
Connection-Oriented Architecture
Framework for Enterprise-class Web Services on Multi-Core

Servers

THESIS
Submitted in partial fulfilment

of the requirements for the degree of
DOCTOR OF PHILOSOPHY

by
P. V. SURESH

Under the Supervision of

Dr. G. Karthikeyan

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN)

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN)

CERTIFICATE

This is to certify that the thesis entitled Connection-Oriented Architecture Framework

for Enterprise-classWebService^on Multi-Core Servers ,

which is submitted for award of Ph.D. Degree of the Institute, embodies original work

done by him under my supervision.

Signature in full of the Supervisor: V--------------------------

Name in capital block letters:

Date:

Designation:

ABSTRACT

This dissertation proposes an architectural framework for efficiently utilizing the abundant

computing power provided by Multi-core processors to compute the workloads of web service

based enterprise applications. The enterprise class applications arc constructed and orchestrated

using wcb-scrviccs through plethora of design patterns, and hosted under single or multi­

threaded infrastructure containing various hardware and operating system configurations. These

applications contain short lived and long-lived transactions/sessions, and thereby fulfilling

various enterprise needs such as simple data entry user interfaces to highly rich and interactive

drill-down dashboards. They have the stringent maintainability, reliability and availability

requirements, and have extensive change management processes. Currently multiple

architectural frameworks and programming models are evolving to exploit the multiple threads

available in Multi-core servers. These frameworks assume the presence of parallel threads in

Multi-core and suggest methods and algorithms for exploiting this parallelism. Typical

suggestions of these frameworks to exploit the Multi-core are: modify the application to identify

parallel operations in the business logic, recompile the application, or modify the underlying

operating system implementations. These frameworks assume that the hardware infrastructure

is homogenous, and hence they have limited importance to constraints that arise due to eco­

system for Multi-core, such as disk memory size, network latency etc. This narrow and

specialized treatment to exploit the parallel threads in Multi-core is excellent for developing

ereen field applications, but may not be directly amenable to existing enterprise applications.

The enterprises applications are hosted on heterogeneous infrastructure with various hardware

and software configurations. To insert a Multi-core server into the enterprise hardware

infrastructure, holistic treatment is required to address the needs of enterprise architecture. The

architecture needs to be inclusive in nature to the existing enterprise requirements while

marrvine the new innovations of Multi-core. Additionally, the architecture needs to consider the

constraints imposed by its other sub-systems like network, memory. Thus, in the context of using

Multi-core systems in the enterprise, there is a need for a formal mechanism or a framework that

can provide an improved performance to the existing applications without requiring any change

or requires a minimal change to the existing applications or its underlying operating system.

A six module software framework is proposed, called the Connection-Oriented Architecture

Framework on Multi-core servers (COAF) for web services, for designing generic enterprise

applications. The web service based application developed or hosted using COAF is able to

provide the best user perceived application performance while optimally leveraging the

processing capabilities available in the Multi-core. If the web service application is pre-written,

then COAF guides the system administrator with best infrastructure configuration, so that

application is able to leverage the Multi-core capabilities without changing the application code.

The six modules are namely. Resource Management module, Behaviour Information module.

System Management module, Threshold Configuration module. Core Scheduler module, and

Notification Framework module. These six modules of COAF together embed two key

architectural concepts namely the notion of “Connection-Orientation" and the notion of

“Infrastructure Awareness". The notion of Connection-Orientation is achieved by series of steps

namely, placement of services on servers with specific application configurations, remembering

and mapping the previous execution contexts of the service requests, and contextually

dispatching the service request based on existing load on those servers. The notion of

Infrastructure Awareness is achieved by observing and measuring the performance metrics of the

application at the hardware and operating system level and correlating these metrics against the

pre-computed threshold configuration values for that application.

Connection-Orientation is established by the scheduler, which intercepts the incoming

service request, and converts the lequest target address to the server location where the service is

deployed. For each service, scheduler creates and maintains two data structures namely, a state

object called “SchedulerState" and a lookup service called “ServiceMap”. SchedulerState

provides the information about how busy the overall system is, and the availability of the servers

for processing the request. Based on the availability and the utilization of the core / server, the

scheduler decides the destination address of the server and updates that information in

“SchedulerState". “ServiceMap" provides the server location where the service is deployed.

Infrastructure Awareness in Multi-core is gained through the continuous feedback received

from the run-time behaviour of the system. The run time information in turn helps to model the

behaviour of the system for the system metrics against the configuration settings. Over the

course of time through the run time metiics, the threshold values for the system configurations

are identified. Then the system configurations are setup for optimum performance and the

servers are booted up with these system configurations.

The six modules of COAF framework arc implemented using Java based web services.

When the web service application is executed, the behaviour of the execution is observed at

operating system level and “Cache miss” is measured. Based on the Cache miss measurements,

two new parameters are derived namely Core Configuration Effectiveness (CCE) and Intra

Process Efficiency (IPE) that define the performance of a generic enterprise application. These

two parameters CCE and IPE help us to compare, to contrast, and to tune the application for

improved performance under Multi-core environment without modifying the application or the

underlying operating system. We observed an association between input parameters such as

number of client threads, number of cores, memory size, application characteristics etc. with the

performance the underlying Multi-core system for a given application. We then calculated the

threshold values for those configurations, and demonstrated the opportunities to improve

utilization of available cores, and associated user-pcrceivcd improvements up to 20% in

processing workloads without modifying the applications. We also demonstrated the flexibility

of COAF framework to accommodate various deployment scenarios and infrastructure

configurations, namely Client-Server in same network, Client-Server in different networks, in­

memory access, remote-access, different architectures (32 bit and 64 bit), different memory

configurations (1 GB to 8 GB memory of RAM), and different core combinations (1 to 32 cores

processing capacities) under various application loads.

This holistic six module approach of designing the application architecture under COAF

thus enables us to effectively model, build and deploy the enterprise web services on the Multi­

core and other emerging hardware / software platforms without modifying the existing

applications.

ACKNOWLEDGEMENTS

This dissertation has been achieved with the encouragement, support, and assistance 1

received from many remarkable people. I would like to offer my sincere gratitude to them.

First of all, I would like to thank my advisor Prof. Karthikeyan Ganesan, for his support,

guidance and an exceptional research environment provided by him along the way of this

endeavour. I deeply appreciate how much he contributed with his keen insight and extensive

experience. His advice was always invaluable contribution to my research.

I would also like to thank my management, especially Mr. Yoosuf Mohammad, Vice

President, Cognizant Technology Solutions, for generously offering time, morale support,

guidance and good will throughout the preparation of this dissertation.

I want to thank Dr. Sharad Shrivatsava. Dr. Navneet Goyal, Mr. Dinesh Kumar, Ms. Monica

Sharma, the staff of Research and Consultancy Division, the staff of Student Welfare Division,

and members of Doctoral Advisory Committee, BITS Pilani, for guiding me and helping me

throughout the research program.

1 am very thankful to Mr. Sravan Desikan, Mr. Muralidharan Valuthur, and staff of Global

Technology Office, Cognizant Technology Solutions, for helping me set up the test environment.

Through my company Cognizant Technology Solutions, I am very fortunate to directly work

on the state of the art systems in web services based online and SaAS businesses such as eBay,

ETRADE, SAP, Amazon, and Intuit, and I want to thank those outstanding architects for

productive discussions on various aspects of my research.

Finally, I am especially grateful to my family and friends for their contributions throughout

my graduate studies. I have received wonderful support from my parents, Chandra and

Venugopal, my wife Radhika, my lovely daughters Shruthi and Meera. Their constant love and

encouragement were invaluable.

LIST OF FIGURES

Figure 1-1 Simple mew of Web services... 4

Figure 1-2 Configuration of Multi-Core Processor - Dedicated LI & L2 caches for facii corf 7

Figure 1 -3 Multi-core processor configuration - dedicated LI c ache & shared L2 cac hf 7

Figure 1-4 Multi-core configuration - Multiple registers per core, dedicated LI & shared L2

CACHE... 7

Figure 1-5 Intel Teraflop Chip-80 cores on a single chip........................ *.. 8

Figure 2-1 Architecture diagram of a typical enterprise applic ation 23

Figure 2-2 Workflow diagram depicting “long lived’’ dependent components..24

Figure 2-3 Spatial and Temporal Locality... ..

Figure 2-4 Piranha system level architecture (Piraniu CMP |25|)... ..

Figure 2-5 Hydra internal architecture (Stanford Hydra Project |1O6|)... ..

Figure 2-6 Block Level Diagram of 8 cores Niagara UltraSPARC T1.. ...

Figure 2-7 Niagara internal architecture.. 35

Figure 2-8 Information flow in Blue Gene/L architecture..36

Figure 2-9 Click Modular Router..

Figure 2-10 Cohort Scheduling... ..

Figure 2-11 Stages in SEDA architecture...

Figure 2-12 MapReduce Architecture (Google MapReduce)... ..

Figure 2-13 Hadoop Architecture Diagram (reference Yahoo Hadoop 1111)... 42

Figure 2-14 Microsoft Dryad architecture..

Figure 2-15 EBay layering and tiering architecture.. ..

Figure 2-16 EBay application partitioning into tiers and layers... ..

Figure 2-17 Activities for an application binary in the enterprise.. ..

Figure 2-18 deployment hierarchy... ..

Figure 2-19 Focus area of the literature and COAF...

Figure 3-1 Transition of Request from User to Hardware... ..

Figure 3-2 Execution under current connectionless architecture.. ..

Figure3-3 Need for improvement using Connection-Oriented Architecture..

FIGURE 3-4 Example scenarios for clients requesting Account summary for various accounts58

FIGURE3-5 COAF-AN AMALGAMATION OF MULTI-CORE WITH ENTERPRISE WEBSERVICES................................... 62

FIGURE 3-6 SIX MODULES OF COAF AND THEIR INTERFACES..62

FIGURE 3“7 COAF RESOURCE PROVISIONING MODULE.. ...

FIGURE 3-8 PROVISIONING A RESOURCE... 67

FIGURE 3-9 RESOURCE MANAGER..67

FIGURE 3-10 BEHAVIOUR INFORMATION MODULE... 67

Figure 3-11 Probe Instrumentation Framework... 70

Figure 3-12 Three Components of the System Management module..70

Figure 3-13 Deploying a Service... 73

Figure 3-14 Notification Framework module... 73

Figure 3-15 Threshold Configuration module...73

Figure 3-16 Core Scheduler module interactions..76

Figure 3-17 Architecture Bootstrapping... 80

Figure 3-18 Service Scheduling and Module interactions in COAF...80

Figure 4-1 Overall Architecture Diagram for COAF... 83

Figure 4-2 Resource Modelling...83

Figure 4-3 Code Sample- Resource Properties..85

Figure 4-4 Code Sample - Resource Map for an application MySQL server Properties........................ 85

Figure 4-5 Behaviour Information module - Probe Instrumentation.. 88

Figure 4-6 DTrace Framework - Probe output logs.. 88

Figure 4-7 DTrace Output Provider... 88

FIGURE 4-8 Flow Diagram of Notification Framework module.. 92

Figure 4-9 Setting up the client services.. 94

Figure 4-10 communications protocol initialisation using TCP...94

Figure 4-11 Setting up subscriber role and producer role in NaradaBrokering..94

Figure 4-12 event Processing Logic in NaradaBrokering... 94

Figure 4-13 Publish the messages using the Eventproducer...94

Figure 4-14 Core Scheduler.. 97

Ficurf 4-15 Scheduler State - Service Request Implementation...100

F1GURE4-16 INTERCEPTOR IMPLEMENTATION..100

FIGURE 4-17 SCHEDULER IMPLEMENTATION...100

Figure 5-1 Towards realisation of COAF- Five Phase of Experiments and Focus of each phase... 103

_ ... c 7 four deployment Configurations for the test bed..107Figure ,x
rrvL-mc SFT UP OF THE ENTERPRISE TEST BED FOR ALL APPLICATIONS.. 107Figure 5-3 generic ov •

FIGURE 5-4 PERFORMANCE OF SELECT INSERT UPDATE DELETE OPERATIONS.. 111

HGURE5-5 PERFORMANCE RECORD - 32 BIT- 1000 RECORDS..113

FIGURE 5-6 PERFORMANCE RECORD - 32 BIT - 10000 RECORDS... 113

Figure 5-7 Performance record - 64 bit - 1000 records..113

FIGURE 5-8 PERFORMANCE RECORD - 64 BIT - 10000 RECORDS... 113

FIGURE 5-9 PERFORMANCE 32 BIT FOR 500 CONCURRENT USERS.. 14

Figure 5-10 Enterprise Client-Server application configuration... 120

FIGURE 5-11 DISPO1.EN_BY_CPU AS IT APPEARS IN THE LOG..124

FIGURE 5-12 LOAD DISTRIBUTION - TSI.. 127

Figure 5-13 Load Distribution-TS2...127

Figure 5-14 Load distribution-TS3..127

Figure 5-15 Load distribution-TS4..127

Figure 5-16 Load distribution-TS5..127

Figure 5-17 Consolidated Load distrib. TS1-TS5... 127

Figure 5-18 SQL vs Non SQL commands asseen by two probes...129

Figure 5-19 CCE for Query 1..133

Figure 5-201 PE for Query 1...133

Figure 5-21 CCE for Query 2..133

Figure 5-221PE for Query 2...133

Figure 5-23 CCE for Query 3..133

Figure 5-241 PE for Query 3... 133

Figure 5-25 Web Service based setup for the enterprise application.. 139

Figure 5-26 Web service Setup without COAF...139

Figure 5-27 apache JMeter settings for loading queries on the enterprise application................. 140

Figure 5-28 Setting up threads and Ramp-up in JMeter for Web Services..140

Figure 5-29 CCE for 1000 threads across cores...141

Figure 5-30 CCE for 2000 threads across cores...141

Figure 5-31 IPEfor 1000 threads across cores... 142

Figure 5-32 IPE for 2000 threads across cores... 142

Figure 5-33 Web service setup under COAF...142

Figure 5-34 Stepwise Perspect ive of COAF in Action..143

Figure 5-35 16 cores CCE (No COAF vs COAF).. 149

FIGURE 5-36 16 CORES IPE (NO COAF vs COAF).. 149

FIGURE 5-37 17 CORES CCE (NO COAF vs COAF)...149

Figure 5-38 17 cores IPE (No COAF vs COAF).. 149

FIGURE 5-39 32 CORES CCE (No COAF VS COAF).. 149

Figure 5-40 32 cores IPE (No COAF vs COAF)...149

FIGURE 5-41 CCE FOR VARIOUS CORE CONFIGURATIONS..152

Figure 5-42 IPE for various configurations..152

FIGURE 6-1 FROM aCOAFLESS ENTERPRISE TO COAF..157

FIGURE 6-2 AVERAGE IMPROVEMENT OF 20% DUE TO COAF...158

Figure 6-3 Execution speed compared...165

LIST OF TABLES

Table 1-1 McKinsey view of evolving SaaS based business modei^... 4

Table 3-1 Table showing the number records and time to fetch for eac h account type

Table 5-1 Implementation map of modules on a test bed..102

Table 5-2 User profile details in the MySQL database..111

Table 5-3 First Set of Queries - CRUD Test cases..111

Table 5-4 Employee Details Table in the MySQL database... 112

Table 5-5 Set of Queries for the simple and complex tests...112

Table 5-6 Employee Details Table in the MySQL database.. . ..

Table 5-7 Core Configuration Efficiency for a 320K runs of Client-Server baseline........................116

Table 5-8 Client-Server baseline for 320 K runs on single core.. 118

Table 5-9 CCE for 320K runs of consolidated Client-Server baseline..120

Table 5-10 Three SQL query statements on an enterprise test bed...122

Table 5-11 Test Bed Configurations and Design...122

Table 5-12 DTrace scheduled Time slots.. 124

Table 5-13 Dispatcher queue lengths for nine cores... 125

TABLE 5-14 SUMMARY OF THE SCHEDULES QUEUES..

Table 5-15 Individual and Cumulative Load patterns for 9 CPU Loads......................................

Table 5-16 Schedule loading on CPUO to CPUS..

T\ble 5-17 Comparison of DTrace logs on a single processor running multiple commands

Tabi e 5-18 TSI to TS5 - consolidated results (as seen by syscall_by_process).......................

126

127

129

129

131

BI f 5-19 Number of “Clusters” or “large sequence of executions” for each configuration.... 131

Table 5-20 Phase II - Cuent-Server - Core Conp,g Eeeeo o a !ntra PhocessTable 5-21 Results and Characteristics of ws NoCOAF '
TABLE 5-22 CORRELATION OF NUMBER OF CORES AGAINST NUMBEROF CLUSTERS...

Table 5-23 Results and Characteristics of WS COAF ..

table 5-24 Typical configurator recommendation for administ^.......................................

Table 5-25 results of temporal Characteristics for in-memorytable 6-i administrators Inmces for MySQL to .dent.fy core an7thrZd conhcuraton” "'

Table 6-2 Summary of 4 core and 32 core data from Table 5-20TABLE 6-3 SUMMARY EXTRACT OF TABLE 5-20 FOR PHASE II 4 AND 32 cZe Co™

TABLE 6-4 PER CORE UTILIZATION FOR 4 AND 32 CORE CONFIGURATIONS '
TABLE 6-5 ACTI ;AL CORES USED AGAINST AVAILABLE CORES. ...

132

141

141

146

152

152

164

164

165

165

166

GLOSSARY

Abbreviations and Acronyms

ACK Acknowledgment

ADU Abstract Data Unit

ANOVA Analysis of Variance

Apache Axis2 XML based Web service framework

Apache Webserver Apache HTTP Server

API Application Programming Interface

B2B Business to Business

B2C Business to customer

BG/L IBM Blue Gene/L

BSE Bombay Stock Exchange

BSP Binary Space Partitioning

CGE Carrier Grade Edition

c/s Client/Server model

Click Modular Packet Router architecture model

Cluster Cluster is the sequence of the same process executing continuously on a core

CMP Chip Multi Processor

CORBA Common Object Request Broker Architecture

COAF Connection-Oriented Architecture Framework on Multi-core

COAF-MC Refer COAF

Core configuration Arrangement of number of cores in a single processing cluster

CPU Central Processing Unit

CRM Customer Relationship Management

CRUD Create, Read, Update and Delete

DCOM Distributed Component Object Model

ddram Double Data Rate Synchronous DRAM

DIS Distributed Interactive Simulation

DIMM Dual In-line Memory Module - series of DRAM

dispqlen_by_cpu DTrace probe for measuring dispatcher queue length

DNS Domain Name Service

DOM Document Object Model

DRAM Dynamic Random Access Memory

Dryad Distributed Data-Parallel Programs from Sequential Building Blocks

DSM Distributed Shared Memory

DSS Decision Support System

FBDIMM Fully Buffered DIMM

FPU Floating point units

GPU Graphical Processing Unit - similar to a CPU with specific support for graphics

GUI Graphical User Interface

HDFS Hadoop Distributed File System

HTML HyperText Markup Language

HTTP Hyper Text Transfer Protocol

IDE Integrated Development Environment

HOP Internet Inter ORB Protocol

ILP Instruction Level parallelism

IP Internet Protocol (Layer 3)

J2EE Java 2 Enterprise Edition

JDBC Java Data-Base Connectivity

JMeter A load testing tool

JMS Java Message Service API for sending messages between two or more clients.

JVM Java Virtual Machine

LAMP Linux, Apache, MySQL, and PHP

LAN Local Area Network

LDoms Logical Domains 1.1

LTT-CONTROL Linux Trace Toolchain Control

LTTng Linux Trace Toolkit Next Generation

LTTV Linux Toolkit Trace viewing

MVC Model-View-Control

MySQL

NaradaBrokering

Relational Database system

Notification Framework module

NSE National Stock Exchange

OLTP Online transaction processing

OMG Object Management Group

ORB Object Request Broker

OS Operating Systems

P2P Peer-to-Peer

PHP General purpose scripting language for web applications

Python General purpose language for web applications

RAM Random Access Memory

RDBMS Relational Database Management System

Reference Initial threshold values

threshold

REST Representational State Transfer

RPC Remote Procedure Call

SaAS Software as a Service

SAX Simple API for XML

Schedule Plan executed by Operating System to process the workload

SDRAM Synchronous Dynamic Random Access Memory

SEDA Staged Event Driven Architecture

SGML Standard Generalized Markup Language

Slot Time period in which the process is executed

SNMP Simple Network Management Protocol

SOA Service Oriented Architecture

Solaris Containers Combination of system resource controls and the boundary separation provided by

zones

Solaris Zones Completely isolated virtual servers running one operating system instance

SOAP Simple Object Access Protocol

StagedServer Architecture style using Cohort scheduling method

syscall_by_proc DTrace probe

SystemTap Kernel instrumentation framework

TCO Total cost of ownership

TCP Transmission Control Protocol

Time slot Same as slot

Throughput Average rate of successful message delivery over a communication channel

TLP Thread Level Parallelism

TSI Naming convention given for time slot

UDDI Universal Description, Discovery, and Integration

UDP User Datagram Protocol; lost packets and out of order packets are not handled

UI User Interface

UID Unique Identifier

URI String of characters used to identify a name or a resource on the Internet.

URL Uniform Resource Locator (an URI and the mechanism for retrieving it)

WAMP Windows Apache MySQL PHP

WS Web Services

WSDL Web Services Description Language

WSDM Web Services Distributed Management

WSR WS-Resource

WSRF Web services Resources Framework

XML Extensible Markup Language

XML-RPC Remote Procedure Call protocol encoded in XML

Zones See Solaris Zones

TABLE OF CONTENTS

1 Introduction... I

1.1 Introduction... 1
1.2 Influencing the adoption of web services - software perspective... 1

1.3 Hardware - Evolution of Chip Multi-core processors... 5

1.4 Motivation for this thesis.. 9

1.5 Scope of the thesis:.. 11
1.5.1 Hypothesis... 15
1.5.2 Outside the scope of research.. 16

1.6 Connection-Oriented Architecture Framework...17
1.6.1 Organization of the Thesis... 19

2 Literature Survey... 20
2.1 Introduction to Enterprise appl ications...20

2.1.1 General properties of the enterprise application..21
2.1.2 Spatio-temporal locality properties of enterprise application..27
2.1.3 Stateful properties of the enterprise application on stateless web..28

2.2 Existing Frameworks designed for parallelism.. 29
2.2.2 Hardware level parallelism exploitation relevant to Multi-core Architectures: Piranha, Hydra,
Niagara, and Blue Gene/L.. 31
2 2 3 Software level architectures: Click, StagedServer, SEDA, and REST.. 37
2 2 4 Data parallel frameworks: MapReduce, Hadoop, Dryad... 39
2 2 5 Application specific architecture frameworks... 43

Deployment architectural models...

Architectural need to utilise both hardware and software developments....................................50
2.4.1 Enterprise studies and the need for new system architectures.. 50
2.4.2 Summary of the Review of Literature... $ ।

3 Design of A Connection-Oriented Architecture Framework.......................................52
3 | COAF Architectural considerations... 52

3 2 Key architecture concepts..55
3 2 1 Scheduling for Connection-Orientation...55
3 2 2 Deployment configuration using Infrastructure Awareness..60
3.2.3 Performance model of COAF... 61

3 3 COAF - An amalgamation of hardware and software..61

3.4 Main components of COAF...63
3.4.1 Resource provisioning module.. 64
3 4 2 Behaviour Information module.. 68

3.4.3 System Management module..69
3.4.4 Notification Framework module...72
3.4.5 Threshold Configuration module... 74
3.4.6 Core Scheduler module...76

3.5 Architecture bootstrap and module interactions...78

3.6 Summary...81

4 Implementation Model of COAF.. 82

4.1 Resource Provisioning module... 82
4.1.1 Concept of “Resource model”..82
4.1.2 Implementation details for COAF resource..84
4.1.3 Resource Manager..86

4.2 Behaviour Information module...86
4.2.1 Probe Instrumentation framework:...87
4.2.2 Output provider...87
4.2.3 Notifier..89

4.3 System Management module..89

4.4 Notification Framework module:..91

4.5 Threshold Configuration module... 95
4.5.1 Configuration server:..95
4.5.2 Correlation map..95
4.5.3 Correlation engine..96

4.6 Core Scheduler module.. 96
4 6.1 Axis2 handlers, Phases and Flows, and contexts... 96
4.6.2 ServiceMap...98
4.6.3 SchedulerState..98
4.6.4 Interceptor... 99
4.6.5 Scheduler.. 101

4.7 Summary...101

5 Implementation of a COAF Tes r Bed...102

5.1 Settingup test en vi ronment.. 105
5 I I Generic set up - Hardware and Operating system...105
5 J 2 Generic set up - Application Software Stacks...105
5 1 3 Generic Set up - Choice of Enterprise Applications...105

Phase I - Validate the basic assumptions about Multi-core...108
21 Phase I - First Set of test cases - Create Read Update and Delete...109
2 2 Phase I - Number of cores to system performance is not consistently linear................................. 109
2 3 Phase I - Query complexity and the data size affects the performance...] 09
2 4 Phase I - Performance due to architecture difference is marginal..109
2 5 Phase I - Complex query performs better in multi-core configuration.. 110

Phase I - Overall summary... 14

5.3 Phase II to Phase V - Consistently measure performance... 115
5.3.1 Core Configuration Effectiveness (CCE)..115
5.3.2 Intra Process Efficiency (1PE)...117

5.4 Phase II - Client-Server configuration.. 121
5.4.1 Phase II - Fair Scheduling Policy validated using dispatcher queue length...................................123
5.4.2 Phase II - Process queue evenly spread across cores...123
5.4.3 Phase II - Varying loading pattern across cores...126
5.4.4 Phase II - Successful process gets more focus... 130
5.4.5 Phase II - Performance represented using CCE and IPE.. 131
5.4.6 Phase II - Performance for Symmetric and Symmetric Core configurations.................................134

5.5 Generic web services setup for phases III to phase V.. 135

5.6 Phase HI - Test bed set up for web services without COAF... 135
5.6.1 Phase Ill - Web Services without COAF - Setup.. 136
5 6.2 Phase III - CCE and IPE for Web Services without COAF feedback..137
5.6.3 Phase III - Spatio-temporal characteristics observed..137

5.7 Phase IV - COAF based test bed set up - web services... 138
5.7.1 Phase IV - Application Parameters - Setup...138
5 7 2 Phase IV - Observations on multiple Core Configurations..145
5 7 3 Phase IV - Performance can be changed by modifying application configuration.........................147
5 7.4 Phase IV - Performance can be changed by modifying Core configuration..................................148
5 7.5 Phase IV - Enterprise Administrator's view of configuration.. 150

5 8 Phase V - COAF test bed set up - temporal coherence study..150
5 8 I Phase V - Temporal Application Parameters - Setup...150
5 8 2 Phase V - Cache memory size could influence the performance..151

5 9 Summary of results across all the Five phases.. 153

6 Conclusions...
6 .] Contributions of the thesis...

6.1.1 Benefits of COAF...

7 FUTURE WORK...
7 1.1 Generic strategies for enhancing COAF... 167
7 1 2 Improvements on current “State of Art” deployments.. 167
7 | 3 Improvements to the six Modules of COAF..168
7 1 4 improvements to CCE and IPE..169

List of publications I present a i ions.. 218

BRIEF BIOGRAPHY OF THE STUDEN r...219

BRIEF BIOGRAPHY OF THE SUPERVISOR...220

1 INTRODUCTION

1.1 INTRODUCTION

The enterprise computing infrastructure has been a test-bed for a continuous architectural

evolution from mainframes, to client/server, multi-tier, peer-to-peer, clusters, grids and most

recently to clouds. The Internet and its explosive growth have provided a new opportunity for

enterprises to deploy the applications on the web using simple access protocols like HTTP, so

that customers can consume the applications very easily using the universal front end like

browser. Web service standards and web service interfaces provided an opportunity for

developers to construct the applications very easily and deploy these applications on the web

using the universal service definitions like web services in the global scale. Among the other

trends, two major trends in computing, one in software and the other in hardware that are

influencing the adoption of web services.

• The rapid adoption of service-oriented architectures [198], [202], [211] based on web

services to construct the software [193] define the software trend as outlined in Section

1.2.

• The evolution of Multi-core based architectures with large number of computing threads

to deploy the services on a massive scale [29], [93], [158] defines the hardware trend as

outlined in Section 1.3.

1.2 INFLUENCING THE ADOPTION OF WEB SERVICES - SOFTWARE
PERSPECTIVE

Today enterprises use the web in numerous ways for hosting its applications; from sharing

the company’s marketing brochures about its products and services to end customers; to

collaborating with its suppliers in real-time for various business processes [100] such as supply

chain management; and to providing access to its internal applications such as time-sheet

systems to its employees. Typically, these applications contain multiple business processes and

each business process is a set of logically related activities precisely choreographed and executed

[83] [184], [187], [198] to achieve a well defined business outcome. Some examples to

represent these business processes are - processing a credit claim, hiring a new employee,

ordering goods from a supplier, creating a marketing plan, processing and paying an insurance

1

claim, etc. An activity is an element that performs a specific function within a business process.

Activities can be simple and “short-lived” as in sending or receiving a message, or as complex

and “long-lived” as in coordinated execution of multiple activities. The business process can be

synchronous or asynchronous.

These enterprise applications need to be enhanced continuously for various reasons such as

changing customer behaviour, and application usage patterns. For example, today the customer

has access to compare the price of a product from various web sites like Amazon [7] and eBay

[67]; a recruiter can verify the social graph of a candidate in facebook [75], linkedin.com [145]

and twitter.com [226] before interviewing to the candidate etc. In the above scenarios, the

enhancement for a customer support application is to have an access to external web sites for

price comparison, and for the talent management application to have an API call to Linkedln

web site for verifying the background of the candidate. Hence, these enterprise systems needed

to be constructed in such a way that these applications adapt to the business agility. Web service

standards framework [54], [242], [246], [248] and Service oriented architectures [139], [228]

provide the architectural framework and standards to construct and to deploy these enhancements

in a rapid speed, thus enabling the business to accommodate them in an agile manner.

Service oriented architectures introduced a simple and elegant construction model for

creating dynamic-distributed applications [24], [65], [100], [241]]. These architectures use a

simple textual representation defined by Web service standards using technologies such as XML

[31], [38] to declare a business intent in the form of a web service, and this web service could be

deployed across the Internet using open network standards such as TCP/IP, HTTP [79]. Now,

web services are emerging as a standard framework for constructing and assembling business

processes and business workflows.

Enterprise web services are built on service-oriented principles [71], such as Formal

contract, loose coupling, encapsulation, composability, reusability, autonomy and

discoverability. Essentially, each web service based application becomes an accessible web

service component that is described using open standards. Web services framework as shown in

Figure 1-1 is divided into three major areas and addressed by three standards respectively. They

are:
Communication protocol - Simple Object Access Protocol (SOAP) [245] enables

communication among web sei vices,

2

Service description - Web Services Description Language (WSDL) [247] provides a formal,

computer-readable description of web services;

Service discovery - Universal Description, Discovery, and Integration (UDDI) [177]

directory, is a registry of Web services descriptions;

In this standard driven framework, a web service is an access endpoint to data and functional

resources. The web service endpoint is published in a UDDI directory, wherein a client discovers

its location. The available data and operations are described in XSD (XML Schema Definition)

[38] and WSDL. The client generates invocation stubs that perform run-time data conversion to

SOAP message format. The client invokes the service (using a transport protocol, like HTTP)

and the service is executed and the client receives the response after the completion of execution.

Presently web services standards cover various aspects of enterprise applications such as data

representation, transactions, security, messaging, communication between systems, Resource

provisioning, resource definition and discovery, business event handling, etc. The concept of

using of web services to design the enterprise applications led to powerful business models and

interaction models in the computing world, instances of two such models are Business to

customer (B2C), and Business to Business (B2B).

Web service based applications such as Amazon [7], eBay [67], Facebook [75], Google [98],

Microsoft Live [161], MySpace [165], Twitter [226], Yahoo [253], etc. have demonstrated the

power of web services to handle billions of transactions every day. These applications are

constructed in connection-less architectural style, using fine grained web services that are

rendered over the web. These architectures encompass extraordinary scalability and availability

to handle the continuously running business transactions. This ability of web service based

platforms motivates enterprises to consider web services as architectural construct for developing

the applications.
Another compelling trend is the evolution of new paradigms such as utility computing, grid

computing cloud computing, platform as a service, software as service etc., which aims to shift

the enterprise investments from fragmented information technology assets to a centralized utility

service [42], thereby achieve the economies of scale. Table 1-1 depicts the total cost of
ownership (TCO) showiTby^McKinsey Quarterly for a sample deployment of customer

relationship management (CRM) software for 200 seat license [64], and the expenses are given

in thousands of dollars.

3

a
Web services
client

Figure 1-1 Simple view of Web services

________________ Table 1-1 McKinsey view of evolving SaaS based business mQde|s

Services SW at
premises

SW as a
service

Sources of savings with software
3S a servirp

Customization, integration 108 72 Reduced de^oyment time,
self-service thrmiah n.-. . *»

Basic infrastructure testing,
deployment___________ 54 0

- - inrough on-boarding scri pts
testing0'reqUire infrastructure and application

Application infrastructure
testingand deployment_____ 30 0 Same as above

Training 101 34 Lowers training requirements throu^h^^
user interfaces coiftro;.; ® H

Management, customization of
business process change 94 0

--------^gSgL^trainmg service capabilities
Does not require ongoi^gbusinesT^^
change management, vendors monitors customer
usage to enhance cc uoiunier

Data centre facilities rental,
operations; security,
compliance; monitoring of

| incident resolution;___________
750 0

ocigc lu eimance the offering

Includes vendor's cost to serve in subscription
pt ice (ongoing operations, back-end hardware
and software)

User licenses, subscription,
maintenance 480 1500

1 ndudes vendoPTcost to serve hTsubscription
puce (ongoing operations, back-end hardware
and software)

Unscheduled downtimes 308 0 Provides generally 99.99% availability
Unused licenses 92 0 Jsers are added as needed, hence there is a

’eduction in licensing cost
Total costs 2298 1640

4

Therefore, the web services based service oriented architecture is a growing trend for

designing and building enterprise application software.

1.3 HARDWARE - EVOLUTION OF CHIP MULTI-CORE PROCESSORS

Multi-core based servers are going to be next generation infrastructure for enterprises [97],

as hardware vendors announcing the phasing out of single core processor [93], [152] from the

product lines.

Single core processor contains a single core. The performance of the single core processor

is continuously improved through Instruction Level parallelism (ILP) [189] and Thread Level

Parallelism (TLP) [81], [225].

• ILP is achieved by increasing the number of instructions that can be issued on every

cycle from the processor’s instruction queue, and by increasing the clock frequency

of the processor.

• TLP is achieved by executing multiple threads in parallel.

Further improvements in hardware design, such as Reduced Instruction Set Processing,

pipelining and superscalar multi-instruction issue techniques provided the base parallelism.

Efficient compilation techniques provided further parallelization by scheduling instructions

and relevant data that enhanced the further speed of execution. Continuous pursuit for ILP and

increase in number of transistors inside the processor required higher power and powerful

cooling technologies to dissipate the heat generated during the processing. This increase in

power requirements and limitations of cooling technologies are not desirable for the enterprise

infrastructure. This led to the revolutionary chip multi processor design (CMP) [169], and also

called as Multi-core processor design. CMP uses multi threading technology, by exploiting the

thread level parallelism (TLP) that exists in the application workloads. CMP [107] as shown in

Figure 1-2 contains two or more cores in a single chip or central processing Unit (CPU). CMP

provides four major areas of enhancements over single chip processors, which include:

1. Memory fetch latency - Speed of CPU is much higher than main memory. CPU is

stalled when data or instructions are being fetched from memory and this wait time is

called “memory fetch latency”. On single chip processors larger on-chip caches and

ILP are used to reduce this latency to some extent. CMP uses TLP to address this

5

fetch latency [225], When a thread is waiting for memory fetch, the core switches to

execution of another thread, thereby reducing the memory fetch latency.

2. Execution flow: CMPs optimize the execution flow to get more work per clock
cycle. ^This is achieved by using various techniques such as pipe lining, branch

prediction, even reordering, out-of-order, and multiple threads a refused.

3. Power consumption and die size: As more and more transistors are put into single

chip processor, power consumption and hence heat dissipation increases

exponentially. Power puts a practical limit on how reliable and fast CPUs can get, as

well as the number of CPUs that can be packed in a unit space. CMP is power

efficient as more processor work share the same power for delivering more

processing performance; CMP is space efficient as there are more processors in a

single die with a very marginal increase in the die size.

4. Processor complexity: More transistors in a single chip processor means, the design,

debugging and verification of chip become very complex. In comparison, CMP

almost provides the linear integration of relatively smaller cores, which are easy to

design, debug and verify.

Various configurations of Multi-core design as shown in Figure 1-3 and Figure 1-4 are

available in commercial implementations [29]. Some of these are Intel Pentium Hyper­

threading, dual core, Intel quad core, AMD, IBM Power4, Sun Niagara, Tilera, nVidia.
Advanced designs of Multi-core processors as shown figure 1-5 ^n)are in prototype stages in

research labs such as Intel Research Labs [121], Tilera product development lab [221], [102],

AMD Research Labs [8], and nVidia Research [168]. These configurations [153] vary in the

how the core is structured internally to improve the instruction processing speed and how the

memory is shared to reduce the latency of access from LI cache, L2 cache and the memory

buses The concept introducing multi threading logic is included within each of the cores along

with multiple registers, one per thread, which provides one level of optimization. This is seen in

Hyper-threading [45] introduced by Intel which allowed two threads to share the same core. This

concept enabled the core to process the instructions, while the other threads are assembling data

from LI cache. Currently there are multiple models of Multi-core chip designs from various

commercial and research organizations.

6

CMP Configuration 1

Figure 1-2 Configuration of Multi-Core Processor - Dedicated LI & L2 caches for each core

CMP Configuration 2 CMP Configuration 3

Figure 1-4 Multi-core configuration - Multiple
registers per core, dedicated LI & shared L2

cache.

Figure 1-3 Multi-core processor configuration -
dedicated LI cache & shared L2 cache

7

DDR2 Controller 0 DDR2 Controller 1

Serdes

PCIeO (
' MAC I

PR a a a a a g Serdes
nr tl t nr nr hr nr nr” I u__ _ _ _ XAUIU

PHY ill ill Ilir Ilir- III Illi Illi 111
uart/i hir^Tirp’ii^nr^nr^nir^nr^^J

«. ,-z.

MAC
PHY

GbEO

GbE 1

PCIel
MAC
PHY

Serdes

■
DDR2 Controller:I DDR2 Controller 2

Figure 1-5 Intel Teraflop Chip - 80 cores on a single chip

Flexible ,
UO '

XAUM
MAC
PHY

Serdes

8

One such model developed as a research prototype for commercial enterprise needs at Intel

is called Teraflops Research Chip [122]. This chip is Intel's first silicon tera-scale research

prototype. It is the first programmable chip to deliver more than one trillion mathematical

calculations per second (I Teraflops) of performance with very little power consumption.

Teraflops research project focuses on exploring new. energy-efficient designs for future Multi-

core chips, as well as approaches to interconnect and core-to-core communications. The research

chip implements 80 simple cores, and each core containing two programmable floating point

engines. Floating point engines arc used for accurate calculations, such as for graphics as well
as financial and scientific modelling.

In future, as more and more cores arc embedded in the same processor chip, there is going to
be abundant compute capacity available for the enterprise workloads.

1.4 MOTIVATION FOR THIS THESIS

Enterprises arc the primary consumers of software and hardware in comparison to personal

use. Well established enterprises use matured technologies like Mainframes [I 17] to fulfil their

business needs; examples of such enterprise giants are Credit card companies like Visa. FirstData

etc., flight booking companies like Amadeus, retail companies like Wal-Mart, Target in the
USA, stock exchanges like National Stock Exchange in India, Mobile system providers like

Airtel, Reliance, etc.

Recent generation enterpiises use new technologies such as web services. Multi-core servers

etc. to build the cost-effective, but state-of-the-art scalable infrastructure. Examples of such

enterprises are Google, Amazon, EBay, Yahoo etc. Fhe success of such enterprises prompts

established enterprises to evaluate the new technologies seriously for their internal consumption.

Platform vendors such as IBM, Microsoft, SAP, SalesForce etc. are motivated to push the
advancements in technology to these enterprises. Therefore, it is evident that both the web

services and the Multi-core platforms will be reaching out to all the enterprises rapidly in near

future. This is first motivation to look into adoption of web services and Multi-core platforms in

building enterprise class applications.

Web services architectures are inherently designed for short-lived atomic operations [4|.

Web services based architectures are perfectly suited for all recent generation applications like

Yahoo directory; Google Scaich, lacebook, a social collaboiation platform; these companies

A

bu.lt the,,- system architecture from ground-up, and those architectures arc predominantly

Stateless. Furthermore large number of threads at the Multi-core reasonably suit short-lived

operations (hat arc independent and atomic. However, enterprise system architectures are

designed for long-lived operations. (58], and for transactional [47] operations. Enterprise

application architectures may not exhibit inherent parallelism to leverage the power of large

number of threads. This is second motivation to investigate the possibilities of enabling '

parallelism by grouping the operations with common context and data. This grouping in (urn

could influence coherency among (he operations within the application, so that these applications
arc able to use of threads effectively while executing in Multi-core systems.

Web services architecture support continuous evolution of functionality by separating the

interface from implementation [90], so changes to web-service architectures at the
implementation is relatively an easy job. Enterprise systems have been maturing over business

models (hat exist for multiple decades, and those business models are not rapidly changing For

example, application use cases like opening an account in (he bank, paying the insurance etc

have not changed for decades. Enterprises wait for (he technologies to mature before they adopt

those technologies [210], [92] preferably without disturbing the existing applications. This is

third motivation to investigate the architectural enhancements (hat arc needed to leverage the
power of Multi-core processors without rewriting the existing business applications.

Matured enterprise software applications are designed for single chip processor architecture.

In single chip processor architecture, the processor is the main constraint and it is time-shared

across enterprise workloads. Multi-core processors remove this constraint by providing

abundant number of compute threads. This makes (he other sub-systems of the server such as

memory, I/O, network speed etc. as the new constraints [167] of (he system design. The effect

of this shift of constraints in the server due to arrival of Multi-core and (he associated impact on
enterprise application design and deployment is the fourth motivation.

Finally, current operating system scheduling techniques [209] assume (he stateful behaviour

of the application, namely temporal and spatial locality characteristics [206] of the applicatio

Web services based applications are inherently stateless and hence, do not guarantee temporal

and spatial locality characteristics [254] of the application. Additionally, there is a limited
provision available in the current architectures to transfer the anolicatinn t ♦“ppucduon context to operating
system kernel so that operating system can intelligently use that information for scheduling [32]

10

Our interest was to find out ways in which we can pass the application context thereby enabling

the operating system to do intelligent scheduling.

This dissertation is motivated by the need for an architectural framework that can leverage

the hardware computing power inherently available in Multi-core processor to serve the high

performance web services based enterprise applications.

1.5 SCOPE OF THE THESIS:

Enterprises are motivated to adopt Multi-core servers for improved computing performance

in their infrastructure, especially when one looks at the benchmarks [89], [166] demonstrated by

Multi-core servers for few specific applications. This interest to bring Multi-core to enterprise

opens up number of interesting research questions [186]. hi this section we summarize the

current challenges that we culled out as most important for our research. In the remainder of this

section, we present our approach that was designed to address these challenges.

Deployment configuration could be another effective mechanism for Multi-core

adoption other than rewriting the existing code for parallelism*. Writing a parallel code is the

way ahead for writing a new green field application targeted for Multi-core server. Significant

amount of work is available in the literature [20], [28], [56], [84], [123], [124], [133], [155],

[2] to u.de on how o wr.te a new application specifical|y (o
in the enterprises s.g.fieant amounts of capita! investments and iabour have already gone in o’

developing the applications and these applications are in production. Enterprises are averse to

infrastructural risk. !n retrospect the massive software change management that enterprises

needed, for making a date change to address the Y2K problem a decade ago validates the

rationale behind this resistance to bring Multi-core to their infrastructure. Therefore rewriting

the entire appiication just for deploying Multi-core is a challenge in the enterprise If we

understand and address these challenges of the enterprise such as not requiring rewriting the

application, then the adoption of Multi-core would become more prevalent in the enterprise W

identified speeiai requirements that need to be fulfilled for adopting Multi-core in the enterori and these requirements are addressed in section 2.1. P Se’

Three non-invasive mechanisms are developed with an idea - “observe at the osystem level and.accordingly change application behaviour with^t nrnTTZ^^^^
' uuunying tne apnliGation'’

so that the application can utilize threads supplied by Multi-core They are --------- - '

11

© Control the number of requests that arc dispatched to right server based on threshold

configuration set for that particular setup. The admission control is done at the
higher layers of application level with the knowledge of current workload.

® Modify the deployment parameters of the run time so that operating system is

processing desired application process in context. This is done at the middleware
platform level.

• Configure the cores efficiently with right size. This is done at the operating system I
hardware level.

We introduce the concept of Core Scheduler which does the admission control and use the

concept of Connection-Orientation to do contextual dispatch, and the concept of Infrastructure

Awareness to identify appropriate core configuration and deployment configuration parameters
relevant to the operating environment.

Stateful web services need differentiated processing design when compared to Stateless

web services

Enterprise applications are wrapped into stateful and stateless web services. If the web

service is stateless, then a thread is spun off and these web services can be grouped to run in

parallel. There are architecture models such as SEDA (Staged Event Driven Architecture) O

address the ability of leveraging Multi-core for stateless web services. In the ease of stateful web

service, the context of the user needs to be preserved between requests. In this scenario,

spinning a new thread to process an incoming client request ends up in Cache misses at the

operating system level, due to temporal nature of the data. Instrumentation mechanisms arc

used to monitor the “Cache misses’’. These “Cache misses” are correlated with system

deployment parameters. It is possible to use this correlation to modify the deployment

configurations to reduce the Cache misses. Using the number of “Cache misses” as the base
parameter two additional parameters are derived namely Core Configuration Effectiveness and

Intra Process Efficiency. These two parameters are together used to understand the behaviour of

the “application in context” for specific deployment configuration setting. With iterations and

sampling at both ends of the baseline, the optimum settings are established. These settings are

fed back to Core Scheduler through ServiceMap, so that the client request is contextually

connected to the web service application, which is tuned for optimum Multi-core utilization.

IT.

Structured architectural approach required for Multi-core adoption

Enterprise applications arc typically designed using well matured architecture paradigm.

Noteworthy examples include Microsoft Doc-View design paradigm followed by Model-Vicw-

Controllcr paradigm in separating user experience from persistent data store. Similarly, Client-

Server paradigm led to three-tier and n-tier architecture in separating how to partition the

application processing.
Software platforms and applications are designed for the time-sharing constraints of single-

core. Multi-core, while addressing the time-sharing constraints through abundant threads brings

in new space-sharing constraints. The adoption of new design constructs in the application

specific to Multi-core is going to be evolving. Therefore, we need a bridge strategy that can

embrace the adoption of Mulli-corc, while supporting the existing applications that arc already

developed for single core.
We have developed a new architecture framework called COAF (Connection-Oriented

Architecture Framework) with six modules that can support the evolution of Multi-core for

enterprise applications. The need for observing the application behaviour and setting up

thresholds at the time of deployment as an architectural need would provide the mid-way path

for Multi-core adoption. Analogically, this is similar to how every web application is designed
in three tier architecture style as presentation, application and database tiers. While designing the

web service application, the following questions need to be considered:

• What arc the parameters to be observed?

• Flow to correlate the kernel behaviour to the application deployment?

• Flow to contextualize the processing workload with current deployment?

• How to schedule the workload at the application level?

• What is the right deployment configuration for optimum utilization?

• How to define optimum utilization in the context of Multi-core?

Well defined methodology is required for correlating the application behaviour to the

deployment configuration.

Enterprises use correlation techniques in different ways; from correlating the product

campaign to sales increase; the enhanced warehousing process to reduction in inventory cost;

similarly, enterprises employ full time administrators to monitor and manage the technology

*3

infrastructure. These system administrators arc specialists on the platforms they monitor;
examples of such administrators are Linux administrator. Database administrator, SAP

administrator etc. These administrators could be equipped with tools with methodologies for

correlating the system behaviour against deployment configurations with ease with minimal

training. We have demonstrated an approach containing following steps to correlate the kernel

behaviour with application deployment configuration.

• Identify the parameter to observe and insert the appropriate probes to monitor and collect

the system logs for that parameter. “Cache miss" is used as the parameter to observe at

the operating system level using DTrace probes. This is part of the COAF architecture -

Behaviour Information module.

• Separate the outliers from the log and reconstruct the events that happened at the

operating system.
• Identify the deployment parameter that can affect the observed parameter. We used the

“number of MySQL threads" as the deployment setting.

• Establish the relationship between the “deployment configuration setting" versus the

observed parameter. In this step we separated out “relevant application runs" from

“overall runs", and arrived at the “cluster of relevant application runs". Using Pearson's
correlation method, we established the relationship between the “number of clusters"

against “core configurations" for a specific application configuration values (e.g., number

of client threads).

• Arrive at the threshold values

• Store the “deployment threshold values" against the “particular core configuration" for a

specific application use case or groups of use ease. We have the configuration server as

part of the architecture that can house all these lessons for current and future use.

Architectural abstraction needs to embrace new innovations in memory to accelerate

the Multi-core adoption.
During our experiments one of the observations that we made is the effect of main memory

to the compute infrastructure. Interesting innovations in provisioning the large size main

memory such as FusionlO, Virident etc. could facilitate temporal locality characteristics of data,

which is very important in the enterprise context, where most of the master data is read-only. To

14-

embrace similar such new innovations, we have modelled both hardware and software as WS-

Resource using Web Services Resource Framework, so that both hardware and software can be

inspected through a web-service call. This would allow us to change the implementation of

software and hardware and inspect their configurations without modifying the enterprise

application.

1.5.1 Hypothesis

The following hypothesis is evaluated in this thesis:

i. It is possible to modify the performance of web service based enterprise applications

from the application layer.

ii. It is possible to leverage Multi-core threading capabilities by changing deployment

configurations and core configurations.

iii. It is possible to alter the performance of an application, by observing the kernel and

hardware parameters, without any modification to the operating system.

iv. It is possible to affect the performance of a generic application in Multi-core system

without changing the operating*system configurations.

v. It is possible to effect changes in the performance of enterprise applications without

changing either the enterprise application^binaries or enterprise application source.

vi. It is possible to effectively contain and distribute enterprise apps amongst core to

achieve performance through core symmetricity and core affinity.

In evaluating this hypothesis, we make the following specific contributions.

i Introduce a set of design considerations based on the combination of enterprise

experience and hardware/software vendor recommendations, and a resultant

framework that could demonstrate the concepts through a prototype.

ii. Combine the ideas of performance improvement at hardware and software layer as

highlighted in the literature; so as to secure and control the performance of the

application through the input deployment parameters. The effect of key input

parameters is studied and extended to individually observe the effect of temporal and

spatial locality for any type of core configuration in the prototype.

15

iii. Implement a reference model of COAK based on identified architectural
considerations and configure the implementation using standard tool sets provided

by the respective vendors. A typical test bed based on COAF framework is

presented.
iv. Show that there arc foundational primitives viz. the kernel level probe input and the

application deployment parameters are used to address the performance along the

lines prescribed by both the Hardware and the Software vendors, and derive a metric

that can determine an overall performance of the application.

v. Evaluate the scalability and flexibility of the test bed by varying the configuration

parameters for different hardware setups that are typical of a modern enterprise

infrastructure: and to demonstrate that the architecture not only scales, but also

manages performance across cores, significantly.

1.5.2 Outside the scope of research

Our interest in this research is to identify an architecture framework that can influence and

facilitate the adoption of Multi-core in the enterprise. In this section we want to highlight the

areas of work, where our focus is limited to using them rather than enhancing them.
Our experimental setup is based on Niagara server and Niagara provides mechanisms to

partition and configure the number of cores to create various core configurations using “Solaris

Zones and Containers”. This is detailed in Appendix ill. We assume that in future, every

operating system manufacturer will provide mechanisms similar to “Solaris Zones and

Containers” to configure the number of cores into a server. While we saw the impact of core

configuration in various combinations such as symmetric, asymmetric combinations etc., the

discovery of correct core configuration itself is a separate research area for administrators and

configuration managers.
Similarly, the scope of our thesis is limited to demonstrating the impact of deployment

configuration parameters on Multi-core utilization, but, finding the actual threshold parameters

and the associated values is the subject matter for new research.
We have demonstrated the power of using an in-production instrumentation framework

[231] of DTrace. The actual evaluation of all the instrumentation mechanisms and the best

practice suggestions on how to use those tool sets are outside the scope of this work. While we

enhanced some of the DTrace probes to suit our experimental setup, we suggest the tools user to

consult extensive literature available specific to their own setup.

Through “Connection-Orientation” and “Infrastructure Awareness” concepts, we

highlighted the effect of passing application context to the operating system, through deployment

parameters. We believe this approach will motivate further research in enhancing the operating

system to receive the application context in more formal ways. Designing a new operating

system or modifying an existing operating system scheduler etc. is outside the scope of this

thesis and it is a subject matter for new research for operating system research community.

We tried to capture the consequences of other subsystems of a Multi-core server, such as

main memory size etc., but identifying or designing the actual memory setup is not the scope of

this thesis.
For conducting experiments, various tool sets and frameworks are used to demonstrate the

architectural concepts of COAF. Improvements to those tool sets and frameworks are outside

the scope of this thesis.

1.6 CONNECTION-ORIENTED ARCHITECTURE FRAMEWORK

We propose a Connection-Oriented architecture framework (COAF) for enterprise class web

services on Multi-core (COAF). Two architectural concepts namely “Connection-Orientation”

and “Infrastructure Awareness” and six modules are identified as the fundamental building

blocks for designing the next generation enterprise applications based on web services that are

hosted on Multi-core aichitecture.

COAF aims to fit the stateless web services that are served in request-response cycle into

stateful needs of enterprise applications. The web service requests are grouped in such a way

they can be scheduled to the same core so that temporal and spatial characteristics of the

application can be leveraged. Additionally, the total requests that are dispatched at any point in

time to the processing server are controlled by the Core Scheduler at the admission time to pre­

set threshold values. Thus, the “Connection-Orientation” is established between the requester of

the service and the appropriate processing core that is best suitable for processing the service

request.

\7

COAF leverages the feedback from the “Infrastructure Awareness” gained from using in­

production instrumentation mechanism. This information is used for setting thresholds values

for various combinations of infrastructures for the optimal performance of Multi-core servers.

The six modules are Core Scheduler module, Threshold Configuration module, Resource

provisioning module, Behaviour Information module, System Management module, and

Notification Framework module.

Core Scheduler module maintains two objects called SchedulerState and ServiceMap for

each kind of web service. ServiceMap maintains “where to dispatch information”,

SchedulerState maintains “current state of the server” and the scheduling policies for the

Scheduler. Threshold Configuration module maintains the threshold values for configurations

for various components in the system such as processing cores, memory caches and I/O ports etc.

These threshold values are the combination of run time information obtained empirically from

instrumentation of the system and design time information obtained from the application

developer before deploying the application. To arrive at the threshold values the system

parameters are analysed and correlated for various kinds of deployment configurations of the

system. “Cache miss” is used as the observed parameter at the operating system level. We

designed two derived parameters namely “Core Configuration Efficiency” and “Intra Process

Efficiency” that are based on Cache miss. Using these two derived parameters, we study the

results of our experiment to get the threshold values. These threshold values are then stored in

Configuration server, so that the application platform is deployed with these new threshold

parameters. Once the application is bootstrapped with these threshold values, the system can be

monitored for the performance of the core. These monitored values are compared against the

preset threshold values and the process is repeated until optimal performance is obtained at the

level of processing core for the current enterprise application deployment. Thus the knowledge

of operating system scheduler behaviour and the contextual knowledge of the application are

combined to achieve the optimum utilization of Multi-core compute power.

We have demonstrated the above approach through five phase experiments as outlined in

section 5.1. The experiments are designed in such a way, that lessons from previous phase are

incorporated into the next phase so that experiment focus is more targeted on Multi-core thread

utilization. We have observed interesting results during our experiments, such as

18

• In one such configuration setting, few cores are not used at all, even though operating

system had the opportunity to use them. Even though there were 32 cores available,

operating system scheduled only 6 cores for scheduling workloads.

• Similarly, 17 cores configuration performed well compared to 16 cores configuration,

even though 17 cores configuration has overheads associated with “interconnect fetch

latency”. This is because operating systems scheduled its own management activities

in 17th core, so that the application job is scheduled in the remaining 16 cores.

1.6.1 Organization of the Thesis

This thesis is organized into six chapters. In this Chapter 1, we have already discussed two

evolving trends related to web services and Multi-core platform and discussed the motivations

behind this dissertation and finally our proposal for COAF as the new architecture framework for

Multi-core platforms. In Chapter 2, we explore the related research work and the underlying

technologies that are relevant to our thesis. We begin with discussing how to achieve parallelism

through Multi-core at the hardware level, and then go on to discuss how recent generation

architectures exploit the parallelism in the system. In Chapter 3, we discuss the Connection-

Oriented Architecture Framework on Multi-core (COAF) and its design features such as

modularity, and maintainability. The six modules of COAF are explored in the remainder of the

chapter. In Chapter 4, we have detailed the implementation of each of the six modules along with

their internal structure and components used to implement them. In Chapter 5, we discussed the

five phase approach and conducted experiments on COAF based setup for testing the spatio­

temporal characteristics, across four deployment models, namely (1) traditional Client-Server

model (2) Client-Server model, both client and server running at same process space, (3) Client-

Server model, where the client and server are located in different process space, and (4) Client-

Server model for differentiated loads. Summary of the results for each of the phases are

discussed. In Chapter 6, we conclude our thesis with its contributions and benefits. Finally in

Chapter 7 we highlight the opportunities and scope available for future work on this research.

19

2 LITERATURE SURVEY

In this chapter, we develop the case for COAF by studying the previous research and

approaches published towards utilizing the processing power provided by Multi-core for

processing enterprise application workloads. First we discuss the properties of the enterprise

class applications and the properties of web services thereby able to identify the requirements for

COAF design. Next, we look into programming models and architectural approaches that are

available in the literature related to one or more aspects of the Multi-core servers and web

service based applications. We analyse two fundamental programming approaches adopted for

exploiting the parallelism available in the Multi-core systems using both thread based

concurrency and event based concurrency. Then, we start to look in to various architectural

frameworks that address large volume processing, either at the hardware or at the software level.

From the hardware perspective, it is both general purpose and specialized architectures (both at

chip level and at the overall system level innovations). These hardware architectures mostly

focused on adding more cores to the processor and addressed necessary changes required at the

level of cache. From the software perspective, it is both web service architectures and

specialized architectures that exploit inherent parallelism that exists in data and instructions.

Next, we discuss various deployment frameworks and their impact on application design. In the

summary section, we identify the gaps that need to be addressed by the COAF framework in

order to marry the power of web services and Multi-core threads.

2.1 INTRODUCTION TO ENTERPRISE APPLICATIONS

We studied and analysed the external and internal properties of various enterprise

applications broadly under three categories, namely (a) Client-Server model deployed on the

internet but within the enterprise (examples include Microsoft Exchange and Outlook [162], time

sheeting system, operations management system, invoice and billing system, customer

relationship management system, project management systems and payroll processing system);

(b) Client-Server model deployed over the web (examples include trading applications like

ETRADE [72], search applications like ASK.com [21], large ecommerce applications like

ebay.com [67], ERP systems like SAP Netweaver [197], Intuit TurboTax system [126], Quicken

and personal finance systems); (c) Client-Server model deployed as Software as Service model

20

over cloud. (Examples include Customer relationship management systems like Salesforce.com

[195], video management systems [232] like Blockbuster online [30], application life cycle

management systems using Serena Mashups [200], security management systems like Symantec

Safeweb [215], ecommerce systems like Amazon Web services[6], benefit compensation

systems like EquityEdgeOnline [73]). These studies revealed a broad set of requirements for the

web services based enterprise application. The following three categories of properties are

considered as key requirements for enterprise application architecture on Multi-core. They are,

1. General properties of the enterprise application - these properties look at various

general aspects of the enterprise application such as application composition,

management aspects, etc.

2. Spatio-temporal properties of the enterprise application - these properties look at

internal behaviour of the application.

3. Stateful properties of the enterprise application - these properties look at the

deployment nature of the enterprise application.

2 .1.1 General properties of the enterprise application

General properties section looks into functional and non-functional aspects of the

application and thus helps to arrive at the requirements designing a new architecture framework.

2 1.1.1 Property 1 - Well defined business processes

Enterprise applications are the software systems that are used to run the day to day

operations of the business efficiently. Typically these applications are general purpose or custom

written for a specific business problem. These applications could be internal to the enterprise

such as employee facing application or external to the enterprise such as customer facing or

supplier facing applications. These systems are either executable software that can be loaded on

desktop or a large system that is loaded on a server on the network that can be physically

accessible by a desktop. Examples of such enterprise applications include email management

systems such as Outlook, office administration systems such as Word, Excel, or large enterprise

human resource system such as SAP, Oracle applications, Peoplesoft, Customer support systems

like Siebel, Business Intelligence and reporting systems like Business Objects etc.

21

Enterprise systems operate in Client-Server model [176]. The client portion of the software

called front-end software typically operates at the desktop. This could be a rich application like

windows based application/applet etc., or could be a lightweight browser based application. The

server portion of the software called back-end typically runs on a single server or on a cluster of

multiple servers. These servers themselves could be a single processor machine or a multiple

processor machine such as mainframes.

In an enterprise, there are a fixed set of well-defined users with a well-defined access and

authentication policies, typically segmented across different functions of the enterprise. For

example, human resource personnel will have the access to business functions of the human

resources department, whereas the procurement department will have the access to business

functions related to purchase and order management. Figure 2-1 shows a typical enterprise

application footprint, along with the key business processes of the application represented as web

service components.

Thus in summary, these enterprise applications are typically exposed as well defined sets of

business processes (as web services), supporting fixed set of users; typically employees and

suppliers.

2 .1.1.2 Property 2 - Sequential process dependencies

A typical business process is a sequential process [63], requiring the logic to be performed

in a particular order so as to preserve the integrity of the operation as a whole. For example, an

invoice cannot be processed, till the inventory is received at the warehouse. Hence, processing

needs to happen in a particular order like in the above example, lookup the purchase order master

table for validating the purchase order number that is present in the invoice, validating the receipt

of the item mentioned in the invoice at the warehouse, receipt of the quality assurance certificate

for that item, and then the invoice can be processed.

22

Application Users

UI Layer

*
A Clients < CSR1 CSR Super Users i System & Functiontil Mmmistrator

£

Tnnx'^lot. |

Configurators

Security

Cach.-g

R

Business Users

Corfiguralet'S

Servo

Caching

Logging

Audilirg

Error Handing

Encrypron

5cr>>k:o
Odvu.»at>xi

1

1

« J ih

d

a
<

*
1

J

5
?

:
5

t

"32

3

?
j

a

Session Mgmt

Service Access
and Service

implement nt o'
Layer

I

8
§
E
c

Data Access
Layer

Admnistra'uon
and Management j

Consoies

Application t tnleyarion Services
Customer

Service

Fulfilmor
t Service

Business Ser.ices
Subscript on

Mgmt
O— User o—
0— Mgmt o—

Store
Front o—

O— Odor O—
o—l mqh 0—

Catalog
Mgmt 0—

Eic.

I Icq s polcy rules [

XML UUllies

H8NUDl»s

Valda’jons

Refund
Service

Etc

'•terpree
iwcn

Coro Services

Authenti­
cation

II Exception
Service T? Etc.

Database Ubblles

Tlvead) Objecl
Pools

In menxxy
queues

NoiACallon

Veidaticrs

Trarsoocmg

/Oetts

Transforms Iron

£ Enterprise Service Bus

AdaptersExtern;*! Systemr.

Fife System
Acmes

2

I

S
§

£
i EDI Svsr«m

RDBMS
ACCESS

Data valda’jon

&ardard External Systems Interface
(DB J (SOAP) <7 EDI) f JMS) f FTP)

<• re 7 i ao 7~~jas 6 pm

Figure 2-1 Architecture diagram of a typical enterprise application

Content
Management

Content
Preview

Content
ArChieving

23

Figure 2-2 Workflow diagram depicting "long lived" dependent components

Figure 2-2 shows a real life example of shopping cart system. Here modules that are orange

colour code are external dependencies. For example, payment is dependent on four systems,

namely epayment - where the information about the payment is entered, Cybersource - an

external validation system for credit history authentication, paymentech - for collecting the

payments. Globalcollect - the reconciliation system for a consolidated payment etc. Similarly,

order will not happen until payment and billing steps are completed. Thus, every enterprise
system has a sequential dependency on its subsequent processes and sub-processes.

2 113 Property 3 - Process and Data need to be available all the time

Enterprise application resources are shared across processes, and hence need be

continuously available during work hours with two assumptions. They are: (1) Mostly same user

works on the system - this means, user logs into the application from the start of the day and

stays connected till he logs out during the end of the day, and generally one log-in happens

throughout the day. Most of the time same user logs in from the same desktop (or socket or

24

network access point) and this desktop typically resides within the enterprise network. (2) Most

of the data is created and used within the enterprise network, and this same data is generally

available and consumed throughout the day. For example, purchase order is created and the same

purchase order is viewed, reviewed, approved and pushed to suppliers. Two kinds of operations

[26] happen most of the time; (a) Online transaction processing (OLTP) such as ledger entry at

the bank for withdrawal of the money; (b) Batch processing such as running reconciliation

reports for invoices and collection during the end of the day. The enterprise systems ace expected

to be available throughout the business day for doing both kinds of operations. For example,

when a user goes to the bank, bank cannot say the system is not available for banking. For the

above operations, resources such as databases are usually shared across components. But the

data size between two similar transactions can vary (for example, number of medical bills for an

employee A can be different from employee B, even the results are received through the same

logic.) Therefore, the enterprise architecture needs to support both spatially and temporally

coherent data and instructions.

2.1.1.4 Property 4 - Enterprise workload behaviour can be modelled

In general for every business function there are two kinds of users; standard user and admin

user; Standard enterprise user logs on to system to do day to day business functions during the

standard business working hours say 9.00 am to 6.00 pm. Similarly batch processes and report

generation processes run on a specific duration of the day - typically in the evening. Admin user

logs on to the system to do administration functions of the system, which is typically non­

business working hours such as night time from 11.00 pm to 4.00 am. Business functions in

well-defined cycle, and hence the supporting processes need to function in that cycle. Examples

include, Payroll happens in a particular frequency (one in a month, or once in fortnight or once in

a week), time sheet submissions happen once in fortnight mostly on the 15 day, trade

reconciliation and settlement happens at the end of stock market closure and gets completed

before the start of the market next day, the finance audit report gets prepared at the end of

quarter, tax filing happens once in quarter and for common public it happens around April in the

USA, and in June I July in India. Hence the frequency of the workload arrival can be

predictable and modelled [32].

25

2.1.1.5 Property 5 - Enterprise Users stay connected always - User sessions never expire

The business critical and monotonous nature of these enterprise applications required very

high productive user experience for these systems; hence these systems are designed as

& connection-oriented systems. The enterprise application architecture assumes that there is a

private connection needed between the user desktop client system and the server system; the

server is expected to maintain a separate session and the usage context about the user who logged

in till the user voluntarily logged out of the system. This means, once the user is logged in, there

is a dedicated space is provided in the memory and this space is available in time for that user

throughout the session till the user logs out of the system. This memory space is used to store all

the interactions between the user and the system. This memory space provides session context

for the application about the user.

2.1.1.6 Property 6 - Enterprise Infrastructure contains matured and heterogeneous technologies

Enterprise class applications are business critical systems and hence lot of care is taken in

selecting the infrastructure of the enterprise to reduce the risk of loss of business continuity.

These systems are extremely hardened against all known exceptions and hence would require

huge investments. The change management processes are extremely complex and cumbersome

and hence every new infrastructure or design needs to be compliant with standard architectural

blue prints, so that in the event of failure, alternate equipment or software can be readily

pluggable to continue running the infrastructure. Over time these enterprise systems mature and

stay with the enterprise, which results in heterogeneous infrastructure. A typical infrastructure

for' a large enterprise would contain multiple hardware configurations, operating systems,

application servers and data bases. Instead of making the infrastructure homogenous, typically

an integration effort is undertaken to manage the heterogeneous infrastructure. This is a unique

behaviour of the enterprise infrastructure design compared to custom designed application for a

specific business need.

In summary, the properties of enterprise application are:

• Well defined sets of business processes and hence web services

• Workload behaviour can be modelled

• Structured and Sequential process dependencies

26

• Process and data need to be available throughout

• User stays connected and hence the session never expires.

• Infrastructure contains matured and heterogeneous technologies

Having identified the functional requirements, the next step is to understand the internal

implementation of the workload processing and there are two important properties namely spatial

locality and temporal locality [206] that derives the workload processing on enterprise servers.

The next section addresses the literature around these properties.

2.1.2 Spatio-temporal locality properties of enterprise application

The operations between the client and server are generally synchronous, which means that

when the client requests the server for data, the server sends the response immediately to the

client with minimal or no verification about the client application. Server assumes that it is

connected with the client all the time, since both client and server are deployed on the secured

closed network. This behavioural assumption on enterprise applications led to the design and

development of processing systems. Thus the temporal and spatial locality becomes the key

assumption for the architecture design and system design as seen in Figure 2-3. If some data is

referenced, then there is a high probability that it could be referenced again in the near future.

This is called temporal locality [206]. In the Figure 2-3, the data accessed by CPU in cycle 1 is

stored for future use, and this data is fed in cycle 3 from cache thus saving the fetch time from

memory. If some data is referenced, then there is a high probability that data next to this data

could be referenced in the near future. This is called spatial locality [206]. In the Figure 2-3,

when CPU is fetching the data for cycle 1, the neighbourhood data is also fetched and stored in

cache for future use. When the neighbourhood data is needed in cycle 2, it is fed from cache thus

saving the fetch time from memory. These two definitions are key requisites for an enterprise

application.

27

Spatial Locality Temporal Locality

Figure 2-3 Spatial and Temporal Locality

2.1.2.1 Enterprise applications need “look up” data and hence caching:

Enterprise applications reference master data often. This need reflects the spatial and

temporal locality characteristics of the data. Algorithms and techniques were developed to keep

the copies of the data (that is used most often or used more recently) adjacent to the processing

core This concept of keeping the data nearer to the processing zone is called caching. At the

hardware layer, multi-level memory cache is developed such as register, LI cache, L2 cache,

Main memory, etc. to keep the data and instructions closer to the processing core. At the
application layer, similar concept of caching is developed, and the examples include Memcached

[157], Jcache [128] and Terracotta [220], etc.

2.1.3 Stateful properties of the enterprise application on stateless web

Enterprise applications are stateful. They operate in a Client-Server model, hosted on a

closed secured network. This closed secured network allows application to keep the context of

the user between operations. The web provided cheap networking medium and easily adaptable

protocol standards. Initial web applications were static information portals using stateless HTTP

28

GET/POST protocol. HTTP GET/POST protocol became permanent and web applications were

designed stateless. Google Search is the example of such stateless application. This stateless

nature of the web is anti-thesis to stateful behaviour of the enterprise application.

2.1.3.1 Standard Web architecture:

In the web based application scenario, the server creates and destroys the session objects for

every user, and this process happens multiple times a day depending on the arrival characteristics

of these requests. If there is no activity from the logged in user for prolonged periods of the

time, then the system is designed to destroy the session by using a process called timeout and the

caches have to be cleared to load a new data. This means servers need to create, maintain and

destroy a large number of sessions for the same user, irrespective of whether the user did

anything in that site or was completely inactive. Maintaining a separate session for a non-active

user is an expensive process on the web. Server has to poll the client to know whether the client

is still an active client. This polling needs to happen over the internet, which is both time

consuming and expensive process. So the web based system encourages the stateless or

connectionless design pattern in the application architecture. Connectionless design pattern also

suits the web, as the web is fundamentally connectionless or otherwise stateless. The notion of

Connection-Orientation in web is established through various workarounds such as HTTP

persistent connections, cookies, URL rewrites, hidden fields in the form, TCP streaming etc.

This stateless design of the web makes the caching assumptions difficult, as the arrival patterns

of user requests are not predictable and the data becomes stale very quickly if the data is

transactional in nature.

2.2 EXISTING FRAMEWORKS DESIGNED FOR PARALLELISM

In this section various approaches and frameworks that are built to extract the parallelism

available in the processors at the hardware and software level are discussed. First, we look for

inherent parallelism to exploit processing speed. Research and advancements in processors in

general relied on two forms of parallelism: instruction-level parallelism (ILP) and thread-level

parallelism (TLP). Multiple techniques, algorithms [25], [106] and specialized hardware

architectures [78] are developed to identify and exploit the ILP and TLP in programs. Wide-issue

superscalar processors [66] exploit ILP by executing multiple instructions in a single cycle.

29

Multiprocessors exploit TLP by executing different threads in parallel on different processors.

Natively parallel applications share the cache and branch-prediction, and compete for identical

functional units, thus exploit ILP. Non-parallel applications compete for cache and branch

prediction hardware [213] and execute independently, thus exploit TLP. Tullsen et al proposed

simultaneous multi threading processor [225] that can use thread-level parallelism and

instruction-level parallelism interchangeably. However, in this design, multiple threads cause

inter-thread interference in the caches and place greater demands on the memory system, thus

increasing average memory latencies and thereby decreasing the overall system performance.

There are two common multithreading programming models namely: Thread programming and

event driven programming.

2.2.1.1 Thread programming model

In thread programming model [27], a separate thread of control is created for tasks, such as

for each network connection, input device, user, or other appropriate entity, the flow of control

can be explicitly given. In thread programming key issue is the contention between threads for

the resources and hence the latencies created due to thread context switching. Synchronization

operations, such as locks and semaphores, are used to protect shared resources and data

structures. Blocking and Spinning are two mechanisms used in thread synchronization. Spinning

is a waiting mechanism with which the waiting thread continuously checks for occurrence of a

synchronization event. Blocking is an alternate waiting mechanism with which the OS suspends

the waiting thread and schedules another thread to execute. Both these threading mechanisms

have implications on the processing of enterprise applications, as the blocking delays the user

experience, while spinning can result in sub-optimal performance.

There are two classes of algorithms developed to reduce the overheads due to thread

memory models.

• Majority of the work is focused on lightweight threading for shared-memory

multiprocessors such as Stackless Python [208] for creating micro-threads, lazy

allocation techniques such as Lazy threads [95], Lazy Task Creation [163](44] , and

Stack Threads [218].

30

• Others focus on developing hybrid model comprising of event driven and threading

such as cooperative threading, state threads and thread pools such as IBM

Websphere [192], Weblogic etc.

There are other techniques that are built to monitor and fine tune the Operating system for

effective thread performance such as idle spinning thread detection Li et al. [144].

2.2.1.2 Event driven programming model

In an event-driven programming model [180], a central event loop watches all external

sources of data (e.g., network connections, input devices, and timers) and invokes call back

functions to process each piece of data as it arrives. This model is prominently used in GUI

toolkits and network programs like BIND family of DNS servers. In the event-driven program,

the event loop is in control. When an event-driven program wants to perform an I/O operation

such as reading some data from a network connection, it can’t simply stop and wait for the data.

Instead, it needs to set up an I/O request and then return to the event loop. When the data is

available, the event loop will invoke an I/O completion callback function to process it. There are

enhancements proposed to event driven programming model [239], architectural approaches

[55], and custom implementations specific to Multi-core [113].

2.2.2 Hardware level parallelism exploitation relevant to Multi-core Architectures:
Piranha, Hydra, Niagara, and Blue Gene/L

At the hardware level, many research prototypes and commercial implementations are built

around threads, events and the combination of both. Among these prototypes, Compaq research

prototype Piranha [25], Stanford Hydra [82], Sun Microsystems Niagara and IBM Blue Gene/L

[2][91] have considered Multi-core as the fundamental design construct and built the compute

architecture around that design. These designs are primarily developed for enterprise class

commercial loads. In this section, the design constructs in these four prototypes are analysed.

2.2.2.1 Piranha

Piranha [25] is a chip multiprocessor, focused on improving the performance on commercial

applications such as online transaction processing, decision support systems, which have

characteristics such as large volumes of data, memory stall blocks, little ILP, abundant thread­

level parallelism, very limited or no use of complex data types like floating point etc. At the

31

architecture level, hierarchically partitioned and replicated design, 8 single-issue in-order Alpha

core processor, 1MB of private instruction and data cache, shared non-inclusive L2 cache with 8

banks, and each bank is 8-way set associative, 8 memory controllers. Interesting concepts in

Piranha are the home and remote memory access to off-chip memory access, and cache

coherence protocols and engines. Figure 2-4 depicts the design of Piranha. Additional

interesting design concepts present in Piranha are Directory information maintained at node-level

using hot-potato routing model, and Invalidation-based directory protocol.

2.2.2.2 Hydra

Stanford Hydra [106] targeted towards commercial workloads, uses a concept called thread­

level speculation (TLS). TLS is the process of speculatively executing interdependent threads

out-of-order, while appearing to have executed them in-order. Hydra converts processor

instructions to sequenced threads, for example, loop iterations as separate threads and procedure

calls as separate threads, so that threads can run in parallel. It uses hardware and software

mechanisms to track inter-thread dependences. Corrective measures are taken for any violations

by re-executing instructions with correct data. Hydra is four core design based on MIPS

architecture, with private 16 KB of Data and instruction LI caches, and shared 2MB L2 cache,

with inclusive cache hierarchy. Figure 2-5 depicts the Hydra architecture.

The four processors share an on-chip, unified L2 write-back cache, and each processor

executes a single thread. Each processor’s LI data cache is write-through. Other processors

snoop the bus connecting the processors and the L2 cache. This is to permit data dependence

violation detection. Dependences are tracked on a per-word basis, to eliminate the violations due

to false sharing. Speculative result buffering is achieved by buffering speculative writes to the L2

cache in a group of 32- cache-line buffers, one for each processor. These buffers also monitor

read requests made to the L2 cache. This allows them to forward data created by writes from less

speculative processors to satisfy the requests of more speculative processors.

32

Figure 2-4 Piranha system level architecture (Piranha CMP [25])

Figure 2-5 Hydra internal architecture (Stanford Hydra Project [106])

33

2.2.2.3 Niagara UltraSPARC T2 processor

Niagara [138], [96] is the code name for UltraSPARC T2 processor from Sun Research

Labs. In T2, each core can run at speeds up to 1.4 GHz, and contains an 8 KB data cache and a

16 KB instruction cache. The block diagram and the internal architecture of Niagara are seen in

Figure 2-6 and Figure 2-7 respectively. An eight bank, 4 MB unified L2 cache is shared by the

eight cores. Each core contains dual pipelines, and a mechanism to switch between the four

threads on each pipeline of a core such that a new thread is scheduled on the pipeline at each

clock cycle in a round robin manner. Four dual channel Fully Buffered DIMM (FBDIMM)

controllers provide a maximum memory configuration of 64 GB. The processor also includes

eight floating point units (FPU), with a fully pipelined FPU per core. The eight cores, L2 cache,

and memory controllers are connected via an on-chip crossbar interconnect. T2 processor is the

second version of the T1 processor that is used in the experiments for this research.

2.2.2.4 IBM Blue Gene/L

The Blue Gene/L (BG/L) computer [2] is a massively parallel supercomputer based on IBM

system-on-a-chip technology. It is designed to scale to 65,536 dual-processor nodes, with a peak

performance of 360 teraflops. BG/L was designed to efficiently utilize a distributed memory,

using message-passing programming model. All the functionality of a node was contained within

a single ASIC chip plus some external commodity DDR memory chips. The functionality

includes high performance memory, networking, and floating-point operations. BG/L uses two

communication networks: a nearest-neighbour network with the topology of a three-dimensional

torus and a global collective network. In normal use, the torus is the primary communications

network and is used both for point-to-point and for many global or collective communications.

The collective network is used for collective communications, such as MPI_REDUCE. Compute

nodes on the BG/L are logically arranged into a 3D lattice, and the torus communications

network provides physical links only between nearest neighbours in that lattice. Therefore, all

communications between nodes must be routed in a manner that makes use of the available

physical connections, and the cost of communications between nodes will vary depending on the

distance between the nodes involved.

34

UltraSPARC T1 Processor
System Interface

Buffer switch Core

On Chip Crossbar Interconnect

Figure 2-6 Block Level Diagram of 8 cores Niagara UltraSPARC T1

Figure 2-7 Niagara internal architecture

35

5.5 G
B/s

5.5 GB/s

Uh

Lh

To/from
 m

em
ory

Torus Tree Global
network network interrupt

Figure 2-8 Information flow in Blue Gene/L architecture

36

BG/L used for niche, compute intensive applications such as molecular research, 3D Fast

Fourier Transforms, and Interesting frameworks such as Blue Matter. This concept of using

communications is leveraged in Multi-core architectures.

2.2.2.5 Summary of Hardware level Multi-core Architectures

Hardware architecture frameworks such as Piranha, and Hydra, expect explicit thread level

parallelism in the application. Asynchronous stateless applications can directly leverage these

prototypes to process the web service requests in parallel. Recent generation application servers

and operating systems are multi-threaded, and they are designed to process any thread on “first-

come-first-served” basis. “First-come-first-served” based design perfectly suits stateless

asynchronous application requests such as web services. Similarly, compute intensive batch

processes of certain kinds can leverage the power of these thread-intensive architectural styles.

2.2.3 Software level architectures: Click, StagedServer, SEDA, and REST

Software level architecture styles have been proposed to exploit parallelism that is

inherently available in the stateless applications. In this section, the four prominent architecture

styles - Click modular packet router [137], StagedServer [142], Staged Event Driven

Architecture (SEDA) [239], and Representational State Transfer (REST) [70] [80] are studied.

2.2.3.1 Click

Click Packet Router [137] uses an architectural software construct called “elements”.

Router can have any number of input and output ports, and it performs simple routing

computations. As shown in Figure 2-9, elements are linked with one another forming a

connection mechanism, and the packet is routed through this connection on a single function call.

Elements are implemented as separate component with its own state. Click uses a declarative

language to model the router configuration. It uses a single thread for each processor and

performs load balancing across threads. Click makes an assumption that modules have bounded

processing times, which leads to a relatively static determination of resource-management

policies. Click is single threaded and hence directly cannot take the advantage of Multi-core

platform.

37

2.2.3.2 stagedServer ;

Larus et al. introduced a general programming paradigm called staged software servers

[I42][l 08] according to which the computation is divided into stages and there is a scheduler

within each stage and implemented a prototype called StagedServer using Cohort Scheduling

policyfl42] as shown in Figure 2-10. This model aims to maximize processor cache locality,

where service requests are grouped so that similar records are can run in same stage I batch.

Using Cohort Scheduling, the processing is deferred until a similar service arrived for

processing, thereby increasing code and data reuse across unrelated computations, that otherwise

would have ended in cache conflicts or Cache misses. In the Staged computation model, threads

are replaced by stages as the underlying software construct.

2.2.3.3 SEDA

SEDA [239] stands for Staged Event-Driven Architecture; bundles the concepts of events

and threads using staged computation and thread pools as shown in Figure 2-11. Each stage is a

self-contained application consisting of an event handler, an incoming event queue and a thread

pool. Events are processed in batches to improve throughput. SEDA applies fine-grained

admission control [39] at each stage to limit the rate at which events are accepted by stages.

However, in SEDA there are no optimizations for memory hierarchy performance, which is the

primary bottleneck for data-intensive applications (e.g., OLTP and DSS workloads).

2.2.3.4 REST

REST is an architectural style advocated mainly for the construction of web services. In

REST, the software architecture is defined by a configuration of architectural elements-

components, connectors, and data—constrained in their relationships in order to achieve a desired

set of architectural properties. To create a REST service, the following questions need to be

addressed:
1. What are the resources and in specific URIs?

2. What's the format or representation?

3. What methods are supported at each URI?

4. What status codes could be returned?

38

The focus of REST is to break the business logic into the types of resources and define it

with its own URI. Representation of the resource could be HTML, XML, images or an audio. 1

Resource may be accessed and/or its state can be modified using HTTP GET / POST methods.

REST model is suitable for abstracting the implementation from its usage especially for CRUD

(create, read, update and delete) over the web.

2.23.5 Software level architectural styles exploiting parallelism

Enterprise applications that exhibit the property “well-defined business processes” fits into

domain of ClickRouter, StagedServer, SEDA, and REST architectural style constructs and

principles. However, there are very few enterprise class application platform providers that

inherently support these architecture styles in their platforms. Hence, if an external mechanism

that can group and configure the web services in such a way that existing application server can

leverage the multiple threads provided by Multi-core for processing the workload. The

“Connection-Orientation” notion of COAF supports this ability for the enterpriseapphcatiorL-

2.2.4 Data parallel frameworks: MapReduce, Hadoop, Dryad

Another approach proposed to exploit the parallelism is to design the architectural style that

is based on the prior knowledge of the data processing behaviour of the application. Successful

examples of this approach are Google MapReduce [59] [68] and [183], Yahoo Hadoop [11], and

Microsoft Dryad [127]. These special purpose frameworks combine the data parallelism and

multiple threads in the Multi-core servers [190]. The best practices of the MapReduce, Hadoop

and Dryad architectures are discussed below.

39

Figure 2-9 Click Modular Router

Figure 2-10 Cohort Scheduling

Sockel listen

PageCache

cache hit

"atche
miss

fie data

SEDA architectural style

Figure 2-11 Stages in SEDA architecture

40

2.2.4.1 MapReduce

Google popularized the MapReduce paradigm, and uses it internally for processing terabytes

of data across thousands of servers. MapReduce is both a programming model for

generating/processing large data sets and an engine called “MapReduce system library” for

taking care of parallelism, fault tolerance, data distribution and load balancing. MapReduce has

two functional phases as shown in Figure 2-12; (1) Map() - process a key/value pair to generate

an intermediate representation that are also key/value pairs; (2) Reduce() is a user-defined

function. MapReduce library merge all intermediate values sharing the same key. Google

MapReduce libraries along with Google File System and its storage mechanism called BigTable

forms the complete implementation for leveraging the MapReduce paradigm.

2.2.4.2 Hadoop

Yahoo uses its own implementation of MapReduce paradigm called Hadoop, similar to

Google MapReduce. Hadoop as shown in Figure 2-13, is a combination of distributed processing

framework, distributed file system namely HDFS (Hadoop Distributed File System), and

scheduler/Resource management libraries, distributed DB system called HBase. Once the

servers are marked as Hadoop equipped servers and clustered as Hadoop clusters, invoking the

MapReduce in one of the server will draft the other machines in the cluster to do MapReduce

function.

2.2.4.3 Dryad

Microsoft research built the architecture and execution engine called Dryad (Distributed

Data-Parallel Programs from Sequential Building Blocks) for processing coarse-grain data-

parallel applications. This architectural style is depicted in Figure 2-14.

41

fork

trap

User
Program

fork 1 \ fork

Master
assign
reduce

Input Data

Worker

Worker

Worker

local
write SB

00
read,

Input f les Ma? Phase
INIEHMEUIAU FtUS

(on Local Disks)
RxULLI
Phase

Ouipji
Phase

Figure 2-12 MapReduce Architecture (Google MapReduce)
HDFS Architecture

Metadata (Name, replicas,
/home/foo/data, 3,Metadata ops ” Namen°de

Figure 2-13 Hadoop Architecture Diagram (reference Yahoo Hadoop [11])

Figure 2-14 Microsoft Dryad architecture

42

Dryad is designed to scale across Multi-core computers, through small clusters of

computers, through data centres with thousands of computers. Dryad introduces the concept of

“dataflow graph”, which is the combination of two foundation blocks called computational

vertices and communication channels. Dryad runs the application by executing the vertices of

this graph on a set of available computers.

2.2.4.4 Summary of Applications that are inherently data parallel

Similarly, frameworks such as MapReduce, Hadoop, and Dryad expect the applications to
have data tfiaTcan be processed in parallel. These architectural styles are suitable for certain

classes of batch processing workloads where instruction and data parallelism exist inherently -

e.g., account reconciliation, invoice creation etc., where we can analyse and capture the

application behaviour at the design time and thereby setup the best configuration for processing.

Understanding the application upfront in the deployment lifecycle is facilitated through the

notion of “Infrastructure Awareness”. This “Infrastructure Awareness” helps to identify the

2.2.5 Application specific architecture frameworks

This section discusses four architectural implementations that are custom developed to solve

a specific business or technology problem. These architectural constructs, concepts and best

practices are extremely relevant for COAF. These four implementations aim to achieve

instruction and data locality by segmenting the application into manageable parts. These are

Layering and Tiering architecture developed by eBay [57][203], a relational query procesSSg

engine called QPipe, XML processing techniques and memory specific implementations

specifically REDAC are discussed in the following sections.

43

2.2.5.1 Layering and Tiering architecture of eBay

Layering and Tiering is an architectural concept developed for the world’s largest online

marketplace, eBay. EBay has more than 250 million unique users. In this architecture, the

layers provide software factoring and abstraction; tiers provide broad application partitioning and

distributed processing. This aspect of separation of concerns in “layering and tiering” is

significant to capture both design time knowledge and deployment time knowledge to optimally

leverage the compute capability. The general architecture is based on low-level subsystems

being used by high level application components. Specific components (or sets of components)

are then exported as services (inbound, outbound and internal). Figure 2-15 illustrates the three

architecture levels and their interdependence: The basic dependencies between the layers are

that upper layers depend on lower layers. This is a strict enforcement. Each layer is partitioned

across the tiers. An application can be thought of as being decomposed into the various layers

and tiers and the application of the various systemic qualities.

The Figure 2-16 shows how the eBay application is partitioned into tiers and layers. Each

layer has its own common code that is shared across the tiers. Layering provides the instruction

locality and tiering provides the data locality, thus eBay architecture minimizes the performance

overheads arise due to heavy network payload.

44

Systemic QuaDities

Application

Application Foundation

Kernel

Virtual Platform

Enterprise Services

co

Tiers
Compute & Storage

Network Infrastructure

Figure 2-15 EBay layering and tiering architecture

amongst

Multiple

Serve rs
Java VM

C^Kl
Fidccy

LDAP

Integration
Tier

: 11 Resource
Tier

TroulM*
XML or

fawbuei

duttoTO
Tr«ulM»

RO io
XML or
HTML

Multi Cores

Onpiche

Figure 2-16 EBay application partitioning into tiers and layers

Tier'!!

Cn<e>

Cormn-d

Frrt
CortroDii

Single logical Server Instance

EJB Container JAR

Mod.)

IM
AsMmbkr

Aec«»

Business
Tip t

Presentation
Tier

EAR.

Web Container WAR

45

2.2.5.2 QPipe:

QPipe [109] is a query centric relational database system that follows the execution model

of “one-operator, many queries” in contrary to traditional relational query engine designs that

follows the “one-query, many-operators” model. QPipe leverages better instruction locality and

data placement mechanisms, using query plans generated by its optimizer module. The execution

engine evaluates queries independently of each other, by assigning one or more threads to each

query. Similar commercial implementations exist for parallel data processing from vendors such

as Teradata [219].

2.2.5.3 XML Processing:

XML [244] [19] has become an important declarative language for web services.

Significant amount of research happened in enhancing the speed of XML processing. XML is

processed in four fundamental styles [18], namely SAX, DOM, StAX, and VTD [141]. Out of fl f

these four styles, SAX and API are predominant in the web service implementations, (a) Simple

API for XML (SAX) parsing: SAX-styIe parsing is event driven, where events are fired when

each of these XML features is encountered during the parsing. The user defines a number of call

back methods that will be called when these events occur; (b) Document Object Model (DOM)

construction. - In DOM style parsing, tree data structure is constructed in memory to represent

the XML document. Typically the memory used for DOM goes into three buckets namely (1) the

memory buffer that stores the input data, (2) the tree structure that consists of various element

nodes, and (3) the dictionary that stores special strings for the XML document. When fully

constructed, the data structure is passed to the application, which can then traverse or store the

tree. DOM-style parsing can be intuitive and convenient to integrate into applications. There are

several XML processing techniques [62] evolved in the last decade software level and hardware

level, ranging from binary XML [49], [249] to schema-specific parsing [48], [146], [69] to

hardware acceleration [149], [182], [119], [256]. Li Zhao et al addressed the performance

improvements at the Hardware level. They found that large instruction cache would greatly

impact the performance of computing when compared to the impact of data cache. To increase

the speed of the XML data parsing, they incorporated new instructions with special hardware

support for frequently used operations.

46

2.2.5.4 Memory specific implementations - REDAC

There are several research and development efforts that address the advancements in large

scale memories. These innovations in memory could influence the performance of Multi-core

infrastructures. The interesting memory specific implementations using non-volatile flash at the

hardware level are Solid State Disks (SSD) [116], FusionlO [88], Virident [231], and at the

software level are transactional memory implementations [101][l 12][61][110]. One such

implementation is REDAC memory server [94]. It is a set of lightweight mechanisms for

distributed, asynchronous redundancy within a shared memory multiprocessor. REDAC provides

scalable buffering for unchecked state updates, permitting the distribution of redundant execution

across multiple nodes of a scalable shared-memory server. The REDAC mechanisms achieve f

high performance by enabling speculation across common serializing instructions and mitigating

the effects of input incoherence.

2.2.5.5 Custom existing enterprise applications - Summary

The custom implementations such as eBay layering and tiering, relational query engine

QPipe, XML processing engines, and memory specific REDAC emphasizes the need to have an

inclusive and pluggable architecture that can borrow the best-of-the-breed implementations.

WS-Resource standard provides the ability to abstract the resources thereby facilitates the

pluggability of software and hardware implementation. Architectures mentioned in the literature

addressed some of the properties of the enterprise application; however there are other properties

that are not directly addressed by these architecture frameworks. These are stateful nature of the

enterprise application, highly available system, matured and well-defined infrastructure

governance processes that limit the ability to change the architecture and implementation at will.

2.3 DEPLOYMENT ARCHITECTURAL MODELS

The arrival of web services based middleware platforms promoted a “two life cycles”

paradigm for the development and deployment of an enterprise application respectively. First
life cycle JsJhe development life cycle, is a set of engineering activities that are involved in [|

converting the functional and non-functional requirements of the application into an executable

code. These activities are requirement analysis, design, development, unit testing and system

testing.

47

The second life cycle is the deployment life cycle, is a set of engineering activities, namely -

Packaging. Installing, Configuring, Activating, Deactivating, Maintaining and Uninstalling, that

are involved in making the executable code (a.k.a. software binary image) run on the hardware as

described in Figure 2-17. The deployment life cycle could be simple or complex depending on

number of components that constitute an application. The advent of component based software

construction methods [176] provided the ability to separate the application functionality into

multiple components. These components are then assembled to provide the functionality of the

overall application. Then this application is deployed on top of the middleware platform such as

J2EE application server, along with dependencies such as Apache Web server [12] and MySQL

database [130] server.

Figure 2-18 shows the deployment view for a web services based application. As seen here,

the deployment complexity gets enhanced, when the application needs to run on different

middleware platforms and the middleware platform needs to run on different operating systems

and the operating system needs to be configured for different server layouts. The configuration

is defined as a set of parameters with associated values. Configuration values can be set either at

server startup time or during the run time. At the application and middleware layer level,

advanced component based architectures used deployment frameworks [60] that are developed

using the declarative approach to define deployment information. The prominent examples of

deployment frameworks include J2EE [1] [74], .Net assemblies [159], Fractal mode2l [245] [99],

web services [46], and virtual appliances [214] on the cloud. Deployment Manager for Services

Applications (DMSA) [229] presents an implementation and the meta-model based approach for

the context-aware deployment of web service in constrained services execution environments.

Grid5000 test bed uses Master-worker [35] paradigm for deployment model definitions. Another

framework called DeployWare [82] comprising a meta model about deployment information, a

virtual machine for deployment and graphical interface for managing the deployment.

Virtualization is used for deployment and configuration at the operating system level. There

are three methods of virtualization at the operating system level [185] namely, hardware

virtualization, para-virtualization and OS virtualization that are used for deploying the hardware

resources for processing.

48

• Bundlingthe binary image

• Copying the binary image to the hardware

• Initializing and setup of various configurations

• Making the server available to use

• Removing the server from usage

• Adding patches to the existing software

• Removing the Binary Image from the hardware

Figure 2-17 Activities for an application binary in the enterprise

Deployment hierarchy

Application Application configuration specific to
Middleware platform

Middleware
Platform

Middleware configuration specific to
Operating system

Operating
SYSTEM

OS CONFIGURATION FOR SPECIFIC HARDWARE

Hardware

Current Literature
FOCUS (SEDA, REST,

MapReduce etc.)

Figure 2-18 deployment hierarchy

Web Services Client

Webserver

App Server Config

Current Literature

FOCUS (Piranha, Hydra,

Niagara, Blue Gene, eta)

Operating System

(Hardware/Chip
Multicore

COAF I Enterprise
Focus

(! Database Config

Figure 2-19 Focus area of the literature and COAF

49

Important examples of operating system level deployments specifically targeted to Multi­

core are FreeBSD Jails project [131] for simple UNIX partition, Linux containers [151], Solaris

containers, AIX workload partitioning (WPAR) [240], Parallels [185] and MontaVista Carrier

Grade Edition (CGE) [164]. Commercial implementations such as Tivoli Provisioning Manager

[118], Microsoft Windows Server Update Services [[218]], Red Hat Network, etc., and custom

prototypes [237], [207] aim to automate the deployment process across all the layers.

2.4 ARCHITECTURAL NEED TO UTILISE BOTH HARDWARE AND
SOFTWARE DEVELOPMENTS

2.4.1 Enterprise studies and the need for new system architectures

Enterprise class software platform manufacturers like IBM, Oracle etc., and hardware

platform manufacturers like Intel, Dell, HP etc., have exposed the need for new application

architectures to accommodate Multi-core in the enterprise. Knauerhase et al [136] observed the

dynamic run time behaviour of the application and the memory cache; they highlighted the

inadequacy of existing operating systems to handle the complexities arise due to sharing ofcache

in the context of Multi-core processors. Khun Ban et al [23] devised performance analysis

methodology for a Java based application to demonstrate the need for a new architecture that

leverages hardware performance improvements of Multi-core. Kim et al. [135] have identified

the need to explore methods to ensure fairness to ensure the system level parameter (cache

contention) is uniform across tasks. To accommodate performance at the user space, they

proposed a dynamic scheme that alters cache partitions periodically from the immediately

previous repartitioning. Researchers from commercial hardware vendors [201], [3], [86], and

[87] have sought a new solution that will help monitor and improve performance of generic

enterprise applications on Multi-core. Knauerhause et al [136] contended the near impossibility

of determining the behaviour of an enterprise application at compile time. Further, they observed

that when a task runs on a core 1, it uses the entire cache. When a second task runs on core 2 it

shares the cache with core 1, thus results in slowing down of both tasks. The quantification of

slowdown is dynamic, and the resultant performance degradation depends on individual task’s

behaviour at a given time, thereby highlighting the temporal characteristics of the enterprise

application. Altman et al. from IBM [5], highlighted the lack of intelligent thread migration

50

methodologies for scheduling the workloads amongst multiple cores, thus cite the impact of

spatial characteristics of the enterprise application. Intel Corp [23] identified the need for

architecture specific information at the application level to optimally schedule the workload

specific to an asymmetric features such as die area, etc. of Multi-core. Barroso et al. [26]

corroborated the need for examining the hardware level execution characteristics and the

application level execution characteristics for optimally scheduling enterprise workloads. Their

analysis considers both user level and kernel level execution statistics and highlight the need for

request-level behaviour characterization.

2.4.2 Summary of the Review of Literature

This chapter reviewed the state of the art in hardware and software architectures in the areas

of Multi-core servers and web services based applications respectively. It also discusses modern

methodologies that tackle Multi-core, memory and software architecture advances individually.

Furthermore, this chapter determines the need to have an architectural approach that marries the

best practice available in these architectures.

First we identified the general properties of the enterprise application, namely spatio­

temporal properties and stateful properties. Next, we studied and analysed number of

existing architectures, and solutions that have been proposed and prototyped for

exploiting parallelism in both hardware and software. There are definite advantages and

best practices that we can directly borrow from these architectures. The first step is to

make this business logic to be stateless. To achieve this, the application needs to modified

or rewritten or reconfigured. Modifying a well-running application for the sake of

incorporating a new hardware such as Multi-core may not be a pragmatic approach in the

enterprise. Therefore, we need a generic external mechanism to identify these

bottlenecks. These bottlenecks need to be correlated to the associated business logic and

the computing resources need to be relocated for better or optimum utilization.

Figure 2-19 highlights the focus for this thesis on improving the performance of the

enterprise applications, by observing at the operating system level and accordingly tune the

configuration parameters using the best practices and architectural approaches that are

highlighted in this literature.

3 DESIGN OF A CONNECTION-ORIENTED
ARCHITECTURE FRAMEWORK

In the summary of the chapter two, the need for a new architecture framework that overlays

and delivers the power of Multi-core hardware is envisioned. This architecture framework

enablesjveb services based enterprise applications use the connected context and thereby

provides a rich user experience. This new architecture framework called, Connection-Oriented

Architecture Framework on Multi-core (COAF) [233] for enterprise class web services, is

proposed. This new architecture targets the next-generation of enterprise applications based on

web services. Enterprise applications have a specific behaviour and characteristics, and are

usually averse to any form of change, which is perceived as a risk, especially at the source code

level. COAF is built to leverage the compute capabilities of the Multi-core without modifying

the existing web services based applications.

COAF introduces two key concepts namely “Connection-Orientation” and “Infrastructure

Awareness” and these two concepts are abstracted in six modules. COAF can be used to develop

and deploy enterprise applications of all kinds, which include general purpose applications like

Microsoft outlook, ERP systems such as SAP, Oracle financials, or custom made applications

such as core-banking system, ware-house management system, credit card processing systems

etc. and generally designed to be multi-threaded. A COAF will help leverage multiple threads

that are inherently available in Multi-core based hardware server platforms to serve the multi­

threaded software applications. COAF also helps the connectionless web service based

enterprise systems to work like Connection-Oriented stateful system, thereby provides a rich user

interaction patterns. . —- '

3.1 COAF ARCHITECTURAL CONSIDERATIONS

Based on the previous studies and observations in the literature survey, the following

considerations are summarized for designing the COAF architecture. Enterprise literature is full

of knowledge of existing best practices

Web services are given the treatment of first class citizens of the next generation enterprise

architecture. Web services abstract both software implementation of business applications such

as CRM application, ERP application, Human resources application etc., and hardware devices

52

such as Multi-core platform, flash memory etc. This “First class citizen” treatment for these web

services implies that we would be able to construct, operate and manage these services at run

time. Literature indicates that web-services will be largely used to construct business

applications that can be hosted on cloud in “Software as Services Model”. Enterprise research

and current trends indicated in Section 2.4.1, elicit the following key architectural considerations

for hosting enterprise class web services on Multi-core infrastructure.

1. Leverage matured multi-threaded application technologies and frameworks and

evolving technologies such as cloud. This is based on the assumption that enterprise

deployments are heterogeneous and enterprises prefer to have their own private

clouds [52] [243] in the future. This means that the architecture needs to be

inclusive in nature to plug various components of the systems, such as operating

systems (various Linux distros, various flavours of Unix like Solaris, Windows etc.),

databases such as MySQL, Oracle, SQL Server, Teradata etc., application server

environments like Websphere, Weblogic, JBoss, and application frameworks such as

Spring, Hibernate, Struts, .NET etc. This consideration assumes that the underlying

technologies for these components are natively multi-threaded.

2. Be agnostic to hardware virtualization techniques such as Linux OpenVZ [170],

VMWare [238], Xen hypervisor [251], Solaris Zones and Containers etc.

3. Leverages run-time deployment mechanisms that exist in various deployment

environments such as the deployment descriptor framework JSR-88 for Java [199],

Mina network application framework [14], and .Net deployment toolkits [205] for

assembly. This means the architecture needs to be pluggable.

4. Has a mechanism to abstract system management technologies and tools available in

open source and commercial licenses, such as Apache [10], HP Open View [114],

IBM Tivoli framework [118], Oracle management framework [175], etc.

5. Abstract different instrumentation mechanisms technologies such as Intel vTune

[125], LTTng [148], Solaris DTrace [156] etc, so that underlying system can be

53

monitored and analysed for the system performance. Comparison table for probosin

mentioned in Appendix I.

6. Strive to provide the aspects of Connection-Orientation till the execution end-point

for the web services. Emphasize for Connection-Orientation in COAF for enterprise

systems comes from the underlying fact that the enterprise class systems require

relatively “long-lived sessions”, and require very rich user interfaces, when

compared to current-generation web-service designs and architectures such as

Yahoo, Google etc. which are “short lived sessions”. Web servers such as Apache

and web application execution environments such as J2EE, .NET, typically provide

native support for application level session support for use-cases like shopping-cart ।
style. This state may be managed either on in-memory or on external server, for /।
example in J2EE environment it is typically HttpSession object used for maintaining V

the session.

7. Support configuration management. This is required for the architecture, so that

changes can be made to the existing configuration, instead of resetting the entire

system.

8. Support hot deployments, so that the scheduling policies can be enforced in real time

on the working system without stopping the system. This requirement is also

enforced due to the availability requirements [41] of the business applications.

9. Support the ability to receive and send real-time and near real-time notifications.

This is important for the system to receive and send the real-time feedback about

happenings in the system, so that scheduling policies can be adjusted to adapt to

those changes.

10. Complement existing operating systems with additional information instead of major

upgrade or change to existing operation environments.

54

3.2 KEY ARCHITECTURE CONCEPTS

The core architectural considerations listed in previous section are abstracted and realised

using two key architectural concepts. They are:

1. Scheduling for “Connection-Orientation” using contextual service dispatch

mechanism

2. Deployment configuration using “Infrastructure Awareness” using threshold values

obtained for various configurations using empirical data and feedback using metrics

such as “Cache miss”.

3.2.1 Scheduling for Connection-Orientation

In an application, typically the request flows from user space (application) to kernel space

(where the operating system schedules the task) to hardware as depicted in Figure 3-1. During

this process of request transition from user space to kernel space, context specific to application

(user request) is partially lost. This context loss is prevalent in the web services based systems,

where the web-service arrivals are partially non-deterministic.

The context loss makes it difficult for operating systems to make the correct assumptions

about caching and scheduling the process. This loss is highlighted and distinguished as

differences between the Figure 3-2 and Figure 3-3. TCP ensures the reliability of connection and

guarantees protocol connection between two network endpoints. However, after reaching the

server side endpoint the connection context is lost, as the request enters the service side

infrastructure for processing. Once, the response is created on the server side, TCP takes the

control on connection. Typical processing model for web services on the server side is stateless,

so an extra effort is required to store the connection context. This additional information extends

the connection upto the core compute endpoint instead of network endpoint. Thus, Connection-

Orientation enables the scheduling of the application process in the right core, so that scheduling

and processing efficiency of the application process is improved.

55

User
Space

Kernel
Space

Software
threads Hardware

Figure 3-lTransition of Request from User to Hardware

Figure 3-2 Execution under current connectionless architecture

Figure 3-3 Need for improvement using Connection-Oriented Architecture

56

3.2.1.1 Cache miss is the key metric

Once the system starts to execute user space requests such as web service requests, the

request is ultimately converted into data and instructions sets for the kernel space. For

example in the Figure 3-4, clients (client I, client 2, client 3, ... client n) are requesting an

account summary for their accounts in the financial enterprise. There are different priorities

assigned based on the type of the account. Margin account is preferred to retirement account.
The account summary template (and the associatedJIjZrendering logic I the instruction at the

browser) is common across all these service requests. As listed in Table 3-1, the record size

that is fetched for each account type may vary. All the above application level contexts are

lost when a request goes from application to operating system.

The client request gets converted in to data and instruction sets, while moving from

application to operating system. These data and instructions sets move towards processing core,

from disk, to memory, to cache, to register. During this movement, if the cache did not contain

data relevant to operating instructions, then Cache miss happens, and the data is again fetched.

When a process encounters more number of Cache misses, operating system pushes the current ||

application process to lower priority compared to a process which performs with less number of

Cache misses. [This results in a “bad user experience”. Fedorova et al demonstrated [77] that

“Cache miscount” is measurable and predictable, and contention for the L2 cache has the

greatest effect [255] [36] on system performance. This is further corroborated with Hartstein

[110], who elucidated the importance of “Cache miss” as the parameter that needs to be used

and understood. They begin with the theoretical limit proposed by Chow [50]. Their reasoning

for “Cache miss count” at operating system level can be correlated to a configuration parameter

at the application level thereby facilitating the traverse of application context to the operating

system for both temporal and spatial characteristics. Tseng et al. [224] identify the multi- |

threaded nature of many commercial applications^ma^-jhem seemingly a good fit with the

increasing number of available Multi-core architectures for enterprise applications like SAP-SD

and IBM Trade. They evaluate the performance scalability and the thread-placement sensitivity,

increasing number of coresjncreasing number of threads per core. They observe that enterprise

applications hide long latency memory operations (i.e. L2 misses) in a Multi-core system. (

57

Table 3-1 Table showing the number records and time to fetch for each account type

Account Type Records Size (KB)
Individual 2305 117
Global trading 2192 112
Retirement 2250 115
Margin 2114 110

Margin

Figure 3-4 Example scenarios for clients requesting Account summary for various accounts

58

The operating system is application agnostic, and hence, it cannot recover its performance

(reduction of Cache misses) without the knowledge of the application context. The performance
enhancement is limited by the dependence of the Cache miss rate on cache size the square root 4 '
rule as determined by Chow [50] in Equation (1) 11

-..G , - I M = M„C-p (1)

where M is the Cache miss, C is the cache size and the exponent, p, typically takes on values

between 0.3 and 0.7. The rate of re-referencing for a specific cache line is also theoretically

determined from Hartstein [110], as in Equation (2)

R = Rot^ (2)
1

where R is rate of re-references which is a decaying function of time t. The decay constant,

p, is found to take on values ranging from 1.3 to 1.7. Due to this reordering of thejiriority at the

operating system and the latency due to re-execution of instructions, the end user gets a

disconnected experience. The user experience will continue to get richer if

• there is a way to pass the application context to operating system or

• these requests are arranged in such a way such that the operating system uses

processing context efficiently

The two above requirements are established by two key components of COAF scheduler

module namely, ServiceMap and SchedulerState. The COAF scheduler will know where to

dispatch the request using the ServiceMap component; the scheduler will also know the count

and status of number of requests that are currently processed, using SchedulerState component.

Thus the scheduler can schedule the request to existing server or a new server. This contextual

information about the service scheduled ensures that the subsequent request can be dispatched to

appropriate core. This leverages spatio-temporal characteristics, thus ensuring the performance

local aspects to process the request. Therefore, in context, the key system level parameter that

correlates to the application performance is “Cache miss count”. _ *

3.2.1.2 Contextual service dispatch

Application context is available for affecting the behaviour of the application. Application

context can be spatio-temporally local, when the request dispatch is synchronized with

instructions and data. Two kinds of contexts namely design time context and run time context,

which together encapsulate the locality characteristics of the application, (a) Design time context

59

constitutes the prior knowledge available at the time of design with the developer about the

complexity of the service implementation, stateful or stateless nature of the service request, 10 or

compute intensive nature of the service, read-mostly or read-write or write-only nature of the

service etc; deployment environment information includes light weight Apache, which MySQL

storage engine, which version of Tomcat etc.; server capacity configurations such as dual core,

memory size, memory classification such as SSD, flash, DRAM etc., cache size etc.;

configuration parameters for the underlying system such as thread pools, timeouts, thread

priorities etc. (b) Run time context constitutes the knowledge gained in production environment
of the application about amount of memory ^j/being consumed, number of system processes that

are involved in processing the current service request, number of Cache misses that have

happened etc. Both the design time and run time contexts are needed to contextually dispatch the

service to the appropriate server.

3.2.2 Deployment configuration using Infrastructure Awareness

Enterprise applications are deployed on a heterogeneous infrastructure; for example, the

same application can be deployed on a single core server on a 2GB main memory or deployed on

a 32 cores server with 16GB main memory etc. Similarly, the infrastructure itself can have

various configurations; for example, a same 32 cores server with 16GB main memory can be

configured to accept 200 simultaneous threads or 1000 simultaneous threads. This knowledge

about the infrastructure and the deployment configuration is available to the enterprise

administrator. This knowledge is termed as “Infrastructure Awareness” and it can be used to

configure the system for optimal utilization. Parameters of the Infrastructure Awareness for

Multi-core that affect the performance of the system include, number of cores, interconnect

latency, main memory, size and organization of LI and L2 memory cache, memory fetch

latency, cache coherency models such as “huorder” or “out-qfiorder”, 32 bit or 64 bit,

availability of special processing capabilities such as XML streaming etc. Same service request

will have different processing behaviour based on the combinations of the above parameters.

Hence, it is important to understand these constraints to model the configuration of the overall

system. Once modelled, these configurations are used to arrive at threshold values. These

threshold values are “infrastructure aware” deployment configurations.

60

3.2.3 Performance model of COAF

In addition to “Cache miss count”, “contextual service dispatch” and “Infrastructure

Awareness”, two kinds of control mechanisms are used to tune the system continuously for

improving the utilization of the Multi-core server. They are admission control and feedback

control. Admission control is about controlling the number of requests that are dispatched to the

server, which is based on the application knowledge available at the time of deployment of the

configurations such as deployment descriptors, base line threshold configurations. Feedback

control is achieved by observing the run-time behaviour of the system against the pre-computed

threshold values of the deployment parameters. The feedback itself is received from the run time

logs of system events that are correlated to the application service patterns. To achieve these two

control mechanisms, two parameters namely “Core Configuration Effectiveness” and “Intra

Process Efficiency” are derived and these two parameters are detailed in Section 5.3.1 and

Section 5.3.2.

3.3 COAF - AN AMALGAMATION OF HARDWARE AND SOFTWARE

Figure 3-5 represents the marriage of innovations in hardware architectures such as Multi­

core with innovations in software architectures such as web services based service oriented

applications using COAF. This amalgamation has three major contributions; (1) establishes

Connection-Orientation design for the enterprise web services using additional state information

by explicitly marking the temporal and spatial locality characteristics of the web service; (2)

leverages the knowledge of the infrastructure to adjust the threshold of the system configuration;

and (3) ability to model both software and hardware resources as web services so that the

application architecture can be configured with various implementations during deployment.

61

Con NECTION

Orientation

COAF
Scheduled to
I RIGHT SERVER

Request is
Intercepted

Client initiates
Web Service request

Server to service
deployment map

Infrastructure
Awareness

Resource
thresholds

Feedback about
Multi core performance

Figure 3-5 COAF - An amalgamation of Multi-core with enterprise web services

Figure 3-6 Six modules of COAF and their interfaces

62

The core focus of COAF is to exploit the compute capabilities provided by recent and next

generation Multi-core platform, and it approaches the problem from both top-down (at user

space) and bottom-up (at kernel space) and thereby creates a hybrid solution that leverages the

fine-grained knowledge existing at the hardware platform level namely CPU, 10, Memory and

coarse-grained knowledge that exist at the user-application level. COAF houses instrumentation

mechanisms at fine-grained level to understand and to correlate the behaviour of the Multi-core

platform to its configurations. The combined knowledge of the system at design time and at run

time using feedback systems is used to setup and tune the optimum threshold for the system,

such that the multiple cores or threads at the server are engaged to provide optimum throughput.

Based on the current state of the run-time, the admission of future requests is controlled and the

web service flow is managed. The modelling of both hardware and software as services is

holistic in approach and it enables COAF to provide pluggable architecture that can leverage

future evolutions in Multi-core systems and large memory technologies. COAF uses enabling

technologies such large memory RAMs, solid state disks, flash based RAM to support its

Connection-Orientation paradigm.

COAF is scalable due to its implementation agnostic approach to its underlying services, for

both hardware and software services. The modelling of any resource in the COAF system as a

web service provides an opportunity to plug and play various services both at the infrastructure

level and application level, thereby ubiquity of COAF is established. Components of the COAF

themselves are web-services, and hence the architecture can be deployed without the overheads

of installing any new environment. COAF has a modular architecture which improves the

maintainability and simplicity.

3.4 MAIN COMPONENTS OF COAF

COAF consists of the following six building blocks as shown in Figure 3-6.

1. Resource provisioning module

2. Behaviour Information module

3. Threshold Configuration module

4. Core Scheduler module

5. System Management module

6. Notification Framework module

63

Resource provisioning module provisions a resource for processing the client service

requests. Resource is modelled as web service, and the resource could be a software resource or

hardware resource. System Management module deploys and undeploys the resource, and

manages the lifetime of the resource. Behaviour Information module provides the run-time

behaviour information of the resource using the non-invasive instrumentation mechanisms. This

knowledge obtained from Behaviour Information module is used as feedback for computing new

thresholds or confirming the existing threshold for optimum performance of processing servers.

Notification Framework module enables the communication between modules. Threshold

Configuration module houses threshold values for configuring each resource that is deployed in

the system. Core Scheduler module dispatches the web service request to appropriate server

based on the ServiceMap and SchedulerState information thereby provides connected oriented

experience. These responsibilities are illustrated in Figure 3-6.

3.4.1 Resource provisioning module

Resource provisioning module provides the resources for processing any web service

request. Two key components of this module are resource and the Resource Manager. As

depicted in the diagram below, the resource is a web service, and this web service could be either
software or hardware.^The^Eoice of modelling a resource as web service enables a standard

interaction pattern in various ways without affecting the existing setup. This also helps to

modify / enhance the resource implementation technology without affecting the architecture.

) ’'
3.4.1.1 COAF Resource is high level of abstraction:

Resource is the highest level abstraction of all resources that are deployed under COAF^\

architecture. The Resource could be a software or hardware. COAF treats the Resource as the

first class representation for its architectural framework. COAF exposes any resource in the

framework as a web service.

64

Notification framework

WEB SERVICES RESOURCE CONTAINER

' RESOURCE DEPLOY Resource Resource
/

REQUEST Instrumentation provisioning NOTIFICATIONS

Resource manager
(Resources map, Resource provisioning, Resource events)

Sofrware res
AccountOpen -

web service

Sofrware res
AccountSum ma
ry-web service

Software res
ViewAccount -

web service

A

w

Sofrware res
DeleteAccount
-web service

DeleteAccount-
C++

notific
ation

notifi
cation

ViewAccount-
Java

AccountOpen-
Java

AccountSumma
ry-C++

Hardware
res web
service

(hard-disk)

Hardware
res web
service

(memory

Hardware
res web
service

(core 1 ws)

Hardware
res web
service

(core 2 ws)

Hardware
res web 1

i service
(corenws)

Physical
hardware

res
(hard-disk)

Physical
hardware

res
(memory)

Physical
hardware

res
(core 1)

Physical
hardware

res (core 2)

Physical
hardware

res (core n)

notifies
tion

notification

Resource provisioning module
Figure 3-7 COAF Resource Provisioning Module

65

In the Figure 3-7, there are two kinds of resources that are exposed as web services.

Hardware resource like Hard-disk, memory, corel etc, are hardware resources and they are

exposed as web services to the consumers. Similarly, software resources like OpenAccount,

CreateAccountSummary, etc. are software resources exposed as software web services. This one

level of abstraction helps to plug any appropriate implementation into the architecture, so that

COAF can be complemented with both existing architectures and new architectures. This

abstraction as a web service also leverages the virtualized architectures.

A resource interacts with its eco-system using this web service interface. The modelling of

web service based interface makes web as the platform for deployment and collaboration with

other services. Any implementation can be converted into web service using standard tool kits.

For example, if an implementation is developed using Java language, then it could be converted

into service using simple annotation tags. Resources can be modelled using various standard

programming models such as object orientation, component orientation, service orientation etc.

This flexibility enables the composition of a resource in multiple ways using inheritance,

assembly etc. A resource can emit events and notifications. Any module of COAF that is

interested in these events can subscribe to associated notifications.

3.4.1.2 Resource Manager

The Resource Manager is an independent component of the resource module. This

separation of Resource Manager helps the Resource Manager to manage the resource which

could be local or remote and can live any process space. The Resource Manager gets a request

from Core Scheduler module for resource provisioning, so that scheduler can schedule the tasks

to that resource. Resource Manager provides the resource if it already exists. If the Resource

Manager does not have the resource then it requests the System Management module for a fresh

deployment of a resource through a notification. Once the System Management module deployed

the resource, Resource Manager can start to provision the resource, till the end of the life of the

resource. Resource Manager interacts with Behaviour Information module for instrumentation

of a resource, and with Threshold Configuration module for providing notifications and events

about the resource.

66

Information

module

Multiple

views

Web

Service

Resource

Configuration view
Deployment view
Lifetime view

Figure 3-8 Provisioning a Resource

Figure 3-9 Resource Manager

framework
Instrumentation framework

Resource (hardware BMH System
or software management

resource) module

Behaviorinformation module

Figure 3-10 Behaviour Information module

67

3.4.2 Behaviour Information module

Behaviour Information module provides the run-time behaviour information of the system.

It deals with two kinds of state changes that happen within an enterprise infrastructure. First is

about the status of the resource itself - like whether the resource is live, running, waiting, etc.

and the second is about behaviour of the environment. Both these information together

determine the behaviour of the overall system. Thus, COAF provides a comprehensive approach

to manage the system in a closed loop. Behaviour Information module consists of Probe

Instrumentation framework containing probe definitions, probe injection points and probe

handlers, and the notification agent that interacts with System Management module and

Resource Provisioning module.

3.4.2.1 Probe Instrumentation framework:

Probe instrumentation framework as depicted in Figure 3-11 consists of various probes and

their definitions, probe injection points and their respective handlers. Probes are instrumented at

the resource level to know the behaviour of the resource. There are various kinds of probes and

the associated frameworks [223] are used for enquiring the behaviour of the resource. The

probing could be static or run-time, intrusive or non-intrusive. There are three components that

constitute the instrumentation framework. They are probe definition, probe injection points, and

probe handlers. Probe definition defines the granularity of the probing. Probes could be macro

level probes which provide a highly abstracted view of the component or micro level probes

which provide fine-grained implementation view of the component. Variable granularity of

probe definition is essential as the system consists of various kinds of resources from hardware

to software resource. This independent view of probe definitions helps to plug in various kinds

of pre-built probes into the system based on the resource that needs to be probed. Probe

definition mechanisms vary depending on the underlying instrumentation framework. Probe

injection points define the probe placement mechanisms within the system. This is essential to

isolate and inspect a specific component within the system like inspecting the behaviour at main

memory level etc. Instrumentation framework picks the injection point definitions and places the

probes in those injection points. Probe handlers define the actions that the probes supposed to do

to get the measurements. The actions could be streaming of events to a specific notification

system, or writing the log to a file, or calling back some other action within the framework or

68

any provider within the system. The information gathered from probes is used in various ways,

like setting up a baseline and threshold values, mapping the application needs to the underlying

infrastructure, and fine-tuning the thresholds by correlating the notifications that are emitted

from the web-services to the application level events. These information providers are both

software and hardware probes that can be instrumented at various levels to provide the

information across various layers of the service, from application layer to operating system layer

to hardware level. The probes could be both non-intrusive and intrusive and they could be

abstracted as a web service, so it can be deployed within the web services framework. The

information builders are implemented as web services, so that the interface for interacting with

other web services are standards based and do not require any special execution environment for

plugging them. These information builders can be setup to operate and capture the run-time

information at various levels.

3.4.3 System Management module

System Management module implements all the functions required to deploy, to undeploy

and to manage a resource in COAF framework. System Management module works in tandem

with Core Scheduler module, Resource Provisioning module and Threshold Configuration

module. The internals of the System Management module is given in the Figure 3-12. System

Management module contains two components: (1) Deployment manager and (2) Notifier and

the design of these components as follows:

3.4.3.1 Deployment Manager:

Deployment manager is the key component of System Management module. System

Management module receives the request for deploying a resource from the Core Scheduler

module. Deployment manager picks up this request for deploying the service. Similarly, System

Management module receives the message for undeploying a resource, which is also passed to

deployment manager. Thus, deployment manager does two things: (a) Deploy the resource and

(b) Undeploy the resource. The deployment manager interfaces with configuration management

module to fetch the configuration information required for deploying the resource. Figure 3-13

depicts the components and the workflow in deploying a service.

69

THRESHOLD

Configuration
MODULE

Resources
Web services
Application /

DATABASES

Resources
OS / PLATFORM

LEVEL

Figure 3-11 Probe Instrumentation Framework

HARDWARE AND AC i UAL
RESOURCE

resource
Basic health or

RESOURCE

Figure 3-12 Three Components of the System Management module

70

Deployment Manager subscribes to deployResource event. This message consists of the

information such as name of the component, the server environment to install the component,

domain to bind, configuration file associated with the component, and notification message that

need to be sent in case of success I failure. Once the deployment manager gets the notification, it

dissects the message to identify the details that are expected as above. Then the manager

requests the configuration server to pull the default configuration related to that component.

This configuration server is maintained by Threshold Configuration module. There is a deployer

dedicated for each kind of component as seen in Figure 3-12; there is a dedicated deployer for

Apache web server; similarly there is a deployer for MySQL database. Deployment manager

calls the deployer along with associated deployment configuration settings. Deployer then

installs the component, and initializes the component with default configuration settings. Once

deployed, the deployment manager creates a message about the availability of the resource and

hands the message to Notifier. Similarly, Deployment manager gets the undeployResource

message from the Notification Framework module. Request for undeployment of a resource can

come for multiple reasons; for example, a resource may go into non-steady state and become

unavailable or system does not require the services of a resource (process_payroll service is

needed only in the last week of the month and not required for the remaining periods of the

month). Deployment manager undeploys the resource and creates the message about the non­

availability of the resource. This message is delivered to the Notification Framework module by

the Notifier.

3.4.3.2 Notifier

Notifier subscribes to messages from various publishers like Resource Provisioning Module,

and Core Scheduler module through Notification Framework module. Similarly, Notifier

publishes the messages to Core Scheduler module and Resource Provisioning module through

Notification Framework module. Notifier subscribes to message from Core Scheduler module

for deployResource message. Notifier receives the message deployResource from Notification

Framework module, and splits the message header into various parts that are important for

deploying the resource. Then, it passes this information to deployment manager. Similarly,

Notifier receives the message for changing the configuration parameter value for a resource.

Notifier then dismantles the message and passes relevant information to deployment manager for

71

changing the configuration parameter of the resource. Once the resource is deployed in to the

system or undeployed from the system, Notifier publishes the messages appropriately to the

Notification Framework module.

3.4.3.3 Configurations

Configurations are the deployment instructions that are required for deploying the resource.

System Management module uses these configuration files to setup and initialize the resource

while deploying it. Configuration files are in text file format. These files are stored in the

Configuration Server that is maintained by the Threshold Configuration module.

3.4.4 Notification Framework module

Notification Framework connects all the other modules of COAF. It transports the messages

about the events that happen in the system between the COAF modules. System events are

converted into notifications. These notifications are submitted to Notification Framework

module for transportation. There are three components of the Notification Framework module,

namely Subscription manager, Event consumers and Event producer as shown in Figure 3-14.

Subscription manager maintains the information about validity of the subscriptions of event

consumers; it also provides the status of the subscriptions for event consumers. Event consumer

has to subscribe for events; the subscription is valid for a particular time period. If the

subscription has expired, then event consumer can renew the subscription or unsubscribe for

receiving the event notifications. There are various notifications corresponding to the events

happen in the system. System Management module can publish the health of the resource;

Resources themselves can publish the notification about their health; Behaviour Information

module provides notifications about start of the information collection, and about the availability

of collected information for further correlation; Threshold Configuration module sends

notifications about changes in the deployment configuration parameters; Core Scheduler module

can request for the deployment of a new resource; Notifications framework is the important

module in the COAF, because the other modules are dependent on the notifications provided by

the framework for further actions. Notification Framework module maintains the repository of

providers and subscribers and ensures the notifications are appropriately dispatched to the

subscribers, and ensures [181] all the messages are delivered during the dispatch process.

72

changing the configuration parameter of the resource. Once the resource is deployed in to the

system or undeployed from the system, Notifier publishes the messages appropriately to the

Notification Framework module.

3.4.3.3 Configurations

Configurations are the deployment instructions that are required for deploying the resource.

System Management module uses these configuration files to setup and initialize the resource

while deploying it. Configuration files are in text file format. These files are stored in the

Configuration Server that is maintained by the Threshold Configuration module.

3.4.4 Notification Framework module

Notification Framework connects all the other modules of COAF. It transports the messages

about the events that happen in the system between the COAF modules. System events are

converted into notifications. These notifications are submitted to Notification Framework

module for transportation. There are three components of the Notification Framework module,

namely Subscription manager, Event consumers and Event producer as shown in Figure 3-14.

Subscription manager maintains the information about validity of the subscriptions of event

consumers; it also provides the status of the subscriptions for event consumers. Event consumer

has to subscribe for events; the subscription is valid for a particular time period. If the

subscription has expired, then event consumer can renew the subscription or unsubscribe for

receiving the event notifications. There are various notifications corresponding to the events

happen in the system. System Management module can publish the health of the resource;

Resources themselves can publish the notification about their health; Behaviour Information

module provides notifications about start of the information collection, and about the availability

of collected information for further correlation; Threshold Configuration module sends

notifications about changes in the deployment configuration parameters; Core Scheduler module

can request for the deployment of a new resource; Notifications framework is the important

module in the COAF, because the other modules are dependent on the notifications provided by

the framework for further actions. Notification Framework module maintains the repository of

providers and subscribers and ensures the notifications are appropriately dispatched to the

subscribers, and ensures [181] all the messages are delivered during the dispatch process.

72

Mysql
DEPLOYMENT

Java

Apache
DEPLOYMENT

CONFIGURATION

DEPLOYMENT
CONFIGURATION

CONFIGURATION

Deployment
MANAGER

Configuration
server

Figure 3-13 Deploying a Service

getStatus

Figure 3-14 Notification Framework module

Figure 3-15 Threshold Configuration module

73

3.4.5 Threshold Configuration module

Threshold Configuration module shown in Figure 3-15 sets all the deployment information

along with threshold values that can exploit the power of Multi-core environment for the best

performance. Threshold Configuration module first sets up the default threshold parameters

based on the information available at the design time of the resource prior to deploying the

resource under COAF. For example the parameter could be “the default number of threads for

MySQL server”. Using this default information, System Management module deploys the

resource. Once the resource is deployed and initialized with default values, then the resource

becomes ready for processing the workload. Then, the Behaviour Information module

investigates the behaviour of the resource against the desired design goals, collects the metrics

and creates the output logs. These logs are used for correlating the resource behaviour against the

resource performance using various parameters. If the performance is optimum then, the

threshold parameters are maintained. If the performance is not optimum, then the threshold

parameters can be further tuned for the resource. Key components of this module are

Configuration server, Correlation map, Correlation engine and Notifier.

3.4.5.1 Configuration server:

Configuration server houses all the deployment configuration parameters along default and

threshold values for each type software and hardware resources that are deployed in the system.

The default configuration values are provided either by platform provider or provided by the

platform administrator based on his/her knowledge of that platform. Configuration server also

contains the meta-data about the software binary images for the applications such as MySQL,

Apache, etc. Deployment configuration parameters and meta-data information about the binary

images together provide the complete information for System Management module to deploy the

resource.

3.4.5.2 Correlation map:

Correlation map provides the association between the deployment configuration parameters

and the observed parameters at the operating system level. This map is first created using the

design time information that is available with the application developer and the system

administrator. Some of the mappings in the Correlation map are: (1) number of page faults is

74

mapped to record size that is returned from the application query; (2) number of Cache miss

count is mapped to number of client threads configured in the thread pool. After the correlation

map is setup, the associations in the correlation map become the basis for setting up the default

values and threshold values for deployment configuration parameters. After the resources are

deployed using these configuration values, the system starts to process the workloads. The new

knowledge gained by observing the operating system parameters, can further be used to enhance

the correlation map or add new parameters to the correlation map.

3.4.5.3 Correlation engine

Correlation engine provides the algorithms and mathematical models to group the events,

correlate and finally identify the threshold values. Correlation engine uses the correlation map to

mark the parameters that need to be observed at the operating system level. Thus, correlation

engine plays a vital role in bridging the design time knowledge with the actual run-time

behaviour of the system. Correlation engine takes the input from Behaviour Information module

in the form of standard input log files. This log file is parsed and the events relevant to

parameters that are mapped in correlation map are extracted. These events are Cache misses,

page faults, unaligned memory access, stack overflow, invalid address, etc. These events are

then correlated with deployment parameters as identified in correlation map. The deployment

parameter can be tuned for the optimum utilization of the Multi-core system. The newly found

threshold values of the deployment configuration parameters are packaged and sent as a

notification message. If the deployer reset the resource configuration parameters, then

correlation engine repeat the cycle, observing, collecting, extracting and correlating, till the

system attains the stable state for optimum utilization for desired performance then the threshold

values are reset and published in the Notification Framework module. Correlation engine is a

web service and hence the implementation can plug in various correlation/clustering algorithms.

Thus Threshold Configuration module takes into account design time context of the application

developer and the run time context of the actual application, to arrive at the threshold values for

the optimum utilization of the Multi-core processor servers.

75

mapped to record size that is returned from the application query; (2) number of Cache miss

count is mapped to number of client threads configured in the thread pool. After the correlation

map is setup, the associations in the correlation map become the basis for setting up the default

values and threshold values for deployment configuration parameters. After the resources are

deployed using these configuration values, the system starts to process the workloads. The new

knowledge gained by observing the operating system parameters, can further be used to enhance

the correlation map or add new parameters to the correlation map.

3.4.5.3 Correlation engine

Correlation engine provides the algorithms and mathematical models to group the events,

correlate and finally identify the threshold values. Correlation engine uses the correlation map to

mark the parameters that need to be observed at the operating system level. Thus, correlation

engine plays a vital role in bridging the design time knowledge with the actual run-time

behaviour of the system. Correlation engine takes the input from Behaviour Information module

in the form of standard input log files. This log file is parsed and the events relevant to

parameters that are mapped in correlation map are extracted. These events are Cache misses,

page faults, unaligned memory access, stack overflow, invalid address, etc. These events are

then correlated with deployment parameters as identified in correlation map. The deployment

parameter can be tuned for the optimum utilization of the Multi-core system. The newly found

threshold values of the deployment configuration parameters are packaged and sent as a

notification message. If the deployer reset the resource configuration parameters, then

correlation engine repeat the cycle, observing, collecting, extracting and correlating, till the

system attains the stable state for optimum utilization for desired performance then the threshold

values are reset and published in the Notification Framework module. Correlation engine is a

web service and hence the implementation can plug in various correlation/clustering algorithms. (I

Thus Threshold Configuration module takes into account design time context of the application

developer and the run time context of the actual application, to arrive at the threshold values for

the optimum utilization of the Multi-core processor servers.

75

3.4.5.4 Notifier

Notifier subscribes to the messages from Behaviour Information module at the start of

collection of logs and from Threshold Configuration module at the start and the end of

correlation analysis. Notifier generates messages through Notification Framework module about

changes in threshold values based on correlated parameters. These notifications enable the

System Management module to change the deployment parameters, and thus optimize the Multi­

core utilization. Notifier also subscribes to the messages from System Management module

after the completion of deployment, undeployment and resetting of configuration parameters.

3.4.6 Core Scheduler module

Core Scheduler module provides the Connection-Orientation for the system. This module

works in tandem with Threshold Configuration module and System Management module to

achieve the goals of Connection-Orientation. Core Scheduler module has five components

namely, Interceptor, Scheduler, ServiceMap. SchedulerState, and Notifier. The Figure 3-16

depicts the interactions happen within Core Scheduler module and with other modules.

Connection orientation

Figure 3-16 Core Scheduler module interactions

76

3.4.6.1 Interceptor:

Interceptor acts as a proxy for the COAF system. Interceptor intercepts the incoming web­

service requests and outgoing responses. Interceptor dismantles the header information, and

identifies the destination service along with the associated operation and the destination web

service. Similarly, it intercepts the outgoing response and overrides any information at the

message header relevant to requested client. Interceptor looks at the ServiceMap to identify

service location so that it can dispatch the request to that service. If the destination service is not

present in the ServiceMap, then Interceptor rejects the request. If the destination address is valid

then the interceptor copies the original server information of the header in Schedulerstate and

then overrides the portType of the header to the correct server address. After overriding then it

hands over the request to the Scheduler. On return from scheduler as a response, Interceptor

overrides the source address of the response, so that the response can be sent back to requestor.

3.4.6.1 Scheduler:

Scheduler is the final handler for the incoming request before it is dispatched to actual server

that is serving that request. Scheduler maintains a private session object called SchedulerState

for each service to establish the Connection-Orientation. The count is incremented when the

request arrives, and similarly the count is decremented when the response is sent from the

system. The total number of service requests that are currently served is maintained in the

SchedulerState.

3.4.6.3 ServiceMap:

ServiceMap is the repository with comprehensive information about the services that are

deployed under COAF. The information contained in the ServiceMap is: target Service Name,

operations exposed on the service, protocol to dispatch to the service, and server destination to

dispatch the service. This ServiceMap is used by Interceptor to validate the service request and

if the request is valid, then Interceptor will process the request otherwise it will reject the request.

77

3.4.6.4 Schedulerstate:

SchedulerState provides the vital information for establishing “Connection-Orientation” in

COAF. SchedulerState is maintained locally for each web service. SchedulerState is responsible

for propagating the application context to the operating system, thereby allowing operating

system to perform optimal scheduling. The information maintained in SchedulerState is both

static and dynamic information relevant to a web service, and this includes scheduling policy

(round robin etc. - if there is a cluster of servers), admission priority policy (Priority A requests

will go to server A, all others requests will be dispatched to other server), alternate destination

server, number of requests that are currently served, number of requests completed, and the

health of the destination server (active, getting repaired, faulty).

3.4.6.5 Notifier

Notifier generates notifications and publishes them through Notification Framework

module. The notification is “deploy a new server” when the number of requests reaching the

admission policy levels in the current server for a given web service. This message is published

to System Management module for deploying the new server. Notifier subscribes to the

notifications from System Management module about the completion of deployment of the

server. Notifier also subscribes to notifications from System Management module about the

non-availability of the server. In those scenarios, the scheduler will update the ServiceMap and

SchedulerState classes about the non-availability of the undeployed server.

3.5 ARCHITECTURE BOOTSTRAP AND MODULE INTERACTIONS

Figure 3-17 highlights the components that need to be setup as part of initialising the COAF

architecture. Transport senders and transport receivers manage the protocol aspects for receiving

web service requests from clients and sending web service responses to clients. SOAP

processing model takes care of separating the headers of the web service requests from the body.

The information model consists of all the standards that govern the definition of various

resources that are deployed on the system; this includes the web services resource frameworks,

web services distributed management, web service notification etc, and the global configuration

files that are associated with the deployment of the resources. Notification Framework module

sets up the event notification management framework. Deployment is about installing all the

78

resources (hardware and software), initializing and making those resources ready for processing

the client request. Once deployed the COAF system is ready to receive the web service requests

for processing.

Figure 3-18 depicts the scheduling of web service request and the interactions that happen

between the modules to fulfil the processing of this web service request. Client sends the SOAP

based web service request to COAF system. Core Scheduler module intercepts all the incoming

client requests. The SOAP request contains header and payload, with references to service end

points location. This Core Scheduler identifies the service from the header and looks for the

service in the ServiceMap. If the ServiceMap does not contain the service, the request is sent

back to the client with “service not found” response. If the ServiceMap contains the service,

then the scheduler marks the details of the client request that are found in the header to

SchedulerState object. Then it identifies the server from ServiceMap where the service to be

dispatched to. Core scheduler modifies the header information, and dispatch the request to the

server. Once the server completes the processing of the request, the response is created. Core

scheduler intercepts the response and overrides the address with original client address that is

available in SchedulerState. Every server is capable of processing x number of requests at any

point in time. However, if the incoming traffic increases beyond this “x” value, then Core

Scheduler requests for a new server. System Management module picks up the request for the

new server, and identifies the deployment information including configuration parameter

associated with that server. System Management module deploys the server and sends the

notification that server is ready for processing. Scheduler adds the new server into ServiceMap

and start to schedule the incoming requests to the new server. The number of requests that can

be processed in a given server is determined by observing the behaviour of the server at the

operating system level. The Behaviour Information module collects the run time behaviour of

the server using non-invasive instrumentation techniques. The collected information is refined

and relevant events at the operating system that are mapped with deployment parameters are

extracted. Correlation engine looks to match the events such as Cache miss/page faults,

unaligned memory access, stack overflow, invalid address, etc, with the system parameters and

suggest the parameters that could be adjusted. The threshold values are arrived at by modifying

the deployment parameters to arrive at the optimum performance at the operating system level.

79

Figure 3-17 Architecture Bootstrapping

Figure 3-18 Service Scheduling and Module interactions in COAF

These threshold values are then stored in the configuration server. These values get

incorporated into deployment configurations by deployer of System Management module. The

Notification Framework module provides “publish and subscribe" capabilities for all the

modules and assures the receipt of notifications to all recipients. Thus the COAF architecture

uses deployment configurations to adjust the behaviour of the Multi-core system without
modifying the operating system or the application.

80

3.6 SUMMARY

In this chapter, we presented the architectural considerations and the overall design of

COAF. Next, we explained the key architectural concepts “Connection-Orientation” and

“Infrastructure Awareness” along with key measurement “Cache-miss”. Then, we discussed the

design details for each of the six modules and their external interfaces. Finally, we discussed the

initialization and the interactions between the modules. The implementation details of COAF are

discussed in the next chapter.

81

4 IMPLEMENTATION MODEL OF COAF

This chapter details the implementation details of COAF modules, which depict the concepts

that are discussed in the previous chapters namely,

1. ability to model and implement the software and hardware as WS-Resource

2. ability to contextually group and dispatch the service requests to appropriate server

3. ability to non-intrusively capture the production logs of the working system

4. ability to leverage the compute power of the core optimally

5. Scalable modular architecture to accommodate various implementations

6. Pluggable architecture to accommodate continuous improvements available in various

engines such as correlation engine, threshold engine, etc.

The overall implementation details for six modules of COAF are shown in Figure 4-1 along

with the choice of the implementation technology and the details of the interactions between

modules is highlighted. The next six sections detail these six modules.

4.1 RESOURCE PROVISIONING MODULE

Resource provisioning module ensures that a compute resource is available for processing

an incoming request. The key components of Resource Provisioning module is the stateful

resource and the Resource Manager.

4.1.1 Concept of “Resource model”

Resource is an abstraction over hardware like Multi-core server and software like Apache

web server that is deployed in the system. This abstraction model helps to plug in a component
with a standard interface into the architecture, thus IT enables the interchangeability of \\

implementations and configurations without the need for changing the client code. Resource can

have multiple views; this means a resource can have different set of operations for different

kinds of clients. Resource is a stateful resource; this means a state of the resource can be set and

queried at any point in time; this ability is useful for managing the resource. Resource is

standards based interface; the clients interact with the resource using standard interfaces, without

knowing the internal implementations of the resource.

82

Client application (web service

client from PHP, MySQL client)

Figure 4-1 Overall Architecture Diagram for COAF

Web Service Client

Set /Get disk speed
Set/get disk expiry

get RAM
CURRENT

USAGE

SET

THREADPOOL

SIZE

Get

JVM
HEAP SIZE

WS-Resource HW

Hard Disk
Properties/
Operations

WS-Resource SW

Java App Server
Properties/
Operations

WS-Resource SW

MySQL DB
Properties/
Operations

WS-Resource HW

RAM
Properties/
Operations

RAM
Hard disk

Figure 4-2 Resource Modelling

MySQL
DBServer

JavaApp
server

83

4.1.2 Implementation details for COAF resource

Web services Resources Framework (WSRF) [179] is used for modelling a COAF resource.

Apache Muse [15] is used as the implementation container for WSRF standard. WSRF standard

supports an implementation of a stateful resource of the type called WS-Resource (WSR). WSR

is a web service standard defined as the part of WSRF. It natively supports the object orientation

model thus implementing state and operations. Additionally, WSR supports the concept of

views. These two concepts namely the object orientation and the view, enables the process of

externalizing the resource provisioning aspects from its internal implementation. All the

resources deployed in the COAF system are a stateful resource of the type WSR and each

resource implements three key interfaces namely, (1) WSResourceProperty for managing the

properties of the resource, (2) WSResourceLifetime to mange life time of the resource, and (3)

WS-Notification to manage the Notification process between web services. All these three

interfaces are mandatory so that the basic needs of manageability are addressed. The diagram

Figure 4-2 depicts the resource model in the COAF framework. As shown in the Figure 4-2,

both hardware (hard disk and RAM) and software (MySQL DB server and Java App server) are

modelled as resources. The Figure 4-3 shows the depiction of hard disk as a web service

representation in XML language. For hard-disk as a resource, the operation name on the

resource is SetExpiryTime, and the underlying property corresponding to this operation is

ExpiryTime. This property ExpiryTime defines the time upto which the hard disk will be

available for storing the information, and beyond this defined time the hard disk will not be

available for storing the information. This property ExpiryTime and the operation

SetExpiryTime together could be used for scenarios when the hard-disk needs to be taken out of

the production; for the sake of either backup or maintenance. Similarly, for hard disk, another

operation is SetHardDiskSpeed and the associated underlying property is HardDiskSpeed. This

is especially useful to setup the hard disk spinning speed, for a hard disk that is capable of

running at multiple speeds; the based on the knowledge of “main memory access speed” and

“hard disk speed” we could correlate the IO latency and accordingly schedule the request

dispatch that would suit that environment setting.

84

<wsrf-rp:GetResourcePropertyDocumentResponse>
<Disk xmlns="http://COAF/harddisk,’>

<operation_properties>
<ExpiryTime>20103anl0-2200-EST</ExpiryTime>
<HardDiskSpeed>4000</HardDiskSpeed>

</operation_properties>

Figure 4-3 Code Sample - Resource Properties

<MYSQL_DB_Server xmlns="http://COAF/MySQLdbserver">
<operation_properties>

<MaxThreadPool>40</MaxThreadPool>
<MinThreadPool>20</MinThreadPool>

</operation_properties>
<wsdl:portType name="MySQLDbServerService"

wsrf-rp:ResourceProperties="MySQL_DB_Server ">
<wsdl:operation name="GetMaxThreadPool">

<wsdl:input message="wsrf-rpw:GetMaxThreadPoolRequest" . . />
<wsdl:output message="wsrf-rpw: GetMaxThreadPoolResponse" . ./>

<wsdl:operation name=,,GetMinThreadPool”>
<wsdl:input message="wsrf-rpw:GetMinThreadPoolRequest" . . />
<wsdl:output message=”wsrf-rpw: GetMinThreadPoolResponse” . ./>

</wsdl:operation>

</wsdl:portType>

Figure 4-4 Code Sample - Resource Map for an application MySQL server Properties

85

Similarly, the software can be modelled as WS-Resource, and the Resource properties and

operations can be used to setup the software deployment configuration. For example, the XML

definition for MySQL database server as WS-Resource is shown in code sample Figure 4-4.

There are more than two hundred deployment parameters to configure the MySQL server; out of

these parameters, two properties namely MaxThreadPool and MinThreadPool are shown in the

figure that are used for setting up maximum and minimum thread pool size for MySQL server

respectively. To view the current settings of these two parameters, the operations

GetMaxThreadPoolRequest and GetMinThreadPoolRequest are used. Similarly all the

configuration parameters for a given resource can be set queried using the above methods. This

way of externalizing a property and defining it using an XML definition helps in querying and

modifying a resource at real time; this external ization of operations and property helps to store

the state externally, thereby preserving the temporal behaviour of the system; these stored values

are then used for correlating the configurations parameter set at that point in time with the

behaviour of operating system. This ability to query the deployment configuration helps us to

understand the infrastructure setting in a point in time, which is one of the key “Infrastructure

Awareness” aspect; similarly the ability to setup the deployment configuration on a resource

helps us to modify the configuration parameter value for optimum threshold values.

4.1.3 Resource Manager

Resource Manager is a web service. It provides the interface to external world for accessing

the resource. Once the System Management module deploys the resource, Resource Manager

starts to dispatch the requests to the resource. Clients come through Core Scheduler module into

Resource Manager for accessing the resource. Resource Manager acts like a resource factory;

thus, Core Scheduler is able to call the Resource Manager to establish the Connection-

Orientation with the resource for dispatch the request. This ability of the Resource Manager for

establishing the Connection-Orientation is an important requirement for the COAF based

enterprise application.

4.2 BEHAVIOUR INFORMATION MODULE

Behaviour Information module provides the run-time behaviour information of the system.

This is done by instrumenting the system with appropriate probes on the resources and the

collected information is provided to the subscribers in the form of notifications. This module

86

consists of Probe instrumentation framework, Output provider and Notifier. Probe

instrumentation framework provides the mechanism to observe and measure various parameters

and these measurements are log files. Output provider converts the generated logs into

meaningful output files, which the Threshold Configuration module can consume and do further

analysis. Notifier informs the availability of log files to external systems.

4.2.1 Probe Instrumentation framework:

Probe instrumentation framework shown in Figure 4-5 consists of non-intrusive information

providers that can extract both static and dynamic real-time information of the system behaviour.

This information could be fine grained or coarse grained; fine-grained at the level operating

system and answer the questions such as which process was running on CPU, the number of

Cache misses, how many times the process was interrupted and rescheduled etc.; coarse grained

at the level of web service, and answer questions such as how long it took to execute a web

service operation. DTrace [103] framework is used as the non-intrusive in-production

instrumentation framework for COAF. There are other instrumentation systems such as

SystemTap [216], and LTTng [148], are available for observing the system at the operating

system level as shown in Appendix I. DTrace has direct support for enterprise class platforms

such as Apache, MySQL, and PostgreSQL. There are two steps involved in setting up the probe

instrumentation framework as shown in Figure 4-6; the first is to setup and configure the metrics

for the probe infrastructure, and the second is to capture the logs that are emitted from the probes

and store them in the appropriate directory, so that the output provider can fetch these logs to

create meaningful output files.

4.2.2 Output provider
Output provider as shown in Figure 4-7 is a set of adaptors to convert the input files

obtained from Probe instrumentation framework into meaningful output files. DTrace

framework creates a set of log files from the probes. Probes dump the raw data into these log

files. These raw data files contain all the information including the information related to

processes that are executed for DTrace. This raw data is not directly useful for extracting the

information that is needed. These log files need to be refined for extracting meaningful

information for correlation. From these log files the “parameters of importance” (for example

number ofCache misses) are extracted using parameter specific adaptor.

87

Figure 4-5 Behaviour Information module - Probe Instrumentation

Figure 4-6 DTrace Framework - Probe output logs

Figure 4-7 DTrace Output Provider

88

For each parameter, there is an adaptor. Set of these adaptors together called “output

provider”. There is a standard format and template that is designed for each parameter. Using

the adaptor the input files are converted into standard output files containing the values for

“parameters of importance”. Output provider has multiple transformation adaptors to convert the

DTrace log files into standard output format.

4.2.3 Notifier

Notifier performs the role of subscribing to messages from other modules and publishing the

notification of Behaviour Information module to other modules. Notifier subscribes to request

for starting the probe information collection start with necessary additional parameters for

information collection. It then passes this information to probe instrumentation framework for

the start of the information collection process. Once the output files are created by output

provider, Notifier publishes the notification about the availability of output files for correlation to

threshold management module through the Notification Framework module. Notifier is an

implementation of a NaradaBrokering notification agent and publishes the WS-Notification

message to the Notification Framework module. This published message is picked up by

Threshold Configuration module for analysis and correlations.

4.3 SYSTEM MANAGEMENT MODULE

System Management module implements the functions required to deploy and undeploy a

resource in COAF framework. Web Services Distributed Management (WSDM) [178] standard

based model is used for designing the System Management module. WSDM is based on web

services standard, and provides a standard way to discover and manage the resources. It allows

the wrapping of resource definition models, such as CIM, SID, SNMP etc. WSDM coexists

along with WSRF and WSN specifications and thus provides an easy implementation mechanism

for System Management module. There are two key components of the System Management

module namely Deployment manager and Notifier. Deployment manager deploy, undeploy and

manage the resources. Notifier helps in co-ordinating the activities of System Management

module with other modules of the system.

89

4.3.1.1 Deployment manager

Deployment manager performs the role of deploying and undeploying the resources.

Deployment manager receives the notification through notifier from Core Scheduler module for

a new resource requirement for scheduling. Deployment manager then unwraps the notification

to identify the component that needs to be deployed. Deployment manager extracts the

configuration information associated with the resource from the configuration server. There is a

dedicated deployment mechanism for every component. For example, the class

DeploymentEngine (belongs to package org.apache.axis2.deployment) is used deploying Axis2

software resource. Similarly MySQLd software process can be deployed using the descriptor as

below:

<?xml version="1.0" encoding="UTF-8"?>
<server>

<mbean code="com.MySQL.management.jmx.jboss.3BossMySQLdDynamicMBean"
name="MySQL:type=service,name=MySQLd">

<attribute name="datadir’'>/tmp/xxx_data_xxx</attribute>
<attribute name=’,autostart”>true</attribute>
</mbean>

</server>

Similarly, the deployment manager undeploys the resources using the undeployment

methods relevant to that resource and sends the notification to Core Scheduler module about the

non-availability of the resource for further processing.

Deployment Manager maintains the lifetime information of the resource. These are:

ResourcelD, ResourceName, ResourceCount, ResourceDeployedOn, ResourceCreatedTime,

ResourceLifeTime, ResourceSpecificPropertiesReflD, ResourceViewsSupportedCount,

ResourceEndPointReference and ResourceDeploymentConfigurationVersion. XML file format

is used as the storage format. ResourceViewsSupportedCount helps in monitoring the resource,

if there are multiple views defined for the resource, and ResourceSpecificPropertiesRefID helps

in investigating additional properties of the resource. Deployment manager additionally

implements the seven attributes to monitor the health of the resource. They are ResourcelD,

ResourceState, ResourceDescription, ResourceOperationalStatus, Manageabilitycharacteristics,

CorrelatableProperties and Metrics. These properties are base attributes provided by WSDM

framework. ResourcelD is the Identity of the resource. It is globally unique; neither mutable nor

90

modifiable; and can be correlated: if two reported Resourcelds are identical, then they refer to

the same manageable resource. ResourceState is the state of the resource, exposed through the

State capability. This is implemented by each resource. ResourceDescription is about the

resource, its version etc. This information is used to identify the resource with its deployment

configurations, if it needs to be redeployed or recovered. ResourceOperationalStatus is about the

high-level health of the resource such as Available, PartiallyAvailable, Unavailable or Unknown.

If Unknown, the notification is sent to Notification Framework module so that scheduler will

stop scheduling the service requests to that resource. Manageabilitycharacteristics, which

exposes a list of ManageabilityCapability elements that are supported by the resource;

CorrelatableProperties capability exposes a list of properties whose values are useful when

determining whether two different Resourcelds from two different manageability providers

actually refer to the same manageable resource. Metrics S defines the performance and operation

of resource. WSDM defines some metrics for a Web service resource and allows all resources to

define any suitable and relevant metrics.

4.4 NOTIFICATION FRAMEWORK MODULE:

Notification bridges all the modules of COAF as seen in Figure 4-8. The Notification

Framework module needs be a scalable messaging system that can interact with all the modules.

Following are the requirements envisaged for the Notification Framework module.

1. Ability to support publish I subscribe messaging model, so that COAF sub-systems

can carry out their tasks and need not react to external events as long as they are not

notified.

2. Ability to work in isolation mode and in clustered mode.

3. Assured message delivery within the defined service level agreements.

4. Ability to recover from failures based on its own state.

5. Ability to support for multiple-communication protocols.

There are three design models available to implement Notification Framework module,

namely WS Notification, WS Eventing and Enterprise Service Bus. The following

implementations were evaluated for the Notification Framework module

91

a) Apache Muse [15], an implementation of the WS Notification family of
specifications, also supports Web Services Resource Framework (WSRF and Web
Services Distributed Management (WSDM)

b) Apache Pubscribe [16], an implementation of the WS Notification family of
specifications

c) ServiceMix [17]. Enterprise Service Bus with support for WS Notification

d) JBossWS [191], an implementation from .IBoss that supports WS-Eventing
e) NaradaBrokering [181], custom implementation for WS-Eventing

f) WS-Messenger [115]. custom implementation that supports both WS-Notification
and WS-Eventing specifications.

NaradaBrokering version 3.3.0, from Indiana University is used for implementing the

messaging framework. NaradaBrokering supports WS Evening in distributed environment.
NaradaBrokering is written in Java and has been tested on Windows, Linux and Solaris based

systems. NaradaBrokering provides messaging middleware, high availability, clustered

representation of messages, support for various protocols, and implementation of Web service

standards.

Figure 4-8 Flow Diagram of Notification Framework module

92

In the NaradaBrokering framework, a COAF module can be a publisher or a Subscriber or

both. All the modules of COAF participate and use the Notification Framework module by

sending nbevents among themselves. Broker service is first initialized using the configuration

stored in the file called ServiceConfiguration.txt and the clientService class. The code snippet

shown in Figure 4-9 sets up the client services. Here entitylD represents any participant in the

NaradaBrokering system. Entities in COAF system represent Core Scheduler module, Threshold

Configuration module, System Management module, Behaviour Information module, and

Resource Provisioning module. Using the clientService every participant in NaradaBrokering

gets their own identity. Once they get the identity, they can play the roles of either Subscriber or

Publisher. The next step is to setup the communication channel between the client service and

the broker, using any of the protocol supported in NaradaBrokering. This is shown in code

snippet Figure 4-10 that represents the setting up and initialization of communications protocol

with the broker using TCP. The next step is to setup both the subscriber role (consumer role in

NaradaBrokering) and the publisher (producer role in NaradaBrokering) as shown in Figure

4-11. The next step is to setup the event processing logic in nbEvent as seen in Figure 4-12.

NbEvent is the implementation of NaradaBrokering event service. It comprises of headers,

content descriptors and the payload encapsulating the content. The nbEvent’s header provides

the information pertaining to the type of the event, unique identification for the event,

timestamps, dissemination traces and other quality of service related information pertaining to

the event. The content descriptors for the nbEvent describe information pertaining to the

encapsulated content. The content descriptors and their values collectively comprise the event’s

content synopsis. The final step is to publish the messages using the eventproducer as shown in

Figure 4-13. The Notification Framework module in COAF can similarly use NaradaBrokering

clientService to support other messaging mechanisms such as JMS queues namely topics, and

create the roles such as topicProducer and topicConsumer.

93

Int entitylD = 1000;
String config = "/COAF/config/Narada/ServiceConfiguration.txt”;
Sessionservice.setServiceConfigurationLocation (config);
Clientservice clientservice = SessionService.getClientService(entitylD);

Figure 4-9 Setting up the client services

Properties props = new Properties();
props.put("hostname", "localhost”);
props.put("portnum”, "8050”);
clientservice.initializeBrokerCommunications(props, "tcp”);

Figure 4-10 Communications protocol initialisation using TCP

// setting up event consumer role
int profileType = TemplateProfileAndSynopsisTypes.STRING;
Profile profile = clientservice.createProfile(profileType,
"CoreSchedulerModule");
consumer.subscribeTo(profile);
// setting up Producer role
EventProducer producer = clientservice.createEventProducer();
producer.setSuppressRedistributionToSource(true);
producer.generateEventldentifier(true);
producer.setTemplate!d(12345);
producer.setDisableTimestamp(false);

Figure 4-11 Setting up subscriber role and producer role in NaradaBrokering

public void onEvent(NBEvent nbEvent) {
String synopsis = (String) nbEvent.getContentSynopsis();
COAF.write (moduleName + "Received NBEvent {” + synopsis + "} "
+ new String(nbEvent.getContentPayload()));
}

Figure 4-12 Event Processing Logic in NaradaBrokering

int eventType = TemplateProfileAndSynopsisTypes.STRING;
String synopsis = "event occurred";
byte[] payload;
NBEvent nbEvent = producer.generateEvent(eventType, synopsis, payload);
producer.publishEvent(nbEvent);

Figure 4-13 Publish the messages using the EventProducer

94

4.5 THRESHOLD CONFIGURATION MODULE

Threshold Configuration module performs the role of establishing the feedback to the COAF

system for achieving the optimum performance on the Multi-core server through threshold

values. It computes and manages the threshold values for various deployment configuration

parameters for every component that is deployed in the COAF based system. Threshold

Configuration module has three components namely, Configuration server, Correlation map and

Correlation engine.

4.5.1 Configuration server:

Configuration server stores and manages the various deployment configuration parameters

for every component in the system. It stores the configuration information in the file. There is a

specific file created for each component. These files are stored in a pre-defined directory path so

that these files can be fetched for configuration management. Each deployment configuration is

stored in the following nomenclature

• <Component name>-<version number>-<core configuration>Setup.txt.
For example, for MySQL version 5.0.33, for 4 cores configuration, the file name is

• MySQL-5.0.33-4coreSetup.txt
Similarly for Apache web server, version 4.0.3, 17 cores configuration, the file name is

• ServiceMix-4.0.3-17coreSetup.txt.
Within these files, the deployment values are stored as name value pair. For example,

MySQL there are 290 parameters that are available for changing the behaviour of MySQL. Out

of these 290 parameters, 165 are changeable at runtime. Among these 290 parameters 225

parameters need the restart of the MySQL server for the configuration to be activated. In the

context of thread, cache and memory management by MySQL there are 23 parameters that can

affect the behaviour of the application performance as shown in Appendix VIII. This concept of

configuration file and the parameters can be extended to all other application platforms like

Apache web server, Tomcat server etc.

4.5.2 Correlation map

Correlation map is the map between two parameters for a server in a particular core

configuration. It consists of two parts namely, the observable parameter at the resource level

(“number of Cache misses) and the deployment parameter impacting that observable parameter

' 95

(for MySQL the parameters such as thread cache size, bdb_cache_size, shared_memory etc.).

This is implemented as both “one to many”, and “many to many” relationship. There are two

implementation methods provisioned in the architecture. They are name-value pair in the text

file, and a table in the relational database system. Both these implementations are accessible

with a web service interface and deployable as web services.

4.5.3 Correlation engine

The input data for variance analysis comes from the Behaviour Information module.

Correlation engine is a web service that abstracts the correlation process using the input data.

The architecture provides the ability to use correlation engine as a web service. In the test bed

prototype, a custom correlation engine implementation using Excel ANOVA services [160] is

used. This implementation reads the XML file to read the number of groups and number of

members for each group.

4.6 CORE SCHEDULER MODULE

The Core Scheduler module shown in Figure 4-14 implements the concepts of Connection-

Orientation and contextual dispatch using the three components namely, ServiceMap,

SchedulerState and Interceptor. Apache Axis2 framework is used to implement this module.

Axis2 provides the readymade implementations such as handlers, phases and flows, which

directly support the implementation needs for Core Scheduler modules.

4.6.1 Axis2 handlers, Phases and Flows, and contexts

Axis2 handler is the smallest execution unit that intercepts the incoming service request

from a client. The handler can both read and write to an incoming SOAP message. These

handlers can be grouped to form the chain. There are default handlers provided by Axis2 for

standard operations such as URL routing etc. These handlers are defined in the XML

configuration file called Service.xml. There is a standard implementation of Invoke () method is

required for every handler, and the return value of the invoke method allows the Axis2 engine to

carry the execution to the next handler as defined in the service.xml.

96

Figure 4-14 Core Scheduler

The concept of phase and flow enables the implementation of dynamic ordering of handlers.

Phase is a collection of handlers; flow is a collection of phases. Axis2 engine invokes method of
each phase in a given How, and then the phase will sequentially invoke all the handlers in it. A

phase has different phase rules like phaseFirst and phaseLast and conditions like pre and post

condition checks. There arc three kinds of deployment configurations namely axis2.xml.

services.xml and module.xml. And there are four flows, namely inflow, outflow, infaultflow,

and outfaultflow helps in organizing the service request flow. Axis2 provides support for five

levels of session contexts, makes the installation of resources and services in various contexts.
They are: ConfigurationContext, ServiceGroupContext, ServiceContext, OperationContext and

MessageContext.
ConfigurationContext - It is a run-time representation of the whole system and exists for the

lifetime of the system. ServiceMap can be kept in this ConfigurationContext, so that the lookup

can happen in memory.

ServiceGroupContext - It is used to store and share data across services. The lifetime of this

context depends on the service scope. If the service scope is "application", then the lifetime will

be similar to the system's lifetime. However, if the service scope is "request", then there will be a

97

ServiceGroupContext created for each and every invocation. Similar services can be grouped and

deployed in the same server, so that ServiceGroupContext can be used to establish connectedness

among similar services.

ServiceContext: It represents the run-time data for a given service and lifetime of the context

depends on the service scope. When there are multiple invocations of the same service, like a

service with three operations: "login", "doSomething", and "logout", ServiceContext is used to

share the data across operations.

OperationContext is available for eight different message exchange patterns available in

Axis2 and typically used for sharing data between the request and the response.

MessageContext is available for the duration of message transport from receiver to sender,

and we can access the whole system including the system runtime, global parameters, and

property service operations using this context.

4.6.2 ServiceMap

ServiceMap maintains the information about the location of services, where the client

request needs to be dispatched. There are two options provided in the architecture to implement

ServiceMap. It can be a global implementation across all services in the COAF infrastructure or

it could be local implementation to a particular service group. Configurationcontext is used to

hold the ServiceMap for the global implementation and the ServiceGroupContext is used to hold

the ServiceMap for the local implementation. The Configurationcontext holds ServiceMap and

SchedulerState data structure in memory, so that the lookup for service happens quickly before

dispatching the incoming request to an appropriate core. ServiceMap contains the following

name-value pair information, where the serviceName represents the web service and the

ServerlD-WSA represents the port ID of the server address where the web service is deployed.

ServiceName ServerlD-WSA
getAccountSummary varchar(30)
updateBillinglnfo bigint(20)

4.6.3 SchedulerState

SchedulerState is used for establishing the Connection-Orientation and admission control

before dispatching the client request to the server. The SchedulerState maintains the data about

the current workload in the server using three values. They are (1) Optimum number of requests,

(2) Number of requests currently served and (3) Maximum number of requests. The “optimum

98

number of requests” and “maximum number of requests” are derived from threshold values

calculated from Threshold Configuration module. Number of requests currently served is

managed by the Core Scheduler module. Whenever the number of requests currently served

approaches the optimum number of requests, the scheduler module notifies the need for new

server, which is picked up by System Management module to deploy a new server.

SchedulerState is implemented at the ServiceContext or GroupServiceContext level of Axis2

hierarchy, and the choice of the schedule depends on whether a single service is deployed or

groups of services deployed as shown in the Figure 4-15. LifeCycle interface

(“org.apache.axis2.service.Lifecycle”) is implemented with two key methods namely init() and

destroy(), where the service_request_currently_served_count in the SchedulerState data structure

is updated. These two methods viz., init and destroy are automatically called by Axis2 run time

when a session for the service in context starts and ends respectively. If the

service_request_currently_served_count approaches the threshold value, then the Core Scheduler

requests the System Management module to prepare next server for sending the requests. If the

“service_request_currently_served_count” goes beyond the threshold value then dispatch handler

in the Axis2 will not allow the service to pass through the handler chain. The code snippet in

Figure 4-15 represents the design of the service_request_currently_served_count.

4.6.4 Interceptor

Interceptor is the gateway for the COAF architecture. It intercepts the incoming requests

and based on ServiceMap and SchedulerState Information, routes the request to appropriate

server. Similarly, it intercepts the outgoing responses to override the correct destination address.

It is implemented using Axis2 handler mechanism as shown in Figure 4-16. Interceptor is an

implementation of AbstractHandler class called COAFInterceptor. COAFInterceptor class lives

for the life of the context within which the handler is executing. COAFInterceptor has two

important methods namely lookup_ServiceMap, and updateSchedulerState, among other

methods. Lookup_ServiceMap method is used to verify the validity of the server address

mentioned in the request header. If the address is valid, then update SchedulerState method is

used to remember the original address of the request where the response needs to be dispatched

to. The code snippet in Figure 4-17 shows the high level implementation of COAFInterceptor.

99

public class COAF_service implements Lifecycle {
public void init(ServiceContext context) throws AxisFault {

// increment the service_request_currently_served_count
servicecontext.getscheudlerstate{}.increasecount(service_request_cur

rently_served_count);
}
public void destroy(ServiceContext context) {

// decrement the service_request_currently_served_count;
servicecontext.getscheudlerstate{}.decreasecount(service_request_cur

rently_served_count);
}

Figure 4-15 Scheduler State - Service Request Implementation

public class COAFInterceptor extends AbstractHandler
{

public COAFInterceptor () {}
public InvocationResponse invoke(MessageContext msgContext)

throws AxisFault {
//interception logic goes here

lookup_ServiceMap();
update_SchedulerState();

return InvocationResponse.CONTINUE;

Figure 4-16 Interceptor Implementation

public class COAFScheduler extends AbstractHandler
{

public COAFScheduler(){}
public InvocationResponse invoke(MessageContext msgContext)

throws AxisFault { // Scheduling logic goes here
read_scheduling_policy();

if less_than_threshold() { dispatch_request(); }
else { Send_notification_for_new_server(); }

return InvocationResponse.CONTINUE;

Figure 4-17 Scheduler Implementation

100

4.6.5 Scheduler

Scheduler ensure the Connection-Orientation and admission control for the COAF

architecture. It is implemented as shown in Figure 4-17 using Axis2 handler mechanism and

configured as the last handler before it is dispatched to the actual server. Scheduler is an

implementation of AbstractHandler class called COAFScheduler. This COAFScheduler class

lives for the life of the context within which the handler is executing. COAFScheduler has two

important methods namely read_scheduling_policy, and dispatch_request among other methods.

The read_scheduling_policy is used for admission control. The request is sent to the server

based on the “number of current requests that are processed” information available in

SchedulerState. If the number of current requests less than the threshold values, then the request

is marked for dispatch and dispatch_request method is called to dispatch the request to the

appropriate server. If the number of current requests is nearer to the threshold value, then a

request for deploying a new resource is sent to Notification Framework module.

4.7 SUMMARY

This chapter identifies the implementation for each of the six modules of COAF. For every

module, the choice of the technology for the implementation and the high level design details are

presented. The implementation model of service map alongside Axis2 handlers and session

contexts provides the ability to contextually despatch service requests thereby achieve

Connection-Orientation. The Connection-Orientation affects the performance of the application

positively, and improves the compute capacity associated with a Multi-core deployment. This

improvement in performance can be verified with a test bed with non intrusive measurement

mechanisms discussed in the chapter 5. Similarly, using the non-intrusive instrumentation

mechanism of DTrace, we are able to observe the operating system parameters. This ability to

measure, monitor and correlate with deployment parameters of the system provides the

Infrastructure Awareness to the system.

The pluggable nature of COAF facilitates continuous improvement in the implementations

of various components of all the six modules. COAF implementation can be verified using a test

bed.

101

5 IMPLEMENTATION OF A COAF TEST BED

This chapter demonstrates the reference implementation detailed in chapter four with a

typical test bed that is based on Niagara based Multi-core server. Each of the six modules and

their interfaces manifest in the implementation of COAF, as shown in Table 5-1.

Table 5-1 Implementation map of modules on a test bed.
Module As mapped on the test bed

Resource

Provisioning

• MySQL server, Apache server, etc. are modelled as the software resources.

• 12 different core configurations (single core, two cores, four cores, eight cores
etc.) are modelled as the hardware resources.

Behaviour
Information

• Standard set of DTrace probes and custom developed extraction utilities.

System

Management
• Apache deployment framework, XAMPP deployment frameworks are used for

deployment and health monitoring of the resources.

Threshold

Configuration
• Number of MySQL threads is used as the correlated parameter and the

Correlation engine is based on Microsoft Excel services.

Core Scheduler
• Axis2 handler is used as interceptor. ServiceMap and SchedulerState are

implemented to dispatch the client request.

Notification

Framework
• Notifications are implemented in NaradaBrokering nbevent.

The experiments are conducted in five phases to test the hypotheses identified.

The focus for each phase is depicted in the Figure 5-1. The frameworks, setup

methodologies, and tools used for these experiments are consistent tlrroughout. The details of

the choice of the probes, and probe environment are highlighted in Appendix II. The user space

performance is measured at the application level and, the kernel space performance is measured

at the operating system process level for all the five phases.

These five phases are summarised below:

Phase I deals with three questions specific to Multi-core deployment:

1. ability to deploy an application across various core configurations,

2. linear scalability in performance for increasing core configurations, and

3. kernel parameters that need to be identified to reflect the application behaviour.

102

Phase I - Standard Application Benchmarks
• Measure Application Level parameters

Prerequisite for Hypothesis • Establish Application Level Benchmarks
• Requirement for New Metrics definition

Phase II - Client Server Test Bed
Hypo. 1) Perf. significantly
dependent on Operating
System and Hardware

Measure Kernel Level parameters
Relate parameters to Application level
Determine Application Behaviour and
Performance

Phase III - Web Sendees Test Bed
Hypo. 2) Altering • Identify Application Level parameters
deployment params, at • Establish benchmark for Webservices
runtime can effect the App • Evaluate conn, orientation & infra awareness
perf. params.

Phase IV - COAF based Test Bed for Spatial Cache Miss
Hypo. 3) Perf. tuning based on
feedback from kernel params
Hypo. 4) Infra. Aware Perf.
tuning (by containing/
distributing apps)

• Identify run time parameters
• Utilise and Configure WS params
• Improve Testbed performance

- make App infra aware.

Phase V - COAF Test Bed for Temporal Caching

Hypo. 5) Perf. Tuning using
feedback by binding to a
specific core configuration

• Isolate and study temporal caching
• Identify params to improve Conn. Orientation
• Improve perf. using Conn. Orientation

Figure 5-1 Towards realisation of COAF - Five Phase of Experiments and Focus of each phase

103

Phase 1 consists of a test bed with a set of ten test cases. These ten test cases represent the

operations of a database application from create, read, update and delete operations, to complex

select operations. The test cases are organized in such a way that the number of records returned

by the database application is varied. The results are obtained for various core configurations,

different architecture layouts such as 32 bit and 64 bit, and for different number of concurrent

client requests. The “Cache miss count” and context switches are measured; two derived

parameters namely Core Configuration effectiveness (CCE) and Intra Process efficiency (1PE)

are defined to understand the performance of the application for various core configurations.

Phase II deals with two questions specific to client server configurations:

1. ability to use the kernel level parameters identified in Phase I, and observe the behaviour

of the application at the kernel level and

2. ability to quantify and relate the kernel behaviour [231] to the application behaviour.

There are three test cases in Phase II that represent the spatial and temporal characteristics in

client-server configuration.

Phase III focuses on hosting the web service based enterprise applications and its

configuration and performance on Multi-core servers. The questions related to Connection-

Orientation and Infrastructure Awareness are elicited in.this phase. The integrated knowledge of

application designer and the system administrator about the infrastructure is used to arrive at the

optimal deployment configuration.

Phase IV deals with the methodology of arriving at threshold values for deployment

configuration parameters that further establishes the concepts of Infrastructure Awareness and

Connection-Orientation. The feedback injection points are identified from the overall system

level; the associated impact is measured using “number of Cache misses” and the efficiency of

the feedback is presented as Intra Process Efficiency. This phase also deals with performance

improvements due to deployment specific contextual dispatch of requests due to Connection-

Orientation.

The test bed setup of Phase V is the same as Phase IV. Phase V is set up to elucidate the

effect of memory subsystem on the Multi-core behaviour. This phase deals with two questions,

viz. relevance of data nearness and temporal locality characteristics that are specific to enterprise

applications. The phase establishes usage of COAF - by using the knowledge of the memory

alignment to improve the performance of the overall system.

104

5.1 SETTING UP TEST ENVIRONMENT

A summarised overview of the various test-bed configurations from Phase I to Phase V is

presented below. This set up identifies the common platforms both hardware and software across

the phases, while highlighting the differences inter-phase.

5.1.1 Generic set up - Hardware and Operating system

1. Hardware Server: Sun Niagara T2000 server with 4 CPUs and each CPU with 8 cores

inside, thus totally 32 cores in a single server. This server is configured for various core

combinations using Solaris Zones and container setup, such as 1 core, 2 cores, 4 cores, 8

cores etc. 32 GB DDR2 RAM, and 146 GB Hard disk.

2. CPU: UltraSPARC T1 processor with SPARC V9 architecture , 16 K instruction cache,

8K of data cache, 3MB of integrated L2 cache.

3. Server Operating System: Solaris 10 OS 11/06

5.1.2 Generic set up - Application Software Stacks

5.1.2.1 Software Versions:

1. MySQL Server v5.0.33 [130] [172], both 32 bit and 64 bit configuration.

2. Web services XAMPP [250] stack - Apache, MySQL, PHP and Python.

3. COAF module stack - Apache Axis2 [9], Apache Muse [15], NaradaBrokering, Excel

services [160], DTrace [103]. - 15 DTrace probes were used as is or modified from

Brendan Gregg’s tool kit. The details of these probes and the modifications required to

address the needs of experiments can be found in Appendix VI.

5.1.3 Generic Set up - Choice of Enterprise Applications

Cognizant Technology Solutions [51], Fortune 500 Company and 700 of its customers,

many of them Fortune 500 companies, thus represents a good sample set for enterprises.

Cognizant develops varied Enterprise Applications developed by for its customers, including

itself. These applications are excellent representatives of standard enterprise applications. Over

200 enterprise use cases implemented by Cognizant Technology Solutions were studied, from

both product implementations perspective (like SAP [195], [196] [197], and [230]) as well as

custom implementation perspective.

105

5.1.3.1 Generic Enterprise Application configurations

These applications were deployed in one of the four configurations as shown in Figure 5-2

below. The four configurations are:

1. Native client calling the server where client and server are running in same deployment environment
(Phase I deployment).

2. Native client calling the server where Client and server are running in different deployment environment
(Phase II deployment).

3. Web service client calling the server where client and server are running in different deployment

environment (Phase III and Phase IV deployments).

4. Web service client calling the server where web service client and server in same deployment environment
(Phase V deployment).

5.1.3.2 Generic Enterprise Application deployment

The application is deployed with the client and server separated by a firewall as shown in Figure

5-3 with the Niagara based machine as the server. The deployment setup specific for each phase

is detailed in the sections specific to each phase. All software and tools mentioned here are

installed and configured using standard processes defined by respective vendor as mentioned in

the reference manuals.

5.1.3.3 Phase specific - Software setup:

1. Niagara Server Stack

a. MySQL server (Phase I and Phase II) - The MSQL Native client calls the

MySQL daemon, which in turn requests the MySQL server for processing.

b. MySQL server along with web services XAMPP stack (Phase III)

c. MySQL server, web services XAMPP stack and COAF module stack (Phase

IV, and Phase V)

2. Software client:

a. MySQL terminal services client installed along with Niagara server (Phase I)

b. Telnet client installed at Intel workstation (Phase II)

c. Web services client, a PHP application installed at Intel workstation (Phase

III, Phase IV and Phase V).

106

Client and server in same
process space / same server

Client is the web service
running in same server

CLIENT - NATIVE

SERVER

CLIENT- WEB
SERVICE

SERVER

Client and server in different
process space / Same server

Client is the web service
running on different server

Figure 5-2 Four deployment Configurations for the test bed

Figure 5-3 Generic Set up of the Enterprise Test bed for all applications

107

3. Additional software tools

a. Logical Domains 1.1 (LDOMS) for core partitioning [174]

b. Browsers - Internet Explorer and Firefox

c. J Meter [13] for generating the load

d. CPAN utilities [53] and Shell scripts (detailed in Appendix VII)

The setup is also validated for the standard blueprint test cases [173] [171].

5.2 PHASE I - VALIDATE THE BASIC ASSUMPTIONS ABOUT MULTI-CORE

The objective of Phase 1 experiment is to validate the performance of Multi-core to process

the enterprise workloads for the following questions:

• ability to deploy an application across various core configurations

• linear scalability for various configurations

o Can a task be completed faster with increase in number of cores allocated for

processing that task?

o Can a complex task completed faster when compared to simpler task with

increasing number of cores?

o Can groups of tasks be completed faster with increasing number of cores?

o What is the impact of 64 bit processing when compared 32 bit processing?

o For the same number of cores, is the processing faster with larger main memory?

• kernel parameters that need to be identified to reflect the application behaviour

To answer the above questions, test cases were designed as standardized in literature [37],

[85], [105], [120], [150], [259] for phase I experiments. These test cases depict the performance

of the application under varying workloads as well as different database operations. The test

cases are executed for various core configurations namely, single core configuration, 2 cores

configuration, 4 cores configuration and 8 cores configuration. The test cases are designed to

get the specific number of records as result sets from the data base application. The number of

records returned as results are namely one data record, fifty data records, five hundred data

records, thousand data records, ten thousand data records and twenty thousand data records. For

example, a test case for returning fifty thousand records as a result set is: “Read query: select *

from contacts where id <= 50;” and a test case for returning twenty thousand records as a result set

is: “Read query: select * from contacts where id <= 20000”. These Test cases are also modelled as

108

SQL queries in two sets. The first set is based on the operations viz. Create, Read, Update and

Delete. The second set of test cases deal with increasing complexity of query to determine the

performance and power of Multi-core to execute either complex tasks or various volumes.

3.2.1 Phase I - First Set of test cases - Create Read Update and Delete

The first set of four tests involves queries that perform CRUD (Create, Read, Update and

Delete) operations of the database application. The data structure for the records is presented in

Table 5-2. Table 5-3 represents the CRUD operations that are executed over the 10 million

records in the database.

5.2.2 Phase I - Number of cores to system performance is not consistently linear

Figure 5-4 consolidates the results of the first set of experiments. The results express the

time scale in seconds for each of the tests CRUD tests that were run for every core configuration.

The following observations can be made from Figure 5-4. There is no perceivable difference in

the performance of the application due to increasing core up to 1000 records. This behaviour

implies that L2 cache is not yet saturated. Beyond 1000 records, the following differences in the

behaviour are observed. There is a consistent behaviour for increasing number of records for

each of the operations. Also, the performance of a single core is of the same order to the

performance of any of the Multi-core configurations. This defeats the linear scalability that is

expected from Multi-core and hence needs to be investigated further in the second set of test

cases for Phase I.

5.2.3 Phase I - Query complexity and the data size affects the performance

The second set of test cases deal with increasing complexity of query. The data structure for

the second set shown in Table 5-4. This record set is used for executing the six queries - viz.

Simple Select, Complex Select, Simple Where, Complex Where, Simple Select & Simple Where

and lastly, a Complex Select & Complex Where - as represented in Table 5-5.

5.2.4 Phase I - Performance due to architecture difference is marginal

Tests are conducted for 32 bit and 64 bit architectures. This is to understand the behaviour

due to variation in the architecture. For the same architecture, different data sizes are tried out.

The results of the of these tests for each of the six queries, across the 32 bit architecture for both

1000 and 10000 records are shown in the Figure 5-5, Figure 5-6; similarly the results for 64 bit

109

architecture for both 1000 and 10000 records are shown in Figure 5-7 and Figure 5-8

respectively; the results are consolidated in Table 5-6. From the Figure 5-5 and Figure 5-6 for

the 32 bit architecture, the following observations can be made:

1. The response time increases as the complexity of the query increases.

2. Adding more cores does not give the desired linear scalability. This is consistent

across all core configurations for both 1000 records and 10000 records across all

the six queries.

For 64 bit architectures, when the results are compared across Figure 5-7 and Figure 5-8;

the three results are similar or marginally different when compared with those of the 32 bit i.e.

(1) response time increase (2) adding more cores for linear scalability and (3) linear increase

from 1000 to 10000. Inter-Architecture results

The comparison of results across architecture systems viz. 32 bit architecture versus 64 bit

architecture yields the following observations.

I. The results of performance for 32-bit 1000 records (Figure 5-5) and 64-bit 1000

records (Figure 5-7) are similar and therefore, migration from 32 bit to 64 bit

architecture for 1000 records does not offer any significant advantage.

2. Similarly for 10000 records as shown in Figure 5-6 and Figure 5-8, there is no

significant variance or advantage in moving from 32 bit to 64 bit architectures.

5.2.5 Phase I - Complex query performs better in multi-core configuration

Apart from the linearity of response time, the load is varied by increasing the number of

concurrent users from 50 to 500. This performance is captured for both 32 as well as 64 bit

architectures. Figure 5-9 presents the performance of 500 concurrent users, for three of the

complex queries across 1, 2, 4 and 8 cores configurations. The following observations can be

made for the results.

• As the work load and its complexity increases, adding more the number of cores

gives better performance.

• The performance ratio of eight cores to four cores is not linearly equivalent when

compared with the performance ration of four cores to two cores. Although there

is scalability for increasing number of cores to process the work load, it is not

linear.

110

Table 5-2 User profile details in the MySQL database

User profile details
Id bigint(20)
Name varchar(30)
Salary bigint(20)

Table 5-3 First Set of Queries - CRUD Test cases

Query type Query description

Create
LOAD DATA LOCAL INFILE ’/var/home/138742/to.sql'
INTO TABLE contacts;

Read select * from contacts where id <= 20000;
Update update contacts set name = 'f’ where id <= 20000;
Delete delete from contacts where id > 9980000;

5.00

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

4.50

111

Table 5-4 Employee Details Table in the MySQL database

Employee details
Id bigint(20)

Name varchar(30)

join_date date

designation varchar(30)

gender varchar(5)

salary bigint(20)

Table 5-5 Set of Queries for the simple and complex tests

Query type Query description

Simple Select
select concat(substring(name, 2, 3), substring(name, 3))
as result from
employee details limit 0, 1000;

Complex Select

select concat(case gender when 'M' then ’Mr’ when 'F' then
’Ms’ end, upper(name), ’ has joined in ', monthname(join_date))
as resultl,
concat(case gender when ’M’ then ’he* when ’ F* then 'She' end
, ' is working as ', designation) as result2, concat(case
gender when 'M' then 'His' when 'F' then 'Her' end , ' id is
', substring(name, 1, 1), year(join_date)) as result3 from
employee details limit 0, 1000 ;

Simple Where
select * from employee_details
where id between 4476000 and 4476999 and
name like ’s%' ;

Complex Where

select * from employee_details where
(id between 4476000 and 4476999) and
(length(salary)>5 or
DATE sub(curdate(), INTERVAL 5 Year) > join date or designation
like 'PM’) ;

Simple Select &
Simple Where

select
concat(substring(name, 2, 3), substring(name, 3)) as
result from employee_details where
name like('s%') and
(id between 4476000 and 4476999);

Complex Select &
Complex Where

Select
concat(case gender when 'M' then 'Mr' when 'F' then 'Ms' end ,
upper(name), ' has joined in ', monthname(join date))
as resultl,

concat(case gender when 'M' then 'he' when 'F' then
'She' end , ' is working as ', designation) as
result2,

concat(case gender when 'M' then 'His' when 'F'
then 'Her' end , ' id is ', substring(name, 1, 1),
year(join_date)) as result3 from employee_details
where

(id between 4476000 and 4476999) and
(length(salary)>5 or DATE sub(curdate(), INTERVAL 5
Year) > join date or designation like 'PM') ;

112

Table 5-6 Employee Details Table in the MySQL database

1000 Records 10000 records

.06

.05

.04

.03

0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

^e'e
set

■ 1 core □ 2 core H 4 core □ 8 core

/
</

C°
□ 1 core □ 2 core e 4 core ■ 8 cores

Figure 5-5 Performance record - 32 bit - 1000
records

Figure 5-6 Performance record - 32 bit - 10000
records

0.08 0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

llllllllll

c°

• X"

c°
□ 1 core a 2 core ■ 4 core □ 8 core □ 1 core □ 2 core ■ 4 core □ 8 cores

Figure 5-7 Performance record - 64 bit - 1000
records

Figure 5-8 Performance record - 64 bit - 10000
records

113

Figure 5-9 Performance 32 bit for 500 concurrent users

• As the complexity of the query increases, increasing the number of cores results

in better performance. '

5.2.6 Phase I - Overall summary

In summary, the user perceived performance results in Phase I shows that

• For a single application request, by varying the number of records in the result

sets do not produce any pronounced effect on the performance of the overall

system.

• The performance is marginally different in the case of 32 or 64 bit cores.

• Enterprise class system performs poorly on Multi-core with the application

workloads lower than “ideal loads”.

Hence, there is a need to investigate at the operating system level, to see how the operating

system schedules a particular task and how efficiently this task gets executed. This might also

gives reasons why the system is not linearly scaling. It is also imperative to identify metrics that

can validate the performance in Multi-core. The effect of increasing load and load patterns also

needs to be investigated.

114

5.3 PHASE II TO PHASE V - CONSISTENTLY MEASURE PERFORMANCE

The objective of experiments from Phase II to Phase V is to correlate the performance of

kernel level parameters to the performance of the application. Observations made at the kernel

level arc used to describe the performance of the application, irrespective of the underlying core

configuration that is used for processing. Three standard reference queries are run across Phase II

to Phase V. The difference amongst these phases is the way the test bed is configured in each

phase. To consistently determine the performance using kernel parameters, the following three

questions are used to determine the application level performance. (1) Which process is running

on a specific core? (2) How often is the desired application process executing/scheduled on the

core? and (3) Is the performance of the desired application calls efficient, while executing in

that core? To answer the above questions, two parameters are proposed namely CCE and IPE to

represent the effectiveness and efficiency in percentage [234]. These two parameters are derived

from the inputs gathered by observing the kernel. These two parameters could in turn, represent

the relative performance of the application consistently on the Multi-core. The formulation of

CCE and IPE assumes relative indication of desired process occupying the core and how

efficiently it executes during that time. Additionally, the formulation assumes equal weightage

of one, for all participating variables in the equation.

5.3.1 Core Configuration Effectiveness (CCE)

The Core Configuration Effectiveness (CCE) is about occupancy of the desired process in

the core. It is the first parameter, which refers to how much percent of the time “a desired

application process” runs when compared with “other application processes”. This is based on

the scheduling effectiveness of the operating system and is determined by the number of

schedules that a process gets in a specified time slot.
CCE is the ratio of the number of desired application process run as a fraction of tj^all the

other processes, (the desired process + operating system core processes + other application

processes not related to the main application). Operating system processes are not considered for

effectiveness, as they are required anyway irrespective of whichever application we execute on

the system. Thus,
CCE _ _____ 100*(APPruns)_____

(APPruns)+(NonAPPruns)

APPn/^ = Sum of Count of the relevant application related processes (for example all SQL

X.. 7115

processes)

NonAPPn„K = Sum of Count of the all processes belonging to other applications (for example

tail, DTrace processes etc.), but not related to main application in focus.

For the most ideal condition (let us say CCE as 100%). all the processes that are scheduled

in a given core is related to desired application process.

The focus of CCE is to get maximum number of schedules for relevant application when

compared to all other applications in the core.

Table 5-7 illustrates an example of CCE values for a test Client-Server tests across the three

query. The number of APPrill1s and NonAPPrUns are obtained from the DTrace probe

syseali_by_proc. Desired application process in this example is SQL process. Each record in the

syseali_by_proc log specifies the process and its count in the window of monitoring. It can be

observed from the table, that CCE for one core configuration is 84.3%. This indicates that SQL

based applications utilized 84.3 % of the processing time for executing query I in the single core

configuration and the remaining 15.7 % of the time was utilized by executing other applications

processes, e.g. telnet, tail etc. Similarly, on a 32 cores configuration, SQL processes relevant to
Query I is executed for 13.6% of the processing time and remaining 86.4% of the time was vA

utilized for other applications processes. Thus, CCE indicates the occupancy level of the U

application process in the core and the CCE value closer to 100% represents the best case (ideal)

scenario and vice versa.

Table 5-7 Core Configuration Efficiency for a 320K runs of Client-Server baseline

No of Cores Query 1 Query 2 Query 3

01 84.3 60.5 82.1

04 48.4 21.3 21.2

05 56.8 21.8 41.1

08 42.5 4.6 4.3

09 62.3 47.5 42.1

16 82.1 51.1 16.9

17 83.0 49.1 75.1

18 62.7 46.4 62.4

32 13.6 66.1 89.1

\ r

116

5.3.2 Intra Process Efficiency (IPE)

intra Process Efficiency (IPE) is about efficiency. It is the second parameter that defines

how efficiently a scheduled “application process” performs with reference to “memory

faults/Cache misses” for that process.

_ (100 - MP) * 100
(100 — MP) + (PerC ache Miss)

where,

Miss Penalty (MP) =
________ 100 * (NonAPPruns + NonAPPmtsses')________

(APPruns + APPmlsses + NonAPPruns 4* NonAPPmisses)

and.

PerCache Miss =
(APPniiSses) * 100

(TotalRuns)

where,

TotalRuns — APPruns 4" APPmtsses "I" NonAPPruns + NonAPPmisses 4" OpSySruns

When an application is scheduled to run, there are five categories of events happen on the

core. They are:

1. APPn„w = Number of times desired application processes are schedule^

2. APPm^w^ Number of times desired application process cache-missed^

3. NonAPP™^ = Number of runs the other application processes are scheduled

4. NonAPPm/5.w= Number of times the other application processes cache-missed

5. OpSys™, = Number of times the operating system processes are scheduled

The most desirable state would be to schedule maximum number of APPrw;5 event and

minimize all other events. However, when the application process encounters a cache-

miss then operating system schedules the other process to run on the core (due to its fair

scheduling policy). When the other applications also cache-miss, then problem gets -V

compounded. So, our intent would be to calculate the impact due to relevant application

cache misses and the other application cache misses. This aspect of the formulation is
represented by MissPenalty (MP). Mis^enalty\s the inefficiency due to relevant

application cache-misses. It is desirable to reduce the number of Cache misses specific to

the desired application processes in context. It can be noted that, OpSysmw is removed

from the focus for further computations, because optimization of operating system

117

overheads is not the focus of the research, and the operating system is assumed to follow

fair scheduling policy for scheduling its own processes. After removing OpSysnw, runs

from the total number of runs, the next step is to exclude the inefficiencies arise due to

other application processes.

The second variable PerCache Miss represents the impact of Cache miss in general,

and is represented as the ratio of the Cache misses to cache hit. Cache miss will make the

process to wait for certain number of cycles until the next fetch happens. This ratio

between Cache miss to cache hit variable value is provided as guideline from the

hardware manufacturer of the Multi-core server. For example, for Niagara processor a

Cache miss makes the application to wait for 200 to 300 cycles [138]. Higher this ratio,

more the wait, means more loss from computing perspective. Ideal situation would be not

to have the Cache miss.

For example, a scenario where the total number of runs is 320 K, the summation for

these five categories is depicted as below. The Table 5-8 shows the runs for one of the
scenaric^whethef total number of runs is 320K APP™,, APP„„kw, NonAPP™,, NonAPP„„^« ||

and OpSySrw/w, which can be depicted as:

Total Runs = (APP™, + APP,„^, + OpSys™, + NonAPP™, + NonAPP,= 320,000 - (1)

Table 5-8 Client-Server baseline for 320 K runs on single core.

APPruns AP P misses NOH APPruns Non APP misses OpSySrUns

4,714 60,126 875 114,702 139,589

Next step is to calculate the Miss Penalty. OpSys™, is removed from the focus for further

computations, because optimization of operating system overheads is not the focus of the

research, and the operating system is assumed to follow fair scheduling for itself. After

removing OpSys,,,run from the total number of runs, the next step is to exclude the

inefficiencies arise due to Other application processes in Table 5-8.

100 * (NonAPPruns + NonAPP^^
UllsPemltr^ -

Value of MP for the application is 64.06% for the observations shown in Table 5-8. This

directly maps to other processes including Cache misses (APP^,, NonAPP™,, and NonAPP,,,,^,)

118

share of 175.703 runs in 320K runs is 64.06%. Therefore desired application process share

(APP„„W) of 4714 runs within the total number of 320 K runs is 35.94% (100- MP).

The second variable PerCacheMiss represents the impact of Cache miss in general.

and is represented as the ratio of the Cache misses k/cache hit.

PerCacheMiss =
(TotalRuns) _

PerCacheMiss = (60126),1°° = 18.79%
(320000)

The final step is to calculate the IPE using the MP and PerCacheMiss variables.

(100 — MP) *100
(100— MP) + (PerCacheMiss)

! PE =-^^ ̂= 65.67%
(100—65.06)+(18.79)

In our current example, the ratio of the wasted runs is (60216/320000)* 100 = 18.79%. This C

additional unnecessary overhead that can be minimised.

This indicates, the application execution works at 65.67% efficiency. When there are no APPmisses the

IPE is 100%.

5.3.2.1 An example of interpreting results using CCE and IPE

Table 5-9 shows the calculations for CCE and IPE for 1,4, 5, 8, 9, 16, 17 and 32 cores.

• 4 cores and 8 cores configuration produce good results and

• 17 cores configuration produces comparatively bad results.

In 4 cores configuration, the CCE is 36.9% which means, the operating system can schedule

the application for 36.9% of the time. In other words the application can occupy the core for

36.9% of the processing time. Within this time, it can complete the task in 82.9% efficiency as

IPE value 82.9% indicates. Similarly, in 8 cores configuration, the CCE is 33.3% which means,

the operating system can schedule the application for 33.3% of the time. Within this time, it can

complete the task in 86.7% efficiency (IPE is 86.7%). Both these are desirable deployment

configurations amongst all the configurations tested.

In 17 cores configuration, the operating system can schedule the application tasks in 65 6%

of the time (CCE is 65.6%), but it can execute those application tasks with 33.4% efficiency (IPE

is 33.4%) only. Therefore, 17 cores configuration may not be the best configuration compared to

4 cores or 8 cores configuration.

119

Table 5-9 CCE for 320K runs of consolidated Client-Server baseline

No of
Cores

Cache Misses for the
SQL

CCE for
320K

I PE for
320K

01 2256 72.8 23.5

04 1243 36.9 82.9

05 9074 42.3 66.5

08 5610 33.3 86.7

09 9952 52.5 45.1

16 13880 73.9 44.0

17 19853 65.6 33.4

18 24909 56.3 48.1

32 24443 64.6 32.9

120

5.4 PHASE II - CLIENT-SERVER CONFIGURATION

The objective of the Phase II experiment is to measure kernel level parameters and relate

these parameters to application level deployment configuration parameters [[231], [233]]. The

test bed is set in the standard Enterprise Client-Server mode, wherein the baselining of the

system's performance is done. Three standard SQL queries commonly used in the enterprise are

used as a reference. In this experiment setup, the MySQL server runs at Niagara server; client

can access the server via a terminal client process as shown in Figure 5-10. The three application

test case queries as shown in Table 5-10, namely Query I, Query2 and Query3 are used. These

test cases are related to the typical standard cards and payments application.

• Query 1 retrieves the results of the transactions for a credit card swipe that exceeded a

particular limit;

• Query2 retrieves the records when the number of transactions exceeded particular count;

• Query3 retrieves the sum of all the transactions for a particular credit card.

• Query 1 and Query2 represent the case for spatial locality, whereas Query3 represents

both spatial and temporal locality characteristics of the application.

The test cases are run for the ten different core configurations 1,2, 4, 5, 8, 9, 16, 17, 18, and

32 cores. The selection of these ten different configurations includes the combination of single

core for base-lining against existing single core architectures, asymmetric core configuration and

symmetric core configuration as shown in Table 5-11. In this phase, the MySQL parent process

called “MySQL”, is started when MySQL server is initialized on the Niagara server. The parent

“MySQL” process is shutdown between every test to ensure the same environment setup is

available before every new test case run. The DTrace logs are accumulated and analyzed to

observe scheduling behaviour of the operating system. Section 5.4.1 through 5.4.6 analyzes and

discusses the results of the “9 cores configuration”. Similar experiments and analysis is done for

other core configurations. These repetitive experiments are done to ensure and establish the

consistency of the behaviour of the operating system across various core configurations. The

first set of analysis is to establish the “fair-scheduling policy” of the operating system especially

in the context of Multi-core systems. This helps us to validate the assumptions that the

performance of an enterprise system can be improved without modifying the operating system or

application binaries, as either the operating system change or modification of application binary

is considered an enterprise risk as highlighted in chapter 2.0 and chapter 3.0.

121

Table 5-10 Three SQL query statements on an enterprise test bed

Query type Query description

Query 1

SELECT cl.ch_cardno, date_format(cl.txn_date,’%m'),
avg(cl.txn_amt)
FROM ch transaction cl ,
(SELECT b.chcardno,count(b.txn_amt)
FROM chtransaction b
GROUP BY b.ch cardno
ORDER BY 2 desc limit 0,10) as tl
WHERE cl.ch cardno = tl.ch cardno
GROUP BY cl.ch cardno, date format(cl.txn date,'%m’) ;

Query 2

SELECT ch cardno, count(+)
FROM ch transaction
GROUP BY ch cardno
HAVING count (*) >100
ORDER BY 2 DESC ;

Query 3

SELECT cl.ch cardno, date format(cl.txn date,’%m%y'),count(*),
sum(cl.txn_amt)
FROM ch transaction cl ,
(SELECT b.ch_cardno,sum(b.txnamt)
FROM chtransaction b
GROUP BY b.ch_cardno ORDER BY 2 desc limit 0,10) as tl
WHERE cl.chcardno = tl.chcardno
GROUP BY cl.ch cardno, date format(cl.txn date,’%m%y’);

Table 5-11 Test Bed Configurations and Design

Configuration type Remarks
Single core Replicate and baseline existing single core architectures
two cores, four cores, eight
cores, sixteen cores and
thirty two cores

Symmetric core layout with and without interconnect

five cores, nine cores,
seventeen and eighteen cores

Forced asymmetric configuration to understand memory
placement and access behaviour including cache and
interconnect performance

122

5.4.1 Phase II - Fair Scheduling Policy validated using dispatcher queue length

The DTrace probe dispqlcn_by_cpu (dispatcher queue length) is used to log the operating

system schedules. Using the records present in this log. it is possible to determine the scheduling

and loading behaviour of operating system as well as determine its fairness in scheduling. The

methodology followed for the reconstruction of events that happened in the operating system

scheduler is explained in detail using a systematic process in Appendices 1 to Appendix V. These

appendices give an overall picture of how the operating system schedule and executed the

processes across the cores in the Multi-core setup. The logs used for analysis are collected for

151 seconds in five time slots namely TSI to TS5 as detailed in Appendix V. The DTrace

logging starts in TSI at 18:40:50, and its stops in TS5 at 18:43:21 as detailed in Table 5-12. This

151 second sequence is composed of five time slots, with each slot for logging for the first ten

seconds. Figure 5-11 represents the actual scenario logs depicting how the loads are distributed

on each core/CPU across the run for the first time slot of 10 seconds between 18:40:50 -

18:41:00. The load is scheduled in a queue before it is processed. The queue length on each core

therefore, indicates of the spread of the load on that core. e.g. The queue length on the each of

the CPU for the first ten second time slot viz. TSI is 1954. This value of ‘ 1954’ is seen across all

the nine CPU cores starting from CPU0 to CPU8 indicating equal load on each of the nine cores.

The same analysis is repeated across the other four ten second time slots namely TS2 to TS5.

From the dispatcher queue length it becomes obvious that the load is spread more or less equally

amongst across the cores. Loading behaviour is consistent across the five time slots TS2 through

TS5 with loads lengths approximately 4454, 2563, 4320 and 1499 respectively.

5.4.2 Phase II - Process queue evenly spread across cores

The Table 5-13 displays the load distribution across the nine cores. The results in this table

indicates that the load that is evenly spread across six cores (CPU 0 to CPU 5), whereas the

queue is widespread in the remaining three cores (CPU 6, CPU7 and CPU8). After consolidating

the multiple queues of each CPU/core the summary is presented in Table 5-14. For example, for

CPU 6 the following load queue lengths {674, 252, 521, 330, 22, 93, 2, 60} are replaced with

their sum (674+252+521+330+22+93+2+60=) 1954.

123

Table 5-12 DTrace scheduled Time slots

Time Slot No Start time End Time

TSI 18:40:50 18:41:00

TS2 18:41:21 18:41:31

TS3 18:41:55 18:42:05

TS4 18:42:29 18:42:39

TS5 18:43:11 18:43:21

CPU o
0 | 1954
CPU 1
0 |
CPU 2
0 I
CPU 3

1954

1954

0 | 1954
CPU 4
0 I 1954
CPU 5
0 1 1954
CPU 7
0 1 1954
CPU 6
0 1 674
1 1 252
2 1 521
3 330
4 1 22
5 W

1
93

6 2
7 IS 60
CPU 8
5 0
6 1 24
7 IS 68
8 IBS 113
9 1^ 106

10 Igas 141
11 । ggg 124
12 IB 54
13 | gjSggJgj 272
14 ICT] 170

24215 ICTEB]
16 IS 68
17 1 s 60
18 1 511

Figure 5-11 dispqlen_by_cpu as it appears in the log

124

Table 5-13 Dispatcher queue lengths for nine cores

CPU 0 1954 4455 2563 4320 1499 14791 CPU 8 24 479 27 221 161 912
CPU 1 1954 4455 2563 4320 1499 14791 68 784 338 79 13 1282
CPU 2 1954 4455 2563 4320 1499 14791 113 686 379 89 68 1335
CPU 3 1954 4455 2563 4320 1499 14791 106 289 207 11 85 698
CPU 4 1954 4455 2563 4320 1499 14791 141 159 51 8 48 407
CPU 5 1954 4455 2563 4320 1499 14791 124 227 50 60 118 579
CPU 6 674 179 626 650 1410 3539 54 277 178 120 175 804

252 2290 414 331 70 3357 272 202 308 131 137 1050
521 292 679 706 19 2217 170 101 150 152 37 610
330 881 205 282 1698 242 94 136 122 49 643

22 270 510 178 980 68 220 369 169 15 841

93 128 10 240 471 60 256 42 378 20 756
2 208 10 330 550 511 101 246 166 91 1115

60 207 109 84 460 1 152 79 200 124 556
337 337 3 4 78 202 287

29 29 4 127 156 287
31 31 11 15 26

1 1 410 115 525

430 430 1 332 333

141 141 252 252

305 305 150 150

50 50 64 64

195 195 36 36

CPU 7 1954 4214 2101 2028 1493 11790 150 150

0 241 465 2292 6 3004 208
11

170
211

190

305

208
11

170
211

190

305

125

Table 5-14 Summary of the schedules queues.

TSI TS2 TS3 TS4 TS5
T—A_1

CPUID [18:40:50 18:41:21 18:41:55 18:42:29 18:43:1 1
■ Total
1 Schedules

18:41:00 18:41:31 18:42:05 18:42:39 18:43:21

CPUO 1954 4455 2563 4320 1499 14791
CPU 1 1954 4455 2563 4320 1499 14791
CPU 2 1954 4455 2563 4320 1499 14791

CPU 3 1954 4455 2563 4320 1499 14791
CPU 4 1954 4455 2563 4320 1499 14791

CPU 5 1954 4455 2563 4320 1499 14791

CPU 6 1954 4455 2563 4320 1499 14791
CPU 7 1954 4455 2566 4320 1499 14794

CPU 8 1954 4456 2564 4320 1499 14793

The values 1954, 4456, 2564, 4320. and 1499 in each of the five time slots is almost same

for all CPU/Core, and the value of the total queue size within a small range of 14791-14794.

This confirms the typical behaviour of an operating system for its fair scheduling policies

through the even distribution of load across all the CPU/cores evenly.

5.4.3 Phase II - Varying loading pattern across cores

From Table 5-13 it can be observed that the loading pattern is not same across the nine

cores, while the queue length (in other words the loading schedules) is almost same across them.

The loads on each core arc plotted for TSI to TS5 in Table 5-15 across diagrams in Figure 5-12

to Figure 5-16 and the consolidated load on each processor is Figure 5-17. Looking into TSI

loading, the queue length pattern on cores CPUO to CPU5 is smooth and consistent. There is only

one schedule for the queue length of 1954 in CPUO to CPU5; there are 8 schedules on CPU 6; 2

schedules on CPU7; and 14 schedules on CPU8. These results indicates the “Fair Scheduling

Policy” followed by the operating system for evenly distributing the load across cores; and the

difference in loading pattern is attributed to the kind of processes that are scheduled against each

core. Table 5-16 indicates that CPU6, CPU7 and CPU8 ran different kinds of processes when

compared to CPUO to CPU5.

126

Table 5-15 Individual and Cumulative Load patterns for 9 CPU Loads

Figure 5-12 Load distribution - TSI Figure 5-13 Load Distribution - TS2

Figure 5-14 Load distribution - TS3

100% - iiiinniiaJ1JOU /o

o
60% -

>

T
40% - 1
20% - Itttltttt
0% 1 ------ 1---- T 1 1 1 । ■' 1 '

Core ID
(CPU.K)

0 12345678

Figure 5-15 Load distribution - TS4

127

The investigation using syscall_by_proc probe reveals that there are three kinds of processes

scheduled on a core. These three processes are:

1. Enterprise application processes - in our current experiment it is related SQL

query execution processes such as MySQL, MySQLd, t.sql, expr etc.

2. Other application processes - in our current experiment it is related to enterprise

administration and management processes such as dtrace, sendmail, telnet, bash,

etc.

3. System processes - in our current experiment, these are Solaris operating system

processes like inetd, svestart.d, getsockname. mprotect, mmap64, sshd etc.

The details of separating these three kinds of processes from the DTrace logs are explained

in Appendix IV and V.

Table 5-16 shows the load schedule in all the five slots TSI to TS5, for all the nine cores

CPUO to CPU8. It can be observed from this Table 5-16, CPU8 is executing the operating

system processes predominantly compared to other cores in all the five time slots as depicted by

the number of schedules as 14, 19, 15, 30, and 16 respectively. As observed in another view

depicted in Table 5-17, CPU8 is executing the operating system processes predominantly when

compared to other cores in all the time slots. This indicates that the operating system is sensible

to schedule against each core instead of mixing the processes across cores arbitrarily. In time

slots TSI, TS2 and TS3, operating system spends its time in organizing itself to run the MySQL

and non-MySQL processes. In TS4 and TS5 it has scheduled more MySQL and non-MySQL

processes compared using the time for scheduling its own processes. In summary, CPUO to

CPU5 are scheduled in ideal condition in the context of application processes. It would be ideal

to have CPU6 and CPU7 scheduled similar to the scheduling of CPUO. When observed the
x----------- -—

processes in CPU6, it can be seen that CPU6 is executing other-application processes (Non

MySQL processes), which could be routed to different infrastructure. Similarly, it can be

observed that CPU7 is executing processes related to interconnect processes. CPU7 also could

be could ^scheduled to execute like CPUO, if there were no interrupts due to interconnect

processes for a nine-core configuration. CPU8 is almost not available for scheduling application

processes and it is needed for executing the operating system processes. Thus, we establish the

opportunity for schedule improvements through Connection-Orientation for CPU6, and through

1 nfrastructure Awareness for CPU7 on the basis of load schedule observations.

128

Table 5-16 Schedule loading on CPUO to CPU8

Scheduled Queues TSI TS2 TS3 TS4 TS5
CPUO 1 1 1 I 1

CPU1 1 1 1 1 1

CPU2 1 1 1 1 1

CPU3 1 1 1 1 1

CPU4 1 1 1 1 1

CPU5 1 1 1 1 1

CPU6 8 8 8 17 3

CPU7 2 2 2 2 2

CPU8 14 19 15 30 16

Table 5-17 Comparison of DTrace logs on a single processor running multiple commands

Schedules for CPU8 TSI TS2 TS3 TS4 TS5
Scheduled Queues 14 19 15 30 16

Actual SQL schedules 5 11 5 63 38

Actual nonSQL schedules 5 11 5 63 39

Figure 5-18 SQL vs Non SQL commands as seen by two probes

129

Table 5-18 shows the consolidated list of all the system calls happened in five time slots. As

seen in the table, there are 83747 total system calls happened in 151 seconds across five time

slots. In TSI to TS3 application (MySQL) initialization and stabilization happened. In TS4 and

TS5 the application is executing (executing SQL queries) There are 27804 calls are related to

main application and 20090 calls are related to other application processes; this translates to 58%

calls for main application and 42% for other applications. If we can move or reduce the number

of other application calls outside the infrastructure then we can make the relevant application to

occupy the core for execution. That is any reduction of 42% calls (that relates to other

applications) or migration of these 42% calls to other infrastructure could improve the

performance of the main application. This is in other words is the “ability to identify

Connection-Orientation between the infrastructure and the application process”. The detailed
methodolog/jT^bllowed to extract, analyse and summarize the log data to arrive at the

consolidated event table as depicted in Table 5-18; the methodology to extract to analyze and to

summarize the logs is presented in Appendix II, Appendix IV and Appendix V respectively.

This summarized view helps us to visualize and appreciate this situation occurring even for an

ideal condition like in-process Client-Server scenario. In the case of executing stateless Web

services the situation becomes magnified and we could see that the core is occupied by other

application processes for larger duration when compared to main application process. Hence, the

need for Connection-Orientation becomes a requirement to improve the performance of the web

service based application.

5.4.4 Phase II - Successful process gets more focus

The next interesting observation is the scheduling of execution-ready processes in the core

in a time slot. Operating system gives importance to the process that executes without cache

miss, when compared to the process that misses the cache. When we plot the process schedules

in a graph for a given time, we can see these process schedules appear in groups; this means a

process that has all information to execute can continue to get the attention of operating system

when compared to the process that do not have all information to execute. Table 5-19 details the

summarized representation of “number of clusters in a graph” for all the three queries in Client-

Server configuration for various core configurations (1, 2, 4, 5, 8, 9, 16, 17, 18, and 32 cores

configurations); each cluster represents a process that gets scheduled and executed continuously.

The cluster is obtained through a systematic statistical procedure as detailed in Appendix IX.

130

This cluster of “same process executing continuously”, also corroborates with the large

processing slots of time seen in TSI time slot. The ideal situation would be a single process

continuous to occupy the core till the completion of execution. So, less number of clusters means

good execution when compared with more number of clusters. Table 5-19 shows that number of

clusters increase as the number of cores increase; this could be due to increase in context

switches; as the number of cores available for operating system, it starts to schedule the process

across the cores; this creates a context switch which ultimately affects the overall performance of

the system.

5.4.5 Phase II - Performance represented using CCE and IPE

Having obtained the number of runs and cache misses for a given core configuration, next

step is arrive at the CCE and IPE values, so that the interpretation becomes easier. Table 5-20

shows the computed values for CCE and IPE for various core configurations ((1,2, 4, 5, 8, 9, 16,

17, 18, and 32 cores configurations) in Client-Server deployment mode.

Table 5-18 TSI to TS5 - consolidated results (as seen by syscall_by_process)

Serial
No Start

Proc

Serial
No End

Proc

Start
Time

of the Run

End
Time

of the Run

All
syscalls

start

All
syscalls

End

Total
Runs of
syscalls

SQL
runs

NonSQL
runs

SQL
syscalls

NonSQL
syscalls

1 112 18:40:50 18:41:00 1 3061 3061 5 5 13 856

113 615 18:41:21 18:41:31 3062 15479 12418 11 11 32 3753

616 1237 18:41:55 18:42:05 15480 23862 8383 5 5 5 12839

1238 2516 18:42:29 18:42:39 23863 41170 17308 63 63 6892 11463

2517 5209 18:43:11 18:43:21 41171 83747 42577 38 39 27804 20090

Table 5-19 Number of "Clusters” or "large sequence of executions" for each configuration

Number of Cores/
Query ID 1 4 5 8 9 16 17 18 32

qi 2 5 6 8 11 12 20 22 30
q2 2 5 8 8 14 10 16 19 24
q3 2 5 •16 11 16 10 34 34 24

131

Table 5-20 Phase II - Client-Server - Core Config Effectiveness & Intra Process Efficiency

No of
Cores

QuerylD /
Threads Clusters No of Command

executions
No of Cache

Misses CCE IPE

SQL NonSQL SQL NonSQL
01 qi 2 4,714 875 60,126 114,702 84.3 65.7
01 q2 2 5,351 3,496 177,326 519,098 60.5 31.9
01 q3 2 4,010 875 71,114 126,634 82.1 62.5
04 qi 5 896 954 9,357 30,643 48.4 89.3
04 q2 5 151 559 3,942 14,404 21.3 94.6
04 q3 5 136 507 1,397 8,515 21.2 97.1
05 qi 6 1,438 1,094 15,935 52,791 56.8 83.0
05 q2 8 364 1,303 8,315 33,508 21.8 88.5
05 q3 16 880 1,262 13,160 42,678 41.1 85.5
08 qi 8 852 1,155 8,064 33,449 42.5 89.0
08 q2 8 11 227 178 3,920 4.6 98.7
08 q3 II 17 382 254 5,847 4.3 98.1
09 qi 11 3,244 1,966 41,449 82,416 62.3 72.8
09 q2 14 1,614 1,787 52,417 117,436 47.5 65.6
09 q3 16 1,352 1,856 21,518 83,677 42.1 75.8
16 qi 12 8,444 1,843 111,256 169,060 82.1 54.2
16 q2 10 664 635 26,039 57,085 51.1 79.5
16 q3 10 163 802 39,121 13,383 16.9 85.7
17 qi 20 3,207 657 42,037 54,898 83.0 77.4
17 q2 16 3,315 3,438 108,511 283,106 49.1 45.3
17 q3 34 3,475 1,150 57,178 107,310 75.1 66.7
18 qi 22 2,563 1,524 28,083 20,010 62.7 87.0
18 q2 19 2,584 2,981 73,355 133,539 46.4 60.9
18 q3 34 3,025 1,826 45,783 48,455 62.4 77.5
32 qi 30 272 1,730 50,020 40,575 13.6 77.7
32 q2 24 2,926 1,499 101,732 257,258 66.1 47.5
32 q3 24 3,478 426 61,516 150,818 89.1 61.0

132

Core Configuration Effectiveness Intra Process Efficiency

Figure 5-19 CCE for Query 1

Intra Process Efficiency • Client Server - Query 1

Figure 5-20 IPE for Query 1

Core Configuration Effectiveness - Client Server - Query 2

9 Air. mini'lli< (18. P.^.S. I) 9 Syinmetlic (4.8. 10,32)
Intra Process Efficiency - Client Server • Query 2

HAsviiinii-tiir (18. P.O.5.1) 9 Syiiiiuetiic(4,8,10,32)

Figure 5-21 CCE for Query 2
Figure 5-22 IPE for Query 2

Figure 5-23 CCE for Query 3

Intra Process Efficiency- Client Server- Query 3

Figure 5-24 IPE for Query 3

133

5.4.6 Phase II - Performance for Symmetric and Symmetric Core configurations

Figure 5-19 to Figure 5-24 depict the results of the three runs Query 1. Query2 and Query3 in

the Client-Server mode (spatio-temporally aligned mode), represented for CCE and IPE for

various core configurations. These results are represented in decreasing order of asymmetric

configuration (viz. 18, 17. 9, 5 and 1) followed by a set of increasing order of symmetric

configurations (viz. 4, 8, 16 and 32). This representation is done to illustrate the effect of

symmetricity. The following important observations were made from these results.

1) For each of the three queries, there is a strong correlation between IPE and CCE for

asymmetric configuration.

2) Similarly, for each of the three queries there is a strong correlation between IPE and

CCE for symmetric configuration.

3) Another observation is that asymmetric processors perform poorly when compared to

symmetric processor.

4) Increasing number of clusters against the increasing number of cores, resulting in

increasing number of context switches, thereby decrease in overall performance.

5) For query wise results, it appears IPE and CCE are best for complex queries for 32 cores

configuration. However, when observing per core performance (assuming linear

scalability) ideally 32 cores configuration could give eight times (800 percent) more

performance when compared to a 4 cores configuration. However, as seen later in

Figure 6-3, the per-core performance is 1.3 (130 percent) for 32 cores processor instead

of 800 percent in an ideal linearly scaling scenario.

In summary, in this Phase, we have used nine-core configuration to showcase the process

the DTrace logs and the obtained results of Client-Server based deployment; we identified the

opportunity to improve the performance of the system using two key concepts of COAF namely

Connection-Orientation and Infrastructure Awareness. This log processing and analysis

methodology is repeated for all core configurations namely 1, 2, 4, 5, 8, 9, 16, 17, 18, and 32

cores configurations; the results obtained from this phase can be subsequently used for future

phases for comparing the behaviour of web services based deployment with client server based

deployment.

In the Client-Server configuration, the core MySQL processes execute for maximum

duration of the time with a small amount of failures when compared to non-MySQL processes

134

and operating system processes. This observation validates the behaviour of the application in

spatial and temporal coherence, and thus exhibits the Connection-Orientation behaviour of

Client-Server configuration. This behaviour is the desirable behaviour for the enterprise and our

aim is to replicate the performance of Client-Server for web services for various Multi-core

server configurations.

5.5 GENERIC WEB SERVICES SETUP FOR PHASES III TO PHASE V
_____ 4—-—* ---------------

To evaluate the Multi-core performance, we built the stack of standard COAF infrastructure

components that are listed in chapter 4.0 such as Apache, NaradaBrokering, DTrace, Axis2, PHP

run time, Python run time, script run times, MySQL database server, and custom components

such as configurators for threads, get/set operators for threshold values, web services clients for

start I stop web services, loads pumps etc. using PHP/Python. The typical enterprise application

consists of multiple servers clearly separated into web servers, application servers and databases

with a configuration as seen in the Figure 5-25. The Niagara server was configured to run the

MySQL database server, and the data services are exposed through a web service. The database

is setup with 10 million business records to reflect the nature and size of real-time enterprise data

with variations in query complexity, the request arrival and volume of the result sets that are

returned for those queries. The data services return the relevant result sets to the requesting

client component. Apache JMeter is used for pumping the load simultaneously with various

frequencies as required in the “number of threads” configurations to emulate an enterprise load

setting.

5.6 PHASE III - TEST BED SET UP FOR WEB SERVICES WITHOUT COAF

The objective of Phase III is to identify the Application Design Level parameters for a web

service based application and its infrastructure, establish the existing baseline behaviour for web

services in the current enterprise configurations, and identify the application run-time parameters

that can possibly help and refine the application level performance. In phase III, the client

server application of Phase II is replaced by its web service counterpart. The default application

that ran MySQL as a client is now run with MySQL as a web service along with Apache web

server and app server. In Phase III, the logs of the three query results are averaged out, so that the

results are focussed on inter-core performance. Also, the operating system calls are isolated from

135

SQL and No-SQL calls, so that experiment focus is on processes relevant to the application.

Hence, the.results are depicted only for SQL and No-SQL leaving out System calls. To

establish the effectiveness of Connection-Orientation and Infrastructure Awareness aspects of

COAF, the phase three is focused on collecting the baseline results for web services without

COAF. Figure 5-26 represents the enterprise setup but the client application demonstrating the

multi-user access. WAMP (Windows Apache MySQL PHP) stack is installed on the Intel based

Desktop Machine. This desktop is used to pump multiple user requests concurrently. JMeter is

installed in windows machine. The JMeter is used to spawning user requests. JMeter sends

request to Apache web server as configured in Figure 5-27. JMeter is configuration, an HTTP

Request sampler and a corresponding listener is added. A request is traced from the origin to the

end destination back to Origin, to ensure that every request is processed. However, during the

experiments there are some requests that may not be processed due to various reasons such as

access latency, network non-availability etc. These requests arc outliers for our experiment, even

though they may also appear in the standard enterprise infrastructure. To remove these outliers,

the listeners are setup to provide the reports on every test case.

A test case is organized so that a web service request can be pumped in various numbers and

groups. On the server side, Apache is configured to acknowledge the request and send back the

response. The Niagara server hosts all the three major infrastructure components namely Apache

Web server, Tomcat/Axis2 Application server and MySQL database Application. A test case is a
PHP based web-service program that can randomly generate a 3 digit number, which is thTused

for querying the credit-card number in our test case. This web service in turn queries the

MySQL database tables and returns the results wrapped as web service. As shown in Figure

5-28, the test plan added with the URL http://servername.com/phpmyadmin/load.php.

5.6.1 Phase III - Web Services without COAF - Setup

JMeter is configured to send 100 or more parallel requests. A test plan is created with run­

time parameters “number of client threads” (for example nThreads = 100), rampup period as one

second and LoopCount as 1. The test is run multiple times to ensure that we get consistent

results. This process is run for various values for numbers of threads, such as 200 threads, 300

threads etc.; the above process of testing is conducted for different core configurations such as 8,

9, 16, 17, and 32. More focus is given to these five different core configurations (8, 9, 16, 17,

136

and 32). due to high CCE and IPE values. The performance results are measured and

documented for each of the thread iterations and the results are documented for further analysis.

5.6.2 Phase III - CCE and IPE for Web Services without COAF feedback

Table 5-21 is the comparative results obtained for Web services setup without COAF for

various core configurations (8 cores, 9 cores, 16 cores. 17 cores and 32 cores) for values of

“number of client threads” as 1000 and 2000 threads (Maximum of 1000 or 2000 simultaneous

connection requests in JMeter setup); these results contain number of command executions for

SQL and NonSQL processes, number of Cache misses for both SQL and NonSQL processes, and

the two computations CCE and IPE for each core configuration (8 cores, 9 cores, 16 cores, 17

cores and 32 cores). As seen in Figure 5-29 and Figure 5-30, when the value of “number of client

threads” increased from 1000 to 2000, there is a reduction in CCE. This indicates that lower

number of desired application processes (MySQL processes) scheduled on the core, when

compared to other processes (such as Non-MySQL processes). Also, IPE has reduced for

increase in number of threads from 1000 to 2000 as shown in Figure 5-31 and Figure 5-32

respectively.

5.6.3 Phase III - Spatio-temporal characteristics observed.

The execution results for three queries Query I, Query2, and Query 3 (Table 5-10) is

obtained for both client server mode and Web services mode deployments. Table 5-20 is the

summary of results obtained for client server configuration and Table 5-21 is the summary of

results obtained for Web services configuration. Results of these two tables are correlated

between “the numbers of cores” and “the number of Clusters” using Pearson’s correlation, and

these results are displayed in Table 5-22 . The resultant Pearson’s Correlation Coefficient is

further used for interpreting various scenarios. In the Client-Server scenario the correlation is

significant (0.967 and 0.922) for simple queries; this may be due to spatially coherent

characteristics of Query 1 and Query2. This also corroborates with the behaviour of operating

system to schedule parallel tasks in favour of spatially coherent processes. By design, Query3 is

temporally incoherent. Correlation Coefficient for Query3 in Client-Server scenario is low

(0.666); this means, increase in “number of cores” to execute the Query3, results in increase in

number of clusters. In Web services mode, the correlation is low for all three queries (0.707)

when compared to the results obtained in Client-Server mode; this result is due to spatio-

137

temporally incoherent nature of Web services. This facilitates the need for further enquiry into

temporal specific behaviour for Web services based configuration, as detailed in Phase V.

5.7 PHASE IV - COAF BASED TEST BED SET UP - WEB SERVICES

The objective of the Phase IV experiment is to test the effect in performance changes

(preferably performance improvement) due to feeding back the knowledge obtained through

COAF framework. The key activity in this Phase IV is to identify the configurable run time

parameters, configure those parameters with different values, and observe the variation in

performance; This observation is stored as knowledge-map and this knowledge is injected back

to system as feedback; this knowledgejs in turn makes the enterprise application aware of its

infrastructure configuration. Figure 5-33 depicts the set up for web services with COAF

modules such as Core Scheduler module, Behaviour Information module, Threshold

Configuration module, and Notification Framework module.

5.7.1 Phase IV - Application Parameters - Setup

For this test setup, an additional Python based script is developed and this script is deployed

as a component of Threshold Configuration module (COAFConfigurator.py). This script runs

continuously; this script has the ability to reset the system after the test case execution is

completed for a given core configuration. This level of automation helps us to try out various

test cases and collect results so that we could plot the results against the set objectives. The

“number of client threads” is chosen as the application level control parameter for this setup.

Figure 5-34 represents the detailed view of the workflow in the COAF based Web services setup.

The COAFConfigurator component creates the XML-RPC requests that are channelled through a

web server to the COAF based middle tier environment. The XML-RPC listeners are bound to a

specific port. This is done to ensure that other process do not get routed inadvertently into the

test zone. The XML-RPC headers also contain the routing information to the data servers that

render the data so that RPC headers can be used to map and bind the server to the service.

Eighteen different script files that monitor the CPU, processors, the distribution and the

symmetricity were written to perform this observation.

138

Figure 5-25 Web Service based setup for the enterprise application

Figure 5-26 Web service Setup without COAF

139

Apache JMeter (23.2 (665936)

File Edit Bun Options Help

I o II a IR53

0/0
? 4^ ttwra Teri Pan

9 ThreatGicur
/* HTTP Pequet!

Jj V.olBenrh

HTTP Request
Name: !http Request

Comments:

Well Server
Server Name or IP: Fseoer ip ’ Po

HUP Request

Protocol (default Itttp): ■ J Method: |gET [sr j Content encodit I

Path: ['phpmia-linin'londphp J j

[✓iRodiroct Automatically ' 11 :i .<it i. !✓'Use KeopAfjvo [J Use intCtipartlot ||

Send Parameters With the Request: ' J
name I vvMi? \ i ■ | |

| Add p-f m i j.

Send Fites VWh the Request: I
_________ _____________ ' Fite Path |Pt j

Figure 5-27 Apache JMeter settings for loading queries on the enterprise application
- Apache JMeter (233i«5936)
£lle C<m B«n QlMlons Help

g Nagara Tert ’tan

Thread Croup

Jg; 'Aori’Bettch

Thread Group
Name: [Thread ,G>oup___________ _________ ______________ ___ _

Comments:
Action to be taken after a Sampler error

• Continue C Stop Thread J Stop Test

Thread Properties
: Number of Threads (users): * 1 od

: Ramp-Up Period (in seconds): |1_____________________________

jLoop Count: IJ Forever |t

; □Scheduler

Figure 5-28 Setting up threads and Ramp-up in JMeter for Web Services

140

Table 5-21 Results and Characteristics of WS NoCOAF

No of
Cores

Query ID /
Threads Clusters No of Command

executions No of Cache Misses CCE IPE

SQL NonSQL SQL NonSQL

08 1000 42 2.879 1.157 17.301 82.316 71.3 78.3

08 2000 42 3.272 2.271 19.101 149,814 59.0 68.2

09 1000 47 3.043 1.015 17.770 65,922 75.0 81.0

09 2000 49 1.947 1.534 12.357 118.987 55.9 73.3

16 1000 51 4,116 1.351 26.348 64.608 75.3 79.3

16 2000 57 5.604 2,222 44.972 129,573 71.6 66.4

17 1000 59 4.426 1.413 28.908 84.630 75.8 75.6

17 2000 41 7,094 2,980 86,997 128.745 70.4 60.5

32 1000 54 4.611 2,298 50.200 79.131 66.7 71.9

32 2000 67 3.943 2,566 125.999 114.416 60.6 57.2

Table 5-22 Correlation of number of cores against number of clusters

Deployment
configuration Application test case Pearson’s Correlation

coefficient
Client-Server Query 1 0.967

Client-Server Query2 0.922

Client-Server Query3 0.666

WS No COAF Queries 1.2. 3 0.707

Figure 5-29 CCE for 1000 threads across cores

Core Configuration Effectiveness-
WebServices NoCOAF - 2000 Threads

Figure 5-30 CCE for 2000 threads across cores

141

Intra Process Efficiency - WebServices
NoCOAF - 1000 Threads

Figure 5-31 IPE for 1000 threads across cores

Intra Process Efficiency - WebServices
NoCOAF - 2000Threads

Figure 5-32 IPE for 2000 threads across cores

Figure 5-33 Web service setup under COAF

142

COAF View of the deployment

Figure 5-34 Stepwise Perspective of COAF in Action

S No

©
©

©
©

©
©

©
©

©

COAF: Server Perspective for the first iteration
DTrace Probes begin logging the performance of the cores in the respective log files. The
Cache misses and the system calls are noted across in the respective logs.
The raw data from the logs is filtered, and the analysis and clustering is performed on these
logs, giving the performance of the current run in terms of Cache misses.
This Cache miss with system calls, is used to refine the number of threads as well as the
threshold values in the configuration files (in /etc).
The performance depends on the run time parameters i.e. number of client threads stored in
threads.txt. These newly computed values are notified as feedback to the system.
The Notification Framework module now relays to the System Management module - either
to start a new server or reduce number of threads based on the Cache misses.
The System management module, takes the notification (deploy service, start server, stop,
undeploy etc.), perforins the actions and inform the Notification Framework module.
The System Management modules also despatches the status of the server to the Notification
Framework module periodically.

The Resource Management module ready to take the processing requests.

The Core Scheduler schedules the processing requests to the newly provisioned server
Maintains SchedulerState and ServiceMap.

143

Cache miss is the observed kernel level parameter from the DTrace logs. Logs relevant to

cache misses are collected, analysed and presented for feedback. Two probes of DTrace - viz.

syscall_by_proc and minf_by_proc are used to collect the data from the kernel at the operating

system level. The methodology used to isolate the logs, filtration, aggregation, and analysis are

same as the methodology followed in Phase II; this methodology is presented in Appendix II,

Appendix IV and Appendix V respectively. From previous phase experiments we were able to

observe that performance of the system can be changed by changing the application level

configuration parameters; for example we used “number of client requests” as one of the

configuration parameter. We observed the kernel’s Cache miss behaviour for various values of

“number of client threads” against different core configurations. For every configuration of

client threads, the number of clusters of SQL or Non-SQL executions, number of SQL and

NonSQL calls, number of Cache misses and the two computations CCE and IPE for each core

configuration (16 cores, 17 cores, 26 cores, 28 cores, 30 cores and 32 cores) are collected. From

the core configuration perspective, it could be noted that the results for 8 cores configuration are

not presented. In Niagara chip 8 cores are arranged in the same slot. Hence, the results of 8

cores configuration may be an outlier when compared to other core configurations. Since the

focus is to establish the awareness of interconnect and its impact on performance, the analysis

and results are presented for 16, 17, 26, 27, 30 and 32 cores configurations. The baseline results

collected from previous tests that are web services tests without COAF, are taken as the initial

baseline threshold values. Core Scheduler module has the handler called COAFConfigurator,

which is used to setup the number of client side threads and dispatch those requests to the

system. The initial value for the number of threads is taken from web services without COAF

baselines values. The value of the “number of client threads” is stored in the threshold

configuration file called “threads.txt”, which the COAFConfigurator script handler refers to for

configuring the number of threads.

From Phase III experiments, we also observed that the number of cache misses were low

when the application configuration values for “number of client threads” were around 100; even

if the values for “number of client threads” were set at 1000, 2000 etc. the number of client web

service requests that got processed by the application was around 110. This provided the first

base line information about the range of values for “number of client threads”. This helped us to

144

focus on understanding the behaviour of the kernel for various values of “number of client

threads'’ around 100. This in turn would help us to setup threshold values for the system for this

configuration parameter “number of client threads". The initial value is set to “50 threads" and

the seed value of 5 threads added in both directions like 50, 55, 60 etc. in the positive direction

and 50, 45, 40, 35 etc. in the negative direction. The scripts are configurable to modify the seed

value from 5 threads to any number of threads; similarly, the initial value of threads can be

modified from 50 to any other value. This setup is done, to understand the behaviour of the

system for varying the number of threads configuration observed through the number of “Cache

misses”. The Cache miss logs are analysed and the results demonstrate the impact of changes in

configuration and thus demonstrate an ability to inject the knowledge of Infrastructure to the

COAF based system. The iteration of analysing Cache miss logs is continually done for various

core configurations to identify a pattern / trend to arrive at the threshold for minimum number of

Cache misses.

5.7.2 Phase IV - Observations on multiple Core Configurations

Table 5-23 captures some of the interesting observations obtained for Web services setup

with COAF for various number of client threads from 35 threads to 110 threads. This table does

not show all the results for all the values of “number of client threads", but it captures important

aspects of the system behaviour. The following are key observations one could make from this

table:

• Kernel behaviour can be easily represented through CCE and IPE when compared to

digging massively large textual logs.

• For a same Core Configuration, the kernel behaviour is different for different values of

“number of client threads” for the same application. In other words, application

configuration can be changed to get the best results from the underlying system, without

modifying the system configuration (source recompiling, rewrite etc.)

• For the same value of “number of client threads”, the kernel behaviour is different for

different Core Configuration. In other words, system configuration can be changed to get

the best results without modifying the application configuration.

• Best configurations for the application and core configuration can be combined to get the

best results. <

145

Table 5-23 Results and Characteristics of WS COAF

Number
of

Cores

Number of
Client

Threads

Number of
observed
Clusters

Number of
Command
executions

Number of
Cache Misses CCE IPE

SQL NoSQL SQL NoSQL

16 35 26 9,237 5,775 14,862 29,241 61.5 89.8

16 50 32 3,639 908 15,262 21,247 80.0 90.6

16 60 34 5,738 1,418 18,173 11,043 80.2 92.0

16 100 41 7,602 1,469 27,811 35,143 83.8 85.0

17 35 33 6,343 5,269 21,113 16,990 54.6 89.3

17 50 32 4,765 3,480 20,104 22,912 57.8 88.5

17 60 32 5,569 4,381 21,393 17,961 56.0 89.1

17 100 ' 10 8,944 9,927 9,506 18,540 47,4 93.0

26 100 34 4,358 3,426 31,310 16,300 56.0 86.8

26 110 . 33 3,902 1,072 29,649 22,880 78.4 86.3

28 100 36 6,369 4,621 34,842 27,450 58.0 83.8

28 110 39 7,248 6,472 39,188 31,757 52.8 81.7

30 100 32 7,181 1,981 32,908 33,953 78.4 83.7

30 110 41 4,201 2,702 39,456 47,045 60.9 79.1

32 45 6 7,147 9,472 8,943 18,964 43.0 92.8

32 50 2 10,895 8,201 25,383 404,535 57.1 50.5

32 100 3 25,701 26,172 298,719 314,077 49.5 34.3

32 97 6 6,030 5,520 9,784 14,940 52.2 93.4

32 105 6 6,240 5,261 10,158 10,130 54.3 94.2

146

5.7.3 Phase IV - Performance can be changed by modifying application configuration

This section highlights the importance of COAF based feedback. In a normal enterprise

application administration, the configuration settings are usually setup for either default values or

maximum utilization. For example in the case of number of client requests that can be processed

from the system, if choice is between 1000 or 2000 for number of client requests to process, then

the obvious choice for the administrator is to set them for high values at 2000. However, we

have observed that the system cache-misses are high for those settings, and we observed low

cache misses happen at settings around 100. Figure 5-35 and Figure 5-36 illustrate the

differences between the performances with COAF based feedback versus performance without

feedback (NoCOAF) for a 16 cores configuration system. Figure 5-35 compares CCE values

(that is number of schedules of MySQL commands) for 16 cores configuration with and without

COAF feedback. For the variable “number of client threads” the performance is better with

COAF for the values 50, 60 and 100 than NoCOAF values (1000 and 2000), except for a setting

of “35 threads”. This indicates the possibility of achieving better performance by just varying

the values for “number of client threads” for a given core configuration. As we can observe

from Figure 5-36 for setting of 50, 55, and 60 client threads the IPE value is higher. This implies

that the number ofCache misses is relative low (or high cache hits in other words) within each

schedule (time slot) given by the operating system. For 16 cores configuration, 60 threads would

be a good setting based on the above results obtained from the logs for optimum cache hits I

lower Cache miss.
Without COAF feedback (i.e. NoCOAF values from the figure), default values would have

been set for 1000 or 2000 - as we are interested to process maximum number of client requests.

However, we have observed that values around 50, 60 or 100 are good. This observation is

important for emerging new subscription and billing models of enterprise cloud hosting

scenarios. Assuming the subscription is based on the number of client requests that can be

processed and if the provider bills the enterprise based on the “number of client threads”

(because that is the only human configurable value), then the cost of that service would be

arrived for the settings 1000 or 2000; We have observed that even though the system has

subscribed to 1000 or 2000 client requests, the system can only process upto 110 requests

efficiently for a given 16 cores configuration. With this COAF based observation, we can say the

147

setting could be 110 and not 1000 or 2000; and the charges appropriately reduced to 1/10lh or

l/20,h of the original planned cost respectively.

5.7.4 Phase IV - Performance can be changed by modifying Core configuration

This section highlights the observations due to next dimension of variability related to Core

configuration. Results are presented in Figure 5-35 to Figure 5-40 for three different core

configurations namely 16 cores, 17 cores and 32 cores; the results compare the CCE and IPE

values for six different thread settings, 1000, 2000 (the default settings without the COAF

feedback) and 35, 50, 60, 100 (the different settings tried with COAF feedback This is to

compare the behaviour between

• 16 cores to 32 cores (what happens if the compute capacity is doubled) and

• 16 cores to 17 cores (for giving extra core with interconnect)

32 cores configuration has completed the application jobs (MySQL) in 33% lesser schedules

when compared to 16 cores configuration; in other words, 32 cores configuration has completed
the same job(inJ33% faster than 16 cores configuration; this directly demonstrates the linear

scalability of increasing the core. However, the scalability is not double (ideally 100% increase)

for doubling the cores from 16 to 32. Instead it has given only 33% more efficiency.

17 cores configuration has just one more core when compared to 16 cores configuration.

Additionally 17 cores configuration has core-interconnect overhead when the data overflows to

caches that across core-interconnect. When compare the results using IPE, we can see 17 cores

configuration has actually performed very well when compared to 16 cores configuration,

despite the overhead due to interconnect. This observation corroborates with the Phase II

observation from syscall_by_proc and dispqlen_by_cpu probes, which indicates that operating

system calls are scheduled in 17th core, where as the application calls (MySQL and Non­

MySQL) are scheduled in remaining 16 cores. Without the COAF feedback, administrator would

choose 16 cores configuration as it is symmetric and without any interconnect overhead. '

However, with the COAF feedback, administrator would choose a 17 cores configuration. V

32 cores configuration has performed extremely well when the values are 45, 97 and 105 for

the variable “number of client threads”. This indicates the threshold could be between 45 to 105

and can be setup in this range, and the threshold can be further fine tuned for well-defined

workloads.

148

Figure 5-35 16 cores CCE (No COAF vs COAF]

16 Core - Intra Process Efficiency

Figure 5-36 16 cores IPE (No COAF vs COAF]

17 Core - Core Config Effectiveness
□ NoCOAF COAF

Figure 5-37 17 cores CCE (No COAF vs COAF]

17 Core - Intra Process Efficiency

Figure 5-38 17 cores IPE (No COAF vs COAF]

32 Core - Core Config Effectiveness
□ NoCOAF EICOAF

Figure 5-39 32 cores CCE (No COAF vs COAF]

32 Core - Intra Process Efficiency
■ NoCOAF BCOAF

Figure 5-40 32 cores IPE (No COAF vs COAF]

149

5.7.5 Phase IV - Enterprise Administrator’s view of configuration

Figure 5-41 and Figure 5-42 provide another view of the results comparing the performance of

26 cores. 28 cores and 30 cores. These three configurations in general performed well for a

value 100 when compared to value I IO. System Administrator can combine and compare these

observations in a form that is easily usable for her/his_con figuration thresholdszsalues. One such

sample look-up table that can be prepared the administrator is shown(m Table 5-23/As this table

shows, this is an indicative threshold value for a system that runs a query against IO million

records, the “number of client threads” could be set for a value of 35 if the core configuration is

16 cores, and for the same application, the value of “number of client threads” could be set for a

value of 100, if the core configuration is 28 cores .

5.8 PHASE V - COAF TEST BED SET UP - TEMPORAL COHERENCE STUDY

The objective of the Phase V experiment is to study temporal caching behaviour for various

configurations. Typically master data in the enterprise application is re-referenced multiple times

and thus represents the temporally local nature of the data. The transaction data especially for

CRUD operations represents the spatially local nature of the data. If the service requests are

dispatched to the server where the data is locally available and reusable, then it would result in

improved performance when compared to the dispatch to the server where the data may not be

locally available. This aspect of contextually dispatching the request is tested for various core

configurations in this phase. The results of this experiment become very interesting considering

the emergence of new pluggable PCI bus based flash memories [231] that can fit larger memory

sizes in the range of tera bytes of data near to main memory.

5.8.1 Phase V - Temporal Application Parameters - Setup

The Phase V test case is designed in such a way that the data size of the results generated out

of the query can fit into main memory. These kinds of test cases are possible in enterprise

environment, where the lookup data is relatively static and that can represent the temporally

predictive scenarios. MySQL application is hosted as a web service. The database contained the

dataset related to various account numbers; these account numbers are generated with orderly

sequenced numbers and with randomly generated numbers. The distribution of account numbers

with a mix of orderly created and randomly generated values thus, removes the homogeneous

nature of data, and lesembles enterprise transaction data. The application query uses account

150

number as the primary search criterion. Enterprise applications are predominantly read only in

nature: therefore, if memory size could fit the standard master data combined with transaction

data, then the data would represent better spatio-temporal characteristics when compared to the

data size that can overflow the memory size. The “number of client requests” is used as the

controlling variable and the experiment is done to test the execution behaviour of the application

for various values for this variable. 35, 50 and 60 are the values set for “number of client

requests” and results are captured for 16 cores, and 17 cores configuration. Similarly, the

“number of client requests” is set with values of 100 and 110 threads and the results are captured

for 26, 28 and 30 cores configurations.

5.8.2 Phase V - Cache memory size could influence the performance

Table 5-25, represents the consolidated results for 8 core, 16 cores, 17 cores, 26 cores, 28

cores and 30 cores respectively. From the results, it can be observed that all the application

processes run within 4 clusters for 16, and 17 cores configurations with reduced Cache misses.

This corroborates with our earlier experiments of previous phases that Operating system is smart /

enough and fair in scheduling the well-prepared processes (spatially and temporally coherent -

processes) for execution.

For interconnect configurations such as 26, 28 and 30 cores configurations, the number of

clusters has increased; this indicates the occurrence cache misses and/or context switches. ■■---_
Ideally, size of data may not be a reason for cache misses / context switch as the data is in such

size as fits into memory; thereby data is temporally and spatially coherent. However, operating >

system sees almostjarge numbers of cores across interconnect. When the configuration is 17

cores, Operating systemTFlntelligent to identify 16 cores on one side of the interconnect, and

one core on the other side of the interconnect. However, when Operating system sees 26, 28,

and 30 core configuration, it sees that the number of cores are spread across the interconnect;

because, the Operating system is fair in its scheduling, it chooses to distribute the load across

cores. While the execution is distributed, the data is present in the cache that is on the other side

of interconnect. Since, the cache is shared Operating system first tries to fetch the data across

interconnect. This aspect of fair scheduling policy of Operating system across multiple cores,

modifies the spatially local coherency of the data, which resulted in Cache misses. Hence, the

151

Table 5-24 Typical Configuration recommendation for Administrator

No of
Cores

Approximate number of
records to process

Recommended number
of Client Requests

16 10.000.000 35

17 10.000.000 35

32 10.000.000 45

26 10.000.000 100

28 10.000.000 100

30 10.000.000 100

Table 5-25 Results of temporal Characteristics for in-memory

No of
Cores

Number of
Client threads

SQL
Runs

SQL cache
misses

Non SQL
runs

Non SQL
Cache misses

08 50 4 26 38 594

16 35 9 92 81 3,577

16 50 4 7 96 3,632
16 60 4 63 151 5,675
17 35 4 74 172 6,269
17 50 4 54 133 4,711
17 60 4 61 164 5,508
26 100 16 76 96 4,282
26 110 4 21 77 3,881
28 100 27 1,748 151 4,621
28 110 27 1,997 167 5,251
30 100 27 1,911 152 5,270
30 110 8 46 90 4,155

152

Infrastructure awareness of cache memory size and the cache location are important for

improved scheduling.

5.9 SUMMARY OF RESULTS ACROSS ALL THE FIVE PHASES

The five phased approach to experiments shows the importance of imparting feedback to

improve the performance of web services based application that runs on Multi-core servers.

Comprehensive instrumentation framework is used for observing and collecting the events that

happen at operating system kernel and storing them in the form of logs for further analysis. We

have developed an extensive workflow methodology (extract, Filter and aggregate relevant events

such as cache-misses, the number of schedules of a specific process etc.) to extract relevant

events from DTrace logs. These events are abstracted by two metrics namely Core Configuration

Efficiency (CCE) and Intra Process Efficiency (IPE). CCE represents effectiveness of

scheduling the desired application processes on the core when compared to other processes. IPE

represents the efficiency of the execution of these processes. Cache-miss is used as the

underlying parameter that is used to arrive at the values for CCE and IPE. The concepts of

Connection-Orientation and Infrastructure Awareness are demonstrated through multiple

experiments from Phase II through Phase V. Following are the key points that have been

demonstrated to achieve the objective of COAF.

I) There are tools and methodologies that can be leveraged to monitor and measure the

kernel level parameters in non-intrusive manner.

2) It is possible to deploy the Multi-core servers with various Core configurations such as 2

cores, 4 cores, 16 cores, 17 cores, 32 cores etc.

3) Cache-misses directly correlate with performance of the system and it can happen due to

spatial and temporal incoherency.

4) The data gathered at the kernel level is used to relate and associate the deployment

configuration parameters of the system at run time.

5)

6)

7)

Application deployment models affect the spatio-temporal behaviour of the application.

Operating sys(emjsjair in its schedulings))

Operating system schedules the processes according to number of cores available for

processing.

153

8) Process queues are evenly spread across cores when multiple cores are available for

processing

9) Loading pattern of the processes varies from one core to another core within the multi- '

core configuration..

10) Operating system gives priority to well-prepared-processes (which has both data and - —- , -
execution instructions) compared to ill-prepared processes. _ _

II)It is possible to predict the behaviour of the operating system, using application

deployment configuration parameters

12) For a given Core Configuration, the kernel behaviour is different for different values of

“number of client threads” for the same application. In other words, application

configuration can be changed to get the best results from the underlying system, without

modifying the system configuration (source recompiling, rewrite etc.).

13) For the same value of “number of client threads”, the kernel behaviour is different for

different Core Configuration. In other words, system configuration can be changed to get

the best results without modifying the application configuration.

14) Best configurations for the application and for the core configuration can be combined to

get the best results.
15) By making the application connection aware, it is possible to modify the number of ft

process schedules at the operating system level, without modifying any operating system

parameters. This means that desired processes get more attention from the operating

system, during scheduling.

16) It is also possible to increase the efficiency of execution, if the knowledge of

infrastructure is used to set the run time parameters for the enterprise infrastructure. This

means that a desired process can work in a very efficient manner during execution.

17) The importance of an active feedback mechanism using two derived parameters CCE

and IPE are substantiated. Active feedback is used to get better run-time performance of

the applications on Multi-core systems.

18) The enterprise administrator can now have a composite chart of empirical correlations

that identifies and set thresholds values for various applications. The threshold

parameters can have preset or new threshold values. Alternately, all hardware and

154

software configurations in the enterprise can be modelled as web service resources and

the parameters for deployment set accordingly.

19) Notifications can be processed independent of the application as the instrumentation

processes are non invasive.

20) Other Infrastructural component like Cache memory size could influence the spatio­

temporal characteristics of the application.

21) The above observations help the enterprise administrator, to setup and configure the

application as well as the hardware configurations in the enterprise - effectively and

efficiently.

22) The test for the Core Configurations on the Web service based platform with and

without COAF lead to statistically significant results as detailed in Appendix IX -

rejecting the null hypothesis that it is not possible to control the performance at the

application level from kernel level observations.

155

6 CONCLUSIONS

This chapter concludes the thesis with the summary of lessons learnt and experiences

derived from the implementation. This research addresses the critical issue of using Multi-core

for enterprise class web service based applications. It elicits the hardware and software initiatives

for Multi-core along with their shortcomings.

It further extends the advantages and proposes the marriage of these hardware innovations of

Multi-core to the web services based software architectures. This proposal is the new

architecture called COAF. COAF focuses on Enterprise Computing using Multi-core servers for

web service based applications. COAF can efficiently utilize the abundant computing power

provided by Multi-core processors to compute the workloads of web service based enterprise

applications.

6.1 CONTRIBUTIONS OF THE THESIS

COAF is a first step in the direction of the adoption of Multi-core servers in the enterprise.

It is an architectural framework for designing and deploying web services based enterprise

applications on Multi-core platforms without modifying the applications. The distinct ability of

COAF is to pass the application context that is available at both design time and run time to the

operating system through deployment configuration methods, so that operating system is

correctly positioned to leverage the underlying hardware threads.

COAF proposes a six module approach. This six module approach standardizes the

architectural methodology to deploy web services based enterprise applications on the Multi-core

servers, similar to how a three layer architectural methodology standardized the development and

deployment of web based applications.

The six modules are Resource Provisioning module, Behaviour Information module,

Threshold Configuration module, Core Scheduler module, System Management module and

Notification Framework module. Each module has a well-defined responsibility and the design.

This division of six key responsibilities also standardizes the deployment of Multi-core in the

enterprise.

Two architectural concepts namely, “Connection-Orientation and Infrastructure Awareness”

are identified to derive the best of admission control and feedback mechanisms. “Infrastructure

156

Awareness" enables dynamicjnodels of service behaviour with a feedback mechanism that can
enable the dynamic changes that are required in resource allotments under varied loads.

“Connection-Orientation” is obtained by contextually grouping similar services, thus providing a

scope for data alignment and reduced Cache misses. Two important data structures namely

ServiceMap and SchedulerState are used to group and contextually dispatch the service request

to the appropriate core configuration and thus assure the Connection-Orientation to the system.

“Cache miss count” is identified as the key metric for measuring the performance at the

operating system level. Two system parameters are derived from “Cache miss count" namely,

“Core Configuration Effectiveness” and “Intra Process Efficiency" to quantitatively describe the

performance at application level for a given core configuration.

Figure 6-1 presents the overview of a COAF Enterprise from an enterprise administrator’s

perspective.

COAFLess Enterprise Better Load balance
identify the
best servers

to host the service
for increased

schedules per Core

Aware

Cache Misses
Right Size for the

Right Instruction

COAF
Enterprise

Figure 6-1 From a COAFless Enterprise to COAF

Enterprise data is empirical by nature. COAF extracts the run time knowledge of the

application by observation at the kernel level. This run time knowledge is correlated to

application deployment configuration parameters, thus making application tuneable. Thus COAF

marries the actual performance model of the hardware at run time to that of the configurable

parameters of software, thereby encouraging an active feedback between the hardware and

software infrastructures.

157

With an enterprise test bed set up, a typical prototype of COAF is demonstrated for a

standard enterprise class application. The six modules of COAF are built into this prototype on a

Niagara based Multi-core server. The hardware platform utilises the native DTrace non-invasive

probes to collect run time information as in the production environment. The power of COAF is

highlighted through the usage of the two derived parameters viz. Core Configuration

Effectiveness and Intra Process Efficiency. Control mechanisms are also provided in the

prototype. The experiment is conducted in five phases to elicit the advantage of deploying COAF

methodology stepwise. The prototype demonstrates variation in performance for different

deployment configurations, by varying application level parameters such as number of

application threads. The average performance improvement across all the experiments is 20% by

improving the small percentage of desired process execution as shown in Figure 6-2.

Improvement of 20% across cores using COAF

No of Coresin Multicore Scenario

Figure 6-2 Average improvement of 20% due to COAF

The implementation demonstrated that the efficiency of the overall system can be improved

upto 38% (for 16 cores configuration setup), by just modifying deployment parameters (viz. the

number of threads to 60 from the default setting of 2000 threads). The prototype also

demonstrated the optimum utilization of cores (even though 32 cores were available in the setup,

the application used only six cores for scheduling the process and the remaining 26 cores were

not used) thereby releasing the unused licenses of software. This information is extremely

meaningful when the software is licensed and the return on investment computation is based on

number of cores used. The implementation also showcased improved results for temporal

158

alignment as well as symmetric vs asymmetric configurations. This average improvement of

20% to 38% in the system performance due to improvement in relevant schedules and decreased

Cache misses corroborates with the well known theoretical square root limit determined by

Chow [50] and Hartstein [110] (41.42%), which is, if the cache size is doubled, the miss rale

drops by the factor of square root of two.

6.1.1 Benefits of COAF

Enterprises follow strictly governed compliance processes. To accelerate the adoption of

Multi-core in the enterprises, COAF embraces non-disruptive adoption methodologies. COAF

encourages a continuously improving tuning model. This is extremely significant from the

enterprise perspective as this approach leverages the existing investments in single core

infrastructures and new innovative Multi-core infrastructures.

Modelling the software and hardware as Web services based Resources, enables the

pluggability of COAF. This pluggable nature empowers the enterprise architect to embrace

different implementations infrastructure such as hardware, operating system configurations,

application server configurations and database configurations etc. Enterprise administrators can

directly use the large data available for setting and modifying threshold values for various

deployment configuration parameters. This dynamic provisioning is especially useful for

effective hot deployment of Web services.

COAF uses fair scheduling methods of the operating system and hence concentrates on

refining the inputs provided to the operating systems from application context. It is important to

note that COAF does not supplant any caching or scheduling algorithms at the operating system

level, but rather complements web applications by offering useful parameters to increase the

performance of the application.

Conceptually, six layer framework of COAF is easy to maintain as the role and

responsibilities for each layer is well defined and there are straightforward implementations to

manage the SchedulerState and ServiceMap data structures. Components of all the layers are

pre-existing as off-the-shelf available components and can be leveraged directly in the enterprise

infrastructure. The suggested components such as Apache, NaradaBrokering, etc. for

implementing the six layers are available open source and are available as free source from the

community. Thus, there is no additional cost to the enterprise for implementing COAF.

159

COAF components such as NaradaBrokering, Apache 2 etc. are inherently scalable can be

scaled horizontally with multiple instances deployed for each layer if needed. As all the

resources in the COAF are modelled as Web services Resource framework, multiple instances of

resources can be plugged into the system depending on the usage and scalability needs.

Enterprises have huge investments for system administration. Enterprise administrators

manage and monitor the systems and tune those systems using various configuration parameters

for improved performance.

For example, a MySQL administrator uses “number of threads” as one of the configuration

parameter to improve the performance of the database application. This configuration is based on

the values generated while calibrating the MySQL application in ideal conditions. When MySQL

application is executing the workload, and if the performance of the application is not as desired,

then the administrator needs to tune the number of threads at runtime. In this situation, COAF

based metrics enable the administrator to quantitatively judge, and identify the appropriate value

for the configuration parameter for optimum performance. Once the parameter is setup, the

active feedback mechanism of COAF enables the enterprise administrator to verify whether the

configuration settings have affected the behaviour of the application to the desired performance.

Administrators use this feedback information from the kernel observation and can compute their

own index based on the IPE and CCE values. Table 6-1 contains one such representation of the

administrators indices based on IPE and CCE for MySQL application. With COAF, the

enterprise administrator effectively use the rich knowledge of empirical data to create “design

time” threshold values as initial deployment values before deploying the application.

Administrator sets up an initial value for configuration parameter “number of threads” as 50 for

16 core configuration setup. During execution of this application, administrator perceives

considerable slowdown in the execution. Administrator’s choice would be to reduce the

workload on the server to improve the performance. Without the COAF based information, and

by natural intuition, it is logical to reduce the number of threads to reduce the workload on the

server, thereby to increase the efficiency of application processing. In that context the

administrator would have modified the settings by decreasing the number of MySQL threads to

35. However, with COAF based information such as in Table 6-1, the ideal setup for 16 core

configuration would be 60 threads.

160

As we can see from the table,

• CCE (the number of relevant application runs) is highest (80.20) when the number of

threads is setup for 60 for 16 core configuration, and

• IPE (the efficiency of relevant application run) is highest (that is 92.00) when the

number of threads is setup for 60 for 16 core configuration.

• The combined Administrator index is at 65.46.

With the Administrator’s Index as well as CCE and IPE in Table 6-1, the administrator

understands that it is better to increase the number of threads to 60 rather than decrease the

number of threads to 35. As the COAF based metrics are empirical, those metrics can be

enhanced and can guide the administrator to setup and refine the threshold value, and which in

turn empowers the administrator on his Multi-core deployments.

Among the various core configurations, it is important to identify the core configuration that

gives the best performance. Enterprises buy and operate the software on a “per-core license

basis”. Hence it is beneficial for enterprises to understand the cost or utilization per core.

Following is an example that represents the computation methodology for per core utilization.

From our experimental results, Table 6-2 and Table 6-3 show the extracted observations relevant

to 4 cores and 32 cores configurations; the results for all three queries are summed to generalize

the effects of all three queries. From Table 6-3, it can be seen that the 4 core configuration has

an IPE is 82.9%. That means in the four cores, 82.9% of the instructions are cache hits and

17.1% result Cache miss. For the computation purposes, let assume a cache miss is 100 times

costlier than a cache hit. When this aspect is factored into calculating the efficiency of the

scheduling, the percentage of time spent on “useful scheduling to application” is only 4.62%.

Similarly, for 32 cores configuration, IPE is 32.9% and the Cache misses are 67.1%. The

percentage of time spent on “useful scheduling of application” is 0.48%. This is shown in Table

6-4. This means the speedup from 4 cores to 32 cores is about 18.5% more. This result does not

reflect linear scalability that would have ideally 8 times more at 800% instead of 18.5%.

ong with respective speed-ups, the summary would look as If we compute e IPE

illustrated in Figure 6-3,'where it is observed that the performance of:

• 4 Core > 5 Core,

• 8 Core > 5 Core and 9 Core,

• 16 Core > 9, 17 and 18 Core, and

161

• 32 Cores > 17 and 18 Cores.

Thus. CCE and iPE help in calculating the utilization per core.

Operating System schedules the processing request to the Core. The actual number of cores

used is less than the numbers of cores were available. Table 6-5 summarizes one such

observation obtained for web services based deployment without COAF feedback. In this table,

the number of cores and the configuration parameter “number of client threads" are set; the

actual number of threads used for execution and the actual number of cores used for execution is

also listed. It can be observed that the operating system did not allocate more than 6 cores even

when there are more number of cores (9, 16, 17, and 32 cores) available for execution; also, the

maximum number of threads used for processing cores did not go beyond 20, even though the

application was configured for 2000 client threads usage; both these observations are essential in

planning more appropriate configuration. When the cores are not used, then license fees and

Annual Maintenance Charges for the software for those unused cores can be saved.

The ability of COAF to understand the system behaviour and associated parameters such as

CCE and IPE helps to enhance the performance of newly evolving Multi-core systems such as

cloud and grid, and specialized applications like weather modelling, gene search etc. Best

practices of COAF such as setting threshold values for each parameter, Connection-Orientation

upto the compute end point, and context awareness of subsystems such as cache size, main

memory size etc. complement and enhance the performance of these applications. For large scale

cloud and grid deployments special code implementations such as Google File system, Amazon

Web services, Cassendra etc. are developed to leverage the power of Multi-core capabilities.

These implementations have similar goals like COAF based systems, such as optimum

performance, thread scalability, memory management etc. While these systems are newly

custom developed, COAF based systems are just leveraging existing systems including operating

systems and application servers.

In conclusion, we are able to demonstrate that it is possible to:

• Change the performance of web service based enterprise applications from the

application layer by contextually dispatching request using the data structures

ServiceMap and SchedulerState, and the concepts of Connection-Orientation and

Infrastructure Awareness.

162

• Leverage the performance of Multi-core by changing deployment configurations and

demonstrated using various core configurations such as 8, 16, 17, 32 cores etc.

• Alter the performance of an application, by observing the kernel and hardware

parameters without any modification to the operating system, and demonstrated this

ability using the “Cache miss” metric and the derived parameters CCE and IPE.

• Affect the performance of a generic application in Multi-core system without

changing the operating system configurations and demonstrated the change in

performance by changing the number of application client threads.

• Change the Spatio-temporal characteristics due to the awareness of infrastructure and

demonstrated the concept with improved performance for data sizes that fit into

cache memory, when compared to datasets that overflows the cache and

interconnects.

• Effectively contain and distribute enterprise applications amongst cores to achieve

performance through core symmetricity and core affinity and demonstrated the

improved behaviour of an asymmetric configuration (9 core and 17 core) and the

potential cost savings by removing the licenses which otherwise accounted for idle

cores that are configured but never used by operating system as in the case of 32 core

configuration.

Effect changes in the performance of enterprise applications without changing either the

enterprise application binaries or enterprise application source and demonstrated an improved

performance upto 38 percent and an average improvement of 20 percent by changing the

configuration parameter “number of client threads”.

163

Table 6-1 Administrators Indices for MySQL to identify core and thread configuration

For a given Service. Admins Choice
without COAF

Initial Configuration for the same
service

No of
Cores

No of
Client

Threads
CCE IPE Admin, ’s

Index

16 35 61.50 89.80 60.42

16 50 80.00 90.60 65.18

Administrator enabled with the
knowledge of COAF feedback

16 60 80.20 92.00 65.46

16 100 83.80 85.00 64.96

17 35 54.60 89.30 58.21

17 50 57.80 88.50 59.13

17 60 56.00 89.10 58.64

17 100 47.40 93.00 56.03

32 45 43.00 92.80 54.21

32 50 57.10 50.50 51.77

32 100 49.50 34.30 45.01

32 105 54.30 94.20 58.69

26 100 56.00 86.80 58.34

26 110 78.40 86.30 64.09

28 100 58.00 83.80 58.55

28 110 52.80 81.70 56.63

30 100 78.40 83.70 63.63

30 110 60.90 79.10 58.66

Table 6-2 Summary of 4 core and 32 core data from Table 5-20

No of
Cores

QuerylD /
Threads

No of Command
executions

No of Cache
Misses

SQL NonSQL SQL NonSQL
04 qi 896 954 9,357 30,643
04 q2 151 559 3,942 14,404
04 q3 136 507 1,397 8,515
32 qi 272 1,730 50,020 40,575
32 q2 2,926 1,499 101,732 257,258
32 q3 3,478 426 61,516 150,818

164

Table 6-3 Summary Extract of Table 5-20 for Phase II 4 and 32 core configurations

Number
of

Cores

Number of
Command
executions

Count of Cache
Misses Overall IPE

SQL NonSQL SQL NonSQL
04 1,183 2.020 14.696 53.562 82.9
32 6.676 3.655 213.268 448.651 32.9

Table 6-4 Per Core Utilization for 4 and 32 core configurations

Number
of Cores IPE 100-IPE Useful Time

per core

Total useful time
= (Number of Cores *
Useful time per core)

4 82.9 17.1 4.624 18.4951

32 32.9 67.1 0.488 15.6134

Figure 6-3 Execution speed compared

165

Table 6-5 Actual cores used against available cores

Type
Available
Cores

Number of
client threads Cores used Core IDs Max number of

Requests processed
WS NoCOAF 08 1000 5 0,1,3,4,5 10

WS NoCOAF 08 2000 5 0,1,3,4,5 20

WS NoCOAF 09 1000 6 0,1,3,4,5,6 10

WS NoCOAF 09 2000 6 0,1,3,4,5,6 20
WS NoCOAF 16 1000 6 1,2,5,6,8,9 10

WS NoCOAF 16 2000 6 1,2,5,6,8,9 20

WS NoCOAF 17 1000 6 5,6,7,10,11,13 10
WS NoCOAF 17 2000 6 5,6,7,10,11,13 20

WS NoCOAF 32 1000 6 11,12,15,16,27,28 10
WS NoCOAF 32 2000 6 11,12,15,16,27,28 20

WSCOAF 32 050 6 4,5,13,22,23,26 5

WSCOAF 32 100 6 4,5,13,22,23,26 10

166

7 FUTURE WORK

This thesis lays out new possibilities and scope for adopting Multi-core as a hardware

platform for a wide range of web service applications. The scope for future work is large, given

the range of hardware and software innovations. This chapter focuses on three broad areas for

future work for the research community. The first is generic strategies that can be implemented

based on deployment namely network architectures, virtualization environments, and cloud

configurations. The second area of improvement is to combine the state of art deployment

practices that are prototyped along with best practices of COAF. The last generic area of

improvement identifies the enhancements that could be made for each of the modules of COAF.

7.1.1 Generic strategies for enhancing COAF

The current implementation of COAF is focused on testing and analysing the application

behaviour on Multi-core platforms hosted within enterprise LAN even though COAF is not

limited to any particular network considerations. This implementation can be enhanced to

include the applications hosted on a wide area network, thereby capturing the results and

behaviour of COAF for other network considerations such as network latency, various “Time to

Live” session settings, transport protocols, and remote network exceptions. COAF currently

uses Java based Axis2 framework and it can be enhanced or rewritten to support other popular

operating environments such as Microsoft .Net. COAF uses “Solaris Zones and containers” for

creating various core configurations and it would be interesting to study the effect of other

explicit virtualization environments such as VMware. The pluggable nature of COAF can be

combined with new advancements in cloud deployments [84], [229] to make powerful enterprise

application hosting infrastructure on the cloud [234]. It would be interesting to study the

performance improvements achieved by combining the bridging model [227] with portable

algorithms and COAF.

7.1.2 Improvements on current “State of Art” deployments

There are Multi-core specific design approaches and research prototypes that can be

augmented with the abilities of COAF system. These approaches include Multi-core specific

operating system designs [22], [104], [154], [188], [240]; the workload assignments specific to

asymmetric processor configurations [194]; , and cache (infrastructure) aware scheduling [76],

167

[129], [258]. The effect of these approaches can be further studied and analysed using the kernel

observation methodologies and threshold configuration methodologies of COAF. There are

design time approaches namely the ability of the application designer to identify and annotate the

functional blocks [40]; and the ability to pass the application context to the operating system

through hints [218] can be combined with administrator’s knowledge in grouping and deploying

the service requests for efficient processing. SOSOA execution engine [34] is a custom

developed engine that uses similar approach as COAF in leveraging the hardware deployment

configuration [33] for efficient processing at Multi-core. Similarly, a compiler based, cache

topology aware code optimization scheme [132] further validates the insights provided by in­

memory experiments under COAF. It would be interesting to blend the architecture framework

such as Voltron [257], and the automatic parallelization libraries [134] such as SliCer [140]

along with COAF to compare and understand the performance improvements additionally

provided by COAF.

7.1.3 Improvements to the six Modules of COAF

Improvements are possible to the six modules of COAF to make it as a comprehensive

enterprise framework for application and infrastructure deployment. The Resource definition in

COAF is an implementation of web services resource framework. This implementation could be

extended to include other standard models such as CIM model to represent various kinds of

components used in the infrastructure with fine grained details (such as nport, eport, LUN

number etc. for a SAN device). Behaviour Information module could be enhanced to include

instrumentation frameworks other than DTrace. DTrace framework is comprehensively

supported on Solaris but not on other popular operating systems. Hence, the extensive

observations that we could make using DTrace is currently limited to Solaris based deployments.

There are other evolving trace frameworks such as LTTNG can be plugged into COAF

framework. Further these instrumentation frameworks could be standardized for popular

infrastructures such as Apache, PostGreSQL and virtualized environments like VMware.

Threshold Configuration module could be enhanced to include additional performance

parameters apart from Cache miss for correlations against system configuration parameters. The

correlation mechanisms can be extended to include other sophisticated correlation algorithms.

Configuration server of the Core Configuration module could be made as “infrastructure

deployment reference model” containing the predefined mapping for possible deployment

168

configuration that is used in the enterprise. This map then could be used for replacing an existing

or new hardware and software. Solaris Zones and Containers concepts are extensively used to

demonstrate the ability to bundle the cores in different core configurations. Further

investigations and improvements can be made to include this ability for other operating systems.

7.1.4 Improvements to CCE and IPE

The parameters CCE and IPE are derived using Cache miss as the key parameter. The

current derivation assumes equal (100 percent) weightage for all the variables. This equation is

formulated as a methodology to quantitatively represent the impact of cache misses on the

performance. The exact impact of cache misses could be formulated by varying the weightages

for the variables for arriving at an enhanced formulation for CCE and IPE. Additionally, the

other aspects of the process scheduling such as in-order, out-of-order etc. can be included as part

of the formulation to enhance the usefulness of CCE and IPE.

169

REFERENCES

[I] Abdellatif, T., Kornas, J., and Stefani. J.B. J2EE packaging, deployment and

reconfiguration using a general component model. Lecture Notes in Computer Science

3798, 2005, 134-148. DOI: 10.1007/11590712_l 1.

[2] Adiga N.R. et al. - An overview of the Blue Gene/L supercomputer. In Proceedings of

the 2002 ACM/IEEE conference on Supercomputing. (November 2002). pp. 1-22

[3] Aggarwal, N., Ranganathan, P., Jouppi, N.P., Smith, J.E., Configurable isolation:

building high availability systems with commodity Multi-core processors, hi Proceedings

of the ACM 34th annual international symposium on Computer architecture (ISCA '07),

35-2, May 2007, New York, NY, 470-481, doi> 10.1145/1250662.1250720.

[4] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. Web services: Concepts,

architectures and applications, 2004, Springer Verlag, ISBN 3-540-44008-9

[5] Altman, E., Arnold, M., Bordawekar, R., Delmonico, R.M., Mitchell, N., and

Sweeney, P.F. Observations on tuning a Java enterprise application for performance and

scalability, IBM Journal of Research and Development, 54-5, (Sept.-0ct.2010), 494-505,

doi> 10.1147/JRD.2010.2057090.

[6] Corporation. Amazon web sendees, 2011.Amazon.com

http://aws.amazon.com/documcntation/ (Last accessed :March 20, 2011)

[7] Corporation. Worlds largest shopping site, 2011. (Last

accessed: March 20, 2011).

Amazon.com www.amazon.com

[8] AMD Corporation. Next generation Multi-core, 2011

 (Last

accessed :March 20, 2011)

http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/Pages/technologies.aspx

[9] Apache Software Foundation. Apache Axis2. (Last

accessed: March 20, 2011).

http://axis.apache.org/axis2/iava/corc/

[10] Apache Software Foundation. Apache Felix 3.0.9. Dynamic sendee deployment

framework. March 2011. (Last accessed:March 20,

2011).

http://felix.apache.org/site/index.html

[II] Apache Software Foundation. Apache Hadoop. (Last

accessed:March 20, 2011).

http://hadoop.apache.org/core/

170

[12] Apache Software Foundation. Apache Web server, (Last

accessed:March 20, 2011).

http://mvw.apache.org/

[13] Apache Software Foundation. JMeter: Performance testing framework.

 (Last accessed:March 20. 2011).http://iakarta.apachc.org/imctci7

[14] Apache Software Foundation. MINA 2.0.2 Network Application framework, December

2010. (Last accessed:March 20, 2011).http://mina.apache.org/

[15] Apache Software Foundation. Muse v2.2. March 2007. (Last

accessed:March 20, 2011).

http://ws.apache.org/muse/

[16] Apache Software Foundation. PubScribe, October 2005.

 (Last

accessed:March 20, 2011).

http://svn.apache.org/rcpos/asf/wcb scrvices/archivc/pubscribc/sitc/index.html

[17] Apache Software Foundation. Servicemix v4.3.0, March 2011.

http://scrviccmix.apachc.org/homc.html (Last accessed:March 20, 2011).

[18] Apparao, P., and Bhat, M. A detailed look at the characteristics of XML parsing. In

Proceedings of Workshop on Building Block Engine Architectures for Computers and

Networks, Held along with ASPLOS-XI (Beacon 04), October 2004.

[19] Apparao, P., Iyer, R., Morin, R., and et al. Architectural characterization of an XML-

centric commercial server workload. In Proceedings of 33rdInternational Conference

on Parallel Processing (ICPP 04), (August 2004). DOI: 10.1109/ICPP.2004.1327935.

[20] Apple Corporation. Grand Central Dispatch: A better way to do Multi-core. March 2011.

(Last accessed:March 20, 2011).

http://images.apple.com/macosx/technology/docs/GrandCentral TB brief 20090903.pdf

[21] Ask.com Corporation. What’s your question?, 2011. http://www.ask.com (Last

accessed:March 20, 2011).

[22] Bader, D. A., Kanade, V., and Madduri, K. SWARM: A Parallel Programming

Framework for Multi-core Processors. In Proceedings of the Parallel and Distributed

Processing Symposium (IPDPS ’07) (June 2007), IEEE, pp. 1-8. DOI:

10.1109/IPDPS.2007.370681

[23] Ban, K., Chow, K., Lee, Y.F. et al., Java Application Server Optimization for Multi-core

Systems, Intel Technology Paper, Sept 2009.

171

[24] Baresi, L.. Nitto, E.D., and Ghezzi, C. Towards Open World Software. Computer, 39,

October 2006. 36-43.

[25] Barroso, L. A., Gharachorloo, K., McNamara, and et al. Piranha: A Scalable Architecture

Based on Single Chip Multiprocessing. In Proceedings of the International Symposium

on Computer Architecture (ISCA '00), (June 2000). pp. 282-293.

[26] Barroso, L.A., Gharachorloo, K., and Bugnion, E. Memory system characterization of

commercial workloads - Computer Architecture. In Proceedings of the 25th Annual

InternationalSymposium(ISCA ‘98), (July 1998), Barcelona , Spain, pp. 3-14. DOI:

10.1145/279358.279363.

[27] Behren, R. V., Condit, J., and Brewer, E. Why Events Are A Bad Idea (for high-

concurrency servers). In Proceedings of the 9th Workshop on Hot Topics in Operating

System (HotOS IX ’03), (2003), Lihue, Hawaii, USA.

[28] Bienia, C. Benchmarking Modern Multiprocessors. Ph.D. Thesis. Princeton University,

January 2011.

[29] Blake, G., Dreslinski, R.G., and Mudge, T. A survey of Multi-core processors. Signal

Processing Magazine 26, 6 (October 2009), 26-37. DOI: 10.1109/MSP.2009.934110.

[30] Blockbuster Inc. Movies on demand, (Last accessed:March

20, 2011).

http://www.blockbuster.com

[31] Bloomberg, J. Predicting the future of XML & web services. Service orientation market

trends report. ZapThink, LLC. Jan 2004. Document ID: ZTR-WS110.

[32] Bolzoni, M.L., Calzarossa, M. C., Mapelli, P., and Serazzi, G. A package for the

implementation of static workload models. In Proceedings of the 1982 ACM

SIGMETRICS conference on Measurement and modelling of computer

systems(SIGMETRICS ’82) (1982), pp. 58-67. DOI: 10.1145/1035332.1035303.

[33] Bonetta, D., Peternier, A., Pautasso, C., and Binder, W. A Multi-core-aware Runtime

Architecture for Scalable Service Composition. In Proceedings of IEEE Asia-Pacific

Services Computing Conference (APSCC ‘10) (2010). IEEE. pp.83-90.

[34] Bonetta, D., Peternier, A., Pautasso, C., and Binder, W. Towards Scalable Service

Composition on Multi-cores. In Proceedings of the 2010 International Conference on On

the move to meaningful internet systems (OTM '10), (2010). Springer-Verlag Berlin,

Heidelberg.

172

[35] Bouziane, H.L., Perez, C., and Priol, T. Extending Software Component Models with the

Master-Worker Paradigm. Journal of Parallel Computing 36 2-3, (February 2010)

Elsevier Science Publishers B. V. Amsterdam, The Netherlands. 86-103.

DOI: 10.1016/j .parco.2009.12.012.

[36] Bower, F.A., Sorin, DJ., and Cox, L.P. The impact of Dynamically Heterogeneous

Multi-core Processors on Thread Scheduling. IEEE Micro 28, 3, (May 2008), 17-25.

DOI: 10.1109/MM.2008.46.

[37] Boyd., DJ. A pragmatic approach to temporary payment card numbers. International

Journal of Electronic Security and Digital forensics 2, 3, (July 2009), 253-268.

DOI: 10.1504/IJESDF.2009.027521

[38] Bray, J. Paoli, C. M. Sperberg-McQueen, and et al. Extensible Markup Language (XML)

1.0 (4th edition). World Wide Web Consortium, 2004.

.

http://www.w3.org/TR/20Q6/REC-

xm1-20060816/

[39] Breslau, L., Knightly, E.W., Shenker, S., and et al. Endpoint admission control:

Architectural issues and performance. In Proceedings of the conference on Applications,

Technologies, architectures, and Protocols for Computer Communication (ACM

SIGCOMM '00), (October 2000), Stockholm, Sweden, pp. 57-69. DOI:

10.1145/347059.347400.

[40] Burnim, J., Necula G., and Sen, K. Separating functional and parallel correctness using

nondeterministic sequential specifications. In Proceedings of the 2nd USENIX

conference on Hot topics in parallelism (HotPar’10). USENIX Association Berkeley, CA,

USA. 2010.

[41] Cai, Z., Kumar, V., Cooper, B.F., and et. al. Utility Driven Proactive Management of

Availability in Enterprise-Scale Information Flows. Lecture Notes in Computer Science,

4290/2006, 2006, 382-403.

[42] Carr, N.G. The end of corporate computing. MIT Sloan Management Review Spring 46,

3, 2005, 67-73.

[43] Cecil, R. The Power of DTrace. Sun Microsystems, Inc, March 2007.

 (Last accessed:March 20,

2011).

http://devclopers.sun.com/solaris/articles/power of dtrace.pdf

173

[44] Chakravarty, M. M. T. Lazy Thread and Task Creation in Parallel Graph-Reduction.

Lecture Notes In Computer Science on Implementation of Functional Languages 1467,

1997, Springer-Verlag, 231-249.

[45] Chao, L. Hyper-Threading Technology. Intel Technology Journal 06, I (February 14,

2002).

[46] Chazalet, A., and Lalanda, P. Deployment of Services Applications in Services Execution

Environments. In Proceedings of 33rd Annual IEEE International Computer Software

and Applications Conference, (COMPSAC' 09) (July 2009) pp.509-516.

[47] Chen, S., Ge, J., Tao, X., and Lu, J. A transaction model for context-aware applications.

In Proceedings of the 2nd international conference on Advances in grid and pervasive

computing, (GPC07) (2007), Springer-Verlag Berlin, Heidelberg, pp.252-262,

[48] Chiu, K., and Lu, W. A compiler-based approach to schema specific xml parsing. In

Proceedings of First International Workshop on High Performance XML Processing,

2004. (Last accessed:March 20,

2011).

http://www.cs.indiana.edu/-chiuk/pubs/chiu-ssp-sub.pdf

[49] Chiu, K., Devadithya, T., Lu, W., and Slominski, A. A binary xml for scientific

applications. In Proceedings of the First International Conference on e-Science and Grid

Computing (E-SCIENCE ’05) (2005), IEEE, pp.336-345

[50] Chow, C.K., Determination of Cache’s capacity and its Matching Storage Hierarchy,

IEEE Transactions on Computers, 25, 1976, 157-164.

[51] Cognizant Technology Solutions. Building stronger businesses: Consulting, IT services,

IT Infrastructure and BPO Services. http://www.cogn i zant.com/

[52] Cox, M. Enterprise adoption of private clouds widespread and accelerating. EChannelline

Daily Channel News, 7 October 2010.

http://www.echannelline.com/usa/story.cfm?item=26212 (Last accessed:March 20,

2011).

[53] CPAN Project. CP AN utilities, (Last accessed: March 20, 2011).http://www.cpan.org

[54] Curbera, F., Leymann, F., Storey, T., Ferguson, D., and Weerawarana, S. Web Services

Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-

Reliable Messaging and More, Prentice Hall, 2005.

174

[55] Dabek, F., Zeldovich, N., Kaashoek, F.. and et al. Event-driven programming for robust

software. \n Proceedings of the 10th ACM SIGOPS European Workshop (EW10 ‘02).

(September 2002), pp.186-189. DOI: 10.1145/1133373.1133410.

[56] Dai, Z., Ni, N., and Zhu, J. A 1 cycle-per-byte XML parsing accelerator. In Proceedings

of the 18th annual ACM/SIGDA international symposium on Field programmable gate

arrays (FPGA ’10), (2010) ACM New York, NY, USA. pp. 199-208.

doi: 10.1145/1723112.1723148.

[57] David, S. M. EBay Creates Technology Architecture for the Future - Patricia Seybold

Group case study, 2003.

 (Last accessed:March 20, 2011).

http://www.sun.com/scrvice/about/succcss/rcccnt/Sun cBay6-

2 forWcb.pdf

[58] Dayal, U., Hsu, M., and Ladin, R. A Transactional Model for Long-Running Activities.

In Proceedings 17th International Conference on Very Large Data Bases (VLDB 91),

(September 1991), Morgan Kaufmann Publishers Inc. San Francisco, CA, USA. pp. 113-

122.

[59] Dean, J. and Ghemawat, S. Mapreduce: Simplified data processing on large clusters.

Communications of the ACM- 50th anniversary issue: 1958 - 2008 51, 1, January 2008,

107-113.

[60] Dearie, A. Software Deployment, Past, Present and Future. In Proceedings of Future of

Software Engineering (FOSE ’07) (2007), IEEE Computer Society Washington, DC,

USA pp. 269-284 DOI: 10.1109/FOSE.2007.20.

[61] Dice, D. and Shavit, N. Understanding Tradeoffs in Software Transactional Memory. In

Proceedings of the international Symposium on Code Generation and Optimization

(CGO ’07) (March 2007), IEEE Computer Society, Washington, DC, pp. 21-33. DOI:

10.1109/CGO.2007.38.

[62] Ding, J.J., Waheed, A., Yao, J., and Bhuyan, L.N. Performance characterization of multi­

thread and Multi-core processors based XML application oriented networking systems.

Original Research Article. Journal of Parallel and Distributed Computing 70, 5 (May

2010), 584-597.

[63] Draheim, D. Business Process Technology: A Unified View on Business Processes,

Workflows and enterprise applications. 1st Edition, August 2010, Springer, 161-192.

175

[64] Dubey, A., and Wagle, D. Deliver Software as a Service, Mckinsey Quarterly Web

exclusive. May 2007.

http://www.mckinseY.de/downloads/publikation/mck on bt/2007/mobt 12_Delivering S

oftwarc as a Service.pdf (Last accessed :March 20, 2011).

[65] Dustdar, S., and Schreiner, W. A survey on web services composition. International

Journal of Web and Grid Services 1, 1, (August 2005), 1-30.

DOI: 10.1504/lJWGS.2005.007545.

[66] Dutta, S., and Franklin, M. Control Flow Prediction Schemes for Wide-lssue Superscalar

Processors. IEEE Transactions on Parallel and Distributed Systems 10, 4, (April 1999),

IEEE, 346-359. DOI: 10.1109/71.762815.

[67] EBay Inc. Worlds largest online marketplace, 2011. (Last

accessed:March 20, 2011).

www.ebay.com

[68] Ekanayake, J., Pallickara, S., and Fox, G. Map-Reduce for Data Intensive Scientific

Analysis. In Proceedings of the Fourth IEEE International Conference on e-Science

(ESCIENCE ’08), (2008), pp.277-284. DOI: 10.1109/eScience.2008.59.

[69] Engelen, R.V. Constructing finite state automata for high performance XML web

services. In Proceedings of the International Symposium on Web Services (ISWS ’04),

(2004).

[70] Erenkrantz, R. J. Computational REST: A new model for Decentralized, Intemet-Sc-ale

Applications, University of California, Irvine, PhD Thesis, September 2009.

[71] Erl, T. Service-Oriented Architecture: Concepts, Technology, and Design, Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2005.

[72] Etrade Corporation. Cutting edge stock trading tools and platforms, 2011.

 (Last accessed:March 20, 2011).https://us.etrade.eom/e/t/activetrading

[73] ETrade corporation. EquityEdge Online - The Easiest, Most Advanced Equity

Compensation Solution Anywhere, 2011.

https://content.etrade.com/etrade/corpservices/equityedgeonlinefactsheet20Q9.pdf (Last

accessed:March 20, 2011)

[74] Exertier, F. J2EE Deployment: the JOnAS case study. In Proceedings of 1st

Francophone Conference On Software Deployment and (Re)Configuration (DECOR '04),

(October 2004), Grenoble, France, pp. 27-36.

176

[75] Facebook Corporation. Wisdom of friends, 2011. (Last

accessed:March 20, 2011).

www.facebook.com

[76] Fedorova, A., Seltzer, M., and Smith, M.D. Cache-fair thread scheduling for Multi-core

processors. Technical Report TR-I7-06, Harvard University, 2006.

[77] Fedorova, A., Seltzer, M., Small, C., and Nussbaum, D. Performance of Multithreaded

Chip Multiprocessors and Implications for Operating System Design, hi Proceedings of

the annual conference on USENIXAnnual Technical Conference (ATEC '05), (2005),

USENIX Association, Berkeley, CA.

[78] Feo, J., Harper, D., Kahan, S., Konccny, P. ELDORADO. In Proceedings of the 2nd

Conference on Computing Frontiers (CF '05), (Ischia, Italy), (May 2005). ACM, New

York, NY, pp.28-34.

[79] Fielding, J. G., Mogul, J., Frystyk, and et. al. Hypertext transfer protocol: HTTP/1.1,

IETF, June 1999. (Last accessed:March

20, 2011).

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

[80] Fielding, R.T. Architectural Styles and the Design of Network-based Software

Architectures. Ph.D Thesis, 2000.

[81] Flautner, K., Uhlig, R., Reinhardt, S., and Mudge, T. Thread-level parallelism and

interactive performance of desktop applications. In Proceedings of the Ninth

International Conference on Architectural support for Programming Languages and

Operating Systems (ASPLOS '00) (November 2000), ACM New York, NY, USA.

pp. 129-138.

[82] Flissi, A., Dubus, J., Dolet, N., and Merle, P. Deploying on the Grid with DeployWare. In

Proceedings of the 2008 Eighth IEEE International Symposium on Cluster Computing

and the Grid (CCGRID '08) (2008) IEEE Computer Society Washington, DC, USA,

pp.177-184. DOE10.1109/CCGRID.2008.59

[83] Florian, D., and Barbara, P. Insights into Web Service Orchestration and Choreography,

International Journal of E-Business Research 2, 1, (January-March 2006), Idea Group

Publishing, 58-77.

[84] Fox, G.C.S, Bae, S.H., Ekanayakeb, J., Qiu, X., and Yuan, H. Parallel Data Mining from

Multi-core to Cloudy Grids. In Proceedings of the International Advanced Research

Workshop on High Performance Computing and Grids (HPC ’08), (2008).

177

http://grids.ucs.indiana.edu/ptliupages/Diiblications/CetraroWriteupJanOQ vl2.pdf (Last

accessed:March 20, 2011).

[85] Franklin, D.C., and Rosen., D. Electronic online commerce card with transaction proxy

number Tor online transactions. U.S. Patent No.5,883,810, March 16, 1999

[86] Fruehe, J., Planning Considerations for Multi-core Processor Technology. Dell

Whitepaper, May 2005

[87] Fruehe, J., Realizing Multi-Core Performance Advances in Dell PowerEdge Servers, Dell

Whitepaper, Nov 2005.

[88] Fusion IO Inc. Next generation flash memory, 2011. (Last

accessed:March 20, 2011).

www.fusionio.com

[89] Galon, S., and Levy, M. Measuring Multi-core Performance. Computer 41, 11,

(November 2008), 99-102.

[90] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of

Reusable Object-Oriented Software, 1994, Addison-Wesley, (ISBN 0-201-63361-2).

[91] Gara, A., Blumrich, M.A, Chen, D., et al. Overview of the Blue Gene/L system

architecture. IBM Journal of Research and Development 49, 2 (Mar 2005), IBM

Corporation, Riverton, NJ, USA, 195-212.

[92] Gartner Inc. Gartner Hype Cycle - Gartner Methodology.

 (Last

accessed:March 20, 2011).

http://www.gartner.com/technology/research/methodologies/hype-cycle.isp

[93] Geer, D. Chip Makers Turn to Multi-core Processors. Computer 38, 5, (May 2005),

IEEE, 11-13. DOI: 10.1109/MC.2005.160.

[94] Gold, B. T., Falsafi, G.B., Hoe, J.C., and Mai, K. REDAC: Distributed, Asynchronous

Redundancy in Shared Memory Servers. Technical Report, (2008), Computer

Architecture Lab at Carnegie Mellon, Pittsburgh, PA, USA.

[95] Goldstein, S., Schauser, K., and Culler, D. Enabling primitives for compiling parallel

languages. In Proceedings of Third Workshop on Languages, Compilers, and Run-Time

Systems for Scalable Computers, (May 1995), Rochester, NY.

[96] Golla, R. Niagara2: A Highly Threaded Server-on-a-Chip. Sun Microsystems Slides.

August, 2006. (Last

accessed:March 20, 2011).

https://wiki.cc.gatech.edU/Multi-core/images/8/89/Niagara.pdf

178

[97] Goodchild, J. Multi-core processing infiltrates the enterprise. Article.

July 2006.

 (Last accessed:March 20, 2011).

Techtarget.com

http://searchwinit.techtarget.com/news/1197813/Multi-core-processing-

infiltrates-the-enterprise

[98] Google Inc. Search Platform, 2011. (Last accessed:March 20,

2011).

http://www.googlc.com/

[99] Gordon Blair, G., Coupaye, T., and Stefani, J.B. Component-based architecture: the

Fractal initiative. Annals of Telecommunications 64, 1-2, (February 2009). 1-4, DOI:

10.1007/s 12243-009-0086-1.

[100] Gottschalk, K., Graham, S., Kreger, H., and Snell, J. Introduction to web services

architecture. IBM Systems Journal 41, 2, (2002), 170-177.

[101] Grahn, H. T ransactional memory. Journal of Parallel and Distributed Computing 70, 10

(October 2010), Academic Press, Inc. Orlando, FL, USA, 993-1008.

[102] Greene, K. A new design for computer chips. MIT Technology Review, August 2007,

 (Last accessed:March 20, 2011).http://www.technologyreview.in/business/19269/

[103] Gregg, B. DTrace Tools. Wiki page, 2007.

(Last accessed:March 20, 2011).

http://www.brendangregg.com/dtrace.html

[104] Gummaraju, J., Coburn, J., Turner, Y., and Rosenblum, M. Streamware: Programming

general-purpose Multi-core processors using streams. In Proceedings of the 13th

international conference on Architectural support for programming languages and

operating systems (ASPLOS '08), (2008), pp. 297-307. DOI: 10.1145/1353536.1346319.

[105] Guo, T„ and Li, G.Y. Neural data mining for credit card fraud detection. In Proceedings

of International Conference on Machine Learning and Cybernetics (MLC '08), (July

2008), pp. 3630-3634.

[106] Hammond, L., Hubbert, B., Siu, M., and et ai. The Stanford Hydra CMP. IEEE Micro 20,

2, (March 2000), 71-84, DOI: 10.1109/40.848474.

[107] Hammond, L., Nayfeh, B., Olukotun, K. A single-chip multiprocessor, Computer 30, 9,

(September 1997), 79-85. DOI: 10.1109/2.612253.

[108] Harizopoulos, S., and Ailamaki, A. A Case for Staged Database Systems. In Proceedings

of the First International Conference on Innovative Data Systems Research (CIDR ‘03),

(January 2003).

179

[109] Harizopoulos, S., Shkapenyuk, V., and Ailamaki, A. QPipe: A Simultaneously Pipelined

Relational Query Engine. In Proceedings of the 2005 ACM SIGMOD International

Conference on Management of data (SIGMOD ’05), (2005), Baltimore, MD, pp.383-394.

DOI: 10.1145/1066157.1066201

[110] Hartstcin, A., Srinivasan, V., Puzak, T.R., and Emma, P.G., On the Nature of Cache

Miss Behavior: Is It ^2 ? Journal of Instruction-Level Parallelism, 10, Jun 2008, 1-22.

[Ill] Herlihy M, and Moss J. E. B. Transactional Memory: Architectural Support for Lock-free

Data Structures. In Proceedings of the 20th Annual International Symposium on

Computer Architecture (ISCA ’93), (1993), San Diego, CA, ACM Press, NY, USA, 289-

300. DOI: 10.1145/165123.165164.

[112] Herlihy, M, Luchangco, V., Moir, M., and Scherer, W. N. Software transactional memory

for dynamic-sized data structures. In Proceedings of the Twenty-Second Annual

Symposium on Principles of Distributed Computing (PODC ’03), (July 2003), ACM

Press, NY, pp. 92-101. DOI: 10.1145/872035.872048.

[113] Holmes, D. W., Williams, J. R., & Tilke, P. G. An Events Based Algorithm for

Distributing Concurrent Tasks on Multi-Core Architectures. Computer Physics

Communications, (October 2009), 341-354. DOI: 10.1016/j.cpc.2009.10.009.

[114] HP Corporation. HP OpenView: Enterprise Management Software.

 (Last accessed:March 20, 2011).http://www.managementsoftware.hp.com/

[115] Huang, Y., Slominski, A., Herath, C., and Gannon, D. WS-Messenger: A Web Services

based Messaging System for Service-Oriented Grid Computing. In Proceedings of the 6th

IEEE International Symposium on Cluster Computing and the Grid (CCGrid ‘06), (May

2006), IEEE, pp.166-173. DOklO.l 109/CCGRID.2006.109

[116] Hutsell, W. Solid State Disks in the Enterprise. SHIA Summer Symposium, 2008.

ise.pdf (Last accessed:March 20, 2011).

http://www.snia.org/forums/sssi/knowledge/education/Solid_State_Disks_in the Enterpr

[117] IBM Corporation. System Z-series mainframes, 2011.

(Last accessed:March 20, 2011).

http://www-03.ibm.eom/systems/z/

[118] IBM Corporation. Tivoli Provisioning Manager 5.1.0.2 Documentation, 2011.

 (Last accessed-.March

20, 2011).

http://publib.boulder.ibm.com/infocenter/tivihelp/vl6rl/index.jsp

180

[119] IBM Corporation. Websphere Datapower SOA appliance, 2011. http://www-

01 Jbm.com/softvvare/integration/datapower/ (Last accessed:March 20, 2011).

[120] Institute of eCommerce. eLibrary-EPayment Links, March 2011,

 (Last accessed: March 20,

2011).

http://curo.ccom.cmu.edu/rcsourccs/clibrarv/cpaylinks.shtml

[121] Intel Corporation. Intel Lab: Terascale computing research vision, 2011.

 (Last accessed:March 20,

2011).

http://techresearch.intel.com/ResearchAreaDetails.aspx?ld=27

[122] Intel Corporation. Advancing Multi-Core Technology into the Tera-scale Era, 2011.

 (Last accessed:March 20,

2011).

http://tcchrcsearch.intcl.com/ProjectPctails.aspx?Id=15l

[123] Intel Corporation. Intel Parallel Studio Evaluation Guide: Optimize an Existing Program

by Introducing Parallelism, 2011.

 (Last

accessed:March 20, 2011).

http://softwarc.intel.com/sites/products/evaluation-

guides/docs/intelparallelstudio-evaluationguide-add-parallelsim.pdf

[124] Intel Corporation. Threading Building Blocks: Scalable Programming for Multi-Core.

October 2010.

 (Last accessed:March 20, 2011).

http://software.intcl.com/en-us/articles/intel-threading-building-blocks-

scalable-programming-for-Multi-core/

[125] Intel Corporation. VTune Amplifier XE 2011.

us/articles/intel-vtune-amplifier-xe/ (Last accessed:March 20, 2011).

http://software.inte.com/en-

[126] Intuit Corporation. Turbotax-Tax Preparation Software, 2011.

(Last accessed:March 20, 2011).

http://turbotax.intuit.com/

[127] Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. Dryad: Distributed data-parallel

programs from sequential building blocks. In Proceedings of European Conference on

Computer Systems (EUROSYS ’07), (March 2007), ACM, NY, pp.59-72. DOI:

10.1145/1272996.1273005.

[128] JCache project. Open source cache solutions in Java,

 (Last accessed ."March 20, 2011).

http://iava-source.net/open-

source/cache-solutions/jcache

[129] Jin, L., Lee, H., and Cho, S. A flexible data to L2 cache mapping approach for future

Multi-core processors. In Proceedings of the 2006 workshop on Memory system

181

performance and correctness (MPSC ‘06) (2006), pp. 92-101. DOI:

10.1145/1178597.1178613.

[130] Kamboj, R., and Chen, J. Best practices for deploying MySQL on Solaris. Presentation

made at Products and services session in MySQL conference & Expo, (April 2008), Santa

Clara, CA, USA.

 (Last accessed:March 20. 2011).

http://www.scribd.com/doc/2602122/Best-Practices-for-Deploying-

MySQL-on-thc-Solaris-Platform-Prcscntation-l

[131] Kamp, P.H., and Watson R.N.M. Jails: Confining the omnipotent root. The FreeBSD

Project, (Last accessed:March 20, 2011).http://phk.frccbsd.dk/pubs/sane2000-jail.pdf

[132] Kandemir, M., Yemliha, T., Muralidhara, S., and et al. Cache topology aware

computation mapping for Multi-cores. In Proceedings of the 2010 ACM SIGPLAN

Conference on Programming language design and implementation (PLDI '10) (June

2010), pp.74-85. DOI: 10.1145/1806596.1806605.

[133] Kaufmann, R., and Gayliard, B. Multi-core Processors, Dr.Dobbs. January 13, 2009.

 (Last accessed:March 20,

2011).

http://drdobbs.eom/high-performance-computing/212900103

[134] Kim, H., and Bond, R. Multi-core software technologies. IEEE Signal Processing

Magazine 26, 6 (November 2009), 80-89

[135] Kim, S., Chandra, D. and Solihin, Y. Fair Cache Sharing and Partitioning in a Chip

Multiprocessor Architecture, in IEEE Proceedings of the 13th International Conference

of Parallel Architectures and Compilation Techniques (PACT 04), (2004), 111-122

[136] Knauerhase, R., Brett, P., Hohlt, B., Li, T., and Hahn S., Using OS observations to

improve performance in Multi-core systems, IEEE Micro 38 3, 2008 54-66.

[137] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F. The Click modular

router. ACM Transactions on Computer Systems 18, 3, (August 2000), 263-297.

[138] Kongetira, P., Aingaran, K., and Olukotun, K., Niagara: A 32-Way Multithreaded

SPARC Processor. IEEE Micro 25, 2, (March 2005), 21-29. DOI: 10.1109/MM.2005.35.

[139] Krafzig, D., Banke, K., and Slama, D. Enterprise SOA: Service-Oriented Architecture

Best Practices. Prentice Hall PTR, November 2004.

[140] Kwiatkowski, J., Iwaszyn, R. Automatic program parallelization for Multi-core

processors. In Proceedings of the 8th international conference on Parallel processing

182

and applied mathematics: Part 1 (PPAM ‘09), (2010), Springer-Vcrlag Berlin,

Heidelberg, pp. 236-245.

[141] Lam, T. C., Ding, J. J., and Liu J.C. XML Document Parsing: Operational and

Performance characteristics. Computer 41, 9, (2008), 30-37. DOI: 10.1109/MC.2008.403

[142] Larus, J., and Parkes, M. Using cohort scheduling to enhance server performance.

Technical Report MSR-TR-2001-39, Microsoft Research, March 2001.

http://research.microsolLcom/apps/pubs/default.aspx?id=69844 (Last accessed:March 20,

2011)

[143] Larus, J., Spending Moore’s dividend, Communications of the ACM - Security in the

Browser CACM, 52-5, May 2009, 62-69.

[144] Li, T., Lebeck, A.R., and Sorin, D.J. Spin Detection Hardware for Improved Management

of Multithreaded Systems. IEEE transactions on Parallel and Distributed Systems 17, 6,

(June 2006), 508 - 521. DOI: 10.1109/TPDS.2006.78.

[145] Linkedln Inc. Proessionalnetwork, 2011. www, 1 (Last accessed:March 20,

2011).

inkedin.com

[146] Lowe, W. M., Noga, M. L., and Gaul, T. S. Foundations of fast communication via XML.

Annals of Software Engineering 13, 1-4, (June 2002), 357-379.

[147] LTTng Project. Linux Trace Toolkit, Comparison with SystemTap and DTrace.

 (Last accessed:March 20,

2011).

http://lttng.org/content/comparison-systemtap-and-dtrace

[148] Lttng project. Linux Trace toolkit, (Last

accessed:March 20, 2011).

http://lttng.org/content/documentation

[149] Lu, W., and Gannon, D., ParaXML. A Parallel XML Processing Model on the Multi-core

CPUs , Technical Report:TR662, School of Informatics and Computing, Indiana

University, April 2008.

 (Last accessed:March 20, 2011).

http://www.cs.indiana.edu/cgi-

bin/techreports/TRNNN.cgi?trnum=TR662

[150] Luhn., H.P. Computer for Verifying Numbers. U.S. Patent 2,950,048, August 1960.

[151] LXC Linux Containers project. Linux Containers chroot on Steroids.

 (Last accessed:March 20, 2011).http://lxc.sourceforge.net/

183

[152] Mann, J. AMD to phase out single-core Athlons June 2007.

http://www.techspot.com/ncws/25848-amd-to-phase-out-single-core-athlonsJitml (Last

accessed: March 20, 2011).

[153] Marino, M.D. L2-Cache Hierarchical Organizations for Multi-core Architectures, in

Frontiers of High Performance Computing and Networking (ISPA ‘06), (2006), Springer,

Berlin, pp. 74-83.

[154] Marquez, A.L., Gil, C., Banos, R., and Gomez, J. Parallelism on Multi-core processors

using Parallel.FX. Advances in Engineering Software, (November 2010).

DOI: 10.1016/j.advengsoft.2010.10.006.

[155] Mccool, M.D. Scalable Programming Models for Massively Multi-core Processors. In

Proceedings of the IEEE 9, 5, (April 2008), 816-831. DOI: 10.1109/JPROC.2008.917731.

[156] McDougall, R., Mauro, J., and Gregg, B. Solaris performance and tools: DTrace and

MDB Techniques for Solaris 10 and OpenSolaris, Ist edition, Prentice Hall, July 2006.

[157] Memcached project. A distributed memory object caching system,

(Last accessed:March 20, 2011).

http://memcached.or g/

[158] Merrit, R. CPU designers debate Multi-core future at the International Solid State

Circuits Conference. EE Times, Feb 2008.

 (Last accessed:March 20, 2011).

http://www.eetimcs.com/electronics-

news/4076123/CPU-designers-debate-Multi-core-future

[159] Microsoft Corporation. Deploying .NETApplications Lifecycle Guide, December 2007.

 (Last accessed:March 20, 2011).http://support.microsoft.eom/kb/913507

[160] Microsoft Corporation. Excel services.

 (Last accessed:March 20, 2011).

http.V/office.microsoft.com/en-us/excel-

help/about-statisticaI-analysis-tools-HP005203873.aspx

[161] Microsoft Corporation. Microsoft Live platform, (Last

accessed :March 20, 2011).

http://explore.live.com/home

[162] Microsoft Corporation. What is an Exchange Server email account - applies to Microsoft

Office Outlook 2003.

 (Last accessed:March 20, 2011).

http://office.microsoft.com/cn-us/outlook-help/what-is-an-

exchange-server-e-mail-account-HA001095504.aspx

[163] Mohr, E., Kranx, D., and Halstead, R. Lazy task creation: A technique for increasing the

granularity of parallel programs. IEEE Transactions on Parallel and Distributed Systems

2, 3, (Jul 1991), 264-280. DOI: 10.1109/71.86103.

184

[164] Monta Vista Software, LLC. Beyond virtualization: The Monta Vista Approach to Multi­

core SoC Resource Allocation and Control. 2011.

http://mvista.com/download/Whitepaper-Beyond-Virtualization.pdf (Last

accessed:March 20, 2011).

[165] MySpace Inc. Leading social entertainment destination, (Last

accessed:March 20, 2011).

http://www.myspace.com/

[166] Nieplocha, J., Marquez, A., Feo, J. and et al. Evaluating the Potential of Multithreaded

Platforms for Irregular Scientific Computations, In Proceedings of the 4th Inti.

Conference on Computing Frontiers (CF ’07), (2007), ACM, NY, USA, pp. 47-58. DOI:

10.1145/1242531.1242541.

[167] Nowell, M., Vusirikala, V., and Hays, R. Overview of Requirements and Applications for

40 Gigabit and 100 Gigabit Ethernet. Ethernetalliance-Version 1.0, August 2007.

(Last accessed:March 20, 2011).

http://www.csc.ohio-state.edU/-panda/788/papcrs/l i Overview and Applications2.pdf

[168] NVIDIA Corporation. Programmable GPUs for High Performance computing.

 (Last accessed:March 20, 2011).http://research.nvidia.com/

[169] Olukotun, K., Nayfeh, B., Hammond, L., Wilson, K., and Chang, K. The case for a

single-chip multiprocessor. In Proceedings of the Seventh international Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS

‘96), (October 1996), ACM, NY, pp. 2-11. DOI: 10.1145/237090.237140.

[170] OpenVz project. Linux OpenVZ. (Last accessed:March 20, 2011).http://wiki.openvz.org

[171] Oracle Corporation. Java Blue Prints,

(Last accessed :March 20, 2011).

http://java.sun.com/blueprints/code/index.html

[172] Oracle Corporation. MySQL. http://dev.MySQL.eom/doc/refman/5.0/en/security.html

[173] Oracle Corporation. Petstore, (Last

accessed:March 20, 2011).

http://iava.sun.com/developer/releases/petstore/

[174] Oracle Corporation. Solaris LDOMS.

 (Last accessed:March 20, 2011).

http://docs.sun.com/source/820-4914-

10/chapterl.html

[175] Oracle Corporation. System Administration Guide: Oracle Solaris Containers - Resource

Management and Oracle Solaris Zones, PartNo: 817-1592, 2010.

185

[176] Orfali. R., Harkey, D., and Edwards, J. The essential client/server survival guide (2nd

edition.), 1996, John Wiley & Sons, lSBN:0-471-15325-7.

[177] Organization for the Advancement of Structured Information Standards (OASIS).

Universal Description, Discovery and Integration (UDDI), February 2005.

http://www.oasis-open.org/committees/uddi-spec/ (Last accessed:March 20, 2011).

[178] Organization for the Advancement of Structured Information Standards (OASIS). Web

Services Distributed Management (WSDM) vl. 1, August 2006.

 (Last accessed :March 20, 2011).

http://www.oasis-

opcn.org/committccs/tc homc.php?wg abbrev=wsdm

[179] Organization for the Advancement of Structured Information Standards (OASIS). Web

Services Resources Framework (WSRF). vl.2, April 2006.

[180] Ousterhout, J.K. Why Threads Are A Bad Idea (for most purposes). Presentation given at

the 1996 Usenix Annual Technical Conference, January 1996.

http://www.stanford.edu/class/cs240/rcadings/thrcads-bad-uscnix96.pdf (Last

accessed .’March 20, 2011).

[181] Pallickara, S., and Fox, F. NaradaBrokering: A Distributed Middleware Framework and

Architecture for Enabling Durable Peer-to-Peer Grids, In Proceedings of the

ACM/IFIP/USENIX2003 International Conference on Middleware (Middleware 03),

(2003), Springer-Verlag, pp. 41-61.

[182] Pan, Y., Lu, W., Zhang, Y., and Chiu, K. A static load-balancing scheme for parallel xml

parsing on Multi-core CPUs. In Proceedings of IEEE International Symposium on

Cluster Computing and the Grid (CCGrid'07), (May 2007), IEEE, pp. 351-362.

DOklO.l 109/CCGRID.2007.14.

[183] Papadimitriou, S., and Sun, J. Disco: Distributed co-clustering with map-reduce. In

Proceedings on IEEE International conference on Data Mining (ICDM ‘08), (December

2008), IEEE, pp. 512-521. DOI: 10.1109/ICDM.2008.142.

[184] Papazoglou, M.P., and Georgakopoulos, D. Service-Oriented Computing,

Communications of the ACM 46, 10, (October 2003), ACM, 25-28.

[185] Parallels Holding Ltd. Top ten considerations for choosing a server virtualization

technology:Parallels® Virtuozzo Containers, 2010.

http://www.smbvirtualization.net/riles/2010/10/top_ten_considerations_for_choosing_ser

ver virtualization technology.pdf (Last accessed:March 20, 2011).

186

[186] Patterson. D. The trouble with Multi-core. Chipmakers are busy designing

microprocessors that most programmers can't handle, IEEE Spectrum, July 2010.

[187] Peltz, C. Web Services Orchestration and Choreography. Computer 36, 10, (October

2003), IEEE, 46-52.

[188] Peter, S., Schiipbach, A., Barhamy, P., and et al. Design Principles for End-to-End Multi­

core Schedulers. In Proceedings of the 2nd USENIX conference on Hot topics in

parallelism (HotPar'10) (2010), USENIX Association Berkeley, CA, USA.

[189] Ramkrishna R. B., and Fisher A. J. Instruction Level Parallelism, Encyclopedia of

Computer Science, 4th Edition, 2003, John Wiley and Sons Ltd, 883-887.

[190] Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G. R., and Kozyrakis, C. Evaluating

MapReduce for Multi-core and Multiprocessor Systems. In Proceedings of International

Symposium on High-Performance Computer Architecture (HPCA '07), (2007), pp. 13-24.

DOI: 10.1109/HPCA.2007.346181.

[191] Red Hat Inc. JBossWS v3.4.1-Web service framework for JBoss AS, Jan 2011.

 (Last accessed:March 20, 2011).http://community.iboss.org/wiki/JBossWS

[192] Roetter, A. Writing multithreaded Java applications-Learn to avoid problems common in

concurrent programming. IBM Developerworks Journal, February 2001,

 (Last accessed:March 20,

2011).

http://www.ibm.com/developerworks/library/i-thread.html

[193] Ruggaber, R. Internet of Services - A SAP Research Vision. In Proceedings of the 16th

IEEE International Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE ’07) (2007), IEEE Computer Society, DOI:

10.1109/WETICE.2007.152.

[194] Saez, J.C., Prieto, M., Fedorova, A., and Blagodurov, S. A comprehensive scheduler for

asymmetric Multi-core systems. In Proceedings of the 5 th European conference on

Computer systems {EuroSys ’10) (2010), pp. 139-152. DOI: 10.1145/1755913.1755929.

[195] Corporation. CRM: The leader in customer relationship management,

2011. (Last accessed:March 20, 2011).

Salesforce.com

http://www.salesforce.com

[196] SAP Corporation. SAP Business Management software solutions, applications, and

services, 2011. (Last accessed:March 20, 2011).http://www.sap.com

187

[197] SAP Corporation. SAP Netweaver .Adaptive technology far the Networked Enterprise,

2011. (Last accessed:March 20,

2011).

http://www.sap,com/platform/netweaver/index.epx

[198] Schroth, C., and Janner, T. Web 2.0 and SOA. Converging concepts enabling the

Internet of services. IT Pro IEEE Computer Society, May 2007.

http://www.computcr.org/portal/wcb/biiildyourcarccr/fa008 (Last accessed:March 20,

2011).

[199] Searls, R. JSR-000088:JavaTM 2 Enterprise Edition Deployment API Specification,

Version 1.1 J2EE Application Deployment. Oracle Sun Network, November 2003.

[200] Serena Corporation. Serena Mashup composer:A revolution in Application development,

2011. (Last

accessed:March 20, 2011)

http://help.scrcna.com/mashups/2009Rl/sbms composer saas auidc.pdf

[201] Shen, K., Request behavior variations., In Proceedings of the fifteenth edition of ASP LOS

on Architectural support for programming languages and operating systems, (Mar 2010),

103-116.

[202] Shoiler, D. SOA User Survey: Adoption Trends and Characteristics. Gartner Report.

2008. ID Number: GOO 161125.

(Last accessed:March 20, 2011).

http://www.gartncr.com/DisplayDocumcnt?id=765720

[203] Shoup, R., and Pritchett, D. The eBay architecture-Striking the balance between site

stability, future velocity, performance and cost, SD Forum 2006, November 29, 2006.

[204] Siwiki Project. DTrace Topics Guide. Solaris Internals Wiki, March 2011.

 (Last

accessed:March 20, 2011).

http://www.solarisinternals.com/wiki/index.php/DTrace Topics Guide

[205] Slater, P., Hill, R., and Hogg, J. Deploying .NET Framework-based Applications.

Microsoft Patterns and practices, MSDN Journal Library, June 2003.

http://www.microsofLcom/downloads/en/details.aspx?FamilyId=5B7C6E2D-D03F-

4B19-9025-6B87E6AE0DA6&displaylang=en (Last accessed:March 20, 2011).

[206] Snir, M., and Yu, J. On the Theory of Spatial and Temporal Locality. Technical Report

No.UIUCDCS-R-2005-2611, Department of Computer Science, UIUC, July 2005.

[207] Song, Y., Sailer, A., and Shaikh, H. Problem classification method to enhance the ITIL

incident and problem. In the Proceedings of the 11th IFIP/IEEE international conference

188

on Symposium on Integrated Network Management.(IM ‘09), (June 2009), IEEE Press

Piscataway, NJ, USA, pp-295-298.

[208] Inc. Stackless Pylon, (Last accessed:March 20,

2011).

Stackless.com http://www.stackless.com/

[209] Stallings, W. (2004). Operating Systems Internals and Design Principles. (Fifth

International Edition), Prentice Hall, ISBN 0-13-147954-7, 405-491.

[210] Staten, J. Your Thoughts: How mature are cloud computing services? Forrester

Research, June 2009.

 (Last accessed:March 20, 2011).

http://www.zdnct.com/blog/forrestcr/your-thoughts-how-mature-

arc-cloud-computing-serviccs/227

[211] Stephen, D. H. Worldwide SOA-Driven Software 2009-2013 Forecast. IDC Report, Aug

2009. Doc #219327.

http://www.markctrescarch.com/product/display.asp?productid=24246l4&xs=r (Last

accessed:March 20, 2011).

[212] Stokes, J. Inside the machine: an illustrated introduction to microprocessors and

Computer Architecture. No Starch Press, December 2006, 220-221.

[213] Sulaiman, D.R., Hardware Based: Dynamic Branch Prediction for Microprocessors

Energy Reduction in Portable Systems. International Journal of Engineering Studies 2, 2,

(2010), Research India Publications, 223-235.

http://www.ripublication.com/ijes/iiesv2n2 10.pdf (Last accessed:March 20, 2011).

[214] Sun, C., He, L., Wang, Q., and Willenborg, R. Simplifying Service Deployment with

Virtual Appliances. In Proceedings of IEEE International Conference on Services

Computing (SCC '08), (2008), pp.265-272. DOI: 10.1109/SCC.2008.53

[215] Symantec Corporation. Norton safe web from Symantec, 2011.

 (Last accessed:March 20, 2011)http://safeweb.norton.com/

[216] SystemTap project. SystemTap Linux monitoring.

http://sourceware.org/systemtap/documentation.html (Last accessed:March 20, 2011).

[217] Tallent, N. R. and Crummey, J. M. M. Effective performance measurement and analysis

of multithreaded applications. In Proceedings of the 14th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP '09), (February 2009), ACM,

NY, pp.229-240. DOI: 10.1145/1504176.1504210.

189

[218] Taura, K., and Yonezawa, A. Fine-grain multithreading with minimal compiler support:

A cost effective approach to implementing efficient multithreading languages. In

Proceedings of the 1997 ACM SIG PLAN Conference on Programming Language Design

and Implementation(PLDI ‘97), (June 1997), ACM, NY, USA, pp.320-333. DOI:

10.1145/258915.258944.

[219] Teradata Corporation. Data appliance and business intelligence, (Last

accessed:March 20, 2011).

www.tcradata.com

[220] Terracotta Inc. Distributed Shared Object platform,

 (Last accessed:March 20, 2011).

http://www.tcrracotta.org/cntcrprise-

suite/

[221] Tilera Corporation. Manycore without boundaries,

(Last accessed:March 20, 2011).

http://www.tilera.com/tcchnologv

[222] Tilera Corporation. Manycore without boundaries-Muhi-core Development

Environment(MDE). March 2011. (Last

accessed:March 20, 2011).

http://www.tilcra.com/devclopment tools

[223] Toupin, D. Using Tracing to Diagnose or Monitor Systems. IEEE Software 28, 1, (Jan

2011), 87-91. DOI: 10.1109/MS.2011.20.

[224] Tseng, J.H., Yu, H., Nagar, S., Dubey, N., Franke, H., and Pattnaik, P., Performance

Studies of Commercial Workloads on a Multi-core System, in IEEE 10th International

Symposium on Workload Characterization (IISWC 2007), Sept. 2007, 57-65.

[225] Tullsen, D., Eggers, S., and Levy, H. Simultaneous multithreading: Maximizing on-chip

parallelism. In Proceedings of 25 Years of the International Symposia on Computer

Architecture — Selected Papers (ISCA '98), (July 1998), ACM, NY. pp. 533-544. DOI:

10.1145/285930.286011.

[226] Twitter Inc. Real time messaging, (Last accessed:March 20, 2011).www.twitter.com

[227] Valiant, L.G. A bridging model for Multi-core computing. Proceedings of the 16th

annual European symposium on Algorithms (ESA ‘08) (2008), pp. 154-166. DOI:

10.1007/978-3-540-87744-8_2.

[228] Valipour, M.H., Amirzafari, B., Maleki, K.N., and Daneshpour, N. A Brief Survey of

Software Architecture Concepts and Service Oriented Architecture. In Proceedings of

2nd IEEE International Conference on Computer Science and Information Technology

(ICCSIT'09), (Aug 2009), pp.34-38. DOI: 10.1109/ICCSIT.2009.5235004.

190

[229] Vaquero, L.M., Merino, L.P., and Buyya, R. Dynamically Scaling Applications in the

Cloud. ACM SIGCOMM Computer Communication Review 41, 1 (January 2011), 45-52.

DOI: 10.1145/1925861.1925869.

[230] Vendavo Corporation. Price optimization and price management software.

 (Last accessed:March 20, 2011).http://www.vendavo.com

[231] Venugopal, S., and Ganesan, K. Tools for observing kernel behaviour. In Proceedings of

National Conference on Recent Trends in Information Technology) (NCRTIT '07) (August

2007), Chennai, India.

[232] Venugopal, S., and Desikan, S.K. Modernization challenges in transition to the HD

world. Lecture notes in Broadcast Engineering Society, Mar 2010.

[233] Venugopal, S., Desikan, S.K. and Ganesan, K. Connection Oriented Framework for

Effectively Using Multicore in the Enterprise. In Proceedings of 4th IFIP International

Conference on New Technologies, Mobility and Security (NTMS 71) (February 2011),

IEEE. Paris, DOI: 10.1109/NTMS.2011.5720651.

[234] Venugopal, S., Desikan, S.K. and Ganesan, K. Effective Migration of Enterprise

Applications in Multicore Cloud. In Proceedings of International Workshop on Cloud

Computing & Future of work (UCC 'll) (December 2011), IEEE, Melbourne, 463-468,

ISBN: 978-0-7695-4592-9.

[235] Venugopal, S., Desikan, S.K. and Ganesan, K. Connection Oriented Framework for

enterprise applications. International Journal of Advanced Computing. Volume 4, Issue 2,

Dec 2012 Accepted for publishing.

[236] Virident Inc. High performance large memory, (Last accessed:March

20, 2011).

www.virident.com

[237] Viswanathan, M., Shaikh, H., Sailer, A., and et al. ERMIS: Designing, developing, and

delivering a remote managed infrastructure services solution. IBM Journal of Research

and Development 53, 6, (November 2009), IBM Corporation, Riverton, NJ, USA, 871-

888. DOI: 10.1147/JRD.2009.5429036.

[238] VMWare Corporation. Virtualization solution for servers, (Last

accessed:March 20, 2011).

http://www.vmware.com

[239] Welsh, M., Culler, D., and Brewer, E. SEDA: Architecture for well conditioned, scalable

Internet services. In Proceedings of the 18th ACM Symposium on Operating Systems

191

Principles (SOSP ‘01), (October 2001), ACM, NY, USA, pp.230-243. DOI:

10.1145/502034.502057.

[240] Wentzlaff, D., and Agarwal, A. Factored operating systems (fos): the case for a scalable

operating system for Multi-cores. ACM SIGOPS Operating Systems Review 43, 2, (April

2009), 76-85. DOI: 10.1145/1531793.1531805.

[241] Weske, M. Business Process Management: Concepts, Languages, and Architectures.

Springer, November 2007.

[242] Wikipedia project. Web service frameworks, 2011.

http://en.wikipcdia.org/wiki/List of web service frameworks (Last accessed:March 20,

2011).

[243] Wood, T., Gerber, A., Ramakrishnan, K.K., Shenoy, P., and Merwe, .1. V. The Case for

Enterprise-Ready Virtual Private Clouds. In Proceedings of the USENIX Workshop on

Hot Topics in Cloud Computing (HotCloud '09) (June 2009), USENIX Association

Berkeley, CA, USA.

[244] World Wide Web Consortium (W3C). Extensible markup language (XML).

 (Last accessed:March 20, 2011).http://www.w3.org/XML

[245] World Wide Web Consortium (W3C). Simple Object Access Protocol (SOAP) vl.2, Arpil

2007. (Last accessed:March 20, 2011).http://www.w3.org/TR/soap 12/

[246] World Wide Web Consortium (W3C). Web Service Architecture.

. (Last accessed:March 20, 2011).http://www.w3.org/TR/ws-arch/

[247] World Wide Web Consortium (W3C). Web Service Description Language (WSDL) v2.0,

June 2007. (Last accessed:March 20, 2011).http://www.w3.org/TR/wsdl20/

[248] World Wide Web Consortium (W3C). Web services framework. W3C Workshop on Web

Services, April 2001, San Jose, CA, USA.

 (Last accessed:March 20, 2011).

http://www.w3.org/2Q01/03/WSWS-

popa/paper51

[249] World Wide Web Consortium (W3C). XML binary characterization properties, http://

. (Last accessed:March 20, 2011).www.w3.org/TR/xbc-properties/

[250] XAMPP Project. XLAMP stack, (Last

accessed:March 20, 2011).

http://sourceforge.net/projects/xampp/

[251] Xen Project. Xen hypervisor, (Last

accessed:March 20, 2011)

http://www.xen.org/products/xenhyp.html

192

[252] Xiaoya, X., Bao B., Ding. C., and Shen, K.., Cache Conscious Task Regrouping on

Multi-core Processors, in 12th IEEE/ACM International Symposium on Cluster. Cloud

and Grid Computing (CCGrid), (2012), 603-611.

[253] Yahoo Inc. Web portal, search and directory. (Last

accessed:March 20, 2011).

http://www.yahoo.com/

[254] Yu, J., Baghsorkhi, S., and Snir, M. A New Locality Metric and Case Studies for HPCS

Benchmarks. Technical Report. No. UIUCDCS-R-2005-2564, Department of Computer

Science, UIUC, April 2005.

[255] Zhang, E.Z., Jiang, Y., and Shen, X. Does cache sharing on modern CMP matter to the

performance of contemporary multithreaded programs? In Proceedings of the 15 th ACM

SIGPLAN symposium on Principles and practice of parallel programming (PPoPP '10),

(May 2010), ACM, NY, USA, pp.203-212.

[256] Zhao, Li., and Bhuyan, L. Performance Evaluation and Acceleration for XML Data

Parsing. In 9th Workshop on Computer Architecture Evaluation using Commercial

Workloads (CAECW ‘06) (2006), Austin, Texas.

[257] Zhong, H. Architectural and compiler mechanisms for accelerating single thread

applications on Multi-core processors. Doctoral Dissertation, University of Michigan,

Ann Arbor, MI, USA 2008.

[258] Zhuravlev, S., Blagodurov, S., and Fedorova, A. Addressing shared resource contention

in Multi-core processors via scheduling. SIGPLAN Not. In Proceedings of the fifteenth

edition ofASPLOS on Architectural support for programming languages and operating

systems (ASPLOS ’10) (March 2010), pp. 129-142.

[259] Ziegler., J. Everything you ever wanted to know about CC's,

 (Last accessed: March 20,

2011).

http://euro.ecom.cmu.edu/resources/elibrary/everycc.htm

193

APPENDIX I

System Probe Tools and their Comparison : DTrace / Truss / SystemTap

Appendix I deal with the comparison of standard probes that exists currently for observing

and logging kernel level parameters. There are four state of art tools evaluated, namely

SystemTap, LTTng, DTrace and kprobes. After preliminary tests, the kprobes were determined

to be timing sensitive and hence it was discarded from further analysis in the context our

prototype test bed. The comprehensive analysis for the remaining three tools described below is

available in the literature [147].

Linux Tools - 1 - LTTng (Linux Trace Toolkit Next Generation) is a tracer being actively

developed on Linux by IBM. This tool is a kernel patch accompanied by a tool chain (Itt-control)

to control the tracing, as well as a trace viewing and analysis program (LTTV). LTTng includes a

set of kernel instrumentation points useful for debugging a wide range of bugs that are otherwise

extremely challenging. These include performance problems on parallel systems and on real-time

systems. Custom instrumentation is easy to add in LTTng. LTTng is designed for minimal

performance impact and has a near zero impact when not tracing.

Linux Tools - 2 - SystemTap is another system monitoring tool in Linux. It can

dynamically instrument the kernel and provide enough data to analyze the performance

problems. It provides information from the sub system level to routine level granularity.

SystemTap instrumentation incurs low load when enabled and zero load when disabled.

SystemTap also provides facilities to define instrumentation points in a high level language and

to aggregate and analyze the instrumentation data.

DTrace - Solaris - DTrace is a standard production grade Solaris tool that is used to analyse

system calls and signals, and more recently has been enhanced to follow user level function calls.

DTrace provides over 30,000 probes, and has the capability to drill down to each instruction of a

process. Truss by default only looks at system calls and signals. Also, sTrace and Truss are

invasive in nature and they interfere when the system is under observation. The following table

lists the criteria that are used for selection of the tool.

194

Project LTTng SystemTap DTrace

operating system
support

Linux Linux Solaris, Mac OS X, BSD,
QNX

license Kernel tracer: GPLv2 GPL CDDL

development began Jan-05 Jan-05 Oct-Ol

development status Ongoing Ongoing stable with continuing
development

Collaborators Multi-Core Association
Linux Foundation RedHat, IBM and Oracle Oracle (Sun)

Language style C Scripting Scripting

Speculative tracing work in progress yes Yes

Probe execution optimized native code optimized native code interpreted bytecodes

concurrent probes on
multiprocessors yes Yes Yes

trace script language
programs

yes, (script language calls
C) not yet

yes: Ruby, JavaScript,
Perl, Python, PHP, APL,
Bourne shell, ksh, zsh, Tel

timer-based probing no Yes Yes

Analysis performed offline (post-mortem) Online Online

Non invasive probing is essential as it does not affect the functioning of the key processes

when they are running on the core. The probes needed to be online to reflect and provide any

feedback. Both System Tap and DTrace provide this facility . The next important criteria were

the stability of the probes themselves, as well as their ability to be scripted easily. DTrace scored

in both these conditions. The execution of the probe by directly involving interpretation of byte

code, meant that no code had to be specifically recompiled. This is a key as enterprises view

recompilation with suspicion and as a risk. The timer-based probing enables us to reconstruct the

events that happened in a chronological sequence and DTrace and SystemTap scored in these.

The following table presents the status of the tools at the time of the experiments.

Based on the above, DTrace was chosen as the new comprehensive system analysis tool that

is less intrusive than other tools, and is safe to run in production.

195

APPENDIX II

List of DTrace probes to choose

DTrace at the time of experiments had over 70,000 probes, the instrumentation point from

which DTrace can collect data [204] [43]. Brendan Gregg’s tool kit [103] ran over 200 special

scripts. Probes consist of four-tuples as described below.

Tuple Description
Provider A library of related probes.

Module The module the function belongs to, either a kernel module or user segment.

Function The function name that contains the probe.

Name The name of the probe.

Each DTrace probe writes a log into a corresponding log file. Each of these DTrace log files

determine which data to be observed. Example, which process are running on which core, the

behaviour of operating system scheduler, pid generation process and the processing queue etc.

DTrace provides 19 pre built scripts to monitor the system at operating system level. These are

1 anonpgpid.d, 6 intbycpu.d, II minfbyproc.d, 16 vmbypid.d,

2 cputypes.d, 7 intoncpu.d, 12 runocc.d, 17 vmstat.d,

3 cpuwalk.d, 8 inttimes.d, 13 swapinfo.d, 18 vmstat-p.d,

4 cpuxcallsbypid.d, 9 loads.d, 14 syscallbypid.d, 19 xvmstat.d

5 dispqlen.d, 10 minfbypid.d, 15 syscallbyproc.d,

196

Fifteen of these scripts were used as probes and their respective description and data

collected is presented in the following table.

List of 15 DTrace Probes and the probe headers used during Setup

No Probe Name Probe
Class Brief Description Probe

Headers
1 cpu_xcallsbypid CPU

List the inter-processor cross-calls by process id. The inter­
process cross calls is an indicator how much work a CPU
sends to another CPU

PID,CMD,XCALLS

2 dispqlen_by_cpu CPU Prints the dispatcher Queue length CPU ID, VALUE,
DISTRIBUTION, COUNT

3 interrupt_by_cpu CPU prints the number of interrupts by CPU CPU, INTERRUPTS

4 interrupt_time CPU lists the interrupt activity by device DEVICE, TIME (ns)

5 minf_by„process Memory This program prints a report of minor faults by Process. PID, CMD, MINFAULTS

6 minf_by_pid Memory
This program prints a report of minor faults by PID.
This script is to used to help determine which process was
consuming the most memory and had cache faults during
the sample.

PID, MINFAULTS

7 readb_by_process Process how many bytes are read by process PID, CMD, BYTES

8 sample_process Process PID, SAMPLES, ARGS

9 signaLcount Counters Summary of the different signals that occur for a process. FROM, SIG, TO, COUNT

10 syscall_by_process Process system calls by process or by PID, process ID, process
name, syscall name and number of syscalls for this PID

PID, CMD, SYSCALL,
COUNT

11 syscall_count Counters Count of all syscalls SYSCALL, COUNT

12 syscall_errors Process Collects the system errors that have occurred for a process. PID, CMD, SYSCALL,
ERRNO, COUNT

13 sysi n fo_by_p rocess Process Analyses process activity, bytes written or read by process,
files opened by process

PID, CMD, STATISTIC,
COUNT

14 vminfo_by_process Process how much of VM is consumed by process PID, CMD, STATISTIC,
VALUE

15 writeb_by_process Process how many bytes are written by process PID, CMD, BYTES

Limitation of DTrace

There is a dedicated shared memory space provided for logging and creation in the DTrace

framework. Logs stored onto the hard disk after DTrace has performed its non-invasive probing.

DTrace best practices for a set log buffer size, from the general recommendation found in

literature [156][130][217]. The time for logging should not affect the other processes with its

buffer overflow in I/O while recording the logs. The prescribed limit in literature is

[156][130][217] about 30 seconds, per probe, for a generic log file to write into memory.

In the prototype test bed - multiple probes are used simultaneously. Four probes will share

the memory space to write the buffer. The 30 second timeslot window, is therefore, recomputed.

The logs should have been captured for 30/4 = 7.5 seconds. By comparing the size of the headers

and their respective output, as listed in the table above, and by observing that not all logs are of

same size, the test bed ran the four DTrace probes safely for a 10 seconds time window within

the buffer write limit.

197

APPENDIX III

Steps to create Solaris Zones

With recent advances in architecture of Niagara Virtualization in Solaris done using zones.

As DTrace tracing does not occur across zones, we set up the instance of DTrace in one zone.

Setting up Solaris Zones requires two prominent steps, (1) creating and assigning cores to a zone

and (2) assigning the network properties for each zone. The following nine steps are detailed out

below.

1. Assigning a single dedicate core for zone : add dedicated-cpu

2. To modify the assigned cores for zone : set ncpus=l-2

3. Assigning system privileges to zone : set limitpriv="default,sys_time"

4. Scheduling to FSS : set scheduling-class=FSS

5. Adding memory cap to zone : add capped-memory

6. Assigning 2G memory to zone : set physical=2048m

7. Add file system to the zone : add fs

8. Add mountpoint for zone : set dir=/usr/local

9. Connect zone mountpoint to global fs : set special=/opt/zones/research-labl/local

We used the following four steps to assign network properties:

1. set IP type : set ip-type=exclusive

2. Add network device : add net

3. Set IP address : set address= 192.168.234.10

4. Attach IP to device : set physical=hmeO

198

APPENDIX IV

Log collection from DTrace

This appendix discusses how the logs of DTrace are used to reconstruct what is happening at

each core. A process is a command in execution and in DTrace referred to by command (CMD)

or process. In the DTrace framework, three probes determine how the characteristics of the core

behaviour (I) dispqlcn_by_cpu, (2) syscall_by_process and (3) niinf_by_process. The fourth

intcrrupl_by_cpu logs how cores behave with reference to each other and how many cores are

used. dispqlen_by_cpu gives the volume of load on the CPU without any reference to the process

currently executed. syscall_by_proccss refers to the number of system calls that are made by a

process in focus. syscall_by_proccss also presents number of context switches that are made when

the command is in execution. minf_by_proccss determines the number of faults that a process

makes while executing. Together, syscall_by_process and minf_by_process logs present a picture

of how a particular application is running and performing, and when and why the context is

getting switched - while indirectly referencing the load based on queue length.

The log management and reconstruction process is done in four steps:

1) Log Preparation- Plan the buffer size, the number of probes and the time slots

2) Aggregation - Collecting data from four probes in these time slots

3) Filtering - Extraction and Group of desired processes (detailed in Appendix V).

4) Analysis - Recreating the Chronology (detailed in Appendix V).

Log preparation

The first part of the reconstruction is planning a timeslot window within which DTrace will

observe the system. The number of operational cores is set to 9 with methodology as described in

Appendix III. The Nine Cores are numbered - CPU 0, CPU 1, ... CPU 8. In the test bed, for the 9

cores configuration environment discussed, five time slots were taken within a 151 second time

windows based on the log buffer size limitations viz. TSI = 18:40:50 - 18:41:00, TS2 = 18:41:21 -

18:41:31, TS3 = 18:41:55 - 18:42:05, TS4 = 18:42:29 - 18:42:39, and TS5 = 18:43:11 - 18:43:21.

199

Log Aggregation

The output from the four probes behaviour - dispqlen_by_cpu, syscall_by_process,

minf_by_process and interrupt_by_cpu is

syscall_by_process.i, minf_by_process.l,
syscall_by_process.2, minf_by_process.2,

recorded respectively as dispqlen_by_cpu.i,

i n ter ru pt_by_cpu. 1, d ispqlen_by_cpu .2,

internipt_by_cpu.2, ... dispqlen_by_cpu.5,

syscall_by_process.5, minf_by_process.5 and interrupt_by_cpu.5 respectively. The next step
consolidates these disparate log files into dispqlen_by_cpu.csv, syscall_by_process.csv,

minf_by_process.csv and interrupt_by_cpu.csv as shown in the figure below.

dlspqlen
by CPU 1

dlspqlen
by CPU 2 UJ’

F" —

dlspqlen
by CPU 3

________ -J

dlspqlen
by CPU

.csv

syscall by syscall by
process 1 LiJ process2

syscall by
process 3

syscall by
process4 4* syscall by

process 5

minf_by_
process 1 4“ minf_by_

process 2
minf_by_
process 3

minf_by_
process 4

minf_by_
process 5

syscall by

process
.csv

+

Thus, the DTrace file processor is the aggregated based on the file type with the respective
aggregator as shown in the figure above. This pluggable design indicated helps us to unify the
processor scripts depend on the input type. The following script shown as a snapshot cleans the

headers from the dispqlen_by_cpu.i ... 5 and aggregates the required records into the file

dispqlen_by_cpu.csv.

200

#.'/bin/bash
export COUNI^l"
export OUTPUTDIR="$2"

it

for DIR ECT RY in Is -1 | grep -v final'
do
di ----- ----------------- ------------------------------------
first make the directories at destination
then replicate sub-folders
---------------------- --------------

echo $DIRECTRY
mkdir -p $OUTPUTDIR/$DIRECTRY
echo "$OUTPUTDIR/$DIRECTRY created"

.................-.............
for datafile in 'Is -1 $DIRECTRY | \
grep -iv dispqlen_by_cpu | cut \
-d"." -fl | sort | uniq'
do

............
echo $DIRECTRY/$datafile

tt _____ __________ ____________ ____

cat $DlRECTRY/$datafile.l | \
grep -v CTSINGT0SUNO4 | \
head -1 | \
sed ■=/'[xh'/z-o/t \q'V/’ i x
awk '{ $1=$1; print }' | \
sed 's/ /./g’ \

> $OUTPUTD [REDIRECT RY/Sdatafile.csv
...... -----....................................

for file ord in {!..$ COUNT)
do

cat $DlRECTRY/$datafile.$fileord | \
grep -v CTSINGT0SUNO4 | \
sed Id | \
sed ’s/A[\t]’//;s/[\t]’$//' | \
a wk '{ $1=$1: print }’ | \
sed 's/ /./g’ \
» $OUTPUTDIR/$DIRECTRY/$datafile.csv

done
— -....................
------------------------- ---------------- ---------------- -

done
----------------------------- ---------- --------------------

echo finished $DIRECTRY
................ ..
done

Script - Code Snapshot of File Aggregator

201

APPENDIX V

Relevant data reconstruction from DTrace

This portion of appendix discusses how. from the aggregated data, we can reconstruct the

chronology of what happened in the system. The syscall_hy_process log returns the following
records, as evidenced by the header - viz. PID, CMD, SYSCALL, and COUNT.

The PID represents the Process ID of a process and the CMD represents that Command that

is executed. For example, the first two records in syscall by_ process, csv are

PID CMD SYSCALL COUNT

1240 webseald pollsys 1
1242 sendmail pollsys 1

The following can be inferred from the records: (1) Adjacency of PIDs - The First command

and the second command differ in PID by 2. indicating that webseald is followed by the operating

system spawning the sendmail process. (2) Longevity of Run - The first two records arc polling for a

resource as seen in the SYSCALL command and have run for one cycle as indicated in COUNT.
A second look at from the figure below shows Adjacency of PIDs and Longevity of Run for

DTrace (I) the PIDs for the 9 cores span between of 26170 and 26180 and (2) the commands run for

a longevity of 1 1 (sum of count =11) i.e. from record number 5 to record number 15.

RECORD
NUMBER

PID CMD SYSCALL COUNT

1 1240 weoseald pollsys 1
2 1242 sendmail pollsys 1
3 6888 bash gtimc 1
4 6888 bash waitsys 1
5 26146 dtrace sysconfig 1
6 26170 d trace getdents 1
7 26170 dtrace Iseck 1
8 26170 dtrace read 1 11 b)
9 26180 dtrace mement 1

10 26180 dtrace resolvepath 1 (oj i
11 26180 dtrace stat 1
12 26180 dtrace access 1
13 26180 dtrace Isat 1
14 26180 dtrace ioctl 1
15 26180 dtrace uname 1 1

202

Filtering - Extraction and Grouping of desired processes

Expanding on the above, the following figures can be split into three sections. On the left, is

a snapshot of the log file as is. These records contain the commands CMD for the 27 unique

system calls (SYSCALL).

Print of the
Log File as is

A
Compressing
the Log File

Zoomin on the
Compressed Process

18 18:40:50. SunOS CTSINGT0SUN04 5.10 Generic_118833-362009 Feb
PID CUD SYSCALL
1240 webseald polLsys

1242 sendni.nl pollsys
6888 bash gtinie
6888 bash waitsys

26146 dtrace sysconfig
26170 dtrace getdents
26170 dtrace Iseek

26170 dtrace read
26180 dtrace memcntl

26180 dtrace rcsolvepath

26180 dtrace stat
26180 dtrace access
26180 dtrace frat
26180 dtrace iocti
26180 dtrace unanie
26183 tail write

26183 tail llseek
26183 tail rexit
26183 tail mmap64

26183 tail resolvepath
26183 tail stat
26183 tail fstatvfs64

26183 tail getrlimit

26183 tail get pi d
26183 tail fstat64

26183 tail open64
26183 tail open
26183 tail iocti

1240 webseald Iwp. park

1242 sendmail Iwp. sigmask
1242 send mad pset

2166 poold Iwp cond.wait

6888 bash write
25908 niysqld Iseek
26130 dtrace Iwp.pai k

26134 dtrace Iwp. park

26139 dtrace sigaction

2614 1 dtrace Iwp park

26147 dtrace sigaction
26157 dtrace iocti
26167 dtrace sigaction

26168 dtrace brk
26170 dtrace close

26180 dtrace get pi d

26180 dtrace system info

26180 dtrace getdents

26180 dtrace tasksys

26180 dtrace setpgrp

26180 dtrace get gid

7AHW nnhitrl

1

S No PID CMD COUNT
(no of calls)

1 1240 webseald 1
2 1242 seiidin.nl 1

3 6888 bash 2
5-15 26146 dtrace 11

16-28 26183 tail 13
29 1240 webseald 1
30 1242 sendinail
32 2166 poold 1
33 6888 bash 1
34 25908 tnysqld 1
35 26130 dtrace 16
51 26183 tail 4
r r 1240 webseald 1
56 1242 sendinail 1

25908 tnysqld 1
58 26139 dt race 6
64 26183 tail 1
65 3063 sshd 2

67 6888 bash 2
69 25908 tnysqld 1
70 26159 dtrace 4
74 3063 sshd 1
75 25908 tnysqld 2
77 26167 dtrace 1
78 2166 poold 1
79 26180 dtrace 1
80 6888 bash 1

sun4v . io

HSysCalls
sysconfig

getdents
I seek

13 Sys Calls 1 : ead
write mem end

llseek resolvepath
rexit stat

mmap64 access
resolvepath fs at

stat iocti
fstatvfs64 uname
gerriimit

getpid
fstat64
open64

open
io cd

203

This single contiguous chain of commands (CMDs) can be compressed based on adjacency of

records as shown in the Centre section in the figure above. The right hand side shows how the

processes can be restored from the original records.. Two commands viz. dtrace and tail represent

this grouping.

Thus, the following can be inferred. (1) The CMDs are presented in the order of execution. (2)

Group based on adjacency and summing the count for a CMD compresses the record table.

Analysis - Recreating the Chronology

syscalU)y_proccss.csv contains list of 37 unique commands (CMDs) within 91 unique system

calls (SYSCALLs) run in 5209 (=112+503+622+1279+2693 = No of records) slots with 83747 (= Sum of

COUNT). The SYSCALLs occur in chronological sequence. When SYSCALLs are superimposed on the

timescale of the run, and distributed across processors, the chronological reconstruction is

complete. Each execution block can now be distributed across the number of cores. The

following table shows the data for TS i through TS5 as detailed in Figure 5-11.

CPU schedules for 5 time intervals observed in DTrace probe

Run ID Status PID CMD No of
CMDs

No of
system

calls
TIMING

TSI
Start 1 1240 webseald

112 3061
18:40:50

Stop 1 26180 dtrace 18:41:00

TS2
Start 2 7 svc.startd

503 12418
18:41:21

Stop 2 26212 dtrace 18:41:31

TS3
Start 3 126 nsed

622 8383
18:41:55

Stop 3 26275 dtrace 18:42:05

TS4
Start 4 7 svc.startd

1279 17308
18:42:29

Stop 4 26721 sshd 18:42:39

TS5
Start 5 7 svc.startd

2693 42577
18:43:11

Stop 5 3203 telnet 18:43:21

204

37 Unique commands that run on the various cores
S No COMMAND SNo COMMAND SNo COMMAND SNo COMMAND

1 webseald 11 utmpd 21 syslogd 31 svc.configd
2 sendmail 12 fmd 22 dispqlen_by_cpu 32 newprocess_count
3 bash 13 inetd 23 interrupt_by_cpu 33 readb_by_process
4 dtrace 14 Is 24 sysinfo_by_process 34 syscall_errors
5 tail 15 login 25 sample_process 35 MySQL
6 poold 16 sh 26 vmi nfo_by_proces 36 t.sql
7 MySQLd 17 quota 27 wri teb_by_p rocess 37 minf_by_process
8 sshd 18 sed 28 cat
9 svc.startd 19 expr 29 mail

10 nscd 20 printf 30 telnet

List of 87 System calls that are executed during observation by probes

List of system calls

accept access acl alarm brk c2audit
chdir chown close connect doorfs dup
exece fcntl forkl fsat fstat fstat64
fstatvfs64 getdents getdents64 getgid getmsg getpid
getrlimit getsockname getuid ioctl llseek Iseek
lstat64 lwp_cond_signal lwp_cond_wait lwp_continue lwp_create lwp_exit
lwp_kill lwp_park lwp_self lwp_sigmask memcntl mmap

mmap64 modctl mprotect munmap nanosleep open

open64 p_online pathconf Pipe pread priocntlsys

privsys pset putmsg read recv resolvepath

rexit schedctl send setcontext setegid setgid

setgroups setpgrp setsockopt setuid shutdown sigaction

sigaltstack sigpending sigwait so_socket stat stat64
systeminfo tasksys times umask umountZ uname
unlink write zone

205

Categorizing into desired processes

The next step is to group processes (CMDs) from syscall_by_proccss.csv based on three

categories. (1) Those related to the MySQL like MySQL, MySQLd, t.sql and expr. (2) Those

related to applications but NOT related to MySQL like poold, printf etc (3) Core Operating

system processes like poold, telnetd etc. This grouping is done as observed from the application

level.

When a sequence of records occurs for a group of MySQL related CMDs (like t.sql, MySQL and

MySQLd) as the syscall_by_proccss. log in our test bed, the group can result in a cluster of MySQL

related processes. The figure on a time-scale for “related MySQL calls in a cluster” depicts how

the cluster can be identified. Two important statistical methods are used. The first - to get the

number of clusters - is done by identifying set of sequence calls whose sequence count does not

vary more a sequence count 200. Noise is further filtered on bidimensional data, based on the

COMMAND type and the COMMAND sequence ID to obtain variance of the PID less than 100

for processes within a sequence.

The figure “Execution of only significant Cluster of CMDs”, identifies the significant

MySQL queries — whose system calls — sum of whose COUNT continuously — is greater than 100.

This indicates how a CMD like MySQL sustains its execution in the core.

The number of schedules of MySQL is indicated by the number of green bars. This indicates

how frequently MySQL based processes are scheduled and is an indicator of the effectiveness of

scheduling MySQL processes which is parameterised as the Core Configuration Effectiveness

(CCE) detailed in Section 5.3.1.

The efficiency of any of the MySQL related CMDs will determine the overall efficiency of that

particular command in the Multi-core scenario (refer Intra Process Efficiency -Refer Section

5.3.2). For example, the 5193rd record of the syscall_by_proccss log indicates a COUNT of 11518.

The efficiency of 11518 executions depends on the Cache miss in these clock cycles. This

efficiency is represented by Intra-Process Efficiency (IPE).

From the figure “Execution of only significant Cluster of CMDs”, we can now determine the

performance of the execution of MySQL on the Multi-core processor.

206

List of MySQL related system calls

Command

bw
rit

e

in
v_

sw
tc

h

■o
ra
<u u. Iw

rit
e

m
ut

ex
_a

d

na
m

e!

nt
hr

ea
ds

ou
tc

h

ps
w

itc
h

re
ad

ch

rw
_w

rfa
ils

sy
se

xe
c

sy
sf

or
k

sy
sr

ea
d

sy
sw

rit
e

(T
ra

p

uf
sd

irb
lk

uf
sig

et

w
rit

ec
h

xc
al

ls

mysql T LI L 1
mysqld r L 1 l L ilk 1 L

t.sql H l k 1 L t L L L t

Related MySQL calls in a cluster across a time scale.

Execution of only significant Cluster of CMDs (with system calls > 100)

207

APPENDIX VI

Pre-Built DTrace Probes for Apache and PostGreSQL

There are about 154 pre built Apache Probes and following are the representative examples to

show the probes related to connections, ports, and transactions.

• ap* : :ap_run_child_init: child_in.lt-entry ()

• ap4::ap run child ini t:child init-return(ini)

• ap4::ap_run_create connection:create connection-dispatch-compleke(char 4,
int)

• ap*::ap_run_create_connection:create_connection-dispatch-invoke(char 4)
• ap4::ap_run_create_connection:creatc_connection-entry()
• ap4::ap_run_create_connection:create_connection-return(int)
• ap4::aprun create request:create_request-dispatch-compleLe(char 4, int)
• ap4: :ap_run crealerequest:create_ request-di spatch-invoke(char 4)
• ap4::ap_run_create request:create_request-entry()
• ap4::apruncreate request:create_request-return(int)

• ap4::ap_run_default_port:default_port-dispatch-complete(char 4, int)
• ap‘::ap_run_default_port:default_port-dispatch-invoke(char 4)
• ap4::ap_run_default_port:defaultport-entry()
• ap4::ap_run_default_port:default_port-return(int)

• apA::aprun logtransaction:log_transaction-dispatch-complete(char 4, int)
• ap4::ap_run_log_transaction:log transact]on-dispatch-invoke(char 4)
• ap4::ap_run_log_transaction:log transaction-entry()
• ap4::ap_run_log_transaction:log_transaction-return(int)
• ap4::ap_run_map_to_storage:map_to_storage-dispatch-complete(char 4, int)
• ap4::ap_run_map_to_storage:map_to_storage-dispatch-invoke(char 4)
• ap4::ap_run_map_to_storage:map_to_storage-entry()
• ap4::ap_run_map_to_storage:map_to_storage-return(int)

• ap4::ap_run_pre_connection:pre_connection-dispatch-complete(char 4, int)
• ap4::ap_run_pre_connection:pre_connection-dispatch-invoke(char 4)
• ap4::ap_run_pre_connection:pre connection-entry()

• ap4::ap_run_pre_connection:pre_connection-return(int)

• ap4::ap_run_process_connection:process_connection-dispatch-complete(char 4
int)

• ap4::ap_run_process_connection:process_connection-dispatch-invoke(char 4)

208

• ap4:: ap run process connoction:process connection-entry()
• ap‘:nip run process connection:process connect ion-return(int)

There are 49 prebuilt PostgreSQL DTrace probes, and some of themAREgiven below as a

representation of them.

• postgresql *::: sLaLernent-sta rt (const char ‘)
o Fires any time SQL is executed on the server, copyi nstr (argO) is the query.

• postgresql:mark-dirty(uint32 t)

o Fires when a buffer in the shared buffer pool is marked dirty for the first time. The first argument
is the buffer (id).

• postgresql*:::local-mark-dirty(uint32_t)

o When a local buffer in the shared buffer pool is marked dirty for the first time. The first argument
is the buffer (id).

• postgresql*:::slru-readpage-entry(uintptr t, uint32 t, uinL32 L, ulnt32 t)
o Fires on the entry to the slru si mpleLruReadPage function. argO is a pointer to the PostgreSQL

SlruCtl. argl is the page number, arg2 is 0 or 1, indicating if the page needs to be writable. arg3
is the transaction id (xid).

• postgresql4:::slru-readpage-return(uint32_t)

o Fires when the slru SimpleLruReadPage function returns. argO is the slot number of the page
returned.

• postgresql * : : :siru-readpage-ro (u i.ntptr_t, uint32_t, uint.32 t)
o Fires when the slru SimpleLruReadPage ReadOn] y function is entered. argO is a pointer to

the PostgreSQL SlruCtl. argl is the page number. arg2 is the transaction id (xid).
• postgresql*:::slru-writepage-entry(uintptrt, uint32 L, uint32 t)

o Fires when the slru SimpleLruWr it ePage function is entered. argO is a pointer to the

PostgreSQL SlruCtl. argl is the page number. arg2 is the slot number.
• postgresql*:::slru-writepage-return()

o Fires when the slru SimpleLruWr itePage function returns.

• postgresql*:::slru-readpage-physical-entry(uintptr_t, char *, uint32_t,
uint32_t)

o Fires when the slru SlruPhysicalReadPage function is entered. argO is a pointer to the

PostgreSQL SlruCtl. copyinstr(argl) is the pathname of the file being read. arg2 is the page
number. arg3 is the slot number.

• postgresql*:::slru-readpage-physical-return(uint32_t, uint32 t, uint32 t)
o Fires when the slru SI ruPhysicalReadPage function returns. argO is 0 or 1 indicating success.

argl is the internal error cause (only valid if argO is 0). arg2 is the system errno (only valid if

argO is 0).

209

APPENDIX VII

List of scripts

Threads.py

#The script (threads.py) send request to server xmlrpc server, it will span
n number of #threads and send request to the xmlrpc server.
#!/usr/bin/python
import threading
import random
import sys
import xmlrpclib
import time
import os, sys

diff = 1
requests = 100
iterations = 1

rpc_srv = xmlrpclib.Serverproxy("http://127.0.0.1:7080")

class MyThread(threading.Thread):
def__init__(self, initial_value):

threading.Thread.__ init__ (self)
self.num = initial_value

def run(self):
I I I

num = random.randrange(0,999)
if num < 100 and num >= 10: num = '0'+str(num)
elif num < 10: num = ,0'+str(num)+,0'
else : num = str(num)
fit
print self.num
print str(rpc_srv.get_count(self.num)[0][0]) + • rows found for card

number ' + str(self.num)

210

start_time = time.ctime()
for x in range(iterations):

threadList = []
num_threads=open('threads.txt').read()
#Comment the below line for reading requests from threads.txt
#Uncomment the below line for reading request from request variable

mentioned above.
#num_threads = str(requests)
fp = open('time.txt', 'a’)
if int(num_threads):

print 'running ' + num_threads + ' requests...'
fp.write('run #' + str(x) + ':\n')
fp.write('running ' + num_threads + ' requests...\n')
fp.write('start time:' + time.ctime() + ’\n')
timel = time.time()
x=x+l
for j in xrange(int(num_threads)):

if x==9:
mt=MyThread(x*100 + 49 + j)

else:
mt=MyThread((x+l)*100 + j)

threadList.append(mt)
mt.start()

for each_thread in threadList:
each_thread.join()

fp.write('end time:' + time.ctime() + '\n\n')
time? = time.time()

delta = int(time2 - timel)

if delta % diff != 0:
time.sleep(delta % diff)

time.sleep(diff)
a = rpc_srv.get_threads()
b = rpc_srv.del_threads()
fp.close()

if a:
print a[0][0]
open('threads.txt', ’w').write(str(a[0][0]))

211

Python - DTracing Python

These scripts DTrace the Python programming language, and require a version
of Python which has been built with DTrace probes.

The Python DTrace provider was originally written by John Levon, and
was integrated into Solaris Nevada in build 65. If you are on a different
OS with DTrace and would like to use these scripts, you could download
Python and the Python DTrace provider patch listed in the comments here,

http://blogs.sun.com/levon/entry/python_and_dtrace_in_build

You will need patch and build Python for these probes to work.
Or, check if a pre-built package is available someone on opensolaris.org.

Since the DTrace Python provider may be developed further, there is a
chance that it has changed slightly by the time you are reading this,
causing these scripts to either break or behave oddly. Firstly, check for
newer versions of the DTraceToolkit; if it hasn't been updated and you need
to use these scripts immediately, then updating them shouldn't take too
long. The following was the state of the provider when these scripts were
written - check for changes and update the scripts accordingly,

provider python {
probe function-entry(file, subroutine, lineno)
probe function-return(file, subroutine, lineno)

};

212

xmlrpcservcr

#The script (xmlrpc_server.py) will start the server on the windows machine
which connects the MySQL db on #solaris server and listening client request
and send back the result to client.
#
from twisted.web import xmlrpc, server
from twisted.internet import reactor
from twisted.enterprise import adbapi
dbpool = adbapi.ConnectionPool("MySQLdb", cp_max=500, cp_reconnect=True,
db="my_cc", host='10.237.214.157', user='root')
dbpool2 = adbapi.ConnectionPoolC'MySQLdb", cp_max=2, cp_reconnect=True,
db="my_cc2", host='10.237.214.157', user='root’)

class Example(xmlrpc.XMLRPC):
"""An example object to be published."""
def xmlrpc_echo(self, x):

"""Return all passed args."""
return x

def xmlrpc_block(self, duration=10):
"""block the instance for a specified duration"""
import time
time.sleep(duration)
return "i slept %s seconds!" % (str(duration))

def getCount(self, num):
return dbpool.runQuery("select count(distinct(ch_cardno)) from

ch_transaction where ch_cardno like ’%" + str(num) + ”%'")
def getThreads(self):

return dbpool2.runQuery("select threads from tmp_table")
def deleteThreads(self):

return dbpool2.runQuery("delete from tmp_table")
def xmlrpc_get_count(self, x):

return self.getCount(x).addCallback(lambda x: x)
def xmlrpc_get_threads(self):

return self.getThreads().addCallback(lambda x: x)
def xmlrpc_del_threads(self):

return self.deleteThreads(),addCallback(lambda x: x)

this only runs if the module was *not* imported
if __name__ == '__main__':

r = Example()
reactor.listenTCP(7080, server.Site(r))
reactor.run()

213

APPENDIX VIII

MySQL Deployment configuration parameters

Following is the list of twenty three deployment configuration parameters available for

managing the performance of MySQL database server.

1. character_set_client

2. iinnodb_additional_mem_pool_size

3. innodb_buffer_pool_size

4. innodb_file_io_threads

5. innodb_log_buffer_size

6. innodb_thread_concurrency

7. innodb_thread_sleep_delay

8. join_buffer_size

9. key_cache_block_size

10. key_cache_division_limit

11. max_binlog_cache_size

12. query_cache_size

13. query_cache_type

14. query_cache_wlock_invalidate

15. query_prealloc_size

16. read_buffer_size

17. shared_memory

18. sort_buffer_size

19. thread_cache_size

20. thread_concurrency

21. bdb_cache_size

22. binlog_cache_size

23. bulk_insert_buffer_size

214

APPENDIX IX

Statistical Analysis for verification / rejection of the null Hypothesis.

We changed the deployment parameters viz. ThreadPool Size to verify if the performance of

web service based enterprise applications from the application layer varies when the deployment

parameter is varied. Our null hypothesis predicts that the variation in the efficiency should be no

greater than the 5% of the efficiency for a sample size of 13 experiments.

Cores CCE-NC CCE-C IPE-NC IPE-C
16 75.3 61.5 79.3 89.8

16 71.6 80.0 66.4 90.6

16 75.3 80.2 79.3 92.0

16 71.6 83.8 66.4 85.0

17 75.8 54.6 75.6 89.3

17 70.4 57.8 60.5 88.5

17 75.8 56.0 75.6 89.1

17 70.4 47.4 60.5 93.0

32 66.7 43.0 71.9 92.8

32 60.6 57.1 57.2 50.5

32 66.7 52.2 71.9 34.3

32 60.6 49.5 57.2 93.4

32 66.7 54.3 71.9 94.2

32 60.6 49.5 57.2 34.3

The hypothesised value for the Core Configuration Effectiveness with the std err is shown in

the following chart, wherein all the values of the NoCOAF are shown with the stderr, whereas

the values of the experiment with COAF are shown as actual. It can be observed from the

experiments that by only changing deployment configurations at the application level, and

leverage the power of Multi-core infrastructure, the variation in CCE is significant.

215

t-Test: Two-Sample Assuming Equal Variances for CCE
Without COAF With COAF

Mean 69.15 59.06428571
Variance 32.04115385 168.0363187
Observations 14 14
Pooled Variance 100.0387363
Hypothesized Mean Difference 3

df 26
t Stat 1.874340796
p(T<=t) one-tail 0.036080953
t Critical one-tail 1.705617901
P(T<=t) two-tail 0.072161906
t Critical two-tail 2.055529418

Similarly, when the infrastructure parameters at the application level, viz. the max threads is

configured automatically, the hypothesised value for the IntraProcessEfficiency and std err is

shown for NoCOAF in the following chart. The values obtained from the experiment with COAF

are shown without the stderr. It can be observed from these experiments that by only changing

deployment thread configurations, at the application level, and the power of Multi-core

216

infrastructure is leverage in the form of reduced Cache misses, i.e. the variation in IPE is
significant as shown in the table that follows.

40.0

30.0

0 2 4 6 8 10 12 14

t-Test: Two-Sample Assuming Equal Variances for IPE
Without COAF With COAF

Mean 69.15 59.06428571
Variance 32.04115385 168.0363187
Observations 14 14
Pooled Variance 100.0387363
Hypothesized Mean Difference 3
df 26
t Stat 1.874340796
P(T<=t) one-tail 0.036080953
t Critical one-tail 1.705617901
P(T<=t) two-tail 0.072161906

t Critical two-tail 2.055529418

217

LIST OF PUBLICATIONS / PRESENTATIONS

1. Venugopal, S., and Ganesan, K. Tools for observing kernel behaviour, hi Proceedings of

National Conference on Recent Trends in Information Technology’ (NCRTIT '07) (August

2007), Chennai, India.

2. Venugopal, S., and Desikan, S.K. Modernization challenges in transition to the HD

world. Lecture notes in Broadcast Engineering Society, Mar 2010.

3. Venugopal, S., Desikan, S.K. and Ganesan, K. Connection Oriented Framework for

Effectively Using Multicore in the Enterprise. In Proceedings of 4th IFIP International

Conference on New Technologies, Mobility and Security (NTMS 'll) (February 2011),

IEEE. Paris, DOI: 10.1109/NTMS.2011.5720651.

4. Venugopal, S., Desikan, S.K. and Ganesan, K. Effective Migration of Enterprise

Applications in Multicore Cloud. In Proceedings of International Workshop on Cloud

Computing & Future of work (UCC ’ II) (December 2011), IEEE, Melbourne, 463-468,

ISBN: 978-0-7695-4592-9.

5. Venugopal, S., Desikan, S.K. and Ganesan, K. Connection Oriented Framework for

enterprise applications. International Journal of Advanced Computing. Volume 4, Issue 2,

Dec 2012 Accepted for publishing.

218

BRIEF BIOGRAPHY OF THE STUDENT

Name: P. V. Suresh (Suresh Venugopal)

P. V. Suresh received AMIE from Institute of Engineers, India in 1988, and ME from PSG

College of Technology, Coimbatore, India in 1992. He has more than twenty years of

professional experience in industry. He is currently Vice President and Chief Architect for

Technology practice at Cognizant Technology Solutions, India. In his current role, he oversees

the technology, architecture and delivery of the projects to online, customers like Amazon, eBay,

I AC, Google, Paypal etc. and hitech customers like Agilent, Logitech, Tektronix, etc. of

Cognizant. Additionally, he is the mentor for Global Technology Office of Cognizant, which

drives the technology and research initiatives of Cognizant worldwide. Prior to joining

Cognizant in 2003, he held various technology and research positions at Planetasia, Parametric

Technology Corporation, Electronica and Caterpiller Corporation. As General Manager of

Engineering at Planetasia he was responsible for all technology and architecture decisions for the

implementations done by Planetasia. At Parametric Technology Corporation, Boston, USA, he

was release manager for Wildfire line of product lines based Boston, USA. At Electronica he

designed and developed the PC based control system for CNC machines, which was the

pioneering research effort in India during that time.

His research interests are distributed computing, automation, performance modelling of web

based applications, and massive computing architectures. He has conducted multiple workshops

as part of his profession to various research and development departments of Cognizant

customers. He evangelises on agile methodologies and usage of open source, across student and

developer community, and speaks in Industry forums like SPIN conferences, Linux forums, etc.

He is the member of Institution of Engineers, and International Association of System

Architects.

219

BRIEF BIOGRAPHY OF THE SUPERVISOR

Name: Dr. G. Karthikeyan

Dr. G. Karthikeyan received the BS from Anna University in 1982, MS and PhD from

Indian Institute of Science, Bangalore, India in 1984 and 1989, respectively, and a post doctoral

fellowship from the Ohio State University. He has more than twenty years of professional

experience in industry and teaching. He is currently a Program Manager in Cognizant

Technology Solutions at Boston, USA. In his current role, he oversees the delivery of the

projects to Cognizant customers within budget, schedule and cost. Additionally, he consults on

developing and implementing optimization and scheduling algorithms for specific problems of

Cognizant customers. Prior to joining Cognizant in 2000, he was a Director in Technology

Gateway and an Assistant Professor in Industrial Engineering at the College of Engineering,

Guindy for more than ten years. He was responsible for teaching to Industrial engineering

students in post graduate and graduate students. During his tenure at Anna University for more

than ten years, he was closely involved the implementation of largest IT project for Anna

University at the point in time, sponsored by Govt of India to automate the technology

collaboration mechanisms across Universities and colleges.

His research interests are optimization modelling, performance engineering, customer

requirements analysis, demand forecasting, reliability, and highly available Web service

applications. He has more than 45 publications in leading National and International Journals

and Conferences, and has a patent on product quality assurance. He was awarded the UGC

Research Fellowship in Engineering & Technology, the BOYCAST Fellowship by the DST, and

the State Scientist Award in 1998. Dr. G. Karthikeyan is a Fellow of the Institution of Engineers,

and Indian Institute of Materials Management. He has supervised more than 50 students for the

research projects including 3 PhD students.

220

