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PREFACE

This book is an attempt to present in a thorough and cohesive
manner the principles which underlie the analysis of statically
indeterminate structures. In the past few years there has been
some criticism of the so-called classic methods of analysis on the
ground that the methods are ahstruse and that excessive labor is
involved in using them to analyze statically indeterminate
structures. The authors are convinced, however, that the
principles involved form the best foundation for a knowledge of
structural theory and that familiarity with them is essential to an
understanding of structural behavior. To hold to this point of
view is not to belittle the importance of some of the methods
presented more recently, for the authors are of the opinion that
the ease of solution of certain problems made possible by these
later methods makes such methods an essential part of the equip-
ment of the structural analyst.

The authors wish to acknowledge their debt to Professor
Charles M. Spofford who has been responsible for much of their
training. They have been greatly influenced also by Dr. Hein-
rich Miiller-Breslau’s comprehensive treatment of this subject.

W. M. FrrE.
J. B. WILBUR.

CAMBRIDGE, Mass.,
September, 1937.
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SYMBOLS

area.

shear area.

width of a member.

modulus of elasticity.

strain (linear).

total axial stress in a member.
normal stress intensity.

shear modulus.

shear strain.

n.oment of inertia.

length.

moment.

static moment.

external load.

external load intensity.

any external force.

reaction.

total transverse shear.
temperature.

shear intensity.

work.

deflection.

change, e.g., AL = change in L.
coefficient of thermal expansion.

change in slope of a member referred to its original position.

change in slope referred to a chord.






THEORY OF STATICALLY
INDETERMINATE STRUCTURES

CHAPTER 1

BASIC CONCEPTS AND THEOREMS

1. Introduction.—A structure is built to perform a certain
function. To perform this function satisfactorily, it must have
sufficieat strength and rigidity. Economy and good appearance
are further objectives of major importance in structural design.

Stress analysie serves as an important guide in so proportioning
the members of a structure that the requisite strength, rigidity,
and economy will be attained. However rigorous a stress
analysis may be, the stresses which will actually occur cannot
be predicted with absolute certainty. As actually built, a
structure and its loading will always differ somewhat, and may
differ appreciably, from the hypothetical structure which serves
as a basis for stress analysis. Recognition of this fact, together
with considerations of economy in time and design expense, often
leads the designer to make assumptions known to be incorrect,
and approximations known to introduce errors. Only a knowl-
edge of the basic principles of stress analysis can serve as a safe
basis for departure from methods more rigorously correct. The
assumptions underlying the basic theory and the limitations
imposed in the development of basic theorems must be fully
understood and constantly kept in mind. If approximate
methods are to be introduced, they must be carefully studied
in order to ascertain that they may be safely and properly
applied to a given problem.

2. Elasticity.—Most of the materials used in building struc-
tures follow Hooke’s law: Within a certain range dependent
upon the material considered, stress and strain are directly
proportional to each other. If stresses do not exceed a certain

value termed the elasitc limit for the material considered, the
1



2 STATICALLY INDETERMINATE STRUCTURES [CHar. I

strains will vanish if the stress is removed. Materials behaving
in this manner are called elastic. Steel, wrought iron, and wood
are elastic, while it is permissible to consider reinforced concrete
as elastic, provided the stresses are not too great.

When structures which are composed of elastic members
and which rest on elastic supports are subjected to the action
of forces or to imposed deformations such as the changing of
the length of a bar by taking up a turnbuckle, there are cor-
responding changes of shape. The movements of points on the
structure during such a change are called deflections. Distor-
tion may or may not be accompanied by stresses in the members
of a structure.

3. Assumptions and Limitations.—For the treatment to come,
the following assumptions are made:

In general, it is assumed that deflections in a structure are
so small that the changes in the dimensions of the structure may
be considered as infinitesimals, 7.e., the errors in the results
obtained by solving equations of static equilibrium in which these
changes of dimension have been neglected are so small that
they are of no importance. It follows that these movements
are so small that forces applied to the joints of a structure have
the same lines of action after distortion as before distortion.
With respect to the inner forces, this may be interpreted to
mean that their/lines of action do not change relative to the
original positions of the members in which they act.

It will be assumed that applied forces and imposed distortions
increase gradually, though not necessarily uniformly, from zero
to their final magnitudes, and that a condition of equilibrium
is ultimately reached.

For the purpose of computing primary stresses in trussed
structures, it will be assumed that, even if the joints are capable
of carrying bending, the moments at the ends of members are
zero; that members of a truss intersect at their gravity axes;
that the weights of the members in a trussed structure are con-
centrated at the ends of the members, so that the bending which
may be present owing to weight distribution is neglected. It
is recognized that the primary stresses thus obtained are, in
general, approximate: a consideration of secondary stresses
leads to corrections which should be applied to the primary
stresses to compensate for these approximations.
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Most of the illustrations used will be of planar structures.
This involves the assumption that, even though such a structure
forms part of a three-dimensional frame, the part of the structure
lying in one plane is not affected by parts lying in other planes.
This amounts to neglecting what are called participating stresses.

In analyzing trussed structures it will be assumed that the
external forces are applied at the joints only. From this it
follows that, if the joints are incapable of resisting bending, the
stresses in the members will be axial only, i.e., direct tension or
direct compression, without either shear or bending moment.

Lastly, it will be assumed that the material of which the
structure is composed has an elastic limit, and that stress intensi-
ties in members due to all causes combined are less than this
elastic limit.

These assumptions having been made, the application of
theorems to be developed is limited to problems where conditions
correspond closely to those assumed.

The theorems developed will be applicable to both three-
dimensional and planar structures, so long as any individual
member is in a condition of planar stress. Problems involving
three-dimensional stress in any one member are discussed in
works on the theory of elasticity
and lie beyond the scope of this
book.

4. Geometric Relations.—
Let the positions of the ends
of a member of a three-dimen-
sional frame, the joints of which
are capable of resisting bending,
be defined by their coordinates
referred to the rectangular axes
0X, 0Y, and 0Z, so that the Fie. 1.
coordinates of joint ¢ are z;, y;, and z; while those of joint k
are Ix, ¥, and z;. Let the angles which the axis ik of the member
makes with lines parallel to the OX, OY, and OZ axes be ay,
B, and v, respectively.

Let the coordinates of point k increase by small amounts
Az, Ays, and Az, and the coordinates of point ¢ increase by
small amounts Az;, Ay,, and Az;. Let the angles which the axis
of the member at k makes with lines parallel to the OX and OY

- x

-l -
\
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4 STATICALLY INDETERMINATE STRUCTURES [Crapr. 1

axes increase by small amounts Aa; and AB;, respectively. The
angular change of this portion of the axis with respect to a
line parallel to OZ is thereby fixed. Let the angles which the
axis of the member at ¢+ makes with lines parallel to the OX
and OY axes increase by small amounts Aa; and Ag;, respectively.
The angular change of this portion of the axis with respect to
OZ is thereby fixed. Finally let the end ¥ of the member be
given a torsional rotation about the axis ik of the member through
a small angle A¢;, and the ¢ end of the member be rotated about
the axis ¢k of the member through a small angle A¢..

These six movements introduced at each end ‘f the member
represent all of the independent movements which may occur
at a point. From a consideration of the six movements at
each end, six independent geometric relations may be written.
These may be summarized as follows:

1. The change of length of a member may be expressed in
terms of the changes in the end coordinates of the member.

2. The difference of the changes of slope of the ends of a
member with respect to lines parallel to the OX axis must
equal the sum of the changes of slope with respect to lines
parallel to the OX axis occurring at points along the member.

3. The differenee of the changes of slope of the ends of a
member with respect to lines parallel to the OY axis must equal
the sum of the changes of slope with respect to lines parallel
to the OY axis occurring at points along the member.

4. The change of slope with respect to a line parallel to the
OX axis of a line joining the ends of a member, as determined by
the changes in coordinates at the ends of the member, must
be consistent with the changes of slope with respect to lines
parallel to the OX axis occurring at points along the member.

5. The change of slope with respect to a line parallel to the
OY axis of a line joining the ends of a member, as determined
by the changes in coordinates at the ends of the member,
must be consistent with the changes of slope with respect
to lines parallel to the OY axis occurring at points along the
member.

6. The difference in torsional rotations about the axis of a
member occurring at the two ends of the member equals the
sum of the torsional movements about the axis of the member
occurring at points along the member.
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The first of these geometric relations may be derived as follows:
Let the length of the member joining joints ¢ and k before any
movement of the ends of the member occurs be Ly, and the
increase in the length of this member corresponding to the end
movements be AL;. From the geometry of the figure we may
write

Ly = (@ — 2)* + (yr — y)? + (& — 20)? (1)
After distortion has occurred, the corresponding equation is

(L + ALi)? = [(ze + Azi) — (zs + Az))? +
(e + Aye) — (yi + Ay)]* + [(ze + Az) — (2 + A2))]* (2)

If the two sides of Eq. (1) be subtracted from the two sides of
Eq. (2), we have

2L¢k(AL.'k) + (AL.I;)2 = 2($k - IS)(A-Tlc - A.”C,-) + (AII: - Axi)z
+ 2(yx — y)(Aye — Ays) + (Ayx — Ays)?
+ 2(z — 2.)(Az — Az,) + (Az, — Az)? (3)

If the distortion is so small that the increments in the ordinates
may be treated as infinitesimals, i.e., if the second powers of
the increments may be considered as negligible compared with
the first powers, Eq. (3) may be written as follows:

Lu(ALy) = (z — z) (A — Ax) + (v — v.)(Aye — Ay,) +
(Zk - z.-)(Azk - AZ,) (4)
But
Ty — Ty = L,‘k(COS a.-;,)
Ye — yi = Lu(cos Bu)
2k — 2 = L.’k(COS Yik)

and Eq. (4) may be written in the form

AL.'k = (AIk - AI.) COS ok + (Ayk —_ Ay.') COS ﬁ.’k +
(Azr — Az;) cos vu  (B)

The second, third, fourth, and fifth geometric relations are
important. They are considered in detail in other chapters of
this book.

The sixth geometric relation, dealing with torsional distortion,
is difficult to analyze mathematically. Such research evidence
as is available indicates that its effect may usually be ignored
without appreciable error.
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5. Theory of Linear Simultaneous Equations.—In order that a
group of linear simultaneous equations may be solved, the
following conditions must be satisfied:

1. There must be as many equations as there are unknowns.

2. The equations must be consistent, 7.e., they must represent
possible conditions.

3. The equations must be independent, i.e., not obtainable
from each other.

The equationsz + y = 1 and z — y = 2 are solvable for z and
y because they fulfill the foregoing conditions. The equations
z + y = 1and 2z 4+ 2y = 3 cannot be solved for z and y because
they are not consistent. A functional relation exists between
the left sides of the two equations—in this case the left side
of the second equation equals twice the left side of the first
equation. The same functional relation does not exist, however,
between the right sides of the equations. Hence the equations
represent an impossible condition. The equations z +y =1
and 2x + 2y = 2 cannot be solved for x and y because the same
functional relation exists on both sides of the equations, z.e.,
the equations are not independent.

If a determinant is evaluated and found to equal zero, a
functional relation exists between the coefficients which compose
the determinant. Suppose the following equations be solved
by the method of determinants

anz; + a1y + anszs = Cy
@Z1 + @z + 2323 = C,
anTy + ant: + anr; = Cs

Then

Cy a2 axs

C: a2 as

x, = M = PJ, etC.

@)1 Q12 Ay D,

@21 Qa2 G23

Q@31 A3z A3

If D; equals zero, a functional relation exists between the left
sides of the equations to be solved. If D, also equals zero,
the same functional relation exists between the constants C,,
Cs, and C;. Under these conditions the equations are not all
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independent of each other, hence by themselves they are inde-
terminate. If, however, D, equals zero and D, has a finite
value, the functional relation existing between the left sides
of the equations does not exist between the constants of the
right sides of the equations. The equations are therefore
inconsistent and cannot be satisfied.

If there are more independent equations than there are
unknowns, the equations cannot be consistent; hence no solution
is available which will satisfy all the equations simultaneously.
If there are fewer independent equations than unknowns, an
infinite number of solutions are available, although there is a
definite relation between the different solutions.

Even. though determinants may not be used as an expedient
for the solution of simultaneous equations, their use makes
possible an investigation of the consistency and independence
of the equations.

8. Structural Analysis.—The general problem of analysis of a
structure involves the determination of the reactions, the stress
intensity at any point in the structure, and the shape of the
structure after distortion. For a three-dimensional frame,
the joints of which are capable of resisting bending, the stress
intensity at any point in a member may be determined when the
complete state of stress is known at any one section through
the member. Six independent elements of stress occur at a
given section: The total direct stress in the member, assumed
to act at the centroid of the cross section of the member; the
transverse shears, acting in the plane of the cross section in
any two directions at right angles to each other; the bending
moments acting about two axes in the plane of the cross section,
normal to each other; lastly, a torsional moment lying in the
plane of the cross section. For structures of this type, the
movement of any point in a member may be determined when
the six independent components of deflection which may occur at
each end of the member are known.

Consider a structure of this type, under the action of known
external loads in equilibrium, or any other known cause of dis-
tortion. In the general case, none of the external forces will
be taken as reactions in the sense that the movements of their
points of application are known. Let j equal the number of
joints in the structure, and m the number of members. There
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will then be present as independent. unknowns in the complete
solution six components of deflection at each joint and six com-
ponents of stress in each member, or a total number of independ-
ent unknowns equal to 6(j + m). At each joint of the structure,
six equations of static equilibrium may be written as follows:
Let OX, OY, and OZ be rectangular axes through a joint: the
sum of the components parallel to OX of all the forces acting
on the joint must equal zero; the sum of the components parallel
to OY of all the forces acting on the joint must equal zero; the
sum of the components parallel to OZ of al] the forces acting on
the joint must equal zero; the sum of the components about the
OX axis of all the moments acting on the joint must equal zero;
the sum of the components about the OY _axis of all the moments
acting on the joint must equal zero; and the sum of the compo-
nents about the OZ axis of all the moments acting on the joint
must equal zero. For each member of the structure, six geometric
equations relating to the conditions of end deflection may be
written. There are, then, available for the complete solution,
six equations of static equilibrium for each joint and six geometric
equations for each member, or a total number of available equa-
tions equal to 6(7 + m), this equaling the number of independent
unknowns in the structure.

At any joint in the structure, six independent reactions may
be introduced, these being forces along, or moments about, each
of three coordinate axes. Each independent reaction introduced
offers restraint to a corresponding type of movement at the point
of application of the reaction. The restraint may be complete,
in which case the movement of the point, of the type resisted
by the reaction, is zero, or the restraint may be partial, in which
case the point of application of the reaction is permitted a
limited amount of movement of the type resisted by the reaction.
In either case, the movement of the point of application of the
reaction enters the solution as a known quantity, even though
this amount must usually be estimated in event of partial
restraint. The introduction of each independent reaction there-
fore removes an unknown component of deflection from those
present in the solution of the general problem of structural
analysis. The magnitude of the reaction, however, enters as a
new unknown, so that equality between the number of available
equations and the number of independent unknowns is independ-
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ent of the number of complete or partial restraints introduced
against movements by the reactions.

7. Statically Determinate Structures.—The equations of static
equilibrium of joints inveclve as unknow.is only stress components
of members and reactions. If the number of equations of static
equilibrium available in a structure equals the number of
independent stress components, and if the equations are inde-
pendent and consistent, the equaticns of equilibrium may be
solved by themselves, yielding values of stresses and reactions
for the structure. A structure where such a solution is possible
is called statically determinate. In such a structure, the equa-
tions of equilibrium, although simultaneous, may usually be
easily solved, the character of the equations being such that the
unknowns may be determined successively. Geometric relations
then provide the necessary equations for computing the change
of shape of the structure due to stresses or to any other cause.

Four important characteristics of statically determinate
structures should be observed:

1. Each member and reaction of the structure is necessary
for stability; if any one is removed, the structure will collapse
without stress under some possible arrangement of loads.

2. The total load taken by any member, or the value of any
reaction, depends only on the external loads and the layout of
the structure, and is not a function of the stiffnesses of the mem-
bers of the structure.

3. If a distortion is introduced internally into any member,
such as a change of length due to temperature, or if any point
of support is moved with a movement of the type resisted by a
reaction at that point, no stresses will occur in the structure.

4. If an external load is applied to the structure, it will imme-
diately encounter an elastic restraint.

8. Stability and Instability.—If it is possible to apply an
external load to a structure in such a way that the load encounters
no elastic restraint immediately upon its application, the struc-
ture is unstable. It is often possible that an unstable structure
may be in a condition of unstable equilibrium, in which event
elastic restraint will be immediately encountered by a given
set of applied loads, although under some other condition of
loading no elastic restraint would be offered by the structure
to the loads upon their immediate application.



10 STATICALLY INDETERMINATE STRUCTURES |[CHar.I

An equation of statics is a statement of the equilibrium of
forces which, acting on a body, will prevent nonelastic motion.
If n independent equations of statics may be written for a body,
it follows that » independent motions of the body are possible,
these motions being of the types resisted by the forces for which
the equations of statics are written. If no nonelastic movement
is to occur, each type of nonelastic movement must meet a
corresponding restraint—an independent reaction resulting
from the action of adjacent bodies upon the body under con-
sideration. There must then be n restraints available, these
restraints being independent components of stress in adjacent
supports or structural members.

If a three-dimensional truss, the joints of which are capable
of resisting bending, is to be stable, each joint must be restrained
against all types of nonelastic movement. A given. joint, if
unrestrained, may perform six nonelastic movements: translation
along, and rotation about, each of three coordinate axes. Six
corresponding equations of statics may be written. If there
are j joints, 65 nonelastic joint movements are possible: for these
conditions 65 equations of statics may be written. For stability,
it is necessary that at least 6 independent components of stress
in members and reactions be present.

A certain number of the independent stress components
must necessarily be provided by external reactions on the
structure. The minimum number of independent components of
reactions must correspond to the number of independent equa-
tions of statics which may be written for the external forces
on the structure, this number corresponding to the number of
independent types of nonelastic motion which could otherwise
occur, considering the structure as a whole. For a three-
dimensional structure, the minimum required number of inde-
pendent reaction components is six, but this number will be
increased for each condition of construction, such as the intro-
duction of an internal hinge in the structure, which provides an
extra equation of statics for the external forces.

It follows, then, that a necessary but not sufficient require-
ment for stability is that there must be at least as many inde-
pendent components of member stresses and reactions as there
are independent equations of statics for the structure, and that
of these there must be at least as many independent reaction
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components as there are independent equations of statics for the
external forces acting on the structure.

Three types of instability may be considered:

1. When there are fewer independent stress com-
ponents than there are equations of statics, a struc-
ture is unstable. The equations of statics which
would be written for this case represent impossible b
conditions and are inconsistent. A structure of
this type is illustrated in Fig. 2, where for the
structure shown six equations of statics may be written:

ZX. =0; ZY. = 0; 2Z, = 0; ZX, = 0;

Y, = 0, ZZ, = 0.

P a

Fig. 2.

There are, however, only four possible stress components: the
bar stress F,, and the reaction components X, Y,, and Z,.

2. When there are as many independent stress components
as there are equations of statics, but when the structure is in
certain respects statically indeterminate, it is unstable. The
fact that more restraints exist than are necessary to prevent
nonelastic movements under one loading makes it unavoidable
that under some other loading fewer restraints than are required
are available. The planar structure shown in Fig. 3 illustrates
instability of this type. Considering only the external forces
acting on this structure, three equations of statics may be
written: ZH = 0; ZV =0; ZM = 0. There are three inde-

pendent reaction components: V,, V,,

]

1 and V.. Under the load P acting as
al— lc shown, the structure acts as a continu-
'? ?’b T ous beam and is statically indetermi-

Va Vb Ve

nate: if, however, a horizontal load is
applied to the structure, it becomes
unstable. Even under the vertical load, then, the structure isin
unstable equilibrium, so that it belongs to the unstable class of
structures.

3. When there are as many independent stress components
as there are equations of statics, and when the members and
reactions are so arranged that with certain dimensions the
structure is statically determinate, there may be specific relations
between the dimensions which would render the structure
unstable. Such a condition will be called geometric instability.

Fia. 3.
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For geometric instability, the dimensions are such that different
portions of the structure have instantaneous centers of rotation,
about which simultaneous rotations without elastic restraint
may begin. Usually after a small amount of nonelastic move-
ment the structure has changed its shape sufficiently to act as a
new structure which is geometrically stable. The condition of
equilibrium which will be reached can be determinéd only by a
consideration of the elastic properties of the structure. The
three-hinged arch shown in Fig. 4a is statically determinate.
If, however, the rise at mid-span is reduced to zero, as shown in
Fig. 4b, the structure is geometrically unstable. Each half

p

_ﬂ%ge\ '
5 2 (c)
@ (b) W

p
F1au. 4.

of the arch may rotate about its end hinge a small amount without
encountering elastic restraint. After a certain amount of move-
ment of the center hinge, a condition of equilibrium is reached,
as shown in Fig. 4c. The structure is now essentially a different
one from that shown in Fig. 4b, the deflection of the center hinge
during the time the structure 1s coming into a state of equilibrium
depending upon the elastic properties of the structure. If the
resultant deflection of this hinge is once determined, the stresses
could then be computed by the equations of statics.

For a simple case, geometric instability may be recognized
by inspection, or by inconsistent results in a stress analysis
by the equations of statics. For more complex cases, a simple
model may be constructed and tested, or the following mathe-
matical investigation may be made. Referring to Art. 5,
suppose the value of an unknown stress component be expressed
as the ratio of two determinants, such as D,/D,. In this ratio,
the value of D, is the same for all stresses. If D, equals zero,
a functional relation exists between the coefficients of the
unknown stresses in the different equations of statics which
may be written. If, also, D, equals a finite number, the same
functional relation does not exist between the applied loads;
the equations are inconsistent and impossible, and the structure
is geometrically unstable. Should D, equal zero, the equations



ART. 8] BASIC CONCEPTS AND THEOREMS 13

are not independent of each other, and the structure is statically
indeterminate under the loading considered. Such a structure
will therefore be unstable under some other loading.

As an illustration of geometric instability, consider the
structure shown in Fig. 5. In finding the reactions, the available
equations are, 2V =0, ZH = 0, and ZM = 0, together with
three equations of condition, namely, the bending moment at
joint 9 is zero, the bending moment at joint 27 is zero and the
shear in panel 17-19 is zero; in all, six equations. The number

P ,“These bars cannot carry stress,
, ;

2 4 6 8 TOyI2 4 16 18 20 22 24 26 28430 32 34 36

T ¥ /1 /1~
! P 5 T
b ? N 7oy hy
T , 33N\
| -
7 Hq
Vi k- ah,—==>—=ah, =~ >fech, "< —ah, ~—>-P—bh2——a» Vs
V2 Vs
Fi6. 5.

of unknown reaction components is six, so that, if the equations
have a finite solution, the structure is statically determinate
with respect to the outer forces. These equations are:

Vi Vad Vadk Va=P =0
H\ - H4 = 0
V3 + Vq = 0
V)(3ah| + chi + bhy) + Vi(ahy 4+ chy + bhs) +
Vai(ah, + bhe) + Hi(hs — hi) — P(2ah, + ch, 4+ bhy) = 0
Viahi — Hihy =0
Vibh, — Hihy =0

If the last two equations be divided by h; and h,, respectively,
the denominator determinant D, which appears in the solution
of the equations is

+1 +1 +1 +1 0 0|
0 0 0 0 +1 -1

0 0 +1 +1 0 0
3ah1+0h1+ bhz, ah2 +Ch1+bh2, ahl+bh21 O; hz—hn 0
+a 0 0 0o -1 0

0 0 0 +b 0 -1

which reduces to ahi(a — b). Hence D; = 0 when a = b, and
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under these circumstances the reactions will be either infinite
or indeterminate. The structure will then be geometrically
unstable. '

As a summary of the foregoing discussion of instability,
one may state: In order that a structure may be stable, there
must be at least as many independent components of member and
reaction stresses as there are available independent equations
of statics for the structure; and of these independent components
of member and reaction stresses, there must be at least as many
independent reaction components as there are independent
equations of statics for the external forces acting on the structure;
the equations of statics must be not only independent but
consistent.

9. Statically Indeterminate Structures.—It has been shown
that the total number of independent equations of statics plus
independent equations of geometry is equal to the number of
independent components of stress plus independent components
of deflection, and that for stability there must be at least as
many unknown stress components as there are equations of
statics. In addition to the unknown stress components required
for stability, there remain, then, as many additional unknowns
as there are equations of geometry for the structure. The
division of these additional unknowns between stress and deflec-
tion components depends upon the structure under consideration
and may range from a condition where they are all stress com-
ponents to the other extreme where they are all deflection
components. For this latter condition a structure may be
statically determinate with respect to its stresses. When,
however, the number of unknown deflection components is less
than the number of available equations of geometry, it follows
that the total number of unknown stress components exceeds the
number of available equations of statics. Solution for the
stressés cannot be made for this condition from the equations
of statics alone; such a structure is statically indeterminate
with respect to its stresses.

Since in a statically indeterminate structure the number of
independent stress components exceeds the number of inde-
pendent equations of statics, this is analogous to stating that
the number of restraining influences exceeds the number of
independent movements of the structure which could take place
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were the restraining influences not present. Under these
conditions, nonelastic motion meets more than one restraint.
The part which the available restraints against a motion play
in resisting the motion derends upon the effeciiveness of the
restraints involved, which in turn is a function of the elastic
properties of the members of the structure and its foundation.
The dependence of stresses upon elastic properties of the structure
constitutes an important characteristic of the statically indeter-
minate structure.

The excess of independent stress components in a statically
indeterminate structure, over those required for stability,
makes possible the removal of certain restraints, still leaving the
structure stable. If the maximum number of restraints which
can be removed without making the structure unstable are
imagined as inoperative, the resulting structure is called the
primary structure. Restraints are removed by removing
independent stress components of reaction and member stresses.
The number of restraints removed to give the primary structure
is the degree to which a structure is statically indeterminate.
The independent components of stress which may be so removed
are called redundant stresses. The degree to which a structure
is statically indeterminate is numerically equal to the excess
in the number of independent stress components over the number
of independent equations of statics; it is also numerically equal
to the number of independent equations of geometry in excess
of the number of independent deflection components.

A structure may be statically indeterminate in whole or in
part. If the reactions can be determined by statics but the
member stresses depend upon the elastic properties of the
structure, the structure is statically indeterminate internally.
Often a portion of the member stresses along with the reactions
can be determined by statics, but the remaining member stresses
depend upon the elastic properties of the members involved.
If the number of independent reaction components exceeds the
number of independent equations of statics for the external
forces, but the structure itself would be statically determinate
were the reactions known, the structure is both internally and
externally indeterminate, since the actual magnitude of the
reactions depends upon the elastic properties of the members
and foundations. An important characteristic of a statically
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indeterminate stress component is as follows: If a deformation
is imposed on a structure of the type resisted by a redundant
stress, the deformation meets elastic restraint.

In general there are two approaches which may be made
in the solution of statically indeterminate structures: The
stresses may be first determined and the deformations computed
to correspond; or the deflection components may be evaluated
directly in order that they may serve as a basis for stress analysis.
In the first approach, there may be added to the equations of
statics as many equations dealing with the elastic properties
of the structure (these corresponding to the equations of geom-
etry) as there are redundant stress components in the structure.
The solution of these equations gives the stresses directly.
The equations of statics can usually be solved progressively
and with comparatively little labor; the equations of elasticity
are usually interrelated in such a way that they must be solved
simultaneously. The second approach consists of expressing
the independent stress components in terms of the independent
components of deflection and solving the equations of statics
in which the stresses have been so expressed. The solution of
these equations yields the components of deflection from which
the stresses may be determined. In this procedure, the resulting
equations of statics are interrelated in such a way that they
must be solved simultaneously. In general, the necessary
equations in either approach are easily written, and the labor
involved in the solution of the equations is a major criterion in
determining which is the better approach. Since this usually
depends upon the number of equations which must be solved
simultaneously, we may conclude that if the number of unknown
deflection components exceeds the number of unknown stress
components in excess of the number of independent equations
of statics, the first approach is superior; but that if the number of
unknown deflection components is less than this, the second
approach will be the better.

10. The Law of Virtual Work.—One of the problems arising in
structural analysis is the determination of the distortion of
a structure when it is subjected to external forces, to change
of temperature or to any cause whatsoever. The solution of
this problem is important not only because it is sometimes
necessary to know the positions of points in the distorted struc-
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ture, but also because one of the general methods of attacking
the problem of stress analysis for statically indeterminate
structures is based on setting up expressions for the movements
of points in the structure in certain conditions of distortion.
The law of virtual work may be used as a basis for determining
the relation between the condition of distortion as defined by the
internal strains and the movements of certain definite points
in the structure. Its validity may be demonstrated in the
following manner:

Consider a body formed of isotropic material which is in
equilibrium under a group of external forces Q. Assume that
a small change in the shape of the body occurs, this change
being measured from that which exists in the condition of equi-
librium and that it is independent of the forces Q. Such a dis-
tortion is called a virtual distortion, the particular significance
of the term virtual being that the distortion is independent of the
forces Q. In the condition described any small particle within
the body is in equilibrium under the forces applied to its surfaces
by the adjacent particles and any forces which may act on it
owing to the fact that it has mass; these latter forces will be
called inertia forces and in most bodies the only one which exists
is the weight of the particle. During the virtual distortion each
particle may be translated, rotated, and distorted: if these
changes occur, the forces applied to the particle will perform
certain amounts of work which are designated as virtual work
because the displacements of the points of application of the
forces are not dependent on the magnitudes of the forces. Let
the work done by the forces acting on the surfaces of the particle
be designated by dW, and the work done by the inertia forces be
called dW;; further, let the work done by the surface forces
be divided into two parts, first, that part which is done during
the distortion only of the particle, and, second, that part which
is the result of the translation and rotation. If the first of
these two parts is designated by dW, the second will be

dW, — dW..

Since the surface forces and inertia forces form a system in
equilibrium, their resultant is zero and the amount of virtual
work done by them during the translation and rotation of the
particle must be zero also; therefore,
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which may be written

de = dW- + dWc ' (7)

If the virtual work be integrated over the whole of the body,
the equation becomes

Wd = Wt‘ + Wl (8)

On each surface which lies inside the body and is, therefore,
a boundary surface between two adjacent particles, two sets
of forces operate, these being the reciprocal effects of the two
particles on each other. These two sets of forces must be equal
in magnitude but opposite in direction; consequently, the
amounts of virtual work done by the two sets in any translation
and rotation of the boundary surface must have an algebraic
sum equal to zero. This being so, that part of the virtual work
indicated by the term W, in Eq. (8) which refers to the work done
by the forces acting on interior surfaces, vanishes, and the term
must be interpreted as the virtual work done by the forces
applied to the outer surface of the whole body. Under these
circumstances, Eq. (8) may be stated as follows: If a body is
in equilibrium and remains in equilibrium while it i3 subjected
to a small mrtual distortion, the virtual work done by the external
Jorces acting on the body plus the wirtual work done by the inertia
forces is equal to the virtual work of distortion. This statement
is known as the law of virtual work.

11. Stresses Acting on a Particle.—Before the law of virtual
work can be used in the problem of determining the relation
between the movements of certain points in a structure and the
condition of internal strain, it is necessary to develop expressions
for the virtual work of distortion. With this purpose in view
consider the distortion a small parallelepiped isolated from the
surrounding material as shown in Fig. 6. Let the position of the
particle be referred to a set of perpendicular coordinate axes
0X, OY, and OZ and let the lengths of the edges be dz, dy,
and dz, respectively. Let the stress intensities acting on the
face which is perpendicular to the X axis and passes through the
origin O be

f=, parallel to the X axis and positive when it is tension,
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8.y, parallel to the Y axis and positive when it acts in the
direction (—y),
$2s, parallel to the Z axis and positive when it acts in the
direction (—2).
Similarly, let the stress intensities acting on the face per-
pendicular to the Y axis and passing through the origin be
fv, parallel to the Y axis and positive when it is tension,
8y, parallel to the Z axis and positive when it is in the direction

(—2),
8,z, parallel to the X axis and positive when it is in the direction
(—x).

There will be similar notaticn for the stress intensities acting
on the face passing through the origin and perpendicular to
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the Z axis. The stress intensities on the faces opposite to these
three may differ from them by increments. For example,
the stress intensities acting on the face perpendicular to the

X axis but not passing through the origin are f. +%£3dx,

Sz + %"dx and s.. + ngd:c, and are to be taken as positive
as shown in the figure. As the lengths of the edges of the
parallelepiped decrease, approaching zero as a limit, it is per-
missible to neglect any variation of stress intensity over a face
so that the resultant stress on any face may be considered as
acting through the geometric center of that face.

Since the particle is in equilibrium under the surface forces
and inertia forces three equations of the form ZM = 0 may be
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written, taking, in turn, as axes of moments, three axes passing
through the center of gravity of the particle and parallel to the
X, Y, and Z axes, respectively. If the first equation be that
about the axis parallel to the X axis, the resultants of the stress

o of o, o .
intensities f., fy, fs fz + Y dz, f, + @dy’ f++ Ez_dz’ and the

resultant inertia force will have lines of action intersecting
the axis of moments; this is true also of the lines of action of the

resultants of the stress intensities s, $:., sz, + (%ss—"dx, and

8z + as—"—dz: while the lines of action of the resultants of s,.,

;;l’dy and s,. + a—;fdz are parallel to the axis of

83z, Syz +

moments. The moments of the resultants of all these stress
intensities will, therefore, vanish from this equation M = 0,
leaving

dz
) +

I dz
(s,, + —é-;(lz)dr dyi

8y, dz dzd—2-y + (s,, + %y)dz dzg— = 8,, dr dy =

which may be written

69,,,

Syedr dy dz + - —d:c(dy)’dz = 8, dz dy dz + = -—dx dy(dz)?

If both sides of this equation be divided by dz dy dz, it becomes

1 954,
2 9y

1 as,,,

syz+ i = 1v+

As dz, dy, and dz approach zero, the infinitesimals in this equa-
tion approach zero, also, and in the limit vanish, therefore, at
any point,

Sy: = 8uy (9a)
The other two equations M = 0 lead in a similar fashion to
Siz = 8zs, Szy = 82 (9b)

This is merely an extension to the condition of three-dimensional
stress of the familiar statement that in beams, which are con-
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sidered to be in a condition of planar stress, the intensity of
transverse shear at any point is equal to the intensity of longi-
tudinal shear. For the purpose of brevity there will, in future,
be no distinction made between s,, and s,., between s,, and s,
or between 8., and s,.. T'hey will be designated by s., s,, and
8., respectively, in which it should be noted that s, is perpendicular
to the X axis, sy is perpendicular to the Y axis, and s, is per-
pendicular to the Z axis.

12. The Virtual-work Equations.- -During the virtual distor-
tion of a particle let the system of forces acting on the body,
including the inertia forces, be designated by @’ and let the
stress intensities due to these forces be f, f,, f, 8., s,, and s,
Suppose that during the distortion the surface YOZ moves
away from the center of gravity of the particle a distance A’(dz/2)
and that the opposite face moves away from the center of gravity
a distance A’ (dz/2). Owing to this part of the distortion the

’
stress intensities f] and f, + %dr will perform the virtual work

(' dy dz)A’(%x-) + [(f; + g;;dz)dy dz]A"(‘fg>

= (fldy dz)a(dz) + <a_=l=d1 dy dz)A"(d_x)

AU\ OF 1py0gy 0, 212)

= f! dz dy dz
The first term of this expression is an infinitesimal of the third
order and the second is an infinitesimal of the fourth order.
Since it is intended to find the total virtual work of distortion
by integrating over the whole body and since, in such an inte-
gration, the integrals of the infinitesimals of the fourth order
will vanish from the definite integral obtained, it is unnecessary
to consider the second term further and one may write, for this
part of the virtual work, the expression

72U 4y

The ratio A(dz)/dz is the distance strain parallel to the X axis,
and this will be designated by the notation e. so that the expres-
sion above becomes

Sle. dV
' KLY 301
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Similar treatment with respect to the stress intensities and virtual
strains parallel to the Y and Z axes leads to the expressions
Jiey AV and fle, dV, respectively, for the virtual work done by the
normal stress intensities parallel to the other two axes.

In addition to the changes in the lengths of the edges of the
parallelepiped, the condition of distortion may involve changes
in the angles YOZ, ZOX, and XOY. If such changes occur,
the shearing stresses will perform work. Consider first the
effect of a change in the angle YOZ, this ¢hange being taken as

positive when the angle decreases.

"“""I—dz ;1""’1 In this change the only stress
2 2 _ai ——=_ 0 _ intensities which do work which
~N - .
3 e 'T /|¥ . | does not vanish when added to the
3;’ '/ S‘J work done by other shearing stress
- | Y . . ’
7“ | intensities are s;, s, + %%’dy and
/ g !
b c/ Y

c !, ’
54’.---—=-—-"". s;+%‘—?zfdz. To evaluate this

Y

amount of work consider Fig. 7.
Let the original cross section of the
parallelepiped be Oabc and after distortion let the shape be
Oa'b’c’. Let the decrease in the angle YOZ be o' + o' =g¢,,
which is the shear strain about the X axis. The virtual work
done in this part of the virtual distortion is

Fi6. 7.

sl + a—sidz dz dy o' dz + (s’ + a—'sidy)d:z: dz o’ dy
=7 9z 9y
j ’ 1% 163’ Has;
=g, dz dy dz(a’ + ') + a a—z‘dx dy(dz)? + « @dx(dy)’dz

As in the expressions having to do with the virtual work done
by the normal stress intensities, the infinitesimals of the fourth
order will vanish when the virtual work is integrated over the
body and need not be considered further. This part of the
virtual work becomes, therefore, sg, dV and, similarly, the virtual
work done when the angles ZOX and XOY change is sjg, dV
plus slg, dV.

The total virtual work of distortion done by the stress intensi-
ties acting on the particle is

aw, = [f;ez +f:;ey +f:el + 8;0, + S:gy + 8:9:]‘1‘, (10)
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and the virtual work done during the distortion of the whole
body is

Wd = f(fa’:ez +f1:ev +f;es + 8;9: + 81’Igv + Sig.)dv (11)

The law of virtual work states that, in the kind of distortion
under consideration in this article, the virtual work of distortion
is equal to the virtual work done by the external forces plus the
virtual work done by the inertia forces. If all these forces be
included in a system called the Q’ system and if the displacement
of the point of application of any one of these forces along its
line of action be designated by §; also, if the internal stress
intensities set up by the Q' system and, consequently, forming
with the Q' system a system in equilibrium, are those designated
by fi, f,, f., s., s, and s;, while the virtual distortion is defined
by the strains e, e,, €., ¢, g, and g, Eq. (11) becomes

2Q = [(fie.+ e, +fie,+5.9. + s, 9, + 8. 9g)dV  (12)

The limitations on the validity of this equation are those defined
in the previous statement and should be carefully kept in mind.

The condition of distortion encountered most frequently in
structural analysis is that due to the imposition of loads or to a
change of temperature. In order to use Eq. (12) as an expedient
to determine the relation between the movement of a point in
the structure and the internal strains, an arbitrarily chosen
Q' system is adopted, this being such that the left-hand side of
the equation may be interpreted as numerically equal to a
simple multiple of the deflection component desired while the
virtual distortion is defined by the strains due to the applied
loads and the change of temperature. Usually it is convenient
to express these strains, as far as possible, in terms of the cor-
responding stress intensities. If the stress intensities due to the
loads and temperature changes be designated by f:, f,, f., sz, sy,
and s,, and the change of temperature by Af, the strains may be
expressed in the form

ezz%[fz—y(fv +f')]+fAt 92=§f

G

o=l — WL+ eat g =F  (13)
1 3,
€5 ='—E'[fl— V(fz +fy)]+¢At g:=(—;



24 STATICALLY INDETERMINATE STRUCTURES ([Cuar. I

in which e is the coefficient of thermal expansion for the material
of which the body is composed, and » is Poisson’s ratio.

It is still more convenient to have the strains expressed in
terms of the bending moments, total axial stresses, and total
shears. This can be done without trouble if the stress condition
in each member of the structure is one of planar stress; this
condition is usually assumed to exist even in a three-dimensional
structure. If a member is in a condition of planar stress and if
the X axis for the member is taken as coinciding with the gravity
axis of the member

My F . _ o 0 -0 < =0 _ SM,
fz"'I—‘I"Z: fu=0; fe=0; s.,=0; s =0; Sx““‘b‘l—‘

in which M = the bending moment at any section of a member,
y = the distance of a point in the cross section from the
gravity axis and is to be taken as positive on the
side in which the bending moment causes
tension,

I = the moment of inertia of the cross-sectional area
about its gravity axis,

F = total axial stress,

A = the area of a cross section,

S = total transverse shear at any section of a member,

b = the width of the cross section at a point distance y
from the gravity axis,

M, = the static moment about the gravity axis of that

part of the cross-sectional area which lies
outside of the point at which the shear intensity
is to be computed.

Also

f;=1‘1[qy+%q' f;:f::(), 8;=8;=0, s, =

in which M, = the bending moment at a cross section due to
the @' system,

F, = the total axial stress at a cross section due to the
Q system,
S, = the total shear at a cross section due to the

Q' system.
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Using this notation, Eq. (12) may be written as

Ses- 3%+ )(”zfi’nwa)

A'L_
bl bl }dV
_ MMy* FMy MJFy  FF
‘Ef( it Bar tEAL T Ak
M, At AL y q S SM?
+ € + e At + DG )dV
z=L
M,
= E[J;_O 570 dxffy dy dz
z-LF
o E,Ald:rffy dy dz
=L
‘M F
+ r=() P‘Aldxffy dy dz
z=L r=L
f g’iFEdrffdy dz + ef ‘—‘&dIJ‘J Aty dy dz
z=0
+ ef A"dxffAt dy dz
z=0
z=L
SaS
f=0 I’Gd ff—~~dy dz] (14)

In this expression the double integrals (over the cross section)
have the following meanings:

ffy*dyde =1; [fydyde =0; [[dydz=4A
and Eq. (14) becomes

Ses- [
efyfdxff&ydydz-}-ef&'dxjf‘;l(.’ya‘z
d:rff dydz] (15)

the single integrals being fromz = 0to z =

The third and fourth terms of the right- hand side of Eq. (15)
cannot be simplified further without defining the variation of the
change of temperature over the member and the last term cannot




26 STATICALLY INDETERMINATE STRUCTURES [Cuar.I

be simplified without defining the shape of the cross section.
Further simplification may be illus-

At, .
R trated, however, by carrying out the
Co | At process for a particular set of con-
I)_l_%—_-é— At ditions. For example, assume a
& temperature change which is con-
¥y stant across the width of a mem-
Fro. 8. 4% ber but varies linearly from the

upper to the lower side, the plane
of stress being vertical (see Fig. 8).

At = Aty + (At — Aty) & :; y
a2y :; LS Alz(l - ;’ y)

éwl(c, + y) + Aba(er — )]

At the C.G., Aty = é(c2 Al + ¢:Aty)

ffAt ydydz = %ff{At;(cz + y) + Ata(cr — y) }y dy dz
= Atlcz ‘(fi- Atz(hffy dy dz

TR A 3 N’ffy’dy dz

A(At) (16)

I~

where
A(At) = Aty — At

ffAt dy dz = éff{Ah(Cz + y) + Alao(cr — y)}dy dz

= Atica + Al Mw‘ffdy dz + A-——(N)ffy dy dz
d d
=A Ato (17)

The third and fourth terms become, for this set of conditions,
M,
¢ | Z'8(At)dz + ¢ | Fohto dz

which, when the member is prismatic and A(Af) is the same for
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all cross sections of the member, may be written
eé%‘—)fM.,dz+quAtoL

The simplification of the shear term may be illustrated by
carrying it through for a member of rectangular cross section.

Cfd \Yfd O\ b
M, = b(§ - y)§(§ + 1/) = §<I - y’)
M? 1 +3 brfde  dye
ffﬁdyd‘ =z?zf_e Z(i?s‘ T”‘)”dv
2

_bjaifd  d a¥ds  d? 1fd*  d®
= Z{E(ﬁ + §> - €(§ + §> + 3(3—2 + 3‘2)}

bdsf 1 1 1 bds  d¥
’Z(E"ZZJF%)‘TTO:ﬁ (18)
Therefore, for a member of rectangular cross section, the shear
term becomes kb -4
S.Sd, 12 (8.8 gt
R0 D dr = —= | 2%dz CG» 7
10G1 IOIAG A S A
_____‘g% d
¥

The evaluation of the shear term for members

such as I beams and channels is more com-
plicated but the evaluation for a few sections lead to the

following results:

Fia. 9.

For an 18-in. C.B. 70 lb., 0.994 i",gdx

. S8
For an 18-in. C.B. 124 1b,, l.OOOfZT,dx
For a 36-in. C.B. 360 lb., 0.997fi——‘fgd:c

. SS
For a 24-in. I beam 79.9 lb., 1.018fmd:c

For an 18-in. I beam 42.9 1b., 0.997 i—igdx

where A’ is the product of the web thickness and the depth of
the beam. It is evident, therefore, that if the shear were con-
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sidered as uniformly distributed over the area of a beam of
rectangular cross section the contribution made by the shear
term to the total deflection would be but 83 per cent of the correct
magnitude, but that in an I beam the assumption that the shear
is uniformly distributed over the area of the web (beam depth

. times web thickness) leads to an

A i error in the evaluation of this term
1:r ¥ ™ \J' of but 2 per cent or less if these
C2 eod® :‘ values may be taken as typical.
d { 1 —————— *2:9"/';\ Since, in general, the shear term
i c. 1— —————— T ¢l)  i8 a comparatively small part of
oy __ 4;\3;4" \(’ the total, the error involved in
b d |, using this approximate method is

O L ke

negligible, particularly when the
members are beams of the shape
used for rolled steel beams. With this in mind, Eq. (15) may
be written as

Sei- 3

Fia. 10.

dx+ fM Ay,

AE
S
+ efF,,Ato dr + Kfﬁ;dx] (19)

where K is a numerical coefficient equal to 1.2 for members
of rectangular cross section and 1.0 for members such as I
beams, and A’ is an area over which the shear is assumed to
be uniformly distributed. If the member be part of an ideal
truss, in which the members are subjected to axial stress only,
the equation becomes

Ses= DT S pe anl (20)
= 3F AL

This discussion might be made somewhat broader in its
application if the cause of distortion is not limited to the applica-
tion of loads and to change of temperature. The assumption
that each member is in a condition of planar stress is retained
and the assumption that transverse sections, planar before
distortion, are planar after distortion, which was a prerequisite
to the equations
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I__Mﬂy Fq I_SqMa
L=7FT+2 &%=

is again pointed out. For a condition of distortion which fits
these assumptions, an elemeni of & memier such as that shown by
abcd in Fig. 10 has a shape after distortion as shown by abc’d’.

The section e¢f is parallel to the original position of the section
cd; e is the distance strain at the gravity axis of the member.

e, dzx =eodx+ch(eld:c—eod:c)
1
= ¢ dz + y db

In such circumstances Eq. (12) becomes

Sor- S+ Do) -}
—2U<1yeo+ ey + M1y jz+py§9+sqg.)dﬂ

- E[f_qeo dxffy dy dz + f—“eﬂ dxffdy dz

o [Metoa, [ [yrayac+ [ Potlie [ [vaya + [suguav]

and, since [fy dy dz =0, [fdy dz = A, [[y* dy dz = I, this
becomes

Seo- S| [l s [raes [onar] @

and if F, is constant over the length of each member, this becomes

S = fM x+EFAL+fqg.dV (22)

When the causes of distortion are limited to the application of
loads and to change of temperature,

e E(MIC‘ + ) + € Aty

e = ]E(Aicz + ) + € Ale
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where c; is negative;
= (e1dx — e d:c)(li
M
= [E( Ic1 + Z - MTC__Z - —'>dz + G(Atl - Ati)dx]

Eld“'i' A(At)d

F
80=E+€Ato

It is evident that if these values are substituted in Eq. (22)
the resulting equation is the same as Eq. (19). It should be
remembered that the d@ used here is the change in the slope of‘a
section originally perpendicular to the axis of the member. If
the distortion includes the effect of shear, the transverse sections
do not remain perpendicular to the axis of the member and the
change of slope of the axis is not the same as the change in the
slope of the transverse sections.

13. Alternate Proof of Law of Virtual Work for Trussed Struc-
tures.—An alternative method of demonstrating the law of
virtual work for trussed structures may be based on the geometri-
cal relation stated in Eq. (5):

ALy = (Azp — AZ;) cos au + (Ayx — Ay:) cos B
' + (Azp — Az} cos va

Suppose that some system of external forces Q" applied to the
joints of the truss causes a stress Fl, in member k. Multiply
both sides of Eq. (56) by this stress. Then

“WALg = (Azp — Az)F) cos au + (Ayx — Ay)F}, cos Bu
+ (82¢ — Az)F} cos yu  (23)

If an equation of this sort be written for each member of the
truss and all these equations be added together, the result is

ZFHALy = Z[(Aze — Az)F), cas ap + (Aye — Ay)Fi, cos Bu
+ (8zy — Azy)F, cos ya] (24)

If it be remembered that the angles «, 8, and ¥ are measured
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from the positive directions of the coordinate axes, it is evident
that

ax; = 180° + ay, Bri = 180° + By, Yei = 180° 4 v

therefore,

COS ag; = — COS i, €08 Bri = — co8 B,
COS Yki = — COS Yu

and Eq. (24) may be written as

3F!, ALy = — Z[Az; Fl; cos ay + Ay; F!y cos Bu +
Az; Fiy cos v + Az Fy cos ar; + Aye Fi, cos B +
Az, F, cos vi] (25)

If the terms in the right-hand side of this equation are regrouped,
one group for each joint, and the stress in any member is con-
sidered as a force applied to each of the joints at the ends of the
member, Eq. (25) may be written as

EF‘;‘ AL.'), = - E[Az;EF,-L COS i + Ay‘kEF"k COS ﬁ"k +
Az;ZF ), cos vu) (26)

where 7 designates any joint of the truss, Fj, is the stress in
any member due to a system of external forces Q' applied to the
joints, and in which each summation within the brackets includes
all the members which are connected to joint 7 while the summa-
tion outside the brackets includes all the joints of the structure.
If the resultant external force applied at joint ¢ be @; and the
angles of inclination of this resultant to the X, ¥, and Z axes
be &, ni, and {;, respectively, the equations of equilibrium for
the joint are

Q.cos & + ZF, cos ag =0
Qi cos ni + ZF, cos Bu = 0 27
Q\cos ¢ + ZFl, cos vae =0
Using these relations, Eq. (26) may be written in the form
SF ALy = Z[Az,Q) cos & + Ay.Q; cos 1 + AzQ; cos ¢
2Qi(Az; cos & + Ay cos 1; + Az cos ¢y) (28)

]

The quantity within the parentheses in the right-hand side of this
equation is the sum of the projections, on the line of action of
@, of the components of the displacement of joint z and might
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be written as the projection, on this line of action, of the dis-
placement. If this projection be designated by é; Eq. (28)
becomes

SF ALy = 2Q.6; (29)

which i1s an algebraic statement of the law of virtual work.
The only limitations on the validity of this equation are that
the stresses F}, must be those due to the external forces Q%
with the truss in its distorted condition, that the changes of
length AL and the joint displacements §; are those existing in the
condition of distortion under investigation and that the dis-
tortion be such that Eq. (5) is satisfied.

14. Clapeyron’s Law.—Consider a structure that is subjected
to external forces which vary continuously from zero to their
final magnitudes and which ultimately attains a condition of
equilibrium. Let the external forces and internal stresses
form a system in equilibrium at every instant of the interval
during which the forces are increasing and the distortion of the
structure is progressing. Assume that there i1s no change
of temperature. At some instant let the simultaneous magni-
tudes of the external forces and internal stress intensities be @',
[ By, fu 8., s, and s, respectively. At the same instant let
the displacement of the point of application of any force Q'
be 6. During a small interval immediately following the instant
at which these stress intensity magnitudes exist, let the dis-
placements of the points of application of the forces @ increase
by increments dé while the strains in the structure increase by
the increments de;, de,, de,, dg;, dg,, and dg.. Since the law
of virtual work is valid for any system of forces Q, it is valid for
that particular case where the forces @ have the same magnitudes
as a set of forces which are causing the distortion; consequently
one may write,

Q' db = B[(f] de, + f, de, + f, de + &, dg, + s, dg], +
s, dgl)dv  (30)

Moreover, since these are the real stresses and real strains
occurring at the particular instant under consideration, the
amounts of work appearing in Eq. (30) are the amounts of real
work that would be done if the external forces and internal
stresses remained constant during the small interval. The



ART. 14] BASIC CONCEPTS AND THEOREMS 33

forces and stress intensities do not remain constant in the
small interval, however, and the amounts of real work done by
the increments to the forces and stress intensities may be stated
as K,2dQ’ dé and

K.[(df, de; + dfy de, + df; de, + ds; dg; + ds, dg, + ds; dg)dV

where K, and K, are factors which are less than unity. The
terms in this expression are infinitesimals of an order one degree
higher than those in Eq. (30) and will vanish in the definite
integral obtained by integrating the work over the whole interval.
They need not be considered further and Eq. (30) may be taken
as a sufficient statement of the real work done in the small
interval.. Since the strains are due to the forces Q' they may be
expressed as

&=l — A+ g =
4= -+ g =

T

QI Qi Qe

and, differentiating,

! 1 ! U 4 ’ dsz’
de, = Fldf. — v(dfy + )] dgl =T
/ 1 4 "/ ’ ’ d ’
de, = Zldf, — vdf + df))  dgj = G
’ ] ’ ’ Y] ’ d :
de, = Fldf. — v(@f. + df)]  dg, = F

If these values are substituted in Eq. (30), it becomes

Swas = 3 [| g - s d + 1) + 5,
—(fy dfy + £, df) + fi df, — v(fL df. + 1. df)}
+ .(-1;(8; ds, + s, ds, + s, ds)) ]dV
If this be integrated over the whole interval, i.e., between the

limits zero and Q' = Q, f; = fs, f;lc =fofi =T s =8, 8 = s,
and s, = s,, the equation becomes
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Efo' ds = Ef[ﬁ;(f} + 5+ — UL LA IL) +

2—1@(33 + s + sl) lav @31)
From Eq. (12)
2Q 58 = Z[(fse: + frey + feos + 5. + 89y + 8.9.)dV

Ef{f%u’ — U + 10 +fv713'[f, —v(fe + 1) +
fl_év‘[ft - V(fz +fv)] + Sz'gé —+ syi_G” + 31‘%}(1‘,

ot + st + sz)]dv (32)

The summation in the right-hand side of Eq. (32) is just
double the summation in the right-hand side of Eq. (31), therefore

> f Q ds = %EQ& 33)

In the development of Eq. (31) ne limitation was imposed
on the rate at which the forces Q' increased from zero to their
final magnitudes nor on the order in which they were applied to
the structure. The development does depend, however, on the
validity of the law of virtual work; therefore, Eq. (31) can be
true only when the distortions are so small that the law of virtual
work is applicable. Within these limitations, a consideration of
Egs. (31), (32), and (33) leads to the following conclusion:

If a structure is initially without stress and ts not subjected to
a change of temperature, bult i3 operated on by external forces
which vary continuously from zero to their final magnitudes, and
which produce a small distortion of the structure, the mechanical
work done by the outer forces while the structure 18 arriving at a
condition of equilibrium 1s equal to the mechanical work done by
the internal stresses. Each of these amounts ts independent of
the rate at which the forces increase and of the order in which the
external forces are applied to the structure; each is half as great
as it would have been if the forces, or internal stresses, had had their
Jinal magnitudes throughout the whole of the distortion.



ART. 14] BASIC CONCEPTS AND THEOREMS 35

This statement was formulated first by Clapeyron and is
known as Clapeyron’s law.

It is often convenient to express the mechanical work of dis-
tortion (strain energy) as a function of the hending moments,
shears and total axial stresses. Consideration will be limited
to structures in which each member is in a condition of planar
stress. Asin Art. 12,

=ML f=n=0 een=0 s =S

oS
= Ef[%? I MFy + A2> + z;?;zgn]dv

In trying to develop a general expression for the last term which
will be simpler than the form just obtained there is the same
difficulty as was encountered in the expressions for virtual work,
and, since no great error is involved in the approximation based
on the assumption that the shear is uniformly distributed over
an area A’, (K = 1), the further simplification will be based on
this assumption.

E[fg%l;—?dxffyz dy dz + f%%dxffy dy dz
+ f A*deffdy de + f2(’A” ffdy dz]
E[ 7r7ds + f s + f 5G4 ] (34)

If the members of the structure are prismatic and if the loads
are applied at the joints only, the second term becomes

F2L
2AE

If the structure is an ideal truss, the shear and moment terms
vanish and Eq. (34) becomes

FL

Wi = m (35)



36 STATICALLY INDETERMINATE STRUCTURES |[Cuar. 1

16. Castigliano’s Law.—Let the external forces Q acting on a
structure be separated into two groups: First, those forces
which are independent of each other such as loads and which
will be designated by the letter P; and, second, a group, such
as reactions, which is dependent on the first group. Equation
(19) may then be written as

SPs+ W, = 2[ d +f dz +Kfs"—d
4 f Mid(-“—‘)dx+equAcodz] (36)

in which W, is the virtual work done by those external forces
which are not independent of the forces P. If the only forces
in this last group are reactions, the term W, will vanish unless
the condition of distortion involves yielding of the supports.
Since the external forces P and the resulting internal stresses
M, F, and S, are independent of the condition of distortion
as defined by the internal stresses M, F, and S, and of the changes
of temperature A(At) and Al, if the partial derivative of the two
sides of Eq. (36), with respect to one of the external forces P,
be written, Eq. (36) becomes

aW M, Md +faF F
3P, EI oP AE
+Kfas ‘S ] (37)

Since Eqs. (36) and (37) are valid for all Q systems, they are
valid for that particular @ system which is the same as that
which is operative in causing the distortion and which corresponds
to the moments M, the axial stresses ¥, and the shearing stresses
S. Therefore one may write

oW, _ M oM F oF
1ém+3p, = [ T i) +fAFaP
+K f . f"M A4, + f o ate dz]
= 3P, E[ 2Eldx+f2AE z +Kf2‘A'Gd’]
+EfaM A(At)d +2f—-—4zod (38)
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By referring to Eq. (34) it may be seen that the expression within
the brackets is the strain energy W, due to the external forces;
therefore

15,.+3P 82"+ef: At dz + faM A(A‘)z (39)

If the virtual work W, done by those forces which are not
independent of the loads P is zero, which usually means that the
points of support do not yield, and if there is no change of
temperature, this equation becomes

oW,
16, = 5},—".? (40)

which may be stated as foliows:

If a structure be in equilibrium under the action of external
forces, if the points of supports do not yield and there is no change
of temperature, the displacement of the point of application of any
one of the external forces in the direction of that force due to the
application of the external forces mentioned 13 equal to the partial
derivative, with respect to that force, of the strain emergy of the
structure due to these external forces.

This is known as Castigliano’s second law. The demonstra-
tion just given is limited to structures in which each member is
in a condition of planar stress. It might have been carried out
by starting with Eq. (12) as a basis, in which case no limitation
would have been placed on the character of stress existing in the
members, and the conclusion stated at the end would still be
valid. Thus, Castigliano’s law is valid for structures of all
types.

16. Betti's Law and Maxwell’s Law.—Let a structure be
subjected to the action of a set of external forces Q, which cause
a condition of distortion which may be defined by the deflections
of certain points m in the directions mo and let the deflection of
any point m, in the direction mo due to the action of a unit value of
one of the forces @, be designated by é... The deflection of a
point m due to the group of forces Q. is, therefore, ZQadmn.
If Eq. (12) is written for this condition of distortion, using as a
Q' system a set of forces Q. applied at joints m and acting in the
directions mo, it becomes
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EQuQuana = Ef(fnzenz +frwenu +fuuevu + Smz{nz + Smyfny +

Smfns)dV
= S [{neptine = i + 1200
t Jmislfos = 7ns 1)) + Fraplfne = ¥(fos + fu)]
+ l—G-(sms.., + SmuSwy + sm.s,..)}dV
= S [{§Unds + it + gt
= GUmelns + Jne) + SosUs + f22) + Sms(Frz + fus))

+ %(sﬂzs"x + s’"lls'w + 3m;8m)}dV (41)

Now consider the same structure in the condition of distortion
which would be caused by the external forces Q. and apply the
law of virtual work using the Q. system as the forces @’ in Eq.
(12).

Z2QuQmbam = Ef(fnzemz + favtmy + frnslme + Snzfmz + SmyGmy
+ Snsgme)dV

fnz fvw
= Ef{f[fm, —_ V(fmv ‘+‘fm:)] + "EU"W

e+ S+ L2 s — 5 oe o+ Fo)]

1
+ @(su-sm + 8nySmy + snsm.)}dV

= EI{EIUMJM + Sosfms + o efms)
—_ %Una(fﬂw +fm=) +fnv(fmz +fm.) +f,.,(f," +fmv)]

;

+ ('l;'(suzsmz + 8nySmy + 3".8m,)}dV (42)

The expressions in the right-hand sides of Eqs. (41) and (42)
may be seen to be exactly alike though the cnefficients of »/E
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are not arranged in exactly the same order; therefore,
szQnamn = anQmanm (43)

This equation is an algebraic presentation of what is known
as Betti’s law, which may be stated as follows:

The virtual work done by a group of ezternal forces Q.. during
a distortion due to a group of external forces Q, is equal to the virtual
work done by the forces Q. in the distortion due to the forces Q.

In the particular case where each of the groups Q.. and Q.
is reduced to a single unit force, together with the reactions they
cause, and in which the points of support do not move, Eq. (43)
becomes

Omn = Bnm (44)
which may be stated as follows:

In a body supported on unyielding supports the deflection of a
point m in the direction mo due to the action of a unit force applied

at point n and acting in the direction np 1s equal to the deflection
of point n in the direction np due to the action of a unit force applied
at joint m and acting in the direction mo.

This is known as Maxwell’s law of reciprocal deflections.

It will be used frequently in the analysis of indeterminate
structures.



CHAPTER II

DEFLECTIONS

17. Introductory.—It has been suggested already that the
problem of determining the distortion of a structure is of much
interest, both on its own account and because of its use as a
step in the stress analysis of indeterminate structures. It is,
consequently, important that the structural analyst should be
familiar with various methods of solving this problem and this
chapter will be devoted to discussion of some of these methods.

18. Computing Deflections by the Law of Virtual Work.—If
the law of virtual work as expressed in Eq. (21) is applied to a
structure, any element of which may be in a condition of dis-
tortion as defined by angular strains %?d:c, linear strains e, dr
and shear strains g, dz, and if the Q' system used in the equation
consists of a unit load applied at joint m in the direction mo
together with the reactions set up by this unit load, the left-hand
side of the equation becomes 1 §. + W, where 4., is the move-
ment of m in the direction mo and W, is the virtual work done
by the reactions due to the unit load if the condition of distortion
involves movement of the points of support. When the points
of support are unyielding, the term W, vanishes and the left-hand
side of the equation is numerically equal to §.. If there is
some yielding of the supports, such yielding must be known
before 8., can be evaluated. Designating the bending moments,
axial stresses, and shearing stresses due to this particular Q’
system-by M., F.., and S.., respectively, Eq. (21) becomes

0 d
1ém + W, = E[fM..%;d-t + me ((?f)dx + meg. d:c]

(45)

Since -E'I% + eA—%gz is the rate of change of slope of a member,

F . S .
iE + € Al is the rate of change of length and Km is the rate
40
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of shear distortion, Eq. (45), which is general in that it includes
the effects of all types of distortion, may be written in the form

18,..+W,=2[ d +Kf e
fM —(-Al-)d:c-}—efﬁ’mAtodz] (46)

which is directly applicable when deformations are due to stress
and temperature changes.

It is evident, therefore, that, provided there is knowledge
as to any possible yielding of the supports, Eqs. (45) and (46)
may be used as an expedient to determine the movement of a
particular point in a particular direction in any condition of
distortion of a structure if the stresses M,.,, F.., and S.. can be
computed and the strains, expressed either as in Eq. (45) or
as in Eq. (46) can be found. When the structure under con-
sideration is a truss, either planar or three-dimensional, those
terms which express the result of changes of slope and of shear
deformations vanish, and Eq. (46) becomes

1on+ W, = EU dr+eJFAtodx] 47)

and if, in addition, the members are prismatic and At is constant
over the length of a member, the equation may be written as

16+ W, EF fEL + D Pl (48)

As a simple illustration of the use of this expedient consider

.3 l | (a)
|
|

iT T ‘?} (b)

Fia. 11.

the problem of determining the vertical deflection of point m
of the beam shown in Fig. 1la due to the loading given there.
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Assume that the points of support do not yield. In the condition
of distortion to be investigated here, F = 0, Aty = 0, A(At) = 0,
and the functions expressing M and S vary for different parts
of the span. The @’ system is'shown in Fig. 11b. Measuring z
from the left reaction, for

0<zr<6 6<r<8 8<z<16
M = b5z M = 5z M = —5z + 80
M, =3z Mp=—-324+6 M.=—-3z+6
S =45 S =+5 S=-5
Sm=+% Sﬂl: —% Sm: —g

in which the stresses for the distorting condition are stated in
units of 1,000 Ib. Equation (46) becomes

16, = fM"‘Md + KfS (take K = 1)

e s [+
+f16<—— + 6)( 5z + 80)d:c] A¥G[Lﬁ<+§)(+5)dx
(oD (D)o

=L[25 6° 15 8% — 6 82 — 67

Flls X3~ g X3 T3
+1§5x16_"3:£“_50><§7~+480(16—8)]
+~€G[+%8§xs o - 6)+5(16—8)]

taking £ = 3 X 1071b. persq. in., and G = 1.15 X 107 Ib. per sq. in.,

+ 780
3 X 10* X 122 X 441.8 X 12-*

+

+0.00848 + 0.00042 (ft.)
+0.00890 ft.

b =

30
6.15 X 1272 X 11.5 X 10% X 122
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It might be noted that the deflection due to the shear distortion
is but 5 per cent of the total deflection in this particular example.
In most practical cases the shear deflection is of the same general
proportional magnitude as this and need not be computed. The
relative importance increases as the ratio of the length of the
span to the depth of the beam decreases.

As a further illustration consider the deflection of point m
in the condition of distortion caused by a change of temperature
which is the same for all cross sections of the beam but varies
uniformly from an increase of 50°F. at the top of the beam to an
increase of 10°F. at the bottom. Since A(Af) = A, — At
and Af, is the increase in temperature at the edge for which the
ordinate y is positive (see Fig. 8) and, therefore, is for the side

on which the bending moment causes tension ( = == E—),

also, since the bending moment here has been taken as positive
when it causes tension in the lower part of the beam,

A(Al) = 10° — 50° = —40°;

Aty = +30°. Equation (46) becomes

16m

‘A(M)l__lgng"‘ dz; Fmn=0

i e (5 o)

5_6° 3(16
—32‘[8' X 5 = §<——2—-) + 6(16 — 6)]

—960 X 6.5 X 10-¢
—0.00624 ft.

I

]

The negative sign indicates that the deflection is in a direction
opposite to that of the unit load.

The law of virtual work also provides an expedient which will
enable the analyst to determine the change of slope at a point
in a structural member. In such a problem the @ system to be
adopted consists of a unit couple to be applied at the point where
the change of slope is desired, together with the reactions set
up by this couple. An examination of Fig. 12 shows that when
such a Q system is used the left-hand side of Eq. (21) becomes
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Lomttbmt W, = aten0) + W

=tan 0 + W,
The rotation encountered in the usual structure is so small that
no distinction need be made between tan ¢ and the angle 6
expressed in radians; therefore, if there is no yielding of the
supports, the left-hand side of Eq. (21) may be interpreted as
1(6). As an illustration, consider the problem of determining

Fia. 12. Fia. 13.

the change of slope at the left end of the beam of Fig. 1la.
The Q system to be adopted is shown in Fig. 13. For the condi-
tion of distortion defined by the loading and temperature change
previously used, Eq. (46) becomes

1 8 z 16
16 = 'E‘IU; (1 - E)sx dx + J; (1 - —)( 5:c+80)dr]
—40 ('® z 1 =l
+ iz—sﬁ (1 - Té)d" + :ra[f (;, 16)5‘“ +
16
f < )(S)da: + f (——)( 5)d.r]

_ %[5 x%’ l.56 « & 5(16’2— 8%) _*_%(16’3— 8%)
+ 640 — 22 ————(16’ - 82)] - 32e(16 - -2--1?—213-)
+ —}@[xé;x' - %zl - %(8 - z) + 1%8]
16 =190 256 + O
-+ 160 — 256 X 6.5 X 10~

37X 107 X 128 X 441.8 X 124
5
t s x 12T X 115 X 10° X 12°
= +0.00173 — 0.00166 + 0.00007
= +0.00014 rad.
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In the second last line of the foregoing computation, the first
term shows the effect of the bending moment, the second term
is the change of slope due to the change of temperature, while
the third is the change of slope due to the shear. As in com-
puting the vertical deflection, the effect of the shear is a com-
paratively small fraction of the effect of bending moment or of
the effect of change of temperature.

The use of the law of virtual work as an cxpedient to enable
one to determine the movement of a joint of a truss in some
particular condition of distortion is very similar to what has
been demonstrated in the previous illustrations. For trusses,
however, Eq. (46) is expressed in the form given in Eq. (49), ‘.e.,

16m+ W, = ZF, AL

To illustrate, consider the problem of determining the vertical
deflection of joint 5 of the truss shown in Fig. 14a when the
condition of distortion is that caused by the loading given in the

L8 .
SR &5 &
;‘&,D}» (2634) | (2639)\/(5222) | (5022\/(26.34) | (26.34)
i
l

—
o AelRN\ © 9 1%\
/ ‘.O h&,‘glﬁ ,a% ,ﬁ .:\ FC)
42622 |+262 2\ /* 4718 [+ 239 \[/+ 995 | +995

S S ¥} Oy O™

Fia. 14.

figure. The loads are stated in units of 1,000 lb.; the numbers
written in parentheses on the members are their cross-sectional
areas in square inches.
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The Q system to be used consists of a unit vertical load applied
at joint 5 together with the reactions it causes. The first
step in the solution is to make two stress analyses, one to find
the stress intensities due to the distorting loads and, through

them, the changes of length AL = %.L and the other to determine

the stresses Fn.. The first of these is carried out in Fig. 14c
and the second in Fig. 14b. If the points of support do not
yield, the term W, vanishes and Eq. (49) becomes

16 = SFsal = EF%,L

The summation may be arranged in tabular form as follows:

Bar L(ft) | f-10* | Fy |FEAL10"
1-3-5 | 50 +9.95 | +0.527] + 262.1
579 | 50 +9.39 | +0.791) + 371.2
911-12 | 50 +9.95 | +0.264] + 131.0
246 | 5 —-9.68 | —1.054] + 510.0
6810 | 50 —-9.68 | —0.527 + 255.0
1- 2 39.8 | —7.63 | —0.856 + 260.2
25 39.8 | +8.55 | +0.856| + 291.6 2357
56 39.8 | —2.59 | +0.428 — 44.1 1& =z o
6 9 39.8 | —2.59 | —0.428) + 44.1 - 0.0786 ft.
9-10 39.8 | +8.55 | +0.428 + 145.7
10-12 39.8 | —7.63 | —0.428 + 130.0
23 31.0 | +5.3¢| 0 0
45 31.0 | 00 | 0 0
6 7 31.0 | +5.3¢4| o0 0
8 9 310 | 00 | o© 0
10-11 31.0 | +5.34| 0 0
+2356.8

If this condition of distortion had involved a yielding of the
points of support, for example, a movement downward of joint 1
amounting to } in. and a movement of } in. downward at joint 12,
the term W, would not have vanished and Eq. (49) would have

been
1 1 2357
—0.667 X 0.5 X i 0.333 X 0.25 X 13 +16, = +W
dm = 0.0786 + 0.0277 + 0.0069 = 0.1132 ft.



ART. 18] DEFLECTIONS 47

If the deflection desired is the relative deflection of joints 3
and 8 along the line joining them, the @ system to be adopted
consists of a pair of unit forces, one applied at joint 3 and acting
along the line 3-8 and the other applied at joint ® and acting in a
direction opposite to that of the unit load applied at joint 3,
together with any reactions which may be caused by this pair
of unit forces. In this problem these reactions are zero. If the
condition of distortion is the same as that in the illustration

S
S 0924
+0308 10924 WO —™
0308 | +0308 -0308°"
N o | oy - I
Q g} " § 2« kq\’ o :’: R 9 e
? /’ 4/ © ’fg ] ? <
0 - 0 0
P 40 +0924 +0308 r:3

Fi. 15.

just completed, the stress analysis for the effect of the distorting
loads need not be repeated but a stress analysis must be made to
compute the stresses F,, which, in this example, become the
stresses Fag.5. The left-hand side of Eq. (49) becomes

1635+ 165 =1 633

When the unit forces act outward, a positive value for 6§33
indicates that joints 3 and 8 have moved apart; while if the
forces act inward, a positive value means that the joints have
approached cach other. The numerical solution may be com-
pleted as follows:

It is not necessary to include in the tabulation any members
in which either F = 0 or F33 = 0.

Bar L@t) | f-107 Fas | Fiu B AL 107

I e . e e —— — R R
3-5 25 L 49.95 40.924 4229 9
579 | 50 +9.30 | +0.308 ¢ +144 6
2-4-6 50 ~9.68 | +0.308 | —149.1
6-8 25 —9 68 +0 924 —223.6
2-5 39 8 +8.55 —0.491 —167.1
5-6 39.8 —2 59 40.491 —~ 506
6-9 39.8 —2.59 —0.491 + 50.6
2-3 310 +5.34 +0.382 + 63.2
~102.1
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1021
835 = —'m = —0.0034 ft.

The minus sign indicates that, in this example, points 3 and 8
have moved toward each other.

19. Deflections by Castigliano’s Law.—When the distortions
of a structure are due to the application of external loads on the
structure, Castigliano’s law provides an expedient for the com-
putation of deflections, provided the limitations imposed in the
statement of the law are fulfilled. In accordance with this law,
if the internal work in a structure is differentiated with respect
to any particular load acting on the structure, the deflection
of the point of application of the load considered, in the direction
of the load, is obtained. As a general procedure, a load X,
which corresponds in point of application and line of action to
the desired deflection, is applied to the structure. If the load
X corresponds to an actual load on the structure, it may be
considered as replacing the actual load; if, however, load X
does not correspond to an actual applied load, it is considered as
acting in addition to the other loads on the structure. In
either event, the application of Castigliano’s law to the structure,
with respect to the load X, gives the required deflection in terms
of X; and, if, in the resultant expression for deflection, X is
given its true value, the required deflection is obtained. If X
has replaced an actual load acting on the structure, it is given
the value of this load; otherwise its true value is zero.

This method may also be used to obtain the sum of the deflec-
tions in given directions of different points on a structure, by
applying simultaneously loads X,, X,, . . . at pointsa, b, . . . .
In accordance with Eq. (38), one may then write

oW M oM F oF
8 = axa‘z Bl 3%.° +EfAF6X
+2Kf 7 e
W _ M M F oF,
b =3%, = LEI ade z+ EfAE aX,,

S 8S
+ EK A'G GXb
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from which, adding,

0+ &+ - - —EfEI(aX+8X+ )dz
+ 2> f AE(BX +ax, >dx EKJ 'G(

6X + - )d:v
If it is possible to replace the forces X, X . .., by an
equivalent function X., such that a unit change in X, would

have the same effect upon moments, direct stresses, and shears
occurring throughout a structure as would unit changes occurring

simultaneously in each of the forces X,, X ..., one may
write

_ M oM F aF
5"""5”"“"'"2 EI1ax,” AE ax’

asS
+ EKf AG X"
_ W
~ aX.

The replacement of two equal and opposite forces X, one
force X acting on either side of an assumed cut at a cross section
of a member, by the stress X in the member, furnishes an example
of such equivalent systems.

As illustrations of the application of Castigliano’s law to the
determination of deflections, the following examples are given:

1. Determine the deflection at mid-span of an end-supported
beam with a span of 10.00 ft., £ =3 X 107 lb. per sq. in.,
I = 100 in.%, due to a single concentrated load of 10,000 lb.
acting downward at the center of the beam, neglecting the effect
of shear.

Solution.—Replace the force of 10,000 Ib. by load X. The
moment at distance z from either support is given by Xz/2,
from which, using symmetry,

L L

s X d_X2,d_X1L_’ xp
_EI T=381), " ¥ T2EI38 T 48EI

1oooo><1000x144><144 1o
T I8 X 3 X 107 X 144 X 100 100
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2. Determine the vertical deflection of point a on the truss
shown in Fig. 16 due to the load acting as shown. The area of
each member of the trussis 6 sq. in.; E = 3 X 107 Ib. per sq. in.
Solution.—Apply the vertical load X

_K__ﬂwo/a ®a acting downward at point a. Note that,
l considering this structure to act as an
3 : ideal truss, no moments or shears are
1® : @ Present, so that
: P
P2 s b= [
Fra. 16. * JAEX T

Since the members of the truss are prismatie, this reduces to

FL oF . .
8 = AE X The following tabular arrangement gives the
steps of the solution:
L (ft.) F FL oF
F 2 il =
Bar 4 Gin) X A 0X
1-2 +M - 31X 10 - P+ 38X
23 -3 - iX 10 - +448° + 48X
3-1 - +iX 12 +1 =+ 30X
540 608 540 .
E&.=E=——E‘I+a){——-a~ since X =0
540 = — -7
8, = T4 X3 X100 7.5 X 1077 ft.

Since the result has a negative sign, the deflection of point a
is in a direction opposite to that of the assumed load X and is
therefore upward.

3. Show that if a portion of a structure is acted upon by a
uniform load of p Ib. per ft., the derivative of the internal work
with respect to p equals the area under the deflection curve for
that portion of the structure so loaded.

Solution.—Let the portion of the structure loaded be divided
into equal distances dz, and at the center of each distance dz
apply forces Py, Py, . . . ,atpoints 1,2, . . .. Then
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_ Wy | oW,
i+ 8+ - - - —a—Pl‘F‘aT);'{‘ S
Multiplying each side of the equation by dz,
_ oWy W
hvdz + dpdz + - - - = aPld:c+5—P-;d:c+ -
But é:dx + d:dx + - - - = A = the area under the deflection

curve for the portion of the structur: loaded with p lb. per ft.,
and P, = pydz, P, = padz, - - -, where pi, ps - - - are
intensities of loading through the distances dz,, dz,, . .
respectively. We may therefore write

IWs oW,
A =2"7¢4 974 L
apl + apz +
But p, = p2 = - - - = p, so that the series of load intensities
P, P2, - - . , each acting over distance dz, is a loading which

is equivalent to a load p lb. per ft. acting over the loaded portion
of the structure, or

OWa L 0Wa , _ W
oy + 9P, + ap
so that,
W _
ap A

A comparison of the computation of deflections by Castigliano’s
law to their computation by the method of virtual work dis-
closes the fact that the terms aM/dX, oF /30X, and 3S/3X are
equivalent to the functions M, F, and S, respectively, pro-
vided the @ system consists of a unit load applied at the point of,
and in the direction of, the desired deflection together with the
reactions due to the unit load and if the limitations imposed
in the statement of Castigliano’s law are fulfilled. Under these
circumstances the stress in any member due to a unit load is a
measure of the rate of change in the stress of the member with
respect to an actual applied load corresponding in direction and
point of application to the unit load.

20. The Williot-Mohr Method.—For planar trussed structures
this method may be illustrated by a very simple problem, which,
however, demonstrates all the ideas necessary for the solution
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of any problem having to do with the deformation of a trussed
gtructure so long as primary stresses alone are considered.
Consider a frame such as that in Fig. 17a in which each joint
is fixed in its position relative to two other joints by its con-
nection'to them by means of a pair of members. In this structure
joint ¢ is fixed in position by being connected to a and b by
members ac and be, respectively. Joint d is fixed in position
through its connection to joints a and b by members ad and bd,
respectively. Similarly the positions of joints e and f are
determined by the connection of each of them to two other
joints by a pair of members. It is assumed that each of these
members is subjected to a change of length and it is desired to
C3

F16. 17.

determine the changes in the positions of the joints corresponding
to these changes in length.

The problem is solved in a series of steps, each step leading
to the determination of the movement of one of the joints.
Referring to Fig. 17b, assume that joint a moves from a to a’
and that joint b moves from b to b’ and that these movements
are known in direction and magnitude. Imagine that the
connection of the members ac and bc, hereafter called members
1 and 2, is broken and that when joints a and b move, the mem-
bers move parallel to themselves into the positions a’c, and b’c,,
respectively. Now suppose that member 1 has an increase
in its length amounting to Al so that joint ¢, considered as the
end of member 1, moves from ¢, to c; and that member 2 is
subjected to a decrease, A2, in its length, so that joint ¢, con-
sidered as the end of member 2, moves from ¢; to ci. Now
consider the connection between the two members reestablished;
the only way in which this can occur is by means of rotations
of the two members about joints a and b, respectively, these
joints being in their new positions a’ and b’. In the distortions
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which occur in actual structures, the movements of the joints
are so small compared with the lengths of the members that no
appreciable error is made if the movements of points c; and ¢4
during the rotations of members 1 and 2 are represented by
straight lines perpendicuiar to the ouriginal directions of the
members. These rotations must continue till points ¢; and ¢4
move into a common position ¢'.

Since the movements of the joints are very small compared
to the dimensions of the structure, if one tried to represent them
to the same scale as a sketch of the structure, cither the line
sketch would be very large or the lines representing the joint
movements would be so small that it would be impossible to
measure them with sufficient precision to be of value. To
overcome this difficulty, it is customary to draw only that part
of Fig. 17b which is shown in the polygon ccicac’cscs and this
may be done as in Fig. 17¢ to any scale desired. The procedure
is as follows: From an origin O draw the vectors Oa’ and Ob’
to represent the motions of the ¢ ends of the two members while
the members are being moved parallel to themselves; then draw
from a’ a line representing the movement of the ¢ end of member 1
due to the change in the length of that member and from ¥’
draw a line representing the movement of the ¢ end of member 2
due to the change in length of member 2; these two vectors
are shown by Al and A2 in Fig. 17¢; from the outer end of the
vector Al draw a line perpendicular to the original direction of
member 1 to represent the movement of the ¢ end of that member
during its rotation about the a end and similarly from the outer
end of the vector A2 draw a line perpendicular to the original
position of member 2 to represent the movement of the ¢ end
of that member due to its rotation about the b end; produce
these two perpendiculars till they intersect at ¢’; the vector Oc’
represents the movement of joint ¢ due to the movement of
joints @ and b and the changes in the lengths of members 1
and 2.

A repetition of this procedure applicd to members ad and bd
would lead to the determination of a vector Od’ which represents
the movement of joint d; this diagram might be drawn from
the same pole O as was used in finding the movement of joint c.
If the procedure is repeated once more with reference to the
members de and ce, a vector Oe¢’ will be found which represents
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the movement of joint e and it may be noted that if the same
pole O is used for all three diagrams the vectors Oc¢’ and Od’
are already drawn when one starts the third operation. The
procedure is repeated as many times as is necessary to find the
movements of all the joints of the truss. Usually it must be
assumed that one of the joints is fixed in position and that the
axis of one of the members connected to this joint is fixed in
direction. If it is not true that there is such a member, the
solution as described above ‘will serve to find the movements
of the joints referred to the fixed joint and to the direction of the
axis of the member assumed to be fixed. Under such circum-
stances a further correction must be made to take account
of the error made in assuming one of the members to have a
fixed direction.

The method may be illustrated by a consideration of the truss
shown in Fig. 18a in which it will be assumed to begin with that
joint a is fixed in position and that the axis of member 1 does
not change direction. The members marked (+4) are assumed
to be in tension and, consequently, to have increases in length
while those marked (—) are assumed to be in compression and
to be subjected to decreases in length. It is assumed that
these changes in length are known. If the changes in the lengths
of the members are not given, they must be found from a con-
sideration of the causes of distortion. Usually this is the applica-
tion of a group of loads or a change in temperature for some or all
of the members. If the stress in any member due to a group of
applied loads be F the stress intensity in the member will be
J =F/A and the corresponding change in the length of the
member will be

_Jp _FL _
AL =gl =gz =Fr

where p = L/AE. If the cause of distortion be a change At°
in the temperature of a member and if the coefficient of thermal
expansion be ¢, the change in the length of the member will be
AL = ¢ At L.

Since, in the problem under consideration, joint a has been
assumed to be fixed in position and member 1 fixed in direction,
the vector Oa’ representing the movement of joint a is zero as
shown in Fig. 185. From O draw a line of length Al parallel
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to the direction of member 1, using any scale deemed suitable;
this vector Ob’ represents the movement of joint b. Now use
the procedure previously described to determine the movement
of joint ¢. The details are as follows: from ¢’ draw a vector
A2 to represent the change in length of member 2 and at its
end erect a perpendicular; from b’ draw a vector to represent
the change in the length of member 3 and at its outer end erect
a perpendicular which is to be produced till it intersects the
perpendicular drawn from the end of the vector A2; this intersec-
tion is the position of ¢’ and the vector Oc’ represents the move-
ment of joint ¢. It is to be noted that the direction of a vector

3¢)

Fia. 18.

representing the change in the length of a member depends
not only on the direction of the axis of the member but on the
character of the change in length also. For example, in drawing
A3, since this member is in tension the length of the member
increases and joint ¢ moves to the right with respect to joint b,
hence the vector A3 must be drawn to the right. Next, repeat
the operation to find the point d’ from the points ¢’ and o,
then repeat again to find the position of ¢’ from the positions of
points ¢’ and d'.

If the conditions of support are such that the initial assump-
tions with respect to the position of joint a and to the direction
of the axis of member 1 are actually true, the actual movements
of the joints are shown by the vectors Ob’, Oc’, Od’, and Oe'.
If, on the other hand, the conditions of support are such that
member ab rotates during the distortion a correction is necessary.
For example, suppose that this structure was supported at
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joints @ and d so that joint @ was immovable while joint d could
move in a horizontal direction only. Figure 18b shows joint d
to have moved to the left and downward; consequently the
assumption that the axis of member 1 was fixed in direction
was incorrect, and there is actually a rotation of this member
and of the rest of the structure about joint a. The correction
to be made, therefore, is to superimpose on the jomt movements
already found movements which are the results of a rotation
of the truss about joint a sufficient to bring joint d back to the
same elevation as joint a. A convenient metbod of finding the

Fia. 19,

movements of the joints during such a rotation was suggested
by Mohr and is explained in the following paragraph.

Let the figure abced shown in Fig. 19a rotate through a very
small angle a about the pole P. During this rotation each
point moves along a path which, for very small angles, may be
taken as perpendicular to the line joining the original position
of the point to the center of rotation. The distance each point
moves is equal to the angle o multiplied by the distance of the
point from the center of rotation. Now as in Fig. 195, draw
from (or to) a pole O a vector representing the movement, during
this small rotation, of each point so that the movement of
joint @ is represented by the vector a’’O, the movement of joint b
is represented by the vector 4’0, with similar vectors for the
other joints. Connect the points a’’b”’c’’¢’’d"’. Since the vector
a’’0 is perpendicular to the line aP and the vector 'O is per-
pendicular to the line bP, the angle a”’0b” is equal to the angle
aPb. 8ince, also a”’0 = a aP and b"’0 = a bP,

2’0 _aaP _aP
0  «bP bP



Arr. 20] DEFLECTIONS 57

therefore the triangles abP and a'’b"’O are geometrically similar.
In like manner one may show that the triangle acP is geo-
metrically similar to the triangle a’’c¢”’0, the triangle cdP is
geometrically similar to the triangle ¢’’d”’0 and the triangle
deP is similar to the triangle d”’¢’’0. It is possible, therefore, to
state the following conclusion:

If a rigid body rotates about a point through an angle so
small that the movement of any point in the body may be
considered as a linear, and if the inovements of two points ¢
and k in the body are plotted as vectors, 0¢" and Ok’ from (or to)
a pole O, and if the shape of the body is plotted to scale with
the points 7"/ and k'’ as a base, each line in this scale sketch will
be perpendicular to the corresponding line in the actual body and
the line joining any point in the scale sketch to the pole O will
represent, as a vector, the movement of the corresponding point
in the real body during the rotation.

If this theorem be applied to the structure in Fig. 18 in order
to find the vectors which represent the movements of the joints
during the rotation which is necessary to
correct the apparent vertical movement of
joint d, the procedure is as follows: The
vertical movement of joint d is shown in
Fig. 20 by the vector d’O and the vector
showing the movement of joint a is zero so
that a’’ falls on O, the original pole for the
distortion diagram. Construct, with the
points d’’ and a”’ as a base a figure which is
geometrically similar to the sketch abcde of
the truss but in which every line is perpen- e
dicular to the corresponding line in the sketch Fia. 20.
of the truss. This figure is a'’d'’c¢’’d"’¢’’. The movement of
joint b during the rotation is shown by the vector 4’0 and when
this vector is added to the vector Ob’ which represents the move-
ment of joint b due to distortion only, the sum is the vector b"'d’
which, therefore, represents the total movement of joint b.
Similarly, the movement of joint ¢ is represented by the vector
¢’’c’, the movement of joint d by the vector d”d’, and the move-
ment of joint e by the vector e’’¢’.

The solution, by this method, of a typical problem is shown
in Fig. 21. In this solution it was assumed that joint a was

b"
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fixed in position and that member ab did not change direction.
The number written on each member in the sketch of the truss
is E times its change in length. The vector diagram a’b’c’d’e’f’g’h’
was drawn by the method illustrated in Fig. 18b; consequently

the movement of each joint relative to a and the direction of the
member ab are shown by the vector drawn from a’ to the point
in the vector diagram corresponding to the joint in question.
Thus the relative movement of joint k is shown by the vector a’h’.
An examination of the truss, however, shows that the actual
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movement of joint A must be parallel to the surface supporting
the right-hand shoe; consequently the assumption that the axis
of member ab did not change direction was incorrect and a
correction diagram must he added to the Williot diagram.
This correction diagram was drawn as follows. The rotation
of the truss required to correct the error due to the incorrect
assumption is about joint a and during this rotation joint h
moves in an arc with center at a. ‘The angular movement is so
small that no appreciable error is made if the arc is replaced by a
straight line perpendicular to the line ah, in this problem a
vertical line. This movement of joint k 18 represented in the
vector diagram by a vertical vector drawn through a’ and is
st ch that when added to the vector a’h’ representing the move-
ment of joint A during the distortion of the truss the sum will
be a vector parallel to the actual movement of joint A. This
idea serves to locate the point A”. A line is drawn through A’
parallel to the actual movement of joint 2 and produced till
it intersects the vertical vector through a’; this point of inter-
section is h”. The vector h’’a’ represents the movement of
joint h during the corrective rotation.and the vector a’h’ repre-
sents the movement of joint h during distortion only; their sum
is the vector h”’h’ which satisfies the conditions of support.
The correction diagram a’b’’c¢’’d”’e”’f'’g”’h’’ is now drawn using
the points a’ and h'' as a base. It is geometrically similar to
the sketch of the truss but every line in it is perpendicular to the
corresponding line in the sketch of the truss. According to the
theorem previously developed, the movement of any joint
during the rotation is represented by the vector drawn from the
corresponding point in the correction diagram to a’, and this
vector, when added to the vector drawn from a’ to the cor-
responding point in the Williot diagram, gives a vector sum which
represents the total movement of the joint. For example, the
total movement of joint d is represented by the vector dd’,
which is the sum of the vectors d”’a’ and a’d’. The polygon
agh’””'d’’’g"""h'"’hy is the deflection diagram for the bottom chord
of the truss, the ordinates being measured vertically from the
base line aoho.

Usually it is advantageous to select as the joint which ix
assumed to be fixed in position one that is near the middle
of the truss and to choose as the member which is assumed to be
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fixed in direction one of those connected to this joint, the middle
vertical, for example, if there be one. Such a selection would
lead to a Williot diagram which, if drawn to the same scale as
might be used if the procedure in Fig. 21 were carried out, would
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occupy an area much less extensive than that in Fig. 21. It is
possible, then, to draw the diagram to a larger scale than was
used in Fig. 21 without drawing paper whose size is unwieldy
or to produce a more compact Williot diagram by using the same
scale. In addition, if the truss and loading are symmetrical
and the member assumed to be fixed in direction lies on the
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axis of symmetry, it is necessary to draw only half the Williot
diagram and no Mohr correction diagram is needed. This
variation of the procedure, applied to a truss which is sym-
metrical about a middle vertical but which is loaded asymmetri-
cally, is shown in Fig. 22. Joint d was assumed to be fixed in
position and member de was assumed to be fixed in direction.
When the Williot diagram was completed, it showed that if
these assumptions had been correct joint A would have moved
downward relative to joint a. The conditions of support,
however, show that the only possible movement of joint h
relative to joint a is horizontal; therefore, the assumptions were
incorrect and a Mohr correction diagram is necessary. This is
carried out just as in Fig. 21. If the loading had been sym-
metrical, the Williot diagram would have been symmetrical
about d’¢’ and the movement of joint A relative to joint a would
have been shown as horizontal. This satisfies the conditions of
support; no correction diagram would have been necessary and
the Williot diagram would have shown true deflections.

21. The Williot-Mohr Diagram for a Three-hinged Arch.—In
applying this procedure to a three-hinged arch the crown con-
nection between the two sections of the arch is assumed to be
broken and in each section one joint, usually the point of support,
is assumed to be fixed in position; also one of the members
connected to that joint is assumed to be fixed in direction. A
Williot diagram is drawn for each section. In general the two
Williot diagrams will show movements for the crown hinge
which are not alike, and corrective rotations of the two sections
are necessary. Each section is rotated about the fixed joint
through an angle which is such as to produce, together with the
relative deflections previously found, final deflections for the
crown joint which are alike for the two sections.

The procedure described above has been applied to the arch
shown in Fig. 23. In part (a) the Williot diagram, 1’-2'-3"-4"-5’
for the left section of the arch is shown; this was drawn on the
assumption that joint 1 was fixed in position and that member
1-2 did not change direction. Similarly the Williot diagram

on the assumption that joint 11 was fixed in position and that
member 11-10 was fixed in direction. This is shown ir (b).
In these two diagrams the vectors 1’-5" and 11'-5’ which repre-
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sent movements of joint 5 based on two separate assumptions
are not alike, consequently the assumptions were incorrect.
There must be a further movement of each section; this move-
ment is a rotation about the fixed joint in each section, such

100 100 100 100 100 100
_fz -100 §® -100 §B -200 {® -200 {® -100 . 40V,-20H,-100(20+40)=0
s 8] o1 2o 8] 18 H;=2V,-300
de Py Q| .\6L~ o[ W 3 f
1 8/ N g e ,\-‘f 3 lo | 100v,+10H,=100(20
ol 222RE O ARy +40+60+80+100)
75045 20 50 D82, |1 120Vi=3000+30000
o S @y V=275, V22325
b 20 B 950
b e e e e g =
fommmrermenieee e 5@20 Q 5
-/00 -/00 =200 =200 -/00
7%—6"
g o |
1 N
rJo) [ d
The number in brackets on ~zog; o a"
each bar /s ifs area in sq.in.
The number, without brackets |
K is E:AL-1073(F1) ‘
* J S Wetr” * 0"
| . 71
" B 5R . ’
2 | / 0/1 _‘__"/-15
l__, 2 5‘: // ]ll \ I/ ‘
| _l \ \9-/-—|j l 4 I
: N/ [ I
s\ VA
i1\ /18 -/ |
N3 /L—h—J' |
L J.:Zf 7 Ao
) © 7K//J| P
o
Joint | 8,E-10 (ft) §,.- E 10 (1) |yoint [&;€ -1073(1)] 8 E 107 (F1)
2 | 203 322 — | 7 | 1608 290 -
3 892 710 — | 8 | 1120 270 =
4 996 223 — | 9 | 915 203 _—
5 [ 1140 123 — | 10 _| 302 375 _+—
6 1710 T -
Fia. 23.

that the movement of joint 5 during the rotation when added
to the movement shown in the Williot diagram will produce
identical total deflections of joint 5 in the two sections. The
amount of this additional movement of joint 5 was found in
(¢). From point 1/, 11’ are drawn 1’-5; which is a reproduction
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of vector 1'-5' in part (a) and 11’-5 which is a reproduction of
11-5’ in part (b). To 1’-5; must be added a movement of
joint 5 due to the rotation of the left section about joint 1 which
is a movement perpendicular to the line juining joints 1 and 5.
Similarly one must add to 11’-5; a movement of joint 5 about
joint 11 which is represented by a line perpendicular to the line
joining joints 11 and 5. These two lines are produced till they
meet at point 5'”. The total movement of joint 5 is represented
in direction and magnitude by the line 1’-5'" in (c).

It still remains to find the total movements of the other
joints of the structure by adding to the movements shown in
parts (a) and (b) the movements occurring during the rotations
of the two sections. This is done by drawing a Mohr correction
diagram for each section of the arch. In part (a) the correction
diagram is determined by the points 1’ and 5””. Of these two,
point 1’ is already known and point 5" is found from the fact
that the final movement must be shown by the vector 5-5,
which, therefore, must be equal and parallel to the vector
1’-5""" in part (¢). Once point 5’ has been found, the rest of the
correction diagram is found by drawing a figure geometrically
similar to the left section of the arch but turned through an
angle of 90 deg. A similar procedure will serve to find the
correction diagram for the right-hand section.

22. The Elastic Curve as a Funicular Polygon; Elastic Loads.—
The elastic curve for a series of members in a truss may be
treated as a funicular polygon, drawn for certain forces, using
a pole distance equal to unity. These forces are called the
elastic loads for the series of members and the condition of
distortion under investigation. In determining these elastic
loads it is necessary to consider two separate problems: First,
what forces must be used to produce a particular polygon and,
second, what are the relations between these forces and the
condition of distortion of the structure? In many structures
it is necessary to investigate the deflections of certain joints
only, and in finding these deflections it is not necessary to take
into account, directly, any members other than those forming a
pin-jointed chain which has, as connections, the joints whose
deflections are desired. This method of investigation was
developed by Miiller-Breslau and is called ‘“‘Miiller-Breslau’s
bar-chain method.”
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This method may be explained by beginning with the first
of the two problems mentioned in the preceding paragraph
and then considering the second. Consider Fig. 24 in which is
shown the funicular polygon for certain forces Pm—_1, Pm, Pm+1,

Lines ab and me are drawn parallel to the base line A4
a.nd md is am produced. The lines marked with corresponding
Roman numerals are parallel.

T A
Py \1 m
Y. - A [ [P :
S Rt
*-——m g2 -—-®f 1 EF g/
a 0 ™oy e
Pgnol ~ | m \IE v v
o o t P-4 P
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:
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In the triangles amb and mde, ab is parallel to me, am and
md are in the same straight line, while bm and ed are both vertical;
therefore the two triangles are geometrically similar and one
may write

bm  ed
A Amg

Now, bm = ym — Yym-1 8nd ed = cd + (Ymy1 — Ym), therefore

Ym —Ynr _ 4 WUmir = Ym)
xm km-o-l xm+l

It may be seen also that the triangles med and pqO are geometri-
cally similar, so that

cd _Pn
T H

therefore,

Pmn _  Ym—Ymi _ Ymit — Ym
H - + km xm-’-l (50)

If the funicular polygon under consideration is such that
it is to be the elastic curve for a structure, the pole distance H
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becomes unity and the force P,, is the elastic load to be used at
joint m and will be designated by wa. Also, if the base line AA
is the line from which deflections are to be measured, the ordi-
nates y are the deflections of the joints which, in the previous
articles, have been designated by §. Using this notation,
Eq. (50) becomes

w ____Lsm—am-—l‘_am—i-l_am
m e

- Ami S
This is the general equation expressing the elastic load for any
joint in terms of the deflections at that joint and the two adjacent
joints.

Fia. 25.

To find the relation between such an elastic load and changes
in the lengths of the members of a trussed structure consider
the series of members (m — 1)-(m)-(m + 1)-(m + 2) in Fig. 25.
The connections between these members are assumed to be
frictionless pins; the members are subjected to changes of length
with consequent changes in their slopes and in the positions of the
joints. The original position of the bar chain is fixed with
reference to the axis OX by means of the ordinates ym—1, Ym,
Ym+1, €tC.

The notation used is as follows:

L., = length of the member to the left of joint m,

0. = slope of that member to be taken as positive when it is

counterclockwise from the horizontal,

¢m = angle at joint m between members (m — 1)-(m) and

(m)-(m + 1) and is measured on the lower side of the
two members.
It is evident that

]

]

Ym-1 — Ym = Lm sin Oy

If there is a displacement of the bar chain so small that the



66 STATICALLY INDETERMINATE STRUCTURES |[Cuar. 11

changes in the lengths of the members and the movements of the
joints may be written as infinitesimals,

dYm—1 — dAYm = ALy sin 0y + Ly COS O db,

If both sides of this equation are divided by Am = L cos 0am
it becomes

dyn-l - dym __ dLm
Xm = —L‘: tan 0... + d0,n
The infinitesimals dy are the vertical components of the dis-
placements of the joints which previously were designated by 4.
Hence,
% = Edé_ tan 8 + do

A similar relation may be written for the member connecting
joints m and m + 1, thus

6»\ - 6m+1 = dLm—H
xm+1 Lm+1

tan Ome1 + d0myr

When the first of these equations is subtracted from the second,
the result is
60» - 61»—1 _ 6n+1. - 6m - -&l ﬂ+l
o _— = . tan 6, + L tan 0m+l
—da + by

The left-hand side of this equation is the same as the right-hand
side of Eq. (51); therefore,

dL dL m+41

w..=——E:t n 6, +Lm+1

From Fig. 25,

+

tan 0m+1 - dam + d0-+1

¢m = 1800 -_ (0," - 0n+l)
and, differentiating,
dém = —dbn + dOmsr

therefore

_O9Ln tan 0, 4+ —* ALty
Lm1

Wm = Lm

tan Omi1 + dom (52)
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In using this equation it is to be remembered that the angles 6
are to be taken as positive when they are measured counter-
clockwise from the horizontal and that the fractions dLm/Ln
and dLm1/Lmy1 are the straine (unit) for tl.: two members
of the chain adjacent to joint m; these strains are to be taken as
positive when they are increases in the lengths of the members.
It should be pointed out also that these strains may be due to
any cause whatever. If the strains correspond to a stress
intensity f and an increase of At° in the temperature

dLm _ fm
L. " E

+ € At

One of the properties of the funicular polygon is that if the
pole distance is unity and if the outer strings of the polygon are
produced to intersect the lines of action of the reactions for a
simple end-supported beam which supports the loads for which
the polygon is drawn and if a straight line is drawn connecting
these two points of intersection, the ordinates from this line to
the funicular polygon represent, to a scale which is numerically
the same as the distance scale to which the beam was drawn, the
bending moments for that beam. This idea makes it possible
to obtain the funicular polygon for the elastic loads, i.e., the
elastic curve for the bar chain, by imagining the elastic loads
to be applied to a simple end-supported beam and drawing the
bending-moment curve for that beam. It should be pointed out
also that this procedure merely serves to determine the shape
of the elastic curve and that the base line from which the bending
moments due to the elastic loads are measured is not necessarily
the line from which the deflections are to be measured: This
line of zero deflections is found by drawing through the points
on the funicular polygon at which the deflections are zero a
line which will be the base line from which the deflections are
to be measured. If the imaginary end-supported beam to which
the elastic loads are applied is in the same position relative to the
elastic loads as the real structure and if the latter is end-sup-
ported, the line of no deflections coincides with the base line
from which the bending moments were measured and no adjust-
ment is necessary.

The first two terms in the right-hand side of Eq. (52) may be
taken directly from the condition of strain which defines the
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condition of distortion of the structure but a little further
explanation is necessary before one can evaluate the terms
dom. It is evident that the angle ¢, is equal to 360 deg. minus

the sum of the angles of the triangles

of the truss having vertices at joint m.
T If it is possible to compute the
h changes in the angles of these tri-

_'_ angles, d¢,, can be determined; it is,
"7 in fact, minus the sum of the changes
in these angles. These changes can
be computed as follows: Consider
the triangle shown in Fig. 26 and suppose that the lengths of the
sides of this triangle change by small increments.

c=bcosa-+acosp
Differentiating,

dc = db cos a — b sin a da + da cos 8 — a sin 8 dS

Also
h=asinB =bsin «a
therefore
dc = db cos a + da cos B — h(da + dB)
Since
a+ B+ v = 180°
da +dB8 = —dvy
Therefore

hdy = dc — db cos a« — da cos B8
Dividing both sides of this equation by h = a sin 8 = b sin «

_dcc dbcosa dacosp

d7—?}_z— b sin « asin B
_dcbeosa+acosp  dbcosa dacosB
~ ¢ bsina = asinB b sin « asin B
db dc da
= ?——F>cota+(—c~——;>cotﬂ (83)

Similarly the changes in the other two angles of the triangle are
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(53a)
dﬁ:(%l-)—g cot.'_v-{—(%b—%)-ota

If the triangle is one of the triangles formed by the members
of a truss and the changes in the lengths of the sides are due to
stress intensities and changes in temnerature

b _ f,

b dC jc
— =5+ € Al — + € At — ==
a E + ay b E + by ¢ E + € Atc
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As a numerical illustration consider the truss shown in Fig.
27a. It is desired to find the vertical components of the deflec-
tions of the joints of the bottom chord. The truss is symmetrical
about member 6-7, the loads are stated in units of 1,000 Ib. and
the numbers in parenthesis are the cross-sectional areas in square
inches.

Since it is desired to find the vertical deflection components
for the joints of the bottom chord, the bar chain to be used
consists of the members of the bottom chord. Since all of these
members are horizontal each one has a slope 8§ = 0 and the
first and second terms of the right-hand side of Eq. (52) vanish

leaving

Wm = d¢m
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All that is necessary in computing the elastic loads is to compute
the changes in the angles of the triangles of the truss which
have vertices at the joints of the bottom chord. This is carried
out in tabular form basing the computations on Eqs. (563).

Coefficient of cot « ' Coefficient of cot 8 1st 2d

Angle cot a-;—? i cot p-% term term |B d¢ 107
1-3-2 | —11.74—15.31=—27 .05/ —11.74— 8 21 =—19 95 —21 82| —24.74| +42.15
2-3-5 |+13.16—15.31=— 2.15/4+13.16— 8.21=+ 4 95 — 1 73|+ 6.14

3-5-2 + 82113 16= - 4 95, - 6.14

2-5-4 |—14 89—13 16=—28.05 |—22 62 +22.42
4-5-6 |—14.80+ 3 99=—10.90 i— 8 79;

6-5-7 + 8.214 3.99=+12 20 ;+15 13

5-7-6 |— 3.99—-14.45=—18.44' — 3 99— 8 21 =-12 20— 14 871—-15 13| +60.00
6-7-9 —14 87/ —15 13

Since the truss is symmetrical, d¢y = d¢s and d¢1 = d¢s.

The most convenient imaginary beam is one which has the
same span as the truss and has the same position relative to the
elastic loads as the bottom chord of the truss. If this choice
is made the line from which the bending moments due to the
elastic loads are measured is also the base line from which deflec-
tions are to be measured. The deflections are computed as shown
in Fig. 28.

E§10-%  5(in.)
+94.57 X 256 = 42364 +0.946

—42.15

+52.42 X 25 = +1310

—22.42 F3674 +1.480
+30.00 X 25 = + 750

—60.00 +4424 41.770
—30.00 X 25 = — 750

—22.42 +3674 +1.480
—52.42 X 25 = —1310

—42.15 F2364 +0.946
—94.57 X 25 = —2364

0

If the vertical components of the deflections of the joints of
the top chord are desired, they may be found from the fact
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that the difference between the deflections of top and bottom
chord joints at the upper and lower ends of any vertical must
differ by the change in the length of that vertical. For example,

8.21 .
- 3—)(—_—10‘ X 31 X 12 in.

= 0.946 in. — 0.102 in. = 0.844 in.

As a second illustration compute the vertical components of
the deflections of the joints of
the bottom chord of the truss
shown in Fig. 29.

The solution of this problem
is carried out in the same way
as the solution of the previous

' ! ) ‘ )
5y oy o
W
in one detail only. This differ-

53 = 5; - AL:..; = (0,946 in.

illustration; there is a difference

ence arises from the fact that the

angle 7-9-10 is an angle of a quadrilateral formed by members
of the truss instead of being an angle of a triangle. Consequently
it is necessary to find the change in this angle by a method which
differs slightly from that used for the other angles. Two methods
are available. Since the changes of the angles of a triangle
may be computed when the changes in the lengths of its sides
are known, it is possible to compute the change in the angle
7-9-10 if the change in the distance 7-10 has been found, treating

The number written on each member isits stress
intensity in units of 1,000 lb. per sq.in. The truss
and loading are symmetricdl about member 9-10

Fia. 29.

the angle as one of the angles of the triangle 7-9-10. The two
methods mentioned differ in the means adopted to find the
change in the distance. One way is to use the law of virtual
work to find the relative deflection, along the line 7-10, of joints 7
and 10. This is a problem which has been explained in Art. 18
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and needs no further explanation here. A second means is
based on the idea that the sum of the angles 9-7-8, 8-7-5, 5-74,
4-7-6, 6-7-10, and 10-7-9 before distortion is 360 deg. and must
be 360 deg. after distortion also; in other words, the sum of the
changes in these angles is zero. If the changes in these angles
be expressed in terms of the strains in the sides of the triangles
of which they are parts, the only unknown which will appear
is the strain in the distance 7-10: this strain may, therefore, be
computed. The equation may be set up as follows:

[y
N
[
[y

cot a = = 1.0909; cot 8 = = 0.9167,

cot 2a = 0.08712
(4+16.0 — 11.99)1.0909 + (416.0 + 10.0)1.0909
+ (416.0 + 10.0)0.9167 + (416.0 — 16.02)0.9167 +
(— 14.0 — 16.02)1.0909
+ (—14.0 - AIIL"’E)IOQOQ + (0 - E'A—EL—’ﬂ)o.glm
7-10 7-10
+ (0 — 11.99)0.9167 = 0

[S Y
[
it
[ -]

This becomes

20076 E="-1° = _2.460
Li.1o

AL
ALY _ 120
E(L)'l..lo 1.226

The computation of the changes in the angles of the triangles
and of d¢ is carried out in the table shown on page 73.
For each member of the bar chain, 6 = 0; therefore, wm = d¢m.

E510~* 3§ (in.)
+144.21 X 30 = +4326 +1.730

—114.58

+ 29.63 X 30 = + 889

+ 28.28 +5215 +2.086
+ 57.91 X 30 = 1737

— 58.38 +6952 +2.781
- 0.47 X300 =—- 14

46938 +2.775
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An interesting variation in the details of the method is illus-
trated in the determination of the vertical components of the
deflections of the bottom chord of the cantilever truss shown in
Fig. 31. The truss is symmetrical about member 6-7 and is

loaded so as to produce in the members the stress intensities
written thereon in units of 1,000 lb. per sq. in. Each member of
the bottom chord being horizontal, the expression for the elastic
load to be used at each joint of the bottom chord, used as a bar
chain, is

Wpn = dom

and the computation of these quantities is carried out as in the

preceding illustrations. The computation is shown in the table
at the top of page 75.

8 % x N
RETE T
% { ..... [T 6@?5..{. ..... p....‘ﬁ

8=+ 3700

~6=-Q027"

© W 5 3

~N

[

5381

w h o ©
Fig. 32.

In this problem, as in the preceding illustrations, the shape
of the elastic curve for the bar chain selected may be found by
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Coef. of cot a Coef. of cot 8
Angle cob o = g cot B = g 1st term|2d term| E d¢ 1073
1-3-2 |+16.0+12.0 = +28 0{+16.0 - 16 0 = 00 |+23.33 00| +10.27
2-3-6 |—12.0+12 0 = 00/—-120-16.0 = —280 00 |—33.60
3-5-2 +16.0 +12 0 = +28 0 +33.60
2-5-4. |+16.0 +12.0 = +28 0 +23.33 —26.33
4-5-7 -1 8+11 5 = 00/—115-140=-25.5 00 |-30 60
574 +14.0+11 5 = +25 5§ ;%—30.60
8-7-9 +120+11 0 = +23 0 | 4+27.60
i
: |
Coef. of cot & ‘ Coef. of co2t¢ |
cot 8§ = 0.3250 cot e = 3 —-96.71
|
4-7-6 +16 0 + 11 8§ = 427 5+16 0+ 10 0 = 426 0 |+ 8 94{+10 40
6-7-8 +16 0+ 11 0 = +27 0{+16 0 +10 0 = +26.0 |+ 8.77|+10 40
Coef. of cot a Coef. of cot 8
| cot a = o cot B = 5 H ;
7-9-8 -1 0+11 0= 00—-110-120=-230 00 [{—27.60
8-9-101+14 0 +10 5 = {24 5 +20 42 —22 22
10- 9-11 +14.0+10 5§ = +24 5 ' +29 40
9-11-10 | -10 5+ 10 § = 00/—10.5—14 0 = —-245 00 ({—29 40} + 6 95
10-11-12 {+15 0 4+ 10 5 = +25 5| +150 - 14 0 = + 1 0 |+21 25+ 1.20'
: i

considering the elastic loads applied to an imaginary beam freely
supported at the ends and drawing the curve of bending moments
for this beam. This, however, is merely a means of determining
the shape of the elastic curve and the base line for bending
moments is not necessarily the base line from which deflections
are to be measured. In this problem the base line from which
deflections are to be measured is a straight line passing through
the points on the elastic curve corresponding to the points of
support of the truss. The determination of the deflections is
shown in Fig. 32.

- 2222 X2 = — 4.4
- 96.71 X3 = —290.13
— 26.33 X4 = -—105.32

—145.26 —339.89
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+ 6.95 X1 = <+ 6.95
+ 10.27 X5 = + 51.35
—128.04 6) —381.59
— 63.598 — 63.598
— 64.442
&, in.

— 63.60 X255 = —1590 —0.636
— 10.27
— 73.87 X 25 = —1847
+ 26.33 —3437 —1.3748
— 47.54 X 25 = —1188
+ 96.71 —4625 —1.8500
+ 49.17 X 25 = 41229
+ 22.22 —3396 —1.3584
+ 71.39 X 25 = 41785
— 6.95 —1611 —0.6444
+ 64.44 X 25 = 41611

000

23. Deflections of the Joints of a Three-hinged Arch by the
Use of Elastic Loads.—In the illustrations in Art. 22 the trusses
were such that changes in the angles between adjacent members
of the bar chain could be computed from the strains in the
members of the truss. At the crown hinge of a three-hinged
arch the relative rotation of any two members connected to the
crown hinge is not only a function of the strains in the members
forming the boundaries of triangles but is a function of the relative
rotation of the two sections of the arch when they are considered
as rigid bodies. Some addition to the theory already devel-
oped is necessary, therefore, if one is to be able to use the
method of elastic loads in computing the deflections of the
joints of a three-hinged arch. This addition is a method of
computing the change d¢ in the angle ¢ between two members
of the bar chain adjacent to the crown hinge and is based on the
fact that the change in the length of the chord of the bar chain
joining the points of support must be equal to whatever relative
yielding of the supports there may be along the line joining them.
Usually this yielding is assumed to be zero. If it is possible to
get up an expression for the change in the length of this chord
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in which the only unknown is the change d¢ mentioned above,
there is an equation available from which this change may be

computed. In order to develop such an equation consider the
bar chain shown in Fig. 33.

L = ZL,, cos (0 — a)
Differentiating,
dL = ZdLs c08 (6m — @) — ZL 8in (0 — a)dfnm
Also

Ym + Lm cO8 O tan a — Ym—1 = L sin O,
or

L sin (0m — @)

m m—=Lm~. om’—Lm emt =
Y Ym—1 Si1n CcOSs an a oS @

therefore
dL = ZdL. cos (8, — a) — Zd0m coS a(Ym — Ym—1)

For each ordinate y in the second term of the right-hand side
of this equation there are two multipliers; for example, there
is & product ym d8. and a product —ym dfmy1. Regrouping
the products in this second term one obtains

dL = ZdL.,. cos (0m — a) — cOS aZym(dm — dAOmi1)
Using the relation

¢m = 180° — (Om — Omi1)
or

in the last expression for dL, it becomes
dL = ZdL, co8 (6m — a) + c0oS aZym dom (54)

and this equation would serve as a basis for the evaluation of
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the change d¢ in the angle ¢ at the crown hinge of the arch.
A more convenient procedure, however, is to continue this
development until dL is expressed in terms of the elastic loads
and to compute the elastic load to be used at the crown hinge
directly. From Eq. (52)

dL dL
Apm = Wm + — - — ]
® w . tan 6 T

Substituting this expression for d¢. in Eq. (54),

tan oMl

dL

EdL. coS (0m — a) + cos aE {y,..w,,. + %’—"y,,. tan 0,, —

%fi"'—tly,.. tan 0m+1}
m+1

cos azymw, + EdL... coS (0w — a) +

%" tan fm(ym — Ym—1) COS &
this transformation being based on a regrouping of the members
of the last two terms of the summation. Substituting for

Ym — Ym—1

dL = cos azy..w... + EdL... cos (0m — a) +
dL sin (m — a)
‘-J—L—m- tan 6,, Lm——%'&’*—* COS a
= CoS "2 YmWm + EdL,..[cos (Om— o)+ tan fp,sin (O — a))
= CO0S a Ey...w,,. + EdL,..[cos Om — @) +
gin? 0, cos a — sin 0, cos 0, sin a]
coS 0,
= oS aEy...w... +
cos? 0, cos a + sin 6, cos 0, sin «a
+ sin? 0,, co8 a — 8in 0, cos O, 8in a
Sa.
cos O

dL = cos a[zymwm + EdL,,. sec 0...] (55)
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To illustrate the application of these ideas consider the arch

shown in Fig. 34a.

The condition of distortion is defined by

the stress intensities which are written (in units of 1,000 Ib.
per sq. in.) on the members.

D 5@20"---=--------
Cot @= 20 CO+T=JO Cot 28~3
Coté= 5 Cot w= 3

(a)

Changes in angles

Deflection curve of bottom chord

Fig. 34.

(b)

Eda = (fo — f3) cot v + (fo — f) cot B8

T
a fo— N \mt& fa— /e oot 8 |1stterm|2d term| E d¢ 10~

|
1-32 [—1000+ 9 32=— 068 05 {—10 00— 9 32=—19.32]| 05 |— O 34(— 9.66
234 (— 5.00— 9 32=—1432/ 20 0 |—28.64 0 +31 88
435 0 |— 500+ 8.38=+ 338 20 0 |+ 676
57-6 |—10 00+ 9.32=— 0.68 2.0 0 {— 138 O
6-7- 8 0 [—1000— 932=—1932 20 0 —38 64 +50 47
87-9 |—10.00— 9 32=—19 32 05 |—10 00+ 8 38=— 1.62| 05 |— 9.668|— 0 81
7-9-8 |+ 932+ 8 38=+17 70| 0 75|+ 9 32410 00=+19.32| 0 5 |+13.28/+ 9 66
8-9-10 0 |— 50014 14=—19.14; 1.0 0 |—19.14| +20 68
10-9-11 (—10 00— 14 14=—24 14/ 1 0 |—10 00+ 9 32=— 0 68| 05 |—24 14— 0.34

HWm = K dpp — fm tan 0m + fmer tan 0,4,
|

m Im tan Om | fmir [tan Omei! E dém | —fmtan 6um | +fme1 tan Omyr| E wm
3 -9.32| +0.5 | —8.38) +0.5 | +31.88 +4 66 —4.19 +32.358
7 —-9.32 —0.5| —8.38) —0.5| +50.47 —4 66 +4.19 +50.00
9 —8.38 —0.5| —9.32, —-0.5| +20.68 —4.19 +4.66 +21.15
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E dL = co8 of|Zym Ewm + ZfmLm sec 0,)

M| Yu| E wa Ym E wa I L |8€C 0| fm Lm seC O
1{0.0 0.0
3 [12.0]+32.35 +388.2 —9.32 104/5| 4/5| — 233.0
52400 Ews 24Ew, —8.38| 100/5]| 44/5| — 209.5
7 116.0} +50.00 +800.0 —9.32| 104/5| 34/5 - 233.0
9|8.0+21.15 +169.2 —8.38/ 104/5| 4/5| — 209.5
11{00 0.0 0.0 —9.32/ 104/5 §/5| — 233.0
+1357.4 + 24Ew, —-1118.0
Therefore

\}—-?_0—1[1357.4 + 24Fws — 1118.0] = 0

239.4

E‘W5 = —T = ~9.975

+ 21156 X1= + 21.15
4+ 50.00 X2 = +4100.00
+ 32.35 X4 = +129.40
+103.50 +250.55
— 998 X3 = — 20.94
+ 93.52 5)+220.61
— 44.12 44 .12

49.40
E 5103 , in.
+44.12 X 20 = 4 882.4 +0.353

—-32.35

+11.77 X 20 = 4+ 235.4

+ 9.98 +1117.8 +0.447
+21.75 X 20 = 4 435.0

—50.00 +1552.8 4-0.621
—28.25 X 20 = — 565.0

—21.15 + 987.8 +0.395
—49.40 X 20 = — 988.0

24. The Moment-area Theorems.—Two methods of deter-
mining the deflection of a point on the axis of a member which is
subjected to bending moment, axial stress, and shear have been
discussed already. A method of determining such deflections
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which is often more convenient is based on a consideration of the
geometry of the elastic curve and applying the relation between
the rate of change of slope at a point and the causes of that
change. The basic ideas iay be doveloped as follows: Let
ACB in Fig. 35 be the elastic
curve of part of any member
which is bent due to any cause
whatever and let AE be :e
tangent to the elastic curve
at A. Suppose also that tan-
gents to the elastic curve are
drawn at the ends of an element
of the elastic curve which has
ahorizontal projectiondr. Let
the curve MNO be such that Fia. 35.

its ordinate at any point is d8/dz, which is the rate of change of
slope of the elastic curve at that point. It is evident that the
total change of slope along the section ACB is

b
fde—f‘-iﬂdx

which may be interpreted as the area under the rate of change
of slope curve.

If the causes of distortion be limited to the application of
loads and to change of temperature, the rate of change of slope
at any point is

ds _ AQY)  dg,
iz EI teg T dr (56)

where g, is the shear strain. The shear strain causes a change of
slope of the axis of the member which occurs only when the
intensity of shearing stress changes. The change of slope is
clockwise when the change in the shear intensity is positive and,
therefore, is in the opposite direction to the change measured by
M/EI. Consequently, if z is measured to the right, the rate
of change of slope corresponding to change of shear intensity
must be written as negative. If there is no difference between
the changes of temperature at the two faces of the member,
A(At) = 0, and if the shear distortion be neglected, Eq. (56)
becomes
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d _M

dr ~ EI
and the statement with respect to the change of slope between
two points becomes:

I. The change of slope of the elastic cvrve between two points A and
B 13 equal to the area under the M/EI curve between the two points.

This is known as the first ‘‘ moment-area theorem.”

When it is remembered that the distortion occurring in a
structure is very small, it is evident that the intercept on the
line BE between the tangents at the ends of the element dr may
be written as z’ d and, consequently, that the distance BE is

equal to L *2' do and, since

b b
J;:r’ dO=Lz’%%dx

it is evident that the distance BE may be interpreted as the
static moment, about an axis through B, of the area under the
rate of change of slope curve between points 4 and B. When
there is no change in temperature and when the shear distortion
is neglected, this becomes what is known as the ‘‘second moment-

area theorem’’ which may be stated asfollows:
I1. The distance of a point B on the elastic curve of a member from
the tangent at A to this curve 18 equal to the stalic moment about an
axis through B of the area under the M/EI curve

m *p between points A and B.
N A very simple illustration of the applica-
R T A tion of these theorems is the computation of
Ko the deflection at a point on the axis of a
| "8M curye simple cantilever beam carrying a concen-
"K/id’ s. trated load at the free end (see Fig. 36).
Om ? If only the distortion corresponding to bend-
Fa. 36. . . . : .
ing moment is considered, the elastic curve is
tangential to the original position of the beam, the point of tan-
gency being at the left end. Consequently, the deflection at any
point m is equal to the static moment about an axis through m
of that part of the M/EI curve which lies between the left end
and the point m. Therefore

z2

,zl
EI&;*PI §—3'I+PL§§$
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Pz? ,
Oom = G—E—I-(2L + 27)
PL?

STy
ol

0 =
and the slope at any point m is

EI 9, = -Pxfg—PLf

O = 2EI(L =)

If it is desired to consider the deflection corresponding to
shear distortion, the distance D of point B on the elastic curve
from the tangent at A to the elastic curve must be written as

D - [ i
f (“? e
E‘I 2 dz fbd<KGi,>:c dz

The first term of this expression is the static moment, about
an axis through B, of the M/EI area as defined under the
moment-area theorems. The second may be interpreted in a
similar fashion.

Pdf . S\, . _ f”d ( S ) 3
—L(E(KG.T)I dx = —K — G‘I (Ib I)dz
o) + = il )
_Kxfd<(;/1>d + K dz
Al o
GA':C (‘A'
k(S - SN R[S - Sy
N\GA]  GA! GA GA! ar
where (A) g is the area under the S/GA’ curve between the

Ga’
points A and B. In this expression z, = 0, therefore

bd S
- = — K(4
J;d(KGA>I dr = +K GA,Ib ( )6%’

|I
N
c‘:‘
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which may be interpreted as K times the difference between the
area of a rectangle bounded by the distance z, and the ordinate
to the S/GA’ curve just to the left of A, and the area under the
S/GA’ curve between points A and B. If this difference is
positive point B has moved up with reference to the tangent at A.
It should be pointed out that S, and the point of tangency should
be immediately to the left of A, a suggestion which is of impor-
tance when the shear changes suddenly at point A. For example,
if it is desired to find the deflection due to shear at point m
of the beam in Fig. 36, since the

to bending
~ ._moment
~

,:, m *P 8 deflection from the original posi-
Bl - o b tion is also the deflection measured
t"'}‘Ll* o from the tangent to the elastic
" FF T | Shear! curve at a point just to the left of
: 'I PE, the support, and since the shear
w at such a point is taken as zero
> ! Py ; in the customary analysis,
b6l
- e _ Pz _ PL
! \\l “~Defjection duve om = —GT’ 8 = _GT

]

where the minus sign indicates
that point a has moved downward
with respect to the tangent.

The computation of the deflec-
tions for points on ‘the axis of
an end-supported beam is not so simple since, in order to use
the second of the theorems relative to the d6/dz curve, it is
necessary, as a first step, to determine the position of the tangent
to the elastic curve, the point of tangency being just outside
of the support. The method may be illustrated by a considera-
tion of the beam in Fig. 37. The tangent to the elastic curve
at a point just outside of the support at A may be located by
equating two expressions for the intercept, on the vertical
through support B, between the tangent and the elastic curve;
one expression is L 8, and the other is computed by applying
the second theorem with respect to the d6/dz-curve. Thus,

b M Sa
L6, = Lﬁz dz +K[G—A,L - (A)a_g_l]

in which S, is zero since it is the shear just outside of the point
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of support. If I and A’ are constant over the length of the span,

Pab a 1 (b a
Lo, = EIL[2 2y + (b + 5)] GA,K(PL a-pe b)
- 6%%(2& + 3ab + a?) — 0

Pab

6, = G—EI—L‘(% + a)

Due to bending moment only,

' 1 b zzx Py
S = 02 — 57 P17 5 3 = gEplec@ + a) — 2]

Due to shear only,

K Pbr
GA' L

aII =

In both of the above expressions §. is taken as positive down-
ward. Computing the deflections due to bending moment and
shear together,

1/Pb zz Pb
bn = bz — ['E_I(Tx 33) ~ Kgart® ]
L[aa:(2b +a) — 23 + é):'x[,

The point at which the greatest deflection occurs is the point
at which the slope of the elastic curve is zero, 1.e., the change of
slope between the end of the beam and the point of maximum
deflection must be equal to the slope of the tangent to the elastic
curve just outside of the support. This change must include
the sudden change of direction which occurs just over the
support due to the sudden increase of shear at that point.

26. Elastic Loads for Straight Members Subjected to Bending.
See Fig. 38. Let ACB be the elastic curve of a section AB of a
member which was initially straight and has been bent owing to
any cause and let MNO be the corresponding rate-of-change-of-
slope curve. Since

= 8EI

,d0
I/T¢ dz—',‘dz
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1o is equal to 1/L times the static moment, about an axis
through B, of the area under the rate-of-change-of-slope curve
between points A and B. The computation of 7, is exactly
the same as that which would be done if it had been desired to
find the left-hand reaction for an imaginary end-supported beam
AB subjected to a distributed load whose intensity at any point
is d8/dz. Hence one may state the following:

If a section AB of a member which is initially straight is bent
due to any cause, and if the rate of
change of slope at any point 1s df/dz, the
slope at one end of the section, referred to
the chord AB of the elastic curve, is equal
to the reaction at that end of an tmaginary
beam A B which is carrying a distributed
load of intensity d6/dz.

Consequently, d8/dx may be used as
! an elastic load for such members.

B ' In the particular case where one
F1o. 38. approximates by considering only the
distortion corresponding to bending

moment, the elastic load intensity is M/EI. 1If it is desired to
include the effect of shear distortion, the elastic load intensity is

\
\
1=
e
N

/
/
_!_1.______.___
[

[T
18
z
1_

.‘__
~
X

Further, since the slope of the elastic curve at any point,
this slope being measured with reference to the chord AB of
the elastic curve, is equal to the slope at the end minus the area
under the d#/dz curve between that end and the point under
consideration, if the d§/dz curve be considered as defining an
elastic load on an imaginary beam AB, one may state that

For a section AB of a member initially straight, but bent owing
to any cause whatever, the slope at a point m of the elastic curve,
referred to the chord AB of that curve, is equal to the shear at point
m of an tmaginary end-supported beam AB which carries a dis-
tributed load of intensity d8/dz.

Carrying the analogy further, since the deflection 3., measured

from the chord AB of the elastic curve to point m on the elastic
curve, is equal to 7, z minus the moment about point m of the
area under the d6/dz curve between points A and m, the com-
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putation of the deflection §. is exactly the same as the operation
of computing the bending moment at point m of the imaginary
beam A B described above, so that one may state that

At any point m of a member which was initially straight but
has been bent due to any cause, the deflection of the €lastic curve,
measured from the chord AB of that curve, 18 equal to the bending
moment at point m of an imaginary end-supported beam of span AB
which 18 subjected to a distributed load whose intensity i3 d6/dzx.

If the bending is due to the action of transverse loads and to a
change of temperature which varies from one side of the member

to the other,
do MA@y
=gtea K '(GA>

The last term of this expression may have magnitude either
because of variation in the shear S or because of variation in A’.
If the transverse load is continuous and has an intensity p
at any point, the last term may be written as
K d S) Kp
“ga\a) = tea
Where the transverse forces are concentrated, that part of the
elastic load which corresponds to shear distortion must consist
of concentrated loads, one at each point of application of a
KP
G A’

A distributed elastic load of intensity —g J%(—Afi,) should be

applied over portions of the beam where the cross-sectional area
is varying continuously. In evaluating this term the only
KS dA’
GA” dz
Should the cross-sectional area vary suddenly, at such points
concentrated elastic loads should be applied, of magnitude

-5~ )

or +g(2§7 - ZS-,), where A] and A} refer to conditions just to
L R
the left and just to the right of the section under consideration.

concentrated force on the real beam and equal to ++

variable is A’ and the elastic load intensity becomes +



88 STATICALLY INDETERMINATE STRUCTURES |[Cuar. II

As an illustration consider the beam in Fig. 39a, the problem
being to determine the curve of deflection. The curves of shear
and bending moment for the beam are shown in Fig. 39b and ¢,

. respectively. At any point the inten-
(?‘7"’0"‘{»{':7?/52' so  sity p, of the elastic load is

c
@ _M _Kd(S
& Pe=F1 ~ Gdz\4'
b)
© Since I and A’ are constant and since
© K = 1, this may be written

_ EIds
GA’ dx

Elp. =M

ti'Rc The first term of this expression is
defined by the curve of bending moment
and is negative because M is negative.
The second term is zero for all points
except at the two ends and at point B
where the shear changes suddenly. At these points there
must be concentrated elastic loads of

F1a. 39.

—(%11-,(—25) = +59.375, —(%(+75) - —178.125,
and
—(%(—50) = +118.75, respectively.

The only difference between the rest of the solution of this
problem and the solution for the corresponding part of the
illustration based on Fig. 31 is that due to the fact that in this
case the elastic loading consists of a distributed load and a
number of concentrated loads while in the former illustration
there were concentrated loads only. The numerical solution is

6 2
"2'x§)<6

12
+ —2—(6 + 4)]

EI X 18R.,

178.13 X 6 — 59.38 X 18 + 300[

EIR.,

+1200
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EIR., = 178.13 + 300 X 12-8- — 50.38 — 1200 — 118.75 =

41500
For 0 < z < 12 ft.

Tz 2
EI3, = —1259.38z + 25z 5 3 = —1250.38z + ?51;
For0 < 2’ < 6 ft.,
! 7 50
EIs! = —1618.75z' + 50z’ 32-% = —1618.757' + (')
25 ' "

z —1259.4z +—6—z’ Els, Els,, Els,,

2 — 2518.7 + 33.3 | —2485.0 | — 1318.7 | — 1166.7
4 — 5037.5 + 266.7 | —4770.8 | — 2637.5 | — 2133.3
6 — 7556.2 + 900.0 | —6556.2 | — 3956.2 | — 2700.0
8 —10075.0 +2133.3 | —7941.7 | — 5275.0 [ — 2666.7

10 —12593 .8 +4166.7 | —8427.1 | — 6593.5 | — 1833.6

12 —15112.5 +7200.0 | —7912.5 | — 7912.5 0.0

50 I "

F 4 — 1618.75z' +—6—(J:’)‘ Els,, Els, Els,,
6 — 9712.5 +1800.0 | —7912.5 | — 7912.5 0.0
4 — 6475.0 + 533.3 | —5941.7 | — 9231.2 | 4 3289.5
2 — 3237.5 + 66.7 | —3170.8 | —10549.9 | + 7379.1
0 0.0 0.0 0.0 | —11867.7 | +11867.6

If the shear distortion had been neglected, the solution would
have been

Y. EIR.=1200; EIR. =150
For 0 <z < 12 ft,,

EIs, = —1200z + 2Fs:x:“
For 0 <z’ < 6 ft.,

EIs! = —15002 + %)(")'
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z - 1200z +-2§z- Els, EIs, EIs, | Error
2 — 2400 + 33.3 | —2366.6 —1200 —1166.6 0
4 — 4800 + 266.7 | —4533.3 —2400 —-2133.3 0
6 - 7200 + 900.0 | —6300.0 —3600 —2700.0 0
8 — 9600 +2133.3 | —7466.7 —4800 —2666.7 0
10 —12000 +4166.7 | —7833.3 —6000 —1833.3 0
12 -—14400 +7200.0 | —7200.0 —7200 0.0 0
For 0 < 2’ < 6 ft.,

’ 5002’ 80 EIs, EIS, EIs Error,
z -1 +5* - - ™ | per cent
6 —9000 +1800.0 | —7200.0 | — 7200 0.0 0.0
4 —6000 + 533.3 | —5466.7 | — 8400 |+ 2933.3] —15.9
2 —3000 + 66.7| —2933.3 | — 9600 |+ 6666.7] —16.1
0 0 0.0 0.0 | —10800 |+10800.0| —16.2

26. The Conjugate-beam Method.—For the determination of
slopes and deflections in a given beam by the moment-area

§C

Fia. 40.

theorems, it may be convenient to
introduce as an expedient, the con-
jugate beam. The conjugate beam
is a fictitious beam of the same
length as the given beam, but one
which is supported and loaded in
such a way that its shear and
moment diagrams become identical
with the slope and deflection dia-
grams, respectively, for the given
beam.

Let A’M'B’ in Fig. 40 be the
unstrained position of a portion of
any straight beam, which, owing
to any cause whatsoever, deforms

to the shape and position shown by the line AMB. Let
54 and 0.4 be the deflection and slope, respectively, of point A,
measured relative to the original position of the beam as a base
line. Using the moment-area relations, the slope at any point M
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in the portion of the beam considered is given by

M
0y=01—f —gﬁdx,
A AT

while the deflection at point M is given by
Su = 84 + 04(zan) — f x——da:

It is evident that if 6, is considered as the shear in a conjugate
beam at point A, and if 4. is taken as the bending moment at
the same point, and if d6/dz is considered as a loading, the shear
and moment diagrams for this conjugate beam will be identical
with diagrams for slope and deflection, respectively, in the given
beam, each referred to the unstrained position of the beam.
The same relation holds regardless of which side of the section
is considered in computing shear and moment. From this it
follows that the conjugate beam is in static equilibrium under
the elastic loading df/dz and the end slopes and deflections,
considered as vertical force and moment-resisting reactions,
respectively.

At points where the deflections or the slopes of the given beam
are known, the moments and shears of the conjugate beam must
be made to assume those definite values; correspondence between
zero values of these functions is of particular importance. At
special points, such as at an internal hinge in a given beam,
the conjugate beam must be such that its shear and moment
diagrams correspond to the conditions of slope and deflection
known. The choice of proper types of support for the conjugate
beam will ensure the fulfillment of these requirements, and at
other points on the conjugate beam the desired relations will
then exist.

The following procedure may be followed in the selection of
supports and the placing of hinges and free ends on the conjugate
beam:

1. When the deflection at a point in a given beam is zero, a
hinge is introduced in the conjugate beam, so that the moment
at that point will be zero.

2. At the end of a given beam, where the deflection may not
be zero, a moment-resisting reaction is provided in the con-
jugate beam, 8o that moment may occur at this point.
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3. When the slope at the end of a given beam is zero, no
vertical reaction can occur at the corresponding end of the
conjugate beam. The shear in the conjugate beam must be
gero at that point.

4. At the end of a given beam where the slope may not be
zero, a vertical reaction is provided for the conjugate beam, so
that shear may occur at this point.

5. When an intermediate hinge occurs at a point in the
given beam, a vertical reaction is introduced at the corresponding

Given

beam }'—'—— ~ » - .3
1 I
oo ——t e

gé::%’ i M » » ». Lod

Conjugate
bea'{ng

s ™ -~ - o
Fia. 41.

point in the conjugate beam. Thus equal deflections but different
slopes on the two sides of the hinge in the given beam are shown
by equal moments but different shears at corresponding points
on the conjugate beam.

Thus a simple end support for a given beam, where slope
may exist but deflection is zero, would be reproduced on the
conjugate beam as a simple end support, since shear might then
have a value, but moment would be zero. A fixed end on a
given beam, where both slope and deflection are zero, would be
reproduced on the conjugate beam by an end hinge and the
absence of a vertical end reaction. This amounts to leaving such
an end free, under which condition both shear and moment
at the end are zero. A free end on the given beam, where both
slope and deflection may occur, may be reproduced on the con-
jugate beam by a fixed end support, since both shear and moment
will then be possible.

Figure 41 illustrates the type of support to be used on con-
jugate beams for a number of given beams. It will be noted that
a reciprocity exists between given and conjugate beams.

Since the conjugate beam is in equilibrium under the elastic
loads and the end slopes and deflections considered as reactions,
once the condition of support and location of hinges in the
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conjugate beam have been determined, the reactions may be
computed by statics.

As an illustration of the use of the conjugate-beam method,
suppose it is desired to compute
the slope in terms of EI, at point a 100 kips
on the beam given in Fig. 42, due } v *9&
to the load shown. Distortion due l<9+-- 9" - — 9'--"
to shear will be neglected in this [Naz " i
computation. The conjugate | : '
beam, together with the M/EI
diagram, which in this case con- Vi 200
stitutes the elastic loading, is shown Fro. 42 £
below the actual beam. On the T
conjugate beam, taking moments, about the hinge, of the forces
to the left of the hinge,

900 900 9
+9VL+EIX X3 - IX X115 =0
5400
Vi=+3gr

The slope at a equals the shear at a on the conjugate beam,
which in this case is equal to

900 5400 |, 900 9 5400
~F0 X5t G0+ X3 = +r
In a similar manner, the slope or deflection at any point in the

given beam may be obtained by computing shear or moment,
respectively, at the corresponding point on the conjugate beam.



CHAPTER III

STRESS ANALYSIS FOR STATICALLY INDETERMINATE
STRUCTURES

27. Introduction.—It has been stated already that the methods
of solution to be used to determine the stresses in statically
indeterminate structures may be classified in two groups. In
one group, the order of procedure is to use the redundant stresses
or reaction components as the primary variables and to derive
the equations which are needed in addition to the available
equations of equilibrium as statements of certain necessary
requirements with respect to the distortion of the structure.
In the other group, a solution is obtained by expressing the
stresses as functions of certain characteristics of the distortion,
which latter are used as the independent variables, and writing
the equations of equilibrium for the structure, thus providing
a means of computing the distortion characteristics and, from
them, the stresses. The discussion which follows will begin with
solutions which fall in the first-mentioned group.

28. The Use of the Law of Virtual Work in the Analysis of
Statically Indeterminate Trussed Structures.—It is always
possible to solve the problem of stress analysis for a statically
indeterminate structure by using the law of virtual work as an
expedient to enable one to state certain conditions of distortion
which the structure must satisfy. These statements are equa-
tions which, together with the available equations of equilibrium,
are sufficient to define all the unknown stresses and reaction
components. The procedure is best explained by consideration
of a particular illustration such as the arch shown in Fig. 43.

It is assumed that this structure and its loads lie in one plane
and that the loads are applied at the joints only. If this be so
there are, as unknowns to be found, 6 reaction components and
69 bar stresses, 75 in all: the number of joints is 36, therefore
there are 72 equations of equilibrium available. It is evident

that there are three restraints more than are necessary for
94
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stability, or, to put it in another way, that there are three
redundant stresses or reaction components. This is usually
stated by saying that the structure is statically indeterminate
to the third degree.

The 72 equations of equilibrium might be used to express 72
of the unknowns in terms of the remaining three; if, thereafter,

some way of computing the last three can be found, the problem
is solved. Suppose that the last three unknowns are the hori-
zontal component of the reaction at 4, and the stresses in the
members bb; and cc;. Let these be designated by X,, X,, and X,,
respectively, X, to be taken as positive when it acts toward the
left and the other two to be taken as positive when they are
tensions. A means of determining the magnitudes of these
three redundants may be found by considering Fig. 44. This
structure differs from the one shown in Fig. 43 in three details:
The right-hand support has been made movable horizontally
and the two members bb, and cc, have been cut; at the same
time there have been added a force X, applied at A, and acting
to the left, two forces X, avoplied on opposite sides of the section

% Xp Xp “ XeXe \f2

Xa

F1G6. 44.--Primary structure

through member bb;, and acting in directions such as to produce
tension in the two parts of the member and two similar forces
X. applied on opposite sides of the section through member cc;.
This structure is stable and statically determinate. The
redundants must be chosen sn that the stresses in the primary
structure, due to the known loads, or due to the redundants,
can be computed; most frequently it is statically determinate.
If the forces X,, X, and X, are equal, respectively, to the reaction
component X, and the stresses X, and X, which remain as the
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last three unknowns for the structure shown in Fig. 43, the
condition of stress in the structure shown in Fig. 44 must be
exactly the same as the condition of stress for the structure
shown in Fig. 43; the conditions of distortion in the two structures
must be alike also. It follows that these three redundants must
be such as to cause the structure in Fig. 44 to satisfy the following
conditions of distortion: The horizontal displacement of the
point of application of the force X, must be equal to whatever
horizontal movement there may be at joint A of the structure
in Fig. 43; the points of application of the two forces X, can have
no movement relative to each other nor cah the points of applica-
tion of the two forces X. have any movement relative to each
other. If it is possible to express these three deflections as
functions of the known loads, the proportions of the structure
and of X,, X, and X., three equations are available, having as
unknowns only the three redundants. It is possible, therefore, to
compute the three redundants and, thereafter, all the other
unknowns.

In this illustration the law of virtual work will be used to
express the deflection characteristics desired in terms of the
known loads and the redundants. The stress in any member
of the structure shown in Fig. 44, hereafter cslled the primary
structure, may be expressed as the sum of the stresses caused
by the loads and redundants separately, z.e.,

F=F0+X0FG+X6F5+XoFc+etC- (57)

in which F = the total stress in any member.

Fo = the stress in that member due to the known
loads only.

F, = the stress in that member when the only forces
applied to the structure are a unit force applied
at A in the direction of X,, and the reactions
caused by this unit force.

Fy = the stress in that member of the structure caused
by a pair of unit forces applied at the points of
application of the forces X,, each in the direction
of the corresponding force X, together with the
reactions caused by this pair of unit forces.

F, = the stress in that member caused by a pair
of unit forces applied at the points of application
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of the forces X, each in the direction of the
corresponding force X, together with the
reactions caused by this pair of unit forces.

With this understanding, the coefficients X,, X,;, and X, in
Eq. (57) become the magnitudes of the forces numerically and
are pure numbers.

In applying the law of virtual work to determine the hori-
zontal movement of point A of the primary structure, the
Q system to be adopted consists of the unit force applied at A
and its reactions as described in the definition for F,. This
condition of loading will be called ‘‘condition X, = 1.” The
stresses in the members due to this @ system are, therefore,
the same as those defined by the notation F, and the equation
with respect to a movement of point A becomes

150+Wa= EF A]J

=EF<AF+5ALL>

FJJ

"5 (Fo + XoFo + XoFs + XFo)

+ DFeentL
= Srel + Xe SFLE + X S FR

+ XCEFGFCA-E + DF.eAlL (58)

in which W, is the virtual work done by the reactions in condition
X. = 1 due to any possible movement of the points of support.
No solution will be possible unless such movements are known
or can be found by some means not included in this particular
problem. It should be emphasized that this equation deals
with the distortion of the primary structure.

Similarly, in expressing the relative deflection of the points
of application of the two forces X,, the Q system to be adopted
consists of a pair of unit forces acting at the points of application
of the forces X, each in the same direction as the corresponding
force X, together with any reactions due to these unit loads.
This condition is the same as that described in defining the stress
F, and will be designated as ‘“condition X, = 1.”” The bar
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stresses it causes are the stresses Fi,. The relative deflection &,
of the two points in question is stated by the equation

18 + Wy = ZF, AL
-EFb( +eAtL>

= SFEF+ XFo+ XFy + XF

+ DFeatl
- SEFeis + X SFF L+ X S FE
F X,EF,F.ALE + DFeatl (59)

where W, is the virtual work done by the reactions in condition
X, = 1 during any possible actual yielding of the supports.

In the same way the condition with respect to the relative
deflection of the points of application of the forces X, may be
stated as

18,4 Wom DFFie + X SEFL+ X SEFE
+ X,EF:-;E + DF.eatL (60)

In these equations 4, is usually zero; & and $., each being the
relative deflection of two points on opposite sides of an imaginary
section across a member, must be zero; and if the points of
support of the structure do not yield, as is usually assumed to
be the case, W,, W, and W, must be zero also.

There is a physical interpretation for each of the summations
in the right-hand sides of Eqs. (68), (59), and (60), which is of
considerable interest and is important because of ways in which
it may be used. For example, having Eq. (49) in mind, it may

be seen that EF“F‘ZI:E is the horizontal movement inward
of point A of the primary structure when the condition of dis-
tortion is that due to “condition X = 0.” Similarly, EF"ZPE
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is the horizontal movement inward of point A when the condition

of distortion is that induced by ‘‘ condition X, = 1,” EF“F"XLE

is the movement horizontally and inward of point A when the
condition of distortion is that due to ‘““condition X, = 1” and
might be also interpreted as the relative deflection of the points
of application of the forces X, when the condition of distortion
is that due to ‘“condition X, = 1"; there are similar inter-
pretations for the remaining summatlons. These interpretations
suggest that the summations might be designated by 8u0, 8.a,
S, etc., in which the first subscript names the point whose
deflection is under consideration at the moment and the direction
of that deflection, while the second names the cause of the dis-
tortion, t.e., some particular unit force or stress acting in a
particular direction. Using this notation, Eqs. (58), (59), and
(60) may be written in the form

1 6 + W = 5ao + Xa60a + Xbaab + Xcaac + 6a¢
18 + Wy = 80 + Xabsa + Xobw + Xcboe + O (61)
1 6 '+' W 5c0 + Xaaca + Xbacb + Xeace + 6::

(]

The quantities designated by & in the equations above may
be computed in several different ways. If the law of virtual
work is used as the expedient, each one is computed as the
summation corresponding to it in Eqgs. (58), (59), or (60). This
requires that, for the structure under consideration, four
separate stress analyses of the statically determinate primary
structure be made, one to determine the stresses F,, one to find
the stresses F,, one to find the stresses F;, and one to find the
stresses F.. The analyst should note here that the labor is
somewhat reduced because 8. = b, 8o = 8ea, O = O; this is
to be expected since Maxwell’s law is applicable.

Numerical Illustration 1.—Compute the magnitude of the
middle reaction for the truss shown in Fig. 45¢. The numbers
written in () on the members are their cross-sectional areas in
square inches; the loads are stated in units of 1,000 pounds.
There is no yielding of the supports.

Since the structure has 12 joints, there are 24 equations of
equilibrium available: there are, as unknowns, 4 reaction com-
ponents and 21 bar stresses, a total of 25. The structure is,
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therefore, indeterminate to the first degree. Let the middle
reaction be chosen as the redundant. Since there is but one
redundant, only one equation of the form given in Egs. (61)
is needed and this reduces to

5«0 + Xaéu =0

which may be written as

in which

80 = EF"FOZL—E" 8a = EF:;{LE-

The primary structure is shown in Fig. 45b, condition X = 0
and the stress analysis therefor in Fig. 45¢, and condition X, = 1
with its stress analysis in Fig. 45d.
Bar | L | A | Fo10- Fo | R 107 ri
1-3-5 60 25 +30 -0.375 - 27.00 + 0.338
57 30 25 +45 -1.125 — 60.75 + 1.519
24-6 60 30 —45 +0.750 — 67.50 + 1.125
1-2 50 25 —50 +0.625 — 62.50 + 0.781
2-5 50 20 +25 —0.625 — 39.06 + 0.976
5-6 50 15 0 +0.625 0.0 + 1.302
—256.81 + 6.041
2 2
—513.62 +12.082
6-7 40 20 0 -—1.000 0.0 + 2.000
—-513.62 +14.082
—513.62 X 103 s

If under the loads shown the supports yield downward as
follows: joint 1, 0.25 in.; joint 7, 0.5 in.; joint 12, 0.375 in.;
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the correct equation would be
Sa + Wa = fa0 + Xaau
which becomes, numerically

0.25 0375  513.62 . 14.082
T2 TS X = X

in which E is in units of 1,000 Ib. per sq. in. and X, is in units of

1x +05)<

} [
|
| )
! Txa »
f -45 -45 1
-30/1N\-/ 0 :
:- AN NS 0 { ©
7304 750 § 795 ?
20 20
st ‘Condiﬁon X=0 Q“
+0.7 +Q75
|'0375 3 !
AR by
0 RO
> =Q375 /2 -1125
3 d T

Condition X g1
Fia. 45.

1,000 Ib. From this
X. = 3.18 in units of 1,000 lb.

Numerical Illustration 2.—Compute the stresses in the members
of the arch shown in Fig. 46a due to the loads shown there and an
increase in temperature At = 4+40°. € = 6.5 X 10-%;

E =3 X 107 Ib. per sq. in.

The loads are stated in units of 1,000 lb.; the numbers written
in parentheses on the members are their cross-sectional areas in
square inches.

In this structure there are 12 joints; hence there are 24 equa-
tions of equilibrium available. The unknowns are 4 reaction
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components and 22 bar stresses, 26 in all. Therefore the
structure is statically indeterminate to the second degree.
Let the horizontal component of the right-hand reaction and the
stress in member 5-8 be chosen as the redundants X, and X,

50 50 50 5o 50
¥
P D
&
:
HO,
(b)
p Primary structure Xq
50 50 50 50 ) 0
Vo-125 §-28125 4 ~28125Y 281254 - 125 ¢
%, mlS “/;) o
g ’d‘og o " Lo .R (
gl + : +28125 c)
Ll
9 25 TR
0 *
A Condition X=0
o
Q| +0667  +.50 +150 +150 +0667
NG 2o o 0] .03 K
Rl ] b I wi(d)
ols 3]-1128 250 o $ b
Sl 2y ‘9
M 13 1667 § N
IR ’ 2
.‘2.;/ 7o ®  Condition Xg=| I L2
0 0 -0882 0 0 |
= X R o
] 3 x\ (R 0 0
ol 0 ~0882 Q of®
0 0
P« Condition Xp=I

Fi1a. 46.

respectively. With this choice the primary structure is as
shown in Fig. 46b. When there are but two redundants, Egs.
(61) become

6a + Wu = 6q0 + Xaaaa + Xbaab + bal
S + Wo = 8o + Xabba + Xsbuw + 8

For this problem &, is zero and, if there is no yielding of the
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supports, as will be assumed here, 8, W,, and W, will be zero
also. The equations may be written as

Xaaaa + Xbaab = —bao - 5ut

Xabba T Xbdp = — 350 — Ope

(62)

in which

EFaFo*A—IiE—; baa

I
It

da0 EF?.%; b = EF“F"ZLF;

ho = SFFoie b= SR 6= Sl

Three stress analyses of the primary structure are necessary,
one to determine the stresses F,, one to find the stresses F,
and one for the stresses F,. These are shown in Fig. 46¢, 46d,
and 46e, respectively. The summations are carried out in the
following table.

L L L
Bar L | A Fo Fa Fy Fafoz F:Z F.J’bi Fal, Fsl’of F:% FsL
1-3 (34 0 [60.0 00{—1.133) 00 0.0{+ 0.727) 00 |— 385 0.00 0.0 0.0

31.05{55 0|+129 4/—1 725/ 00 |— 126 0/+ 1680 0.0

38 41|30 0{+160.0{—0.854| 0.0 |— 174.9|+ 0933 0.0 |— 328 0.0f 00 00
34.0 (25.0{+177.1/—0.944] 0.0 |— 227 6|+ 1213} 00 |— 321 0.0{ 00 00
—1239.2{+ 8.039] 00 |— 60 O[+ 18 9|40 177|— 7.54
2 2 2 2 2 2
—2478 4/+16 078) 0 0 |—120 O]+ 37.8/40 354|—15.08
87 |30.0 {50 O|+281.2(—2.50 (—0 882(— 422.0{+ 3 750(+1.325(— 75 O|— 148.9(+0 467|— 26 46
6-8 |30 0 40 O[— 281.2|+1.50 |—0 882|— 316.2|+ 1 688|—0.992/+ 45 0/+186.1|+-0.584|—26 46
58

6-7

35 —

2-4 |30 0 {20 O|—125 0/+0 687| 0.0 |— 125.0+ 0.667 0.0 |+ 200 00/ 00 0.0
48 |30 0 [30 0]—281 2/—1 500] 00 |— 422 0|+ 2 250, 0.0 |+ 450 00, 00 00
1-2 (40.0 |30 0{—150 0|+0 533 00 |— 106.6|+ 0.379| 0.0 |+ 213 00 00 00
34 (240 1250(—133 3|]+0 444 00 |— 57.11+ 0190, 00 |+ 107 0.0 0.0 00
56 (16 0 (20 0(— 500, 00 |—0 471 00 00 0.0 0 0+ 18 9{+0 177|— 7 54
23

43

34 0 (15.0 00/ 00 [+1.000 00 00 00 00 0.0{+2.269(+34 00
34 0 |15.0 0.00 00 [+1 000 00 00 0.0 00 0 0{-+2 269/4-34 00

—3216.6|+21 516!+0 333|—150.0|+ 75 O|+5 943) 0.0

It should be noticed that in this particular structure there
is no need of going through the detail of computing the summa-
tions ¢ AtZF.L and € AtZF,L. Since the change of temperature
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is the same for all parts of the structure and since ¢ is the same
for all members, the primary structure after the temperature
change will have a form which is geometrically similar to its
shape before the change of temperature occurred and every
dimension will have increased in the ratio (1 + ¢ Atf). Among
these dimensions is the distance between the points of support
which, therefore, will have become 150(1 + ¢ At). Since &,
is equal to the change in the length of the span of the primary
structure and is positive when this length decreases,

8.t = —150e At
By using the same reasoning it may be seen directly that &, = 0.

If each side of each equation in Eq. (62) is multiplied by E
and units of 1,000 lb. are used, the equations become

21.516X, 4+ 0.333X, = +3216.6

+ 3 X 10* X 6.5 X 10~® X 40(—150)
+3216.6 + 1170 = {-4386.6
0.333X, + 5.943X, = —75.0 + 0 = —75.0

The solution of the equations shows that
X, = +204.2 and X, = —24.06
The stress in any member is stated by the expression
F =Fy+ XJFa+ XoFy

and the evaluation of the stresses is carried out in the table
below.

Bar F, F, Fy XJFa XoFy F

1-3 0.0 —1.133 0.0 —-231.5 0.0 —-231.5
35 +129.4 | —1.725 0.0 —352.4 0.0 —-223.0
5-7 +281.2 | —2.500 | —0.822 | —510.7 | +19.78 | —200.7
2-4 —125.0 | +0.667 0.0 +136.3 0.0 + 11.3
4-6 —281.2 | +1.500 0.0 +306.3 0.0 + 25.1
6-8 —281.2 | +1.500 | —0.822 | +306.3 | +19.78 | + 44.9
1-2 —150.0 | 4-0.533 0.0 +108.9 0.0 — 41.1
34 —133.3 | +0.444 0.0 + 90.7 0.0 — 42.6
5-6 - 50.0 0.0 ~0.471 0.0 +11.33 | — 38.7
2-3 +160.0 | —0.854 0.0 —174.4 0.0 - 14.4
4-5 +177.1 | —07944 0.0 —-192.8 0.0 - 15.8
6-7 0.0 0.0 +1.000 00] —24.08 | — 24.1
5-8 0.0 0.0 +1.000 00| —24.06 | — 24.1
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29. The Application of the Law of Virtual Work in the Analysis
of Statically Indeterminate Structures with Moment-resisting
Joints.—In structures with moment-resisting joints the members
are, in general, subjected o bLending moment, shear, and axial
stress. If such a structure is indeterminate, it is possible to
use the same general type of solution as was used in the analy-
sis of the trussed structure considered in the previous article,
i.e., to consider an equivalent statically determinate primary
structure subjected to the same loads and to certain redundant
forces and to set up equations which state that the condition
of distortion of the primary

structure is the same as that of X Xy a
the original structure. The pro- i) tﬁ‘-c
cedure is best explained by con- Xa Xa
sidering a particular structure

such as that shown in Fig. 47a.

Adopt as a primary structure Fia. 47.

that shown in Fig. 47b. This is obtained by considering that
the original structure is cut by a transverse section through
the middle of the girder and that the reciprocal effects of
the two parts on each other are replaced by the moments
X,, the axial stresses X, and the shearing forces X.. If a
and a, are two points on opposite sides of this transverse section,
the conditions of distortion of the primary structure which must
be satisfied if it is to stimulate exactly the original structure are:

a. There can be no relative rotation of the tangents, at a
and a,, to the elastic curves of the two parts of the girder.

b. There can be no relative horizontal movements of points
a and a,.

c. There can be no relative vertical movement of points
a and a,.

These conditions might be stated more briefly as 6 = 0,
&% =0, 5, = 0.

The detail of the analysis consists of expressing these conditions
in the form of equations and solving the equations. The equa-
tions of equilibrium are used to eliminate from the expressions
all unknowns except the redundants. Since there are three
equations expressing the conditions stated above and since there
are three redundants, the latter can be computed and, thereafter,
the bending moment, axial stress, and shear at any point in the
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bent can be computed in the usual manner. There are several
ways of setting up the expressions for the relative deflections
and §.; in this discussion the law of virtual work will be
The notation adopted is as follows:

= the bending moment at any point of the primary struc-

801 55:
used.
M,

Fo
So
M.

Sa
Mb’

I

ture due to the known loads only; this condition of
loading will be called *condition X = 0.”

the axial stress at this point in condition X = 0.
the transverse shear at this point in condition X = 0.
the bending moment at any point in the primary struc-

ture when the only forces acting on it are a pair of
unit moments applied at the points of application of
the moments X,, each in the direction of the cor-
responding moment X,, and the reactions set up by
this pair of unit moments; this condition of loading
will be called “condition X, = 1.”

the axial stress at any point in the primary structure

in condition X, = 1.

the shear at this point in condition X, = 1.

F,, and S, are the bending moment, axial stress, and

transverse shear, respectively, at any point in the
primary structure when the only forces acting on it
are a pair of unit forces applied at the points of
application of the redundants X, each in the same
direction as the corresponding force X,, and the
reactions set up by this pair of unit forces. This
condition of loading will be called ‘‘ condition X, = 1.”

M., F., and S. are the bending moment, axial stress, and shear,

respectively, when the only forces acting on the
primary structure are a pair of unit forces applied
at the points of application of the redundants X.,
each in the direction of the corresponding force X,
and the reactions caused by this pair of unit forces;
this condition of loading will be called ‘condition
X.=1"

If M, F, and S are the bending moment, axial stress and
transverse shear at any point of the primary structure, due
to all causes, one may write:

M = MO + XaMa + Xbe + XBMC
F =Fo+ XoFo + XoFs + XF. (63)
S = 8 + X.8. + XuSs + XS,
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in which X,, X,, and X, are the numerical magnitudes of the
redundants and are pure numbers.

In using the law of virtual work to express the deflection
5, adopt a Q system which is the same as that which causes the
stresses M., Fa, and S,. Under these circumstances, Eq. (19)
becomes

1a¢+wa=2fMa +2fﬂ.f +Efss,G
+ e f e f Fubto dz  (64)

in which W, is the virtual work done by the reactions in condition
X. = 1 if there is any yielding of the supports in the actual
condition of distortion. Substituting in Eq. (64) the values
of M, F, and S given in Eqs. (63),

16+ W, = E f Mo(Mo + XMa + XoMs + XCMC)‘}%

+ > f FuFo + XoFu + XoFy + Xfc)zf%
dz

+ Efsa(So + Xa.Sa + XbSb + XcSc)A_IGr
+ eE f Maé(—A‘-)dz + 62 quAto dz

dz

[fMMaE—I‘FfFaFo + [sso ]
+ X, fMaEI f aAE fSaAIG]
dz

+ X D, fM M»EI + FoFbAE fsasw—]
+ XD fM ME + fFJc + fSaScA,G]
+ e f 204y 4 f FAlo dz (65)

The first term of the right-hand side of Eq. (65) may be seen
to be the relative rotation of the tangents, at @ and a,, to the
elastic curves of the two parts of the girder in the primary
structure due to condition X = 0 and hence may be written as
3.0. The subscripts have the same meaning as in Eqs. (61).
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Similarly, the coefficient of X, may be recognized as the relative
rotative deflection of the tangents at a and a, to the two parts
of the elastic curve in the primary structure due to condition
X. = 1; it may, therefore, be written as 8,,. In the same way
the coefficient of X, may be written as 8, and the coefficient
of X, a8 8., while the last two terms become 3.;. Consequently,
Eq. (65) may be written as

1 50 + Wc = 640 + Xaaoa + Xbaab + Xeaae + aal

In applying the law of virtual work to develop an expression
for the relative horizontal deflection of points ¢ and a,, the
Q system to be adopted is the same as that which was defined in
describing the stresses M, F,, and S, and the stresses this
Q system causes are My, Fy, and Sy; therefore, Eq. (19) becomes

l&+W.=2fM -,%+EIFJ§’E+E_[S~S§,G
+ed f M,,A(y—)dx + e f Fdtodz  (66)

and if one follows through the same steps as were used in develop-
ing Eq. (65), the result is

18 + Wy = 80 + Xabba + Xodo + Xcdbe + S0,

A similar treatment with respect to the relative vertical
deflections of points a and a; of the primary structure leads to

1 5, + We = 6:0 + Xaaca + Xbaeb + Xoacc + 6“
Thus there are three equations of the form

1 aa + Wa 6a0 + Xaaua + Xbaab + Xcsac + 80‘
16 + Wy = 6o + Xabsa + Xodeo + Xcbbo + O (67)
146 + Wc = 8.0 + Xasca + szcb + Xcscc + 80!

which are of exactly the same form as Egs. (61). In this struc-
ture 4., 5, and §. are seen to be zero and if there is no yielding
of the supports, W,, W5, and W, must be zero also. If some
yielding of the supports occurs and it is not possible to express
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this yielding as a function of the known loads and the redundants
it is necessary to make arbitrary assumptions as to the possible
magnitudes of the yieldings and to investigate the effect of these
on the stresses in the structure. It might be noted that if the
arrangement of the structure were such that no bending moment
or shear could occur in any member, Eq. (65) and its companions
would be exactly the same as Eqgs. (58), (59¢), and (60) which
were developed for trussed structures.

Numerical Ezample 1.—Compute the magnitude of the
middle reaction for the beam in Fig. 48¢ due to the loads shown
and to a change of temperature
which is the same at all cross sec- {50 ‘50
tions of the beam but varies line- f R I G

arly from At = +40°F. at thetop | "0 TI7 T

| 1 i

|
to At = 4+10°F. at the bottom. % oty | *(b)
The loads are stated in units of §40 350
1,0001b. The beam is a 24-in. %5  Condition X-0 é;.’
17991b.;I =2,087 in.%. Assume % L @)
. . . ; '
that the shear is uniformly dis- ., Condition Xe! ?;5

tributed over the area of the web
(A’ =12 in.?). E =3 X 107 Ib.
per 8q. in. Compute separately the effects of the loads and the
change in temperature.

This structure is statically indeterminate to the first degree.
Let the redundant chosen be the middle reaction. The primary
structure is shown in Fig. 48b, condition X = 0 in Fig. 48c
and condition X, =1 in Fig. 484. Since there is but one
redundant, Eqs. (67) reduce to

Fia. 48.

1 6¢+ Wa = 8a0 + Xa‘su + 6a¢

in which both &, and W, are zero if there is no yielding of the
supports. This condition will be assumed here. If the effects
of the loads and temperature change be computed separately, Xa
being the effect of the loads on the middle reaction while X
is the effect of the change of temperature

Xa = _g'a—o’ Xat = —5

aa aa
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Since there is no axial stress,

da0 = EfM M°E1 + Ef‘s“SM’G
- E_I{ ﬁ (47 32) (= 0.52)de

+ f,:l“-&: — 50(z — 10)] (—0.5z)dz + J; 1(62.67z)(—0.5x)d:c +

15

10

, (62.67z — 60(z — 7)](—0.51:)d:c} + AL'G‘[J; 47.3(—0.5)dz +
15 8

J:o (—2.67)(—0.5)dz + J; (—2.67)(+0.5)dz +

1
J; 5(——62.6)(-*-0.5)dar:]

EI
EI 8,0 = —45,868 + m(—460)

EI _ 2087 X 124 _
¢ = 28X o =31

EI 6.0 = —45,868 — 1,444 = —47,312

EfM°EI+Ef e

2 ( 0.52)%dz + - 6( —0.5)%dz
= EI
El b, —05)( +05E,IGX15=562.5+23.6=586.1
_ _EI 8,.0 _, 47312 . .
Xa Elo. +5—86.1 = +80.70 in units of 1,000 lb.

If the effect of shear distortion is neglected,
EI 8,0 = —45868, EI 8., = 562.5, X. = +81.54

The error involved in this approximation is but 1 per cent. This
is typical of the magnitude of the error due to omitting the effect
of the shear strain in the solution of such problems and it is
customary to make this approximation.
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To find Xac,

64: = %QIMG dx
_ 15
= GM X 2 . (—0.5z)dz
= —30e(—0.5)112.5
= 4+0.010970
X = _EI b, _ 0010970 X 3 X 10* X 122 X 2087 X 12-¢
ot EI b, 586.1

= —8.14 in units of 1,000 Ib.
Neglecting shear distortion,
X(,‘ = _8.48

in which the error due to neglecting shear distortion is four per
cent.

, X 100
e-8- €L xXp X
o p—} <<
7-20007 1 T [fow) Ty oy
A,=80"2 w Xa Xa
” BN
"*{ Iy 500,,2 1 Primary Condiition X=0
HlA=30"" 0k v L structure 4 ,
“Fixed (5 (v) (c)
— ,T — L4 ? |
Condiition Xq*| Condition Xye! Condition X =1 l
”m L4 d g
(d) (e) (f)
Fic. 49.

Numerical Example 2.—Compute the bending moment, axial
stress, and shear at mid-span of the girder in the bent shown in
Fig. 49a due to the load shown. Neglect the effect of shear
distortion.

16a+Wa=6a0+Xaaaa+Xbaab+Xc8u
18 + Wy = 650 + Xa b6a + X 6 + Xe S
18¢+W¢=5co+Xn6m+Xb6tb+Xc6cc

In this structure 8, = 8 = 8. = 0; assuming that the points
of support do not yield, W, = W, = W. = 0 also.
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Sa0 = EfMaMo% + EF"F"A_LE

=E11 (+1)[ 100(z — 2)]d:c+EIf (+1)(—800)dz

100[ 102 — 28 _ 800 . .. _ 3200 _ 12000

= ’ET[ 7 16] EL XY= TEL T EL

b = Emeo + SIRFr L = Elf (~2)(~800)dz
_ 800 15t _ 90000

L X2 = tE,
dz L
8o = EfMeMO‘E'? + EFoFOE

+ ——l——fw(—IO)(—SOO)dx + -1 (—1)(=100)
ET AE

1 10 102 — 22 8000 1500
- 23467 + 120000 + 1500
EI, El, A;E
boa = Ef EI+2 °AE‘
E2I “(+1)dz + o (+l)’dz
20 30
=21, "L
dz L 2 ('
by = EfM“M"'E'j + EF“F“H" = ET,J; (+1)(—z)dz
s
EI,

dz L 1 [
fMaMeEj + EFGF‘:'TE = E_Ilj; (+1)(".’C)dz

18

10

Oac

l

*+ &),

(+1)(+10)dz =0
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= [mE+ Snk

15
- a7, (avee + BP0y
2250 20
=t T aE

fM.,M,EI + Em‘cw

15
= .ﬁf (=z)(—10)dz + EI‘ (-:c)(+10)d:c =0

10
2 —_—
fm + E”AE EIl z dx+EI, " 100dz
2 X 15 2000 . 3000 . 30
8 ) =35, Y EI, T AE

The equations can be handled more conveniently if each side
of each equation is multiplied by EI, or EI, than if they are
left in the form given at the beginning of the solution. Mul-
tiplying both sides by EI, leads to

35X, — 225X, = +12800
—4
— 225X, + X,,<2250 + 20§°°—X1—2——) — 90000

80 X 122
500 X 124} _
X¢(166.7 + 3000 + 30W) = —5866.7 — 120000
500 X 12—+
— 15005519
From these
126040
Xc - —’_BW - _39.76
X, Xy
+ 35 - 225 +12800
M M +10650 — 225X, = +12800
225 +2250.9 90000 X, = —9.555
- 22.49 | + 225.0 — 8994
+ 12.51 P + 3806 X, = +304.2




114 STATICALLY INDETERMINATE STRUCTURES

[Caap. 111

If the distortion due to axial stress is omitted in the solution,

the result is

12586
Xa X,
+ 35 — 225 412800 — _
- 225 | + 225| — 9000
+12.5 + 3800 X, = +304.0

The difference between these results and those obtained before
is negligible.

(b)

Fia. 50.

30. Use of the Elastic Center.—The labor involved in the
solution of a structure such as the bent just considered may be
decreased considerably by proper selection of the redundants,
particularly if one makes an approximation by omitting from the
computation the effects of distortion corresponding to the axial
stress and shear. If the redundants could be chosen so that
8 = 0, 8,c = 0, and & = 0, not only would the necessity for
evaluating them disappear, but the three equations which,
in the last illustration, were solved simultaneously would become
equations each of which contained but one unknown and which
could, therefore, be solved independently. To demonstrate
how this objective may be attained, consider the bent in Fig. 50a
in which the location of any point on the axis of the bent is
defined by its codrdinates measured from a pair of axes OX
and OY. As a first selection choose the redundants as shown in
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Fig. 50b. Neglecting the distortion corresponding to axial

stress and shear,
ds
S-S

in which M, is positive at all points for which y is positive and is
negative at all points for which y is negative; ds is any element
of length measured along the axis. of a member. If ds/EI is
called the elastic weight of the elemient whose length is ds, the

quantity Efyz-g—‘; may be interpreted as the moment of

inertia, about the axis parallel to X,, of the elastic weight of the
structure. Similarly,

ds
b = fM”EI Ef"”pﬁ

which may be interpreted as the moment of inertia, about the
axis parallel to X, of the elastic weight of the bent;

=S eg oS g

which may be interpreted as the total elastic weight of the bent;

w3 s - S [y

which may be interpreted as the product of inertia of the elastic
weight of the bent referred to the axes parallel to X, and X,,

respectively;
ds
f M, M f y(+)g7

which may be interpreted as the static moment, about an axis
parallel to X,, of the elastic weight of the bent;

EfM,JlL fx(+1)%

which may be interpreted as the static moment, about an axis
parallel to X, of the elastic weight of the bent;

°°'EfMM° zfyM°EI
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which is the sum of the static moments, about an axis parallel
to X,, of the areas under the M,/EI curves for the various mem-
bers of the structure, each being assumed to be drawn so that
the centers of its ordinates lie on the axis of the member;

sw=2beMo§§=2foo%

which is the sum of the static moments, about an axis parallel
to X,, of the My/EI areas for the members of the structure;

beo = f MMoss = > f (+) Mo

which is the sum of the areas under the M,/EI curves for the
members of the structure.

It is evident that, if the origin of coordinates, which is also
the point of application of the redundant forces, is placed
at the center of gravity of the elastic weight of the structure,
the static moment of the elastic weight of the structure about
each of the coordinate axes must be zero; consequently, 5. = 0
and 6. = 0. If, in addition, the structure has an axis of sym-
metry, the product of inertia about the coordinate axes must
be zero, so that §; = 0. When the redundants are selected
in this way their effect will be transferred to the actual structure
in the same manner which would occur if their points of applica-
tion were connected to the structure by a pair of rigid arms.
If the effect of the redundant forces on the bending moment at
any point in the structure is designated by M,,

M, = Xy + Xox + X,
) b0 Seo
I Y P
__(Mn)():y — (M,)o.,:c —_ 19_‘
I, I, P,

in which (M,),. is the static moment of the M,/EI areas about
the X axis, (M,)o, 18 the static moment of these areas about the
Y axis, and W, is the sum of these areas, while I, and I, are the
moments of inertia of the elastic weight of the structure about
the X axis and Y axis, respectively, and P, is the total elastic
weight. This expression is the same in form as the familiar
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expression

My Mgz
I, I,

which states the stress intensity at any point in the cross section
of a column due to the application of an eccentric load. It is
evident, therefore, that if the axis of the bent represented the
axis of the cross section of a column and the thickness of the
column section at any point was 1 EI for the actual member
of the bent at that point, also if the axial load applied to the

+

P
f=7+

El e
10 —ml /oo= i
’ !
F'U"’!‘"'”"""I Elastic CG. | |
* 1,-2,000" * x_,J JXa__ |
Q | 1a50074-- (s M
T e Tarso0 X, x,!;b)"c M
r s
(@) (b) -800 (<)
Fia. 51.

column is represented by the M,/EI curves for the various mem-
bers of the bent, that the bending moment at any point in the
bent due to the redundant forces only can be computed as the
stress intensity in the analogous column section just described.
To find the total bending moment one must add to the bending
moment so computed the value of M, at that point. This idea
was suggested by Professor Hardy Cross and was called by him
the column analogy.*

As an illustration of the solution when the redundants are
selected as suggested above, consider again the bent of Fig. 49,
but let the redundants be applied at the center of gravity of the
elastic weight of the bent. The primary structure is shown in
Fig. 51b.

To find the elastic center of gravity

1

ELP. = £ X 20 +2 X 15 = 35
35y = 2 X 15 X 7.5 = 225; yo=2—3235=6.429'

* Univ. IUinois Eng. Ezp. Sta., Bull. 215; Cross and Morgan’s ‘ Continu-
ous Frames of Reinforced Concrete’’; ‘“Structural Theory and Design,” by
Sutherland and Bowman.
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2
ElL bea = 1. = 2 X 6.4292 4 2 X 15(% + 1.071’)

4
= 206.6 + 596.9 = 803.52
20 _ 20?
Elybw = I, = 7 X T3 +2 X 15 X 10* = 166.6 + 3000 =
3166.7
EIz 8“ = 35
ElL 80 = —200 X g X 6.429 + [—800 X 15(—1.071)]
= —5143 + 12857 = +7714
EI, 8y = (—200 X g)[—<2 + % X 8)] + (—800 X 15)(—10)
= +5866.7 + 120000 = + 125867
El; 6,0 = —200 X g — 800 X 15 = —12800
_ _ELibswo _ T4 _
Xe= ~ELs. = “83s - 60
_ _El & _ 125867 _
Xy = El, 8%  3166.7 39.74
_ _Elyso _ 12800 _ -
X, = Bl — t-35 = +365.71
At mid-span of the girder
F = —9.601
S = —39.74

M = 4365.71 — 9.601 X 6.429 = +365.71 — 61.71 = +304.0
These results are the same as those obtained by the previous
analysis.

Fia. 52.

If the structure has no axis of symmetry the procedure just
explained must, in general, be altered. In considering the
necessary changes the effect of distortion corresponding to axial
stress will be taken into account. Consider the primary structure
shown in Fig. 52. Let the position of the axis of the structure
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be defined with reference to a pair of coordinate axes of which
the Y axis is vertical and the X axis is inclined at an angle « to
the horizontal. Let the position of any point (z,y) be defined by
its perpendicular distances from the two axes, these distances
being positive to the right and upward. Let the slope of the
axis of the structure at any point be 8 which is measured counter-
clockwise from the X axis. The redundants are applied at the
origin of coordinates. Since

b = D, f M,Mc% + Efm%,

in which F, = 0
ds
8ac = E: fy(+l)E7

and will vanish if the X axis passes through the center of gravity
of the elastic weight of the structure. Similarly,

=S [y + S [Rry

in which the second term is equal to zero, therefore

Bbe = Ef:c(+l)%§i

which vanishes also if the Y axis passes through the elastic
center of the structure.
For

ds ds
Oy = EfMaMbE? + Efp'ﬂﬁ
ds o . ds
= Efyxﬁ-}-zf cos (180° — 6) sin {180 — (0+a)}-A—E,
= E xyg—‘;-}-Ef—cos 0 sin (0+a):4diE,

In order to determine the magnitude of the angle a which will
make 8, vanish, express y and 6 in terms of y; and 8, which are,
respectively, the ordinate to the point (z,y) and the slope of the
axis of the structure referred to a horizontal axis through the
elastic center.

Y1 = yseca+ z tan «
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or

y = ylcOSa—:ESlna
0 =0,

therefore, for 8. = 0

Ef:c(yxcosa - zsina)% - Efcos (6, — ) sin 0,% =0
cos aZfryx% — sin aE fx’£
——cosazfcos 0, sin G‘AE smaEfsm’G% =0
Efxylm el EfCOS 01 sin OIAisE =
tana[zf +Ef sin? o‘AE]
Efryrfﬁ - EfSill 01 COo8 ze—E

tan a = y y (68)
E: S E: . 8
fIz—E,—I + f sin? 01-E,

If distortion due to axial stress is neglected, the second terms
in both numerator and denominator of the right-hand side of
Eq. (68) vanish.

It might be pointed out here that Eq. (68) is valid also if y2
is substituted for y, and the ordinates y, are measured vertically
from the X axis.

There is no advantage to be gained by the use of inclined axes
in the solution of bents such as have been considered in the
previous illustrations, but the selection of the elastic center
as the origin of coordinates and point of application of the
redundants will always eliminate some of the labor involved in
the solution. In the analysis of hingeless arches, however,
particularly when it is desirable to draw influence lines for stresses
in the arch, it is expedient to choose the elastic center as the
origin of coordinates and the principal axes of the elastic weight
of the arch as the axes of coordinates. These principal axes
will be perpendicular to each other if the arch is symmetrical
but will be inclined to each other at some angle other than
90 deg. if the arch is not symmetrical.
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31. Application of Castigliano’s Law in the Analysis of Stati-
cally Indeterminate Trussed Structures. The Theorem of Least
Work.—Articles 28 and 29 deal with a method of analyzing
statically indeterminate structures which is based on the investi-
gation of equivalent statically determinate primary structures
subjected to the same loads as the original structures and to
certain redundant forces, the latter being such as to ensure
that the condition of strain and, consequently, the condition of
stress in a primary structure should be the same as in the original
structure to which it is equivalent. The equations which are
needed in addition to the equations of statics were based on the
necessity of satisfying certain conditions of distortion in the
primary structure; in the articles mentioned the law of virtual
work was used as an expedient to enable one to set up expressions
for the characteristics used to define the condition of distortion.
A second expedient which may be used as a basis for such expres-
sions is provided by Castigliano’s law. For example, in the struc-
ture of Fig. 43, using the primary structure shown in Fig. 44,
the condition that the horizontal movement of point A of the
primary structure must be equal to any horizontal yielding
that may occur at point A of the original structure may be written
as

W, =

0X. *
in which W, is the strain energy for the primary structure when
it is subjected to the given loads and to the redundants, and &,
is any possible movement inward of point A of the original
structure. If such a movement should be outward, §, must
be taken as negative. In a similar way, the condition that
there can be no relative movement, along the line bb;, of the
points of application of the two forces X, may be written as

aWa

ax, = °
and the condition that there can be no relative movement of the
points of application of the forces X. can be written as

oWa _
ax, 0



122 STATICALLY INDETERMINATE STRUCTURES [Cuar. III

If point A does not yield, each of the three partial derivatives
is zero; in such circumstances one may make the following
statement:

In a statically indeterminate structure, providing that there is
no ytelding of the supports and no change of temperature, the
redundants must be such as to make the strain energy a minimum.

This is known as the theorem of least work.

If these ideas be used in finding the redundant reaction X,
of the truss in Fig. 45a, the yielding of the supports being zero,
the solution is as follows: Since

oW _ QL
ax, =0 ad W= Doip
Wy SFL oF _
X, AE 80X,

The solution requires only the evaluation of this summation and
the solution resulting from equating this summation to zero.
The details follow (see Fig. 53).

aF FL oF

Bar | L | 4 F aX. A 3Xa
1-3-5 | 60| 25 | +30 —0.375X.,| —0.375 | — 27.00 + 0.338X,
57 30|25 | +45 —1.125X,| —1.125 | — 60.75 + 1.519X,
246 | 60|30 | —45 +0.750X.| +0.750 | — 67.50 + 1.125X,
1-2 50 | 25 | —50 +0.625X.| +0.625 | — 62.50 + 0.781X,
2-5 50 | 20 | +25 —0.625X,| —0.625 | — 39.06 + 0.976X,
5-6 50 | 15 + 0.625X,| +0.625 + 1.302X,
—256.81 + 6.041X.,

2

—513.62 + 12.082X.
6-7 40 | 20 - 1.000X.| —1.000 + 2.000X,
—513.62 + 14.082X,

14.082X, — 513.62 = 0
X, = +36.47

If the middle point of support yields } in. under the loads
given, the conditions are not those in which the theorem of
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least work is valid, but the application of Castigliano’s law leads
to

FL o8F 1.
= —3z 1N

AE X,

the negative sign indicating that the displacement of the point
~4540.75%Xa _ ~45+0.75Xa

-30+0375 +/5-0375%a 2037
8|

>s #0 t%,‘ § : '@*0
3 u’lﬁ 8l = of 9| A9
§ ,‘0‘ + %_‘f é X x
. »0 3 \g
+30-0375Xa | #30-0375Xa | *6-7.125Xa

20 20 ? 20 Lzo ?;g

Xa g
Fig. 53.

of application of X, is in a direction opposite to that of X..
For these circumstances,

—513.62 + 14.082X. = —?)_16 X E

in which E must be written in the same force units as were used
for the loads and the same area units as were used for the cross-
sectional areas of the members. In this illustration these units
are 1,000 lb. per sq. in.; therefore, E = 3 X 10* and

14.082X, = +513.62 — -9—16 X 30,000 = +201.12,
X. = +14.22 in units of 1,000 Ib.

As an illustration of the application of Castigliano’s law to a
trussed structure which is indeterminate to the second degree,
consider the structure shown in Fig. 46a. If there is no yielding
of the supports and no change in temperature,

oWa _ 0 oW,

X, ! X,
i.e., the theorem of least work is valid. These two equations
become

=0

FL oF FL oF _
iEax, =" 2apox O
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The stress analysis for the primary structure is shown in Fig. 54.
Since the truss and the condition of stress are symmetrical
about a vertical mid-axis, only half the structure need be shown.

J50 50 50 50
r® -12540667 X4 @l-za/zsusoxa @ 28125415 X 5-08824X 4 ®
+o )
, & MR 2N 40 |2
S %%‘a g L, é > S
PR g %, af/xzowxa ) Z
S P e CHELF N
- H =V85¢)
! g #25-0667Xq _*/25~/667xa§ | b
Pt Iy s U &
! w8 SR *
QLTS v
S e L 2 _
Qe s 5@30"---------
Fia. 54
Xa X»
21.515 | 0.331 | —3216.0
21.515X, — 6 9 — 3216.0 =
0.331 | 5939 | + 75.1 5 X. = +914<)38 0
0.331 | 0.005 | — 49.49
5.934 | + 124.59 Xy = —20.99

If it is desired to determine the effect of temperature change
on the magnitude of the redundants, Castigliano’s law as stated
in Art. 15 is not applicable and one must revert to Eq. (39).
When the structure is an ideal truss, as this is assumed to be,
the last term in the right-hand side of the equation vanishes.
If, also, there is no yielding of the supports, the term dW,/3Pw is

zero and the equation becomes

a‘Wd+ Ef
et S [
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which, for this particular case, become
FL oF oF

A aX + Ee Aty bTY—.;L =0
FL oF oF
AaXb-*'EéAta a—X.bL—O

The first term of the left-hand side of each of these equations
is the same as the corresponding term in the previous problem
except that the numerical term is omitted. The last terms in
the left-hand sides are evaluated in the table which follows.

aF oF aF aF

B&r L axu axcL a_xb 6X5L
13 34.0 —1.133 — 38.53
3-5 31.05 —-1.725 — 53.56
24 30.0 +0.667 + 20.0
4-6 30.0 +1.50 + 45.0
1-2 40.0 +0.533 + 21.33
34 24.0 +0 444 + 10.67
5-6 16.0 0.0 0.0 —0.471 - 7.53
2-3 38.42 —0.854 - 32.80
4-5 34.0 —0.944 - 32.11
6-7 34.0 0.0 0.0 +1.0 +34.0

— 60.00 +26.47

2 2

—120.00 +52.94
6-8 30.0 +1.50 + 45.00 —0.882 —26.46
5-7 30.0 —-2.50 — 75.00 —0.882 —26.46

—150.00 + 0.02

FOl'Ato = +40°F.
oF . e
Ee At B_XL =3 X 10* X 6.5 X 10~* X 40(—150.0)
a
= —1,170 in units of 1,000 lb.;
oF
At —L =
Ee Al 2i3%;

Owing to temperature change alone the redundants are defined
by the equations
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21.515X, + 0.331X, = +1170
0.331X, + 5.939X, = 0

which lead to the solution
X, = +54.41, X, = —-3.03

32. Application of Castigliano’s Law to the Analysis of Stati-
cally Indeterminate Structures with Moment-resisting Joints.—
The analysis of a statically indeterminate structure with moment-
resisting joints by the use of Castigliano’s law follows the same
general procedure as that given in Art. 29, but differs in detail
owing to the fact that the expressions for the relative deflections
of points in the primary structure are based on Castigliano’s
law instead of the law of virtual work. The method is best
explained by consideration of a particular problem; the illustra-
tion used will be the structure shown in Fig. 47a; the primary
structure and redundants will be as shown in Fig. 47b. The
conditions of distortion which must be satisfied are:

a. There can be no relative rotation of the tangents, at a
and a;, to the elastic curves of the two sections of the girder;
using Castigliano’s law as a basis, this condition may be written
as

oW,
X,

=0

in which

M F? S? .
W= 2[ sEI t szEd” + KfzoA'dx]'
b. There can be no relative horizontal movement of points

a and a@,, which may be expressed as

oW, _
Xy

¢. There can be no relative vertical movement of points a
and a;, which may be written as

oW, _
ax, =0
It is evident that the theorem of least work is applicable to
this structure.
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The analysis of this structure carried out in Art. 29 demon-
strated that there was no appreciable error in the approximate
solution in which the distortion corresponding to axial stress
and the distortion corresponding to shear were negleeted.
Such an approximate solution will be used here. Article 30
demonstrated also that some advantage was to be gained by
selecting the redundant stresses so that they were applied at the

Rigid

/00 2// 0;278
= (=N
: ~,= 2000 Ko Yo
15"\ 1= 500 ="
! 2 X f(x
Y ¢ Xe
L % (a) d g (b) b

Fia. 55.

elastic center of the structure. In order to make use of these
ideas the primary structure will be as shown in Fig. 55b:

500
EIL.P, —2000><20+2>< 15 = 35
35y = 2 X 15 X 7.5; yo=475—64286ft
The equations are:
W, _ _A{ oM _
w2 maxE=o

aWa _ M aM
X, EfEI axb =0
aWa M oM
aX. E EI 83X,
If both sides of each equation be multiplied by EI,, they are
as follows:

;{f [Xa + Xoyo — Xoxldz + [X + Xoyo —

—dxr =0

10

— 100(z — 2)ldz + . [Xa + Xoyo + X,:c]dx]

+ve
+ f [X. + X — 10X, — 800ldy +
(—15+y0)

+vo
f [Xs + Xy + 10X Jdy =
(=1854+wo)
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X.(Z%—' X104+ 2X 15) + Xb[2§—:yo X 10
1

4ot - (C16 ”°)2] + X.(0 + 0)

1,(102 — 2

— 100+ —2X8)—800X15=0
I, 2

Xa(35) + Xu(5y0 + 30yo — 225) = 25 X 32 — 12,000

35X, + Xb(35 X %é - 225) = 12,800

12800

a = T = 365.71

2 10
%{ﬁ [Xs + Xoyo — Xozlyo dz + j; [Xo + Xoyo — Xz

10
— 100(z — 2)]yo dz + J; [Xa + Xsyo + Xczlyo d-'t}

Yo
+ f [X. + Xsy — 10X. — 800ly dy
(—156+ye)

Ve
+ f (X, + Xoy 4+ 10X.Jydy = 0
(=154y0)

2 __ _— 2
X0[2§gyo x 10 + 248 = ( ot Yo) ] n Xb[z%yg X 10
1 1
3 — 2 __ 2
pt = (CI w0t yaplaf 107 =2 o s
3 T, 3
X.(5y0 — 225 + 30y,) + Xb(56725> = 25 X 32y,
+ 400(—225 + 30y0)
54000 _ 7
Xy = =250 X g = —9.60

1 2 10
f{f [Xs + Xoyo — Xz)(—2)dz + f [X. + Xwyo
1lJo 2
10
~ X — 100(e = DI(~2de + [ X + Ko+ X,r](+x)d:t}

»w
+ J: X. + Xoy — 10X, — 800](—10)dy

—15+y0)

(+wo
+ f( )[X.. + Xy + 10X.J(+10)dy = 0

— 15+



130 STATICALLY INDETERMINATE STRUCTURES [Cuar. II1

x[zf’ 1%00 +2 X100 X 15]

$ 3 2 2
+1oo§’[1°32 21022}+sooo><15=0
9500 377600
3 X< T3
X, = —39.75

33. Members with Restrained Ends.—Let the member AB in
Fig. 56 be subjected to transverse loads and to restraining
moments M, and M, at A and B,

‘ ‘ J respectively. A’C’B’ is the elas-

Mal T I L3 YMy tic curve. Let 7, and 7, be the
fe- x~|--4<~-1-"--x’+ ----- () slopes, referred to the chord
t‘"'*“"Lr """ *‘:E/;"l A'B’, of the tangents to the elas-

/_qu i-PH—‘P—\{ tic curveat A and B,.respectively.
L My  The curve of bending moments

is shown in Fig. 56b. Let any
c ordinate to the bending moment

Ta I —~" ™ i) curve be divided into two parts,

Py | first, Mo, which is that part due

~ ~
L \\\} to the transverse loads only and
Fro. 56. which would occur if the restrain-

ing moments were zero, and sec-
ond, M’, which is that part which would occur if there were
no transverse loads and if the member were subjected to
the end moments only. The usual conventions with respect to
bending moment will be adopted. Shear distortion will be
neglected. Using the second moment-area theorem and assum-
ing that the cross section is constant between A and B,

ElLr, = |, "Mz dz
In greater detail

EILr, = M, X

X +M5X12J L

L
§ X§+(Ml)ﬂ
ElLn = M, XLX§+MbX§X§L+(M.)oa (69)

in which (M,)w is the static moment, about an axis through B,
of the area under the M, curve and (M,) is the corresponding
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static moment about an axis through A. These may be written
as

- L (Ml)ob
Ta 6_E1(2Ma + Mb) + EIL

= Lo, +ony) + Mo 70
™ = BRIV ° b EIL

If these equations are solved simultaneously for M, and M,, the
result is

M, = 2E1

Plore =) + ,%[(M.m ~ 2(M.)a]

@
M, = LE’( ret 20) + pol~2(M0)w + (Mo)ul

So far, the condition of loading has not been defined and Eqs.
(70) and (71) are valid for any condi-
tion of loading. It is worth while to Mo =
evaluate the last terms of the right- mﬂpl}
hand sides of Eqs. (71) for some of _ v by 8
the more common conditions. For |l-x ol«------ N N
example, if the member is subjected s L----m-mes -l
to a distributed transverse load of

uniform intensity p continuous over the whole of the length,
the last terms are as follows (see Fig. 57):

(Mo)Oa = (MI)Ob = _§L__ X L X ‘g 1_%
2 pL?
E[(Ml)% 2(M.)Ob] —_2

2 pL?
E[—2(Mn)0¢ + (M,)M] = _TZ_

For a single concentrated load (see Fig. 58),

(Mo = Pgb[g X 3b + 2(b + g)]

_ Pab ., 2
6L(2b + 3ab + a?)

. & "b(zb +a)b + a)

= T(Zb + a)
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Pab

(M.)oe = —c=(2a + b)
Pab?

IT,[(MU)&. - 2(M¢)Ob] = -—14—2’

2 2o + Mol = ~E02.

If the member carries a number of concentrated loads P,,
P,, P, whose distances from the left and right ends are a, and

X
/P'Pa *L{Py-Pa)

W[TTITTL] -

L—-l oo Sht ity X' ----- >
-------- L ----=---y]
Fia. 59
b1, as and bs, as and by, etc., the load terms are
2 Pab?
FAM)w — 2Mwl = — D
2 Pa?
7A—2(Mo + (Mo) = = > 77

If the load is continuous and varies uniformly from p, at A
to p» at B (see Fig. 59),
1| L 2 L _ L L
E ——[p¢2 X 3L + pry X 3] = (2P + )

L 2 z 2
M, = 5(2”“ + p)x — pa§ X 3%~ [pa + Z(pb — Pa) ]%

Lx 22 2x*  x3 Lz z*
=”“<’3“§'€+6Z)+”°(F"6_L)

Lax? z' A Lx? zt

f L[”( - eL) t ( 6~ 617)]"”
L Lt Lt LS
7’“(9 K3 +30>+ (’15'56)

Ll
= 3—66(71’4 + 8pb)
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Mo = (87’0 + 7ps)

360

Ei[(M.)oa - 2(M.)n] = (9pa + 6ps)

180
- 6—6(3p“ + 2ps)

It

2 (oMo + (Mol = — Z(2p. + 3py)
L2 s/ 0a s]0b] — 60 pa'f’pb

If therc are no transverse loads but the ends of the member
rotate owing to some cause or other, such as might occur if
this member were connected by moment-resisting joints to other
members which are loaded and are forced to rotate at the ends,
Eqs. (70) become

Te = 6F1(2M + M,)

(72)
Ty = 6E?(Mr. + 2M,)
and Egs. (71) become
Mo = 220, — m)
My =2 r + 2m) =

These equations were used in the Winkler variation of the
solution suggested by Manderla for the problem of secondary-
stress analysis in trusses.* When used for such problems it is
convenient to use conventions with respect to positive and nega-
tive moment and to positive and negative r which are different
from those used heretofore. If the conventions adopted are:

1. Moment applied to the end of a member is positive when
counterclockwise;

2. The angle r is positive when the tangent at the end of a
member has rotated counterclockwise from the chord of the
elastic curve;

*See Trans. A.S.C.E,, vol. 88, 1925; also Johnson, Bryan, Tourneaure,
“Modern Framed Structures,” Part II.
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Eqs. (73) become

Ma = 2—?(270 + Tb)

M, = EI@;—I(Q + 2n,)

(74)

In Egs. (70) to (74) the end moments are defined in terms
of the transverse loads and the rotations of the end tangents
with respect to the chord of the elastic curve. The equations

can be used to advantage in the stress analysis of structures if
these chords do not rotate or, when they do rotate, if one can
find some way to evaluate such rotation before using the equa-
tions. If this last is not possible, a more convenient pair of
equations is available. In these equations the end moments
are stated as functions of the transverse loads and of the rotations
of the end tangents with respect to the original position of the
member. Such equations may be developed by a consideration
of Fig. 60. The member shown here is the same as that shown
in Fig. 56 except that the chord of the elastic curve has rotated
through the angle . It is evident that

Ta = oa - ‘l’
=0, + ¢
therefore Eqgs. (71) may be written in the form

M. = 2_?}1_(20“ _ 2¢ — ob — ‘p) + L?;[(M,)oa - 2(Ml)ﬂb]

(75)
M, = 2—?(4" +v +26,+ 2¢) + %['2(]"')"" (Mol
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These equations can be used more conveniently if the.con-
ventions adopted are, in general, similar to those adopted in Egs.
(74). Those usually adopted are:

1. Moments applied to the ends of members are positive when
clockwise.

2. The angle 0 is positive when the tangent to the elastic curve
has rotated in a clockwise direction from its original position.

3. The angle ¢ is positive when the chord of the elastic
curve has rotated in a clockwise direction from its original
position.

When Eqs. (75) are rewritten to suit these conventions, they
become_

Mo = 2220, + 6 — 39) + Z(Mee — 2M)al

My = 2o, + 20, - 30) + Z2(M)w — (M)

(76)

These are known as the ‘‘slope-deflection” equations.
Numerical  Illustration.—Draw

the curve of bending moments for A 30 0 8

the beam shown in Fig. 61. In

computing the redundants neglect  le--5i-sfe---7%--pfe----8%-- 5

the distortion corresponding to axial ] 9
stress and shear. 7= S
Equations (71) may be used to &R S8 "
determine the fixing moments at < S ﬁ 1 §__ X
A and B. Since the ends are fixed, Fio. 61.
Ta = Tb = 0
therefore
2 Pab?
M. = 7{(Mw — 2(M)al = - D75
2 Pa?
My = 7 ~2(M)o + (Mol = — D Fr

which, for this beam, become

M.

—ﬁ(so X 5 X 152 4+ 40 X 12 X 82?) = —161.18

M, = —;%.6(30 X 5% X 15 4+ 40 X 122 X 8) = —143.32
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The curve of bending moments may be obtained by super-
imposing the M, curve on the curve
of bending moments due to M, and
M, alone.

Numerical Illustration.—Draw the
curve of bending moments for the

pad
LSO TS, NS beam shown in Fig." 62. Neglect
“ﬁl\-}\ §‘ the distortion corresponding to axial
s stress and shear. By statics,

Ms = —180, TA = 0
Using Eqs. (71), for the section AB, therefore,

8

(2]

e

2
I 2 S

9T 40 X 82 X 7
i (278) — — i = —180.0
Ef—ln - %(4—79.64 — 180.0) = —50.18
2EI 40 X 8 X 7
M= "7 (=m) = =g

= +50.18 — 69.69 = —19.51

An alternative solution for either of these problems could be
based on the use of Egs. (76). For example, in the second
illustration, 64 = 74 = 0, 65 = 75, ¥ = 0, and the two sets of
algebraic equations lead to numerical equations which are
exactly alike.

A second alternative solution might be based on the use of the
conjugate beam. Forexample, the

conjugate beam corresponding to A ro 8 J’o
the beam of Fig. 62 is as shownin 7~ ' F-) 1
Fig. 63 and the elastic-load curve, o8l 7o 670
being the M /EI curve for the beam, : e x = : !
is completely defined except for the ! /{\\ \tinge |
ordinate M4/EI. Since the beam Ma[/ ) Is

is fixed at point A the slope at that ~ ~——-_ L3 ;Q

point is zero, therefore the elastic
shear at the corresponding point of
the conjugate beam is zero. This condition may be stated in the
form of the equation

15 2 15 115 8 8
—MAX-Q—X-3->< 15 — 180X-§-X—3—+149.3[§<7+§)

7.2
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which leads to

75M 4
M.

—6750 + 8213 = 41463
+19.51

It

the positive sign indicating that M, has the character assumed
in the sketch of the elastic-load diagram of Fig. 63.

34. Beams Continuous over More than One Span: The Equa-
tion of Three Moments.—Beams which are continuous over more
than one span may, in most cases, be analyzed by using Egs. (70)
or (71). If these equations are used, the procedure is to select
the bending moments at the points of support as the redundants
and to use Egs. (70) or (71) as a means of stating the conditions

40 60

’ 5 per lin 1t N
(
(om ;—‘J_sé?"“‘u"‘l‘%tlz w0 A o0 OF
gt 6 ST 5T
M (ot

of distortion which must be satisfied if the primary structure
is to behave in the same way as the original structure. To
illustrate consider the beam in Fig. 64a. The loads are stated
in units of 1,000 lb. The conditions of distortion which must
be satisfied if the primary structure is to behave in the same
way as the original structure are:

T =0, 19 + 14’ =0, 7s = 0

these conditions being true only if the points of support do not
yield. Using Eqgs. (70) these conditions lead to

15 40 X4 X 11
60 X 10 X 5
+ % X (10 + 10)15E’I =0
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6_}351__’(% +2My) + 4°_X‘§_2<__1_1(8 + 11)—5Fr
+ 61x_éq3<__5(20 + 5)m + m(zM, + M,)
.éz,il'(M, + 2M,) + 2%%[—, =0

which may be written as

2M1 + Mz = —47004
M, 4+ 3.5M, + 0.75M, = —692.89
M, + 2M, = —281.25

The solution of these equations is
M, = "'16790, M, = "‘13425, M, = -73.50

Another method of solving this problem is based on the
equation obtained by combining the expressions found by

applying Eqgs. (70) at a support common to two adjacent spans.
Consider, for example, the two spans shown in Fig. 65a; these
are any two adjacent spans selected from a longer series; the
beam is continuous over the supports. The moments M,_,
and M,;, are end moments which are applied by the spans
adjacent to the pair shown or by supports at points (r — 1) and
(r + 1) which supply restraint against rotation. Let a primary
structure be selected as shown in Fig. 65b. The usual con-
ventions for bending moment will be adopted. Let the end
moments be positive when they tend to cause positive bending



ARr. 34] STRESS ANALYSIS 139

moment. If the end moments are assumed to be positive, the
curves of bending moment for the two spans will be as shown in
Fig. 85c. In these curves M’ is that part of the bending moment
which would occur if the primary structure were subjected to
the end moments only, while M, is that part which would occur
if nothing but the transverse loads acted on the primary struc-
ture. The condition of distortion which must be satisfied if
the primary structure is to behave in the same way as the original
structure is that the tangents at the inner ends of the two
parts of the elastic curve must lie in the same straight line, or,
algebraically,

'r: -+- T:, =0

If ! and 7/’ are expressed as functions of the end moments and
transverse loads by using Eqgs. (70), this equation becomes

Lr (Ml)O(r—l) r+l
m(M'_l + 2M') + EI,L.- + 6EI (2M + Mr+l)
(Mn)O(r+l) —
+ EIr+1Lr+l 0
which may be written as
L L r+1 L'+l - G(MJ)O(r—l)
r—lI + 2M( + Ir+l> + Mr+lI,+1 I,-Lr —
_ 6(M)oean
Ir+lLr+l (77)

This is known as the equation of three moments. In applying
this equation it should be remembered that the equation

4+ =0

infers that there has been no change in the relative positions
of the points » — 1, r, and r + 1. If a change in the relative
positions of these points does occur, it is possible to modify
Eq. (77) so that it will be valid under such circumstances.
With this end in view consider Fig. 66. Let the points r — 1,
r, and r + 1 move downward through the distances §,-,, §,,
and §,,1, respectively. Since the tangents at r to the two parts
of the elastic curve must be colinear,

61- - 5r-—1 _ 67 - 6r+l

Lr Lr+l - 0

7+ 1) —
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r-1 r r#l

which may be written as

L L Lr+1 L +1 G(Mc)O(r—l)
Mr—-lI + 2M< Ir+1> + AI?‘-}-II"_’-1 - I L
_6(MJ)oery _ 6B oo ( 1 ) _ 6Es,,
Ir+lLr+l L + 63 Lr + Lr+l Lr+l (78)

To illustrate the application of these equations consider again
the beam of Fig. 64, assuming first that there is no yielding of
the supports. With this assumption, Eq. (77) is applicable.
Since the beam is statically indeterminate to the third degree,
one must find three equations in addition to the equations of
statics. These three equations are found by writing the equation
of three moments three times, once for r = 1, once for r = 2
and for r = 3. The fixed ends at points 1 and 3 are accounted
for by considering that the part of the beam which extends
into the support and through which the rotative restraint is
applied is a span of zero length. If the supports of such a span
do not move, the effect is the same as fixing the direction of the
axis of the beam at the point of support. The detail of the
computation is

2M( ) + Mz(}f’> - A0 XA X1y 4 o9

151,
X1 2010 + 10)
Ml(}—f) + 2M,(}—f + E) + Ms(}-"’) - -OXEX g
SO0 X0 X By 4 gy BXIS

_ __5Xx15*
M'( >+2M< )" 4X1I; X15
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M| M. | M,

20110 —470.04

1.0 2.2,0.75 | =302 89
1.0120 —281.25

These equations are the same as those devcloped by using
Eq. (70) and the solution need not be carried farther.

If, in the same continuous beam, the middle support should
yield 14 in. under these loads, Eq. (77) is not valid but Eq. (78)
may be used in the same way as Eq. (77) was used in the previous
illustration. The solution is

1760 X 26 + 60000 6F X 1
M <I,> +M (u) = 151, T8 XI5

1760 X 19 + 75000
( ) +2M <12 + 13) +M <13> T 1L

5 X 15° 1(1 1
YA + 6E X (5+ig>

15 15 5% 159 6E
M2<E> + 2M”<7§> T T4, T 48K T15

which may be solved as follows:

M, M, M,

20, 10 —643 65 o
1.0 | 35 | 075 | —345 67  2:0My #6416 = —643.65
(Lo} 20 ) -5127 M - 355,00

1.0 1 05 —321.82
30 | 0.75 | — 2385 e ]
10 | 20 | —s1273  30M:—216.33 = —23.85
10 | 025 | — 7.95 M, = +64.16
RE 7‘3 —504.78 Mo — 288 45

36. Application of the Slope-deflection Equations.—It was
pointed out in Art. 33 that the problems solved there could
have been handled equally well by using Eqs. (75) or (76)
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instead of Egs. (70) and (71), and that the details of the com-
putation would not have been changed by a new choice of equa-
tions. There are structures, however, particularly those with
moment-resisting joints, in which there are rotations of the
chords of the elastic curves of some or all of the members while
the structure is attaining equilibrium. The analysis of such
structures can be carried out more conveniently by using the
slope-deflection equations than by applying Egs. (70) or (71),
and may be illustrated by a consideration of the structure shown
in Fig. 67. As demonstrated in Art. 29, there will be no appreci-
100 able error in the analysis of this struc-
e ture if the distortion corresponding to
axial stress and to shear is neglected;
i consequently, a solution based on the use
v R of Eqs. (76) is a close approximation to a
1780%%. 5 i precise solution. A good procedure is to
i write the slope-deflection equations for
v@"‘" each of the members, then to write certain
of the equations of equilibrium for parts
of the structure, and to use the slope-deflection equations to
eliminate from these equations of equilibrium all unknowns
except those measuring the distortion, 7.e., the unknown angles 6
and . These are determined by solving the equations of
equilibrium simultaneously, after which the moments at the
ends of the members are found by substituting in the slope-
deflection equations the newly found values for the angles 8
and ¢. For this particular illustration the slope-deflection
equations are

-1,230074

Fie. 67.

Ma = 2EK (265 + 6y — 3¥as) where K = I%

My, = 2EK (6. + 26, — 3¢uws)

My = 2EKw(20, + 0, — 34 — 0 X 8 X 1%

My = 2EK,(6, + 20. — 3¢s) + EO—X?S—:—X—IE

M. = 2EK.4(26. + 64 — 3¥.ca)

M. = 2EK.4(6. + 264 — 3¢.a) (a)

Since the columns are fixed at a and d, respectively, 6, = 6; = 0.
If the changes in the lengths of the members are neglected as
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suggested on p. 142, there can be no change in the relative eleva-
tions of joints b and c; consequently y». = 0. Further, if member
bc is assumed to have no change in length, points b and ¢ must
have equal horizontal deflections; therefore

15¢a = 25¢.q, or Yo = gsbcd

This leaves, as independent unknowns, the moments at the
ends of the members and 6, 6., ¥.s. These angles may be found

D)““ (— e
M

ba

/—\Mba
al Ha
< d Hy
Mnb {4
dec
Fia. 68. FiG. 69.

directly by writing three equations of the form ZM = 0, each
for some part of the structure and using the slope-deflection
equations to eliminate from them all unknown moments. For
joint b, ZM, = 0, therefore

Mba + Mbc =0 (b)
Similarly ZM = 0 for joint ¢ leads to
cb + Mcd = (C)

A third equation may be obtained by writing ZM = 0 for each
of the columns (see Fig. 69).

M., + My, + 15H, —0
Mcd+ Mdc+25Hd =

5(Mab+th) + (Mcd+Mdc) + H,+Has=0

But, from £H = 0 for the whole structure,
H, + H; =
Therefore
5M¢+5MM+3M¢4+3M4¢ =0 (d)

Substituting in Egs. (b), (¢), and (d) the values of the moments
in terms of the angles 6 and ¥ as given in Egs. (a) leads to
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2E0,(2K o + 2Ks) + 2E8.(Ks2)
2E0y(Kos) + 2E6.(2Ks. + 2Kot) — 6EYeaKea + 192 =

2E0,(5Ka + 10K o) — 6Ewcd<5 X 2 X §Ab> + 2E0,(9K.2)

— 6E¢a(2Ka X 3) =

or, in tabular form,

STATICALLY INDETERMINATE STRUCTURES

- 6E X gwcd Kab

[Cuap. III

— 288 =

T
2Es, 2K, ; 6E Y. | =0
2Kub + 2Kbc Kbc ‘gKob l —288
Ky, 2Ky + 2K.q ; —Kea ! +192
15Kab gth | §QKnb - ()Krd ) 0
! !
300 1000
K 12¢ = —— = 20; K, X 124 = —/— = 50;
a X i5 ; be X 20
750
4 = —_—— =
and the equations become
2E6, 2E6, 6EY. 4 Num X 1274 =0
140 50 - 33.3 —288
50 160 | -300 +192
100 90 i —171 1 0
|
The solution of these equations is
2E6, 2E8., 6Ey. q
140 50 —-33 3 —288.0
50 160 —-30.0 +192.0
10 9 —17.1 0.0
50 17 .8571 —11.9047 —102.8571
10 3.5714 — 2.3809 - 20.5714
1421429 —18.0953 +294 .8571
5.4286 —14.7302 + 20.5714
5.4286 — 0.6911 + 11.2609
—14.0391 + 9.3106
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6Ey.. = +0.66318(124)
142.1429(2E6.) — 12.0001 4 294.8571 = 0
2E6. = —1.9899(12%)
140(2E6,) — 99.4968 — 22 106 — 288 = 0
2E6, = +2.9257(124)

Mga, = 20(2.9257 — 1.1053) = + 36.408
M. = 20(5.8514 — 1.1053) = + 94.922
M. = 50(5.8514 — 1.9899) — 288.0 = — 94.925
Mo = 50(2.9257 — 3.9798) + 192.0 = + 139.295
M. = 30(—3.9798 — 0.6632) = — 139.290
M, = 30(—1.9899 — 0.6632) = — 79.593

These moments, together with the shears and direct stresses
which correspond, are shown in Fig. 70.
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364/ {5778 8755 —
4222177959 oo 257 e o
F1a. 70. Fic. 71.

As a second illustration consider the bent in Fig. 71. The
solution follows the same general procedure as in the previous
illustration, though there are differences in certain details. The
slope-deflection equations are

Mo = 2EK (260 + 6, — 3¢ap)
Mba = 2EKab(Ba + 20b - 3¢’ub)
Mbe 2EK1,¢(205 + 0e - 3«’1»)
M,. = 2EK,.(26, + 6. — 3¢».)
M. = 2EK..(0, + 26. — 3yu.)
M. = 2EK. 4(20. + 64 — 3V¥ca)
My = 2EK 4(6. + 264 — 3Yca)
Mda = 2EKde(2ad + oe - 3‘pdv)
M. = 2EK4,(64 + 26, — 3¥q.)

|
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M, = 2EK (26, + 6, — 3¥ue)
M, = 2EK (26, + 6; — 3Y«)
Mfc = 2EK¢{(0¢ + 20/ - 3¢¢/)

in which M. and M/, are zero. If the changes in the lengths
of the members be neglected, the relations between the various

Cp—————= \
,F ,r\’)é'l "’F\\*\‘i}’fd
l‘ Il ‘; \‘ \l [
! '/ \ ‘\I,
II !’I’ \‘ ":
A
b e\\|“\
1/ Wi
(7] R
1y It
7 v
a y yf
F1a. 72. Fia. 73.
angles ¢ are found to be as follows:
bb’ = 2016%.,5
"o 20 _
bb 2016¢@x2016—20w¢
"Er 2.5 _
b'b 20.16¢0 X sz 2016 = 2.5Va
" __ 20 — "
e = 20.16¢’Ic X 20—‘T6 = bb
Therefore
20y7s = 20y
Ve = Yab
"¢ = 20169, X 20 = 2.5y
¥ e 2016 "OWeb
Yoo = —%(b”b' + e’¢’) = —0.25¢a
r __ n
e’ =bb +20161I«.,.,X2016
= 20(Var + V¥ie)
20
" __ /"o ”
dd"’ = cc ee +2016¢/¢.X2016
= 20 + Vo)
Therefore

Vas = Ve
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Vod = __(cl "oy d/d”)
2.5

i

-

— 3525V + 250 + 250 + 2.5%0)

—%wub - %dfbc

_1_5<b'b” + 20.16ys. 55 18 + e'e’’ + 20.16y,, X

147

2.5
20.16

The unknown independent angles are 6., 6, 6., 64, 0., 67, Vas,
and y¥s.. The equations of equilibrium which are available for
the solution are M., = 0; M, =0; My + My, + M. = 0;

Vo
pod 2 _OMed M Vic

= /<-H /00H,¢1 ‘/oo-m,c M(’ \-—loo-H,,c
'de

100-H

“Hoc
Vo t‘)Muc vk‘*)Med

Fia. 74.

Mo+ Ma=0; My +My,=0;, M+ Mo+ M., =0, with two
more which may be derived from the conditions of equilibrium
for the various members. For the legs of the top story of this bent

(see Fig. 74)

2.5Vy. + 20Hy. + Moc + Mo, =0
2.5Vy. + 20(100 — Hy) + Mae + Maa = 0

Mo+ Mo+ My + Mg+ 5V, + 2000 = 0

also, for the girder cd
Mg+ My + 15V, = 0
which may be written

1
§qu - §Ma. + 5V =

therefore

M + M + 2000 = 0

4
M + 3Ma + 3

(a)
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For the bottom story (see Fig. 75)

My + 20H + 2.5V = 0
M,/ + 20(125 - Hab) + 25V¢b =0

My + M., + 2500 + 5.0V = 0
Mb.. + M.b =+ (qu - 17“)20 = 0; Mba + Mbc + Mbe =0
Mod+M¢f+Meb= 0

1 1 1 1 1 1

—ZMM - ZM:,C - ;Med - ZMd + 50Vab - é‘Mcb - gMd, =0
My + My + Mo+ 30, + I + Ina, + 2500 = 0 (b)
4 ba 4 be 4 ed 4 ef 3 cb 3 de =

Expressing Egs. (a) and (b) and the equations ZM = 0 in terms
of the distortion constants

‘V"C M 25+Hyc-H V"‘T
Ngb-V, eb * “Hab -
H -Vab Voc be Maby 1 100-H
D&FEHDC'Hab E:Hbc-Hab ’1 25*HpcHab Sodhs
EEEE— 125-H
25 [+ Hab C Wb v, - =
fvab MbQ ‘ab”Vbe Vab Vbc Vab Ve Vab
MMC/4Hab I?S'ﬂ;\) Mef
125-Hgab
~—Hap -
TV«:lb Vab

Fia. 75.

2EKab(20a + 01, - 3¢ab) =0
2EK./(0¢ + 26; - 3¢ab) = O
2E6, Koy + 2E60,(2K,p + 2Kse + 2K,.) + 2E6. Ky. + 2E0, Ky,
- 6E¢/ab<Kab - %Kbe) - 6E\"bc Kbo =0
2E6y K. + 2E0.(2K,. + 2K.s) + 2E0, K4

1
_ GE\PbC(Kbc — §ch) — 6E¢@(—%ch =0

2E6.K.s + 2E0,2K.a + 2Ka.) + 2E0.K.,
- 6E¢50<K4, - %Kc.,) - 6Ewab<—%K¢4> -0
2E6:Ka, + 2E0.2Ks. + 2K + 2K.;) + 2E6, Ko
+ 2E6, Koy — 6E¥s(Kas) — eEwab(K., - iK.,,) =0
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2E6y 1—301{,,‘, + 2E6 (131 .,,) + 2E0,(%K¢.) + 2Ea.<1391<.,.)
—6E.p.,c( K,. + ;K,,.> + 2000 = 0
10 1 1
2K, —K,, + 2B0( DKa + Ko + §K,,¢ + 2E0 3 Ku.
1 2 1 1
+ §Kb¢> + 2Eod<ZKd¢ + §Kda> + 2E0¢("Kda + TOKJI + %Kde>
-—GE‘//“(%’K,& + -5-K,,> + 2Ea,( >

- BEwbc( Kbc + Kda + Kbc + Kda) + 2500 =

403.3
Ko = Ky = Kpe = Kag = gie——5, = 20 X 124
o i ¢ ‘7~ 20.165 X 12¢
500
Kye = 50— = 25 X 124
b T 20 X 12¢
750
K = 755, = 50 X 1274
15 X 12¢
The equations become
2E6. | 2E6 | 2E6. 2E04 2K0, | 2B6, 6Eya 8Eys Num X 127¢
40.0 | 20.0 -20 0 00
20 0 {130.0 | 20.0 26 0 ~13 76 -20.0 0.0
25.0 | 66.6 | 18.3 18.3 68.8 285 —50 0 —23.3 42500 0
20.0 {140.0 | 50.0 +16.68 - 3.3 0.0
25.0 20.0 {130.0 20 0 | —13.78 ~20.0 0.0
66.8 | 73.3 | 73.3 66.6 —-93.3 +-2000.0
50.0 [140.0 20 0 +16.8 - 3.3 00
20.0 40.0 | —20.0 00
20.0 | 10.0 ~-10 0 0.0
25.0 | 12.8 ~12.6 0.0
120.0 | 20.0 26.0 - 3.78 —20.0 00
54.16| 18.3 | 18.3 66.6 25.0 | —37.5 —-23.3 +2800.0
20.0 [140.0 | 50.0 +16.68 - 33 00
25.0 20.0 [130.0 20.0 | —13.78 —20.0 0.0
66 8 (73.8 |73.3 |e668 | 933 +2000 0
84.18] 9.028 11.2858 ~ 1.693 | — 9.028 0.0
20.0 | 3.333 4.168 — 0.625 | — 3.333 0.0
25.0 | 4.188 5.2083 — 0.7812 | — 4.168 0.0
66.8 | 11.111 13.8888 — 2.083 —-11.111 0.0
9.308| 18.3 55.3816] 25.0 | —35.807 | —14.305 +2500.0
136.668| 50.0 |—4.1668 +17.2018 0.0 0.0
—4.166] 20.0  |124.7916| 20.0 | —12.9888 | —15.833 0.0
62.222| 73.3 82.7777 + 2.083 | —82.222 +2000.0
50.0 [140.0 20.0 +16.68 - 3.3 0.0
9.305 3.4048/—0.2838 + 1.1773 0.0 0.0
4.16 | 1.526 |-0.1271 + 0.5271 0.0 0.0
62.222| 22.762 |—-1.8078 + 7.873 0.0 0.0
850.0 | 18.292 |—1.5248 + 6.326 0.0 0.0
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2E6. | 2E0 | 2E0. | 2E0s | 2E6. | 2Ef, 6Eya 6Eys. | Num X 12

14.9288 55.6654] 25.0 | —36.9843 | —14.306 | +2500.0

21.525 [124.6645| 20.0 | —12.4417 [ —15.833 0.0

50.571 | 54.6755 - 5.790 | —82.222 | +2000.0

121.708 | 21.5248 +10.340 | - 3.3 0.0

14.9288| 2.6413 + 1.2687 | — 0.4089 0.0

21.526 | 3.8075 + 1.8292 | — 0.5895 0.0

50.571 | 8.9440 + 4.206 | — 1.3847 0.0

53.0241/ 25.0 | —38.253 | —13.8061 | +2500.0

120.857 | 20.0 | —14.2700 | —15.2435 0.0

45.7315 —10.086 | —80.8375 | +2000.0

20.0 40.0 | —20.0 0.0

53 0241] 25.0 —38.253 —13.8961 +2500.0

120.857 | 20.0 —14.2709 | —15.2435 0.0

45.7318 —10.086 | —80.8376 | +2000.0

20.0 |[40.0 | —20.0 0.0

53.0241| 8.786| — 6.260 | — 6.688 0.0

45.7315| 7.568] — 5.399 — 5.768 0.0

20.0 3.309| — 2.361 | — 2.522 0.0

16 214] —31.993 — 7 208 -+2500.0

~7.568| — 4.687 | —75.0695 [ +2000.0

36 691) —17.639 | + 2.522 0.0

16 214| — 7.797 + 1.1146 00

7 568 — 2.638 | + 0.5201 0.0

—24.196 | — 83226 | +2500.0

—- 8.325 | —74.5494 | +2000.0

— 8 325 — 2.864 + 860.2

i | —71 6854 | +1139 8
6Eys = +15.902

~24 196(6Eya) — 132.37 + 2500.0 = 0 6Eya = +97.86
36.691(2E0y) — 1726.0 + 40.11 = 0 2E6; = +45.96
120.857(2E0.) + 919.2 — 1396.2 — 242.35 = 0 2E8, = + 5.95
121.708(2E64) + 128.10 + 1011.9 — 53.0 = O 2E6¢ = — 8.932
136.6(2E0.) — 446.6 — 24.8 + 1691.8 = 0 2E6, = — 8.932
120.0(2E®) — 178.64 + 148.75 — 366.9 — 318.04 = 0 2B = + 5.957
40.0(2E6,) + 119.14 — 1957.2 = 0 2E0, = +45.95

Ma = 20(+91.90 + 5.96 — 97.88) = 0

M = 20(+45.95 + 11.91 — 97.86) = —800.0
My = 25(+11.91 + 5.95 + 24.46) = +1058.3
Mpe = 20(+11.91 — 8.93 — 15.90) = —258.4

Ma = 20(+5.95 — 17.864 — 15.802) = —556.2
Mo = 50(—17.864 — 8.932 + 37.921) = +556.28
Mi = 50(—8.932 — 17.864 + 37.921) = +556.25

Ma = 20(—17.864 + 5.95 — 15.902) = —556.2
Mu = 20(—8.932 + 11.90 — 15.902) = —258.4
Ma = 25(+11.90 + 5.95 + 24.465) = +1058.3.
Mo = 20(+11.90 + 45.96 — 97.86) = —800.0
My = 20(+491.92 + 595 — 97.88) = 0.0

36. Stress Analysis by Distribution of End Moments.—An
ingenious and convenient method of finding the stresses in
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structures with moment-resisting joints has been suggested by
Professor Hardy Cross and is called the method of moment
distribution. Each of the methods discussed in previous articles
involves the solution of a number of simultaneous equations and,
in general, is somewhat laborious. The method of moment dis-
tribution does not require equations, is often much shorter than

7419 55625

55625

74/9
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¥ 18002
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F16. 76.—End moments, shears, and axial stresses for the bent of Fig. 71.

any of the methods already discussed, and may be carried only far
enough to provide results of a degree of precision required by
the particular problem in hand.

Consideration of the slope-deflection equations leads to the
conclusion that the moment at the end of any member is deter-
mined by the following factors: The rotations of the tangents,
at the ends of the member, to the elastic curve; the rotation of
the chord joining the ends of the elastic curve and the applied
loads. The method of moment distribution is a process of
evaluating the effects of these factors separately and arriving
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at the final result by a series of approximations. It may be
illustrated by the problem shown in Fig. 77. The slope-deflection
equations for this beam are

2
Mo = 2EKa(20, + 6 — 3y) — 2 X2 X T
42
Myo = 2EKa(0, + 26, — 3ya) + 22X 2 X8
(a)
5 X 12
My, = 2EK,(20, + 6. — 3¥n) — "%*
2
M = 2EKa(0, + 20, — 3¥s) + 5_%11
also, by statics,
2
Mcd = —95 X % = —90

If the points of support do not yield, the angles ¥a and Y.
50 5 per lin. f#

aa | IEEEEEEEREEY

R —|1=/000"* % N1=1500"* .;?;

fe-s’ A R R 6>
- 0.02 |
| + 004 |
l: 0.17 ‘

|‘_ﬁ = -44.67 | |
- 005 + 1.90 ' I
‘— 0.38 iy
- 253 |+|2.6 | l
+ 31 +93
- 88.88 600 | -s00 |

+44.40 + 60.00

+ 622 + Qg-gg

- + .

- s0s s

—_ + 38

- Qi) -W

- =002 + 057

+44.71 -7008

+ _008
+ 90.00
Fi1a. 77.

are zero. The next step is to write on the members the end
moments which would occur if the angles 8 were zero also,
i.e., the moments which would exist if each member were fixed at
the ends. It is evident that these are the last terms of Eq. (a).
At this point it is well to adopt some convention as to positive
and negative moments and to adopt some orderly procedure
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with respect to the places in which end moments are written.
The authors prefer to retain the slope-deflection conventions
for moment and to write each moment on the side of the member
first encountered in a clockwisc mcvement around the joint.
There is no particular advantage in these conventions for such
problems as that in Fig. 77, but it is believed that there is con-

444 444 600 6Q0 6Q0 600 920 900
/) O &) o) (O
(b) — ()

siderable advantage in more complicated problems, and that
there is merit in adopting the same procedure for all problems.

If either joint b or joint ¢ be considered as isolated in the condi-
tion just described (see Fig. 78), it is evident that neither joint
is in equilibrium; consequently each joint must rotate till
equilibrium is established. The effects of such rotations will be
evaluated separately. The unbalanced moment at joint ¢ is
greater than that at joint b and in general its rotation would be
considered first, but, for the purpose of explaining the method,
joint b will be taken first. Assume that, for the moment, joint b
rotates, all other joints remaining fixed. During this rotation
the moments developed are stated by

Mab = 2EK¢5(05) MM = 2EK¢5(205); Mbc = 2EK5C(295),
Mcb = 2EK1>¢(05) (b)

Since joint b rotates till equilibrium is established, the moments
M., and M,. developed during the rotation must be together
equal to the unbalanced moment and be of opposite sign, i.e.,
+15.5, also, from Egs. (b)

My _ Ko _2

Mbt‘ N Kbc - 3
therefore the moments developed during the rotation are

My, = §(+15.5) = +6.2; M = §(+15.5) = 493

Each of these is written at the end of the member in which it
occurs. This is called moment distribution. It is evident from
Eqgs. (b) that this rotation of joint b through an angle 6, produces
moments at joint a and joint ¢, further that the moment produced
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at joint a is just half as great as that produced in the b end of
member ba and has the same sign, while the moment produced
at point c is just half as great as that produced at the b end of
member bc and has the same sign. These moments are written
on the ends of the members in which they occur. This is called
the carryover. An examination of joint ¢ at this stage shows
that there is an unbalanced moment of —25.3; therefore this
joint must rotate till equilibrium is established. During this
rotation there can be no change in the moment —90.0 in cd
because the far end is free to move and this moment is deter-
mined by the conditions of equilibrium for the cantilever end
cd; consequently, all the balancing moment must occur in
member cb; it is so written. Since this rotation is assumed to
occur with all other joints temporarily fixed, there will be a
carryover moment of +25.3 X } developed at the b end of
member bc, the reasoning leading to this conclusion being exactly
the same as that which determined the carryover moments due
to the rotation of joint b. A new examination of joint b shows
that there is a new unbalance of moments at that point. There-
fore there must be some additional rotation of that joint, this
rotation proceeding till equilibrium of the joint is established.
It is assumed that for the moment all other joints are fixed and a
moment distribution and moment carryover are carried out just
as in the previous rotation of joint b. This produces a new
unbalance at joint ¢, which must, therefore, rotate till equilibrium
is established and is assumed to do so while all other joints are
fixed, resulting in a balancing moment at joint ¢ and a new carry-
over moment at joint b and a new unbalance there. These
steps are repeated till the unbalanced moments are so small that
further investigation is deemed unnecessary, this particular
decision resulting on the precision desired in the analysis.
The total moment at the end of any member is the algebraic
sum of the moments written there.

In the solution just completed it was assumed that there was
no yielding of the supports and that, consequently, all angles ¢
were zero. If the conditions were such that joint b should be
expected to yield under the loading given, a further investigation
must be made to determine the effect of this yielding and the
end moments developed must be added to those already found.
This further investigation is carried out in a manner very similar
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to that used in finding the effect of the loads, but starting with
the end moments which would be developed if the settlement
occurred without any rotation of the joints and then considering
the effect of any possible rotation of the joints (moment dis-
tribution and carryover) just as in the previous problem. As an
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illustration assume that joint b settles y% in. under the loading
shown. It follows that

1 1 1 1 1 1
Vo = T X3 X1E  *T T X1BXDR
and the fixed-end moments due to the settlement are
3 X 107 X 122 X 1000
My = My = —6EKubar = —6 X 127 X 12 X
1
16 X 12 X 12

= —45.21 (in 1,000-1b. units)
My = My = —6EK.ap.a = +45.21 X 1.5 = 67.81
The moment distribution is given in Fig. 79a.
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In this beam joint ¢ behaves as if it were pin-connected and
some labor may be saved if this is kept in mind in carrying out
the moment distribution at joint b. For adjacent members
ab and bc, joint a being fixed and joint ¢ free to rotate, the slope-
deflection equations are

My, = 2EK (0. + 26y — 3¥ap)
Mbe = 2EK5¢(205 +‘ 0c - 3“’6«:)
Md, = 2EK@(0|, + 20.; - 31"5,) = 0

In evaluating the effect of a rotation of joint b, when joint a
is fixed and joint c free to rotate, and the angles y being assumed
to be zero, even if only temporarily, these equations become

1
0¢ = —er

M. 2EK,,¢<%85) — 3EKy.b
My, = 2EK,.(26)) = 4EKsu0,

1t is evident that a rotation of joint b under these circumstances
leads to the development of moments M, and M,. which are not,

IS
0. b ;122500 Mbac) y °
i S Py ba
H 2 ! t Sab |b
3 |ersm4s00 P !
2 ! |
: <500 »:?‘ Lab |
X | ! I

Pin —-4]d § _L._ﬁ_sab o
ot ) ab
}‘ 25 —-’1 Mabé)
(o) (b) (c)

as before, proportional to the stiffness factors K, and K,
but are proportional to Ka and $K,.. If this idea is used, the
computation in Fig. 79a becomes that shown in Fig. 79b.

As a further illustration consider the bent shown in Fig. 80a.
In this condition of loading one cannot start with the fixed-end
moments for the members because there are no transverse loads
between the ends of any member. It is impossible, also, to begin
with the end moments due to some definite angle ¢ for each
member, though a little consideration of the structure will show
that ¥s. = 0 and that neither y. nor y. is zero. A logical
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beginning would be to start with the effects of some definite
value for ¥, or for ¥, and, since the purpose of the moment
distribution is the evaluation of the effect of rotation of the
joints, it might be assumed that, temporarily, the angles ¢
occur without rotation of the joints. Further, since the sum
of the horizontal shears in the two columns must be equal to the
load applied, it might be assumed that the structure moves
sideways till this condition is satisfied. Since the two columns
are of different lengths and have different conditions of support,
though under the assumptions stated above the horizontal
deflections of joints b and c are alike, the horizontal shears in the
two columns will not be alike and the logical procedure is to
determine the relation between the horizontal shears which will
cause the two columns to have equal deflections at the upper
ends, both being assumed fixed in direction at the top, column ab
fixed at the base while column ed is pin-connected at the base.
The comparison between the two conditions is as follows:

Since the column ab is fixed in direction at both ends, the slope-
deflection equation gives (see Fig. 80b):

_ _ | 2El, 5
Mo = M = +27 (‘313;‘,,)’

from which
_Lﬁ,,M b
6EI,,

From the equation ZM = 0 applied to the column,

Salas = —Maw — My = —2M .
Combining these relations:

0 =

SasLiy

b = t1g1,

For the column cd, the slope-deflection equation gives (see
Fig. 80c)

— 0 = opld _ a8
My =0 = 2EL¢4<20" 3Lcd>’
from which
3 &
0 = 3L
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+2EI°"(0,, ) - 2EI°"(— 3 i)

L\ 2La
from which
5 = —Maliy
¢ 3El,4
By statics,
Scilea = — Ma.
Combining these expressions,
5. = Sl
¢ 3El.4

Since &, = é.,
S _ 12El./LY,  4Ka/L%,

S.  3EI/LY;,  K./LY

If both columns had been fixed at the base, the relation would
have been

Sw _ 12EI4/L}, _ Ka/L2,
Sa 12EI.4/L% — Kua/L%,

For this particular problem the tentative shear distribution is

41500
Sw _ 16 4t _ 256
S..  1500/20® — 3* 27
256 27
Se = 100 X ==- 283 = 90.46; Spe = 100 X —os 253 = 9-54

and the corresponding fixed-end moments are

My = My = —% X 90.46 X 15 = —678.4

M. = —954 X20 = —190.8

In carrying out the moment distribution only the relative magni-
tudes of the K factors are of importance and since the column
cd is hinged at the base the ratios are

1500 2500 3 _ 1500 . . .
5557 X 55 = 100:100:56.25 = 16:16:9
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The moment distribution follows.

“+519.4)
+342.8

-~
RO~ O+
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~— Qo
~in
L+

(86.21)

Fia. 81.

wo =
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The equations of equilibrium for the two columns lead to

o _ 3429 + 5106
ab 15

= 56.9;

182.6

Sea = =9.13

20

159

The sum of these is 66.0 and the total load is 100; therefore, all
quantities should be multiplied by the ratio 100:66. The results
are shown in parentheses in Fig. 81.

If the bent is of more than one story, the shear distribution
is not quite so easy. There are several ways of carrying out

the desired process, but what is
perhaps the most convenient is
that suggested by Professor
Clyde T. Morris in his discus-
sion of Professor Cross’s paper
entitled ¢ Analysis of Continuous
Frames by Distributing Fixed-
end Moments,” in the Transac-
tions of A.S.C.E., vol. 96, 1932.
Consider the analysis of the bent

3600/b (2) d (2)
c 9 If
8 S SN

72001k (2) e (2) h {
b 1
8 g g ¥
al s At
L——-zo'———»L——zo'-—»

Fic. 82.

shown in Fig. 82. The stiffness factors are in the ratios of the
If the changes in the lengths
of the girders be neglected, the angles y for the columns of any
one story are alike. Hence, assuming no joint rotation, the

figures written on the members.
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end moments for any column mn, being equal to —6EK may/mn,
are proportional to the stiffngss coefficient for the column. Thus
in the upper story of the bent, the total shear being 3.600 lb.,
the sum of the end moments for the columns 15

3,600 X 12 = 43,200 ft.-lb.

This is divided among the columns in the proportion 3:4:3, 7.e.,
using 1,000-1b. units, 12.96:17.28:12.96, and the end moments
for any column being equal, the end moments for the three
columns are 6.48, 8.64, and 6.48, respectively. Similarly,
in the lower story the end moments are 19.44, 29.52, and 19.44,
respectively. These moments are all counterclockwise and hence
are written as negative. When thisis 144 108
done the moments at any joint, in r3_ Y. ra
general, will not balance. Hence the °|%#5 °|0/@ @lass
joints will rotate. This is taken into

account by distributing the moments at vloss  elozs nlass
LA Al o

108 +/08 o 270 359 270
< +108 § +/08 .S I’QJ‘S ‘tﬂ 1080
N B — —

N 2 o 126 elz88 h|2%

«

Y862 vl-862 N
8 +862 (3 +862|R
= A3 IS

& ~|! o al2/6 fl 288 k| 2/6

9 S ‘QL N

b i e 1512 2a17 1512

Fi1a. 84. Fic. 85.

each joint and carrying over the ‘‘carryover moments.” In
the illustration in hand this is performed in Fig. 83, taking the
joints in the order e, b, h, d, ¢, g, and leading to the results as
shown in Fig. 84. The shears in the columns corresponding to
these end moments are shown in Fig. 85.

In the top story the column shears have as a sum 0.448 to
the right when it should be 3.6 to the left. The sum of the
column shears in the bottom story is 7.20 when it should be
10.8. To take care of this, impose new moments on the top
story columns whose total is (3.6 + 0.448)12 = 48.576 divided
among the three columns in the ratios 3:4:3, t.e.,

14.57:19.43:14.57,

which means end moments of —7.29, —9.72, —7.29, in columns
bc, ed, and hg, respectively. In the lower story impose new
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moments whose sum is (10.8 — 7.20)12 = 43.2, which, divided
among the three columns in the proper proportions, leads to end
moments of —6.48, —8.64, —6.48 in columns abd, fe, and kh,
respectively. Now repeat the distribution and carrying over of
unbalanced moments and check up the total shears in the two
stories once more. Repeat this process until the unbalanced
moments are so small that further computation is considered
unnecessary. The process described was carried out six times in
Fig.83. The results obtained are listed below together with those
obtained from a slope-deflection solution of the same problem.

Moment Slope- Moment Slope-
Member |distribution| deflection Member |distribution| deflection
solution solution solution solution

ab —22.75 —-23.97 ed — 8.00 — 8.64
ba —14.05 —14.08 de —13.97 —14.09
be - 2.19 — 2.68 be +16.39 +16.76
cb - 7.10 - 7.55 eb +15.42 +15.74
fe -32.21 —32.66 cd + 7.11 + 7.55
ef —22.50 —22.84 de + 6.66 + 7.05




CHAPTER IV

INFLUENCE LINES FOR STATICALLY INDETERMINATE
STRUCTURES

37. Introduction.—In the preceding chapter, various methods
used to determine stresses in structures with redundant members
or reactions were demonstrated. The structures discussed were,
however, subjected to a particular condition of loading. Very
often one must investigate the effect on a structure of many
possible conditions of loading, as, for example, when live load
moves across a structure. In such circumstances it is necessary
to determine what position of the live load will cause a maximum
value of some particular function, such as stress or deflection.
For this purpose the influence line serves as the most convenient
means of obtaining the desired result.

The first step in finding the influence lines for the stresses in
various members of a structure is to find the influence lines for the
redundants. Once this is done, it is possible to find the stress
in any member, for any position of the unit load, as a function
of the unit load and the redundant stress or stresses.

38. Influence Lines by Successive Positions of Unit Load.—It
is, of course, possible to place the unit load in each position
possible and, for each of these positions, compute the values of
the redundants by one of the methods given in Chap. III. While
the amount of time involved in this procedure may be large, the
work may be systematized in such a way that it is not unduly
laborious.

For illustrative purposes, Castigliano’s law will be used as a
basis for stress analysis, and the ordinates to the influence lines
for the stresses in members 5-6 and 6-9 of the doubly redundant
truss shown in Fig. 86a will be computed. The numbers shown
in parentheses on this figure are the member areas in square
inches. The primary structure is shown in Fig. 86b, the tension
in member 5-6, X,, and the tension in member 6-9, X;, having
been taken as the redundants. For any position of the unit

163
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load, the stress in any member of the structure may be expressed
by
F = Fo 4+ X.Fo + XoFy

in which F = the total stress in any member.
F, = the stress in that member due to the unit load
acting on the primary structure.
= the stress in that member for “‘condition X, = 1.”
Fy = the stress in that member for “condition X, = 1.
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£0.628 +1074 +0807
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ConditionX4=! ConditionX=Q  Condition X=0
Unit load at 5 Unit load at 7
Fia. 86.

If one assumes no yielding of supports and no change of
temperature, the equations dW,/dX. = 0 and dW./3X, = 0,
solved simultaneously, will yield the required solution, for any
given position of the unit load.

These equations become

oW _ FL oF

X, — AE 3%, = E(Fo + X.F. + Xbe)ZILE F.

NQFF.L FL FFL _
= ETE‘ + X“ETE X 2 =0
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and
W, _ FL oF _ L
X, — E('B_X—’E(FO_*'XaFaJFXbe)EFb
_ FoFbL FanL F2L
But
F.F.L N FoF\L S F2L :
AE a0, AE - 0Obo, AE 6
F
= e = b
and
FAL 5
AE ™

from which one may write
a0 + Xabaa + Xibap = 0
80 + Xaboa + Xsbss = 0 (@)
these equations being identical with those obtained by the method
of virtual work. If Egs. a are solved simultaneously, the
following results are obtained:
0b00ab — Ba0dsp
Xo = 80ads — 03,
Sa0dab — Op00aa
X daales — 03,

In the foregoing equations, 8., 8., and 8. are independent
of the position of the unit load, hence need be computed but
once. Moreover, 8, equals &», owing to symmetry of the
structure and symmetrical choice of redundants. 8., and &
have different values for each position of the unit load. Since,
however, the primary structure is symmetrical, if the various
values of 8, are computed, values of éw may be obtained by
symmetry. As a further means of saving labor, it should be
noted that for condition X, = 1, only the members which com-
pose the panel 4-6-5-7 are stressed, so that only the members
in this panel will contribute to 8. and &8..; for the condition
X, = 1, only the members which compose the panel 6-8-7-9
are stressed, so that member 6-7 is the only member in the
structure for which the product F.F, does not equal zero, and in
consequence is the only member contributing to é». Moreover,
for this member, F, = F, owing to symmetry.
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In Fig. 86c the stresses F, for condition X, = 1 are given;
in Figs. 86d and 86e the stresses Fy for condition X = 0 are
shown, with the unit load at points 5 and 7, respectively. Con-
sideration of the principles of statics permits an easy computation
of the Fy stresses for other positions of the unit load. With the
unit load at 3, the Fy stresses in panel 5-7 are equal to one-half
those with the unit load at 5; with the unit load at 9 and 11, the
F, stresses are equal to two-thirds and one-third, respectively,
of those with the unit load at 7.

The computations arranged in tabular form are shown on p
166.

39. Influence Lines for Elastic Deflections.—If one is con-
fronted with the problem of determining the maximum deflection
due to moving loads, of a point on a structure, the influence
line again serves as an expedient to determine the position of

MRoaawa: n
g 0 |
| ! ™ I ‘ | !
| | | ! | ! | |
L ] ! I )
W
Fic. 87.

loads which will cause the maximum deflection and may be used
as a basis for computing the value of the maximum deflection
once this position of the loads has been determined. Influence
lines for deflections may be constructed by investigating succes-
sive positions of the unit load in a manner similar to that discussed
in the preceding paragraph, the effect of each loading being
investigated by one of the methods demonstrated in Chap. II.
A more convenient approach, however, may be found.

If a unit load is applied at m, as shown in Fig. 87, and the
deflection curve is drawn for the points of application of the
load system, the ordinate to such a curve at any point n is 8,m.
Now, by Maxwell’s 1aw, 8mn = 8.m, so that the ordinates to the
deflection curve are also ordinates which show the various values
of the deflection of joint m as the unit load moves across the
span; i.e., the deflection curve of the roadway due to a unit
load at m is the influence line for é..

To illustrate the application of this method, the maximum
deflection of joint 7 of the truss in Fig. 88a due to a uniform
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live load of 4,000 lb. per ft. will be determined. A unit load of
1,000 Ib. will be used in this computation, and the method of
elastic loads will be employed to determine the deflection curve
of the bottom chord due to the unit load at joint 7, which is

@ w61 ® -1 ® -8064 ® -6064 ©®
JPE @D | @39 A 14032 /\\ 4032 b

(] el S A H

~ 2 & S ;
VR BN R PRI A AR 5
SR RN RN D L |
O (2634) 1(2634) a\l/fax (5022) | +/2096 #4032 | +4032 \® _y

v+ ® (@)

|
|
p-

18531 (3 #1531 (5 +2408 gl®
AN

Stress Intensities

Total Stresses

shown in Fig. 88b. Since this elastic curve is the influence line
for the vertical deflection at joint 7 and all the ordinates to the
curve indicate downward deflection, the area under the curve
multiplied by the intensity of live loading gives the required
maximum deflection.

Coeflicient of cot a Coefficient of cot 8 1st 2d
Angle t ..-2-.5 ﬂ term term £ do
cot a=z7 cot ﬁ-25

1-3-2 —11.74—15 31 =—27.05/—11.74— 0.0 = —11.74/ —21.81|—14.586 3.80
2-3-5 |+21.95—15.31=+ 6.64|+21.95— 0.0 = +21.95/+ 5.35|+27.22 + :
3-5-2 0.0 —21.95=—21.95 —27.22
2-5-4 —18.61—21.95= —40.56 —32.71 16.82
456 |—18.61+19.94=+ 1.33 + 1.07 -
6-5-7 +41.07+4+19.94 = +61.01 +75.68
5-7-6 —~19.94—24.08= —44.02( —19.94—41.07=—61.01{—35.50{—75.68 222 36

7-9 —19.94—24.08=—44.02(— 19 94—41.07=—61.01|—35.50(— 75.08 + .




ARrT. 40] INFLUENCE LINES 169

E 6§71, for 1,000-1b. load 2454

+ 98.16 X 25 = 42454 4813

— 3.80 7592

— _ 4813

+ 94.36 X 25 +2352 2454

+}682 +4813 22126(25) = 553,000 = E (area)
+111.18 X 25 = 42779 Therefore

—222.36 +7592  Max. 5. = 993000(4) _ o oag e
Biisialbine 0 T30 x 100 ‘
—111.18 X 25 = —2779 = 0.885 in. due to live
+16.82 +4813 load only

— 94.36 X 25 = —2359

— 3.80 +2454

— 98.16 X 25 = —2454

40. Influence Lines for Stress by Use of the Elastic Curve.—
The use of the elastic curve and Maxwell’s law in constructing
influence lines for deflections, and the advantage gained by
their use, suggest a similar approach in constructing influence
lines for functions such as bar stresses or reactions, through
the application of Eqs. (61).

Consider the application of these equations to the truss in
Fig. 89a, which is symmetrical about the vertical center line.
The cross-sectional areas of the members are given by the
numbers in parentheses written on the left half of the sketch
It will be assumed that there is no yielding of the supports.
As the redundant force, the vertical component of the middle
reaction, assumed acting up, will be chosen. Under these cir-
cumstances the statically determinate primary structure is as
shown in Fig. 89b.

If one writes Eqs. (61) for this structure,

a0 + Xaaoa =0

in which &, is the deflection of point a of the primary structure
in condition X = 0. But, when one is determining the influence
line, this condition reduces to a unit concentrated load at one
of the joints m of the loaded chord, for which

800 = 6nm
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Therefore one may write, when finding the magnitude of X, due
to the unit load at a joint m,

Ay = — — (79)

All that must be done in order to draw the influence line for X,
is to draw the influence line for —§,, and divide each ordinate
by the quantity -+ é,..

If the deflection diagram of the loaded chord is drawn for
condition X, = +1, the ordinates §,. to this curve will, by
Maxwell’s law, be equal to 8.m. Since the live loads, hence
the unit loads at m from which the deflections §,, would be
computed by the method of virtual work are positive downward,
upward deflections é., are negative and indicate negative values
of 8am. 0aa 18, Of course, positive.

The numerical solution follows. For convenience, use

X, = 41,000,

and find 8,m X 10® and 8., X 103 In this particular problem,
the absolute value of 4.4 is equal to one of the particular values of
8ma, 5O that no special computation is needed for its evaluation.

Coefficient of cot a | Coeflicient of cot 8 : 1st , 2d l

Angle cot a=1 ! cot =1 ! term l term £ do
1-3-2 [+19.60+28.91 =+ 48.51{+19.60+ 0.0 = +19.60{+ 48.51{+19.60 _ 25.59
2-3-5 [—35.73+28.91=— 6 82(—-35.73+ 00 =-35 73— 6 82/—-35.73 )
3-5-2 0.0 +35.73=+435.73 +35.73

2-5-4 [+35.73+35.73 =+ 71 46 + 71.46 _ 76.76
4-5-6 |+35.73—33.08=+4+ 2 65 + 2.65 .
6-5-7 0.0 —33.08=-—33.08 —33.08|

57-6 |+33.08475 70=+108.78/+33.084 0 0 = +33.08|+108.78|+33.08 —217.56
6-7-9 0.0 +75 70=4 75.70 0.0 |+ 75.70f 0.0 :
7-9-6 0.0 0.0

Coeflicient of cot v Coefficient of cot &
cot y=0.50 cot 5=}

6-9-8 |+56.62+ 0.0 =4 56.62|-+56.62+29.96= 18658+ 28.31|+28.86
8-9-10 [+56.62+ 0.0 = { 56.62 +56.62+29 96 = +86.58 + 28.31/+28.86| —114.34
10-9-11 0.0 00
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E 5m, 102 Xa

—377.08 X 30 = —11312.4 +0.356
+ 25.59
—351.49 X 30 = —10544.7
+ 76.76 —21857.1 +0.6865
—274.73 X 30 = — 8241.9
+217.56 —30799.0 +0.9455
— 57.17 X 30 = — 1715.1
+114.34 —31814.1 +1.000
+ 57.17 X 30 = + 1715.1
+217.56 —30099.0 +-0.9455
+274.73 X 30 = 4+ 8241.9
+ 76.76 —21857.1 +0.6865
+351.49 X 30 = +10544.7
+ 25.59 —11312.4 +0.356
+377.08 X 30 = +11312.4

0

As a second illustration, the truss in Fig. 90a, in which there
is one redundant member, will be investigated. The primary
structure shown in Fig. 90b is formed by cutting the redundant
member, for which bar 6-9 is selected, by a section; for con-
venience the section will be taken just inside joint 6. Proceeding
as in the last illustration,

60"‘ 6”'0

2 i
The deflection curve of the loaded chord, the ordinates of which
are d,m = Oms, is drawn for condition X, = +1. As in the pre-
ceding illustration, upward values of & are negative. This is
shown in Fig. 90c. The influence line for Fe.¢ is given in Fig. 90d.
The method of elastic loads is used in determining values of &,.,.
To find the elastic loads,

Coefficient of cot Coefficient of oot 8
Angle oota-:-—g ootﬂ—:'g st term | 2d term | E d6
47-6 0 0 0 0
6-7- 8 |—0 00015 — 0.085 = —0.06415 0 —0.05346 0 +0.16602
87-9 0 —0.0388 — 0.075 = —0.0038 0 —0.11258
7-9- 8 |40 055 4 0.00035 = +0.06435/+0.055 -+ 0.0388 = -0.0938|4-0.05363|+0.11256/—0.16819
8-8-10 0 0 0 0
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In this example the easiest way to find 5, is by a direct
application of the law of virtual work leading to

Bog = EF:% E5,. = EFJ,,L
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Ui
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L /s L0 S/ ° l
0 0 0 \/-0.6401 0 0 0
ta®~Q00935
Condition Xq=+I
z
8
b |1 §! E{ | I
l -~
@T I A N 73
SR lESNL S
| 3 ()
+; “\l YL i 1 (e
A o
} bl |E§ i |
P S AL [T (@)
Inflvence /ine for Fgo
Fia. 90
Bar L F, fa FofsL
6-8 25 —0.6401 —0.00915 +0.1465
7-9 25 —0.6401 —0.00935 +40.1497
6-7 30 —0.7682 —0.0388 +0.8941
89 30 —0.7682 —0.0388 40.8941
6-9 39.05 +1.0 +0.055 +2.148
7-8 39.05 +1.0 +0.055 +2.148
+6.3804
—0.16602 X 4 = —0.66408
+0.16619 X 3 = +0.49857
+0.00017 7)—0.16551
0.02364 0.02364 up

0.02381
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E 6ma X

+0.02364 X 75 = +1.773 —0.2779
—0.16602
—0.14238 X 25 = —3.559
+0.16619 —1.786 +0.2799
+0.02381 X 75 = +1.786

0.0

41. Influence Lines for Trusses with Two Redundant Mem-
bers.—The construction of influence lines for structures with two
redundant members, based on the use of the elastic curve and
Maxwell’s law, may be illustrated by an alternate solution to the
problem solved in Art. 38 by investigating successive positions
of the unit load. Referring to Fig. 86, one may write

800 + Xaaau + Xbau.b = 0
0w + Xabba + Xabw = 0 (@)

If it is desired to draw influence lines, the deflection 8, becomes
the relative deflection inward, 8,., of the two points a of the
primary structure, due to a unit load at joint m of the loaded
chord, while 85 becomes the relative deflection inward, 8., of
the points b of the primary structure due to a unit load at joint m.
By Maxwell’s law

Sam = Oma and Som = Omp
and Egs. (a) become

8ma + Xa‘saa + Xbaab =0
Oms + Xabba + Xt = 0

Thus, the determination of influence lines for X, and X, resolves
itself into the solution of a number of pairs of simultaneous
equations, in which the coefficients of the unknowns are always
the same, while the numerical terms 6m, and 6. may be obtained
from the deflection diagrams of the bottom chord; 6., from
that corresponding to condition X, = +1, and 8. from that
corresponding to X, = +1. What is probably the most con-
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venient way of evaluating the coefficients 8., 8., and &, is by
evaluating the equations

= SEL _ SIEAL _ NFiL

A T A T AR
This is the same procedure which was followed in the solution of
this problem in Art. 38, from which the following results were
obtained: Eé.. = +75.04; Eé = +11.35; Eé = +75.04. In
these equations E is in pounds per square inch, while 8., 8a,
and &y are in inches. If the deflection units are changed to
feet, the following values are obtained:

Eb.. = +6.2623; Eba = +0.9482; Eéw = +6.2623

To find the elastic loads in condition X, = +1, referring to
Fig. 91a

Coefficient of cot Coefficient of cot 8

18t term| 2d term | E d6

Angle

25 31
oota-ﬁ ootﬂ=ﬁ

|

4-5-7 140 0505 + 0.01249 = +0 06299, +0 0505 + 0.03804 = +0.08854|+0 0508 +0.1098'—041606
|

574 —0 03804 — 0 0505 = —(0 08854 —0 1098

4-7-6 |—0 01128 — 0 0505 = —0 06178 —0 0498 +0.1596
40.1606 X 4 = +0.6424 —0.02726 X 50 = —1.363
—0.1596 X 3 = —0.4788 +0.1606

+0.0010 6)+0.1636 +0.1333 X 25 = +3.333
—0.02726 0.02726 down —0.1596 +1.970
—0.02626 —0.02626 X 75 = —1.970

0.0

The elastic loads together with the curve of Ed., are given
in Fig. 91b. It may be seen that condition X, = +1 is the
complement in symmetry of X, = +1. Hence no separate
computation need be made for the elastic loads for condition
X, = +1, or, indeed, for the Ed,» curve.
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The solution of the five sets of simultaneous equations follows.
It is to be noted that instead of using the coefficients a4, a5,

Numerical term for unit load at joint
Xa X ————— - i
! H i
3 [ f 7 0 9 11
'—__"‘..v» U .’ R
|
+6.262 +0.9482 —0.6818 —1.363 |+1.970 |+1.313 | +0.656 =0
+0.9482 +6.262 +0.656 +1 313 |+1.970 .—1.363 —0.6816 = 0
+0.9482 +0.1436 —0.1032 -0 2064{4-0.2983{4-0. 1983, +0 0994 = 0
1 |
+6.1184 +0.7598 +1A5197‘i+1‘07l7&—-1.5621 —0.7810 = 0
; Xs = —0.1242 |-0 2484{—042732;+0.2558’ +0.1176
i 0.9482Xy = —0.1178 —0A2355!—0.2591E+0.2421 +0 1210
6 262X, ; = +0 7994 +L5988]-—1.7109!—1.5555 -0 7777
! |
H ! T
Xa : = +0.1276 +0.2552‘i —0‘2732E —0 2483| —0.1242
i ! ;

Stb, Oma, Oms, the quantities E 8.4, E Sas, E s, E 6ma, E mp, are
used, which is the same as multiplying both sides of each equation

by E.
@ @ t,-00128(®) ® ®
SR N
NAPT .
SEEYs CH @
(D ; -55272 acx @l*
b @ @ .wo/w@ @ GD 5
e T % - N
02552 02483
T+ 79y 2

002626

Fia. 91.

I L1 oees3 BrFse
02 732 4 ”;luel';ce line
or

} 02732 { Influence line

(c) 6-9
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The influence lines for the members 5-6 and 6-9 are shown in
Fig. 91c. It may be noticed they are complementary in sym-
metry, as might be expected from the symmetry of the truss.

Another interesting application of these idess is the analysis
of the arch shown in Fig. 92a for which conditions X, = +103
and X, = 4108 are shown in Fig. 92b and 92c.

(198) (1%8) (294) (294) (2%4).7(/76)

‘k\n = § /‘-b/ ‘g (375 g T
2\ 8 NI : X375 '
3 e Y 3
< N K N )
N i
2 S T T Y
%-4 -------------------- 9@ 22' /9805 === mmmmmm o mmme » @)
(b)
Condition Xgq=+1000
1000
w »
‘4000
©
Condition Xp=+1000
&ﬁ,' ”

Fiag. 92.

The dimensions of the structure are as shown in Fig. 93a,
the stress analysis for condition X, = 41,000 in Fig. 93b and
for condition X, = +1,000 in Fig. 93c.

The live load for this structure moves along the top chord.
Therefore the values 6ms required are the deflections of the
joints of the top chord. These might be obtained by drawing
a Williot diagram for the structure, by successive positions of
the unit load and the application of Castigliano’s law or of the
theorem of virtual work, or by using the bar-chain procedure.
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If the last mentioned is adopted, two methods are available:
First, to use the bottom chord as the bar chain, find the deflec-
tions of its joints, and, from these, find the deflections of the
joints of the top chord; and second, to use the top chord as the
bar chain. The use of the top chord is the more convenient so
far as finding the values of 4., is concerned, but, looking ahead

Cota (5714~ Cot=Q4545. .-Cot=220 |
o, $ox, N S, e -
e N\ *«% Foo. X NS,
Q. (-] S L2 >, T~ o
N [\ | ao%e% & 28
* \>. 5 ANg. | & ° ¢ 10°10'18 7
T \¢ NGB o 72360 |\ o ! l
T2 § G G
ERFAN Sy Cor, 19 709 N H [
N\ ) 73 Vo LY
AL & e Fr g e S | .cLof
(@ G e R ‘5656 . | L I« HKspon
%%<a ¥ B0 B S - T ¢,
) S § R 3%
S o <
O L8 k3 = . ;
«00\‘ ‘: é N : :
S 46 A0 S : : ; ‘
& A b : : 5
______ _i______x‘______y_______i_l___
$4=+8746 fq=+/3605  fqu+i3605
T MIONIT Y 1 07,858 ® "V4000. © 914600 @
~1298.2 |3 ~[428 S o
N Sgls RN
g'("’:’b %g ?‘d,.ﬁil" .
= NS O
4> 5136 S -357 g T fantiad4
o 2235-Tg 3
N
52728 S
fo=-20.96
® * 94 ®@
/abo 156'6‘ ~
*
ofn BN 22
(C) jaad ] ’Z~ S
Sl oo ¥
? D °.6/ ‘1%
N C=
9 -9/04 \
fpu-2428
Fia. 93.

to the problem of finding 8., the use of the bottom chord may
offer advantages. This is because one may use Eq. (55) to
find 84, without much labor if the bottom chord is used. Finding
first the changes d¢, the tabular form used is different from that
used before because there is so much variation in the angles of
the triangles forming the truss. For condition X, = +1,000,
Eda = (fo_fb) cot v + (fa _fc) cot B.
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Ewpme = Edoma — fma tan 0m + fimi1)a tan Omyy

[CHaPr. IV

tan —fme X +Simenas X
Mmoo | fme | tana  Hfmiel o | Edem | e | tan e | B
3 |+ 19.17/+0.7273|— 20.86|+0.5454/— 99.87| +13.04 | —16.28 |[—102.21
5 |+ 29.86(+0.5454/— 51.36/+0.3636/—137.16| +16.28 [ —18.68 |(—139.56
7 |+ 51.36/40.3236|— 96.80|+0.1818|—437.67| +18.68 | —17.60 |—436.59
9 |+ 96.80{+0.1818/—133.34) 0.0 |—-876.06| +17.60 0.0 |-858.46
11 |+133.34) 0.0 |— 96.80/—0.1818/—870.18 0.0 +17.60 |-—852.58
13 |+ 96.80|—0.1818|— 51.36|—0.3636| —437.67| —17.60 | +18.68 |—436.59
15 |+ 51.36/—0.3636|— 29.86|—0.5454|—137.16| —18.68 | +16.28 |—139.56
17 |+ 29.86|-0.5454|— 19.17|—0.7273|— 09 87] —16 28 | +13.94 [-102.21
For condition X, = +1:
Changes of Angle
First Second
Angle fo— N cot v fa — fe cot 8 term term Ede
10-9-12 00 |-30.96—56 81=
—87.77 2.20 —193.05
12-9-11 {—23.51—56.81 =
—80 32 0.4545 - 36.51  f4229.56
9-11-12 | +56.81 424 .28 = +56 81+23.51 = |
+81.09 2 20 +80.32 0.4545' +178 38/+36 51 | —214.89

In condition X, = +1, for every joint, either tan 6, = 0 or

Sws

becomes

dL = ZymWme + Z dLn, sec 0,

0; also either tan 0,41 = 0 or f(ms1yp = 0,s0that w, = dom.
To find 6., Eq. (65) will be used. Since «

0 this equation

The evaluation for condition X, = 1000 is in the table below.

E dL.,..
m | Ym Ewn,, Eymwma Sma L. secC O sec 0.,
1 0 0 0 0 0 0 0

3|16 | —102.21] — 1635 — 19.17] 27.20 1.236 — 644
5|28 | —139.56] — 3905 — 29.86| 25.06 1.140 — 853
7136 | —436.59] —156700; — 51.36] 23.41 1.063 —-1277
9 | 40 | —858.48) —34400| — 96.80| 22.36 1.016 —2195
11 | 40 | —852.58] —34075| —133.34| 22.00 1.000 —29356
13 | 36 | —436.59] --15700] — 96.80| 22.36 1.016 —2195
156 | 28 | —139.56] — 3905 — 51.36| 23.41 1.063 —1277
17 | 16 | —102.21| — 1635 — 29.86| 25.06 1.140 — 853
19 0 0 0 — 19.17} 27.20 1.236 — 644
Z EdLp, sec 8,, = — 12873
2 EYymWma = —110955
E dL = —123828

Therefore Eb,, X 102

4123828 (points move inward).



ART. 41)

INFLUENCE LINES 181
Similarly, 8., = —dL under condition X, = +41000.
m | Ym Ewm Eynwms St Ln 8€C Om E dLm X
sec 0,
40 | 4229.56| +9177 0 22.36 1.016 0
11 | 40 | —214.89] —8590 | —24.28 22.00 1.000 ‘ —534.2
2 Eynwms = +587.0
Z E dLu sec 0, = —534.2
E dL = 4 52
Eb, X 103 = — 52
r ) ZL
To find 8w, use Edy = 2 F,,Z-
2
Bar L A Fy X 103 {}TL X 102
10-12 22 29.4 — 910.4 + 620.30
9-11 22 37.5 — 910.4 + 486.40
9-10 10 17.6 — 413.8 + 97.29
11-12 10 17.6 — 413.8 + 97.29
9-12 24.17 17.6 +1000 +1373.00
10-11 24.17 7.6 +1000 +1373 00
- A
| | | +4047.28
l i :

Esy X 103 = 4047.3

C ornpufaﬂon of Sma
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102.2 X 1 = 102.2
139.6 X 2 = 279.2
436.6 X 3 = 1309.8
852.6 X 4 = 3410.4
858.5 X 5 =  4292.5
436.6 X 6 =  2619.6
139.6 X 7 = 977.2
102.2 X 8 = 817.6
Swn, = 3067.9 9)13808.5
Va=1534.3 "~ 1534.3 down
Ve = 1533.6 down
Esna X 103
bottom EdL X103 E é,, X 103
chord verticals top chord
—1534.3 X 22 = — 33755 + 839 — 34594
+ 102.2
—1432.1 X 22 = — 31505
+ 139.6 — 65260 +1033 — 66293
~1202.5 X 22 = — 28440
+ 436.6 — 93700 + 516 — 04216
— 855.9 X 22 = — 18828
+ 858.5 — 112528 0 —112528
+ 26x2=+ 57
+ 852.6 —112471 0 —112471
+ 855.2 X 22 = + 18818
+ 436.6 — 93653  + 516 — 94169
+1291.8 X 22 = + 28418
+ 139.6 — 65235 41033 — 66268
+1431.4 X 22 = + 31500
+ 102.2 — 33735 4+ 839 — 34574
+1533.6 X 22 = + 33735
0 41119 — 1119
+214.9 X4 =+ 859.6
—-229.6 X 5= —1148.0
- 14.7 9)— 288.4
32.04 ~ 32.04 up

T17.34 up
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E b

X 103 E 5
bot- EdL X X 10°
tom i0% ver-  top

chord ticals chord
— 32.04 X 8 = +2819 —235.1 43,054

—229.6

—197.56 X 22 = —4345

+214.9 —1526 —235.1 -1,291

+ 17.34 X 88 = 41526

The equations available for the determination of the various
values of the redundant forces, set up and solved in tabular form
as shown on p. 184.

The influence lines for X, and X, are shown in Fig. 95.
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? / ,7'1 A 'ﬂ :8 33 !a S Ig
I8 By oL— "+
s 3 S5 Influence lne for Xp,

Fia. 95.

42. Influence Lines for Beams with Fixed Ends.—Influence
lines for moment-resisting structures may be constructed by the
same general methods available for trussed structures, although
it may be convenient to employ some of the special methods for
determining deflections in moment-resisting structures which
were demonstrated in Chap. II. The variation in methods of
computing deflections leads to variations in ways of drawing
influence lines. Consideration of the beam with fixed ends
shown in Fig. 96a will permit an illustration of these methods.
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If axial stresses are neglected, as they may be when the loads
have no axial components, we may treat the beam as though it
were statically indeterminate to the second degree only. Suppose
it is desired to draw the influence lines for the redundant reactions
of the beam under consideration, basing the solution upon the
law of virtual work. Assuming no v "1m

-
abutment yielding or temperature I b ’i (@
change [ :_1'__*_':::
Oam + Xaaaa + Xb‘sab =0 §l | Xy
Sim + Xabsa + Xbw = 0 — I ®
If the vertical-reaction component Fio. 96. Xa

and the fixing moment at the right
support are chosen as redundants, the statically determinate
primary beam is that shown in Fig. 96b.

For condition X, = +1

L u‘]" L3
= 2 = | — = —
Elb,, J; u? du [ 3 |, + 3

L L
Elsy = f w(+1)du = [%2] - +I§
0 0

For condition X, = +1

Elby = J;L(+1)(+l)du = [u]: = +L

For condition X = 0

0 z
Eléym = f (—v)(@' + v)dv = J; (—vz’' — v?)dy

A A £ A
3o 2 3

Elsym = j:(—v)(+l)dv - —['g]o --z

The equations to be solved, with both sides multiplied by EI,
become

/2 3 3 2
_¢_2£_£+X,,I;+X,£=o

——+X C 4 XL =0
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which solved simultaneously, lead to

x? i’
Xo=p+ 27w
2’
o= -7z

In the foregoing illustration, the deflections 6&es, b, Obs, Sam,
and &,m might have been computed by the moment-area theorems.
Referring to Fig. 97b where the moment curve for X, = 41 is
shown, one may write

L _ 2 L3
E16a0=§L§ —+'§
L L?
E16M=§L-+—2-
Lz 2 't x
Blém = ~5 3"~ 2 3
_ _Lz* 22 _ 2’z 2*
-3 62 3

These deflections are shown in Fig. 97¢c. Referring to Fig. 974,
which gives the moment curve for

) Xb= +1)

El&y = L(+1) = +L

Elbym = —x(1)(.;-’) - —%’

7,
6an(c) . . .
'y —701™ These deflections are shown in Fig.
am (negative) :
‘ N 97¢. They agree with the results
(ITEITTTTITIIT) @ obtained by the method of virtual

‘ : work and lead, of course, to the

| — )/0( same solution.
e
| T8y (regare) > The same problem may be solved

Fro. 07 by using the slope-deflection equa-
Co tions (76). It is to be noted that
angles 6,, 6,, and ¢, and end moments M, and M, are taken as
positive when they are clockwise. The equations
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M, = 2_E._I(20 + 6, — 3¢) + Lz[(M')°“ 2(Mo)wl

_ 2EI

M (00 + 20’5 3¢) + P[2(Mv)0a - (Mc)ob]
become, since 6, = 6, = ¢ = 0,
Mo = (M = 20M)al; My = 2(2(M)es — (Mo)a

Referring to Art. 33 in evaluating (M,)o. and (M,)e,

z(z')?
M, = — e
2,07
My = EL—::- = —X, (see Fig. 97)
Taking moments about the left end of the beam,
z(zx')?
+l(x)+Mb+Ma—XaL=0; XG=Z+TT_ L3
2z’
L Ly

The results agree with those obtained by the method of virtual
work.

43. Influence Lines for Beams with Restrained Ends and for
Continuous Beams. Use of Statically Indeterminate Primary
Structures.—If one considers the equation

8o = 500 + Xasaa + szub + Xcaa.c + -+ 60: (a)

where 8,0 is the deflection of point a of a statically determinate
structure under the known loads only, 8., is the deflection of
point a of the primary structure due to X, = +1, s is the
deflection of point a due to X, = 41, and so on, it is evident
that this is merely an application of the law of superposition of
effects to the deflection of point a. If a structure statically
indeterminate to the nth degree were under consideration, the
same idea could be expressed by the equation

8. = B«’lo + Xa 5;«: + 6;: (b)

in which 8/, means the deflection of point a of a primary structure
which is just like the original structure except that one redundant
restraint has been replaced by the force, or moment, designated
by X.. This primary structure is redundant to the degree
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(n — 1). If & is known, as it must be before the structure can
be analyzed, and if one can evaluate 3., and 8., X, can be found
without solving simultaneously n equations of the form of Eq. (a).
This idea may be used to advantage in drawing influence lines
for restrained and continuous beams and, in fact, is the basis
of the mechanical methods of analysis such as the Begg’s method
or the Gottschalk ‘“.Continostat.”

[CHAP. IV

}® it ®i @ As a first illustration the beam
]:Ll‘: T “_:1 with fixed ends as shown in Fig. 98a
- T - will be considered, drawing, first,
for om ;,:gﬁf‘fﬁa‘ff(d a the influence line for the vertical-
4

reaction component X, at the right
end. The primary structure to be
used is a beam fixed in direction at
both ends and restrained against
vertical movement at the left end,
but having no restraint against

Conalrtion X g

.0| 10

_.-..6."1".- e

3 Ty et 1) () vertical movement at the right end.

inflvence line for X, | b If a vertical force X, is applied
4 3) (g to stop this vertical movement
| Condlition Xy=+l 7,

at the right end, it must be such
that 6, = 0. In drawing the
influence line, where the lcad
system consists of a single unit
load at point m, m being at dis-

tance z from the left end and z’
from the right end, Eq. (b) becomes
8+ X, 8, =0
or
—8im
b2

Xa

just as if the structure were statically indeterminate to the first
degree only and the problem resolves itself into that of finding
the value of 8., and the various values of 8., as z varies, the
only difference being that the primary structure is indeterminate
to the first degree. There are several ways of analyzing condi-
tion X = +1; the moment-area theorems will be used. The
change of slope between two points being equal to the area
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under the M/EI curve between the two points, and I being
constant over the span,

L L
+M?.a‘2' - Mlag - 0
Therefore M= M,

Then, applying ZM = 0 about point 1, we get

+M1a—1XL+Mza=0
Therefore Mi=M, = +I§’

To compute the quantities 8,,, and é.,, the second moment-area
theorem is used, which leads to

, _ Lz2 2zz , 222
Bl % = —533" ~ 2231223
Lz? z2x’ z3
6 T 1z T 12

3 3
Bry, -+ -LE_L

EIs), being positive downward and EI8., being positive upward.

X - _EIl5,, | —2La* — 2%’ + 18
*~ EIs, L3
2*(2x + 22’ + 2’ — )
T
_ ¥z + 32')
=y
z’L + 2z%

L3

x? i’
I + 2 I

which agrees with the expression of Art. 42.
In finding the influence line for X, the primary structure
to be used is as shown in Fig. 98f. In order to find My one
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may use the second moment-area theorem to express the vertical
deflection of point 2, which must be zero.

L2 LL
Mlb-z—gL—l§§=0
1 1
Then
y _ 122 ' zz zz2
Elbw = +353% * 3133 " 23
2 z  1? T’ , oz,
8 T Ter T Tror®L T %) = A Be)
_ o
- T 4L

In this case &, is the change of slope between points 1 and 2
and is positive counterclockwise. Using the first moment-area
theorem,

, _ 1L L | L
EI&“-_§§+1§_+:{
Therefore
X, o Elin _ _aw 4z
i ET &), 4L L L?

which also agrees with the results obtained previously.

It is not suggested that this method is any better in this
particular problem than methods presented previously, but
it is a good illustration of the use of the indeterminate primary
structure.

It would be possible also to use, instead of X, = +1, X, = +Q,
where @ is some force whose magnitude is chosen arbitrarily.
In such circumstances one would determine, by a procedure
exactly the same as that just used, the quantities EI é,, @ and
EI 5., @ and could write

EIQ o,
X = ~F1q v,

It does not matter whether the deflections are computed
as shown or whether one uses a model, producing the deflections
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Q 4, and Q 5., by the application of an arbitrary force X, = +Q
and measuring the deflections produced, or, what amounts to
the same thing, introducing an arbitrary deflection @ §., and
measuring the resulting deflcctions @ A/,, and obtaining the
influence ordinates as the various values of

@ om
Q 8.

Similarly, to obtain the influence line for X;, one could introduce
an arbitrary deflection @ §/,, measure the resulting deflections
Q 5., and obtain the influence ordinates as the various values
of the ratio

—Qom
Q &,

This procedure can be followed for any structure, no matter
what the degree of indeterminacy, and is, in fact, the procedure
followed in the Beggs method of mechanical analysis. It should
be pointed out that the theory is applicable only when the distor-
tion of the structure is small, so small, in fact, that it may be
considered infinitesimal and that infinitesimals of the second
order may be neglected in comparison with the first. This
requirement is satisfied in the Beggs method, where the dis-
tortions used are so small that microscopes are used to measure
them. In the use of the Gottschalk continostat, however, the
distortions of the model are usually so great in comparison with
the dimensions of the model that they cannot be considered
infinitesimal and, consequently, the results obtained must be
approximate only.

This same idea may be used to advantage in drawing influence
lines for the redundant forces in continuous beams. Consider
the beam shown in Fig. 99a. To draw the influence line for the
moment over support (2), use the primary structure in Fig. 99b.
Condition X, = 41 is shown in Fig. 99¢. In order to determine
the deflections &, draw the curve of bending moments for
condition X, = +1 and use the method of elastic loads, using
as the elastic load the curve of bending moment just mentioned.
The 5., curve is shown in Fig. 99¢. The ordinate to the moment
curve for X, = 41 at joint 2 is unity, and the curve is completely
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defined as soon as the ordinates at joints 0, 1, and 3 have been
determined. To find these ordinates consider the equations
arising from the application of the equation of three moments to
condition Xa = +1; I) = Ig = Ia = I(.

@ ®

% » (a)
‘lh——/z ——T——)/& \%;014 - il-——-a—‘-l
+ T ORC # , ®
| L ely |
3 TS # ©
l+as3s6 T’ f JI

i |

2Mo X 12+ 12M1 =0
M, = —%Ml
12M, + 2M,(12 + 10) + 10M, = 0

in which M, = +1.

M(24 — 64+ 20)+10 =0
10
M, = —ﬁ —0.2632
M, = +0.1316

Also 14M, + 2M,(14 + 8) +8M, =0

in which M, = +1, M, =0

0136 [5S2===---__ +14 + 44M; = 0
]:E[l |o.2532 14
‘ M, = —>2 = —
S ot 3 0.3182

- Sy 44

- =

Fia. 100. To compute the 3,,, curve for span 0-1
_ ' 12 12
128, = 40.1 316X~§-X8 02632><7X4

S.o = +0.5264 — 0.5264 = 0

which is what should be expected, since the beam is fixed at
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point O and the reaction due to elastic loads is equal to the slope
at that point.

= —0.2632 X 172 | 0.1316 X 172 - -0.7896
roo 2 _ Tz 2z
EI &, 0.13165 5z — 0.13165 5 5 + 0.263255 5 3
= —0.04386z% — 0.001829z'z? + 0.003657z3
z z' | —0.04386z* | —0.001829z'z* |40.003657z%| EI &,
0 12 -0.0 0.0 0.0 0.0
2 10 —0.1755 —0.0731 +0.0293 —0.2193
4 8 —-0.7019 —0.2341 +0.2340 —0 7020
6 6 —1 5792 —0.3951 +0.7899 —1 1844
8 4 —2.8075 —0.4682 +1.8724 —1.4033
10 2 —4.3867 —0.3658 i +3.6570 —1.0955
12 0 —6.3168 0.0 | —6.3168 | 00

; |

To compute EI &/, for span 1-2,

108 = —0.2632 x ¥ x 2 x
203 10 10 °®
10+ 10X 5 X3 g s,
"= —0.8773 + 1.6 = 40.7893 Fia. 101.
10 _ 10 10 2
I - - —_— —_
108;, = —0.2632 X o X 5 + 1.0 X 5 X 3 X 10
= —4.386 + 33.3 = +28.946
1= +2.8046
'~ 407803 z 2 ¥ zzr_zIzI
EI 5,, = +0.7893z + 0.26325 3z + 0.2632(5 55 — 155 3
= +0.7893z + 0.0877322 + 0.004386z'z2 — 0.0167z3
x z' | +0.7893z +0.08773z% 4+0.004386z'z2! —0.0167z% | EI 6ma
010 0.0 0.0 0.0 OAO' 0.0
2| 8| +1.5786 +0.3509 +0.1404 - 0.13 +1.936
4 6 | +3.1572 +1.4037 +0.4211 — 1.06 +3.915
6 4 | +4.7358 +3.1584 +0.6317 — 3.60 +4.926
8 2| 46.3144 +5.6149 +40.5615 — 853 +3.958
10 0| +7.893 +8.7733 0.0 -16.6 0.0
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To compute EI §,, for span 2-3,

14 2
0 TS 148, -+-10)<2 §><14+
Y0362
) " 0.3182 x 124 X 134 = 5(+20 0.3182)
sell Iscl
Fra. 102. = ——(+1 6818) = +3.924
14Qr 14 142
14:6',;—-+~10><2><3 0.3182><—§-X§)<14
142
= =~ (+1.0 + 0.6364)
Y = -(+0 3636) = +0.8484
o - z zz ot TZI
EI 5., = +3.924z 123 11423+0318 1423
- S s
= +3.924zx 3 84 + 0.003788z
, : | z? 'zt 7882 EIS
z T | +3.924x -3 BTy +0.003788z K18,
0| 14 0.0 00| 0.0 0.0 0.0
2 12 + 7.848 | — 1.3 | —0.5714 + 0.0303 +5.974
4 10 +15.696 | — 5.3 | —1.9048 + 0.2424 +8.700
6 8 +23.544 | —12.0 | —3.4286 + 0.8182 +8.933
8 6 | +31.392 | —21 3| —4.5714 | + 1.9395 +7.427
10 4 +39.240 | —33.3 | —4.7619 + 3.7880 +4.933
12 2 +47.088 | —48.0 | —3.4286 + 6.5456 +2.205
14 0 +54.936 | —65.3 i 0.0 +10.3943 0.0

To compute EI &, for span 3-4,

' 8 2
88! = —0.3182 X 5 X g X 8 os/ezujjjj’

5"'23' Ses
L7 SV
S = —0.4242
P . gz
EI 5, = —0.42427" + 0.31828 23

—0.42422' + 0.006629z"
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z_ | = | —0.4242r | +0.0066202" ET ol
0 8 —~3.3040 . +3.3940 | 0.0
2 6 —2.5455 +1.4319 | —1.1136
4 4 —~1.6978 40 4243 —1.2727
6 2 —0.8485 +0 0530 l —0.7955
8 0 —-0.0 | 00 . 0.0

In this problem &, is the relative rotation of the two tangents
to the elastic curve for condition X, = 41, one just to the left
of point of support 2, and the other just to the right of that
point. The slopes of these two tangents are the reactions S,
and S/}, but as compared here both slopes have been computed
including the factor EI. From the computation of EIé§,,
for span 1-2, we find EI S, = +2.8946, the positive sign indicat-
ing that the tangent has rotated in a counterclockwise direction.
Similarly, from the computation of EI 6., for span 2-3, we find
EI 8!; = +3.924 which here indicates rotation in a clockwise
direction. Both of these rotations, however, are in the same
directions as the corresponding moments X, = +1 and therefore
contribute positive terms to the quantity é,,. Therefore,

EI &, = 2.895 + 3.924 = +6.819

. . . .y o
The ordinates to the influence line for X, being equal to —%I—g',"f‘
are found as below. ur‘.
Span 0-1 ; Span 2-3
s - - —
z | EIs, | Xe i oz | Eld, X.
—— e e
0 0.0 0.0 o2 b 45974 | —0.8765
2 —0.2193 +0.0322 | 4 } +8.700 | —1 276
4 —0.7020 +0 1030 6 +8 933 { —1.31056
6 —1.1844 +0 1738 8 +7.427 | —1.0895
8 —1.4033 +0.2058 10 +4 933 ¢ -0 7236
10 —1 0955 +0.1607 12 +2 205 —0 3235
12 0.0 0.0 IER 00 | 00
IR S —
Span 1-2 Span 3-1
—
2 +1.936 —0.2841 2 —1.1136 | +40.1633
4 +3.915 —0.5742 4 —12727 ' +0 1867
6 +4.926 —0.7226 6 -0 7955 ' +40.1167
8 +3.958 —0.5806 8 0.0 00
10 0.0 0.0
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44. The Fixed-point Method.—In cases where there are a large
number of spans, it may be convenient to have some of the labor
of solving the sets of three-moment equations done in advance,
as much, in fact, as can be done without taking into account the
details of the particular problem in hand. Referring to Fig. 104,
which illustrates the condition which may be expected between

Q=" o _AIN_ © Al@
e Y

FiG. 104.

the point of application of a redundant moment and the left end
of a beam supported over a number of spans, equations may be
written as follows:

ML, + 2My(Ly+ L) + ML, =0
MoL, + 2My(L, + L)) + ML, =0
ML, + 2M (L, + L) + ML, =0

Mr—lL: + 2Mr(L.’- + L:+l) + Mf+1L:'+l =0
where L/ = L,/I,

If M] = 0, Mz = -‘}les, Where M2 = m—:}s——m
The second equation becomes
My[—pLy + 2(Lg + L) + MJL{ = 0
from which
M; = —usM, where 3 = B S
’ —uaLy + 2(Ly + LY)

Similarly, the third equation becomes

M [—psLy + 2(L5 + Lg)] + MLy = 0
from which
Ly

M= —pdMs,  where  we= o T LD

In general, one may write
LI
oot = _P'f—’Lr’—-l + 2(L:-1 + L:-)

M, ,= —u_M, where
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Since u, is always less than 1 and is positive, the support moments
M.\, M, M,,,, etc., must alternate in sign. Hence the moment
curve for such a condition is as shown in Fig. 104, and the ratio
between the support momente M, /M, = —pu,. ;. It isevident,
also, that the ratio between the distances of the point of inflection
in a span from the span’s outer and inner ends, respectively,
is the u for that span. If the outer end of the continuous beam
had been fixed, i.e., at support r, L = 0 and the coefficient for
the end span becomes
L, 1

—wa(0) + 20 + L) 2

For illustration, this idea will be applied in the determination
of the influence line for the moment at support 3 of the beam
shown in Fig. 105. I is constant throughout the 5 spans;

MRy =

? Pnlmory Sfrucfure
| Mid | ‘
I*\

? Condition X,=+1 ’V ’ ?
, 0 s
¥

| |7 : |
7
- (=),
|

[ Nrs I |
o\l PN\ ™) |

-Influence Line for My

Fra. 105.

therefore one may use L, in place of L,. To draw the curve of
bending moment for condition X, = +1,

1

k=3 M, = +1
_ 10 _10_2 2
2= T3 X10+2010+10) 35 7 2 7
1

M1—+-7-

Using u! to indicate the coefficients for the right-hand part
of the beam,
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. L,
e = Ll — 25 + LD
[.l; =0 M: = +l
=300 +10) ~ 4 M= —g(+) = 15
, 10 10 4

M= TTX10+200+10) 375 15

1 4 1. _
Ma——z(“‘ﬁ)—“*‘—- Ms=0

The moment curve being obtained in this way, values of 4., and
8., may be computed by methods already illustrated, and the
influence line for M easily obtained.

It might be well to point out that as a further alternative
approach to the determination of the ordinates to the moment

3} 2 3 4 5 6
4 [ J
g '—%—/0 —i— /o'—:*T/o'—l?«— 10 '—";
1 | | |

o » =%

Primalry st ruc’;ru re

i
1
!
| s
Condition Xa="1 | 7MO_CUfV€+ 4800 \
'
1
!

PSR (T

1
]
|
*
: /Zs :
" 1
I X :
[ 1
‘; O 124 1
H I Inflvence line for Xq |
) ! | | [
' ,l /0 ! i !
— =t * : d
Fia. 106.

curve for condition X, = +1 the method of moment distribution
may be used.

The same general procedure may be followed when the redun-
dant under investigation is a reaction, though in this case it
will be convenient to change some of the details. For illustration,
the influence line for the reaction at support 3 of the beam in
Fig. 105 will be drawn (see Fig. 106). Since the influence
line for X, is obtained from the —&m, curve by dividing each
of the —3&m, ordinates by +48,,, it is possible to think of the
influence line as the deflection curve obtained by using an elastic
loading whose ordinates are the ordinates —M,/EI divided
by + 84, in which case the moment curve for the elastic load
has an ordinate of one at support 3. Also, since the elastic
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reaction for any span represents the slope of the beam at that
point, the elastic reaction at support 1 is zero. The sum. of
the elastic reactions at support 2 from span 1-2 and span 2-4 is
zero. Similarly the total elastic reaction at support 4 is zero
as is also the total elastic reaction at support 5. These facts,
together with the coefficients u as used in the previous problem,
should serve to determine the ordinates z which define the
elastic-load curve. Thus,

10 o
40 + 20 + 100 - T 2™
26 = —pezs = 0, Therefore pe =0

10 1 1

#s = 0(10) + 210 + 10y _ 4 T Tz
For span 2-4,

2, = —m2; =

. _ 10 2 10 10 2 )
208y = 21—2-(10 + 3 X 10> + z;—2—(10 + 3 + 310
2 02 2
= 2212(5) + Zal—(ﬁ) + 2412 7 =
6 6 6 l {"‘* 3 ‘," ZQ
5 (@) S
y = 56z + 6z + 2) | R N @
S22 S4
Since the deflection at joint 3 = 1, Fa. 107,
. 102 1010 _
IOS, 22—2- X 310 23? X ’g =1
%(5% + 625 + 20) — %(421 +2z) =1
5—(?(22 + 4z +2) =1
For span 1-2,

,__ 10,10, 10_2
108,—117X’§'+21—2-X§X10

IOS; = %?(221 + 423)

S = ‘169(" + 22,)

in which z;, = —4}2,
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S; = -16(2(%12)

Similarly, S} = %0(224 + z), in which z5 = —%zb hence

sy = %(%z.)

Therefore we have, from S; + Sy = 0,

Therefore

2521 + bzs + 20 + 2(322) = 0
t.e.,
82, + 625 + z4 =
and, from S; + S} = 0,
2ea + 623 + 520 + g(gz‘) -0
zz+623+—1-2zz.=0

Solving these equations

2Zq ¥4} 24 Num.
25| 100 25 3 822 + 0.26652 — 0.027835 = 0
8 6 ! 0 - —0.029836
2 12 17 0 2= =0
8| 32| 8 0.96
2 8| 2 0.24
+26 | +7 40.96 26z, — 0.104845 = +0.96
4| 15 —0.24 2, = 40.04442

4| 4+ 1.0771 | +0.1477

+13.9229 | —0.3877 2z = —0.027835

Therefore z; = +0.014918
zy = +0.006959
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To find X,, for span 1-2,
SY =0
Therefore
z2 ! z\zz
X, = —z22 %2 — Iz
53" (z‘L, t )23
z z' x
= ——| +22 215 29—
6 i + 1 + le + 2L2:|
z f—' +2z z -:il z * g)\’ X
z L’ Lg 1 ng ’Zx 7 ° a
0[{ 0.0 1.0 {+0.029836|+0.014918, —0.0 +0.044754| -0.0
110.1] 0.9 |4+0.029836|+0.013426{ —0.002984| 4+0.040278| —0.006713
21 0.2 0.8 [+0.029836{+0.011934] —0.005967| +0.035803| —0.023869
3{0.3]|0.7 |4+0.029836{ +0.010443} —0.008951|40.031328| —0.046992
41 0.4 1 0.6 |40.029836|4+0.008951; —0.011934| +0.026853| —0.071608
5| 0.5 0.5 |+0.029836|+0.007459| —0.014918|+40.022377| —0.093237
6! 0.6 1 0.4 |+0.029836|+0.005967| —0.017902| +0.017901|—0.107406
71 0.7 (0.3 |+0.029836|+0.004475 —0.020885| +0.013426| —0.109646
8( 0.8 0.2 [{4+0.029836|+0.002984| —0.023869| +0.008951| —0.096476
910.9|0.1|+0.029836|+0.001492| —0.026852|40.004476| —0.060426
10| 1.0 { 0.0 |4+0.029836{+0.0 —0.029836| 0.0 0.0

For other spans, the procedure is similar.



CHAPTER V

SECONDARY STRESSES IN TRUSSES

45. Introduction.—Stress analysis for trusses, as it has been
discussed so far, has been based on the following assumptions:
(1) The members of the structure are connected to each other by
frictionless pins; (2) the external loads, assumed to include the
weight of the structure, are applied at the joints; (3) the axes
of the members are straight; (4) the gravity axes of the members
meeting at a joint intersect in a point; (5) a truss is subjected
to external forces in its own plane only. These assumptions are
not in accord with the facts. Assumption (1) is never true, even
in a pin-connected truss, because no member can turn on a pin
without frictional resistance and in a truss with riveted joints
the gusset plates exercise considerable restraint when the mem-
bers tend to change their directions relative to each other as the
truss is distorted under the loads. If the structure is well
arranged, assumption (2) may be satisfied by the way in which
the live loads and the weights of the floor system and bracing
are applied, but each member of the truss must act as a beam in
supporting its own weight. Assumption (3) is in error only to a
small extent, this being due to the inability of manufacturers to
fabricate members which are completely straight; such imperfec-
tions are important mainly in compression members and column
formulas are designed to make allowance for them; they will not
be discussed further here. Assumption (4) is satisfied at most
of the joints in heavy trusses but is almost always untrue in
the lighter roof trusses. These remarks apply to all trussed
structures. It is to be remembered that very few trusses exist
as complete structures; almost all are units of more complicated
frameworks which are three-dimensional rather than planar.
Except in three-dimensional analysis, it is assumed that a truss
will be called on to carry loads in its own plane only and will
not be affected by stresses in other parts of the structure. Often,
however, the distortion of members lying in a plane other than
that of the truss under consideration will cause a truss which

was initially planar to distort in a nonplanar fashion, or, if
202
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one or more of the members of the truss act also as members
of a truss lying in another plane, loads applied in this second
plane may cause “participating stresses’” in the members of the
first truss. A typical example of such action occurs in the
reciprocal effects of the stresses in the members of the vertical
trusses and the stresses in the members of the lateral bracing
trusses of a truss bridge.

These considerations lead to the conclusion that the customary
stress analysis does not take into account many of the conditions
existing in a truss and that the results obtained, the so-called
‘‘primary stresses,’”’ do not present a true picture of the condition
of stress. The stresses due to conditions which have not been
considered in the primary-stresses analysis are called ‘“‘secondary
stresses.” Of these, the most important are those due to the
fact that the members are not free to change their relative
directions when the truss is distorted owing to the application
of loads. There are several methods of making approximate
analyses of the secondary stresses due to this cause. What is
probably the most comprehensive presentation of these is to
be found in a paper by Cecil Vivian von Abo published in the
Transactions of A.S.C.E., vol. 89, 1926. Of these methods, it
is intended to present two and to add thereto the method of
‘““moment distribution’’ suggested by Professor Hardy Cross.
Each of the first two methods to be presented is based on writing
a set of equations, each being the equation ZM = 0 for one of
the joints and expressing the moments as functions of certain
of the characteristics of the distortion of the truss; when these
have been found by simultaneous solution of the equations,
one may evaluate the moments in the ends of the members and,
thereafter, the stress intensities. The two methods differ
primarily in the distortion characteristics selected to serve as
the primary variables: In the first, the variation of the Manderla
method suggested by Winkler, each moment applied to the end
of a member is expressed in terms of the angles 7 between the
chord of the elastic curve of the member and the tangents to
this curve at its ends; in the second, known in secondary-stress
literature as the Mohr semigraphic method, one uses Eqs. (76)
which are more commonly known as the slope-deflection equations.

46. The Manderla Method, Winkler’s Variation.—When a
truss distorts under load, the strains in the members are, in
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general, not alike and the triangles having as vertices the joint
centers have shapes after distortion which are not geometrically
similar to their shapes before distortion. The angles of these
triangles have been changed by small increments but the members
of the truss, being prevented by the resistance of the gusset
plates in a riveted truss, or by friction on the pins in a pin-
connected truss, from changing their relative directions must
bend to accommodate themselves to the new relative positions
of the joint centers. Consider, for example, a joint n, as shown
in Fig. 108, and the members na, nb, nc, and nd connected

F1a. 108.

thereto. Suppose that the original positions of these joints are
indicated by =, a, b, ¢, and d, while the relative positions after
distortion of the truss are n, a’, b’, ¢/, and d’. Since the joint is
in equilibrium, £M = 0; therefore, if there are no eccentricities
in the application of the total axial stresses and Mn., M, M,.,
and M.,; are moments about the gravity axes at the ends of the
members,

If there are eccentricities in the application of the axial stresses
to the joint center, this equation may be written as

where M. is the algebraic sum of the products of the axial stresses
and their eccentricities measured from the joint center. Using
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Eq. (74) and introducing the notation K = I/L,

M.o = 2EK,.(270a + Tan)
M.y = 2EK (270 + 7om)
Mm: 2EKnc(2TM + Tc'l)
M,.d = 2EK,¢(2T,.¢ + Td..)

Before writing the equation ZM = 0 in terms of the angles 7,
it is advisable to express each angle 7 in terms of a particular =
and the changes in the angles at the joint. This particular
7 is called the reference r for the joint, and the one selected will
be that for the first member encountered in moving clockwise
around the joint through the internal triangles. For joint n
it i8 7na.. From Fig. 108,

Tnb+al=fm+a1+dal

Therefore,
Tab = Tna + day
Similarly,
Tae + a2 + oy = Tpa + a1 + doy + a; + da
or
Tne = Tna + da; + daz
and

Twd = Tna + don + daz + das

For convenience the reference r at joint n will be called r,.
The relations above may be summarized in the statement that
the angle 7 at the end of any member connected to joint n is
equal to 7, plus the sum of the changes in the angles between
the reference bar at joint n and the bar under consideration.
Thus the equation ZM = 0 for joint n becomes

nb

2EK”.,<2T, + e + 2 da> + 2EKM<2TH + 22 da + 7
bn * ne " cn
+3, da) + 2EKN<27.. + 23 da + 7.+ 3, da>
b n c
nd dn
+2E'K,.¢<?rr.‘+22da+n+2da)+M,=0
n d

nc

where the summation E da means the sum of the changes in the
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angles a at joint n from the reference member around to member
nc. Since Eqs. (74) have been used in this development, the
conventions used in those equations are applicable here also,
1.e., the angle 7 is positive when the tangent to the elastic curve
has rotated contraclockwise from the chord of the elastic curve;
a moment applied to the end of a member is positive when it is
counterclockwise or, conversely, a moment applied to a joint is
positive when it is clockwise (see Fig. 108a).

‘/Graw'fy axis

\ Fnd Fnd Fna F L
e d———fa ey
é na €

F16. 108a.

If the terms in the last equation are collected and both sides
of the equation are divided by two, it becomes

Era 22K,m + 2231{”,,%14: das + Kon Ere + ngE da

bn

+ Ku Ery + Ku D E da + Koo Er. + Ko 3 E da
b c

+ %M, =0 (80)

Since the changes da in the angles of the triangles outlined
by the members may be computed as in Art. 22 (Eqs. 53) and
since it is possible to write an equation of the form of (80) for
each joint of the truss, there are, as unknowns, only the reference
angles 7,, one for each joint, and there are available just as
many equations as there are unknowns. It is possible, therefore,



ARrT. 46] SECONDARY STRESSES IN TRUSSES 207

to determine all the angles 7, and, from them, all the angles r
such a8 7a4 Tm, . . . Thereafter, using Eqs. (74), the moment
at each end of each member may be computed and, from these,
the stress intensities. Since

Mﬂmc"m c'l"l

fom = TR = PEOET Bro 4 r)
= 22'"“ (2E7nm + E'rmn) (81)

it is unnecessary to perform the intermediate step of computing
the end moments.

The procedure may be illustrated by applying it to a simple
truss such as is shown in Fig. 109. After the characteristics
of the members of the truss have been found the first step is to
compute the changes F da in the angles of the triangles of the
truss for the condition of distortion under consideration. The
procedure is the same as that used in Art. 22 as one of the steps
in computing elastic loads. Following this, Table III is begun,
the first five columns serving as a basis for the formulation of
Eqs. (80) for the particular problem in hand. If there is eccen-
tricity in the connection of any of the members, the moments M,
should be computed next and, following this, Eqs. (80) are set up
and solved. The last step is to complete Table III.

In any truss the problem which is of interest is to determine
the maximum stress intensity which can possibly occur in any
given part of the structure. If the truss is subjected to moving
loads, it would seem logical to compute the secondary stresses
due to the dead load, to draw influence lines for secondary
stresses in various parts of the structure, and to use these to
determine the maximum magnitudes of the secondary stresses
due to live load and impact. It is not generally true, however,
that the position of live load which will cause the maximum
secondary stress at any point is the same as that which will
cause the maximum primary stress at that same point; con-
sequently, since the live-load primary stress is almost always
much greater than the maximum secondary stress, it is more
likely that the worst combination of primary and secondary
stresses will occur when the live load is placed so as to cause the
maximum primary stress. A comparison between the ratios
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between secondary-stress intensities and primary-stress intensities
computed, first, for dead load, live load, and impact, with the
live load placed so as to cause maximum primary stress, and,
second, for load distributed uniformly over the whole of the
floor system, is shown in the following table.

Ratio (%) between secondary- and
primary-stress intensity
Position
in truss Iili: + L'L'. + L, Load distributed
L. 1n position R
. uniformly over
for maximum
. whole floor system
primary stress
1-2 (top) 4.4 6.2
2-1 (bottom) 14 2.4
2-4 (bottom) 17 2.7
4-2 (top) 95 10 5
4-6 (top) 10.2 9.7
6-4 (top) 9.0 8.0
3-1 29.0 25.6
1-3 23 .4 22 2
3-5 27.2 23 5
5-3 11.8 5.8
5-7 9.8 7.7
7-5 32.3 28.9
2-5 6.2 7.1
5-2 2.7 1.7
5-6 17.1 23.1
6-5 2.9 5.1
23 16.4 22.9
3-2 21.1 25.0
4-5 545.0 0
5-4 636.0 0
6-7 5.4 0
7-6 5.2 0

Since the designer of today is not usually interested in obtaining
precise values for the secondary-stress intensities but desires
approximate magnitudes only and since the theory suggested
above is approximate in that it assumes that all members are
prismatic from joint center to joint center and that the joints
are reduced to surfaces of contact, the discrepancies between
the two sets of values in the table above are of minor importance
and the investigator may be satisfied with an analysis such as
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TasLe I
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that which led to the results in the second column. The illus-
trative problem will be carried out on this basis. Since it is
the intention to compute ratios between secondary- and primary-
stress intensities, it is not important that the loads to which
the truss is assumed to be subjected should have any particular
magnitude and a panel load of 1,000 lb. will be used. The
layout of the truss and the characteristics of its members are

AN 240 ®
L RTTA -
(o :

K

A ke
4 LCLlof ©
K spon ‘o
¥ ~
Q X

| ® ® )
" ............................................. 6pane/s @;6'.8", /6050"

given in Fig. 109 and Table I. The stress analysis is carried
out in Fig. 110 and the changes in the angles are computed in
Table II.

TaBLE II.—CHANGES IN ANGLES

Coeff. of cot a Coefl. of cot 8
Angle 26.67 29 1st term| 2d term | E da

cot a= 29.0 cot 3-2_6.07
2-1-3 +51.76+55.75 = +107.51 +116.92(+4+116.92
3-2-1(+4+62.76+585.75=+1118.51 +108.97 +108.97
1-3-2 |—55.76—62.76=—118.51|—55.75—51.76= —107.51|—108.97|—116.92| —225.89
5-2-3|462.76—-60.43=+ 2.33 + 2.14 + 2.14
2-3-5(4+60.43—62.76=— 2.33(+60.43—51.78=+ 8.65/— 2.14|4+ 9.41/4+ 7.27
3-5-2 +651.78—-60.43=—~ 8.65 — 9.41/— 9.41
4-2-5 0.0 —60.43=— 60.43 — 65.72|— 65.72
5-4-2 | 460.43464.62= +125.05/+60.43— 0.0 =+ 60.43|+114.99|+ 65.72(+180.71
2-5-4|—-64.62—60.43 = —125.05 —114.99 —114.99
6-4-5|—-23.20+64.62= + 41.42(—23.20— 0.0 = — 23.20|+ 38.09|— 25.23|+ 12.86
4-3-6 | —64.62+23.20= — 41.42 — 38.09 — 38.09
5-6-4 0.0 +23.20=+ 23.20 + 25.23|+ 25.23
6-5-7 +51.764+23.20= 4 74.96 + 81.52|+ 81.52

81.56 + 81.86
81.56( — 81.52|—163.08

7-6-5 [+65.50+23.20~ + 88.70
5-7-6 | —23.20—-65.50= — 88.70|—23.20—51.76=— 74.96

I +
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The next step is to fill in the first five columns of Table III,
which, together with the computations immediately following
that table (see also Fig. 111), are used to supply the information

f=-6462 f2-6462
@ “36781° ® -36787 ®
a [+ 4

-22088 /P P\ 13972 -4597 /% \
o
S © x S 9
I 9 NS o 9 .0 9%
b")g\“,o Q2 o ) Q‘\.QQ\
B A RS PS> i S 78 B
< + |- > < + |w-
8 .
@ *22988 +22988 o\ +41374 [FCLSpan
46276 SQ|(3) f-+62.76 F=+6550 Q
3 §® §° 810

Fra. 110.

required in formulating Eqgs. (80) as numerical equations.
Since the structure and condition of loading are symmetrical
about the vertical mid-axis, the truss in its distorted condition
must be symmetrical about this axis also and, therefore, member
6-7 must remain straight. Consequently,

T7-6 = 77 + d(5-7-6) = 0; Er; — 163.08 = 0;
Er; = +163.08

Similarly,

Te—7 = Té + d(8-6-9) + d(9-6-7) = 0;
Ere + 25.23 + 81.56 = 0
Er¢ = —106.89

Under such circumstances it is necessary to carry out the solution
for half the truss only.

For joint 1: For joint 2:
M, = —3396.2 X 0.35  +3396.2 X 0.35 = +1188.67
— _1188.67 —3678.1 X 0.246 = — 90480
%M. = — 504.33 M. = + 283.87
%M. - + 141.93
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— 65.72 0 07964 — 1 77, 27
25| 0.498 — 85.72|— 32.73(— 04 40] —161.18. |— 803/0 0267 |F 430 7.1
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23| 0.343 — 63 58— 21.81/— 92 26) —320 28 |- 109 90 03554/ F11 39| 22 0
+108 97
21, 7.641 + 45 30|+ 346 81+ 16 71] - 24 72 |— 183 9|0 05436/— 1 34| 24
o i } lo 035 |+ 0 86
19.134 + 20221 R |
31 6 524 + 90.13 +239 04 |+ 1559 8|0 0672 |+ 16 07| 25 6
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32| 0343 —225.89|— 7748)-135 761 363 78 |- 124 8,0.03554 F12 91| 25.0
+ 727 ,
35| 6524 —218 62| 1426 27|— 128 49|  —219 95 l 1435 000 0672 | F14 77| 23 5
13 391 —1508 78 B S
46| 10.852 —113.98] —121 18 |—1291 3/0.05192— 6 20| 9.7
+ 12 86 : 0 07964|+ 9.66,
45| 0.343 + 12 861+ 4 41/—101 12] —289 81 |— 00 4.0 03554/ ¥10 28] —
+180 71 ;
42 10 852 +-193 57|+2061 89|+ 79 59 +130 50 {11390 3|0 07964+ 10 40|
o ! ; 0 05102(~ 8.77| 10.5
21 647 +2066 30 L
53 6 524 — 3703 — 54 43 !— 355 2,0 0672 ¥ 3 66 58
- 941 |
52| 0.498 — 941— 460+ 27.62) — 3916 - 195/0.0267 |F 1.04] 17
—114.99) ! ,
54| 0.343 —124 40— 42.67,— 87 37| —27586 |- 04 7/0 03554(F 0 79| —
— 38.09
56 1.698, —162.49|— 275 88— 125 46 —169 36 |— 287 6/0.03172| F 5 38] 23 2
+ 81.52
57| 10.059 — 80.97|— 814 46/— 43 04/ + 7520 |4 756.3/0 0672 [+ 5 05| 7.8
19.122 —1137.70 N
68| 10.652 —~ 108 79 —1061 0
+ 25.23
69| 1.608 + 25 234+ 42.83/— 81 56 — 640
+ 81.56
67| 0.343 +106.79|4+ 386 63 0.0 0.00 000.03554 0.0| 0.0
+ 81.56
65| 1.608 +188.35+ 319.81(+ 81.56] -+ 37.66 [+ 64.0/0.03172(+ 1.1 5.1
+ 25.23
64 | 10.852 +213.58(4-2275.03(+106.78| + 99.58 |+1061.00 07964(+ 7.94
0.05192|— 5.16) 8.0
25.043 42674 30
75 | 10.059 +163.08| +282.22 |+2838.50.0672 |+ 18.98/ 28.9
—163.08
76| 0.343 —163.08(— 55.94] 0.0 00 00§0.03554) 00| 0.0
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Formulation of Equations.—For joint 1:

1-m

2Er12K1_.. + 22[1{1_.2 E da} = 28.330Er, + 1525.54
1 1 H

2-1

K, sEr; + Kx-zEE da =
2

7.641Er, + 34681 O

3—

KisErs + K13 3 E da =
3

For joint 2:
38.268Er; + 584.54
10.652Er, + 2061.89

@ 43678/

o
Q & N S
S & azes-
Y£° 5 f5

: DL

Fig. 111.
1

6.524E7s
1 — 594.33
3 M = 7m0z
For joint 3:

26.782Er; — 3007.50
6.524Er, + 762.77

0.498E71s — 4.69 0.343Er, — 21.81
0.343Ery — 77.48 6.524Er;
7.641Er, —_—
+ 141.93 — 2266.54
+ 2706.19
Ers = —106.89; Er; = 4+163.08
For joint 4:

43.294E7, + 4132.60
+ 1137.51 = 10.652E7, + 2275.03

0.343Er, — 42.67
10.652E7,
+ 5227.44
For joint 5:

38.244Ers — 2275.40
6.524Er; — 1426.27

0.498Er, — 32.73

0.343Er. +  4.41
+ 138.48 = 1.698Er, + 319.81
+ 1640.41 = 10.059ET,

— 1951.10
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The equations are, therefore,

Er, Ery Er; Er, Ery |Num. X 10~2%| Check

1 [28.330( 7.641 | 6.524 +12.780 |+ 55.275
2 7.641/38.268 | 0.3431|10.652 | 0.4981 +27.062 |+ 84.464
3 6.524| 0.3431/26.782 6.524 —22.665 |+ 17.508
4 10.652 43.294 | 0.3431 +52.274 |+106.563
5 0.4981| 6.524 | 0.3431/38.244 —19.511 |+ 26.098

After the equations have been solved, the values for the reference
7's are entered in column 6 of Table III and from these the
value of 7 for each end of each member is computed by adding
to the reference 7 for the joint the sum of the changes in the
angles between the reference bar and the bar in question. After
all 7’s have been computed, the quantities in column 7 are
computed; this needs no explanation, the heading of the column
being sufficient. Column 8, headed M, is not essential, but
the values are useful in that they enable the computer to ascer-
tain whether his computed results satisfy the equations M = 0.
The individual numbers in this column are the products

KEQ2ram + Tma)-

Column 9 is a recapitulation of information found previously
and entered here for convenience. The numbers in column 10

are the products 2I£4E(2T'"" + 7ma), which, as demonstrated

already, are values of secondary-stress intensities f,, and the
last column explains itself.

47. The Mohr Semigraphic Method.—This method of deter-
mining the secondary stresses in a truss is based on the use of the
slope-deflection equations. As in the Manderla method and as
in other problems solved by the use of these equations, the pro-
cedure to be followed consists of writing an equation ZM = 0
for each of the joints of the structure; in this method the moments
are expressed in terms of the distortion characteristics ¢ and y;
enough additional equations are set up to enable the computer to
solve simultaneously for these primary variables and, after these
have been computed, he determines the moments applied to the
ends of the members. In a secondary-stress analysis the angle ¢
for each member can be determined before the equations are set
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TasLe IV.—SoLuTtioN oF EqQuaTions
En En Ers Er¢ Ers  |Num. X 10-? Check
1 28330 7.e41| 6.524 +12780 | + 65.97
2 |7.641] 38.268| 03431 10652] 04081 +27.062 | + s4.464
3 | 6524 o0.2431 26782 6524 | —22.685 | + 17.508
7.641
2B_gg(:- v | 7.641] 2z.0018 1.760 +347 | + 14910
1% :Tﬁ' 1" |6.624] 1.760| 1.508 +2.043 | + 12.7%
2-1" = 6 36.2005|— 1.4160| 10.652 | 0.4981] +23.615 | <+ 69.554
3—17= 7 — 1.4169) 25.279 6.524| —25.608 | + 4.718
‘ 10.652 3.204 | 03431 +52.274 | +106.563
5 0.4081 6.524| 0.3431] 38204 | —10.511 | + 26 098
ox LA 1.4169— 0.0554] 0.4168] 0.0108] + 0928 | + 271
36 208 4 ' ' ' ‘ '
- - 8 -
68X —_%“f,?g‘;" 6 10.652 |~ 0.4108] 3.134 | o0.1465| + 6.947 | 4+ 20.463
0.4981 _ g _
X 300~ ¥ 0.4981|— 0.0198| 0.1466] 0.0060| + 0.325 | + o0.057
746 =8 25.224 | 0.4168) 6.5435 —24.685 | + 7.499
4— 6" = 9 + 0.4168| 40.160 | 0 1966| +45.327 | -+ 86.100
5— 6" = 10 6.5438| 0.1066 38.237 | —10838 | + 25 141
04168
8% %- 8 0.4168| 0.0089] 0.1081] — 0.408 | + 0.124
6 54 , B
BX e ® 6.5435 0.1081] 1.608 8.404 | + 1.45
98 =1l 0.153 | 0.0885 +45.735 | + 85076
10— 8" = 12 0.0885| 36.530 | —13432 | + 23 106
00884
11X gt = 11t 0.0s85 0.0002] + o101 | + o0.19
12— 11 =13 36.530 | —13.533 | 4+ 23 006
1 los sl 7ea| 6524 +12.780 )
— 2.102 [+ 5.881 Bn = —0 1814
6 36 206 |— 1.4169) 10.652 | 0 4081] +23 615
— 1277 |—12.142 [+ 0 1845 Ers = —0 2868
8 95.224 | 0.4168 6.5435| —24 685
— 0.475 |+ 2 424 Bra = +0.9013
n 0153 | 0.0588 +45 735
o iJz',. 1.13083

Ers = +0.37037
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up, thus reducing the number of unknowns to the 6, one for
each joint, and the only equations needed are the equations
ZM = 0.

The angles ¢y can be found by either of two procedures, each
of which is favored by a number of computers. In one, the
angles ¢y are found by assuming a value of the angle ¢ for one
of the members and using the changes in the angles of the tri-
angles of the truss to compute the corresponding angles ¢
for the other members. Since the secondary-stress intensities
are dependent on the distortion of the truss and not on its
position in space, it is immaterial, except as a matter of con-
venience, whether the assumed value for the angle ¢ with which
one starts is a correct value. The second method is based on
the use of the Williot diagram.

Referring again to Fig. 108a, the equation M = 0 may be
written as

Mna+Mnb+MM+Mnd+Me=0

in which

M., = 2EK..(26n + 6, — 3¢na)
M. = 2EK (20, + 6, — 3¢ms) (82)
Mm: = 2EKM(20n + oc - 3‘I’nc)
M.s = 2EK..4(26, + 64 — 3¢na)

In these equations, since the tangents at joint n to the n-
ends of the members connected to joint n do not change their
directions relative to each other,

Ong = Onp = Onc = 0pg = 0,

with similar relations at the other joints of the truss. Con-
sequently the equation ZM = 0 may be rewritten, after dividing
both sides by two, as

22Knm Ean + Kna Eea + Knb Eob + Knc Eoc + Kmi Eod
1
— 33 (Kum EYun} + oM. =0 (83)

It will be convenient in deciding the character of secondary-stress
intensities if the conventions adopted here are similar to those
used in the Manderla solution. These are just the reverse of
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those used in the slope-deflection solutions previously illustrated
and are:

The moment applied to the end of a member is positive when
counterclockwise; this is the same as saying that a clockwise
moment on a joint is positive.

Angles 6 and ¢ are positive when counterclockwise. The
adoption of these conventions leaves the equations unchanged
in form.

When the Egs. (83) have been formulated and solved, the
moments may be evaluated by using Eqgs. (82) or one may proceed
by using Eqs. (84):

M,.".c,m _ Cnm Iﬁm
Jom = TELE = Lo 2B (20 On = Sn)

= 2™ E(20. + 0n — 3¥nm) (84)
without computing the end moments.

To illustrate the procedure, the truss and loading of Figs. 109
and 110 will be used and the angles ¢ will be computed by using
the changes in angle computed in Table II. Since both truss
and loading are symmetrical there can be no rotation for either
joint 6 or joint 7, nor can there be any rotation of the chord of
the elastic curve of member 6-7. In slope-deflection notation
these conditions are

0s = 0; 6; = 0; Vo7 =0 (85)

It is necessary to formulate and solve only the equations =M = 0
for joints 1, 2, 3, 4, and 5. If the truss were not symmetrical
or were not loaded symmetrically, the conditions (85) would not
be true, but it would still be possible to start with any assumed
value for ye.;; under such circumstances it is necessary to for-
mulate and solve the equations for all the joints of the truss.
For the problem in hand, since y¢.; = 0 and the angle 5-7-6
has decreased by 1/E X 163.08, the chord 7-5 must have rotated
clockwise through this angular change, that is, Ey;.s = —163.08.

Similarly, since the change in the angle 6-5-7 = +E1' X 81.52,

the chord 5-6 must have rotated through an angle +E1' X 81.52

counterclockwise relative to member 5-7; therefore its angle
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TabLe V
Mol K | Bda | Be [%pm Xt Be (BGoctea—dym| M | 2f | s R
- - _ — 0035 |— 348/ 6.2
1-2 | 7 641 +116 92 345 75 26“'9—403.89 99.57 760.80‘(5‘30_{_ 541
13 | 8 524 —462 67)—3018.5 +207 69 +1354.9|0 0672 [+ 13.03( 22.2
14 165 —5660 4
0 05192+ 1.15
24 [10 652 |_ g 2o/~ 300 36| 3199 .4 +225 |+ nes) Rt LIS
2-5 | 0 4981 —234 64|— 116 9 —161.17 — 80 3|0 0267 | 4.31| 7.1
+ 214 —320.04
2-3 | 03431 —236 78— 81 2 —320 28 — 109 9|0 03554| F11 40{ 22.0
+108 97 05436 9
_ _ _ _ 0 — 134 24
2-1 | 7 641 345 75/ —2641.9 2472 188 90 035 |+ 0.88
19 134 — 6039 4
31 | 6524 225 89 —462 67/—3018 § +239.04 +1559 50 0672 |+ 16 08| 25.6
32 | 03431 g —236 78— 81 2|—372 54 —363.78 — 124.8/0.03554) 712.92| 25 0
35 | 6 524 —244 05|—1592.2 ~—~219 94 —1435 0[0 0872 | 314 77| 23.5
13 391 —4601 9
0.05192|— 6 29( 97
48 10 852 | 1 gol—108 79— 1137 5 —12007 |-1200 7)g Gagdl T 0 2
4-5 | 0 3431 —119 65— 41 0|—220.77 —289 60 — 99 4]0 03554| 710 20| —
+180 71 -
. 0 07964|-+ 10 41
42 |10 652 —300 36/—3199 .4 +130 50 +1390 245 05102/~ 6 77/ 10.5
21 647 —4377 9
53 | 6524 9“—24405—]5922 — 54 41 — 355 1(0 0872 |F 365 58
5-2 | 0 4981 114 99—234 64— 116.9 — 39 M4 — 195(0 0267 |F 105 17
54 | 0 3431 3 09—1]965—— 41 0{—207.01 —275 84 — 04 6/0 03554/ T 9.80| —
56 | 1698 N 81'52— 81.56/— 138 5 —160.34 — 287 5[0 03172| F 5 37| 23.1
5-7 110 059 — 163 08| — 1640 4 + 75.22 + 756 8|0 0672 |+ 505/ 77
19 122 —3529 0
0 05192{— 517 80
08 116 652 |, o5 p3l+106 79+ 1137 5 —®eo |-1060 90 9502 5 17
69 | 1698 + 81 56+ 81 56/+ 138.5 — 37 67 — 64 0[0 03172 F 1.19 5.1
6-7 | 0 3431 + 8156 00 00 0.0 0.0 000 03554/ 00| 0.0
6-5 | 1698 — 81.56/— 138 & + 37.87 + 64 0/0 03172|+ 1.19] 61
+ 2523
0 07984/+ 7 95
64 (10 652 —108 79— 1137 5 +99.60  |+1080 90 07N T ¢ o
25 043
7-5 (10.059 6 — 163 08{— 1640 4 +282.23 +2838 5/0.0672 | ¥18.96| 28.9
—163 08
7-6 | 0 3431 6 00 00 0.0 00 0 0/0.03554| 0.0 0.0
—163 08
7-9 {10 059 +163 0841640 4 —282 23 —2838.5/0 0672 |+ 18.96| 28.9
20 461
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Vee = —%,(—163.08 + 81.52) = —l% X 81.56. The extension of

this procedure can be carried out conveniently as part of Table V,
which will be used to compilc the information needed in formulat-
ing the equations and, after the equations have been solved, in
computing the secondary-stress intensities f,.

In formulating the equations, the moments due to eccen-
tricity of connection are taken from the previous article.
at joint 1:

2§KME01 — 32(Kim E1m) = +28.230E6, + 16983.9

+K1__2E02 = + 7641E02
+ K, 3E0s = 4+ 6.524E0,
+4M, = —  594.3

+42.395 + 16389.6
At joint 2: At joint 3:

+38.268E6, + 18118.8 26.782E0, + 14079.9
+10.652E0, + 141.9 6.524E6,

+ 0.498E6; 0.343E0,
+ 0.343E6, 6.524E0;
+ 7.641E6,

40.173 + 14079.9
+57.402 + 18260.7

At joint 4: At joint 5:
43.294E6, + 13136.4 38.244E65 + 10588.8
0.343E065 6.524E06,
10.652E0, 0.498E6,
0.343E6,

54.289 + 13136.4

45.609 + 10588.8

Ea E6: Eé, Eé. Eos Num. X 10-* Check
1 28.330 7.641 6.524 +163.869 +206.364
2 7.641 38.268 0.3431 10.652 0.4981 +182.601 +240.003
3 6.524 0.3431 26.782 6.524 +140.757 +180.930
4 10.652 43.204 0.3431 +131.337 +185.626
5 0.4981 8.524 0.3431 38.244 +-105.870 +151.479
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TasLe VI
E& E& Bo, Bo. E6; |Num. X 10~ Check
1 |328.330| 7.641| 6.524 +163.869 +-206.364
2 7.641 | 38.268 | 0.3431| 10.652 | 0.4981) +182.601 +240.003
3 6.524 | 0.3431| 26.782 6.524 | +140.757 +180.930
7.641 ,
1 X o533 = 1'| 7.641 2.061 1.7602 + 44.108 + 55.650
6.524 Y
1 X gaas = 17 6.524 |  1.7002) 1.5082 + 37.737 + 47.523
2—1'=86 36.207 (— 1.4171) 10.652 | 0.4981] +138.403 +184 344
3—1"=7 — 1.4171/+-25.279 6.524 | +103.020 +133.407
4 10.652 43.204 | 0.3431] +131.337 +185.626
5 0.4981] 6.524 | 03431 38.244 | +105.870 +151.479
+ 1.4171|— 0.0554| 0.4160( 0.0195 + 5 417 + 7.214
10.652 |— 0.4169| 3.134 | 0.1465| + 40.717 + 54.233
0.4981{— 0 0195| 0.1465| 0.0069| + 1.004 + 2538
25224 | 0 4160 6.5435 +108.437 +140.621
0.4169| 40 160 | 0.1966] + 90 620 +131.393
6.5435( 0.1966| 38.2371] +103.966 +148.043
0.4169] 0.0069| 0.1081] + 1.792 + 2324
6.5435| 0 1081] 1.6078] + 28.129 + 36.478
40.1531| 0 0885 + 88 828 +129.069
0.08R5| 36.5303| + 75.837 +112.465
0.0885 0 0002] + 0.196 + 0.285
36.539 | + 75.641 +112.180
28.330 | 7.641 | 6.524 +163.869 | E6y = —4.0319
—25.142 [—24 304
36.207 |— 1 4171 10.652 | 0 4981] +138.403 | E6y = —3.2004
+ 5279 |—23.515 (— 1.0312
25224 | 0.4169) 6 5435| +106.437 | E6; = —3.7254
— 0.9202(—13.5468
40.153 |  0.0885, 86.828 | E6¢ = —2.2077
— 0.1832

E6y = —2.0701

48. Secondary Stresses by Distributing End Moments.—In
computing secondary stresses in trusses, one is considering a
truss essentially as a structure with moment-resisting joints.
Consequently, any of the methods used for the analysis of such
structures is applicable in the problem of secondary-stress
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analysis. A truss so considered has so many redundants that a
primary-stress analysis on such a basis is not practicable. This
situation, however, does not introduce any real difficulty since the
changes in the positions of the joints are dependent primarily on
the changes in the lengths of the members. A fairly close approx-
imation may be obtained by a method of successive steps, the first
of which is the usual so-called primary-stress analysis; the second,
the secondary-stress analysis, uses the
results of the first step.

Since the primary-stress analysis
enables one to compute the angles y,
as was demonstrated in the previous
article, the method of distributing end
moments is applicable and can be started
by computing the moments which would e
exist if the truss distorted so that the L, 6867 __7 ‘;(“’ 3
chords of the elastic curves of the mem-

| :

| hb/ I Q

bers rotated through the angles ¢ just §f /‘f}’ i ‘:?r
mentioned, but that during this distor- < 45(5;‘72; b
0 e L

tion the joints were not permitted to
rotate. If one considers the slope-deflec-

el L)

tion equation 5 v@"’\ e::
I AR
Mum = 2EK,\".(20” + 0m — 3¢’nm) CI4(7-5 rale)

it is evident that the fixed-end moment Fre. 112.

in a member nm, as just described, is equal to —6EK.m¥nm.
It is evident also that the effect of the joint rotations can be com-
puted just as in Art. 36.

In illustrating the procedure by the analysis of the truss and
loading of Figs. 109 and 110, the angles ¢ could be used as com-
puted in the previous article, but, for the sake of presenting an
alternative method, they will be computed here by using the
Williot diagram. When the truss is symmetrical and loaded
symmetrically, as in this illustration, it will be sufficient to draw
the diagram for half the truss only. It will be drawn assuming
that joint 7 is fixed in position and member 6-7 fixed in direction
(see Fig. 112). In this diagram a-5' represents the movement
of joint 5.during ratation of member 5-7 about joint 7; therefore,

V1.5 = LL(G-E)’) and is clockwise. Using the same conventions
7-5
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as in the previous article, this is negative. Similarly,

e-5’' b-4' 54’

Voo T TLL YT TR YT T
_ ___d-3'_ _ _6-2'. _ _g-3'.
Ves = Tow Yer = Ty 13 = "
_ 2, _ k1, _ 1
Vo3 = Loy Vo1 = Lo’ Vs =- j

The fixed-end moments are computed in Table VII. The
moment distribution is carried out in Fig. 113.

Tasre VII
Bar L ¥ K —68EKy
6-7 29.0 0.0 0.3431 + 0
7-5 26.67 —163.08 10.059 + 9,841
6-5 39.40 — 81.56 1.698 + 831
6-4 26.67 —106.79 10.652 + 6,825
5-4 29.0 —119.65 0.3431 + 246.4
4-2 26.67 —300.36 10.652 +19,197
5-2 39.40 —234.64 0.4981 + 701
5-3 26.67 —244 .07 6.524 + 9,552
2-3 29.0 —236.77 0.3431 + 487.5
2-1 39.40 -345.76 7.641 +15,852
3-1 26 .67 —462.68 6.524 +18,155

It is to be remembered that in making the moment distribution
the moments due to eccentricity must be taken into account.
The convention that moments applied to the ends of members
are positive when counterclockwise implies that moments
applied to joints are positive when clockwise. This means that
moments due to eccentricity are to be taken as positive when
they act in a clockwise direction on the joints. Starting with
joint 1, the unbalance of moments is

+15,852 + 18,115 — 1,189 = +32,778.

This is distributed as shown and the carryover moments are
written at the far ends of members 1-2 and 1-3. Taking joint 2
next, the unbalance of moments is now

+15,852 + 19,197 4 701 + 488 + 284 — 8,840 = -+-27,682.

This is distributed and carried over. The moment distribution is
continued, taking joints 3, 4, and 5 in the order stated. In
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this problem, where truss and loading are symmetrical about
member 6-7, if it is assumed that the same procedure is carried
out taking joints 12, 10, 11, 8, and 9 in order, it will be found
that joints 6 and 7 are balanced and no distribution is needed
there. The procedure is repeated, joint by joint, until the
remaining unbalance in the moment at each joint is small
enough to be considered negligible. The total moments are
found by summing the various terms written on the ends of the
various members, and the secondary-stress intensities are com-
puted by multiplying each moment by the proper value of ¢/I.
This step is not carried out here since it is merely a repetition of
what has been done in the previous articles.

49. Effect of Weight Distribution.—In all truss analyses con-
sidered so far, it has been assumed that the weights of the
members were concentrated at the joints. In order to form an
idea of the error involved in this assumption, an analysis of the
truss shown in Fig. 109 will be carried out, using the moment-
distribution procedure. This has been done already to the extent
of determining the effect of the angles ¢ and the joint rotations 6
and the only step which remains is to determine the effect of the
load distribution. The moments stated in the previous problem
are stated in inch-pounds and the same unit will be used here so
that the moments developed may be compared easily with those
due to other causes. In computing the fixed-end moments it is
to be remembered that the weight per unit length w’ is that com-
ponent of the weight which is perpendicular to the axis of the
member. The fixed-end moments are tabulated below.

w'L? w’L?
L, ft. , 1b. ft. ’ —, ft.-lb. ——, in.-lb.

Bar w per w 12 12 in.-lb

1-2 39.40 209.5 141.8 18,340 220,100
2-4, 4-6 26.67 195.7 195.7 11,597 139,180
1-3, 3-5 26.67 125.9 125.9 7,460 89,520

5-7 26.67 217 .2 217.2 12,870 154,450

2-5 39.40 115.9 78 .4 10,140 121,700

5-6 39.40 100.7 68.2 8,820 105,820
2-3, 4-5

6.7 % 29.0 66.4 0.0 0 0.0

These moments are written at the ends of the members in the
diagram of the truss shown in Fig. 114. In this step it must be
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remembered that the conventions previously adopted stated that
moments acting counterclockwise on the ends of members were
positive. The moments are written in units of 1,000 in.-lb.
Following this step, the moment-distribution process is carried
through. This is shown in Fig. 114, also.

TasLE VIII
Weight distribution | Weight distribution
Member neglected (é, %) considered ('!—', %)
Jr Io

1-2 6.2 5.3
1-3 22.2 20.3
2-4 2.7 7.6
2-5 7.1 20.3
2-3 22.0 20.9
2-1 2.4 11.8
3-1 25.6 20 .4
3-2 25.0 23.6
3-5 23.5 18.5
4-6 9.7 7.2
4-2 10.5 8.0
5-3 5.8 9.6
5-2 1.7 29.3
5-4

5-6 23.2 2.9
5-7 7.8 10.7
6-7 0. 0.0
6-5 5.1 17.1
6-4 8 5.3
7-5 28.9 24.5
7-6 0.0 0.0

The effect of the weight distribution should be compared
with the moments due to full loading of the truss. With this in
view, consider a load of 198,000 lb. at each of the bottom-chord
panel points. The secondary moments (in units of 1,000 in.-lb.)
due to this loading may be found by multiplying the moments
shown in Fig. 113 by 0.198. The results are shown in parentheses
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in Fig. 114. The moments due to the weight distribution are
not negligible compared with those computed by taking into
account only the changes in the lengths of the members and the
eccentricities in the connections, but when the -econdary-stress
intensities are expressed as percentages of the primary-stress
intensities the variation between the results of the two analyses
is proportionally much smaller than the difference between
the two sets of moments. A comparison is shown in Table VIII.

If it is desired to use the Manderla solution when the weight
distribution is to be considered, the basic equations (74) must be
modified to include the load terms

2

_E[(M-)Ou - 2(Ma)Ob]
2

—5[2(M.)oa — (M.)o)

respectively. Since the load is uniformly distributed over the
full length of the member, the M, curve is a parabola with a
middle ordinate equal to w'L?/8, where w’ is the component,
normal to the axis of the member, of the weight per unit length
and L is the length of the member.

2wl L _ wLt
(Mo = (Mo = 22 FLL =W

8 P
and Eqs. (74) become
Moy = 2EKo(21a + ) + ’."Tg_’
T2
Mo = 2EKa(ra + 21) — %

For this situation, Eq. (80) becomes

Er. 22K,m + 22[1(”“%12 da} + EleE'rm

n
mn

’ 2
+ K....EE da] + %M, + 2’%—" =0 (86)

where the terms in the last summation are to be taken as positive
or negative according to whether the weight tends to rotate the
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member in a clockwise or counterclockwise direction about
joint n. If the slope-deflection equations are to be used and the
effect of weight distribution is to be taken into account, Eq. (83)
must be rewritten in the form

221(,., E6. + EKM.Eo, - 321{ wEdum + M

+ Delin o (1)

60. Participating Stresses.—In the previous articles it has
been assumed that the condition of stress in the truss under
consideration was not affected by any members connecting it to
other elements of the structure of which it forms a part. More
often than not, such an assumption is only approximately true.
For example, the truss of Fig. 109 is one of the main trusses of a
single-track railway bridge in which the top chords are connected
by top lateral bracing as shown in Fig. 115, while the bottom
chords are connected not only by the bottom lateral bracing but
by the floor system also. Each of the lateral bracing systems,
and the floor system as well, offers resistance to movement of

2’ + 6’ 8’ 10
i v
R
a a’ ’ D
<
—r
2 4 6 8 0
Fia. 115.

its joints. Consequently, when, under the action of vertical
loads applied to the bridge, the top chords become shorter and
the bottom chords extend, the movements of the joints are
resisted by the lateral systems and the floor system, which,
therefore, are subjected to axial stress and help to resist the
distortion of the structure. Since they do so help, the stresses
in the chord members are not as computed in the primary-stress
analysis. Moreover, since the lengths of the members in the
lateral systems change, there are changes in the angles of the
triangles formed by these members with resultant bending of
the members in the horizontal plane, so that, owing to the
application of vertical loads to the structure, the bracing members
are subjected to both axial and bending stresses, while the chord
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members are subjected not only to bending in the vertical plane
but to bending in the horizontal plane as well.

I l ‘
Bar A L I A Ca K A -

Chord [56.92320.0 [3570.2 |{11.938/11.160 |0.0373 | See Fig. 109

arx
2'-a, 4'-a 148" d
+ other | 9.92(186.59| 30.63| 3.875/ 0.1642/0.02076 T -
i X
diagonals > |.._2’,"

4’4 Same as 2’-a ex-
o6 | ©-92192.0 | 30.63 3.875 0.15060.02018 ~ 18 0 T VA

2-2’  |30.20/192.0 {3045. |15.51 |15.862 i0,08081

If the final condition of stress is determined by first computing
the primary stress and then computing secondary effects, a
chord system with its lateral bracing may be treated like any

*\,“ «P\ *or,g ":—,rc
Primary structure ()
0 -08574
0 t ‘/o \ }
o 9 g0 S
(4] -08574
Condition Xg= | (b)
-08574
3 e
@ 5
S| ~ass5 3
Condition Xp=| ()
Fia. 116.

other indeterminate structure. The procedure will be illustrated
by an analysis of the top-chord system shown in Fig. 115. The
primary structure is shown in Fig. 116a and conditions X, = 1
and X, = 1 are shown in Fig. 116b and Fig. 116¢, respectively.
In condition X = 0 there are no stresses in the members of the
bracing system and the stresses F, in the chord members are
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those found by the primary-stress analysis. The condition of
loading is that shown in Fig. 117. The loads and stresses are

f=-12.80 ’ £=-/280
- 7284 -728.4
» .
9 & O 2
’bf\‘\r § & AY g
+4553" | +4553 +8/94 *
Y R
of & s & & 8 k
Fio. 117.

stated in units of 1,000 Ib. Using the law of virtual work,

X baa + Xb 8ap + X. b + Xa 8aa = —ba0
X Oba + Xb 00 + X 0o + Xa 0sa = — 0
Xa 6ca + Xb 666 + Xc acc + Xd 6cd = ~'6c0
X, 8da + Xo 0ap + Xc 0ac + X 82z = — a0

The coefficients of the unknowns are computed in Table IX.

TasLE IX
i
L. | 4, Lo FeFoL | FoFoL | Fall | FoFsL | FyL
Bar| ¢ | in | o Fa LU Bl B A 4 a
2-4 |26 67/56.92| —728 4 —0.8574 +292 8 +0 3444
2'-4' 26 6756.92| —728 .4 —0.8574 +292.6 +0 3444
4 -6 |26.67/56.92| —728 4/ —0 8574 +292.6 +0 3444
4’-6’ |26 67|56 92| —728.4/ —0 8574 +292.6 +0 3444
2-2'{16 0 {30 20 © —0.5144 +0 1402
4-4'|16 0 | 9 92 0 —0 5144 —0.5144 +0.4269| +0 4269/ 40 4269
24131100 9 92| © +1.0 +3 135
2'-4 |31 10 9 92| © +1.0 +3 135
4-6'(31.10/ 9.92| 0 |+10 +3 135
46 (31.100 992] O |+10 +3 135
6-6'(16.0 992 0 |—0.5144 +0 4269
l +585.2| 4585 2{ 47 8126:+0 4269| +7 5259

Esdo = Elsao = +5852, E&,o = Eabo = +5852
Eﬁcd = Eédc = E&ab = E&ba = +0.4269
Ebs.. = Ebp = +7.5259

FJFL _ 16 .

Ebdos = Ebus = +7.8126
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The equations are

Xa X» X. Xa Num. X 10~?
7.8126 0.4269 0.4269 +5.852
0.4269 7.5259 +5.852

7.5259 0.4269 +5.852

0.4269 0.4269 7.8126 +5.852
0.4269 0.0233 0.0233 +0.3198

7.5026 —0.0233 +5.532

—0.0233| 0.4269 7.7893 +5.532

+0.0233 —0.0001 +0.017

0.4269 7.7892 +5.549

7.5259 0.4269 +5.852

0.4269 | 0.0242 +0.332

7.7650 +5 217 X4 = —0.6719
7.8126 | 0.4269 0.4269 +5.852
-0.3165 —0.2867 Xa = —0.6719
7.5026 —0.0233 +5.532
+0.0157 Xy = —0.7394
7.5259 | 0.4269 +5.852
—0.2867 X. = —0.7396

The stresses are as shown in Fig. 118. The stress intensities
in the top-chord members are reduced by approximately 8 per
cent, while the lateral bracing members are subjected to stress

f=-//68 £=-1/78
-665.0 -6708
2 9 3, q
d.’p 3q . 2/9 3 1\
RO SR NN
B N3 3K
) f=-7395~ ©C A-f=-6772- “
-665.0 -6708
f=- (/68 f=-1.78
Fi1g. 118,

intensities of approximately 7000 lb. per sq. in. In addition,
the members are subjected to bending of the sort discussed in
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Art. 49 such that the stress condition in the top-chord lateral
system due to uniformly distributed vertical loading sufficient
to utilize what is usually considered to be the capacity of the
truss is as shown in Fig. 119. The stress intensities are stated
in thousands of pounds per square inch. The primary stresses
are written in brackets. The effect of the bending of the mem-
bers is small, being in no place as great as 1,200 lb. per sq. in.
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als ,a‘55‘° Ve IR 432 ©% 25, olo
SiX _%b R ox >
¥I3 2152 (1pg0) 1184 "5~ 194, 12.60) 169
2 -11.84 " 1152 4 -i62 VY87 6

Fic. 119.

b1. Participation Stresses Due to Floor Systems.—When a
floor system is connected to its supporting truss at panel points,
and the lengths of the truss members connecting those panel
points change, the floor system resists these changes, and,
consequently, there are participating stresses in the floor system
and corresponding deviations in the axial stresses in the chord
members from those computed in the primary analysis. As an
illustration, consider the floor system for the bridge, one of whose
trusses has been investigated in the previous articles. This
floor system is as shown in Fig. 120.

/ 3 5 7

; ———

a’ b c' d '
e
L X
a b C d [y !
/ 3 5 ClLofspan’ 7 '
b 6panels @ 26'6160°0"
Fra. 120.

The problem involved is that of analysis of a structure which
is statically indeterminate and is subjected to loads which in this
case are the horizontal components of the stresses in the diagonals
of the main trusses. If it is assumed that the joints cannot
carry bending moment, the chord members of the trusses and the
stringers are subjected to axial stresses ounly, while the floor
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beams are subjected to bending moment. The primary struc-
ture is as shown in Fig. 121. In condition X = 0 there are no
stresses in the members of the floor system and the stresses in
the chord members of the trusses are those found in the primary-
stress analysis; these are taken as in Fig. 117. There are twelve
redundant stresses but the structure and condition of stress are

Member IL; A,8q.in.| I,in.¢ Arrangement

3-3', 5-5' 4 flange & 6” X 6" X }”
- 192 |61.00 |162.67 | MACS S, wr
" 4 flange 1t 6” X 4" X }”’
1-1 192 | 46.72 38.26 web 8417 X }

ab, be, cd N 4 flange s 68”7 X 6”7 X I}’

ool gy | 320 |53 00 |225.48 | T IWAACE O Ju
1-3, 17-3' 320 | 36.62 41 34!1 X 3*/1 X !” A r
3-5, 3-8’ ’ 2 webs, 21”7 X A’ d L

” " ” A r
5-7, 5°-7' 320 | 63 17 43y )(”3§ o)fzi
4 webs, 21”7 X 1% 4 L

symmetrical about axis 7-7’ and an axis perpendicular to 7-7’.
The equations which define the redundants are similar to Eqs.

/I 3 5' 7’ 9 /" 2’
T X ot g ] B g X . 14 g Y v X . 0 " —
o XaXa T X5 Xy o %¢ Xe Jd" Xg'Xg™ Te XX 6 Kg'Xg g ¥
o bl <13 Fls rls 6'5" 160"
| akg b XpXp Je Xc X XgXg e XgXg |f XgXg 9] * §
7 9 " /2
beoommom e 6@ 26°8"——=---==----mom s ooooooo oo ~
Fia. 121.
(67). The setting up of these equations and their solution

involves no unusual procedure.

62. Correlation of Primary and Secondary Stresses.—The
treatment of secondary-stress analysis as hitherto presented has
been based on a method of successive approximations. The
primary stresses were first computed. These were used as the
basis for computation of the angles 7, or of the angles 6 and y,
dependent upon the method of attack utilized. With these
angles computed, the corresponding bending moments were then
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determined and were assumed to be the true values of the
secondary moments. Actually, the presence of secondary
bending moments shows that the direct stresses in the various
bars, as computed in the primary-stress analysis, are only
approximately correct. If these values are now corrected, and
a new secondary-stress analysis is carried through, more exact
values of the secondary bending moments will be obtained.
This procedure can, of course, be repeated to produce any
desired degree of accuracy.

If the first cycle of this operation is to give results which are
substantially correct, the following conditions must hold: The
direct stresses as computed from the primary-stress analysis

@‘ 400

>2-12"B @ 35/b."
A=20.52in.2 !
1-3576in% !

----20

] 2-12"8-251b._\(3)__ %
%;E_A:M 64:n71:267 ,H.V)E) » X " »»
a a
~-/5'--->l<«--/5'--->l
(@ ®)
Fia. 122.

must be substantially correct, and the deflections of joints as
computed from the primary structure must be equally precise.

The method of successive approximations is used in secondary-
stress analysis as an expedient, rather than from necessity.
A truss the joints of which are capable of resisting bending can
be analyzed as a rigid frame. As such, it is a statically indeter-
minate structure. Although considerable labor may be involved,
a direct solution, yielding exact values of direct stresses and
bending moments, may be made. These results are equivalent
to the combined values of the primary and secondary stresses.
Either the law of virtual work or Castigliano’s theorem may be
used as the basis for solution. Even though such an approach
is too laborious for the solution of practical problems, it offers
the opportunity to investigate the validity of the assumptions
upon which is based the acceptance of the methods which
depend upon successive approximations.

For the purpose of making this investigation, the structure
shown in Fig. 122a will be considered. The load shown is in
units of 1,000 Ib. The sections as given were designed for the
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load shown, on the basis of the primary stresses. Castigliano’s
theorem is used as a basis for analysis. The primary structure
is shown in Fig. 122b, the bottom chord having been assumed
cut at its center. Because of symmetry, no shear can exist at

this point.
For bar 1-2:

F = +Xa

M = +Xb
For bar 1-3:

3X,
F= 5
3 4 4
M= +2OO(5 ) — Xa<5:c) — Xy = 4120z — gXaa: - X,

Taking advantage of the symmetry of both the structure and its
loading,

W _ X.(180) (—160 — 0.6X.)(300)( 3
Esx. = Taea (tD T 20.52 \"3
300
(+120z — 0.8X.x — X,,)(_4 _
+J; 357.6 5% )iz =0
which reduces to
+16,124.940X, + 100.67115X, = 2,414,703.9 @)
oW [ X, f”"(+120x — 0.8X.z — X3) B
Ex.= ), zro™ ™ 357.6 (=Ddz =0

which reduces to
+1.46611X, + 100.67115X, = +15.100.671 (b)
The solution of Egs. (a) and (b) leads to

X. = +149.56179 kips; X, = +30.0895 in. kips
Fi, = X, = +149.56179 (primary stress = +150.0)

Fy3 = —160 — %(+149.56179) = —249.73707
(Primary stress = —250.0)

The foregoing comparison shows that for the structure con-
sidered the direct stresses as computed from the primary-stress
analysis are essentially correct. The deflections of joints in a
truss are dependent upon the change of length of chords connect-
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ing the joints. The effect of stresses upon these changes of
length is twofold: The neutral axis changes its length by an
amount directly proportional to the total direct stress in the
member, while, owing to bending, the neutral axis becomes, in
general, curved. The true length of the chord connecting two
joints is therefore always equal to or less than the length of the
neutral axis connecting the same joints. The effect of this
difference in length between the length of the chord and the
neutral axis may be shown to be negligible in comparison with
the effect of stress in changing the length of the neutral axis.
It may therefore be concluded that deflections computed on the
basis of primary stresses will be essentially correct. In order to
illustrate this point, the vertical deflection of
joint 3 of the truss shownin Fig. 122a will be
computed, first by an exact consideration of
the truss acting as a rigid frame and then,
for the sake of comparison on the basis of
Cf’) the primary stresses. The following deflec-
tions of the primary structure due to unit
loads are first computed:
Let 833 equal the vertical downward deflection of joint 3
due to the unit load acting as shown in Fig. 123. The method
of virtual work will be used.

2[—0.4(300)<_ 4 ) N fwo_(0.3x)(0.3x)d:c]
2052\ 10 0 357.6

+4534.8798

Let 3,3 equal the relative inward horizontal movements of
the cut ends of the bottom chord due to the unit load acting
as shown in Fig. 123.

{50o() - [

—12073.5194

Let 8.5 equal the relative rotation (in the direction of the
redundants X,) of tangents to the elastic curves of the cut ends
of the bottom chord, due to the unit load acting as shown in
Fig. 123.

|‘©

Fra. 123.

Eby,

Ebas

2 (™3
Esb-l = 3—57—61; E(—l)dx = —75.50336
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The true vertical deflection of point 3 due to the load shown
in Fig. 122¢ may now be computed as follows:

Ed; = +400(Ed;.5) + 149.56179(Ed;..) + 30.0895(E 53.)
= +400(Eds.3) + 149.56179(Eb,5) + 30.0895(E 5p.5)
= +400(+4534.8798) + 149.56179(—12073.5194)

+30.0895(—75.50336)
= +5942.95

If Ebs be computed by the method of virtual work, taking
the stresses as those resulting from the primary-stress analysis,

the relation is
2{ gz_s_())(so()_)(g)] 4 (150)(360)<§
2052 \8 1464 \8
+5951.91

The discrepancy between this value and the value

Eé; = +5942.95

Es,

]

as obtained from a consideration of both primary and secondary
stressesis small. The results of the investigation of this structure
substantiate therefore the acceptability of the methods of
secondary-stress analysis hitherto given.

In computing deflections in a statically indeterminate struc-
ture, the actual strains in the members of the structure must first
be determined. This procedure involves a stress analysis of the
indeterminate structure. Once this step has been carried out, the
computation for the deflection of a point may be carried out by a
consideration of any portion of the actual structure which in
itself is stable, and which includes the point, the deflection of
which is to be determined. The entire structure constitutes one
such system, and has been used in the exact computation of Ed;
in the foregoing discussion.

In general, a more direct solution may be obtained by applying
the law of virtual work to the primary structure. The @ system
to be used consists of a unit load applied at the point whose
deflection is desired and in the direction of the displacement
component to be found. The stresses due to the Q system are
thus those in a statically determinate structure. The condition
of distortion is that defined by the stresses found in the analysis
of the indeterminate structure. The procedure is valid because
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the stress analysis is based on the condition that the distortion
of the primary structure must be the same as that of the original
structure. To illustrate the advantages of this approach, the
computation of E$, follows, based upon the primary structure
shown in Fig. 123. Owing to the unit load acting as shown, the
direct stress and bending in member 1-2 are zero so that members
1-3 and 2-3 only need be considered. Taking advantage of
symmetry in the solution, for member 1-3,
F = —249.73707

M = 4120z — %(+149.56179)x — 30.0895

= 40.35057z — 30.0895
F,= —04
M,= 403z

_ o[ (=0.4)(—249.73707)(300)
Es, = 2[ 20.52

+ 300( 4 0.32)(4-0.35057z — 30.0895)dz
o 357.6
= 5942.89

The small discrepancy between this value and that previously
obtained (Ed; = +5942.95) is due entirely to lack of arithmetic
precision.



PROBLEMS FOR SOLUTION
Chapter 1

| L-b e bl
kg o
Fig. I-1.

1. What is the relation between a, b, ¢, and d, for which this structure
becomes geometrically unstable?
Chapter II

P=/,000/b.
_yI2"13181b.

1. The beam shown is distorted due to the load and to a change of tem-
perature which is the same for all cross sections of the span, but varies
linearly from an increase of 60°F. at the top to an increase of 10°F. at the
bottom. Compute, for each cause, by the method of virtual work:

a. The vertical deflection at mid-span.

b. The change of slope at the left end.

¢. The error occurring owing to neglecting the shear distortion.

@62 D) ® © _ _
N/ & S\ .
\'lo § A <
@/ & @y
)2 @ O

———————— @24 ———----
Fie. II-2.

2. The truss shown is symmetrical about its vertical mid-axis. Numbers
in parentheses are cross-sectional areas in square inches. By the method of
virtual work, compute:

a. The vertical deflection of joint (7) due to a vertical load of 72,000 lb. at
each of the panel points of the bottom chord.

239
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b. For the loading stated in part (a), the relative displacement of joints
(3) and (6) along the line joining them.

¢. For the loading stated in part (a), the rotation of the line joining joints
(2) and (7).

d. The vertical deflection of joint (5) due to the following changes of
temperature:

Top chords and end posts. .................. At = +50°F.
Web members. . . .. e At = +20°F.
Bottom chords............... ... ... ... ... .. At = +10°F.

e. Solve part (a) with the further data that the hinge support of the truss
settles 1 in., while the roller support of the truss settles 4 in.

Thrs bar cannot
carry stress-~._

42'-

The joints of the botrto
chor'év’ lie ona parobola m

------ 8@30-240" -~
Fig. II-3.

8. Compute the vertical deflection of joint (a) due to an increase of 60°F
in the temperature of this arch. This change is the same for all parts of the
structure. Use the law of virtual work.

4. Compute the vertical deflection at mid-span of the beam shown in
Fig. II-1 due to the load only, by using Castigliano’s theorem.

5. Compute the vertical deflection of joint (7) of the truss described in
Prob. 2a, Chap. II, by using Castigliano’s theorem.

6. Draw the Williot-Mohr diagram for the truss of Prob. 2a, Chap. II,
under the loading described there, and find the vertical and horizontal
components of the deflections of all the joints.

7. Find the vertical components of the deflections of the joints of the
three-hinged arch shown in Fig. I1-3 due to the temperature change described
in Prob. 3, Chap. II. Use the Williot-Mohr procedure.

8. Find the vertical components of the deflections of the panel points of
the bottom chord of the truss of Prob. 2a, Chap. 11, due to the loads described
there. Use the elastic-load method.

9. Using elastic loads, find the vertical components of the deflections of
the panel points of the top chord of the arch shown in Fig. II-3. The
distortion is due to the temperature change stated in that problem.

300008, 15,0006,
} yi5re29m |
A | B
kg’ b g w67 ol
Fig. II-10

10. Compute the ordinates, at 2-ft. intervals, to the elastic curve of this
beam, using the methods of Art. 24:




PROBLEMS FOR SOLUTION 241

a. Corresponding to moment distortion only.

b. Corresponding to moment and shear distortion.

¢. Due to a change in temperature varying from +40°F. at the top to
+5°F. at the bottom, and the same for all cross sections of the span.

2PIs.833\
[ secazéoh ] 1
' k--20"-- )} ﬁ”
_..__.30 _____
be--- - 40"----1-- >
Fia. II-11.

11. This girder carries a uniformly distributed load of 5,000 1b. per lin. ft.
extending over the whole span. Compute the ordinates to the elastic curve
at intervals of 5 ft. Neglect shear distortion. Use the methods of Art. 24.

12. Solve Prob. 10, Chap. II, by the conjugate-beam method.

Chapter III
20 20 20 20 20

‘ (15) ‘(/5) ‘ X ‘ ‘_‘_

Fig. III-1.

1. This arch is symmetrical about a vertical mid-axis. The numbers in
parentheses are the cross-sectional areas in square inches. The loads are in
units of 1,000 lb. Compute the stresses in the members by the method of
virtual work:

a. Assuming no yielding of supports.

b. Assuming that the right-hand support moves 1 in. to the right but has
no vertical movement.

(#0) -
N/ ~ 6"9 '
¢ R \8 3
(30) 1 (30) ¥
7$|9,~ } 100,000/b. ,?,,
O 4@30" -——-——- >
Fia. III-2.

2. This truss is symmetrical about the vertical mid-axis. The numbers
in parentheses are cross-sectional areas in square inches. Compute the
stresses in the members of the truss by the method of virtual work.
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{ 1= 100075 *
106 000/6. J\ A= 25in2

" Fixed
e ]

Fig. III-3.

8. Draw the curves of bending moment and shear for the members of this
bent. Use the law of virtual work as a basis for analysis.

4. Draw the curves of bending moment and shear for the bent of Prob. 3,
Chap. III, due to a temperature increase of 40°F. The bent is built of steel.
Use the method of virtual work.

6. Compute the stresses in the arch of Prob. 1, Chap. III, due to a tem-

perature increase of 50°F. uniform over the whole structure. Use the
method of virtual work.

50000/b.

Cixed I 4000/bper lin. ft
| . .

(PP SN S -

Fia. III-6.

8. Draw the curve of bending moments for this beam, using the virtual-
work procedure throughout.

7. Draw the curve of bending moments for the beam of Prob. 6, Chap.
I11, using the virtual-work procedure, but computing deflections by using
the moment-area theorems.

TG
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.Q | %o,
Ve agm Xy oPin
e
A ¥/Q000/5. 18
L.. 8’ I P 8’ sl
Fic. III-8.

8. Draw the curve of bending moments for the beam A-B. Use the
virtual-work procedure for the analysis.

9. The temperature in the tie rod in Prob. 8, Chap. I1I, decreases by 30°F.
while that in the beam does not change. Compute the stress in the tie rod
and the maximum bending moment in the beam. Use the method of virtual
work.
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10. Assuming that the gusset plate is stiff enough to transmit bending,
and using the method of virtual work, draw:

a. The curve of bending moments for the beam ABC due to the load
shown.

0001b,
yPin L B y2-/12'B 339 /b, c.

>

Fig. 1II-10.

b. The curve of bending moments for the beam due to a temperature
increase of 50°F. uniform over the whole structure.

11. Solve Prob. la, Chap. III, by Castigliano’s theorem.

12. Solve Prob. 2, Chap. III, by Castigliano's theorem.

18. Solve Prob. 3, Chap. III, by Castigliano’s theorem.

14. Solve Prob. 8, Chap. III, by Castigliano’s theorem.

16. Solve Prob. 6, Chap. III, by the slope-deflection procedure.

16. Solve Prob. 3, Chap. III, by the slope-deflection procedure.

17. Solve Prob. 10, Chap. I1I, by the slope-deflection procedure.

18. Solve Prob. 6, Chap. III, by the equation of three moments.

l‘""/o""’f«' 13000 1A

Fia. III-19.

19. Find the end moments for the members of this structure by using the
slope-deflection procedure.
10000/b.
™ ;%" A
ke 524 5 o= /0" -
Fia. III-20.

20. Draw the curve of bending moments for this beam. Use the equation
of three moments.

21. Solve Prob. 20 Chap. III, using the slope-deflection procedure.

22. Solve Prob. 3, Chap. III, by the method of moment distribution.

8. Solve Prob. 10, Chap. III, by the method of moment distribution.
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24. Solve Prob. 19, Chap. III, by the method of moment distribution.
26. Solve Prob. 6, Chap. III, by the method of moment distribution.

Chapter IV

1. Draw the influence line for the horizontal component of the right-hand
reaction of the arch shown in Fig. III-1. Use the method of virtual work.

2. Draw the influence line for the stress in the center vertical in the truss
of Fig. III-2. Use the method of virtual work.

8. Draw the influence line for the bending moment at the middle support
of the beam in Prob. 6, Chap. III. Use the method of virtual work.

4. Solve Prob. 1, Chap. IV, using elastic loads.

8. Solve Prob. 2, Chap. IV, using elastic loads.

6. Solve Prob. 3, Chap. IV, using the d8/dz curve as an elastic load.

Chapter V
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1. Compute for each end of each bar of one-half of this truss the ratio of
secondary to primary stress. Use the Winkler variation of the Manderla
solution.
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2. Compute the secondary-stress intensities at each end of each member
of this truss. In the analysis include the effects of truss distortion and
eccentricity. Use the Winkler variation of the Manderla solution.
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[0) i 2
Bar|lengthjArea | T c K £ |Arrangement|Wt per ft.
V2 T08 000670 AL
Y2161 |460| 540 142 003354 91503 2L5,32x3'):g" 15.8 1b.
-3 ]180 | 6.84]25.80 ?'ze 01433 Q260 2156 x3zx§ 23.41b.
34 [ 180 11503980 g:gg 0221 %-3240 215,6'%6"x} 392 1b
- . 1031 PO
23805 | 310 1.82] (3002261 [3Q03L |215 25 x2"§ 10.6 b

Fia. V-3.

8. For each end of each of the members of this structure. compute the
ratio, secondary-stress intensity to primary-stress intensity.
effects of distortion, eccentricity and weights of the members, but do not
attempt to compute these effects separately. Use the Winkler variation of
the Manderla solution.

4. Solve Prob.

5. Solve Prob.

8. Solve Prob.

7. Solve Prob.

8. Solve Prob.

9. Solve Prob.

1, Chap.
2, Chap.
3, Chap.
1, Chap.
2, Chap.
3, Chap.

Include the

V, by the Mohr semigraphic method.
V, by the Mohr semigraphic method.
V, by the Mohr semigraphic method.
V, by the method of moment distribution.
V, by the method of moment distribution.
V, by the method of moment distribution.
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effect of weight distribution on,
224
Manderla-Winkler method and,
203
Mohr semi-graphic method and,
214
by moment distribution, 220
participating stresses and, 228
Simultaneous equations, theory, 6
Slope, change of, by moment area
theorems, 85
by virtual work, 44
Slope-deflection equations, 135

STATICALLY INDETERMINATE STRUCTURES

Slope-deflection equations, analysis
of bents by, 142
analysis of restrained beams by,
135
Stability in structures, 9
Statically determinate structures,
characteristics of, 9
Statically indeterminate structures,
general characteristics of, 14
Strain, 23
Strain energy, 35
Stresses on a particle, 18
Structural analysis, general problein
of, 7
Structures with moment-resisting
joints, stress analysis of, by
Castigliano’s law, 121, 127
by moment distribution, 156
by slope-deflection equation,
142, 145
by virtual work, 105

T

Temperature, deflections due to, 43
effect of, on law of virtual work, 28
on strain stresses due to, 94
Three-hinged arch, deflection by
Williot-Mohr procedure, 61
elastic loads for, 76
Three-moment equation, 139

A

Virtual work, alternate proof for
trussed structures of, 30
deflections computed by, 40, 45
equations of, 23, 28
law of, 18
proof of, 17
stress analysis of indeterminate
structures by, 94

w

Williot-Mohr procedure, 51
for three-hinged arch, 61

Y

Yielding supports, 100
three-moment equation for beams
with, 140
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