have
just considered. Thus we arrive in a perfectly natural manner at the
development 8). It is customary to write it in the form:

RSN i N
10) otz=—+ 2 [ +- 1.

r— o bk x—nw nr

the prime denoting that the value n = 0 is to be omitted..
The second form of the cotangent development is:

11) rcotrx:é—-pzm'[ 1 +.1_]

reebt T—n 1

These developments have the advantage that each term of the
series has a pole at just one point.

EXERCISES
1. Obtain the development 6) by means of partial fractions.
2. Deduce Taylor’'s expansion for sine and cosine from
de Moivre’s Theorem :

. x3+x5
22 gt

=1 - — —_——
s TR

3. Develop the definition and theory of the exponential func-
tion on the basis of the limit:

. x\m
E (z) = lim (1 + ;[) .
Obtain the functional equation :
E(z +y)=E(z) E(y)
directly from the definition.

4. Replace each of the other developments by one in which
the terms have a pole at only one point.
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§2. The Commutative Law. If a series
uy + 1‘2 + s
converges absolutely, its terms may be rearranged at pleasure and the
new series will converge to the same value as the old.

For, let
Sn=u o+ Uy

and suppose first that 0 = wu,. Let the rearranged series be

! !
u1+llg+ e

with , ) ,
Sp=up + 0+ u,.

If the value of the first series be denoted by U, then

= U.

Hence the second series converges, and its value
U = U

Now interchange the series, regarding the first as a rearrange-
ment of the second. Then

U

A

U,
and so U' = U.
In the general case, let
Sn = Gp— 7y,

as in Chap. 1, §9. Let
! ! !
S =0p — Ty
Then, by the result just established,

lim ¢, = lim a;,, , lim ry = lim 'r:’, ,
and the proof is complete.

If, on the other hand, the given series converges conditionally,
its terms can be rearranged so that the new series will converge to
an arbitrarily preassigned value, 4. For, take positive terms till the
sum exceeds .4; then negative terms till the sum falls below A;
then positive terms again; and so on. The process can be continued
indefinitely, since the variables ¢,, 74 diverge monotonically toward

4 oo, Moreover, since lim u, =0, the new series will converge

toward A.
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The terms can evidently also be so rearranged that the new

series will diverge toward + oo or — oo, or oscillate at pleasure. We
can state the result as follows.

TnroRrEM. Let
ul + u‘.). + Y
be an absolutely convergent series, and let

u£+u2'+"'

be a series made up of the u;'s rearranged in any manner. Then
the latter series converges absolutely to the same value.

EXERCISES

1. Show that, if every series formed out of the terms of a
given series converges, the given series converges absolutely.

2. Show that the terms of a conditionally convergent series can
be rearranged without altering the value of the series, provided no
term is moved more than % places, where & is a constant.

§3. The Associative Law. Let
l‘1 + u,_) + o

be a convergent series. Then it is possible to insert parentheses at
pleasure : ,

(u1 + - +uml)+(umx+1 + 0+ u’ﬂe) + -
and the new series will converge to the same value as the old. For, if
sn=u 4 o+ un
and if s is the sum of the first k£ terms of the second series, then

the s} are merely an infinite subset of the s,’s. Hence:

TucoreM 1. In a convergent infinite series, the terms may
be grouped in parentheses in any manner and the new series will
converge to the same value as the old.

The converse is not true. Consider the series of parentheses
=1 +0F—1d + -
This ‘series converges ; but if the parentheses are removed, the general

term of the new series does not even approach 0, and so the series
diverges. We can, however, state the following theorem.
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THeEOREM 2. Let
Z(Umk + Ump.41 + - 4 u’"k+l)
P

be a series of parentheses. If, on removing the parentheses, the
new series converges, then the old one does, also, and the values
are the same.

The proof follows at once from Theorem 1.

TuroreM 3. Consider a convergent series of parentheses. If
the number of terms in a parenthesis remains less than a fixed
number and if the general term in the parenthesis approaches 0,
the parentheses may be removed; i.e. the new series will converge
to the value of the old one.

EXERCISES

1. lf a1+a¢+-”
and
bl+b2+ e

are convergent series, show that the series
a+b+a+by+ -
converges, and that its value is equal to the sum of the two given
series.
2. Extend the result to the sum of p scries.
§4. Double Series. DBy a double series is meant the array
uy + s +uyg e
Wy kg Uy + o
ug + ugy + Uy + -

.........

1)

where un, is any function of the two natural numbers, m and n.
Another form of the double series is:

2 Upne
mn

The series is defined to be convergent if every simple series formed
out of its terms converges. Thus if a double series converges, it
necessarily converges absolutely.
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This is the definition which is uszful in the theory of functions.
In special branches of analysis, like the developments for which
double Fourier’s series are charatceristic, other definitions are expedi-
ent.

Tt is obvious that the series 1) converges if there is a convergeut
double series

2 Umn, 0= Umn,
mn

such that
I umnl = Ymn

It is sufficient that these inequalitics hold for
M= m+4n,

where M is some fixed number.
The terms of a convergent double scries can be rearranged at
pleasure. In particular, the rows and columns may be interchanged.
Of the many ways in which a convergent double series may be
evaluated, two are especially important:

i) Summation by Rectangles :
uy + up + oy + 0

Uy + Uy + Uy + ¢

............

...............

where the sides increase together in any manner — for example, al-
ways equal :
Wy + e+ e + oty gy g

ii) Summation by Diagonals:
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Example. Consider the double series:
1t +2 +224 -
z +24+224

If we sum by diagonals, we are led to the series:
1+ 2+ 322+ -+~
This series converges absolutely for all values of — 1< zx < 1, and
diverges for all other values of x. Hence the double series converges
for —1 < z < 1.
The following criterion for convergence is useful in practice.

TestT roR CONVERGENCF. Let
v+ v +vg+ oo
Toy + oy + vag + ¢

LT T e

be a double series whose terms are all positive or zero: 0 = Tnp.
If
i) the rows converge:
Un = Vn + Uy + ++*
ii) the series of the values of the rows converges:
V=v+v+ -,
then the double series converges.
Proof. Denote by S4the sum of the terms occupying any area
A in the scheme of the double series. Then
S.= 7.
For, choose n large enough so that A4 will be contained in tho first

n rows. Let
Se=v f vt 00+ vn

Then

S, =z s
and

s S V.
Hence

SA -<-—"- v ’

and the theorem is proved.
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Turorem, Let
Uy + we + U3 + 0
Usy + Uso + Ugg + -+

be a convergent double series. Then
i) the rows converge absolutely :
Un = Uy + Upo + 000y
it) the series of wvalues of the rows converges absolutely :
U=uy +u+ -
iil) U is equal to the value of the double series.

Proof. The truth of i) is obvious. Next, denote the value of
the double series by U’. Then, in particular,

| U= sp| < ¢ vEnp =p

where s,p is the sum of the first p terms from the first n rows,
Allow p to become infinite, and let
Sh=u + Uy

Then

| U = sp| = v = n
Thus i) and iii) are established, and the proof is complete, except
for the absolute convergence under ii). But this property appears at
once on comparison with the double series of absolute values.

The process of evaluating the given double series by means of
the series D u, may be suggestively described as ‘“‘summing by
rows.” Since the terms in a double series may be rearranged at
pleasure without affecting the convergence, it follows that the series

Upp fuip + 00

converges — denote its value by v,,—‘- and furthermore the series
v+ vt

converges to the value U/ of the double series. This process may be

svggestively described by the words: “summing by columns”. We
may enunciate, then, the following theorem.

COROLLARY. A convergent double series may be summed by
columns as well as by rows,
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Multiple Series in General. All of the foregoing definitions and
thecrems admit immediate generalization to multiple series, n > 2:

2 Py my s My

where m;, ms, : - -, m, independently run through the natural num-
bers.
Product of Two Series. Cauchy’s theorem relating to the pro-
duct of two series can now be proved with eise. Iet
' w+u A+,
v+ vt
be two absolutely convergent series. Denote their values by U, V.
Then the product is represented by the following absolutely conver-
gent series:

UV=“1v1+”1"2+u21’1+u1v3+'“

Proof. Form the double series:
wv vy + e
v+ vy + o

-----------

This series converges. For, the series of absolute values :

| To |+ T | fop ] + -
lw| (o |+ [wl [va] + -+
converges by the. Test for Convergence.
Returning to the first series we see that the n-th row has the
value 1, . The series of values of the rows thus becomes:

u1V+u2V+---,

the value of which is U/. Now, this is also the value of the
double series. On summing the double series diagonally, the product
theorem results.

Extension of the Theorem. It is not true that any two convergent
series can be multiplied in this way, for the resulting series may
diverge, as is shown by examples. Still, it" is true that if the re-
sulting series converges, it converges to the value that is the product
of the values of the given series, For, form the power series:



ALGEBRAIC TRANSFORMATIONS OF INFINITE SERIES 205

f@=uzt+ws+ -

e@)=vx 4 v 224 -
By Abel’s Theorem, Chap. V, §6, each converges uniformly in the
closed interval 0 = z = 1; and now the same is true of the pro-
duct series :

f(a:)go(x)—ulvl::2 + (v +wpvy) 2 + -
This proves the theorem.
§5. Series of Series. Let a convergent series be given whose

terms are sums :

m m
1) Yo+ Y uka +
=1 =

Then this series can be written as the sum of m series :

29 St Ittt Y s

n=1" n=1 n=1
provided each of these latter series converges. In other words:
Led m m L]
3) 2 X wkn =2 Y thn-
n=|\ k=1 k=1 n=1

Suppose, however, that the terms of the given series are infinite
series :

4.) z uy + Zu;,o
=1

The analogue of the sum 2) is now the infinite series:

5) zul,,-i- Zu,, + -

n=1
and the question is: Will the series 5) be equal to the series 4)? —
provided, of course, that all the series involved converge.
It clarifies the situation to formulate it as a double-limit ques-
tion: — Will o oo

6) ZZ%F%?Z"M

n=1 m=1
That the convergence alone is not enough, is suggested by all
our experience with double limits and is proved by a simple example.
Consider the double series for which
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where sy, denotes the sum of the terms in the first m rows and the
first 2 columns. The double limit on the left of 6) converges to the
value

lim spm, = 0.

ns=x
The double limit on the right of 6) converges to the value

Iim sp, = 1.

n=oo

A sufficient condition for an affirmative answer is given by the

following theorem.

TuroreM. A sufficient condition that the value of the infinite
series whose terms are themselves infinite series:

iuml"'iumﬁ'i".'

m=1 m=1

be given by the series of series:

oo o
Zu1n+ zu‘.!n"'i""v
ne=l

n=1

all the series involved being convergent, is that the double series:

wy + up g 4 e
Upy + Uny F tlag + -t

ugy + ugs + 0

converge.

That the condition is not necessary, seems likely and is proved
by the example:

-1
-1

1-%
the terms not lying in the two diagonals being all 0. The example
is due to Mr. E. J. Moulton. ,

Pons asinorum. At this stage of analysis writers and students
are prone to a mistake that might seem to be an individual matter
were it not for the facts of experience to the contrary. By a confu-
sion of ideas the following theorem is developed:
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“If the series which form the terms of 4) converge absolutlely,
and if the series 4) converges absolutely, then the series 4) is equal
to the series 5).”

This theorem is false, as is shown by the following example due
to Arndt:

11 1 1 1 2 1 2 1 3
(-g3)+(zz-53)+(G5-%3)+
1 22 1 22 1 32
e +rEe-s ) r(FE-TR)¢t
(_ 2 23) (?'ﬁ—%g)"'(%'%:_%'i: +

Nevertheless, this false theorem is rediscovered by each new
generation of students and writers, and there is no cure known to
man.

§6. Power Series. Turorev. Let f(y) be a function given
by the power series:

1) S =btby+tby*+:, —8S<y<S§;
and let ¢ (x) be a function given by the power series:

2) ¢@=ant+artax*+t- - —R <z <R
Let —S < ay < S. Let

3) y = ¢(2),

where x is restricted to a certain neighborhood of the point x =0.
Thus
4) F=fle@]
becomes a function of x in this neighborhood.

Then the function f[¢(x)] can be expressed as a power series
in x, the coefficients of which are found as follows. Let each
term in 1) be expressed as a power series in x:

5) by"=al’ +a"x + a2 + -+

and now let these power series be added as if they were polyno-
mials :

O fle@l=Fa ra3 ol + ST 4
n=0
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The proof by means of double series is immediate. Form the
double series whose n-th row is the power series 5):

ap 0 0
7) bl ay bl ay x b! as .132
(2) (2) (2) 2
ag ay”' x asy”’ x

This double series converges. For, consider the power series
8) lao| + e | X +]ay | X2+ -, X=|z|
Denote its value by Y and form the power series:
9) 18| Y' = A7 + A7 X + AP X2+ - -+
The double series whose n-th row is the series 9) converges, if X be
suitably resticted, and )
o | = 4.

Hence 7) converges.

A case of especial importance in practice is that in which

ay = 0. The coefficients of x in the expansion are then series which
break off with a finite number of terms.

Ezxample 1. Consider the function :
1
V1i-2pzx+ a2
It can be represented by a power series in x, convergent throughout
a certain interval. For, let

1
(y) = —F7—,
S () sy
y=¢@)=2pz—2’
Then
-1 1 1-3 1.3.5
= (1 — 2 = — 2" a2 FERINN
J) == b5y + g+ g+

The powers of y are here polynomials in z, and the coefiicients of
the early terms in the expansion are readily computed. Let

1
]/1-—2'0..:-{-1-2:1)0(”')+P1(F)I+P2('L)xz+...
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The coefficients Pn(p) are known as Legendre’s polynomials or Zonal
harmonics. We find at once:

Py(p)=1, P (p)=p, Py(p)=3(3p2—1),
Py(p)=20Bpd—3p), P (p) = 3 (35 p* — 30 u2 +3).

The example is unsatisfactory in two respects, and seems here-
with to disparage the theorem. First, there is no indication how
far the region of convergence of the series extends; and secondly the
law of the coefficients, i.e. the polynomial P, (p) for an arbitrary n,
is not revealed by the theorem. True; but these are not questions
the theorem undertook to settle. The theorem has given us the
definition of the P, (p) which lies nearest to the application of these
functions, and moreover has provided us with an extremely simple
means of computing the early ones.

The example just discussed suggests the relation of the theorem
to the Cauchy-Taylor Theorem in the theory of functions of a com-
plex variable. The latter theorem tells us not only that the composite
function can be developed into a power series, but it tells us also
just how far that series converges, and it gives an explicit determina-
tion of the coefficients. The advantage of the present theorem is, that
it affords a more convenient means of finding the early coefficients,
and sometimes the law of the series.

It is not true in general that, if the terms of a series can be
developed by Taylor’s Theorem, and if the function represented by
the series can also be so developed, then the coefficients in the latter
development can be obtained as in the theorem. For example, the

function
f@=5=

can be developed into a Fourier's series, Chap. VIIL, §§ 1, 7, 8:

_sinz _sindz  sinbr _

and cach term can be developed into a power series; but the latter
cannot be obtained by forming the series of like powers of .
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Example 2. The function cot z.
cost _1—3% 22+ gt — -

sinz x— 220 + 13t — " °

113224 2t -
z1—32% + gigt— -

Here, we can develop the function

1
1 =32+ qdoo®— -

by setting
y=822—gdst + -

and applying the geometric expansion :

=1 e
= +ry+7+
Then multiply the two power series together. This shows that there
is an expansion of the form:

1
otz =-- +aq+axr+ar:+- -
x

but there is a simpler way of obtaininz the early coefficients.
It is easy to show that the quotient of any two convregent power
series :
a+ax+a®t -
b0+ blx+b2x"’+ cee
can be found by dividing the one series by the other just as if they
were polynamials; cf. inf. Exs. 9-11. Applying that method here
we have :

by # 0,

1—3a2— A 2t

1—32 4+ dort— s 1—322+44 ot — -
132+ ghoot — -
“§127*'516 t— ...
._&J:?_*.Ilg xte— e

— e at— e

Heuce

1
cotx=-;—ﬂ'x—f5-t3+' .

»
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ExEercisis

Compute the coefficients in the following expansions through the
term of the fifth or sixth dimension — or higher, if convenient.

(2.2 15 __ 3 3
1, sin-l(ksinx)=kx+‘("6 Dp B — 108 + & 5

120
2. log cos x.
Suggestion :  Set
22 It
AT

3. V' cos x.
4, log (1 + ).
5. (14 25/ + z + 2%).
6. tan .

7. Show that
logsinx =logx — 22— ydg2* — g5 2® + - --
8. Compute:

lim 8loxcosx + 8 — 8cos r + z*
70 2tanr — 2sinx — x3 :

9. Show that the quotient of two convergent power series,

a0+ﬂ|x+ﬂ~lfl‘2+"'
b0+b0.r+b2132+""

by # 0,
can be written as a power series:
ot ax+ carx®+ -,
10. Determine the cosfficients ¢, in Question 9 by setting
ay+ax+ a4 -
=y +bx+ba®+ - )(cg+eaxrt+erts ),
multiplying out, and equating coefficients.

11. Prove that the values of the ¢, ¢, ¢, <+ as found in
Question 10 are the same as those obtained by long division.
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12. Let the terms of the series
3[4--]
n=1 T +n n

be developed into power series in z:

1 1 x x°
“lo_ELT L i<z <t
r4+n n n'3+n'i *

Show that the value of the given series is expressed by the series
U KPS R
=t n=t 1t
13. Show that the function represented by the series:
a sinx + a,sin2x + .-,
where | a,| < " and y is a positive constant < 1, can be developed
into a power series in .
14. Show that the function represented by the series
ayshz +cy*sh2r + -+,
where the coelficients ¢, are hounded, is analytic at the origin; cf. § 9.

§7. Bernoulli’s Numbers. The coefficients in expansions
like those considered in Chap. VI, §5 admit simple expression in
terms of a set of numbers defined as follows. Consider the function:

T 41
2 -1
It can be expressed as a power series, and smce it is an even func-
tion, only the terms of even degree will enter. Let us write, then,
26
=A+B — B B;— —
+‘2 2M+3&
The coelficients B,, B, Bg, +«« are known as Bernoulli's Numbers.
It is easy to obtain a recursion formula for computing then.

Equation 1) is equivalent to the following:
x z z L
SEe+TH )

n!

Y T e

2 Tzt

> .
=(f+%+'+#+“)(d+m —Bgte):
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On multiplying out and equating coefficients we find :

A4A=1,;
11 A B, B,
T mE ) T T=1  #m-3p T
The sum on the right ends with
(— 1)l'~+1 Bu _
3p)1 2! when n=2p + 1;
(= 1"+ Bu -
—Rar when n=2p.
The first fow B’s have the following values:
B =3, By = g5, By =4,
By = g5, By = %, By = o5,

e
3

The Sum Xn". To find the sum of the r-th powers of the

first n natural numbers :
L

It is convenient to develop the formula for n — 1 instead of n.

Let
Fy=1+E 46+ oo b,
Then
dy r T — 1\
dx,) =1 +2"+ -+ (n—1).
On the other hand,
=e"’—1=€”"—1 r
rTTE r -1’
and
r _x e+1_x
ef — 1 2 e —1 2
1—-—+B:—B:+Bxe
= 2 ! TR
Hence
22 B r=
nx+ 51 +?—+ z 22 ! 28
1—’—" B Bo
z ( 2+’21 ~4v+B361

=dp+ Az + AP+ A2+
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We see, then, that
dy
dx"
On the other hand 4, can be computed by multiplying together
the two power series and comparing the coefficients:
nTH 1n" B r-1
A"(r-.—n'—EﬁJ”z—; (rnTm_
The final formula is:
r+ 204 s+ (n—1)y=

=r!A,-.

nrHl 1 Bl —~1 Bg , 3
= R LA TR A L

§8. The Development of cot x. From the develapment of
Chap. VI, §5:
1) 'rcot-rx————-+ 2'[———!———1-]

xr+n n

n=——o
it is possible to derive a development in terms of a power series,
§7, Ex. 12:

2) -rcotrx-:.-l——-Q.rZ———Qf?Z___

amy nt
On the other hand the cotangent can be expressed in the cam-
plex domin as

os rr __ c’”"’ + egmine

rootrr = 1w — LT
sin rx c"" — gminr

1 2772 &4%7 4+ 1
T2 Feoq
This last expression is the basis of the definition of Bernoulli’s

Numbers, §7. Thus we find :

_ 1 (2 Tz (2 o)t
3) 'rcotrx—x[l B, o B, 2 ]

Similar expansions hold for tan z, secz, cscz.

The Series Z ,-1—27,‘ A comparison of the series 2) and 3) leads
to an evaluation of the series of negative even powers of the integers.
We have :
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< ! 2z
2w = bk
$ 1w
& n*P (epnt 77

§9. Analytic Functions of Several Variables. A func-
tion of n variables, f(xy, * +, ,), is said to be analytic in the point
(ay, * -+, an) if it can be developed into a power series :

1) f(xl’ . '11'71) = Z "mp- ceamp (xl - al)ml M (.Tn - a,.)’"n
which converges for a point (£;,---£,) such that

&k —ar # 0, k=1,--+,n

For simplicity, let n = 2 and write:

2) flry)=co+cor+cny +ena®+eyry+cpyr+ .
If this series converges for a point (£,9), and if £ # 0, 9 % 0, then
it evidently converges for all points (x,y) such that

3) lz| =1k, [r1=1Inl

If the coefficients are bounded, | ¢;nn | = G, then the series con-
verges at least when
4) |zl <1, lyl< 1

The domain of convergence of a power series in several variables
is not simple. Thus the series

1+zy+22y2 483+ -
converges in every point (z, y) such that
lzy| <1,
and diverges for all other points. Hence the points of convergence
are those which lie on the convex side of both hyperbolas :
xy = 1, ry=— 1,

A point (£, %) is said to be interior to the region of convergence

if the series converges for a point

[E] + a, ol +8
where &, B are both positive.
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If the series 2) converges in the point (z, ¥), then each of the
series

2 Cmn Y n
n=1
converges, and
5) fEN =T o +x X+ .
ne=l n=|\

But the converse is not true; the convergence of 5) does not
insure the convergence of 2).

A convergent power series can be differentiated term-by-term
at any point interior to the region of convergence, and the derivative
series will admit at least the same region of convergence as the
original series. It follows, then, that the coefficients in a convergent
power series are given by Maclaurin’s Theorem:

6) flz,y)=£(0,0) + f1(0,0) z + £5(0,0) y + 3 f5o(0,0) 22 - - - -.

The theorem of §7 admits immediate extension to power series
in several variables. As a consequence we have the following im-
portant property of power series.

If (&,9) is an interior point of the region of convergence of the
power series 2), then f(z,y) can be represented by a convergent
power series :

SE+Rag+R) = cphm k"

throughout a certain neighborhood of the point (£,4). 1f follows,
then, that if a function is analytic at a point, it is analytic at every
interior point of the region of convergence of the serizs. The domain
of definition of the function may now be extended by the process of
analytic continuation familiar in the theory of functions of one and
of several complex variables.

Taylor’s Theorem for an arbitrary interior point of the region
of convergence of the power series now follows at once:

f(l"}’) =f(xo’.7'o) +f1o (Io»)’o) (z — xp) +f01 (1‘0,)’0) (.7 )
g1 Foo (0 30) (2 = 20 + 2 s 2 70) (= = ) (7 = )

+ éffoz(-'—'m)’o) (r=>+ .
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Analytic Curve, Surface, etc. A curve:

xk::xk(t)! k=11“', n,

is said to be analytic at a point (a},--+,z)) if each of the func-
tions xy (t) is analytic at the point ¢ =y and 2} = z; (%); and if,
furthermore, not all the derivatives xj (¢) vanish there. An arc of
a curve is said to be analytic if it is amalytic at each of its points.
A surface :
xp = xp (u, v), k=1,+:,n,

is said to be analytic at a point (23, --+,x5) if each of the func-
tions x; (4, v) is analytic at the point (ug, vp) and x} = x; (14, 1) ;
and if, moreover, the rank of the matrix

9z . Oxn

ou du
oxr, ... 0z,
ov ov

at (i, vg) is 2. A piece of surface is said to be analytic if it is
analytic at each of its points.

The extension of the definition to manifolds of higher order is
obvious.

EXERCISES
1. Let
1
u=—
r

9

rP=x—al+(y—5+(z—cp
(a,b,¢) # (0,0,0), » > 0. Show that the function u is analytic
in the origin.

2. Let u=f(z, y,2)

be analytic in the origin. Then
[z, 5, 2) = 159(x, ¥, 2z)+ ul(x,}’, Z)F e,

where uy (z, y, z) is a homogeneous polynomial of degree n, or is 0,
Furthermore, let u be harmonic :
9%u 2%u
o=t oy
Show that u,(z, y, z) is harmonic.

u _
+a—22~—0.
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§10. Regular Curves. Jordan Curves. We have defined
analytic curves, and now mathematical perspective demands some
mention of the more general concept of curve, even though a detailed

analytical developement. of these ideas lies outside the frame of these
Lectures.

Let
1) x=f(2), y=¢),
where f(¢), ¢ (t) are continuous in the closed interval
2) 0=:¢=1.

Under suitable further restrictions Equations 1) will represent a
curve in the (x, y)-plane. Let us first, however, consider the pos-
sibilities when no further restrictions are imposed.

a) The point set | (x,y)} defined by 1) may consist of a
single point. This is the case when f(z), ¢ (¢) are both constants.

b) At the other extreme, the point set { (x, y)} defined by 1)
may fill a two-dimensional region of the (z, y)-plane. Peano has
given an example in which every point of a square in the (z, y)-
plane belongs to the point set { (x, y) }. It is only fair to say, how-
ever, that the transformation of the interval 1) on the square is not
one-to-one. Some points of the square are obtained more than once.

In each of these examples the transformation of the points of the
interval 2) on the elements of the point set { (x, ) } defined by 1)
has failed to be one-to-one. Let us, then, with Jordan, seize on this
requirement as the further restriction to be impased on the functions
f(0), ¢(t) and say:— 1If 2/, y' are any two numbers such that the
equations
3) = f(2), y'=¢@)
admit a common root ¢ = t/, where 0 < ¢/ < 1, then these equa-
tions 3) shall admit no further root z = ¢", where 0 = ¢/ = 1.

Such a point set { (z, y) } is known as a Jordan curve. If, in
particular,

) FO=£01), @0 =g),

the curve is closed, and it is a fundamental theorem of analysis
situs that such a curve divides the plane into an interior region and
an exterior region.

But if Equations 4) are not both true, the end points of the
curve are distinct, and we have an open curve. The curve is simple,
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i.e. has no multiple points. For otherwise the equations 3) would
admit two distinct solutions, ¢/ and t”, in the closed interval 2).

Returning to the case of a closed curve we observe that there is
a one-to-one and continuous relation between the points of such a
cwve and the points of a circle.

A Jordan curve may fail to have a tangant at each and every
paint. Moreover, there is another important property which it fails
to share with the curves we ordinarily think of, like arcs of ellipses,
cycloids, etc. or even arbitrary analytic arcs (or regular arcs, cf.
infra). Any one of these latter arcs can be embedded in a two-
dimensional region of arbitrarily small area. But it may b= impos-
sible to enclose a Jordan cnrve in a two-dimensional open set, ths
area of which is less than an arbitrary positive quantity — even when
the “area” is measured in the sense of Lebesgue.

Regular Curves. Consider an open Jordan curve. Impose on
f(t), ¢(t) the still further restrictions that each of these functions
possess a continuous first derivative in the closed interval 2). Such
a Jordan curve is definel as an arc of a regular curve, or as a
regular arc.

A regular curve is now defined as the point set made up by
stringing together a finite number of regular arcs, Cy, C, * -, Cn;
the terminal point of Cj coinciding with the initial point of Cgyy,
k=1,2, -, n—1.

A regular curve may be open or closed. It is not necessarily
simple. It may have a whole arc of multiple points. Or it may
have an infinite number of rnultiple points, all but one of which
are isolated ; e.g.

1
{y:x3si11——, 0< z £ 1
T
y=0,z=0,
is a regular arc, -and
y=0, 0==zx=1,

is another. Together they make up a regular curve.

EXFRCISE

Show that a point set {(x,y)} consisting in part of a two-
dimensional open set can never be mapped in a one-to-one manner
and continuously on a line segment, 2).



Chapter VIII

Fourier’s Series

§1. Fourier's Series. By a trigonometric’ or Fourier'’s series
is meant a series of the form :

a oo
1) 2y 2 (anp cos nx + by sin nx).
2 n=1
If the series converges and, after being multiplied by coskz or
sin Az, can be integrated term by term, it is easy to determine the
coefficients. Observe the formulas of integration :
T
fsin mzcosnxdxr=0;

ki

fsin mxrsinnxdr =

-Tt
= O,m#n; =, m=n.

fcos mrcosnrdx =

—_—

Thus we find, on denoting the value of the series by f(x):

2) an =;1-ff(r)oosn.tdx, b,.=$—_ff(x)s'mnxdx.

These numbers, a, and b,, are knewn as the Fourter’s Coef-
Sicients of the function f(z). They have a meaning for any contin-
uous function, and for a great variety of discontinuous functions, aside
altogether from the problem of whether the function can be developed
into a Fourier’s series or not. Let us study some of their properties.

We shall restrict ourselves to functions f(x) which are continuous
in the interval (— =, =) except at most at a finite number of points,
xy,* ", anmp; cf. figure on next page. Within each interval (zy, 254;)
the function shall have a continuous derivative, and both function

»
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and derivative shall approach limits at each extremity of the sub-
interval. In a point z,

Sz =31 f=%) + f (=)},

where

f(c*) =1lim f(z), f) =1lim f(z).
r=c+ 2=~
Moreover,
J@) =2 f(—2h)+ flz) L.
Thus f(z) is defined in the interval — = < x = =. For all
other values of z it shall be defined by the requirement of periodicity :

Sz +27) = f(2).
We shall prove in §§ 7, 8 that such a function can be developed
into a Fourier’s series.
EXERCISES
1. Iet f(x) be defined as follows:
f@=lzl, —r<zZw:

Sz +27) = f(x).

xz

or

)
L
T

v -r OI

Show that, if the function can be developed,

4
f(x)=%_: 9%£+_°°%§_£+2s51+ )
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2. Let f(x) be defined as follows:
Sx) =1, l<z<m;
fl@)=—-1, —r<2x<0;

f) =0, fl@)=0;
Sflx+27) = f(x).

7

= =

-r 0l £ 3 b M
—_—

Show that, if f(z) can be developed,

__ 4 rsinx | sin3z sin 5x
fa =" (FF+ 552+ 55254 )

3. If f(x) is an even function :

f(=2)=f(2),

show that only the cosine terms will appear:

ki
e 2
f(x)=ﬂ)+20,, cos nx, a,.=—ff(:c)cosn:c(l:r;
2 n=1 fo

and if f(x) is an odd function:

fl=x)=— f(a),

only the sine terms will appear:

flz) = ib,, sin ., b,,=—2-']‘f(x) sinnzdx.
== 3 0

4. If f(x) is defined merely in the interval

0 é x é T,
show that f(x) can be developed into a sine series, and also that
S (x) can be developed into a cosine series.

5. If f(x) is defined iérely in the interval

I

0==x z,
and if

Sl =) =f),
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show that, if f(x) be developed into a cosine series or a sine series,
only alternate terms will appear:

f(x)=—9 + 2 a,, cos 2nzx,
n=1 .

o

f) = b3, sin (2n — 1) z.

n=1

6. Assuming that the function
f(x) =cosax

can be developed into a Fourier’s series, convergent in the interval

— 7 = z = 7, show that

sinar 2a cos nw cos nx
oS AT = +Z————-— .

2 __ 2
P * n

On setting x = = the development becomes :

sin
cos LT = —e { +Z 2 }
o

Changing the notation, we have the development :

t ! 3 2
T CO TI-—_"‘I’ 5 .
x z n2

§2. Bessel's Inequality. Normal Functions. Let ¢o (),

@1 (), -+, @n(x) be a set of functions, each continuous in a closed
interval « = x = b, and such that

b

L]

3) ¢m (x) ¢ (x)dx = 0, m # n.

a

Moreover, they shall be linearly independent. Such a system is
salled a set of orthogonal functions. As an example :

¥) #(x) =123, @ (x) =cosnz, @ (x)=sinnz

It is in terms of orthogonal tunctions that the most important
levelopments of mathematical physics take place :

5) f@) =cgo(x) + ¢y (x) + -+
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If such a development is possible, and if on multiplying through
by ¢a(x) it is possible to integrate term hy term, the coefficients
will be given by the forinula:

)4
S rentzan
6) =S :

[ tenwrPaz

Observe that the denominator cannot vanish, since no function ¢,(r)
can vanish identically.

If ¢o(x), ¢1(x), ~++ is any set of orthogonal functions, then
ay ¢ (x), &y ¢1(x), -+, where the a,’s are any positive constants, is
also an orthogonal system. It is obvious that the &, can be so chosen
that b
7 S e@Praz=1.

a

The modified set of functions is said to be normalized. Thus the set:

1 1 .
8) _—, — cos nx, ——sin nx, —r<Ll r< r,
Vor Vr Var

is an example of a normal system. Equation 6) then becomes:

14
9) = ff(x) cn(z)dz.
a
Approximation by a Normal Polynomial. How can we use
the n coefficients ¢; most advantageously, in order best to approximate

to a given function, f(x), by a polynomial of normal functions,
10) o) e (@) + - + ey ¢noy (x) 2

The question can, of course, be answered in many ways. One
of the most useful answers is that given by Bessel, who used the
idea of Least Squares and demanded that the c;’s be so determined

as to make the integral of the square of the error:

” .
* =J [f (@)= e gola) = -+ = Cny ¢ny (2) Pl
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a minimum. A necessary condition for a minimum is, that

an
d(’k

b
=—2J [f—c¢go— "+ =ty ¢n ]¢rdz=0.
a

Since the ¢;(z) form a normal set, this equation reduces to the
following :

b
11) ck=‘/f(x) ¢x(x)dz.

These are the same values as those given by 9), and further-
more it is to be noted that a given ¢; does not change as n increases.

1f these values be substitued in the integral, the latter reduces
to »

f[f(r)]edx—c';’,—c‘-i_ e — 2.

But the integral is never negative, and so we arrive at Bessel's
Inequality :

b
12) c%+c'f+'°'+c,2,-1éf[f(:v)]zdx.
a

From 12) we infer that the series
13) @+t -

converges. In particular, we see that the series formed from the
squares of the Fourier's coeificients converge:

ay+ ai 4 a3 + -
14) {

B+b6+ -

ExERcISES

1. Let ¢ (z) be continuous in the closed interval ¢ £ = £ b.
Show that each of the integrals

3 b
fgo (z) cosnz dz, ftp (x) sinnzrdx
a a

approaches the limit 0 as n becomes infinite.
Suggestion. Begin with the case that a = — =, b==.
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2. Extend the theorem of Question 1 to the case that ¢ (z) is
continuous in the above closed interval except for a finite number of

points, and ¢ () is absolutely integrable; 1i.e. the integral
h
L]
Jie@1ae
[

Suggestion.  Tsolate the points of discontinuity by arbitrarily small
neighborhoods. Show that the contribution of these neighborhoods

converges,

is uniformly small for all values of n. Then apply the theorem of
Question 1 to each of the remaining intervals.
3. If ¢(x) satisfies the conditions of Question 2, show that
I.v
Im | ¢(z)sin(n+ %) xdx = 0.

n=—oo

§3. Appraisal of the Fourier’s Coefficients. If a func-
tion f(z) of the class here considered (§1) has no discontinuities,

the series

ay+ a +a, + -
15) { o+ a

b1+b~l+"'

converge absolutely, and so the Fourier’s series converges absolutely
and uniformly for all values of x.

The proof is as follows. Transform the integrals in 2) by in-
tegration by parts. Since f(x) is continuous and periodic, we find :

./'f(x)cosnxdx=—%J.f’(x)sinnxdx
16) . i
ff(x)sinnxdxz ~ ff'(x)cosnxdx.

Let the Fourier's coefficients of the function f’(x) be denoted
by primes:

k3 k3
1 .
17) ap = ;1’— ff (x) cos nxrduz, by, = - fﬂ (z) sin nxdz.
-~ -

>
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Thus the relations 16) can be written in the form:
b, a;
18) ap = — —, b= "=,
n n
We cannot integrate again by parts without making requirements
respecting the second derivative of f(x). We can, however, attain

our ends by means of an algebraic device. It is obvious that

0= (Ib,',l-—%)2.

‘Hence .
!
2 ”:l"' =0+
But the series N "
bl- + b2- 4 e
converges by §2, 14); and the series
1 1
IE + 28 +
also converges. From 18), then,
1
2| an| = b;‘-’+;2.

and hence the first of the series 15) converges absolutely. — The
convergzence of the-second series is shown in a similar manner.

§4. Identical Vanishing. We come now to a theorem which
is proved with equal ease for a more general class of functions than
that of §1.

Tiun res. Let ¢ (x) be continuous in the interval
—r <z =T

except at most for a finite number of points; and let the function
be bounded. Let all the Fourier’s coef ficients vanish:

g ke

fc; (x)cos nxdzx = 0, f(;(x) sinnxrdx = 0.

Then ¢ (x) = 0, except in the points of discontinuity.

Proof. 1f the theorem is not true, let z =X be an interior
point of the interval, in which ¢ () is continuous and # 0;— posi-



228 FUNCTIONS OF REAL VARIABLES

tive, say: ¢ (A) > 0. Then there exists an interval (a, b):
—r<a=zxz=b< ~,

where
a+b

such that ¢ () is positive throughout (a, ), and is, therefore, greater
than a certain positive constant, M :
M < ¢(2), a=z2Z0b

Let Ay < #/2 be so chosen that the interval |z — X | = By
lies in (a, b), and choose 0 < kA < k;. Form the function

Cx)y=9y+cosx

y=C(rx)

X

Khy {\
T

and determine y so that
C(h)=1,

or
y=1—cos k.

Then C(x) has these two properties:
1) 1 = C(a), lz| = &;

i)
-7
where r is the larger of the two constants 1 —y and C (%), and

hence 0 < r < 1.
And now we apply this function as follows. Let

y=C(z—X)

fso(x)_y"dx,

Consider the integral :
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where n=2m is an even natural number. If m is Ehosen large
enough, the value of this integral will be positive. For, the integral

can be written as :
Y4y
L]

S v@ s
h—=hy
Y=ny =
+ f +
-1 I+hy
The first integral is greater than
+h
¢(x) y*dx > 2Mh
—h
for all values of m.
Let G be the upper limit of | ¢ () | in the interval (— =, #).
Furthermore, if ¢ > 0 is arbitrarily chosen, m can then be so
deterinined that r* < ¢, and consequently

< e, — 7T = EXN-h or A+h=Exr=r.
Hence the second and third integrals, taken together, are less than
27 Ge.
Thus ﬂ
J.gc(x)y”dz: >2Mh—27 Ge.
-

Let € be so chosen that the right hand side is positive.
Here is a contradiction, for

ki1

J ¢ ()ytdx =0

-

for all values of n. In fact,
r=[ly+cs(z—-N]"

can be written as a polynomial in sinz, cosx, and then converted
into a trigonometric polynomial, cf. §5:

7=, (drcoskz + Bysinkz).
K mt)

Hence
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1Y n kid
fgp(x)_y”dx:Z {Akfgo(x) coskrdx
- k=0 -
+ ka¢ (2) sinkz dz .
-
But the Fourier’s coefficients of ¢ (x) all vanish by hypothesis. — This

completes the proof.

§5. The Formulas of Summation. The following for-
mulas of summation are especially useful in the study of Fourier’s

series.
sing————n;-l(p
t4cosp+cos2¢+ o Fcosng =
A 25in-§-
A) 2 1
oos—g—oos n2+ ¢
sing +sin2¢ + --- +sinng =
2sin -
2
1 . _cosne —cos(n+1)g
N -+ cos¢ + cos 2¢ + + cosn ¢ S (i—cosg)

. . . sine 4 sinne —sin(n+ 1)
sing +sin2¢ +-+ +sinny = 2(1icos¢)( tle

These formulas can be deduced most expeditiously by the aid of
complex quantities from the geometric progression :
. (n+1g)i
1 4 & 4 &% 4 - +e'1?i=e_~‘_1
e’ —1
They can, however, once given, be established by the method of
mathematical induction.

Similar formulas for
cos¢ —cos2¢ +cosFgp — ¢+
sing —sin2¢ + sin3¢ — -+

can be obtained by replacing ¢ by ¢ + 7. The denominator will
be 2cos¥ or 2(1 4 cos¢).

.
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Other Formulas of Trigonometry. We mention de Moivre's

Theorem :
oosmgo:oos’"ga—————-—m(;'fg_i)ws"'_2¢5in2¢
—1 —9 -3 .
; N i

sinm g = mcos™ Lgsing — M%—;—)%”:Q—) cos™3 ¢ sind @

+ .o
proved most easily by expanding the binomial on the right of the

equation
€™ = (cos @ + ising)™,

and equating coefficients ; also by mathematical induction.
Furthermore, a quasi inverse :

m
D) oos”xsinqx=2(‘4kcoskx+Bksinkx), p+tg=m
J=0

This formula is likewise readily established by induction.

EXERCISES
1. Prove that
cosgp +cos3¢ + - +cos(2n—1)p = %risignj{og’

sing + sin3¢ + - +sin(2n—1)go=1_T:s£—;-l—‘£.

2. Obtain formulas for
cosg —cos3¢@ + o+ 4+ (— 1y cos (2n — 1) ¢,
sing —sin3¢ 4+ +++ + (— 1y*sin(2n — 1) .
Suggestion: Write the odd numbers as 4p + 1 and 4p — 1.

3. Prove that
(e cosz + Bsinx + y)™

can he written in the form:

m
Z (Akcoskx + Bisink x).
=1
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§6. Abel’s Theorem. If the coefficients of a Fourier's series
form a series that converges absolutely, then the Fourier’s series con-
verges uniformly for all values of x, as is seen from Weierstrass’s
M-Test. In the case of certain other important Fourier's series, the
uniform convergence can be established by Abel’s theorem, Chap. V,
§6. Let a;, &y, -+ be any set of numbers such that

Ay = Gy = 0g = *°°, lim a, = 0.
fras
Then the series
oy sing + aysin2¢ 4 - -

converges uniformly in any interval (a, ) which with its extremities
lies inside the interval 0 < =z < 27
0<a=zx=b< 27
We wish to prove that, to a positive € chosen at pleasure, there
corresponds an m independent of ¢ such that

|ampsin(m+ 1) + -+ + amppsin(m+plo| < ¢,

p= 1,2,-..
Now, by §5, A4):

sin(m+1)¢ +sin(m+2)¢ + -+ +sinlm+p)e
00s2m2+ 5(}7—'0082," +§E+ 1¢

2$in%
and so
S =S sin(m+ 1o+ - +sin(m+ple = 1
sin’—;- sin-g—

for all values of p. If, then, we choose ¢ as any positive quan-
tity < =, we shall have

i

-4 < sin(m+1)o+ - +sin(m+pe
s'm—c— sin—

2
c=pE2r—c

Hence by Abel’s theorem

— EmH = gy sin(m 4+ 1)@ + 00+ Gmypsin(m +p) = ZL
m—;" ‘ !ill-g
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c= 9 =2r—g

and so it is sufficient to choose m so that

Smi1 o~ ¢,
sin—<
2
The same theorem holds for the series
01COSQ + Qycos2¢ 4 * o+
A similar theorem holds for the series
@y cosQ — acos2¢ + agcosdp — -

and

& sing — ay, sin2¢ + a3 sind¢ — - -

the interval (@, b) of uniform convergence now lying within the in-

terval (— =, 7):
—r<aZ2zxzEb< T

Examples.
a) sir;go + sin22¢ + sin55¢p oo
b) co;<p+00522¢+c0555go+_“
EXERCISES

1. Prove that the series

sinz sin 3x + sin 5x

Tt 73 5 T

converges uniformly in any interval
—r<aZ=zE=Eb<0 o 0<a=Z=x=b< 7

2. State and prove a similar theorem for the series:

cosx , cosdx cos 5x
T t—s t—3

+ see,
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§7. Proof of Convergence. We have stated in §1 the
theorem that the Fourier’s series corresponding to a function f(x)
of the class there defined, converges for all values of the argument
and represents the function; i.e. the value of the series is equal, for
each z, to the value of the function. We will now prove that
theorem. Begin with the case of no discontinuities of f(x). Then
the Fourier’s series converges uniformly for all values of x (§3) and
so represents a continuous function,

1) F(x)::ao+2(a,,oosnx+bnsinnx).
2 n=\

The Fourier’s coefficients of this function can actually be obtained
by the method suggested at the beginning of §1, and so we have:

= 7
1 1 ¢ .
2) an = f F(x)cosnrdx, b,=— J F(x)sinnxdr:
T 2
- -

i.e. the Fourier's coefficients of the functions f(x) and F(x) are
identical.
Form the function :

¢ (z) = f(x) — F(a)
This is also a function of the class defined in § 1, and it is continu-
ous without exception. Its Fourier’s coefficients are all 0. Hence by

§4 it is O for all values of x, and the functions f(x), F(x) are
seen to be identical:

3) f(x) = %9 + Z (@, cos nx + b, sin nx).
n=1

Thus the theorem is proved for continuous functions.

§8. Continuation. The Discontinuous Case. .4 Special
Function. ‘The proof of §7 justifies the development of § 1, Exercise
1. But we can go a step further and establish the development of
Exercise 2. For, the first series can be differentiated term by term,
by the theorem of Chap. V, §9, at all points at which f(x) has a
derivative. In fac), let x, be any point of the interval 0 < = < =
or —7z < x < 0. It is then possible to include z, within an
interval (a,b) which, with its end points, lies within the interval in
question:
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—r<a<yp ,<b<0 or I<a< rpy<b<r.

Within this interval the series

sin x sin3x sin 5x
T + 3 + 5 +

converges uniformly; cf. §6, Exercise 1. The other conditions for
differentiation term-by-term are satisfied, and thus the developement
of Ex.2 is obtained.

Oscillation of f(x) at a Point of Discontinuity. Let
D=f(c*)— f(c)

Then D is the oscillation of f(x) at the point c.

Let 0
_ & [sinx sin 3x sin 5.x
@)= [TE 4 SEE 4 SO ]
Then
o(x)= &, < r< m;
®(xr)=—1%, —r <z <0

Thus the oscillation of ® (x) at x = 0 is 1.

Form the function:
flx)=D®(x—c),

where f(z) is a function of the class defined in. §1, and D is its
oscillation at ¢. This function also belongs to that class of functions,
and its oscillation at ¢ is 0; ie. it is continuous there.
Let the discontinuities of f(x) in the interval — = < z = =
lie in the points
—r <<l < pET

and let the oscillation in ¢; be D;. Then the function

fl&) = 3 Dy (a—c

k=1
will be continuous for all values of x, and also belong to the class
of functions defined in §1. It can, therefore, be expanded into a

Fourier's series, absolutely and uniformly convergent to the function
for all values of z.
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The function ® (x — ¢) can also be expanded into a Fourier's
series whose general term is

sin(2n— 1) (r—¢) _
2n — 1 -

—sin(2n—1

)e _ cos (2n — 1)
P cos (2n — 1)z + 2220 1J°

c .
o1 sin(2n — 1) x,
and we know all about the uniform convergence of this series.
We see, then, that the original function f(x) can be expanded,
and the proof is complete.
We remark that the Fourier’s expansion of the function,

flz)= _‘;_q + z (an cos nx + b, sin nx),
n=1

can be broken up into the series

-] -]
z ay cos n, 2 b, sin nz.
n=1

=1

For,
fl—2)= o +2 (ancos nx — by, sin nx),
2 n=1

and the two series can be added and subtracted.

The same result might have been obtained by observing that
any function f(z) of §1 can be written as the sum of an even and
an odd function :

S@)=3[f&) + f(=2)]+ 2 [f(x) = f(=2)]

Each of these functions can be developed into a Fourier’s series.
The first development will contain only cosines, the second only sines.

One further remark. A function f(xz) of the class here con-
sidered may vanish identically throughout any subinterval of the
interval (— =, 7); but its Fourier's coefficients will all vanish if
and only if the entire interval is made up of a finite number of
such subintervals and their end points; i.e. f(z) = 0.

§9. The Gibbs Effect. When the Fourier’s development
represents a discontinuous function, the series cannot converge uni-
formly, since the terms are continuous. One might expect the
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approximation curves to proceed fairly directly, as in the case of
. 1
lim x 2n-1,
n=x
On the other hand, they might rise to indefinite heights, as in the

case of

. —nz?
lim nxe™*.
=00

They do neither. The function s,(x) is bounded, but the graph
rises appreciably above, and drops appreciably below, the graph of
the Jimiting function near the point of discontinuity. This is the
phenomenon which Gibbs first pointed out, and which Bécher was
the first to treat mathematically®. We turn now to a detailed study
of the phenomenon, following Bécher’s methods, but using a slightly
different series*®.

We have seen that the function

1) flz) = 51r;:c+ sm55:c + -
has the value:
3=, 2nr <z<(2n+ )=
f@)y=< —¢%m, Rn—-Nr<xr<22nrwr
0, r=nw

We wish to study the approximation curves and, in particular,
to show that they remain finite. Let

_sinz , sin3zx |, sin(Cn—1)x
2) o)==+ ==+ T
Then
sin2nx
3) s,"(x)=cosr+c055x+‘-~+cos(£2n—l):c=m

Because of synunetry it is sufficient to study the function in the

interval r
0=zxr=—.
We have: 2

* Gibbs, Nature, vol. 59, 1899, p. 606. Bocher, Annals of Mathematics, 2d.
ser., vol. 7 (1906) p. 123.

## This is the series used by Carslaw, Fourier’s Series and Integrals. On
p- 273 there is a carefully drawn graph of the approximation curve for a
particular value of n.
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o
sin2nx
d
2sinzx

4) y =)=

This integral can be transformed as follows. Write :

1
_.1— =—+ 2‘; (-):)»
sinzx
where
1 — si T
5) 29’(3;‘):.1 - =Tz o<z = —.
sinx  x zsinzx 2

Noreover, we define
¢ (0) =lim ¢ (x) = 0.
z=0+

Thus ¢ (a), together with its derivatives, is continuous in the closed

interval 0 = 2 = 3.

We can now write :

r k4
¢l .
6) s,,(r)z'j —s%%:—rzfdx—!—fgo(x)sinandx.
0 0

The second of these integrals can be appraised by integration by
parts. Thus

z

x

* 1
J (;(_r)sin?,n.rdx:—‘ﬁix—)—ggs—m + -—-f(;'(x)cosandx.
. 2n 2110

Denote the value of this integral by ¥:

z

\ll(r,n):.J ¢(z)sin2nzdx.

0
Let M be the maximum value of | ¢ (x) |, | ¢'(2) ] in the interval
Then
. i 1 < G x
7) V(x,n)| = —-, G=GF+%mM, 0=2x=%
n
Hence
z . G
8) sn(.r)=fde+W, (V]| ==, 0<z=%
2x n

0
This latter integral can be thrown into more transparent forin
by a change of variable., Set
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t
2nx =t, = —,
9) nx x on
‘Then
z . 1 t
sin 2nx sin¢
smeonr oo — _— f SIBL .
10) ./‘ 52 dx 2f ; dt
0 0

This integral converges when ¢ = oc. Tt is, in fact, well known
that )

11) f”tntdtz’%;

0
but we do not need the quantitative result to establish the truth of
our statement, that the function s,(z) is bounded. That proof is
now complete, since

14
1 .
12) sn(2) = Ef 2 tdt + ¥,
0

and each of these functions is bounded.

Remark. The reader who is interested in following the quantita-
tive relations more closely, can readily do so. The ordinates of the
curve

13) ¥ = s, ()
can be appraised with an absolute error of less than any preassigned
positive € for large values of n as follows. First, determine m so that

G

m

= e

Then the ordinates will be given to the degree of accuracy in ques-

tion by the integral
r

.

sin2nx 1‘1" sint

P x 2 ; dt
U

In particular, the maxima and minima of the curve 13) we
given by the roots ot the tunction s} (z):

T k3
BT mTL
_ o _ 2=
T _— Xy ——,

Zn’ n
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In any case, 23 = Té—:— Thus
Tk kv
2x
T -on 3% k=
fofefen]
'0 T 2.-: (k=1)m

The terms in this sum are alternately positive and negative, and
steadily decreasing in numerical value, so that the sum can be
written in the form:

1}0—171+1.’2'—“U3+ e

The values of the early v;’s are found to be®:

v = 1.852 v, = 0.142
v, = 0.434 vs = 0.116
v, = 0.257 vg = 0.098
vg = 0.183

§10. Integration and Differentiation of the Expansion.
The series arising from the Fourier’s expansion of any function of the
class defined in §1 can be integrated term by term throughout any
finite interval. This is obvious when there are no discontinuities,
for then the series converges uniformly for all values of z, and the
terms are continuous. But even when discontinuities are present,
integration term by term is possible in any interval which does not
contain or abut on a singularity; for in such an interval the con-
vergence is uniform, and the terms are always continuous. Moreover

the function

sp(z) = %‘3 + 2 (awcosnx + bysinnx)

n=1

is bounded. If, then, the points of discontinuity which lie in an

*cf. Bocher, 1. c., p. 129, where further references are given.—The details
of the study here outlined are given by Carslaw, L. c.
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interval of length 27 be excluded from the interval by arbitrarily
small neighborhoods, the contribution of these neighborhovods both
to the integral of the function and to the integral of the remainder
rn(x) of the series:

S (@) =sa(x) + ra(2),

will be small, and hence
b

ff (z)dx = hm fs,. (2) dx,

or the integral of the series is equal to the .series of the integrals.
— It is left to the student to put this proof into e-form.

Differentiation. 1f f(x) is a continuous function of the class
defined in §1, and il its derivative also belongs to this class, then
the Fourier’s series which represents f(r) can be differentiated term
by term. For, the derivative f'(x) can be developed into a Fourier’s
series, and this series can be integrated term by term. The latter
series is a Fourier’s developinent for f(x). But the Fourier’s develop-
ment of f(z) is unique.

A repeated application of this result enables us to establish the
following mrore general theorem.

Tueoren.  If f(x) and its derivatives of the first n orders
are all functions of the class defined in §1, and if f(x) and its
Sirst n — 1 derivatives are continuous for all values of x, then the
Fourier's expansion of f(x) can be differeniiated n times term by
term.

Bocher has obtained a number of more general theorems relating
to differentiation term by term, as well as to the development into
a convergent Fourier’s series, in the article cited in §9. This article
is of ele.nentary character and affords an important supplement to
the treatment here given. 1t is based on Poisson’s Integral, the
analytic treatment of which was subsequently simplified, without
however, thanks to a remark of Professor Perkins, losing the advan-
tage of a simple geonetric interpretation of the convergence on the
boundaryse.

® cf. the Author’s Funktionentheorie, vol. I, 5th ed. 1928, p. 669.
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§11. Divergent Series. In the ancient days of modern
science inathematicians operated with divergent series with a naiveté
which lost much of its charm when the inore serious requirements
of convergence becamne central in the thought of the age. Let us
turn back for a mo:nent and see what were some of the things they
did.

Consider the series

1) 1—141—14-

ft is no use to sum the first n terms (the men of that time never
did!). But this series must have a meaning — so simple a series as
that cannot be a no-body. Let us call its value x:

z=1—1+1—-1+---
Well, now we see that
z=1—-(1—-1+1—-14 -+ )=1-z
Ah ha!
z=1—z,
=4

I told you it had a meaning, and there it is:
F=1—14+t—14--

But you are not convinced by my logic? How banal! How-
ever. to humor you, T'll give another proof. You admit with all
your modern sophistication that

1

-1 — I <
T+ = 1—z+ x x’ + 0 < << 1.

And you believe in limits. Very well. Let x approach 1 as
its limit. You see now, do you not, that the left-hand side of this
equation approaches the limit % — even ‘Weierstrass would have
adinitted so much. And every school teacher knows that “if two
variables are always equal and each approaches a linit, the limits
are equal”, So the right-hand side also approaches the limit %, and
again we have:

F=1—1+1—1+ -
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The 1nathematicians of that age may not have been rigorous,
but there was a joy of living which the world can never afford to
ignore. T_heir antics still amuse wus; they can instruct us. Turn
again to the series 1) and be modern: compute the sum of the first

n terms. It is alternately 1 and O:

s =1, so =0, s3 =1, s¢=0,--"

Well, its average value is %, isn’'t it? That’s something to go on.
In fact, it is a great deal, for it gave Frobenius as far back as 1880
(Crelle 89) an idea which can be forinulated as follows.

Summable Series. Let

2) ay + ap + - -

be a series, and let

3) Sn=a; +a+ - + an

Take the average of the first n sp’s:

) Sp=S1tot it
n

If S, approaches a limit as n becomes infinite :

Iim S, = ¢,

n=w
then the series 2) is said to be swmmable, and the number c is
attached to it as its value (sometimes called its swm).

1f the series 2) is convergent, then c¢ will be its value in the
ordinary sense, or lim s, =rc.

Apply this definition to the series 1) :

Sn=1% when n=2m
m
= R AL h = —
Dy when n=2m 1
Hence
lim S, = %,
n=x

and so % is the value assigned by this definition to the series 1).

But there was a second argument of Iriend Euler, why the
series 1) must have the value 4. Let us see what that view can do
for us. I'orm the power series
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5) ay+a;x + asx® + -
And now I say: If the series 2) is swnmable, the series 5) will
converge when | x| < 1:

6) f@)=a +ax+ ayz> + ---.

The function f(x) will approach a limit as x approaches 1, and
the value of this Limit will be the value, c, of the summable series
2):

lim f(z) =c

z=1-

Froin the definition of S, it is easy to infer that

and, generally:
7 sn=n8—(n—1)8,;.

From this formula we read off at once the following

Lesaa, If
|$n] < G, n=1,2, ---,
then
8) sl < 2nG.

sm@)=ay+aqyx+ -+ + apq 277,
Sp(r) =2 () + -+ F snl2) .
n
\We proceed to transforin s, (x) by a process similar to that used
in the proof of Abel's Theore.n, Chap. V, §6. From 3) we have:

ag = 8y, ay = So = i, Tty an—)} = Sn — Sp—y.
Hence
snlx) =81+ (ss—s))x 4+ +++ + (sp — spg) 2!

n—1
= z sy(2V = 27) + s 27}

w=]

n-1
=(1- x)z s, 2V s N

v=1
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The infinite series
o0
Zsyx""l, lz] < 1,
v=1

converges because of 7); and likewise the term s,z*~! approaches a
limit, namely, 0. Hence the series 5) converges when |z| < 1, and

9) fl@) =1 —x)z sez L,
va=1
New Proof of Abel's Theorem. From this last equation we
readily infer Abel’s Theorem. For, if lim s, = ¢, then

c—e< sy < ¢c+e msE v
Hence

xm—l ad m—1
(c-—e) 231 _<_(c+e)1_x

and so
(c—e)z™1 £ (1 —2) z s, £ (e 4 )t

or
(1—12) i ssa¥l=(c + ¢)a™], el =
Thus from 9) - et
f@)=010=-2) Z ssx’ 4 (e + &) 2L
Hence =

fl@)—c=(1 —-:a:)”i1 sy —c(1 — 2™ 4 L

In this equation rests the.proof. For
l c xm—-ll < €,

where m is already fixed, and |x| < 1. And now each of the
first two terms on the right can be made nwmerically less than ¢ in
absolute value by restricting x to a suitable interval,

1—f<< 1.
Hence

[ f@)—cl| < 3¢, 0< 11—z < 4.
Thus

lim z a, 3 = z an, g.e.d

F- ) d n=0
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We return now to the proof of the main theorem. From 7)
it follows that

Z Sy T l—l

S, —@—1)84] 21

Ms

i
A

v

= 2 vS (1= 2%) + mSpm ™!

v=1

m=1

=(1—-2)Y vS 2+ mSnz™
ve=1

Since 2) is summable,
18:] < G,

and so the last term on the right approaches 0 when m = oo
(Jz] < 1). For the same reason, the series

ZVS‘x"‘l, lz| <1,

v=1

converges. Hence finally

10) fl@)=01- z)giv&,x""’.

v==l

The last step:

lim f(z) =

r=1"

can now be taken exactly as in the proof of Abel's Theorem just
given. Since S, approaches c,

c—e< §<c+e, m=Zv
Hence
(c—¢) 2 vl s z v8yx™l < (c+ e)z vl
v=m v=m v=m
or
1y SvSeri=CroXve (el s
v=m yv=m
Obhserve that

1 —_ < v—=1
- — v Y
R(prs )
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and write as a mitter of notation :
m—1 m-~1

A= 2 vS, "7}, = 2 va¥y L
v=1

V=1

Thus
z vS, ztl =2vva""1 —d= —v&:l—; — A,
Rtn = (1 —x)?
1
ve! =Syzr! —B=_—_—- _ —B.
Z;, ; (1 — 2y

Equation 11), multiplied by (1 — x)% now gives, because of 10):

f@ = —2Pd=(+ )l — (1 —a?BL
Hence
f@—ec=0+1—2Pd—(c+¢)(1 —2)*B.
Since 4 and B are polynomials, they are bounded in the interval
0=zx< 1:
4] < M, |B| < M, 02 z< 1.
Consequently

[ —=2Pd—(c+¢8)(1—2zP2Bl £ 1+ c|l+e )M~ 2>
This last quantity is small for values of x near unity, or

A+]c]l+e )Ml —zP<e, 1—-d<z< 1.
Hence
I fx) —c| < 2, 1—-8< <,

and this completes the proof.

§12. Summable Fourier’s Series. Let f(x) be continuous
for all values of z and let f(x) have the period 2x. Form the
Fourier’s coefficients and write down the Fourier’s series:

)

) + 2 (ancosnx + b,sin nx).

n=]
This series does not in general converge. It is, however, sum:nable.
to the value f(z), as we will now prove. let

n—1

a,
sn(x) = 30 + 2 (an cos nx -+ b, sin nx).
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Recalling the expression for the Fourier’s coefficients, § 1, 2), we
see that

s,,(:t):%ff(r)[i+cos(t-—.2:)+c052(t—x)+

+ cos (n— 1) (¢t — x) ] dt.

The series in the bracket can be summed by Formula B), § 5,
and thus s, (z) takes the form:

2 1 — cos(t — x)

s,,(_r): ! ff(t) ms(n—i)(t—x)—cosn(t-—x) dr.

It is now easy to compute the value of

Splz) = si(x) + -+ + sn(a)
n'\ n 1}
We find :

n(l—cos(t—x))]

Sin = [rotoentos
- -

Make the change of variable :

t—u

o = 5 t=ux+ 2a.
Then _
. 1 p in?
1) Sp(x) = — J flx+2a) St ZE‘ da.
Ly nsin“a

Lemva.  Let ¢ (a) be continuous in the interval
0< a =%,
and lei ¢ (a) approach a limit when a approaches 0 :
lim ¢ (o) = ¢ (0F).
a=0+

Then

Vel

sin? na

lim o 4
== ¢( ) nsin"’a.

U

r
do =— ¢ +.
o 29(0)
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0

sm no T
da = — ¢ (0~
mana it = ¢ (07),

¢ (a)

z

if ¢(a) is continuous in the interval

and ¢ (a) approaches a limit when a approaches 0:

Proof. Observe

For, let

0;(z) =% + cosx + cos 2x + -

Then

sinna
nsin®a

and

Let

To an arbitrary positive € corresponds a positive & such that

ILi<e

lim ¢ (a) = ¢(07),

a=0—

that

z
2

-9
sin“na T
———da = —.
2

nsin? a

=20 @a) + -
n

=

./‘ 0:(2a)da = T:—

0

p(a) =¢(0%) + ¢.

0<a<id.

On the other hand, ¢ is bounded, and so

[tl=M,

We can now write :

z
2

‘Jy()

I<a=3.

§E’_’E“; do = ?(0+)f sin® na ,

nsin® a nsin® a.

c 4+ cos(k— 1)z

c+o0n2a)]

249
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[\
N
(o=}

n

3 . o . o
sin“na sin“na
+ { ——— da + { ———da
2 3
e nsin- . nsin® o
G

P

The first integeal on the right has the value #/2. The other
two can he appraised as follows.

9 ~ z
2

< 0

N | Y s
sin® no ' . sin“no sin“na T
/C = l(l--_f;: ;Ci-—,——T‘(l(L<E —,2——(1@:—63
nsin® a : . nsin- o oJ nsin“a 2
0 )]

.
5} !

o

: |
» ) 1 2 <9
sin®no . asin®na = M
J C#dagéj 1l da < .
y nsin’a ! nsin®a 2 nsin%8

7

R |

U]

Now, ¢ and & are fixed. Choose m so that
™ l"[

2m sin>é

Then

m n,

and the first part of the lemmua is proved. — The second part follows
from the first by a mere change of variable, 8 = — a.

Turning now to Equation 1) and applying the [emma, we see
that, for an arbitrary choice of x, the variable S, (x) approaches a

Iimit, and
lim S, (x) = f(x).

n==x
This proves the theorem.

Greneralizations. It is evident that the above proof anplies to a
much 1more general class of functions. In fact, let f(z) he any

!, and is integrable

function which is continuous at a point x = z/,
and is such that the TFourier’s coefficients have a meaning, and that
moreover the appraisals used in the proof of the Lemma apply.
Then the Fourier’s series is swnmable at the point z' to the

value f(2).
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In particular, if f (x) has only isolated discontinuities, at each
of which both the limits

lm /()= £, lim flz) = f()

exist, and if

S =2[fc*) + ()]

then
li_m Sn(c) = f(c).

Uniform Summability. Returning now to the case that f(x)
is everywhere continuous, we see at once that f(z) is uniformly
continwous for all values of z. To a positive ¢ chosen at pleasure
there corresponds, then, a positive & independent of x, z' such that

| f@) = flz) ] <e |z —2'| < &

On using this & the foregoing proof shows that the Fourier’s series

is uniformly summable to the value f(x).

§13. Concluding Remarks. 4 Classical Convergence Proof.
Dunbam Jackson has given to a classical convergence proof a parti-
cularly simple form. ILet f(z) be continuous in the interval (—=, 7)
except af a finite number of points, and let f(x) be absolutely

jlf(x)ldx

converges. Let f(x) have the period 27 :
Flz+2m)=F(2)

integrable there; i.e.

At a point x =§ let

i) lim f(z)=f (&),

z=tt+

and let the difference-quotient

i) fE+ h)h——f(E"L) , 0< k<4,

be bounded.
Consider the Fourier’s series of this function. Let




252 FUNCTIONS OF REAL VARIABLES

a n
1) sn(x) = —22 + 2 (ak cos kx + by sin kx).
k=1
Then

sn(x)=:1'ff(t)[§+cos(t—x)+0052(t"‘”)+

+ cosn(t — x)]dt.

Let
on(x) =% + cosx + cos2x + ++* + cosnz.
Then
sin QL;LI x
on(z) =
2sin —
1 T
sp (z) = —ff(t) on(t — 2)dt.
T -
Set u=t—ux, t=u+x.
Then x
1
2) (@) =+ [ flut 2 onlw du
Break this integral up into
0 k49
3) S+ [
et I
and cousider
n
1

4) ;—ff(u+x)o’,;(u)du.

0

Observe that

1 p 1

— [ onlwdu= _.

- J on(w)du 9
Hence

ki

5) % f FER) o) du = —;-f(v).

]

Thus
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1 p 1
6) — | flu+t)on(wdu— —f(Y)
] r.oj' 2

_ 1 ffutO—fEH _u
_.-;.of‘f ” J 2——si—ni—usm(n+‘})udu.

This last integral approaches 0 as n becomes infinite; §2,
Exercise 3. Hence the left-hand side of 6) approaches 0, and we have:

T
1 1.
7) tin = [ flu+ &) on ) du= 3 F&.
n=x T 2
v
It we replace the condition i) by the requirement that
i) lim f(x) = f(£7);
=t

and if, instead of ii), we write:

i) JE+ ”L" [ &< k<0,

demanding that this difference-quotient be bounded, it then follows
at once that

0
8) ’l'1=m % S+ z)o,(u)du= %f(»’;")-

On combining these two results, assuming that both Conditions
i) and i’) are fulfilled, and likewise ii) and ii’), we see that the
Fourier’s expansion converges at £ to the value

HAEH+FED]

If f(z) is continuous at £, the series converges to the value f(&).
We have thus proved the following theorem.

TueoreM. Let f(z) be continuous in the interval (—w, =)
except at most for a finite number of points, and let f(z) be
absolutely integrable :

f | f(2)|d=x converges.

Then the Fourier’s series converges toward the value of the func-
tion in each point in whick f(z) has a derivative.
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More generally, let the condition of diffcrentiability be replaced
by the requirement that the limits

lim f(x) = f(&*), lim f(z) = f(£7)
=+ T=i—
exist and the difference quotients

f& +h)h—f(£+)’ 0<n<s JE +h3,"f(m' —8<h<0

be bounded. Then the Fourier’s series converges toward the value:

FFEN + ()]

Evaluation through Complex Variables. Consider the following
development in the complex domain :

3 5
1) logiiz=2(z+§_+_z5_+...), z = ré".

z-Plane

The circle of convergence is the unit circle. The series converges

in every point of the circumference, except z = £ 1, to the value

2(cos0+ c05350 + (‘05550 + )

Ny sin 50 sin 50
+21(sm0+—;——+ 1 +)
3 5
Since the function is continuous there, the value of the function
and the value of the series ure the same, by Abel’s Theoremn, Chap.

V, § 6. Now, the angle of the argzument of the function is

C—\J/‘—'g, 0<o< r;
arc (1 -I-z)—arc(l—z):{
. Y—o=—5 —2<08<0;
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and this is the coefficient of the pure imaginary part of the log-
arithm:

log (X + Yi) =% log (X® + Y?) + i arc (X + Yi),
or
log[ R(c0s® + isin®)] =logR + ®i.
Hence
i, <<=,
= 0, 9=0;

~}r, — < <O.

sin@ | sin 36 sin 50
2) 3 + 3 + 5 +

In conclusion, an appreciation of the role which Fourier’s series
have played in the developement of modern mathematics is found in
the retiring address of Professor Edward Burr Van Vleck as Vice-
President of Section A, A.A.A.S., published in Science, vol. 39, 1914.

EXERCISES

1. By means of the development :

3) log (1 ) Gl +z3
. — T ...
og(l + z z 2 3
show that
6 . sin20 | sin30
4') E—-Slno—'—z—"‘" 3 ’ —T<0<f.

2. From the series of Question 1 show that

5) r——():s.me_'_sinZO + sin30+.“

5 5 3 s 0<o<2r.

3. From 4) and 5) deduce 2).

4. Let f(x) be confinuous in the interval
0=z =,
and let f(0)=0, f(xr)=0. Let f(x) have a cont'muou; first
derivative except at a finite number of points, at each of which it

approaches a limit from above, and also a limit from below. Show
that the series

Z by €™ sin nxz, by = —ff(x) sinnx dzx,
T

n=1
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defines a function, u = F (x, y), continuous in the region
0=z = 7, 0= y < oo,
and satisfying Laplace’s Equation :
2 2
%—ﬁ + %’.j =0,
ar all points (x, 3} of the region, lor which 0 < 3. Moreover, u

takes on the boundary values

1) F(0, ) =0;
ii) F(r,y)=10:
iii) F(z, 0) = f(2);

and
iv) lim F(x, y) =0,
ym
no matter how xr varies.
5. Consider the region
R: 0=z= =, 0=t < oo.

Let f(2) satisfy the sare conditions as in Question 4. Show that

the series

o 2 .
z bp €% sin o, by = — ff(x) sinnvdz,
n=1 T e
v
defines a function u = F (x,#) which satifies the Heat Equation :
du . 0%u
— =a° ——.r
ot 02*

at all interior points of R and also in the boundary points
=0, 0<t< o0 and = 7, <t < o,
Moreover, 1 takes on the boundary values:
1) F(0, ¢t) =0;
ii) F(r,t) =0;
ii) F(x,0) = f(x),

and
iv) lim F(x, t) =0,
P

no matter how x varies,
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6. let it be required to solve the Heat Equation :

u _ o 0%
ot o0x?
in the region
R: OI=xr= 7, 0=t< oo:
u=®(z1),
subject to the boundary conditions
1) ®(0,¢) =0;
ii) ®(r,t) =c;
iit) ®(z,0) =¢(x);
iv) ® (x,00) =0,

where ¢ (z) is continuous and ¢ {0) = 0, ¢ (x) = ¢; moreover, ¢ (z)
shall have a continuous derivative except at a finite number of
points, at each of which the derivative shall approach a limit from
above, and also a limit {romn below.

Show that this problem is referred to that of Question 5 by
setting

f@=¢@ -

®(z,0) = Fz,0) + <z
T



Chapter IX
Definite Integrals. Line Integrals

§1. Proper Integrals. Continuity. Consider the integral

3
J f(r,a)dx.

If we impose on the f{unction f(x,a) merely enough conditions to
insure the convergence ot the integral, the function ¢ (a) represented
by the integral :

b
¢ (a) =J [z, a)dzx,

will have no properties; ie. it may he anv {unction whatever. For,
choose (&) arbitrarily, and set

Flz,a) = E"i_\:“_}z

Then I
)= [ army )

We will begin by restricting the integrand as follows.

Tugorex.  Let the function f(x, &) be continuous in the closed
region :
R: a<zxr=Db, A= a = B.

Then ihe function ¢ (o) defined by the integral:

h
1 ¢ (a) = f Flz, a)dz,

will be continuous in the closed interval

A5 o £ B.
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Geometrically, the truth of the theorem is at once obvious.
For, represent the integrand
by a surface :

2) z=f(x,a).

Cut the surface by the plane
o =a,; where a, is any
point of the interval (4, B). a / '.b .

e 3 l Iin- Vi
Then the value of the in s - //

tegral, or ¢ (&), is given
by the area under the curve R e
of intersection of the plane B/ ____

with the surface. «

Z

Next, cut the surface by the plane & = ay + Aa. The value
of the integral, or ¢ (&) + Aa), is now represented by the area of a
near-by curve, and so does not differ much from the former area.
Hence ¢ (a) is continuous.

The arithmetic proof is as follows. Since f(x, &) is continuous
in the closed region R, it is uniformly continuous there. To an
arbitrary positive ¢, then, there corresponds a positive d, independent
of {z,a), (2, ') and such that

’
jr—2'] < &
| flx,a) = fa,a) | < ¢ SL ,
o —al| < &
provided (z, &), (z/,a’) are in R. Now form the difference :

b
v (n) + Aa) — ¢ (ag) =‘/‘{f(x,a0 + Aa) — f(a, ) | dx.

a

Let Aa he restricted to the interval | Aa | < 8. Then

[ flz g + Ar) — fz,a) | < &
and so

b
o (ay + Ar) — ¢ (o) | <fedx=(b--a)e. |lAa) < 4.
a

This completes the proof.
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EXERCISES

1. Criticise the following proof. “In the equation :
14
ploay + Aa) — ¢ (o) = f §f(x ap + Aa) — f(x, o)} dx,
a

let Ao approach 0. Since

Jim gf(xa &y + Aa’) —f(xa a‘()) i =0

Aa=0
the right-hand side approaches 0. Hence the left-hand side approaches
0, and the function ¢ (&) is continuous.”

2. Prove that
x
J flz,a)dx
3

is a continuous function of («, z, £), where f(zr.a) satisfies the con-
ditions of the theorem, and a £ x =5, a=¥ < b

3. By means of the equation

X
J’ 2>y = x“;—l, 0 < =z,
1
prove that
lim 1 =log &, 0<E&.

(za)=(0. &
4. Let f(z,a) be a function which, for each a of an infinite
point set -1, is continuous in the closed interval
as < b
Let oy be a point of condensation of ., but not necessarily a point
of 4. Let f(x, &) approach a limit when (x, @) approaches (z, ayp),
where z; is any point of the interval (a,5). Then the function

b
¢(a) = jﬂx, @) dz

approaches a limit when a approaches a,.
Moreover, the function
lim f{r, a) = o (x)
a=ag
is continuous in the interval a < x < b, and
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b

lim ¢ (a) = fcn (x) d=.

a==xg b
Succinctly, then,

b b
lim Jf(x, a)dzx =f lim f(x, &) da.
a =%

a=ay
a

§2. Continuation. Several Parameters. The integrand may
depend on several parameters: f(z, &), &, =+, &y). Let (&, -+, apn)
be any point of a closed region B (Chap. III, § 1) of the n-dimensional
space of the a’s; and let x lie in the closed interval

a = x £ b
Let f(x,a;, -, &n) be continuous in the closed region thus defined
in the (n + 1) - dimensional space of the (z, &, - **, @&n). Then

b
1) ¢(a1,-'-.an)=ff(x,a1,~--.a,.)dx
a

is continuous in B.— The proof is essentially the same as in the
earlier case.

Multiple Integrals. let = be a region of the (x,y, z)-space,
and let f(x, v,z a1, &) be continuous in the region R of the
(3 + n)-dimensional space defined by  and B. Then the triple
integral of f, extended over 7, defines a continuous function of the a’s:

2) sa(al""’an):‘jf f(x:,yvzaa‘l)°"ya‘n)dry

where ¢ (o), ***, @p) is continuous in B.*
Of course, a-similar remark applies to double and surface integrals
on the one hand:

5) So(a'li'.'aa'ﬁ)=fff(rvyaa‘h“'7a‘n)d0-

and to m-fold volume or (hyper-) surface integrals on the other:

4‘) ¢(a-1, . "a'n) Jf(xh CTy Xmy By, " a‘n)d?,

the function ¢ (a,, -+ ,a.,,) being in each case continuous in B, and
f continuous in R.
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For example, consider the integrals that define a Newtonian
potential function :

5 fffpdV fu'(lS
’ r bl r A
P s

/" and S here denoting the region = or ¢, and p, ¢ meaning the

volume or the surface density. Thus
rPr=x-af+(y—>5+(:z-0?
p=plz,52, ¢=0(ry)

or, in the case of a curved surface S, ¢ is a continuous function
on S.

The Iterated Integral. It is precisely these theorems that are
needed to complete the proof of evaluation of the multiple integral
by means of the iterated integral®. Thus in establishing the evalua-
tion:

6) ff [z, ¥)dS =Jlidx.j:2f(x, r)dy,
s a Y,

it is essential to know that the first integral,

1:2
7) J @ dy,
Yy

is a continuous function of x, and this brings us to the last of the
generalizations, namely :

Tueorem 2. Let f(x, ) be continnous in the closed region
R: a < r < b, A= a = B,

where
a =y (a), b= w(a), Vie) < o(a)

and (a), w(a) are any functions continuous in the interval
A = a = B. Then the integral from a to b, of the funciion f,
is a continuous function of w.:

b
8) o) = / £z, ) dx.

% cf. The Author’s Advanced Calculus, p. 260, and the Funktionentheorie,
vol. I, 1928, p. 118.
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Here, again, the intuitional proof by geometry — the area under
the surface, § 1 —is suggestive and convircing —as convincing as
intuitional geometry cau be.

a
R
a
x
O a b
The analytic proof is simple. Make a change of variable :
_zT—a
t [yt

Then
13 1
9) ff(_r,a.)dx=f(b—a)f[(b—a)t+a,a]a’t.

The latter integral represents a continuous function by Theorem 1, § 1.
The extension to the case of n parameters, (dy, * -+, &), considered
in a region B, is immediate, the proof requiring no modification:

b
10) ¢l nan = [ £l oo an) d,

a =\Jf(¢h v ',an)' b =w (@1, . 'sa’n)t \,/(a'h' * ‘,“n) < w(a‘b. * '9a‘n)'

§3. Differentiation. Leibniz’s Rule. Consider the differ-
entiation of the function

1) ¢ (a) f Flz,a)

Form the difference-quotient :

. (e + Aa.) < (ag) f flz,my + Aa.) f(z, ay) J

1t the partial derivative of f(#, &) with respect to a exists:

lim L& 2 + Aw) = f(z,00) _ Of
Ax=0 Aa da’
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the integrand approaches a limit when Aa approaches 0, and it was
formerly considered self-evident that

2) -——" f—gdr,

or that the definite integral can be differentiated under the sign ot
integration. The formula 2) is known as Leibniz’'s Rule.

Here is, of course, a double-limit fallacy. What we want is:

im 22, o lim J'f(a ay +Aa) = flz.ay) 4.

Ax=0 Aa Aa=:=0 Aa

and what we have found is:

b
lim f(ra n, + A@) f(x’ a’O) dl' f

Az=0 A

h

Q)IQJ
sk.,

Nevertheless, under suitable restrictions, both limits exist and the

wwo are equal.

THFOREM. Let f(x,a) be a continuous function of x in the
closed interval a = x = b, a having any fixed value in the in-
terval 4 = o = B. Let 0f/da exist at each point of the region

R: a £z =), 4= a = B,

and let the function

_g'é =f¢ (z, @)

be continuous in R. Let
5
@)= [faards
a
Then ¢ (@) has a derivative, given by Leibniz’s Rule:

dx,, _J afdx’

and ¢' () is continuous, 4 £ a. < B.
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By the Law of the Mean
[z oz + Aw) = f(r,a) = Ar_fy (x, 2y + 0AR), 0<f <.

The function fa(x,a) is uniformly continuous in R. Hence to an
arbitrary € > 0 corresponds a & > 0, independent of (z,a), (¢, a’).
such that

!fa(xy“)—fa(x’aa',) <€,

It follows, then, that

b
¢og + Ar) — ¢ (ay) =‘/ falz, 00 + 0A0)dr,

{]x—-x’{<8
o —a'| < &

Aa

=

A

h
pleat el 2l [ fo (e aas

; ;
J | (@ oo + 0 Aa) — fo(v.00) | d <Jedr= b—a)e,
a a

provided | Ae | < 4. This proves the theorem.
The extension to the case of several parameters and multiple

integrals is immediate. Let = be a closed region of the (x;,:* -, xx)
space; B, a region of the (&, * *+, &p)-space, and let f(xy, -+, zm.
@&, ", &,) be defined in every point of the region R of the
(x),***, Tm, &y, -+, &y)-space determined by » and B. For an

arbitrary point (&) in R let f be continuous in ». Then the integral
of f, extended throughout =, defines a function ¢ of the (a):

So(a:l’-o-,aln) ::J.-Jf(xl’--.’xm,a‘l,.,.,a‘n)df.
R_

Let
0
'% =fk(x1v tt Ny Tm, Oy, " "a‘ﬂ)
exist and be continuous in the interior points of the (m + n)-dimensional

region R, and bounded. Then ¢ admits a partial derivative d¢/da,,
given by Leibniz’s Rule:

¢ _ (... [2f
v =S ke
;—-?f—../
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and the function

asr
amk k\a'la"'sa'n)

is continuous in B.

Fxample.  Consider the potential :

AN
au Jff (z—-a)dr e,

Further, since 1/r is a solution of Laplace’s equation,

L8 9 8 _
AV = _3—+3y'+a—z'-'—0’

§ 2. Hence,

it follows that wu is, also. For
— 1 —
Au_.'/:/‘pr(—r)(lr_O,

EXERCISE

Differentiate the integral:

1
dx
14 2+ al
0

by lLeibniz’s Rule, and verify the result by direct computation.
§4. Variable Limits of Integration. Turorewm. Let
S (x, ) be defined in the region
R: a=x 5 b 4 = a = B,
a=ya), b= owla), y(a) < o(a),

where ¢ (&), w(x) have continuous derivatives in the interval
= B. Let f(x,a) be continuous in x for each value of
z £ b. Finally, let

N &

—i""fa(xva'
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exist ar cvery point of R not on the boundary a =¥ (o), b = o (a),
and let fo(z, &) be continuous on the boundary. Then the function

13
¢)= [f o

admits a derivative, continuous in the interval A = a = B, and

given by the. formula :

W /‘ dz + f (b, )———f(

The proof is simple in case the definition of the function can

be extended to a somewhat larger region,

1A

A

R': a b, A= e = B,

x

a=y,(a) < y(@), b=o (@) > o (@)

For then we have:
by

¢lag + Aa) — @ (@) =f§f(a:,a0+Aa.)—-f(x,ao)§dx

By+Ab a
+ff(.r,a-0 + Aa)dzx + ff(x,ouo + Aa)dzx.
by aytia

The first integral can be treated as in §3. The second can be
appraised by the Law of the Mean for integrals: ’
bo+Ab
f Flz a0 + Aa)dz = Ab (X, ko + A),
by
where X lies between by, and b, + Ab. And the last integral can

be represented in a similar manner. Thus
A 0
—Ajf- =ff¢(r,ao + 0Aa)dx +
%

Ab A
Ff(xv *g + Aa’) - _A_:'—f(x’a [T + Aa‘)v
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lim X = by, lim X' = a,,
Aa=0 Aa=0

and the completion of the proof is now easy.

When such an extension of the definition is not obvious or
possible, the above proof can be modified without great difficulty, but
there ig a simpler treatment, which we will not undertake to repro-
duce here; cf. the Author’s Funktionentheorie, vol. I, 1928, p. 122.
On the other hand, if one adds to the restrictions on f(r,a) the
requirement of the existence and continuity of 9 f/dx, the transfor-
mation of the variable of integration used in §2, whereby

13 1
ff(x,a.)d.t =f(b—aﬁf[(b—a)t+a,a.]dt,
a 0

leads at once to a proof.

§5. Iterated Integral with Constant Limits. Tueorew.
Let f(x,y) be continuous in the rectangle

R: ez <), AZ y= B

Then
4 A B »
;ferf(x,)-)dy =X/.dfsz(x,y)dx.

It is possible to give a simple proof of this theorem without
recourse to the double integral. Form the function

Flz,y) = J dz J flaydy.

The function

%
Jf(x,y)dy
A

is continwous in R, cf. §1, Exercise 2, and it has a continuous
derivative with respect to y. Hence by §3

4 z
—3—5-=J‘f(x,y)dy, %—=Jf(x,y)dx.
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Thus

B
[ fley)dy = F(x.B) = Falz, )
A

b B
J dx.df f@)dy =

F(b,B) — F(a,B) — F(b,4) + F(a, A).

Because of the symmetry in the result it is obvious that the

and

iterated integral taken in the reverse order has the same value, and
this completes the proof.

6. Proof that = 9 u o LR et u = F(z, y) be continu-
2zdy dydz Y

ous in the neighborhood of a pomt (zg, o). Let the first partial
derivatives exist and be continuous in this region, and also the second
partial derivatives in question. Choose a rectangle R, § 5, containing
the point (zy, ) in its interior and itself lying wholly within the
above neighborhood. Let

_ 0%u 9%u
D =)= 935y T Gyes
and compute the’ integral :
3 3 as tE<xr=Dh
2) f:l:J ¢ (z, y)dx { - < B
: . A= 9< y=s

Its value by §5 is:

3) fdz: dy J g dx.

Each of these mtegra]s has the value.

F(x,y)— F(E,y) — F(x,7) + F(£.9).
Consequently the integral 2) has the value 0, and hence the function
@ (z, y) vanishes identically. For, if ®(z, y) were positive (negative)
at a point within R, the limits of integration in 2) could be so

chosen that the integral 2) would be positive (negative). It follows,
then, that
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§7. Improper Integrals.® Consider the improper integral

1) ff(x, a)dx.

The integrand shall be continuous in the region
R: cEL < oo, A< a=B,

and the integral shall converge for all values of a in the interval
(4, B). Thus the integral defines a function of a:

2) ¢@hi[f@mﬁz

The function ¢ (a) is not, however, in general continuous. For
example, the integral

3) f a2 dg

0
converges for all values of a. Its value, ¢ (&), is 1 when a % 0;
but when a = 0, it vanishes:

pa) =1, a #* 0; ¢ (0)=0.

Its graph, ¥ = ¢(a), ¥
is a line parallel to
the axis of @ and 1
unit above it, except 1

when a = 0; then it
drops to the origin. BT

Again, consider the integral

4) V(@) =fa.3e"°‘2’d:t.
o
This integral converges for all values of &, and
V(@) =a.

# The following treatment presupposes the ordinary tests for convergence
as developed in the Calculus; cf. for example, the Author's Advanced Calculus,
Cap. XIX.
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Moreover, @ f/da. exists and is continuous for all points 0 = x < oo,
—co < o< o0

__?f — 2 1 ~a2r
Fyral (Ba Qatz) ez,

Nevertheless, differentiation under the sign of integration is impossible
when & = 0. For

but the integral

Ld

f.ai dz =0
oo

0
when a = 0.

And still again, it is not true that

oo oo

o ]
%fdmff(x,a)dr=Jdra‘!1f(.t,a)da,

c
even when f(r.a) satisfies the above requirements and all the in-
tegrals involved converge. For example, let

Sz, a) = (Ca — 2a3x) e™%=,

It is readily shown by direct computation that

JO:f(tr, a)dzr =0

for all values of . Hence

Jda.Jf(x,a)dx:O.

On the other hand,

-3
J flzx,a)da = ale™,
v

0 a L
J def(J:,a-)da. =fa.2e‘°‘2‘dx.
(] [ 0

This is the integral 3), and its value is 1 when & # 0.

Thus
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§8. Double Limits. The phenomena described in the last
paragraph are all examples of double limits:

Iim ff(x,a.)dr and J.limf(x,a.)dx;
G:Zoc ¢ G—‘—“Uo

AJf(:t.a.)da: ”
. . At
1 - 1i dx;
A::o Aa and Aa.I:o Aa “F

=0 k=1 et =51

lim z Aa.kff(x, a.k) dxr and lxm z Sz, a.k) dx.

The questions are precisely similar to those that arose in infinite
series :

i) Continuity of the function defined by a convergent series
of continuous functions;

ii) Differentiation of a series term-by-term;
iii) Integration of a series term-by-term.

In the earlier case we found that uniform convergence was the
key to the situation, for it erabled us each time to infer the equality
of the two double limits. The same holds true here. We lay down
a definition of uniform convergence for an integral analogous to the
definition of uniform convergence for a series, and apply it in a
similar rnanner.

In a larger sense both definitions of uniform convergence come
under the general case embodied in the theorem of Chap. V, §10.

§9. Uniform Convergence. Definition. Let f(z,a) be a
function which, for each point @ of an infinite point set A, is con-

tinuous in x,
c=E x< oo,
The integral

1) ff(x,a.)dx

is said to converge uniformly in the point set A if, to a positive ¢



DEFINITE INTEGRALS. LINE INTEGRALS 273

chosen at pleasure there, corresponds a number g (= ¢) independent
of « and such that

=
Jf@ﬁwx

x!

< g = 22"

TueoreM 1. .{ necessary and sufficient condition for the
uniform convergence of the integral 1) is that, to a positive €
chosen at pleasure, there correspond a number g Z c, independent of
a and such that

xr

(]
Jf(a:,a.)dx < e, g =1
3

THEOREM II. A4 necessary and sufficient® condition for the uni-
Sform convergence of the integral 1) is that, to a positive ¢ chosen
at pleasure, there correspond a number g (= c) independent of a
and such that

(.t,m)dx‘ < g = x < oo
f ‘ g
x

§10. The de la Vallée-Poussin p (x) - Test. \Weierstrass's
M-Test for uniform convergence in the case of infinite series finds
its exact counterpart in de la Vallée-Poussin’s . (x)-Test in the case
of definite integrals.

DE 1A VavLee-Poussin’s p (z)-Tesr. Le: p(x) be a funciion
continuous for ¢ £ y £ x. If

i) [flra)| £ p(z), y=x 4=Za=B;

i) t[p@ﬁr

converges, then the integral

.ff(x,a)dx

converges uniformly in the interval A £ o = B.

# For the sufficient condition one must, of course, begin by requiring the
plain convergence of the integral 1)
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Proof. Let ¢ > 0 be chosen arbitrarily. Then g (= y) car
be so determined that

!

J p(z)dx <, g=2 <
X’
Now,
2/ 2zl x!
(] (] £ ]
Jf(x,a)dx = / | fx,a)|dx é‘] p(x)dzx.
x! J..:I !
Hence

i

./.f(.r.a)d.z

< ¢ g=a <

But g is independent of @, and so the theorem is proved.

lxample. The integral
o
f e dx
I
converges uniformly in any interval bounded, from above:
a = G

For, let
p(x) =26t

EXERCISES

1. Show that the integral

2

f *le™? log xdx

1
converges uniformly in every interval bounded from above.

2. The same for )
fx“"le“"' (log )8 dx.
5
3. What can you say regarding the uniform convergence of

the integral
. -]

fe"’cosaxdx?

n
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4. The same for

oo

f adx
a.2+12'
0

J xe~ =+ g oy,
0

§11. Continuity. Taeorem. If f(x,a) is continuous in
the region

5. The same for

A -

R: c = < oo, A

ff(r, a)dx

converges uniformly in the interval 4 = a = B, then the in-

tegral defines a function,

a = B,

and if the integral

o) = ff(x,a)dx,

continuous in that interval.

Proof. We wish to show that, to an arbitrary 4 = ay < B
and to a positive € chosen at pleasure, there corresponds a positive &
such that

lg (@ + k) —¢lag) | < ¢ 2] <8, AZay+h= B

Now,

I 4
¢ (ag + k) — ¢ (o) =f‘,f(x,a0+h)-—f(.r,a0)§dx+

Sflx,g + BYdx — | f(z,ap)dx,
J J

no matter how ¢ = g be chosen. Let €/ be an arbitrary positive
number. Then, by Theorem II, §9, a number g = ¢ and inde-
pendent of &y, & can be found such that
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|.§/1f(x.ao+h)dxl < ¢, I.‘jf(x’a"))dxl < .

Hold this g fast. Then, since

ff(x, a)dzx

represents a continuous function of @ in the interval 4 = o = B by
§1, it follows that

|fgf(x,ao+h)—f(x,ao);dx‘ < ¢ &) < 8.

Hence
lp@o+ k) — @) | <3¢, lR] < &,
and it remains only to choose ¢’ so that 3¢/ = .

Example. The integral
o
J e 2dr
1
represents a continuous function for all values of a. For, let a, be
an arbitrary value. Let G be chosen > a,. Then the integral
converges uniformly in the interval @ £ G (cf. §10) and so repre-

sents a function continuous at o = a,.

EXERCISES

1. Let a point set 4 ={a} be given, witn a point of con-
densation, @y. Let f(x,a) be a continuous function of z in the
interval

c=E < oo

for each @, ¢ being a constant.
i) Let f(r,a) converge uniformly in any finite interval,

= z £ G,
when & approaches o ;

ii) Let ff (r,a)dx
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converge uniformly in .4. Then:—

a) lim f(r,a) = o ()
a==0y
is continuous, ¢ = z < 0}
o0
b) f w(r)dx converges ;
L)

c
c) lim f(r.a.)dx =fhmf(r a)dz.
a=a ¢
2. Let f(x,a) be a function which, for each a of an infinit
point set ./, is continuous in x,
c € r < oo,

Let @y be a point of condensation of .4. For an arbitrary value x
of x let f(x, &) approach a limit:

lim  f(z,a) exists, c = 2’ < oo,
(z, &)=(x), ag)

Finally, let the integral

ff(x, a)dzx

converge uniformly in A. Then:—

a) ]i_m Sz, o) = o (x)

is continuous, ¢ £ z < oo;

o

b) f w(r)dz converges;

c

c) lim ff(x, a)dx =f1imf(x,oc)dx.
=g a==ay

§12. Integration. Reversal of the Order. Tirorem. [

the function f(x,a) is continuous in.the region

R: c < z < oo, 4= a £ B,
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and if the integral 1), §9, converges uniformly in the interval
A% a £ B:

oo

< (a.)=ff(x,a.)d:r,

then

31 o

f?(a)da=fd.rff(x,a)da,

%o

%fda..cj‘f(x,a)dx =J‘dr;oj‘f(x,a.)da.

Proof. The function ¢ (a) is continuous by §11. We wish to
show that, to an arbitrary € > 0 there corresponds a number g
(= ¢) such that

a .«
{J‘?(m)da —J dx%ff(x,a)da| <« g=m

Now,
ff(x,a)dx=ff(x,a.)dx+ff(x,a,)dx’

and for a fixed x each integral on the right is a continuous function

or:

of &. Hence

oy o % z % 00
;[da..cff(r,a)dx={da‘!f(x,a)dx+!dajf(z,a)dx.

The order of integration in the first integral on the right can
be reversed, §5. Thus

ay

fda.‘cff(x,a)dx—de;!‘f(x,a)da.=4‘da.'!1f(x,a.)d:t.

)
]
Because of the uniform convergence of the given integral,

IJ.f(x,a)dxl<e’, g =z
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ﬁl o0
’fdaff(x,a)dx' < la; —agle, g
ay r

and it remains merely to choose €/ so that |, — &g | €’

Hence

1A

x,

A

EXERCISE

Under the conditions of the theorem, show that the integral:

J d:::l f F(z,0) da

converges uniformly in the interval 4 = a = B.

§13. Leibniz’s Rule. TurorRemM. Let the integral 1), §9,
converge in the interval A4 = a = B:

¢ () =J Sz, 0)dz,
Let 0f/0a exist and let the function
of _
5@ “‘fa (xf a‘)
be continuous in the region

R: c = r < w, AL a

ffa(x, a)dzx

converge uniformly in the interval A4 < a < B.

Then the function ¢ (a) has a derivative, the derivative is
continuous, and it is giver by the last integral:

d
;—i%:ff,(z,a)dx.
e

1A
&

Finally, let the integral
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Proof. Let
Then c
fwaux—fdxf 9f 4a
~J {flz,a) — f(z, 4) } dx
=ff(:c,a.)d1: —j:f(x,/l)dx
Hence c c

fxp(a)da=so(a>—¢u),
A

and the proof is now given by the theorem of Chap. IV, §7.
Example. The function defined by

f P letdx
Y

can be differentiated with respect to « for all values of the argument.

EXERCISES

1. Knowing that

oo

_ /T
fe Ry =YIT
D Z
0
(=]

1 /7
-a'tzd = — —_— 0<a..
fe * 2}/11.

0
Hence show that

3 1 /7
fxze“’zdx=— z, 0<a.
) 47 a3

show that
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2. Obtain a formula for
f.z:"‘e"zdx, n=1,2,3+-".
0

§14. Applications. It is now possible to complete the proof
of certain evaluations of definite integrals studied in the Calculus®.

Ezxample 1. Consider the integral
1) u=fe"”oosa.:cd::.
0

The convergence for all values of @ was shown in the Calculus.
Moreover

of - — re P sinax
XA

is continuous in the region

R: 0= =z, —o < a <L oo,

and the integral
o0
f — ze%sinaxrdx
]

converges uniformly for all values of a. Hence Leibniz’s Rule is
justified. Integration by parts requires only elementary methods.
Thus it is seen that

du _ _ T,
do 2
The integral of this equation is the function (Chap. XII, §7):
a?
u=ke ¥.

When a =0,
u=fe"‘d:c=-"—1.
2
o

Hence the integral 1) has the value:

/r %
fe’”cosa-xd::‘Q e+,
o

® Cf the Author’s Advanced Calculus, p. 487.
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Example 2. The integral

2 _ J oy

can be treated in a similar manner. First,

—= - 2fax‘2 "’2'-dx, a %= 0.
For, this last integral converges uniformly in the interval
0<dI=a

since

o2 al?

axlem ="t < — =—,

= ¢ o ¢ 22

and hence

o2
az™? "’z'—‘<%e‘a—,‘.(x)

On changing the variable of integration, setting y = a/x, it is
found that

du _
E = Qu.
Hence
u=Ce™® 0 < a,

Let a approach 0. The integral 2) is uniformly convergent for
all values of . Hence

o

VT

linu= | e®dxr=_"21,
a=0+ 2
and so
C— Vr
=

It & < 0, the value of u is the same as for | & |. Hence finally

/T .
U= 12— e2lel «, unrestricted.

The function is continuous at the origin (as elsewhere), but it
has no derivative at the origin. It has a forward derivative, equal
to —1/7; and a backward derivative, + 1/ 7. The function is
an even function, and so its graph is symmetric in the axis of
ordinates.
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EXERCISE
Evaluate the integral:

oo
f e P sinazx A x.
[}
Compute its value for & = 1.

§15. The Gamma Function. Let the Gamma Function be
defined by the integral,

1) T (a) = f e da.,
0

This integral is shown by the ordinary tests to converge for all positive

values of a: 0 < a; cf. Advanced Calculus, p. 480. We now

proceed to show that T (a) is continuous for all such values of a.
Let the integral be written as:

oo

1 =]
S-S
¢ 0 1
The second integral,

2) V() =f e du,
1

has already been shown to converge uniformly in any interval bounded
from above. If, then, &/ be an arbitrary value of &, it can be in-
cluded within such an interval, and hence (@) is continuous at
a’. But @/ is any value of a. Hence the integral is continuous for
all values of a.

Turning now to the first integral,
1

3) ¢ () =f.t°“le""d:c,

0
we see that this is an improper integral which can be transformed
into the class considered in §§ 9-13 by a change of variable,

# ¢(a) = f =1ty
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This integral converges uniformly in any interval 0 < § £ a < oo,
Hence it represents a function continuous for all positive values of .

Combining the two results we see that T (a) is continuous for
all positive values of w.

Differentiation of the Gamma Function. The function ¥ (a)
has a derivative given by Leibniz's Rule:

d\" —J e *log rdx.

The integral 4) can be differentiated under the sign of integra-
tion for positive values of a. Hence, on transforming back, we see
that the same is true of the integral 3).

Thus it appears that the Gamma Function has a continuous
derivative for all positive values of «, given by the formula:

5) % = J e logx dx.

The existence of higher derivatives of all orders is proved in
like manner:

__. a=1 =z 7
6) da." f e~ (log x)* dx.

§16. Improper Integrals over a Finite Interval. Instead
of transforming the integral 3) into the form 4) considered in
§§ 9-13 it is possible to give an independent treatment, parallel to
that of the earlier case.

Let f(x, «) be continuous in the region
R: a<lx =X b, A= a =B,
though not in general bounded. The integral

jf(x, a)dzx

is said to converge uniformly in the interval {4 < &« = B if, to0

an arbitrary € > 0 there corresponds a positive &, independent of a,
such that
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F
‘ff(x,a.)dxl<e, a< 2,2 < a+8.
zr

The two theorems corresponding to Theorems I, II, § 9 are now
formulated as before. The p (x)-test is developed. and the theorems
of continuity (§ 11), reversal of the order of integration (§ 12), and
Leibniz's Rule follow as before. It is a useful exercise for the student
to write these theorems out in detail and to give a complete and
independent proof of each.

Similar remarks apply to the integral

f Sz, a) dz,

where f(x, &) is continuous in the region

R: asz<b, A=a =B
If f(z, &) is continuous in the region
R: a< z<b, 4= a = B,

the integral may be broken up into the sum :

S
f + J ) a<c<b,
a 4
and each of the latter integrals treated as above.

Remark. Tt would be a mistake to think that the above defini-
tions exclude the case of proper integrals. The improper integrals
are analogous to infinite series, the proper integrals to sums, so that
a proper integral, under the above definitions, is like an infinite
series whose terms, from a definite point on, are all 0. Because of
this analogy the improper integrals are sometimes called “‘infinite
integrals”, but the irrelevant connotations of such a terminology are
too disturbing.

EXERCISES
1. Show that

h 1 ] h
fdyf:cf'ldx= d.tfx’"dy. 0<g<h
4 0 0 &

and han~a



286 FUNCTIONS OF REAL VARIABLES

2. Prove the last equation to be true by means of partial
differentiation and Leibniz’s Rule.

3. Let f(x, &) be continuous in the interval
a < x< A

for each @ of a point set A, and let y be a point of condensation
of 4. Let

lim  f(z,a) = o(z)

(2!, a)==(z, ag)

A
[r@araz

converge uniformly in 4. Then

4 4
&Jf(x,a)dx:!}i:f(x,a)dx.

and let

§17. The Beta-Function. The Beta-Function is defined by
the integral

1
1) B (m,n) =f:c’"‘1(1 — )" ldzx.
0

It converges for 0 < m, 0 < n, and is a proper integral when
1 = m, 1 = n Break the integral up into the sum:

c 1
J+f, 0 < c< 1.
1] Ce

c

2) ¢ (m,n)= | 27 1(1 = z)" ldx,
0

The first integral,

converges uniformly in every region 0 < § = m, 0 < n.
For, if

p @) =211 = 2,
then :
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0 = 211 — )" = p(a),

and the p (z)-Test applies.
Similarly, the second integral,

1
3) ¥ (m,n) = f 21 (1 — 2y ldz,

converges uniformly in every region 0 < m, 0 < & = n. Hence
the Beta Function is continuous throughout the region 0 < m,
0 < n

By a change of variable,

= z =__y._
r=1=z T iy

the Beta Function can also be written in the form :

4) B(m,n)-f(l_i_l;in{'_n.

It is connected with the Gamma Function by the relation, §19:

_ T'(mT(n)
5) B (m, n) = —I;—(’n—-:-*_—n)-.
EXERcIS®

Show that the Beta Function admits derivatives of all orders.

§18. Both Limits Infinite. There remains the case of the
reversal of the order integration in the integral

1) fdrff(x,y)dy.
a b

Let f(z, y) be continuous in the region
R: af zx b=Ey

We can obtain a test by means of the Theorem of Chap. V, §10. Let

s(z,7) =jdrjf(x,y)dy-
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THEOREM. Let

) J fenay
b
converge uniformly in any finite interval, a £ x = A4;
) [ renaz
a
converge uniforinly in any finite interval b = y = B;
~ A
iii) f dx J Sz, y)dy
a 5

converge uniformly in the infinite interval, b = y < oo,
Then each of the integrals

.[dy_ff(x,y)dr, fdx.ff(x,y)dr

vonverges, and the two are equal:

deff(x,_’y)dx =f.(l.rJ.f(x,y)dy.

Proof. From i) it follows that

o z 2 [
i 3 = y = k y dy =¢
}:r;s(x ) de:ff(x ry)dz Jerf(x 7 dy = ¢(z)

exists,
From ii) it follows that

- x «
}i:xns(x,y)=fdxjf(x,y)dy=.]dyff(x,y)dx:xy(y)
a b a

exists.
From iii) it follows, since

s(@", y) — s(2', ») fdx ff(x,_y)dy,

that
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|s@" y)—s@, )| <e g= a2,

where g is independent of y. Hence all the hypotheses of the
Theorem cited are fulfilled and consequently :
a) lim ¢ () exists, or
T =

o0

f dz ]‘ f(x,y)dy converges;
e
13

b) lim y (y) exists, or
y:::ao

fdy /f(x,y)dy converges ;
e L
b a

c) ‘J‘dx'b] Sflzy)dy =de;ff(z,y)dx.

Thus the theorem: is proved.

CoroLrLarY®. If, in particular,

0 = f(z, )

de,ff(r.y) dy

converges, Condition iii) is automatically fulfilled.
For, let

and if

p @)= flzy)dy
S

Then p (x) is continuous and = 0. Moreover,

.fp.(:r)d.r =Ju:d.rff(z,y)dy

converges. Hence the de la Valléde-Poussin p (z)-test applies to the
integral

® This corollary, which is of chief importance in practice, is due to
Professor C. A. Shook.
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f F(z,y)dx, F(z,v) =ff(x,)’) dy,
b 3

since

0 éff(r,y)dy éjf(x,y)dy=#(x).
b

§19. Application. The B-Function in Terms of the T'-Func-
tion. The B-function can be expressed in terms of the I-function
by the formula :

T (m) T (n)

T(m+n) '

The formal part of the proof is easily given. If in the I-integral,
§ 15, we change the variable of integration from z to yx we have :

1) B(m,n) =

T (m) =fy”‘ e dy,
]
Thus

td
T (m) yn-l ey = J .’l""-l ym+n—1 e—.‘}’(1+.r) dx,
0

and

2) r (m) f },n—l e d)’ — /‘ =14 f ym+n—1 e (1+z) dy,
o % o

provided it is permissible to reverse the order of integration in the
iterated integral. The value of the integral on the left is T'(n). The
first integral to be computed on the right is substantially the [-integral.
For if in § 15, 1), we change the variable of integration from =z to
(1 + 2)y, we find:

. 1 T (m+n)
.l‘ymi-n 1 .7'(1+z)dy____ (T_‘__;)—nﬁn—
0

Thus

2 ldz

r(m)r(n)—r<m+n)J'(1+x)m
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But this last integral, by § 17, 4), is equal to B (m, n).
It remains to justify the reversal of order in the iterated integral
2). Consider first the iterated integral :

non
5) ./ er P oiant ym+n—1 e~ (1+z) d_y.
1 1

In accordance with Condition i) of the theorem of § 18 the integral

oo
L]
/ Im—l.},m+n—l e-—o’(l+x) d_)’
p
converges uniformly in any finite interval 1 = = = G. For,
1 ),m-l'n—l e~Y(1+z) < (1 ),m+n—1 e = m (:}")
b

&
and the p-test applies.
Secondly, the integral

fxm-l ym+n—1 e r(1+2) g4
1

A
A

G. For

converges uniformly in any finite irterval 1 = »
Z2m] ),m+n-1 e Y(I+2) ~ Gmin=1 pm=1 =% — P (x),
and the p-test applies.

Since the integrand is always positive and one iterated integral
converges, Condition ii1) is automatically fulfilled; i.e. we have the
case considered in the Corollary.

Thus the right to reverse the order of integration in the iterated
integral 3) is established. Turning now to the integral 2), which is
the one we are interested in :

4_) J dr J ol :y'"'”‘"l e~ r(1+2) 4 ¥,
e
0 3}

we see that we can break it up into the sum of four integrals:

S-S N Y- N N ]
SS=SS+S S+ S S+
e/ o L] e/ e
9% Y% %YV Y'Y %Y

Thelast integral is the one we have just discussed, 3). Each of the
others, by a suitable change of variable of integration, can be brought
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under the case considered in the Theorem of § 18. Thus in the
first integral on the right we may replace x by 1/z and y by 1/y.

We find :
fd'tf —m-l -m—n—-l e—y(l-’-r) dy

Here, the exponential factor does not help in the convergence —
naturally. But since we are integrating from 1 to co, there is no
difficulty in obtaining each time a suitable w-function. The further
details are left to the reader.

The example suggests the formulation of a general theorem, to
which we now turn.

§20. Rectangular Region of Integration. Consider the
integral:

4
J d:ch(x,y) dy,
where f(z,y) is continuous in the open rectangle

R: a< x < A, b < y < B,

but is not necessarily bounded. We can paraphrase the theorem of
§ 18 as follows.

THEOREM. Let

B
i) J f@y)dy
b
converge uniformly in any interval

a = x = A4, —a< a < A" < A4,

4
it) J Sflz,y)dx

converge uniformly in any interval
¥ =y= B, —b <V < B<B;

1
iit) f dz 4 fla2)dy

converge uniformly in the region b < y < B, b < n < B
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Then each of the integrals

B A A B
;fdy;ff(r,y)dx, deJf(x,y)dy

converges, and the two are equal:

B4 4 B
.Ifd)‘:sz(x,y)dt=:/ a’x'l/‘f(x,y)dy.

The proof can be given by paraphrasing the proof of § 18, using
the theorem of the Exercise, Chap. V, § 10,

4 i
s(&,x39, ) =J a’yjf(x,y)dx
7 3

where lim (&, z) = (a, 4), lim(y, y) = (b, B).*
A less elegant, but more elementary, prool consists in breaking
the given integral up into four integrals:

A B A B « B A 8 a B
[J=S S« S+ J«S ) 132553
= + ’
:1 .lr a '{3 a .ﬁ a a b b< B <B
and then transforming each into the integral considered in §18.

Thus the first integral on the right will be subjected, for example,
to the change of variable:

_T—a _y—8
x’—A—-x' ' B—y'

And similarly in the case of each of the other integrals.

CoroLLARY, If, in particular, f(z,y)= 0, and if

A B
:/'dx%ff(x,y)dy

converges, Condition iil) of the hypothesis is automatically satisfied.-

Finally, one or both of the limits of integration A, B may be
replaced by + co, and’independently either or both of the limits
a, b by — oo,

® The proof was given in this way by one of my students at Harvard,
whose name I cannot now recall
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§21. Appraisal of an Alternating Integral. Consider the

integral

1; fgo(x) sin z dx,

where ¢ (z) is continuous, ¢ £ z, and

o (@) = ¢(a"), c= 2 < 2

lim¢ (z) = 0.
=00

T £ I x
S-fofreef
c c ry ;n

where z; = k7 and

Write :

n—r £c<azx, mEx <zt T

Assume first that ¢ = z; — = = x,. We then have an alternating
series whose ferms are in general decreasing numerically (never in-
creasing) and the general term approaches 0 as x becomes infinite.
Hence the integral converges. Moreover, the error made by breaking
off with an arbitrary x = ¢ does not exceed

1
/go(x)sinxdx\ < 2¢(c),
e
z

or:
2) IJ.ga(x)si‘nxdxl < 2¢/(c), cE z < oo,

The same appraisal holds when z; — = < ¢ < z,. For, extend
the definition of ¢ (z) to the interval (zy, c), setting

¢ (x) = ¢ (c), n—r=z<ec

Then, for the extended function,

J.go(x)sinxdx

lies between
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z x
f(p(x) sinzxdzr and f«p(r)sinxdz,
£ ) ;l
and each of these integrals is appraised by 2.
With the same conditions for ¢ (x) the same appraisal is obtained
for the integral

fgo (z)sin (z + y) dx.
c

In particular,

X

3) ,f(;(x)cosxdx‘ < 2¢(c).
(4
Finally, m > 0:

4) l fgo(x)sinmxd:c!<2—é?(cl;
-3

5) l /go(:c)cosmxdxl< 2¢(C).

oc m
ExeRrcIsE

Let ¢ (x, &) be defined in the region
R: c = x < oo, 0<a=A

Let ¢(z, ;) be a continuous function of z for an arhbitrary choice
of (L) > 0. Let

i) ¢ (@, ag) = ¢ (2, ay), c=z2 <2
ii) lim ¢ (z, &) = 0;
X=00
iii) lim ¢ (c, &) = 0.
=0
Then

o(r) = f(p(x.a.)ooszdx

approaches 0, as & approaches 0.
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§22. Computation of /‘ Si—';""-dx.
b

That this important integral converges, is shown in the Galrulus.
Let its value be denoted by K. Since
}4+cosr+cos2x 4 - +oosnx=“%”.+§ﬁ,
2sin §
we see that

kg

fsin(n-l'%)—‘cd _T
2sinkz “TT o

Moreover, on changing the variable of integration from z to (n + }) =z,

we have:
K=J smxdx=fsm(n+§)xdx.
z z
G b
Hence
_r _ g2 1 . " sin (n4d) =
K=3 ”J(}'_ Qsin}x)sm(”"'b’d“'f_T"d”
kiq

Now, change the variable in the last integral, setting
t=(+1) = h=(n+3%)=.
Thus this integral becomes:

oo
sint
f "—t~ dt,
h

and so approaches 0 as n = co.
The first integral approaches 0 by Chap. VIII, § 1, Exercise 1
Hence K = #/2:

§23. Applications. The integral

_ [ osmzx
1) u -—-Bf m— dx
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can be evaluated by setting
et 2f y e dy
0

and reversing the order of integration in the iterated integral

)

2) u= 2fdxfye’ﬂl+"z’cos mzdy.
o 0

For, by Example 1, § 14,
3 m?
QIye'ﬁ"cosmrdx =7 52
o
and hence, by Example 2, § 14,

o m2
3) u=1v'r fe'-’“"?ﬁ dzr = g— —lml
o

Tt remains to justify the reversal of order in the iterated integral.
This is done by the theorem of § 18.

ad i) fy e 1Y) cos mx dy
0
converges uniformly, 0 = =z, for
|y e+ cosmze| = ye* =p(y).
ad i) fy e 1) cos mx d 2.
0

This is not so easy, for the uniform convergence cannot be established
by means of the p-test. _
For simplicity of presentation set m = 1 and consider the integral

4) ‘]‘ye‘-"’z"’2 cosz dr.
0

This is an alternating integral, and the value of the remainder can
thus be appraised. The integral has the value:
T1 3

‘ fofr
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where

r
.‘l’klel‘f—'T. .

Since the tunction
—y22
ye T, 0<y,
is 1monotonic decreasing as x increases and has the limit 0, the value
of the partial remainder
z
. K T
j e’ P cos x dx, > =<,
4

is less numerically than the contribution of the arch in which &
appears:

a=t<hb, a=kr — §, b=rFkr + 3§,

or: a=uzxx, b= uxz4. Now,

b b
- L]
L/ e"""cosxdxl <_J e P 4y = re"z“‘e, a< X <b
a a
Hence
5) 'Je'yztz cos.tdxl < re?h

For a fixed value of % (however large) and a small value of
> >0 this appraisal will not be small; but it will always be less
than .

Let us formulate now what we wish to establish. To prove that
the integral 4) converges uniformly in any finite interval 0 = y < B
is to show that to an arbitrary ¢ > 0 corresponds a g independent
of y such that

r
6) ‘fye"‘z‘”‘z)oosxdxl < & gt o

We can do this as follows. First

z

fe"’”‘oosxd:r

3
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is bounded for all values of 0 = &, z < oo :
3
7 ’J e"d‘zcos:cd:c‘ < M.
Consequently
T

‘J‘ye‘?’z(l"'"") cosxdrl < yM,

13
no matter how £, x be chosen. Let & be determined by the relation:

8) M§ =ce.

Then the condition 6) is satisfied when 0 = y = §, no matter how
£, x be chosen.
Next, restrict  to the interval

9) d <y = B,
And now the appraisal 5) shows us that, if g be so chosen that
T Be €% < ¢,

the condition 6) will be fulfilled. This completes the proof of uni-
form convergence under ii) when m # 0.

Turning now to iii) we have to show that

JF(x,y) dx

converges uniformly in the interval 0 = y < + oo, where
7
1]
F(z,y) =J ¥ e+ cos mx dy.
]
It is easy to find here a function p (r), namely :
v 1
. - —y2(1+z2) —_—
p(=) J‘y”, W=D
0 ,

This completes tlie proof when m # 0. When m =0, the
evaluation 3) is seen at once to hold by inspection of the integral 1).
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EXERCISES
1. Show that
‘oo . fe"", 0<m
rsinmzx
.f T+ = dr = 0, m=20
0 —Fem, m<0
2. Show that
g %, 0 < mj
f sin mz .o 0, m =0
x
0 -z m<O0

suggestion: Set m =1,

i
— —J’zd‘
s=ferar

0

and apply the theoremn of §20.
This 1s, of course, an exercise in method. The result can be
obtained at once from §22.

3. Show that

oo

ysmLy kcosbx
b°+y B+

dz, k# 0,

by estab]ishmg the right to reverse the order in the iterated integral

o0

fdxfe’fzoosbxsinkydy.
0 0

4, Show that
- Z =Bkl 0<b
rsinbx
Er a2 dzx = 0, =0

— F oK, b< 0

§24. Duhamel’s Theorem. In formulating certain physical
quantities as limits of sums it frequently happens that the sum in
question is nearly of the form of a sum - whose limit is a definite
integral, and it seems highly probable from physical considerations
that the two variables have the same limit; namely, the definite
integral. Duhamel devised a theorem which meets the requirement.



DEFINITE INTEGRALS. LINE INTEGRALS 301
TaeorEm 1. Let
e tastctap 0= ay,
be a sum of infinitesimals which approaches a limit as n = oo. Let
Bi+Bz+ -+ B

be a second sum such that

lim & =1
Lk
in the sense of a uniform approach; i.e. By/a; shall approach the
Limit 1 uniformly as n = co. Then the second sum approaches a

Limit, and the two Limits are equal:

lim(a; + s + -+ + @) =lim (B, + By + -+ + Bn).
00 n=oco

n=

Pro;f. Let
Bx _
P 14+ Lk

Then, by hypothesis, to a positive ¢ chosen at pleasure there corre-
sponds a fixed m such that

[l < e m £ n
Hence

Bi+Bo+ - +Br=ay+a+ - +an
tajlitaslet o+ anln
Since a; > 0, we have:
lay i+ aslo+ +antnl < (@) +as+-- + an) e

The sum 3 aj is bounded, and so this last expression can be made
as small as we please. This completes the proof. _

Another form of the theorem is the following. Consider a
proper ~definite integral:

n 3
lim z f(.z:,") Axy =J f(2)dx,

= g1

the integrand being continuous in the closed interval 2 = = = b.



302 FUNCTIONS OF REAL VARIABLES

Let ¢, be defined for each partition of. the interval and for each
value of &; and let
¢r =f(x1) + Lp

where {; approaches 0 uniformly; i.e. to a positive € chosen at
pleasure there shall correspond a fized & such that

Tl < Az ] < 4,
no matter how the interval (a,) may be partioned. Then the
sum :

1Az + @28z 0+ ¢nAxp
approaches a limit, and this limit is equal to the definite integral :

b

lim z O Axy = ff (x)dzx.
n=x k=1 .

From a theoretical standpoint this latter theorein is more general.

But in practice the earlier one is adequate, and more convenient to

apply. Cf the Author's Introduction to the Calculus, pp. 301-307,

We may formulate the result as follows.

TueoreM 2. Let % be a closed regular region of the n-dimen-

sional space of the variables (x), -+ -, x), and let f(xy, -+, zp) be
continuous in A. Consider the integral:

n
f"'ffdr=lim > fi Ak
n=00 jo2|

Let ¢, be defined for each element of volume, and let

ok =fi + i
where {y approaches 0 uniformly. Then

2 Or ATy

k=1
approaches a limit, and

lim ng,‘ Ary =f ffd,.
n=x f==|

In attaching the name of Duhamel to these theorems one recalls
the man who first dealt constructively with the question stated at the
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beginning of the paragraph. Duhamel himself formulated Theorem
1, without however recognizing the importance of the uniform re-
striction — this question had not been raised in his time. On the
other hand, Theorem 2 is only one of a group of theorems designed
by followers of Duhamel to accomplish the same object. It might
be better to refer to this whole group of theorems as Duhamel's
Principle.

§25. Line Integrals. Let C be a regular curve in the
(x, ¥)-plane, and let f be

a function, defined in the 5 Nsp=1
. . -1
pointsof C and continuous. c

Thus f is a continuous *
function of the length of )

the arc of C, measured Y5 =0

from an extremity. Divide

C up in any manner into n arcs as indicated, and form the sum:

Z SrAsy,
k=1

where As; = s; — sp—; and f} is the value of f at an arbitrary point
si of the k-th arc. Then the line integral of the function f along
C is defined and denoted as follows:

n )
1) lim 2 fk Asp = ] fds,
= =1 b

the Jongest arc As; approaching 0. It is nothing more or less, in
substance, than the ordinary definite integral:

1
2) .o[f(s) ds.

But in form the definition is important; for, first, we are
thinking of a function as defined along a curve, and not in an
interval of the scale of numbers. And secondly there is no question
of the sense of integration along C. We could equally well have
measured s from the other end of the curve, or from a third point,
in either direction. It is essential that As; be taken absolutely, not
as a signed quantity. It is important to point out these facts at
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this stage, since the value of the line integral 6) below depends
essentially on the sense in which it is extended along the curve.

THEOREM. Let ¢y be defined in any manner, corresponding
to the k-th element of arc, As;, and let

Cr =f(sk) + (k,

where Ly approaches 0 uniformly as n = co. Then the sum

n
Y Prls;
=1

approaches a limit as n = oo, the maximum As; approaching 0, and

3) lim Z o Asy = ffds.
¢

B k=1

The proof follows at once from Duhamel’s Theorem, § 24.

An important application in practice is the following. Let ¢
be defined as above, and let I; denote the length of the chord. Then

the sum
n
>, exle
k=1
approaches a limit as n = co and

n
4) lim z Crly = ffds.

n=
® k=1 Yol

For, let an arc of C be represented by the equations:
=y (), y=ol);

V(2 + o' (s)2=1.
Then

1:‘, = A.‘l’kz + A_‘)’k?' =
[\]r'(sk + 0As;)? + o' (53 + 0'Asy)? ] Askﬂ.

Here,
5) ¥ (si + 0As;) =y (sp) + o (s + 0'Asy) = o' (s3) + 9}



DEFINITE INTEGRALS. LINE INTEGRALS 305

where n;, % are uniformly small :

[n]l < € and [nil < e if A< &;
8, independent of sz It follows, then, that
=142y (s)m + 20 () + 08 + n2last.
The functions ¢/ (s), ' (s) are bounded .

ly'is) < M, lo'(s)] < M.
And, of course,
lk —<_= AS]‘.
Hence

(1 ol 2M€) As]f < l]“z é Askﬁ.
From this result it appears that

Me

L= (14 ) Asg, [ 6] € ——,
/3 Lz) Asy &l Wy

provided As; < 8. We infer, then, that
el =[f )+ & 11 + £ Ay

=[f(s) + C§ ] Asy,

: 7 . . .

where {x can be made uniformly small by a suitable choice of &,
and hence the convergence comes under the case treated in the
Theorem.

§26. Continuation. The Integral: f Pdz + Qdy.
QC'

Let P and Q be defined and continuous along the curve C, and let
C be divided into n arcs by the points (xx, ¥3), k=0, 1, -+, n. Let

Az = x4 — Ty AYr = Yk = Yi-1s

and form the sum:

n

. [P (a1 y1) Azi + Q(z1, y) Ayal
=1
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Let n = co, the longest As; approaching the limit 0. Then the
sum approaches a limit, and this limit is defined as the line iniegral
of Pdx + Qdy, taken along C:

n=nok=l

6) limi[P(x,,,y;‘) Azy + Q(xp yi) Ayal =dex+ Qdy.
&

(% )’7:)

(xns Ym)
" (I],..], )’k—l\

(Zo, 7o) (x1. 7))

The proof of convergence is as follows. Measure the arc of C
from the point (xy, ;). Then

P (x4, y1) Az + Q (1 y2) Aya =
Axk A Yk
{ P(x]“ yk) _A—S]‘ + Q(xln )’k) A-“—Sk } Ask.

The brace differs uniformly little from

P (xy, yx) cos 7, + Q (xx, ) sin 73,

because of 5), ard hence the convergence is ensured by the results
of §25. We see, moreover, that

?
7) [de+Qdy=J (Pcosr + Qsinz)ds,
& o

where s is measured from (zy,7,) and = is the angle from the
positive axis of x to the tangent in the sense of the increasing s.

Unlike the line integral 1) the present line integral depends on
the sense in which the curve C is described; for, the point (x,, yq)
may be taken at either extremity. Another notation for this integral is:

(4 B}
8 f Pdx + Qady,
T @y
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where (a,) = (,, y,) are the coordinates of the initial point, and
(4, B) are the coordinates of the terminal point. We see, then, that

(a, d) (A B)
9) fpdx+Qdy=—fpdx+Qdy.
(4;'3) (a, 0)

The extension of the definition of each line integral, 1) and 6),
to the case of n dimensions is immediate :

[sz+Qd_y+Rdz,
¢

and

/'Pldxl + v + Ppdzs.
e
C

Green’s Theorem.® Let P = P(z, y) be continuous in a region
S and let 9P/0y exist and be continuous in the interior of S, and

bounded. Then
f f 9P s — — f P dx,
dy
s ¢

the line integral being extended in the positive sense over the com-
plete boundary C of §; cf. Advanced Calculus, p. 222. Similarly,

* The Germans call it “Gauss’s Theorem” —and with equal justification.
For Gauss, like Green, perceived its fundamental importance in analysis. But
the one name cannot be preferred to the other on the basis of priority, since
the representation (in three dimensions) of volume integrals by surface integrals
goes back to Lagrange {1760/61): Qeuvres vol. 1, p. 265.
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£f%§d8=éf@dy.

From these two equations it follows that

10) ff ————Q)ds=—fpdz+Qdy.
(o}

The proof of these theorems given in the Calculus is complete,
provided the boundary is cut by a parallel to an axis of coordinates
in a bounded number of points and line segments. It is possible to
re;nove this restriction from the identity 10), which is the only one
that concerns us here, without going into an intricate discussion of a
limiting process, provided all the first partial derivatives of P and Q
exist and are continuous within §, and are bounded. For, the identity
10) is invariant of a rotation of the axes, or even, more generally, of
an affine transformation. Let

11)

2 =ax+by+c
{ 1 1y + ¢ a4 by — agby = 0

Y=amz+hy+to

and let P/, Q' be determined by the transformation:

12) {P=alpl4“2Q'
Q=5bP +b0Q
Then
P'dz' + Qdy' =Pdx + Qdy
and
_cz_li_ 2Q _ _ oP _a(
a}/ *_x (al br) as bl) a—)/, W)'
Moreover,
a(,y) ay b
=S = 0
a(x,)’) as bg #

It J > 0, then

o [ f (55520 = [ f G5 -32) sl

On the other hand,
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14) fp'dx'+Q'dy'=/'pdx+Qdy,
o ¢

each line integral heing extended in the positive sense around the
complete boundary of its respective region. Thus the invariance of
the identity 10) is established in this case.

If, however, J < 0, Equation 13) is replaced by the equation :

5) ff aQ’ as' = ff ————~~)dS.

On the other hand, Equation 14) is replaced by the equation:

16) JP’dx’+Q’dy’= —]pdx+'Qdy,
¢

4

since the positive sense of integration over the boundary of & is the
opposite of that in which the image of C is described. Thus the
theore:mn is true in this case, too.

Partition of § into Regions of Normal Type. It is possible
to divide a regioxi S into a finite number of regions of normal type.
These consist i) of squares with their sides parallel 1o the coordinate
axes and not exceeding in length a given fixed quantity, &, and
moreover, lying inside of S; ii) of regions defined by the following
figures :

Type 1 Type 11

r— N\ 7~ N\

////mﬂ%

The bounding curve in Type I can be expressed in the torm:
=f(@);
and the two curves in Type II are grven by the equations:

v =f(2), y=¢ (),
¢ (z) < f(2), a< z < b,
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where f(z), ¢ (z) are continuous, together with their first deriva
tives, in an interval

<

a =x = b, b—a <k

Each of these figures can be rotated through any multiple of 90°.*

It may happen that the boundary C of § is cut by a parallel to
an axis of coordinates in an infinite number of points and line seg-
ments. But on rotating a given region of normal type through a
convenient angle, the new figure will have a boundary which is cut
by such parallels at most in a bounded number of points.

For the transformed figure the proof of the identity 10) is that
given in the calculus. By the theorem of invariance just established
the identity holds for the original figure. And now the identity 10)
for the entire region S, with its boundary C, is obtained by writing
it down for each region of normal type, and summing.

The Condition: g—I-J = a—Q . Let 8 be a closed regular region.
}' aI =3 )

Let P and Q be continuous in §, and let their first partial deriva-
tives exist and be continuous at all interior points of §, and bounded
in S.

Let Z be any regular closed region contained in S. Consider
the integral:

17) dex +Qdy,
J

extended in the positive sense over the complete boundary T' of 3.
From the identity 10) it follows that, if

18) aP _ 2Q
at every interior point of S, then
19) Jde+ Qdy =0.

Conversely, if Equation 19) holds for an arbitrary X then 18) is
true throughout the interior of S.

# A detailed proof of this theorem of partition is given in the Author’s
Funktionentheorie, vol. I, Chap. V, § 9.



DEFINITE INTEGRALS. LINE INTEGRALS 311

These results serve as the basis of the discussion of the function
F (z, y) defined by the line integral:
=7
20) F(z,y) =‘]‘Pdl‘+Qd}’,
(a, b)
P and Q satisfying the condition 18); cf. the Advanced Calcidus,
pp. 222-233, and the Funktionentheorie, vol. I, Chap. IV.



Chapter X
The Gamma Function

§1. Definition. The Gamma Function has been defined in
Chap. IX, § 15 by means of the integral:
1) T (z) =ft"'1 etdt.

g

The integral converges absolutely for a]l positive values of z and
uniformly in every interval 0 < & £ x £ G, where G is arbitrarily
large and & is arbitrarily small. Thus T (z) is continuous for all
positive values of .

The function possesses a derivative, given by Leibniz’s Rule:

. ar - _
a s = 1=t .
) Tz f t*"le7tlogt dt
0
Moreover,
&7 f L (ou
3) a2 t*"Le~t (logt)? dt,

0
and so we see that

4) 0< %

for all positive values of x. Hence the graph of the function:
5) y =T (2),

is concave upward for all positive values of x. Furthermore,
6) T (0%) = + oo, T (+ 00) = + oo

The first relation follows from the fact that, for small values
of x.

1
er’

1
T(z) > f t*legmldt =
0
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The second relation is a result of the fact (cf. §2) that
7) Tn+1)=n!,
combined with the fact just established, that the curve is concave

upward.
Finally, we note that, from the definition 1):

8) Iz >0 0<az

Also
9) T(1)=1, T(@) =1

The first of these last relations is proved by direct evaluation of the

integral 1). The second follows from 7) by putting n = 1.

——— L

s

The figure shows the graph of the function
y=T(z+1),
the dotted curve representing the function & log I (x + 1)/dzx; cf.

Duval, Annals of Math. 2d. ser. (1903/04) vol. 5.
The graph of 5) is thus seen to have one and only one minimum,

aud this occurs for a value of x between 1 and 2. The value of z

h1s been found to be: z = 1.46163 .- -
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§2. The Difference Equation. The Gamma Function obeys
the law:
1) T(x+1)=2T(z)

This is known as the difference equation. It is proved at once by
integration by parts:

z ,—t 1
ft"'%“dt:t e +———ft’e""dt, 0 < x
T x

A first application of the difference equation consists in setting

z equal successively to the natural numbers: z=1,2,3, -+ and
observing that T (1) =1, cf. §1, 9).

A second application enables us to define T' (z) for negative values
of z. Write

2) r(::):@.

The right-hand side of this equation has a meaning when — 1 < =z < 0.
This shall be che definition of T (z) for — 1 < 2 < 0. It thus
appears that

T'(x) < 0, —1< <0,

and continuous, the graph having the lines =0 and z = — 1 as
asymptotes.

Repeating the process, setting — 2 < z < — 1 in 2), we define
T'(z) in the latter interval. The graph of the function is shown in
the figure. In any panel, — (k£ + 1) < x < — %, the curve is
always concave downward when % is even, and concave upward when
k is odd. The proof is given conveniently by means of a later
result; cf. §3.

§3. Gauss’s Product. Gauss® based his treatment of the
Gamma Function on the following product, which he denoted by
M (n, ). We shall show in §4 that the limiting function is the
function T (z) defined in §1. For the present we shall write with
Gauss :

_ 1.2.....(,,-1) z
1) H(n’x)_x(:c+1)(-1«‘+2)"'(1'+n-—1)"

* Werke, vol. II1, p. 144. The date is January 30, 1812,
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where r has any real* value % 0, — 1, — 2, -+, and prove that,
as n becomes infinite, TI(n, x) approaches a limit. This limit we
will denote by T (z):

2) T (z) = lim T (n, z).

The Convergence Proof. The variable Tl(n.z) can be written
in the form:

- M3, x) M(42) . M(n2)
) Him z) = T2, 2) 1 (2, x) 1(3,x) M(n—1,2)

9r  2:3*  3.4%  (n—1)n*
z+1 (x+2)2% (x+3)3* (x+n—1)n— 1)

If, then, we set

_nl+ 1) _ (1 +3)F
4) f"(x)_(:r-l-n)n"- 1+% )
we have
5) lim M (n, ) = %ﬁf,. (),
n==x =1

and the question. of the convergence of 11 (n, ) becomes the question
of the convergence of this infinite product. But we have methods
for dealing with this latter question; cf. Chap. I, § 10.

Consider the series of logarithms:

i log fn (z).
Here,
log fn(z) = zlog (1 +%) — log (1 + %—)

The convergence of this series is established at once by comparing
its terms with the corresponding terms of the known convergent series:

- 1

* The convergence proof applies at once to the complex domain, = being
replaced by z=z+ y v — 1.
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and applying the theore.n of Chap. 1, §2:

. logfnlz) _ 22— x

3-1-—'—2 Ve — 2
The value of the linit is not important — only the fact that a limit
exists.

Thus the convergence of II(n, x) is established and a function
T (x) is defined by 2), or:
- (14

6) T =—I-—%—
Tast g %
Properties of T (z). Since
M(n,1)=1
for all values of n it follows that
7 r(=1.

Next, observe that

N,z + 1) = I":’n

z).

Allowing n to become infinite we have the Difference Equation:
8) T(z+1)=2zT(z).

Notice that this result holds for all values of z £ 0, — 1, — 2, -+
In particular,
9) Tn+1)=n!, n=1,23,--

A further relaticn satisfied by the I'-function is obtained from
the product:

—_— ) = — fn= 1)1
M (n,z) M(n, — ) = A E=2) (= 1F=

x(“%)("‘ ) (- (n-1)2)

Allow n to increase. The denorninator corresponds to the infinite

product for the sine-function, Chap. VI, §6. Thus

_ 1
Tz

10) Tzl (—2)=——=

zsnrzx
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Another form of this relation is:

11) Tl —z) =

sinrx

[n particular, from this last relation follows that
12) T} =v=.

Differentiation. The T-function is given by the series:

13) log T(z) = — logz +

i {xlog(i + -’1;) — log (x + n) + logn},

n=1

when 2 > 0. The term-by-term derivative series represents in all
cases the lozarithmic derivative:

it

T@ _ 1 <. 1
14) o - +n2=1{lo°(1 + -~

This latter series converges uniformly in any interval
from which the points =0, -~ 1, — 2, --- have been removed.
For

]00(1+ 100(1+ )—%-}-l-__x___/

n(n+z)°

If, then, we choose the M, of Weierstrass's M-test as follows:

G

+n(n-—-G)’

Mn=

1 1
—)—— G
]og(1 + o ) - < n,
we see that this series converges by comparing M, with 1/nr2
It is now easy to complete the proof that T (z) has a derivative
for all values of x for which the function is defined. Moreover, the
T-function has a second derivative given by differenﬁating 14):
I(z) _ ('@ )
T(x) T ()

15) (x + n)? *
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Since the rizht-hand side is always positive, it follows that T/ ()
and T (x) always have the same sign. Thus the graph, §2, is
concave upward (downward) when T (z) is positive (negative).

Euler's Constant. The development 6) can be replaced by the
following : -

oa

—Cz 1
16) Fx)=%—T1]
T  p=1 (1 + _‘z;)e-%
n

where C is Euler’s Constant :

v

. 1 1 1
17) C—nl;xrl{1+3+?+ +7l-—logn}.
For, the product in 6) has the value:
1y _z
- (1+5)
n=1 ﬁ -z’
(1 + n)e n

This product can be written as the quotient of two infinite products.
Since

log{ (1 + %—):e‘f }= -z [711-— log (1 +%)]1

it is clear that the numerator product has the value e—C=. The
value of C is:

18) C = 0.57721 56649 01532 86060 - - -

Because of 16) we can write:

1 _ A LAY
19) -I-‘-(_.z')"eczx,,I__-_Ii(i +;)e n

The product on the right converges for all values of x, real or
complex, and it defines a so-called entire function of the complex vari-
able, i.e. a function that is analytic for all finite values of the
argument. In particular, it appears from either 16) or 19) that the
T-function has no roots, even in the complex plane.

We have in the above another example of a convergence factor,
whereby a divergent product,

Lad

H(1+%)

r=al
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is rendered covergent:
ks 1 z
1+ 22
nI-=Ii ( + n )e n

without disturbing the roots of the individual factors; cf. Chap.
VI, § 6.

EXERCISE

Prove the uniform convergence of the series 14) by means of
the series 15).

§4. Agreement of the Two Definitions. From the
relation:

lim (l - i)m= et

nm=oo m

it is easy to surmise that possibly

ne=00,

“ £\ v
20) tim [ (1= 2)ae= femterar =1 @
m
0
The proof of the correctness of the surmise is not difficult. Let

t \m

t,m)=t=1 1 —-—), 0 t = m;,
S, m) ( m) < m
f@,m)=0, m <t < oo,

Then the first integral in 20) can be written:

21) f (e, m)de.
0

Here :
lim f(t,m) =1

m=o0

If, then, the integral 21) converges uniformly, the relation 20) re-
sults; cf. Chap. IX, §20, Since

L \m 2 B
(1___) = mlog (“'Fi."):e:""zﬁ"—smz"", 0<t<m
m
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it is seen that
0 = f(t,m) < =1

for all values of ¢ and m. Thus the integral 21) satisfies a p-test:
p () =71,

and the proof is complete.
The integral —we now change the notation from m to n—

n
L \n
=] — —
Je(-g)e
0
can be evaluated explicitly and turns out to be equal to

1""'” nt
zxz+ 1) (x+n

For, change the variable of integration, setting ¢ = nA. Then

n 1
fcr-l (1- i)"d: =nxf>\=-1(1 — Ay d\.
0 n 0

To this last integral apply the method of integration by parts:

1
Jv—lu—x)ndx:l n—1 !

1

£l
. r+n—1
x x+1 x+n-—1,lk A
¢

Thus finally

fzr-l(1 —i)"dt =" (g, n)
5 n x+n

Allow n to become infinite. It appears, then, that

o

ft"l e~tdt = lim Tl (z, n).
Q.
0

Hence the two definitions lead to the same fanction, T (z).

§5. Stirling’s Formula. For large values of z the funcfion
T () is extremely large. Its value can be computed approximately
by the evaluation

1) T(z) = V27 257 ¢,
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where
1
2) 0 < wlx) < o
or
3) w(x)——o— 0< 8 < 1.

12z

Equation 1) is known as Stirling’s Formula. We mention also
the following evaluation for the factorial :

—_ 0
4) n! =427 n""'"l'e"""'m , 0< 6 < 1.
An elementary proof of the truth of 1) where 0 = 8 = 1 can
be given as follows.
Let w (x) be defined by 1):

5) w(z) =logT (x) + 2 — (x — }) log z — log 1/ 27.
Since
Tz+1)=zT(z)
it follows that

_ _2x 41 1 _
6) @(x)— @+ 1= 10g (1+ x) 1.
Remembering that
3 5
trY o Y X ...
logly (y+5+5+ )

and setting

we find:
1y 2 1 1 1 1
l°g(1+?)"21+1(1+5(2x+1)2+5(2x+1)4+ )

# cf. the excellent treatment of this subject by Godefroy, Théoric élémen-
taire des séries, Chap. VI, which we here reproduce. The reasoning does not
show that 0 < § < 1, but only that 0 = ¢ = 1. There is, of course, no loss
in this less general theorem fo: purposes of computation, since 6, in the more
general form, might conceiveably lie so near to 0 or to 1 that the difference
would have no effect on any-approximate computation.
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Hence

ox2+1 < log(1 +—) <mritoIes 1))'

).

It follows, then from 6) that

7 0<m(x)—m(x+1)<—

By a repeated application of this formula :

1
1 1 1
0<m(r+n—1)—w(x+”)<12(x+,,_1 x+n)
we see that
8) o<w(x)—m(x+n)<— ).

We now proceed to show that

9) lim = (z) = 0.
=00

It will then follow from 8) on letting n = co that*
S =1

10) 0= w(x) = TP

or

’ £0=1.
10") © (r) = 12x 0=0=1

Proof of 9). First, let x =n in 8):

11) 0 < =(n)—w(2n) < %—
We now introduce the function y (x):
12) y@) =—DE
V2 2= keT

® Godefroy infers at this point that
1
0< =)< TN

This relation is true, but his reasoning establishes only the less general
relation 10) or 10/).



THE GAMMA FUNGCTION 523
Then
13) @ (z) = log ¥ (), ¥ (z) = =),
Since

‘l’((gn)) = emtm=a(n)
n

it follows from 11) that

1 < \y(n) < e24n.

v (@n)
Hence
v
) lim Y@y = ¥
Next, form the function
AL
¥ (2n)
We shall show by direct computation that
15 lim \V(n)

It will follow, then, from 14) and 15) that
1 lim ¥ = 1.

The proof is as follows. From the definition of ¥ (z) by 12)
and the property of the T-function:

F'(n+1)=n!
we have :
17) v@n? 1 2.4 6--- 2n
y(@n) N 1:3:5:+-(2n—1)

Recall Wallis’s formula for = :

=1im(246 )
o V10345 ¢ (2n—1) 2n+1

It thus appears that the right-hand side of 17) approaches 1, and
thus 15) is established. We see, then, that 16) is true.
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Finally, we will show that, for an arbitrary z > 0,

8 im ¥ (7)
) 3:34'(1‘-!-@
We have :
¥(r) _ (n— I (z + npte3
V¥ (x + n) 1 T (x + n) s’
Now
(x+n)’+""' (1+ )ﬁ,,__n,
and

Tx+n)=zx+1)-(xz+n—1T(2).
Remembering Gauss’s product:
1:2: -+ «(n—1) z
B e EIT Py
we infer at once the truth of 18).

From 16) and 18) it follows that, for an arbitrary value of
z >0,

limy (z + n) = 1.
Hence, from 13),
limw(x +n)=0,

n=o

and now 8) yields 10), hence 9) — the relation we set out to establish.
The proof of 1) under the appraisal

0= wx =
or

= (z)

Il
o
1A
5~
1A

is complete.

Gudermann’s Formula. On writing down Equation 6) for =,
x+1,:--,x + n and adding we find :

o) —s(@+n+1) =§[(z+%’%l)log(l + I—_:'p-)* 1]

Allowing n to become infinite and remembering 9) we obtain
Gudermann’s Formula :
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19  =(2) =’§0[(1:+2n2+1)10g(1 + x_:_n)— 1].

Binet’s Series. The general term u,(z) in 19) can be written
in the form :
1
z+n )

1
u,,(x)=(.1:+n)log(1 + J::-n)- 1 +Elog(1 +
1 1 1 1

11
Qx—-—l-_n+-5_(:t+n)2 I(x+n)3+

ot o1 1
2 z4n 4 (x+n? 6 (x+n)?

=% (= p—1 !

or
b=l 1 2 1 .3 1
34 (x+n® 46 (zx+n) 5:8 (z + n)t

By virtue of the theorem of Chap. VII, § 5 we have :

20) (@) = 42 \x+n)2 B 4'6n2=:o(x+ n)’

+ 5-8”§0 (z + n)t -
Another form for u, (x) is the following :

un(2) = = (& + n + 1) log (1 —?T-leTT)

——10(1 x+n+1) 1.

This torm leads to the development :

\ 1y 1 2 5 1
21) G(I)—HZ'( +n)2“+TZ(x+n)3
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EXERCISES

1. Give all the details in the above deduction of Formulas 20)

and 21).
2. By means of 20) and the evaluations of the series
1 1 1 .
F,+§;+'5_i+”'1 p=2$4'16"°';
1 1
oy ey 1)? +

given in Chap. 1, §4 and Chap. VII, § 7 obtain appraisals for = (m)



Chapter XI
Fourier’s Integral

§1. Fourier’s Integral. Heuristic Treatment. Let f(r)
be continuous in the interval — oo << z < + oo save for isolated
values, and let

1) flf(r) | dz

converge. Consider an arbitrary interval
2) —-l<z<l

By means of the transformation

3) Y _=Z

T l
the function goes over into a function of y:

4) f(@)=F(y)

having the same properties. In particular, the integrals that define
the Fourier’s coefficients of F () will converge:

kid ki3
1
5) a,.=%-fF(y)cosnydy, b,.=;_—fF(y)sinnydy.
- -

Thus a Fourier's development® of the function F () exists:

: a ke )
6) E?+ 2(a,,oosny+b,,smny)
n=1

or

7 —51-7—fF(s)ds+;l-§l—.fF(s?oosn(s—y)ds.

We will now transform back to the variable z by 3). Thus we
are led to the development :

* We apply the term development to denote the series 6), irrespective of
whether the series converges and represents the function.
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8) —Q%:ff(t)dt+ szt)oos——(t—x)dt

In order to bring out the central thought in the investigation
that follows, let us confine ourselves for the present to those functions
of the class before us, of which we know that they can be expanded
into a Fourier’s series; i.e. the series 7) and hence the series 8) shall
converge at all points of continuity to the value of the function. Thus
if f(x) satisfies the conditions of §1, Chap. VILI, this will be the case.

Formal Deduction of Fourier's Integral. Let
T
T .

The series in 8) now takes the form:

9) Aa =

10) ff(t)cosnAa.(t—:c)Aa,dt

T n=-1

'f we consider a function ¢(a) continuous for 0 = «, and divide the
interval 0 = a = A into m equal parts, Aa = A4/m, then the sum

11) . Elso (@n) Ac

approaches the limit
A4

12) J ¢(a)da

when m = co. The series
> ¢ (@) Aa
n=1

when Aa. approaches 0, suggests the integral

oo

J(p (o) da.

Thus the expression 10), when I becomes infinite, suggests the
integral:

13) i %—J‘dmff(t)ma(t—x)dt.
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This is known as Fourier’s Integral. It converges, under suitable
1estrictions, to the value f(z).

§2. A Lemma. LemMmA. Let the function ¢ (x) be continuous
Jor 0 < x < + oo, save for isolated discontinuities, and let either

o0

i) fcp (z) dx

0
converge absolutely ; or

G
i) j ¢ (2)dz
0

converge absolutely, where G is an arbitrary positive constant ;

ily) ¢ (x) decrease monotonically toward 0 as x increases:

{ e Z @), 0= 4< 2 <2

lim ¢ (z) = 0,

where A is some fired number.
Let ¢ (x) approach a limit when x approaches 0 from above :
lim ¢ (z) = ¢ {0%),
=0t
and let
¢ (z) — o (01

x

be bounded at the origin.

Then
/‘da.Jg')(r)oosa.xdx
e
0

converges to the value § ¢ (0%).

We will prove the lemma first for the simplest and most im-
portant case, namely, that ¢ (z) has no discontinuities® and satisfies
Condition i). Here the integrand (if for the present purpose ¢ (z) is
defined as ¢ (0*) for z = 0) is continuous in the rezion
R 0 = gz, —00 < a < + o,
and the integral

# The proof applies, however, to the case that ¢ (z) has isolited discon-
tinuities and is bounded at each one of them.
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14) f:p(x)oos&.zdx
0

converges uniformly for all values of a, as is seen by setting
p(2)=|¢ ()]

Hence 14) represents a continuous function, and furthermore

15) fdafgo(x)oosaxdx:f¢(x) gz 4.
xr
0 0 0

We proceed to show that the integral on the right of 15) con-
verges toward 3 ¢ (0%) when ¢ tends to infinity. Write

16) f,,(x)m d1=¢(o+)fii_n;‘!f_dz
x
0 0

+f¢—(x);—x¢(onsinqxdx.
]

Since, by Chap. IX, §22,

17 sintg 5, _ T
) ftdt 2’

we see on making the change of variable t = gz that the first integral
on the right of 16) has the value ¥ ¢ (0%), no matter what value g
may have.

The second integral can be written:

h
‘0]'¢(x) -;‘p(0+)sinq:tdx +

¢ () . _ " fsinq.r
J——z sin gz dx go(O)h — dzx.

Let ¢ > 0 be chosen arbitrarily. Then A& can be so determined that

l.f"-"%sin,qxdxl —,‘;f o) dr <

1A
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Moreover,

oo oo

f sin gx dx:fsint dt
x t ’
h n

and so !
‘_¢(0+)f sinqu d'rl< c, p =g
It

As regards the first integral in 18), its limitis 0 as ¢ increases;
cf. Chap, VIII, § 2, Ex. 3. Hence it remains numerically less that
¢ when ¢ = p’, and so the whole sum 18) is numerically less than
3 ¢. This completes the proof.

EXERCISE

Let ¢ (x, &) be continuous in the region

0 < z < oo, A=t = B
Let the limit

lim ¢ (z, &) = ¢ (0%, &)
=0+
exist for each £. Let ¢ (01, £) be bounded. Let the function
x

be bounded in the region
0<z<eg 4£Et =B,

where ¢ is a positive constant. Finally, let the integral

fl«p(x,s)ldx
0

converge and be bounded. Prove that the function of (g, £)
represented by the integral 15) converges uniformly in the interval
A = £ = B when g = co.

Suggestion. Appraise the integral

h
f\l' (x, &) sin gz dx
0

by assigning an arbitrary ¢ > 0 and dividing the interval 0 = =z = %
hv the points
1'0=0 < xy < e L Zn—} < 1'"=h,
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so chosen that, if
‘I’(I,E)=‘l’(1‘k»£)+h, x;,.—<:x§xk+1. 0§k<n1

we have:
[l < e

§3. Continuation. The General Case®*. We tum now to
the most general class of functions ¢ (z) admitted by the Lemma,

and proceed to establish 15), §2:

19) fda-f:p(x)cosuxdx: f,a(z)ﬁn_qu dz.
[)
0 0 o

First and foremost it is seen that the integral
h

fso(-l‘)cosa.xdx, 0 < &

0
converges, since ¢ (z) is continuous except for isolated singularities and

fl‘ﬁ(r)ldx
0

fgo(:c) cosardx
0

converges in Case i) because it converges absolutely, and in Case ii)

because it is an alternating integral.
The function defined by this integral,

20) o (a) =fgp(x)cosa.xdx, 0 < a,
']

converges. Consequently

is continuous. For

h
21) w(a.o+Aa-)—m(a.o)=f¢(z)[cos(a.o+Aa.)z—-cosaox]d.r
1 .

® It is well to defer the study of this section till the rest of the chapter
has been completed.
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+J¢(z)‘cos(a.o+Aa.)xdx —fgo(x)oosuozdx,
1

0<a:0, 0<a'0+Aa4.

Each of these last two integrals can be made less numerically than e
by a suitable restriction of Aa and a proper choice of %, as follows.
In Case i) it is sufficient to choose % so that

f[¢(x)|dx< €,
1

“no restriction on Aa being needed.

In Case ii) let y be chosen so that 0 < y < a,, and let Aa
be subject to the restriction ay + Aa > y. Let 2 = 4, Chap. IX,
§21. Then, since,

22) lfgp(x)cosaxdx —Q—M 0 < a,

it is enough to take A so that

93) 29@<e.

Since k& is now a constant, it is possible further to restrict Aa
so that the first integral in 21) remains numerically less than e,
when | Aa| < #; as is seen on removing from the interval of in-
tegration (0, ) short segments including the points of discontinuity
and applying to the contributions to the integral arising from these
the appraisal:

24) a cos (@g + Aa) x — cos @y = — Aasin (g + 8 Aa),

The proof of the continuity of w(a), 0 < a, is herewith com-
plete. o (a) is not, however, necessarily bounded, as is shown by the
example

o0

fcosa.x dr = 1_ cos_t_dt‘
_ Va¥ Vi
Next, we need to show that the order of integration can be re-
versed in the integral
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h
25) fda.f¢(x)oosa,xdx.
0

h
The proof is not difficult and can be left to the reader.

We are now prepared to show that the order of integration can
be reversed in the integral

26) fda,fgo(x)cosardx, 0 < v
0

1
Write the inner integral in the form:

o h oo
fgo(x)cosa.rdx=f<p(x)oosa.1:dr+.fgo(x)cosa.xdx.
0 0 i

Choose g in Case i) so that

f|¢(x)|dx<
I 4

€
in Case ii) so that g = A4 and
2——-%7( ) < e
Then
, f¢(x)cosa-xdx'< €, g = h, yE a
(2
i

Thus we see that

q oo h
Ifda,fy:(x)cosa.xd:r—fgp(x)d.rfoosaxda1:
Y 0 0 Y

q L
|fda.f¢(x)oosa.xdx‘< (g— 7) e, g=h
Y h

This proves that the order of integration in the integral 26) can
be reversed, and hence we infer the relation:

o

28) jdmfga(z)oosardx:
Y

0
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singr , sin yx
J;o(::)-—x dx ‘of¢<x> nyz g

The last integral in 28) approaches 0 with y. For,

o h -
29) f¢(x) %ﬁdx=f¢(x)%gdx+f¢(x) smxyxdx
¢ 0 J

Let ¢ > 0 be arbitrary. In Case i) it is sufficient to take % so that

f[(p(x)ldx < e
%

In Case ii) A = A can be so chosen that

| [ | fotomtal< pon fi2tare.
h

And now, holding % fast, we see that y can be so restricted that
the first integral on the right of 29) remains nu:erically less than e.

If, then, in 28) we allow y to approach C, the right-hand side
approaches the first term as its limit. Hence the left-hand side con-
verges and we have 19), or:

fdafgC(x)cosaxdr:f(p(x)M—dx
z
0 0 0

The final step consists in showing that the integral on the right
converges toward % ¢ (0%) as g increases. The proof begins as in § 2
and we reach 18). In Case i) the last two integrals can he appraised
as in the earlier proof. In Case ii) we have, by Chap. IX, §21:

fsp(x)

h

singrdx| < ( ), A = h,

since the function ¢ (z)/z decreases monotonically toward 0 as z in-
creases, It is sufficient, then, to choose % so that

&?’h(—h)<e, A= h

The third integral in 18) is appraised as before, and so, in each case,
there remains only the first integral, with & fixed. Wijth the aid of
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the Fxercise of Chap. VIII, §2, there is no difficulty in proving that
this integral remains nnmerically less than € when ¢ exceeds a suit-
able integer, p = ¢, and the proof of the Lemma is now complete.

§4. Convergence of Fourier’s Integral. Differentiation.
The most important functions which can be represented by Fourier’s
integral belong to one or both of the following classes.

Class 1. f(x) is continuous except for isolated singularities and

f | f(z)|dx
converges. -

Class 1. f(x) is continuous except for isolated singularities and

b
@) f | f(@)] d=

converges, where a, b are two arbitrary numbers;

B) f(x) converges monotonically toward 0 when z = + oo, and
also (though not necessarily with the same sign) when z = — oo,

TrEOREM OF CONVERGENCE. Let f () be a_function belonging
either to Class 1. or to Class 1I. Let x be a point such that

JLm f&) = f@h), }i",’_ J@) =f@).
Let each of the difference-quotients:

[z +”31"f(“’+), 0< k<8

f(x"'hzz—f(”—), -8<h<O
be bounded. Then

_1_ md ¢ —z)dt = xt x~
wf m-!f(t)wsa(t )de =} [ f{z*) + f(

If, in particular, the function is continuous at the point x, then

1 (oo
f(x) —:J‘ Jf(t)oosa.(t x)dt.
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The proof follows immediately from the Lemma. Make a change

of variable:
u=t-—ux.

Then

ff(t)oosa.(t—x)dt =ff(x+u)cosaudu.
z 0

Set
¢ () = f(z +u)
and apply the Lemma.

Next, let
t—x

]
1
®

Then

x L
ff(t)oosa.(t —x)dt =ff(x — u)cos audu.
-— 0
Set
¢ =f(z—u
and apply the Le:nma. Thus the proof results.

Differentiation. Let f(x) be a function which meets all the con-
ditions of the above theorem and, further.nore, is continuous without
exception. Let it have a derivative which also satisfies the conditions
of the theorem. Then, in an interval a < x < b in which the

derivative is continuous, it will be given by the integral:

L ff
Flay=— | da | f/{t)cosa (t — 2)de
=S

For, we can write Fourier’s Integral in the form :

1 x oc
f@=— 1 da | f(u+ z)cosaudu +
A

B 0
1
_ —-fda.ff(u+x)cosaudu,
T
BN y

—c0

" and each of these latter integrals can be differentiated by Leibniz’s
rule.
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§5. Derived Integrals. It is possible to break the Fourier's
integral up into two integrals as follows:

f(x):ifdaff(t)cosa(t—x)dt:
%’-Jcosaxfla:[f(t)cosatdt+£—Jsinarda;!f(t)sina.tdt.

In case f(r) is an even function or an odd function these in-
tegrals can be simplified.
Case 1. f(x)=_f(— z). Here the last integral vanishes and

the first can be written in simpler form :

f(x)=-gfcosa.xdaff(t)cosa.tdt.

Case II. f(x)=—f (— z). Here .
f(@) ———fsmaxda.ff(t)smatdt

Example 1. Let
f(r) = ¢~kz, 0= z, 0 <k

S(=2)=f(x).

This example comes under Case I. Since

oc

k
~kt - e
fe cosa.tdt—ks_» Pl
0

we have:
mIccosot.:z:
e kz ._._ = 3
= ]‘o+ 2da., 0.._.1‘, 0 < A
Thus
cos a.x ol k % 0.

}‘0 odao—- Q‘Itl
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Example 2. Let
fx) = e7*=, 0= o, 0 < k;

fl=x)=—f(a).
This example comes under Case II. Since

oc

*
_kt . —
e sinatdt = 53—
f = Fra

0

we have :
oc

2
d ‘Z_,‘““f 0 < =z, 0< k

eFT =
T
s

Thus if & 3% 0:

oo A f 28-”‘:‘ 0< X

o sin @ x
fk"’-f‘a?'da‘_l 0, xr = H
v — F ekt r < 0.

Example 3. Let
Sf(x) = x7%, 0 < =, 0< i<ty

Sf(=z)=f(2)
Then

"‘=—fcosa.xda.f kcosat dt.

Change the variable: u = a¢. Then

oc o0

2
k=2 [ a*lcosaxrda | u*cosudu.
T e
0 0

In particular, if x =1:

[ msa.da, J‘ cosudu __1_'_
Tr =3
0 0

j -

Let k-—-‘&:




340 FUNCTIONS OF REAL VARIABLES

Riemann has given the [ollowing ingenious determination of the
*-sign. Write

and in the integral

(r+1)7
oos_x dx
T4 V x
make a change of variable :
x=a + pr.
If, now, we set
F(a) = 1—_-— 1 + 1 — ey,

we shall have :

provided the series can be integrated term by term. Now
z
ki 2 T
S-S
5 0 %

In the last integral change the variable of integration to = — a.
Thus we find :

=
L4 2
fF(m)oosa,da.=f[F(a.)—-F(r—a)]oosa.da..
0 0

Now,

and so F'(a) < 0. Hence

%[F(a)—F(r—a)]:F’(a.) +Fl(r—a)< 0,
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and, since F(a) — F(xr — a) = 0 when & = /2, we have :

0 < F(a)— F(xr — a), 0<a< —

3
Consequently the upper sign is to be chosen.

It is left to the student as an exercise to justify the integration
and the differentiation of the series term by term.

Example 4. Let

f(x) = a7k, 0 < z, 0<k< 1;

Sf(=2)=— f(2)
Then

o0 oo

2
k=2 sinmxdmft’k sinatdt.
r
] ]
Set u=at. Then

o

(-]
2 - . k.
r*="|f a¥lsinarda | uw*sinudu.
r
0

0

If x=1, -

oo L4
sinada [*sinudu _ =
@ik uk 5"
0 v

Let £ = }:

sinada r
f]/; Vs

0

§6. Fourier's Integral for Functions of Several Vari-
ables. Iet f(z,¥) be continuous, together with its derivatives of

the first order, throughout the whole plane, and let the integrals

) Jir@nian  firenie

converge. Then from § 4 we have :
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10 pr
flr,y)=— | da | f(& y)cosa (& — x)dE,
! fon f

.f(E,y)=£—fd8ff(£.n)co58(n—y)dno
0 -0

Hence

2) Sflz,y)=

L fan fax [ap [ e omate o mbio—ran
0 —00 0 -0

with a similar formula, in which the integrations with respect to
a,£ and B,n are interchanged. In either of these forms, certain
discontinuities of the function f(z,y) and its derivatives along reg-
ular curves can be admitted. But the more important form of the
Fourier’s Integral is the following :

3) f(xr}’)=

%jd@fdﬁfd&ff(&,q)cosa(ﬁ—:r) cos B(n — y) dy.
o v X% X%

This form can be obtained in the above restricted case of excep-
tionless continuity, provided the further requirements are laid
down : —

The integrals

4 Jirene  [ifenia

shall converge uniformly in any finite interval, a/ = x = 4”. And
similarly,

5) Sirentan  [1f @yl

shall converge uniformly, ¥’ £ y £ b". Finally, one of the in-
tegrals :
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o S fir@niar [arfir1e
shall converge ; then the other does, also.
The proof is as follows. It is sufficient to consider the integral

7) dt | dB | f(&, n)cosa&cosBqdy.
JeJof

Let .

8) F(E,B):J.f(s,q)cosa.i cos By di.

- 0
Then we wish to show that

9) defF(E,B)dB =defF(£,B)d£-
0 0 0 ]

First of all, observe that

10) defF(E»B)dB =dejF(Ey B)d&.
0 0 0 0

For, the integral :

JF(E, B) B =J’“*J ¥ (1, £) cos By do,

v
where

11) ‘lf(',s E) =f(£a 'l) cos a’&a

converges uniformly in any bounded region, 0 = £ = G; cf.
§ 2, Exercise, p. 351. And F(,B) is continuous, 0 < £, 0 = B,
because of 4).

Write

1
12) v&.8 = [ FEBaL,

-.,f F(z,B)de

The integral:
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converges, since
IFEB)| = [ 1fEn!dn
J

This last integral defines a continuous function of £ by 4), and

fdéfv(é,n)ldﬂ

converges by 6). We can now write:

13) ¥(,8) = [ F&.B)a.

From 10) we have:
3

fdzJF(s,s)ds =Jw(e,s)da,

0

and from 13):

stJF(s,e)de =_.f\l'(oo,ﬂ)dﬁ.
Hence

£ ) -~ o
14) f d f F(£,B)dB — f a8 -.,f F(,B) dE

-_-_f{\p(oo,ﬁ)—\lv(e,ﬁ)idﬂ.

We wish to show that this last integral approaches 0 as & = co.
Consider the function:

15) P10 =Jf(é.q)cosa& dt,

the lower limit of integration being merely a constant. The function
¢ (n) is continuous and has a continuous derivative. For, the integral:

16) s e
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converges uniformly by hypothesis, 0 < n = c. Moreover, the func-
tion f, (£, 9)cosaf is continuous. Hence the integral 15) can be
differentiated by Leibniz's Rule.

Thus ¢ (n) is seen to satisfy all the conditions of the Lemma
of §2, and so

1) St [omespran=Z0wn,
0 0
Now,
¥ (o0, 8) = ¥ (5,8) =JF(£,B)d£ = [ o o) cos g i,
0

as follows at once from 4), 5) and 6). Hence

o0

Siven -y =l;-ff(z.o+)cosasde.

]
Finally,

j .0t = ”If(’J'l .
(Jf(50>cosaeda!<J £ 0% | dk

and so approaches 0 as £ = o,

This completes the proof. We have used the hypotheses 5)
and 4;), but not 4,). The latter are needed when the integrations
with respect to @&, £ and .7 are interchanged.

The Case n = 3. ‘lhe proof for the general case is given by

a repeated application of the results above obtained. Consider the

case n = 3. Here,

18) f(0+,0+,0+)=%fdafd£fd8qufd7j:f(5»mC)
[} ] 0 0 [} [}

cos & cos B cos y§ d¢.

The last two integrals, beginning on the right, can be replaced by
§ f(£,9,0%). Hence the integrals with respect to § and B can be
interchanged, provided the integrals
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19) flf(xv pg z) l dz, f lf(z’ Y z) Id.)" f!f}'(l'y)":)l(ll'

converge uniformly, each in an arbitrary bounded interval, z being
merely any constant; and one of the integrals:

20) fdxflf(x,y,z)idy, fdyﬁf(x,%z)ldl‘

-_—C
converges.
We are thus led to the integral:

21) f{l&qufdyff(e,q,t) cos &£ cos Bn cos y¢ d¢.
0 0 0 0

Consider first the interchange of the integrations with respect to 7
and y. Here, the integrals

flf(x,y,z)[dz, ‘flf(x,y,z)ldy, f!f,(x,y,z)l(l)'

must converge uniformly in any finite interval, = being merely any
constant, and one of the integrals

fdfflf(r» y.2) | dz, deIl.f(x, r.2)|dy.

z being any constant, must converge.
So now we come to the integral :

22) jd&J dy‘j dqff(E,q,C)cosa.Ecoquoosy(dC.
v 0 0 0
This integral will have the value

25) Sae [ay [0 wsat oyt ae,
0 [} 0

where

fe.or= [ fEn s Brdn.
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provided the order of the integrations with respect 10 4 and ¢ in 22)
can be reversed. This will be possible if one of the integrals:

fdyflf(x.y.:c)ldz, fdzflf(x,y,Z)ldy
converges.

We wish to reverse the order of the integrations with respect
to & and y in 23). Let

e = [ 1f w2,

h(x, z) =flfz(x,)’az)ld}’-

We need here to require the uniform convergence of the integrals:

Qj:g(x;z)dz, Je'og(r,z)dx, fh(r,Z)dx,

— 00

and the convergence of one of the integrals:

fdxfg(z,z)dz, jdzjg(x,z)dx.

Thus we arrive finally at the integral:

24 J dy, of at f (6, €) cos ok cos 2 L.

Since an interchange of order in the integrations with respect to g
and ¢ is allowable, we obtain as the final result:

25) f(a:,y.z)=;%fda.jdﬂfd)’fdifdﬂff(evﬂvC)
0 0 0 = =

cos (& — x) cosB(n — y) cosy(¢ — z)d¢.



Chapter XII
Differential Equations. Existence Theorems

§1. The Problem. Consider the simplest case,

1) L= flay).

Let f(x,) be continuous in a region § of the (z, y)-plane, the
boundary points not being considered as belonging to the region. To
each point (x, y) of § shall be assigned a direction, the slope of the
line being defined as the value
of f(x,y). It is convenient
to visualize these directions by
means of short vectors drawn
from the points. Thus we have
spread out before us a two-
dimensional family of these little

vectors.
By a solution of the dif-
ferential equation 1) is meant 0 z

any function

2) y=¢(2)
such that the point (z,y) lies in § and the equation obtained by
substituting the function 2) in 1) is identically true:

3) ¢! (x)=f[z, ¢ ()]
Thus ¢ (z) must have a derivative, and from 3) this derivative must
be continuous.

The graph of the solution 2) is a curve which courses S. At
each one of its points it is tangent to the little vector pertaining to
this point.

The question now arises, is there such a curve through each point
of S, and is there more than one such curve? The answer to each
question turns out to be affirmative. This gives us half of what we
want — a solution thropgh each point. The other half is just what
we do not want — more than one solution,
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For example, consider the differential equation :

d
K =3

The function

5) y=¢(z,a)=(r—a)

is seen to be a solution; but it is not the only solution, for
6) y=¢@)=0

is also a solution; but the functions 5) and 6) do not exhaust the
possibilities ; for, through an arbitrary point of the plane there passes,
not one, but an infinite number of solutions. Take the point (1, 1),
say. Through this point pagses the solution

y =15 0 = r;

but for x < 0 there is an arbitrary stretch® of the x - axis,
y=0, a <z <0,

where @ is any nezative constant. And then, finally,
y=(z—a), z = a.

A similar situation exists for every point of the plane; and yet
the function f(z,y)=3 y‘ is continuous without restriction, § being
here the entire plane.

We can forestall the occurrance of multiple solutions by impos-

ing a further restriction on f(x,y). It is sufficient to demand that
f poscess a derivative with respect to y,

2
_a}é = fy (. 7),
and require that it be continuous** in S.
All that has been said can be extended at once to the general
case of n simultaneous differential equations of the first order in n

* In particular, this stretch can extend to — w, or be replaced by a point,
a=0.

#¢ This condition can be lightened; it is enough that f, be bounded. On
the other hand, still lighter conditions can be imposed (the so-called Lipschitz
conditions). But in practice the condition of the text is fulfilled, if such a
condition in any form is present, and so we choose the simpler requirement.
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dependent variables; cf. §3. Thus when n =2 we have:

dy _ dz
7 = F(x,y, 2), I = & (z, v, 2),

the functions F, ® being continuous ih a three-dimensional region »~
of space, which shall not include any of its boundary points. To
each point of /7 shall be assigned a direction whose direction com-
ponents (1, F, ®) are suggested by writing 7) in the form:

8) dr _ dy _ dz

1 F @
Thus we have before us a three-parameter family of little vectors.
And now a solution of 7) will be given by two equations:

9) y=f@, z=¢(@)

Geometrically, these equations represent a curve in space, coursing ¥,

and such that, at each of its points, it is tangent to the little vector
pertaining to this point.

§2. The Existence Theorem. Tueorem. Consider the
differential equation

1) L2 = fla),
where f(z,y) is continuous in an open region S of the (z,y)-
plane, and has a continuous derivative,

%i, =fr (=)

Let (xy, o) be an arbitrary point of S. Then there exists a function,
2) = ¢ (2),
having the following propernes

i) ¢ (x) has a continuous derivative in the neighborhood qf the
point x = x, and takes on the value y, there:

Yo = ¢ (0);

ii) ¢ () satisfies the differential equation 1) throughout the
neighborhood :

5) @ =flzne @]

iii) The function ¢ (x) is unique.
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The proof is given by the Method of Successive Approximations.
Form the functions:

n=[rana+o,

4)

............

= f fleymdz + b,
a

where a = x5, b = y,. Let

R: lz—a| = A, |y —b| =B
be a region lying in §, and iet

5) | fenl =M fy@n] =6
Then

IIA

=01 = [ 17 @D dz 2 M (e -0

if a = z, and in any case,
6) ly1—b] = M|x— al.
Now, if y; is to be available in the integzral which defines y,, then

the point (z, ;) must lie in 8. This will surely be the case if we
restrict x to the interval

7 a—h< x < a+h, 0< h = A,
X
b+B
b i
b-B L =
[} ' [
i N L
O a4 a a4 -

choosing % so that
8) Mkr = B.
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Proceeding to y,, we see in the same manner that

=81 = [ fler)lds = Mz a)

when @ = z < a + A, and generally:

lys— 8| = M|z —al, jr—a| < k.
And so on:

|}’n—b‘-§i‘4|x—a|, Ix—al<h1
or
9) b—B < y, < b+B.

Thus all of the functions y, are defined in the interval 7), the
point (x, yn) lying in S. These shall be called by courtesy the suc-
cessive approximations, and we will now show that they deserve
their name. For, the function y, approaches a limit as n becomes
infinite. To preve this, let us write

10) ?’n':b+()’1_.70)+()’2".)’1)+"‘+(_‘)’n—)'n-—1)

and test the infinite series :

11) b+ (On—yo)+ o=+

for convergence. We have :

Yo = Yoo = J L @ ynnt) = f (2, yms)] dz.

Now,
12) S (& yna) = f (@ yn=) = (Yno1 = Yn—2) fr (x, ),
where Y lies between yp—; and yn—. Hence (x,Y) is a point of R,

and
13) lfr@ )] = G

We see, then, that

x
14) P j G| Yroy = Ynms | dz
a

when a = 2 < a + A, and a similar relation holds when z is less

than a.
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Begin with n = 2. With the aid of 6) we have:

d — 2
lye =l = MGf(:c—a)dx:MG(_x_z_?_)_

when a = z < a + h, and generally:

— a2
15) l_yz—yljéblG%#, |lz—al< A

Repeat the reasoning for n = 3; and so on. We arrive at the
reswit:
R N e A N P
From 16) it follows that
17) =] £ MGTIT
The right-hand side of this last inequality:

. n

18) M, = M G"*! ’—l—
n!

is the general term of a convergent series, and hence the series 11)
converges. But we can infer niore than this. The quantity M, is
independent of z. Hence the series 11) converges uniformly in the
interval |z — a| < h, and since the terms of the series are
continuous functions, the limitinz function :

19) 9°(I)=ii";-7’"=b+(]'l—)’o)+()‘2"}’1)+' :

is continuous in this region.
Does ¢ (x) have a derivative, and if so, does it have the value

o' (x)=flz,¢(x)]?

The first question is answered in the affirmative by the general theore:n
for differentiating a series term-by-term, Chap. V, §9, for all the
conditions of that theorem are fulfilled. In particular,

20) Zd; (rn— yn-1) =f(?-',)’n—1) —f(x’)’n-z)

= ()’n-l - .’)’rx—z)fy (Iv Y)l
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Y Sl 1

2 (- = Mg P
(.:Y" y"—l) = MG (n__ 1)!‘

dx

Thus the term-by-term derivative series converges uniformly, and its
terms are continuous functions of =z.

It appears, then, that each of the double limits :
d ;. . dy;
=1 lim =%
dz e’ ™ g da
converges, and that they are equal to ¢’(z), for this is, precisely what
the differentiability of the series term-by-term means. Hence, in
particular
¢' (@) = lim f(z, o) = fL,0(2) ),

the last equation following from the fact that f(z,y) is continuous
in the point x =2z, y = ¢ (2'), and yn— converges. Thus the
answer to the second question is justified, too.

Uniqueness. It still remains to prove that the solution we have
found by the foregoing method is the only solutirn. Iet

21) u=¢(x),
and let
22) u+U=2>0(x)

be any second solution. Then the two functions are identical in the
whole interval (a, a + &) :

23) ®(x) — ¢ (x)=0, 0 =zx—a<h,

or
U=0.

If this were not the case, there would be a point £ :
a =t < a+h,
such that U==0 when a = z = £, but for any interval

t<rx< < a+h,
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however short, there will be points for which U # 0.
Plot the curve

;tf=[Ul.

Tet £ < z; < ¢ be a point for which the corresponding value U
of U does not vanish:

0< |0,
Consider the roots of the equation
Ul =0

which lie in the abhove interval. There must be a smallest root, Chap.
IlI, §8, Ex. 6. Denote it by g =% + y. Then

T < 14 =<
Ul < | ] £ = 1
Now,
Z—Z = f(x,u),
-d"—;‘; % = flz, u+ U).
Hence
Ui L B .
I =flr,u+ U) = flz,u) =Uf, (z, 1),

where Y lies between u and u + U.

Integrating, we have:
K)
U, =J Ufy(z, Y)dx,
<

|| 2 U] Gy,
1 2 Gy

But G > 0, and y can be chosen arbitrarily small. From this con-
tradiction follows the truth of the theorem.

Similar reasoning applies to the interval (a — &, a); or this case
can be referred to the one just treated by a transformation, ¥’ = — z.
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EXERCISES

1. The solution 2) of the differential equation 1) is a function
not only of = but also of (zy, 5,). Holding z, = a fast and letting
o = b vary, show that the solution,

y = ¢ (z,b),
is a continuous function of the two independent viriables (z, b).

2. Let f(x,y,a) be continuous, together with f) (x,7,a), in
the neighborhood of a point (xy, 7¢, %g). Show that the solution of
the differential equation .

dy =f(z, 5 a)
which passes through the point (xy, ¥o)

ry=y¢(za)
is a continuous functions of (x,a) in the neighborhood of the point
(xoa a’O)'
Hold x, fast, but let yo = b be a continuous function of .
3. If to the hypotheses of Question 2 are added the existence
and continuity of the derivativ *

2 g,

dyda

3 _y'
and also of b = b(a), show that the function ¢ (z, @) admits a deriva-
tive with respect to &, continuous in the neighborhood of (zy, &), and
that the same is true of the function ¢’ (z, &).

4. Given the differential equation

d : 2\
7[2’:; =zer — ye* +sinx + loz(1 + 7).

Show that it has a unique solution passing through an arbitrary point
of the plane: -

- y=¢ (I; '1-:01),0)’ — o < xr < 00,
and that the corresponding curves sweep out the entire (x, y)-plane
just once. ) ]

# Cotton has given a more general theorem, the derivatives of the second
order not being required to exist; cf. § 4 and Goursat, Cours d'analyse mathe-
matique, vol. 111 (1915) § 460.
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§3. Continuation; n Equations. Turorem. Consider the
simultaneous system of differential equations :

1) %'_—'fk(x,)’]""‘)'n)v k=11”'vn1

where fi(x, 1, . ¥n) is continuous, together with its derivatives
of the first order with respect to y, **+, yn in the neighborhood of
a point (a, by, -+, by). Then there exist n functions:

2) ni=6l@) o yn=gal2)
having the following properties :

i) @i (x) has a continuous derivative in the neighborhood of the
point x = a and.

¢x(a) = by;

ii) These fun;tions satisfy the given system of differential

equations :
‘/;r(x)th[x’¢l(x)?“"Son(x)]v k=1’°"1n5

iii) The functions 2) are unique.

The proof given in § 2 for the case n = 1 is applicable in sub-
stance, the requisite extensions being adequately indicated in the case
n =2, to which we now turn. Let us write the system 1) in the

form :

a7 4z _ g s,
5) prm F(I, ¥ Z), iz ] (I’ vg Z),

the functions being continuous, together with their first derivatives
with respect to y, z, in the region

R: |z—a| = 4, ly—5b| = B, lz—¢c| = C.
Moreover, let

|Fz,7,2)| = M, |®(=zy2)]| = M;
{IF,(x,y,z)l =G, v, |®(x,2)] =6

4)

Form the approximations :
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y1=‘] F(x,b,c)dx + b, z1=f<l>(x,b,c)dx+c;

........................

In= fF(r, Fn-1Zn-1)dx + b,

Zp = f@ (xy Yn-1» Zn) dzx + ¢,

restricting x to an interval

6) -k < z<h, 0< k = A,
where % is so chosen that

7) Mh £ B, MR £ C.

To examine the limits: lim y, and lim z,, write
ym=b+ 1=y + (ra—21) + -+ (¥n=yna)
Zn=c+(zy —z) +(z — z) +  + (22 — z5-1),

where y, =205, z;,=rc¢, and study the infinite series:
8) b+ (n—r0+Ge—0)+-
9) c+ (2 — 2z) +(zp — z) +-.

We have from 5) the appraisals:

10) |y1—b| =2 M|z—al, lzgy—¢c] = M|z —al.

Furthermore,

In— IYn- =f{ F(.’L‘, _7’n-1,’-n—1) - F(I’:)n—ﬁ’ z"—2) ;dr'

By the Law of the Mean:

F (2, yn-1, 2n1) — F (%, Yn—3, Zns) =
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(yn-1 = Yn2) Fy (x, Y, Z) + (201 — 2n—s) Fz (2, Y, Z).
By virtue of 4):
11) | F (2, Yne1) Zn—1) = F (2, Yn—2, 2n2) | <
Gilyn1— Ynol + | 2znog = znea | .

Hence

12) | yn— yna| fG 1 ynmy =Fneo | + | 20my —2ns | } dx;
a
and similarly:

I
13) lza=zni| S [ G1lyns = yuma| + 120 = 2na |},
a

where a £ x < a + kh, with a similar relation if a — k2 < z < a.
For n =1, these appraisals are replaced by 10). When n =2
they yield with the aid of 10):

) n-nl=2MeESD g zomelEal

And now it is shown by mathematical induction that, generally,
— n
l}’n—)’n—l | = M(2 G)"_l'l-z;;!;‘—l‘a
15)
20 — 2o | = M(2 Gy 12 =2l
n
where z lies in 6). In particular, then:
16) I.?’n".’)’n-—ll = M, lzn—zn-1| = M,,,
where

n
M, =Meey "t
n!

s M,

converges. Hence the series 8) and 9) converge. Moreover, their
terms are continuous and the series converge uniformly. By Chap.
V, § 4 they define functions:

The series
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e@=b+(yi—y)+(ra—7) 4+,
17) {

V(@)=c+(zy—2) + (mz—2z)+""",
continuous in the interval 6) and such that
lg(x)—5| = B, ly@)—cl £ C
These are the limits sought :

18) m yp = ¢ (2), lim z, =y (z).
n=o0 i=z00

It remains to show that these functions have derivatives and satisfy
the given system of differential equations 3).

The series 8) and 9) can be differentiated term-by-term. For

dix (¥n — yn=1) = F(x, Ynet, 2n—1) — F (2, ¥n-2, Zn—s)-

From 11) and 16) it follows that
d
7; ()’n - '.'}’n—l) = QGMn_l.

Hence all the hypotheses of the theorem of Chap. V, §9 are fulfilled,
and so ¢ (x) admits a derivative:

¢ (@) = 2 { F (2, Yn—1, 2n-1) — F (2, yna, Zn-2) }

=31=I":1° F(.’C,)‘n, zn) = F[xt ¢ (1’), ‘l’ (1’) ]‘

Similarly,
Vv (z) =[xz, ¢(),y()]

Thus a solution,

19) y = ¢ (), z=y(x)

of the given system of differential equations 3) is obtained.
It remains to prove the uniqueness. Let

u=g¢(x), v=y),
and let )
u+U=@o(z), v+ V=¥ (2)
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be any second solution. Then

4u _ Flx,u+ Uv+ V)— F(z,u,v)
dx
=UF,(z,Y,Z)+ V F: (z, Y, Z),
and similarly:
%’;; =U®,(z,Y,2) + V. (z, Y, 2).

We wish to show that U, 7 vanish identically. If they do not,
suppose that

w@=|U|+1V|=0, a2t < a+h
@(2—'1) # 01 E < Zy,

where z; can be chosen arbitrarily near to £. Let n = £ + ¥ be the
smallest root of the equation

o (z) = o ().
Let

U)=U,, Vig=V.
Then ‘

n
UI=J{UFJ'+VF“‘{I’

O = G{IU |+ 171y
and similarly,

| 711

IIA

G{ U |+ |7ty
Hence

LU+ |7} S 26U [+ 7w

or
1= 2Gy.

Since y can be made arbitrarily small, the proof of uniqueness is
complete.
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EXERCISES

1. Show that, under the hypotheses of the Theorem, when
n = 2, there exists a sub-region
R’: lz—a| = 4, |y—b| £ B, |lz—c| £ C,
and a positive constant A/, such that, if (xy, ¥o, 2y) is an arbitrary
point of R’, there is one and only one solution of the differential
equations 3):

.y =f(‘t; Zo, yO’ ZO)) z = so (x; IO’)’O’ 20)9
defined throughout the interval
b <z—-zi < W,

with  f(zo; Zo, Y0, 20) = o and ¢ (xo; %o, Y0, 20) = 2o

Generalize to the case n = n.

2. Carry through the detailed proof in the general case, n = n.

3. Extend the Exercises of § 2 to the general case of this par-
agraph.

4. Let the function fi(x,y,**,n) of the system of dif-
ferential equations 1) be continuous when x lies in the interval

asx=Db
and yi, * *, yn are unrestricted, and let the first derivatives of fz with
respect to the y’s be bounded. Show that through an arbitrary point

(g, 71% * * *, n°) passes one and only one solution 2), defined for the
whole interval (a, b).

§4. The Semi-Linear Case. let the simultaneous system:*

L =fan
1)

22 =2 + ¥ (=)

be given, where f(x,y), ¢(x,y), ¥ (z,y) are continuous in the
neighborhood of a point (a, b), and where, moreover,

%5— =fy (2,9)

® cf. foot-note, p. 356. ‘
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exists and is also continuous there. The first equation admits a unique
solution,
2) Y =¢(2), ¢ (a) =1b,

in the neighborhood of the point r = a,
3) a—h< x<a+h

When this function is substituted for y in the second equation, the
value of k& being conceivably cut down, so as to bring the point
(x, Y) within the above neighborhood, the latter becomes a linear
differential equation in "z, and it ad nits, for an arbitrary initial
value, z = ¢, a unique solution Z, defined throughout the whole in-
terval 3). Thus

dY _

“'i? "f (1'1 Y)v

4)

dZ _
d—x—Zgo(J:, Y)+ vy (= Y)

So far, then, as the solution of the simultaneous system of dif-
ferential equations 1) is concerned, there is nothing left to be desired.
By means of the resulting functions, which satisfy Equations 4), we
proceed to develop a

ConNvERGRNCE THROREM. Let a sequence of successive approx-
imations be defined as in §§2,3:

In =ff(xvyn-1) dx + b,
5) ‘

z
Zn =f{zn-1¢(xo_')’n—l) + ¥ (x, yn) } dx + ¢,
a
with yo = b and zy =y, where y is arbitrary. Then
im yn =Y (z), lim z, = Z (2).
Nezco N=aoe

Moreover, yn=yn(z) and z,=za(x) converge uniformly
in the interval 3).
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So faras lim yn is concerned, the proof comes under the earlier
case. As regards lim z,, write from 4):

Z=f§Z¢(z,Y)+qr(x,Y)}d1+c,

and form the difference:
6) Z— 2z, =

f{ Zo(x,Y)= zny @ (2, yn1) + ¥ (2, Y) = ¥ (x, yny) } d .

Set:
{ So(xa)'n) = 99(1: Y)+ ¢n

¥ (2,70) =¥ (2, Y) + Lo
Since yn(z) converges uniformly in the interval 3), we have :
ltal <0 lal<a  m=n
where v is an arbitrary positive constant, and m is iudependent of z.
Rewrite 6) in the form :

) Z—zm= fz ¢ (2, Ynt) (Z = 29y) = Z bpey — by } dz.

Let ¢ be an arbitrary positive number. Then % can be so chosen
that

8) |=Ztm—tml<e m=n
where x lies in 3) and m is independent of x. Moreover,

le@m1)| = 6,

where G is a suitable positive constant. Hence
Ed

9 1Z-mls [(612-ml+clds, msn
a

aSz<a+h
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Let M be so chosen that 4

GlZ—zpy|+eE M

when z is in 3). Then
|Z—-2zn| £ M|z —al.
From 9) we new infer that

—_— 2
|Z—zm+1| é zWG-I-f?xil—-{-elx—al.

By mathematical induction it follows that

= merlz—alt | lz—alt
10) |Z = zmyr | = MG CEE +Ek.§l o

Hence we arrive at the final appraisal:
AL »
(—;—’Fl_)! + € (eh 1)1

and the Convergence Theorem is established.

11) |Z = zZm4r | = MG

Both theorem and proof admit an immediate generalization: —

CoNVERGENCE THEOREM. GENERAL CASE. Let the system of
simultaneous differential equations be given:

:iika =fa(z, y1, = s ymh k=1, -, m;

12) !
2 =3 sgy (e o) + g )
om
j=1,1
where fx, yij, ¢; are continuous throughout the neighborhood of a
point (a, by, - - -, bm), and where, furthermore, the derivatives

‘%‘1 k,a'=1""’m1
Oya
exist and are also continuous there.
Form the successive approximations :
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x
iZe =ffk (@, y Voo, yim VY dz + ),
L7

13
) (n) — z (n—1) (n 1) r—1
% ?U‘ v Ym )

i=l1

+ ¢ (237, ) Yz + 2,
E=tms gj=10005 1 < n,

where (x,, y?,' < y?,,) is an arbitrary point in the neighborhood
of (a, by, -, bm), and z¥ is wholly unrestricted.

For n =1, replace y;\*™V, z;"~Y by By, yi, where (By, -+, Bm)
lies in the neighborhood of (by, -, bm), and (yy, -+, y1) is wholly
unrestricted. Let (¢, -+, c;) be an arbitrary fized point.

Then there is an interval:

a—hk < xz< a+h,
and a neighborhood of the point

(10’ .ygv ’yma zlv ""zl) (a by, o, bm, Cl,"’..Cz)
within which the functions:

(n) —

{yk yk (x3xov)’?1"")’?n), k=1, m
(")-zyl)(x 1'0\711' ‘v.ygmz(fv""z?) i=11

converge uniformly to the solution of Equations 12):

) { Yk=9k(1';xo.)’(f,°",)’9n), k=1$"',m;
14
Zj-_—-m)‘(x;Io:y%'":ygmz?’.“vz?)a j=17"'1l'

Finally, the differential equations themselves may depend on
parameters. The simplest case,

[ L =f=ro),
15)

dz __
lz;?zsp(x,y,a)w(x,m%



DIFFERENTIAL EQUATIONS. EXISTENCE THEOREMS 367

is illustrative for the general case. Let f(z,y,a), ¢(z, y a)
¥ (z, y,a) be continuous in the neighborhood of (g, 5, a’). Let

9f = f,(z, y,a)

oy
exist and be continuous there, also.

ConvERGENCE THEOREM. Let a sequence of successive approx-
imations be defined by the formulas:

- 4 z
In =ff(x. Yn-1,2)dx + ¥
16) o

z
Zn = f Zn—y [y (2, yn—y, @) dx + 2y,
\ %o

1 < n, where (zy,y0, 2, @) is an arbitrary point of a certain
neighborhood of (a,b,c,a’); here, ¢ is an arbitrary constant.
When n == 1, the arguments Yn_y, zn— shall be replaced by B, y,
where B lies in the neighborhood of b, and y is an arbitrary
constant. Then there is an interval:

a—h< zxz< a+h,
and a neighborhood of the point (xy yo 2o &) = (a, b,c, '), within
which the functions
In=yn(z; 0, ¥y 20r ), zn = zn (23 T, Y00 200 @)
converge uniformly for n = co to the solution of Equations 15)
{ Y = ¢ (x; 20, 701 20 *),

17)
Z= N (3 Zos J0s 20 ).

§5. Dependence on Parameters. Beginning with the sim-
plest case,

1) —Z% = f(z,y)

we have the solution:
2) y = ¢(z; 2o, ¥0)s
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where ¢ (2; xy, ) is continuous in the neighborhood of (a; a,b),
and where 2) holds uniformly for an interval

3) a—h < z< a+h,

h being constant for points (x4, ¥,) lying in a certain neighborhood of
the point (a, b).

So much can be inferred directly from the proof of existence by
successive approximations. That process did not throw light, however,
on the existence of the derivatives

29 o9
oz, ’ 278
By means of the results of § 4 the existence and continuity of these
derivatives can be established under no additional hypotheses concerning
S (z, ) beyond those of §2, Theorem.
Start with the sequence of successive approximations:

z
) = flm )z + 5o
%o
Then
5) 7= ¢n(z; %o, o)

admits continuous first partial derivatives with respect to z,, y,. We
wish to show that the limiting function:

6) Y=li:;.7n=.')’o+(3’1_.70)"'()’2—.71)‘*'"',

admits continuous first partial derivatives with respect to xy, y,. This
will be the case if the conditions of the Theorem of Chap. V, §9 are
fulfilled. The one outstanding hypothesis is that of uniform conver-
gence of the series of derivatives:

© 9y 5 2 (yn = yn-1) 9y, X (yn — yn—1)
7) axo +n§1 aro ’ ayo +7§1 ayo )

That this hypothesis is in fact fulfilled, can be shown as follows.
Suppose for the moment that these derivatives do exist, and write
them :

8) 2= 2¢ u=29 .

Now
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Y=ff(x,Y)d.1:+_yo.
%o

Hence
ﬂ"fa—‘e'fy(xv Y)dz — f(z0, o)
axo -4 3.1‘0
S) =
2—!”—:] 29 (z, Y)dz + 1.
9y, 5 9y, Ir
From the foregoing reasoning we infer the following: — A neces-

sary condition for the existence of the function 2) and its partial deriva-
tives 8) is that these functions satisfy the system of simultaneous
semi-linear differential equations :

1

4L = f(z. )
10) P =zfylm)

du

-:d—; = uf Y ('tl Y )0

with the initial conditions:

11) r=xy y=y» z2=-flmy) w=1
The form of this result, combined with the developments of § 4,

suggests a means of establishing the unmiform convergence of the

series 7) and thus completing our proof. By §4 the system 10) can
be solved by the aid of the successive approximations :

Ed
Ry A —
%o

12) Zn =J. zZn1 fr (%, Yn-1) dz — f(x0, 70),

z .
u’" =f uﬂ—lf_‘r (x' y'l—l) d-r + 1;
- Zo
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1 < n. When n =1, the definition of y;, z;, 4; can be made to
serve the application we are about to consider.

Turning to Equation 4) we see that

Ed
(]
= =J OYeot £, (2, ya) d = f 20 70
Zo

az,
13)

a)’n _fa.')’n-l fy(xo}’n—l) dz + 1.
9y

When n = 1, these equations become :

z
19) ANty N =ff, (2 y0)dz + 1.
31}. ayo )
0

Returning to Equations 12) let us agree that, when n = 1, the
arguments ¥n.;, Zpj, Un—; shall be set equal to y,, 0, 1 respec-
tively. Then, by virtue of 14):

z
91 ay

= s dx + o, Zp = <, w =
.E[f(l' _)’0) Yo 1 % 1 3)’0

We now subtract Equations 12) from Equations 13):
9In "‘ffr(x }’n-l) ‘&—1- - Zn-l]dx,
axo ’

15)
Oyn _ o O yny _
L 5-)% Uy = ;j Jr(z, yn-l)[—L—ayo un_l]dx,
0

1 < n. Hence it appears that identically, for all such values of n:

dyn dyn _
ED e 2y o

and thus the uniform convergence of the series 7) is established.

The extension of the result to the case that the differential equation
depends on parameters presents no difficulty, and we are thus led to the
general theorem: — )



DIFFERENTIAL EQUATIONS. EXISTENCE THEOREMS 371

Turor:M. Consider the system of differential equations:

‘%‘Z'k‘ :fk(x; ST 4 1 x11 "'1Am)7

x

k=1,-, n, where fr together with the first partial derivalives:

fx fr
33’, ! 3&; '

is continuous in the neighborhood of the point (a,by, -+, by,
1y s Ab).  Then the solution:

)’k':?’k(x? IO’y?v . 'a)’g; xly MY Xm).
where
7 =@r (s 2o, % 0 Ay 0 Am)s ,
is continuous together with all n + m + 2 first partial derivatives,
in the neighborhood of the point (a; @, by, -+, bn: X, **, Xp)-
Since
4% - / S VTR
dz _"fk(x; C1, " s @ni Aty m)s
it is clear that each of the derivatives

_Q_ dgok a doy

dy} dz’ O\ dzx

exists and is continuous.

§6. Implicit Integral Relations. The differential equation
of §2:

& = fa)

admits the solution :

1) ¥ = ¢z zo, 70,

where ¢ is continuous together with its derivatives of the first order
in the neighborhood of the point (a, 4, b). It might seem, then, that
we had found in 1) a primitive (= solution) of the differential equa-
tion which depends on two arbitrary constants, z, and y,. But in
substance there is only one; for if we hold x, fast, we obtain the
whole family by allowing y, alone to vary. If, then, we write, as
in §2, Ex. 1, the solution in the form :
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2) y=¢(zb),
we have what may be called the “general” solution, depending on a
single arbitrary constant.

In fact, it is through the present existence theorems that one can
attach a precise meaning to the term general solution. The for-
malism of special differential equations, integrated by special devices,
is a morass of half-true theorems, which are unreliable in any given
case. Take, for example, the differential equation :

dy _
dx
The function
y=er
is a solution of the form
ry=e¢(z,0);

ie. containing an arbitrary constant — and that is all that is called
for in many of the books on elementary differential equations, such
as are used in a sophomore or junior course. But this solution is not
general, for there is no value of ¢ which gives the solution

y=0.
On the other hand, the solution -
y=Cé&

s general. But how is one to know, from the formalism of ele
mentary functions, even now, whether all solutions have been rounded
up? In this case, the existence theorem of §2 is unnecessary, as
the explicit function supplies the demand; but the uniqueness theorem
is essential, and answers the question with which formalism is power-
less to deal.

The example of §1:

dy _ 3.4
dx 3r%,

. y=¢(r,a)=(z - a)

is also a case in point.
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Implicit Form of the Integral. Consider the solution 1) of
this paragraph. Let (x;,7;) be any point on this curve, in a
suitable neighborhood of (xy, y;). Then

>1 = ¢ (215 o, ¥0)-

On the other hand, apply the existence theorem to the given
differential equation 1) of §2, considered for the neighborhood of
(z1, 71)- Then the solution is given by the equation :

y =¢(z; 21, 1)

where ¢ is the same function as before. In particular, this curve
goes through the point (x,, y,) because of the theorem of §3, Ex. 1
and the uniqueuness theorem :

Yo = ¢ (203 x1, 71)-

But (z;, ;) was any point on the curve 1). Hence

¥ = ¢(x; 20, 0) and Yo = ¢ (20: 2, )

are equivalent equations.
The result can be extended at once to the general case of § 3.
let the solution 2) be written in the form:

3) 71 =a(z 20 0% 7, k=1,-n.
If zy = a is held fast and y} = b; is regarded as a parameter, then

4) ye=or(z; a,by, -+, ba), k=1,---,m,

is the general solution, in that 1t gives every solution which courses
the neighborhood of the point (zg, »3, *+,73). The solution depends
on n arbitrary constants, the by, - -, &n.

On the other hand, the points (zg, 3, - -+, »3) and (z, 71, =+ ¥n)
can be interchanged as above, and we have as the equivalent of 3)
the n implicit equations :

5) 72 = @r(xo; 2, 10 **0 Ynhs k=1, n
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Observe that the Jacobian of these n functions :

9 (g1, - - on)
6 —r T
) a(}’p"'»)’n)

has the value 1 in the point z = x5, yx = y}. For, in 3), ¢x re
duces to ¥} when x =z, That the derivatives involved exist and
are continuous, has been shown in §5.

A more general definition of an integral of the given system of
differential equations is the following. Let

= (%, 1, ***, yn) F const.

be continuous, together with its first derivatives, in the neizhborhood
of the point (xo, #3,*-+,70), and let it be constant along a solution
4):

sz, ¢, om] =c
Then the equation

B (2,1, ) =¢
is said to be an integral of the system of differential equations.
If
@y (@ y1 0 ya), @ (2, 71, "+ Vn)

are two integrals, they are said to be independent if the matrix

o 0=
33'1 a)’n

dmy . dw,
ayl a)’n

is of rank 2. — The generalization of the definition to the case of &
integrals is obvious.

EXERCISES
1. Let
ck=c°7t(b]1“'7bn)7 k=1v”'9n,

where g (by, ***, bn) is continuous, together with its derivatives of the
first order, throughout the neighborhood of the point (&, « -, by) =
(9}, -+ +, D), and the Jacobian
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a (clv-' ) Cn)
S 0 A 0.
7 by, sba) 7
Let
?k(xzbl,"',bn)=‘4'k(x;cl»"’,cn), k=1,---,n.
Show that the equations

vk =z, o) k=1,--n,

express the general solution of the given system of differential equations
1), §3, —in the two-fold sense in which that term has heen ex-
plained.

State your final result accurately as an independent theoren.

§7. Linear Differential Equations. Turorem 1. Consider
the system of linear differential equations of the first order:

ﬂizplkyl +"'+Pnk)'n+P7n

b dx

k=1, +,n, where Pj; = Pj;(x) and Pj; = Py (x) are continuous
in a closed interval:

2) a b.

IA
IA

x

Let &y, -, by be an arbitrary set of numbers, and let x; be
an arbitrary point of 2). Then there exists a solution of 1):

3) yk=¢k(-r)v k=1, ,n
where ¢y (z) is continuous, together with its first derivative, in the
closed interval 2) and
S"k(l'o)-'—'bk, k=11"'1n'

Moreover, the solution ts unique.

The theorem comes under the more general one of §3, Exercise
4. By means of this theorem it is possible to treat the linear
differential equation of the n-th order :

dn dn—1
4) Lt p St Py =P

where the coefficients pg-= p; () and p = p(x) are continuous in a
closed interval
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5) a=zx < b
For on setting
d
6) ji)_gs' = XYk+1s
we have:
dy
dr oA
({4')’1 -
dx T
7 e ,
dYno
-
dyn-
praniadal (NS R AN 2

We are thus led to the following existence theorem.

TurowreM. 2. The linear differential equation of the n-th ord.r
Equation 4), admits a solution defined throughout the interval 5):

J’:?(x). aéxéb,
such that, if ¢, ¢, *,Cay be any n numbers whatever,
¢ (_1;0) = ¢y, ‘P’ (o) = ¢y +°+, ¢(n—1) (xo) = Cpy.
The solution is unique.
§8. Differential Equations of Higher Order; General

Case. The general differential equation of the n-th order can be
written in the form:

£y dy ... &7y
2 d= ("’3_’"3;" ’dx’"l)’

where f(z, y, ¥y, * **, J'n-1) is continuous, together with its first deriva-
tives with respect to ¥, ¥, ***, ¥n—y, in the neighborhood of a point
(Zo, Yoo ¥% -+, ¥9-1). On making the substitution 6) of §7, the
given differential equation 1) is replaced by the system 7) of § 7, except
that the last equation 7) now becomes:

7
2) LIl = fl@ ya y10 s Yo
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The existence theorem is precisely similar to Theorem 2, §7,
except that the domain of definition of the solution is restricted to
the neighborhood of the point z = x,.

EXERCISES

1. Extend the existence theorem to the most general case.
Begin with two differential equations :

ﬂ: LA (n—1) ! .. m—l)
T Sy sy, 2,2, -0 2mD),

d"z _ ’ (n=1) ! (m—1)
dx—,,,—s"(x,)’,)’,"',}’ &y %y ", 2 )-
2. Apply the result to the system :

d%qy
dt?

where ni is a positive constant.

+ niqe =0, k=1,,m,

§9. Complex Variables. Corresponding theorems hold in
the domain of complex variables, but the proofs are simpler. Be-
ginning with the simplest case,

‘g— = f(=x, )

let f(x,y) be a function of the two complex variables x and y, ana-
Iytic in the point (g, yp). Then there exists a solution,
¥ =¢l2),

analytic in the point x = z, and taking on the value y, there:

Ye = ¢ (x).
Moreover, this solution is unique.

The proof can be given by the method of successive approxima-
tions, as before; but the details are simpler. For when once the
series

b+(n—yd)+tra—r)+ -
has been shown to be uniformly convergent throughout a certain
two-dimensional, or complex, neighborhood of the point x = xy, it
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follows that the series represents an analytic function and can, by a
general theoremn due to Weierstrass, be differentiated term-by-term.
Moreover, the case that f depends on a parameter, @, the function
S{z, 7, ) of the three complex vaiiables being analytic in the point
(g, 70» ®o), is dealt with immediately, without any additional analysis.
The function ¢ (z,a) of the complex variables is analytic in the
point (xg, ), and so can be differentiated with respect to @ an un-
limited number of times, the series being differentiable term-by-term.

The generalization to the case of a simultaneous system of n
differential equations presents no difficulty.

§10. Linear Partial Differential Equations of the First
Order. Consider the linear partial differential equation :

A) Xl—él'l"""f'Xn Ou

=0,
axl a.rn

where X = Xy (zy, **+,2n) is continuous, together with its first
derivatives, in the neighborhood of a point (ay, ***, an), and not all
the X vanish there.

Consider, secondly, the simultaneous system of total differential
equations:

dx dz,
B arn _ ., . &
) X, Xn

To solve Equation A) is equivalent to solving equations B); and
conversely.
The theorem is adequately illustrated in the case n = 3:

A Xﬁi+y§’i+zzﬁ=o;
oz oy z

BI) —_— = e = e,
The solution of B’) is given by the equations :

1) y = f(x; 20, y0, 20), z = ¢{x; o, Y0, Z0)s

provided X (a,b,c) # 0, where (x, ¥y, zo) lies in the neighborhood
of (a,b,c). Let 2y = a be held fast, and interpret (yy,z,) as a point
in the plane z = a, lying near (y,z) = (b,c). Then the equations
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2) y=f(x; a 50 20), z = ¢ (x5 a. yo, 2)

represent a two-paranieter family (a so-called congruence) of curves
coursing the neighborhood of (a,b,¢). No two of these curves in-
terset,. for then there would be two solutions of B’) through such a
point. Moreover, through each point of the neighborhood passes a
curve 2). For, the implicit form of 1) is

3) yo = f (x5 2, 7, 2), zy = @ (xg; 2,7, 2)-

Hence 2) is equivalent to

4) Yo =fla; z, 7, 2), zy = ¢ (a; z, y, 2).

We see, then, that an arbitrary point (zy, ¥y, z;) near (a; b, c) will lead
through 4) to a point (q, z5) in the plane x = 4, near (b, c); and the
curve 2) corresponding to these values of y,, z, will go through
(1'1, At z)).

Integral Surfaces. Consider the surface:
5) fla; z, v, z) = const. (= x9)-
It cuts the plane x = a in the line y = y, = const. For,
6) J (%03 2o Y01 20) = 0
is an identity in {x, ¥, z). Hence
flasa,y,2) =y,
no matter how (y,z) be chosen near (b,c). Because of 5), y must
have the value y,: but z is arbitrary.
The equation 5):
Sflasz,7,2) = 7
can be solved for y; for
L/
7 Wz, y00 20)
Hence 5) can be represented in the form :
7 ¥ =X (x,2).

The surface 3) is an integral surface of the differential equations
B’), as has already been pointed out in §6. In particular, then, the
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solution of B’) which passes through a point (x;, 1, z) of 5), cuts the
plane & = a in the line ¥ = y,. Thus the surface 5) or 7) is swept
out by the solutions of B’) which pass through the points of the line
Y = ¥ in the plane x = a, near z =c.

Similar remarks apply to the surface

8) ¢ (a, z, ¥, z) = const. (= zy).

This surface cuts the plane 2 = a in the line z = z, = const. Equa-
tion 8) can be solved for z:

9) z= - (z,5).

This surface is swept out by the solutions of B’) which pass through
points of the line z = z; in the plane z = a, near y =b.

Consider now more generally an arbitrary regular curve of the
plane z = a, which passes through (y,z) = (b,¢):

10) Q(y0 29) =0,

where the first derivatives, Q; and Q,, exist and are continuous near
(5, ¢), and not both vanish there. The equation

11) Q(f,e)=0

represents a surface, swept out by the solutions of B’) which cut the
plane x = a in a point (}y, 2) of the curve 10). For the points that
lie on these solutions obviously are points of 11); and conversely, a
point (zy, 5y, ;) of 11) near (a, b, ¢) determines a pair of values y,, zy:

Yo =f(a; 1, Y1 21 zo=¢(a;x1,y1,zl)
which satisfy 10).
Solution of the Partial Differential Equation A'). The function

12) u=fla,zy2)

is a solution of A’). For, the normal to the surface 5) in an arbi-
trary point is perpendicular to the solution of B’) through this point.
Hence

of 4 y3f L 79f =
13) Xhrrg g =0



DIFFERENTIAL EQUATIONS. EXISTENCE THEOREMS 381
Similarly, the function
u =g (a; 2,7,2)

is a solution of A4’) and we have

2 a /)
4) XGhergtezgt=o

More generally,

15) u=0(f,¢)

is a solution. For

du of do
ox —ola +025;'
du of P)

o —9,9 +0,%9,
oy ~ %oy %5y
du _ o Of 29
Err P P

On multiplying by X, Y, Z respectively and adding, the result follows
fron 13) and 14).

Finally, let
16) u=V¥(z, 5,2

be an arbitrary solution of A'), where ¥ is continuous together with
its first partial derivatives in the neighborhood of the point (a,b,¢)
and not all the derivatives vanish there. The surface

17) ¥ (z, 5, 2) = ¥ (a,b,c)

is tangent at an arbitrary one of its points to the solution of B’) which
passes through this point, as is clear from A'). In particular, then,
the surface is not tangent to the plane z = a.
Moreover, the solution of B’) which goes through a point of 17),
lies wholly in the surface. For, when y and z are given by 1),
A4 Y Y/

71; =\l’g+‘l’_yf+‘l’zk'—,=0.

It follows,  then, that the surface 17) is swept out by the solutions



382 FUNCTIONS OF REAL VARIABLES

of B’) which pass through the intersection of the surface 17) with
the plane z = a.

There is still one point to be considered. The surface 17) cuts
the plane z = a in a curve 10}, for since this surface is not tangent
to the plane x = g, it follows that not both the derivatives 8 ¥/ oy
and d9V¥/0z can vanish. The surface 17), therefore, is swept out by
those solutions of B’) which pass through the points of this curve.
The converse, however, requires proof, for it is not evident that the
solutions of B’) which pass through the points of 10) sweep out a
surface 17). Let

Q(f,¢) = Fl(z, v 2),

where Q (y,, zy) is any function 10). Then we will show that Fy,
F: are not both 0. We have:

a 0
F=0 Lo, 22,

—q of o¢
Fe=0, 540 7.

9 (r,2) ’
and Q,, Q, are not both 0. Hence F,, F: cannot vanish sirnultane-
ously, q. e. d. '

The result may be stated in a somewhat more general form as
follows.

SorutioNn OF 4') BY B'). Let T be a regular curve drawn
through the point (a,b,c), not tangent to the solution of B') there.
The solutions of B') which pass through the points of T sweep
out a surface,

20) V¥ (x,y,2z) =C,

Now,

where ¥ is continuous together with its first partial derivatives in
the neighborhood of (a,b,c), and not all of the latter vanish. The
function

21) u=yY(z,yz2)

is a solution of A'). And conversely, any solution 21) of A'), such

that ¥ satisfies the above conditions of continuity, is obtainable in
this manner.
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Solution of the Total Differential Equations B'). We proceed
now to solve the system of total differential equations B’) by means
of the single partial differential equation 4’). Let

22) u=V¥(x,y,z), u=0(z,y,2)

be two solutions of A’) such that the rank of the matrix

2y o 2v
dx 0 2z |l
03) 7
20 20 20
9x dy oz |

in the point (a,b,¢) is 2. Then the curve

24) ¥ (x,7,2) = a, ® (z,7,z) =8,

where (a, B) is a point of the neighborhood of (@, Bo) :
¥ (a,b,¢) = a, ® (a,b,¢c) = By

is a solution of B’). For each of the surfaces 24) contains the solution
of B’) which passes through a point of intersection of these surfaces. —
We may state the result as follows.

SoLuTioN oF B') BY A'). Let Y (z,y,z) and ©(x,y,z) te
two solutions of A') satisfying the conditions that the matric 23) is
of rank 2. Then the solutions of B') are given by the equations 24).

§11. The General Case. It is now easy to state the theorem
in the general case. Given the linear partial differential equation A4)
of §10 and the system of n total differential equations B), let at least
one X be different from 0:

X, (ay, +++yan) # 0.
Through each point (2°) = (29, © -, z3) of the neighborhood of (a)

passes one and only one solution of B), represented by the equations

1'3:301(01;::1,...‘1"), 1=2,,n;

3(227 ...’2") -~ 0.

a (J'g, * ",In)
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In particular, there is a one-to-one relation between these solutions
and the points (a;, 3, -, z%) in which they cut the plane z; = a;.
Each function

u=g;(a; zy, """, In)
is a solution of 4). More generally, let
Q (x21 Sty xn)

be continuous, together with its first derivatives, at least one of
which shall not vanish in (a,, - * -, an), and let

Q(ay, ", an) =0.

Then the function
u=Q (¢, “tty Pn)

is also a solution of A). It is, moreover, the most general solution,

u= q’(xh "‘,In),

which has the property that at least one first derivative (here,
du/dx;) does not vanish. Thus A) is completely solved by B).
Conversely, B) is completely solved by n — 1 solutions of A):

u= ‘l’l (.Z", "'11'")’ Y ‘l’n-] (xlv tt xn),

considered in the neighborhood of the point () = (a), provided that
the rank of the matrix

Y ... ¥
az‘l 3::,,

OVny ..., 0¥ny
axlf 3.:',,

in the point (a) is # — 1. The n — 1 equations:
Vi (2, oo+, o) = Cy, i=9, -,n,

determine the solutions of B).
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§12. Change of Variables. Let

1) yk=wk(xl’.."x")' k=1y”"nv

where @, (xy, - -+, zn) has continuous first derivatives in the neigh-

borhood of the point (z) = (2) and

2) ?__(21,“',2,,)# 0

9 (xy, ", Zn)
in (z) = (a). Then A) and B) go over into

ou _
Zl—az‘*' + Z, —0,

Oyn
iﬂ.:---:él’.‘..
Z, Zy
Let
Yk=FZk, k—_—i,"‘,n;

where p is any non-vanishing function of (x, =+ -, zn), continuous
together with its first derivatives near (a). Then the solutions of A)
and B) will go over into the solutions of

Y, —+ - Y =0;
Yoy * i dyn
d}'l - d_)’n
Yl Yn

It appears, then, that the equations 4) and B) are invariant of
a transformation 1). We can use this fact to reduce them to a
simpler system, in case one or more integrals are known. Suppose
that m < n independent integrals are known,

‘yl(xly "'vxn)y Tt ‘l,m(xh R Tﬁ)’
where the matrix

¥ ... 9%
3.1:1 aIn
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is of rank m in the point (a;, +++,an). Make a change of variables,
setting (in case the determinant corresponding to the first m columns
of the matrix is # 0)

4‘) J’k=‘[’k(2‘1,"',1'n), k=1,:,m,

with the further »’s any functions such that 2) is satisfied. The
transformed equations admit the integrals

yly t .7)’"27
and hence

Y1=0, cccy, m=o.

The transformed systern thus takes the form, if m < n — 1:

Y s2 4o 4+ Ty 2% =,
Oymy1 Oyn
5)
l dymu — ... = 4¥n,
Ym+1 Yn
These equations can be solved by setting
6) Kk = Chy k=1, m,

where the cx are suitably restricted arbitrary constants, and then
considering the new system. We have thus been led to a system of
equations like the original system, the number of variables, however,
having been reduced from n to n — m.

Transforming back to the original equations in the z’s, i.e. to
Equations 4) and B), we see that =,,-**,zm can be determined
from the equations

7) ‘l’l (xl, ctry, xn) = cl’ A ‘l’m (xl. cc In) =Cm-

Thus the equations

8) dxm+, —_——es — dxn
Xm-.)-l Xn

yield, on replacing x, - -+, xm in the X's by their values from 7), a
system in which only n — m variables, Zm4y, ©**, 2n appear.

The justification for the elimination in both cases lies in the
theorem of uniqueness. One solution of Equations 5) is given by 6)
and the n — m further equations. But there is only one solution.



DIFFERENTIAL EQUI\TIONS. EXISTENCE THEOREMS 387

One question, however, still remains open. We started with the
hypothesis that at least one of the X’s did not vanish in the point
(ay, -+ +,ay). Are we sure that there will be a ¥ which will not
vanish? Otherwise we could not apply the existence theorem to
Equations 5). From 4) we have:

d)f/"::.'clkdl'l-{- . e +C"kdxn, k:]'...'n,

where the determinant of these equations is the Jacobian 2). From

follows that each of these ratios has the value:

C‘kdx] 4+ - + cnkdxa .
e Xyt oo+ ek Xn

Hence these denominators cannot all vanish, and so, in particular, at
least 'ne of the Ymyy, *--. ¥n must be different from 0.

§13. The General Partial Differential Equation of the
First Order; n = 2. Consider the partial differential equation

1) F(z,y,z,p,q) =0,
where .

_ 0z =9z
2) P =5,

Here, F(x,y,z,p,q), together with its partial derivatives of the
first two orders, shall be continuous in a region of the space of the
(%, 5,2, p,q), where (z,y,2z) is any point of a region R which
includes none of its boundary points, and p, ¢ are wholly unrestricted®.
Finally, F/8p and 9F/dq shall not vanish simult’ - ously.

What does the differential equation 1) mean geometrically? We
seek an answer analogous to that given in § 1 for ordinary differential
equations.

Tet (x4, 14, 25) be a point of R, and let

3) z=0(z, y)

* More generally, we may impose the requirement for the neighborhood
of a point (a, b, ¢, o, 8). The treatment is essentially the same.
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be a solution of 1), the surface S represented by 3) passing through
(xoy ¥0r 29) Tt is assumed that @ (z, y), together with its first
derivatives, is continuous in the neighborhood of (z,, 7,). The direc-
tion components of the normal to S are (py, ¢o, — 1), where

Po = O (zy, Yo)» g0 = 0, € )

They are subject to the condition :

4') F(IO' Yos Zos Pos Qo) =0.

This fact gives us the clue to the geometric interpretation of 1)
which we are looking for. Let (x, y, z) be an arbitrary point of R,
and hold it fast. Then 1) defines a one-parameter family of lines
through {(z, y, z), namely, those whose direction-components are
(p, g, — 1) ; and these lines generate a cone, N, — the cone of normals
to the solutions of 1) which pass through (z, y, 2).

The planes through (xz,y,z) normal to these lines envelop® a
cone T. These planes are the tangent planes to the solutions of 1)
which pass through (z, y, z), and each generator of the cone lies in
one of these planes. We thus have, assigned to each point of R, a
cone T, and any solution of 1) defines a surface § in R which is
tangent at each of its points to the cone corresponding to this point.

This is hardly enough, however, to enable us to determine the
integral surfaces § of 1). But we can go a step further. Turn
back to the point (xg, g, 2p) and consider the tangent planes per-
taining to this point. They are given by the equation

5) z—z=p(z— ) + (¥ = x0),

where p, ¢ are parameters connected by the equation:

6) F (z9, Y00 20, P» 9) = 0.

Their envelope is determined by 5) and the further equatioﬁ :
7 0=2L (e~ =)+ (= 70

in case 9 F/dp # 0, the condition mentioned in the foot-note being
fulfilled. Introduce the notation:

# A further condition of inequality here is needed; cf. the Author's
Advanced Calculus, p. 194 and p. 364.
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oF

8 x=2F, y_2F ,_9F ,_0F aF

=% T P T
Then 7) is equivalent to
T—%y__ Y—=DJo

9) j 0]

We now have new geometrical data relating to the surface 3).
It not only is tangent to the cone T in (x,, o, Zo), but we can assign
a tangent line to S in this point, namely, that generator of T' which
is tangent to S. Thus to each point of § is assigned a direction
lying in the surface and having the direction components d»,dy,dz
satisfying the relations :

More precisely, we think of a curve drawn through (xy, ¥y, 2o) on the
surface §':

11) x=f(X), Y= ?(x)y z=\l/()t),

having in (zo, 5y, zo) its direction components given by the equations:
dx dy dz

12 —_— = — T _— =

We see, then, that the surface S is swept out.by a one-parameter
family of such curves. They are determined through the existence
theorem of §3 (including, in particular, the property of uniqueness)
by the system of differential equations:

dy _Q dz _pP+4q0Q
dr P’ dzx P ’

in case P # 0; otherwise by

dz _P dz _pP+4qQ
dy Q' dy Qe
where p, g are given by 3).

Let us follow one of these curves along the surface S. The curve
can be represented by Equations 11), thought of as an integral of
12), p and g being obtained from 3). Now, turn to Equation 1).
This becomes an identity in z and y when we substitute for z.p, ¢
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their values from 3) and 2). Ifence the partial derivatives with
respect to x and y vanish identically, or

[ ox ox
13)

7, ._&é __']_E__—-
[Y+q7+Pa +0Q oy 0

On the other hand, along the curve 11), we have from 12):

dp _ 9p dx op dy _ p @p d9q
{d)\ 2z ax T oy ax Par v 9%

14)
dq _ dq dx dqg dy _ _ dp dq
de—ax ax t oy av =P, vy
Hence
dp - _x- 49 - _y-
15) X X-pZ, X Y—~gqZ
We may write the final result in the form:
16) dr _ dy _ dz —-dp __ —dg

P TQ PP+qQ X+pZ Y+ql’
These equations, irrespective of any particular integral surface
3), and also irrespective of the condition of inequality, foot-note,
p. 388, define a four-parameter family of curves in the five-dimensional
space of the variables (z,y,z, p,g). Since P and Q are not both 0
in the point A:(a,b,c,a,B), let P # 0 there. The primitive of
16) can then be written in the form :

7 = fi (x5 2o Y0, 20, Pos P0)
17) I z = fy (25 20, Yor Zor Por 90)
I p =.f8 (xi Zos Y 0r 205 Pos ‘Io)
g = fu (3 xo, Y0, 200 P G0)
Each function fj admits a coatinuous first partial derivative with
respect to each of the six arguments, z;xg, ***; §5. The partial

derivative f;/0x is the same as the total derivative dy/dzr in
16), or

]8) .%::iy_:—Q-
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and similarly for each of the other df;/dx. Moreover, the order of
differentiation between x and any one of the arguments z,, ¥, zo,
Po» §o can always be reversed, § 5:

19) 9_dy _ 9y
dy, dz 0xdy,’

etc.

The Curves C. The four-parameter family of curves 17) shall,
be denoted as the Curves C. They sweep out the neighborhood of
the point 4 just once. Without loss of generality we can set z, = q,
and then yo, zo, Poy gy Ttepresent the four independent parameters of

the family, the equations now taking the form:
[ y = filz: a yo 20, por 90)
z = fy(z; a. yo, Zo» Pos Go)
P = fs(z; a, yo, 2o, pou 70)
9 =fi(z: a yo 20, Po. 70)

Along any one of the curves C the function F is constant:

20)

21) F(z,7,2,p,49) =C,
as appe:rs at once fro.n 16):
dF dy dz dp dq
¢ — —— —_— —r —_——=
22) x X+de +de+pdx+de

Thus we have in 21) an integral of the simultaneous system of total
differential equations 16).

From the foregoinz analysis and the theorem of uniqueness we
can infer the following theorem.

Turorem 1. Let (o, Yo, 2o, Po 90) be a point of the neighbor-
hood of A, suchk that

F(IO! .70, 20 pog qo) = 0.
Let

23) z=V¥(z, 7)

be an integral of the partial differential equation 1), where ¥ (z, y)
is continuous, together with its first derivatives, in the neighborhood
of (z, y) = (z0, y0), and where, furthermore,

V¥ (20, 70) =200 Valzony0) =P ¥y (z0, 70) =90
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Then the curve defined by the first two equations 17) lies wholly
in the :urface represented by 23), and at eack point of this curve

Yz, y) =p, Vylz,y)=g¢
where p, q are given by the last two equations 17).

Parametric Form. The curves C can he represented in par-
ametric form as follows. Replace 16) by the extended system:

24) dr _dy _ dz _ —dp _ —dq _ du

p Q pP+q9Q X+pZ Y+g4qZ G’
where G = G (z, y, z, p, g, u) is continuous, together with its second
derivatives, in the neighborhood of the point (a, b, ¢, a, B, 0) and
does not vanish there. If, in particular, G = 1, then u is usually
represented by ¢:

du
— =dL.
G
Or, again, we may set G = P, when P # 0, and then u = x. and
we fall back on the integral in the form 17) or 20).
In the general case we have as the integral of 24):

x = ¢y (U5 Zo, Yo, 20> Por 9o)
[ ¥ = ¢ (i 2o, Yo, 20, Por 0)
25) z = ¢y (Ui Zo, 0+ Zos Pos 90)
1 P = @1 (5 2o, ¥or 2o, Pos 90)
q = @5 (u; 2o, Y0, 20 Por P0)
These equations, for values of u near 0, represent the curves C.

. Characteristics. The curves C form the basis for the definition
of the characteristics of the partial differential equation 1). Some-
times these curves themselves are called characteristics. More narrowly,
it is the curves C for which

26) F (2, Y0120, Por §0) = 0

that have especial importance for the integration of 1). The first two
of equations 17) or the first three of equations 25) define a curve in
the (x,y,z)-space and assign to each point of this curve a tangent
plane, the direction components of whose normal, (p, g, — 1), are given
by the last two eguations. Such a curve and the tangent planes as-



DIFFERENTIAL EQUATIONS. EXISTENCE THEOREMS 393

sociated with its points are called a characteristic strip. A characteristic
strip is said to lie in a surface if the curve lies in the surface and
each associated plane is tangent to the surface.

In the foregoing developments is contained the wvroof of the
following theorem.

Turorem 2. Iy S is the surface corresponding to a solution
of 1) and if the curve of a characteristic strip meets S in a point
O, the associated plane at O being tangent to S, then the whole
characteristic strip lies in S.

It is understood that S is a regular surface such as is given
by 23).

There is a three-parameter family of characteristic strios, and
it can be represented by 20), subject to the condition

27) F (av Yos Zos Pos ‘70) =0.

The curves of these strips, represented by the first two equations 20),
combined with 27), course the neighborhood of the point (z, y, 2)
= (a, b, ¢) and carry with them their tangent planes. The proble n
of integrating 1) is to fit into this neighborhood, in all possible
ways, surfaces which coincide at each point with a characteristic
strip. We turn now to the solution of this prdblem.

§14. Continuation. Integration by Means of Charac-
teristics. Let a curve

28) 2o = @ (o)

be drawn in the plane x =a. Here, ® ( >) shall be continuous,
together with its first and second derivatives, in the neighborhood of
the point y = b, and moreover w (b) shall =c:

c = o (d).

Restrict y, to the neighborhood of 5.
Through each point of this curve passes a curve C, defined as

follows. y, and z, shall be connected by 28). Further.nore, ¢, shall
have the value:

-.-.-_d_z(’_—- !
9 dy, = o' (¥0)-
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Finally, p, shall be given by 27). Thus y, appears as a parameter ;
set it equal to ¢
yo=.

These curves C sweep out a surface, defined parametrically by
the first three equations 23), where we shall find it convenient to
take the parameter u« as x, and to set zp =a. Thus ¢, = u and
equations 23) reduce essentially to 20), but the exposition is clearer
in the parametric fomn :

29) x = f(u, v), y = ¢y, v), z = (g, v).
First of all,

= 2 (z, ) # 0.

2 (u, v)
For, since x = u,
oxr __ oxr _
W=t =
Next,
@2 (a3 a, Y0, 20, Por §0) = Yo = v,
and hence
_"’J_ =1 when u = a.
v

Thus J =1 when u =a, v=~ It is, therefore, possible to solve
the first two equations 29) for u and v. Substituting these values in
the third equation, we find:

30) z=20(x,y),

where ® (x, ), togethier with its first derivatives, is continuous in the
neighhorhood of (a, b). '

Turorkm 1. The function ® (x,)) is a solution of the given
partial differential equation:

31) F(x,y,z,g-f,,%)=o.

‘The direction components of the normal to the surface 30) are
{®,, ®,, —1). We bave to show that &,, ®, make the equation

F(x, 7,2, 5 %,) =0
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an identity in (z, y). Now, from 30),
dz = @ dx + ®, dy,

no matter what the independent variables are. And conversely, if

32) dz = pdzx + qdy,
no matter what the independent variables may be, it follows that
p=2=0,, qg=q,.

A necessary and sufficient condition for the truth of 32) is:

{3z ax +qay

ou =P % du’

33) 2
dz _ _0Ox y
[av - ’%"’"av‘

The first equation is equivalent to

dz _ dy
dzx —P+qu'

and is true hecause of 16).
To establish the second equation, write

2 a
54) Ulu,v) = Z:- Bar ikl e
Along the curve 28)
9z _ 9zy _ (.. dx _ da _ oy _ Oy, _
v 3y &' (o), dv 9y, 0. v 3y, h
and hence
35) Ula,v)=0.

We will show that U(u, v) = 0 along each carve C.

To do this, compute dU/du along an arbitrary C. Remember-
ing that, on account of 19), the order of differentiation can be
reversed, we have:

s6) 9U_ 9 9z _dp 9z _ ,,_dq 3y 9 dy
du ov oz dx ov dr 0dv v dr
9 pP+qQ X +pZ dx Y+49Z 9y a Q
v P TP T P o ‘H P
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—-—{(X+pZ) +(Y + q2) 3_y +sz +Q a”}

On the other hand
37) Flr,y,z,p,q) =0

along any curve C and hence at every point of the surface 30); i.e.
37) is an identity in the variables (u, v). Hence

Xi’i+ Yay+zaz +P—E +Q—‘L

On subtracting this equation, divided by P, from 36) and re-
membering 34) we find:

38) 8y _ _Z

Pu P

It is this equation which determives U along a curve C. Re-

garding, then, v as a parameter which characterizes C', we may write
38) in the form :

aw__Z

39) =" U.

We seek the solution of this differential equation which vanishes when
z =a. One such solution is U = 0. Because of the uniqueness
theorem there is only one solution, and the proof is complete.

Turorem 2. Let
40) z =¥ (z, )
be a solution of 1), where ¥ (x,y) is continuous, together with its
derivatives of the first order, in the neighborhood of the point

(a,b) and ¥ (a,b)=c. Let T' be the curve in which the surface,
S, represented by 40) is cut by the plane x = a:

41) xr=a, z=V¥(z, ).

Then the characteristic strips determined as above by T sweep out
S just once.

For, first, a characteristic strip determined by a point of T' and
the tangent of I' at that point, lies wholly in §; § 13, Theorem 2
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Secondly, at an arbitrary point of § a characteristic strip is determined,
which lies wholly in S. The curve of this strip cuts the plane
x = a, and the point of intersection is mecessarily a point of T.

This theorem is only partially a converse of Theorem 1. For
in that theorem, the function « (y) was required to possess a second
derivative. But it can happen that the curve of Theorem 2 is such
that ¥ (a, y) has no second derivative; e g.

F(zr,y,z,p,q) =p.

On the other hand, Theorem 1 is not true if w(y) is required
merely to possess a continuous first derivative, as is shown by the
example :

F(Iy_‘)’vz,P, 9’) =P + q.“.’

o () = é—q[‘f(u)du,
3

f(u)-—-:u;s'm-ll‘-, u # 0; f(0)=0.

Here, (a, b,¢) = (0,0, 0).
The form which Theorem 1 should take, if it and Theorem 2
are to be each the converse of the other, is the following:—

TueoreM 1':  Given the partial differential equation 1). Let
® () be continuous, together with its first derivative, in the neigh-
borhood of the point ¥ = b, and let o (b) =c. Let [ be the curve:

r =a, = (y).

Consider the characteristic strips determined by the points and
tangerus of T. If the curves of these characteristic strips sweep
out a surface

z =0 (z, ),

where ® (z,y) is single-valued and continuous, together with its
derivatives of the first order, in the neighborhvod of the point (a, b),
then ® (z,y) will be a solution of 1).

A sufficient, but not a necessary, condition for the fulfillment

of the last hypothesis is, that o (y) possess a continous second de-
rivative.
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Uniqueness. Observe that in any case two solations of 1), which
correspond to one and the same curve T, are identical.

More generally, let § and §' be the surfaces corresponding to two
solutions of 1), and let § and S’ be tangent to each other along a
curve I/ which nowhere touches a characteristic curve of either surface
Then the solutions are identical.

§15. The Case of n Variables. Both the theore.n and the
treatment by characteristics can be extended immediately to the general
case. Let the partial differential equation
1) F(rx,“-,r,,,:,——g—;:;—.'- .gf;)::()
be given, where F(x), ***,Zn 2, Py, ***,pn) is continuous, tozether
with its partial derivatives of the first two orders, in the neighborhood
of the point A: (4. *++, an.c, by, -+ . by). Write

_dF _0F _ aF
Xk“?x‘—;' Z= oz ' Pr= opr

Let the P not all vanish in the point 4.
The characieristics are defined on the hand of the 2n equations:
2) dr, _ _dz  _ —-dpL’ k=1,
Py ZpkPr X+ piZ
These equations determine a 2n-parameter family of curves C in the
(2n + 1)-dimensional space of the variables, which, in case P, % 0
in A4, can be represented in the form:

., n.

Tk = fk(l'l;l'?'"',Iﬁ,zo,]??."'.}?g), k=2,
3) z=  flzial 2. 2% pd o pa)
Pr=forg(zys 2ol g gl j=1n
Here, 2} can be held fast:
4) N =gq,

and then 29, -+ -, 20, 20, pf, + -, p afford a system ol 2n independent
parameters.

The characteristic curves are defined by the first n of the equa-
tions 3), where the (2° zd;‘po) are subject to the conditions 4) and

5 Flad o ah 2 pl s pl) = 0.
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The characteristic strips are defined by all 2n of the equations
3) and are thought of as the characteristic curves, to each point of
which is assigned a (hyper-) tangent plane, the direction-components
of the normal being (%, - -+, p9).

From here on the theory proceeds as in the earlier case, cul-
minating in the

THEOREM. Given the partial differential equation 1) with
P, % 0in A. Let w(xsy,*+*,x,) be continuous, together with its
partial derivatives of the first order, in the neighborhood of the
point (as, ***,an) and let

w(as, " an) =c.
Through each point of the manifold
r=a, 22=w() 2]

pass the characteristic strip determined by the point and the tangent
plane; i.e. set

do
Pg:ar}"' k=2|“'9n'

P} being given by 5). ,
If the corresponding set of characteristic curves, determined
by the first n equations 3), sweep out a surface,

z = @(.2‘1, "',-'l'n)n

where ® (x, -+, xn) is single-valued and, together with its partial
derivatives of the first order, continuous in the neighborhood of
(@y, -+, an), then ®(xy, -+, xq) is a solution of 1).

A sufficient, but not a necessary, condition for the fulfillment
of this last hypothesis is, that o(xy,**+,xn) admit continuous
dérivatives of the second order.

Conversely, any solution of 1) satisfying the conditions im-
posed on ® (z, -, x,) defines a surface which is swept out by
characteristic curves as above.

Uniqueness. The earlier theorem of uniqueness for the case
n =2 admits of direct generalization to the case n = n.
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