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Abstract

There is an explosion of electronic information on the Internet and elsewhere. Intelligent infor

mation processing tools, e.g. automated question answering, text classification, text clustering, 

etc., are therefore imperative to be able to utilize this overwhelming amount of information 

effectively. An information source, in turn, plays varied and important roles in building those 

tools. For example, an automated question answering system needs an information source to 

answer questions. Similarly, a text classification or clustering system can perform better if an 

information source can provide the context in which various terms, concepts and entities are 

generally used.

The World Wide Web is the largest source of information and also provides an up-to- 

date view of the world. But information on the web is mostly unstructured or at best semi

structured since most information is in the form of web pages. The enormous size, diversity 

and ever evolving nature of the web also pose significant challenges for a system to use it as 

an information source. In this thesis, we focus on techniques which use the information on the 

web for answering quantity queries and carrying out text classification and clustering.

Quantity queries are a special class of queries where the expected answers are numeric 

values. Some examples include queries for determining the price of a product, the driving time 

between cities, the battery life of a laptop, etc. Quantity queries are known to be an important 

class of queries as evident from their presence in any search engine’s query log. Answers for 

most quantity queries are likely to be available in the web but in most cases the answer may 

only be available in unstructured form. There could also be noisy data in the web that could 

lead to incorrect answers. Therefore determining the correct answer to quantity queries from 

the web is a challenging task. In our work we present two novel algorithms to answer quantity 

queries by aggregating evidences from multiple promising answer candidates. Our algorithms 

achieve around 20% higher accuracy in answering such queries as compared to the best-known 

approaches.
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The other part of our work focuses on using several web resources for text classification 

and clustering tasks. Text classification and clustering are important tools for any large scale 

textual information processing system. In both text classification and clustering, the “topics” 

of documents provides valuable inputs to the system. The topic information can be used to 

improve the accuracy of classification/clustering algorithms as well as to automatically build a 

classification model for documents.

We develop methods to map documents to topics using the information available on the 

web. The goal is both to generate topic features of the documents and to get a sample set of 

documents for a given topic. The topic features of a document give an indication about the 

topics covered in the document. Since the topic features are obtained from a large web resource 

they provide information beyond what is available in the documents. We demonstrate that the 

use of topic features improves accuracy of text classification/clustering algorithms by more 

than 30%. The sample set of documents for a given topic can be used to construct training 

examples to build a classifier for that topic. A classifier for a topic can discriminate between 

the documents that belong to the topic and those which do not. Constructing training data is 

also a major bottleneck in building a classifier. We show that several web sources can be used 

to automatically obtain sample set of documents for a topic. These documents can then be used 

to construct training examples to build a highly accurate classifier for that topic.
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Chapter 1

Introduction

Access to information is an important ingredient for the advancement of human society. There 

is a wealth of information available on the Internet and on other electronic media sources. 

It requires the usage of intelligent information processing tools to access and consume this 

overwhelming amount of information. “Search engine”, “automated question answering (QA)”, 

“text classification”, “text clustering” are some of the very important tools to consume and 

manage a large volume of information. Without such tools it is impossible to find and consume 

information from the Internet or other such large media sources.

Such information processing tools in turn either require or can perform better by having 

access to a large information source. For example, an automated QA system uses an information 

source to answer questions. The size of the information source is the asymptotic limit of the 

number or variety of questions the QA system can answer. If a QA system can use a large 

information source it can possibly answer wider variety of questions. Information management 

tools, e.g. text classification and clustering, have to deal with various terms, entities or concepts 

discussed in natural language texts. The basic goal of these tools are to organize documents 

based on whether they contain same or similar terms, entities or concepts. Two terms, entities or 

concepts are considered as same if they are often used in similar contexts in a natural language. 

A large information source that can provide such context information can potentially help the 

classification/clustering algorithm to perform better.

The World Wide Web is an enormous information source. A significant portion of col

lective knowledge of mankind is now available on the web. As of November, 2009, there are 

more than 20 billion web pages that are publicly accessible [UrlSizeOfWeb]. These billions 

of pages contain a huge volume of information on a large variety of topics, entities, facts, etc.
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Most of the information available on the web are in unstructured form and as a collection of web 

pages. In recent times, users’ participation in web content creation has increased dramatically, 

thanks to the growth of Web 2.0 applications. More then half of the content available on the 

web today is user generated (e.g. personal web pages, blogs, reviews, comments, profiles and 

messages in social network sites etc) [Ramakrishnan and Tomkins, 2007]. Such user generated 

contents are also a very valuable source of information. Web 2.0 applications and user partic

ipation have also given birth to little more structured and specialized sources for information. 

The most prominent example of such source is Wikipedia [UrlWikipedia], the gigantic and free 

online encyclopedia. Other examples are web directory (e.g. Dmoz [UrlDmoz]) that organizes 

millions of web pages under a large and hierarchical taxonomy and social tagging sites (e.g. 

Delicious [UrlDelicious]) where users add meta-data to the web contents. In summary, the 

collection of web pages and different web 2.0 sources (e.g. Wikipedia, Dmoz, Delicious, etc.) 

constitute a tremendous source of information. The dynamic and ever growing nature of the 

web keeps this information refreshed and provides an up-to-date view of the world.

As mentioned before many of the information processing tools can become more useful 

or effective by using the gigantic web as an information source. Consider the following three 

example tasks which are to be performed by automated information processing tools.

Taskl To respond to queries like “driving time” (between two cities), “productprice”, “prod

uctattributes” (e.g. battery life, screen resolution, etc.), “population of a city”, “travel 

cost” etc.

Task 2 Associate a piece of text like “Steve Jobs Video Dreams” with the concept “Apple Inc”

Task 3 To filter or retain only pertinent content from incoming news, blogs or other kinds of 

web pages that belong to any given arbitrary topic (e.g. “German Car”)

The Task 1 is to answer factoid questions about various entities, ranging from driving 

time, attributes related to product, travel, city, etc. It might be easier and more accurate for 

an automated QA system to use structured or custom information sources to answer questions. 

But any structured or custom build source is unlikely to be large and scalable enough to contain 

answers for wide variety of questions targeted in the Task 1. For example, one could use product 

inventory databases of some dealers to (easily) answer queries related to product attributes. But 

that restricts the system to the product domain and to the information provided by only those 
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dealers. The web on the other hand, being an enormous information source, is most likely to 

contain answers for all such questions. Therefore, a QA system can become more useful if it 

can answer questions from the web.

In the Task 2, a machine has to identify whether the piece of text “Steve Jobs Video 

Dreams” belongs to the category “Apple Inc” or not. This is an instance of text classification 

where the task is to identify the class or category of a given text document. Note that in the 

input text the terms “Apple” or “Inc” do not appear. The contexts in which the specific terms 

of the text are generally used can provide such information. For example, if we can figure 

out that “Steve Jobs” often appears in the context of “Apple Inc” then it might be easier to 

classify the given piece of text. In many text classification or clustering tasks such need for 

context information arises. The web is an excellent source to get the context information about 

any concept or entity. A text classification/clustering algorithm can possibly achieve higher 

accuracy by making use of such information obtained from the web.

The goal in the Task 3 is to automatically build a classifier for any given arbitrary concept 

(e.g. German Car). Building a text classifier requires training data. Training data in this 

example will constitute of some sample pages about German Car and some sample pages that 

are not about German Car. The process of obtaining training data for a classifier is often manual 

and expensive. In this case, the web is an excellent source to automatically get sample pages 

(training examples) for any given concept. Many web resources, e.g. web search engines, 

Wikipedia, web directory, can be utilized to get sample pages for any given concept. Those 

sample pages then can be used to construct training examples to build a classifier.

From the above discussion we can see that it is immensely valuable to use the web as 

the information source in many information processing tasks. Enabling machines to make use 

of the enormous information available on the web is immensely potential and challenging re

search topic. This topic is increasingly gaining popularity among various research communities 

working in the field of information retrieval, machine learning and natural language processing. 

Apart from question answering, text classification and text clustering, in various other areas 

also web resources are being extensively used. Web search [Milne et al., 2007], named entity 

recognition [Cucerzan, 2007], statistical language translation [Zhang and Vines, 2004, Huang 

et al., 2005], image categorization [Fergus et al., 2005], etc, are examples of such areas.
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1.1 Some Challenges in using the Web as an Information Source

Utilizing the web as an information source posses multiple challenges.

1. Information available on the web is mostly unstructured or at best semi-structured.

Information on the web is mostly available as natural language texts. Answering queries 

from natural language texts is a challenging task. Fixing the domain of the query or 

the web sources to be used can reduce the complexity of the problem. But that limits 

the application domain and also the available information. For example, many product 

search engines (e.g. [UrlGoogleProduct]) find and populate product information (e.g. 

“price”, “battery life”, “screen resolution” etc.) from a fixed set of dealer websites (e.g. 

amazon.com, ebay.com etc.). Such systems are explicitly designed to work only in the 

product domain. Also, generally they rely on the structure information (e.g. HTML tag 

or web service API) and therefore cannot utilize the wealth of information available in 

the user generated contents (e.g. product reviews, blogs etc).

Because of this unstructured nature of the web it is not easy to get the context information 

about the concepts described in document (Task 2). Similarly it is also difficult to obtain 

a representative sample of pages from the web for any given concept.

2. Information on the web is noisy and could be even inaccurate.

There are many web pages mentioning different (and could be even misleading) driving 

times between two given cities say “Paris” and “Nice”. “Steve Jobs” can possibly refer to 

different persons and therefore can appear in many different contexts in the web. There is 

no reliable source to obtain good quality sample pages belonging to an arbitrary topic like 

German Car. Web directory (e.g. Dmoz [UrlDmoz] or Yahoo directory [UrlYahooDirec- 

tory]) could be a source for obtaining pages belonging to a given concept or topic. But as 

we will see in this thesis that even a web directory is also noisy and may not be able to 

provide good representative sample set of pages.

3. Web is enormous and ever evolving.

Everyday almost 12-15 gigabytes of contents are being added to the web [Ramakrishnan 

and Tomkins, 2007]. Thousands of websites come alive or go offline everyday [UrlDo- 

mainCounts]. Even just in Wikipedia, more than 1300 pages get added per day [UrlSize- 

OfWikipedia]. It is infeasible to build a fixed set of rules to mine an information source 
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that changes so rapidly. For example, a system designed to obtain product information 

by parsing the HTML structure of amazon.com is likely to become obsolete or requires 

substantial maintenance effort. Even the huge sources like web directory is gradually be

coming outdated. Therefore, an algorithm designed to seek information from a particular 

source or depends on structural schema of sources can become stale over time.

Therefore, to use the information available on the web, a robust and scalable technique 

should have the following desirable properties, (a) It should use the vast natural language texts 

available on the web rather restricting itself to a few structured sources of information, (b) 

No site specific schema information should be used as the schema keeps changing, (c) The 

technique has to be statistical rather than using hard coded rules in any form, (d) The technique 

should focus more on getting aggregated information rather trying to deploy sophisticated meth

ods to directly retrieve specific piece of information.

In this thesis, we develop techniques to use the unstructured and noisy information avail

able on the web in several textual information processing tasks. In particular, we explore the 

use of the web information source in three different tasks, answering quantity queries, text clas

sification and text clustering. As we will discuss shortly that these are very important tasks 

in the area of information retrieval and are building block of numerous applications. The web 

information source served different utility in these tasks. To answer quantity queries, the web in

formation source is used to collect evidences. For text classification/clustering, the web sources 

are used to find mappings of documents to topics. Mapping of documents to topics are done 

to get topic features of the documents and to get sample documents for a given topic. The 

topic features helps in improving the accuracy of test classification/clustering algorithms and 

the sample documents of a topic can be used to construct training data to build a classifier for 

that topic. Broadly the problems addressed in the thesis can be divided into the following three 

sub-problems.

1. Answering quantity related queries (e.g. “driving time”, “price”, “battery life”, etc.) from 

the web

2. Generating topic features of documents from a web corpus. We demonstrate that these 

topic features of documents help in improving text classification/clustering accuracy.

3. Gathering training data from web sources for any given topic. This enables the possibility 

of automatically building text classifier for an arbitrary topic.
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In the remainder of this chapter we will discuss each of these sub-problems, the specific 

challenges and our contribution in that sub-problem.

1.2 Specific Sub-problems Addressed in the Thesis

1.2.1 Answering Quantity Consensus Queries (QCQs)

The first sub-problem we address in the thesis is answering quantity queries. A quantity may 

be a unit-less number or may have an associated unit like length, mass, weight, temperature, 

etc. As against “spot queries” seeking unique answers like date of birth, etc, in this thesis we 

are specifically interested in what we call quantity consensus queries (QCQs), where there is 

an uncertainty about the answer quantity. Examples of QCQ are, “driving time from Paris to 

Nice”, “battery life of Lenovo X300”, “price of Canon Powershot SD700 IS”, “population 

density of Mumbai”, etc.

A QCQ system that can answer quantity queries from the web has many important use 

cases. Firstly, quantity queries are frequent in any search engine query log and also they are 

commercially important. Therefore, a QCQ system can add value over standard web search by 

collecting consensus information from hundreds to thousands of pages, something that would 

take a user from minutes to hours. Secondly, a QCQ system can also support web sites that 

offer comparison of prices and features related to products, services and travel.

Answering questions from the huge web corpus requires a different approach than an

swering questions from a small corpus [Brill et al., 2002]. As we discussed earlier, restricting 

the sources to be utilized only limits the scope and domain of the application. The scale and 

noisy data of the web also often prohibits using relatively expensive and rigid NLP techniques. 

Therefore, QA from web generally focuses on exploiting the redundancy of information on the 

web than using sophisticated techniques to directly retrieve the correct answers. Answer candi

dates are retrieved using simple but noisy information retrieval (IR) techniques. Then the most 

promising answer is detected from the answer candidate set assuming that the correct answer 

will appear many times in the candidate set (due to the redundancy of information in web).

Formally, a standard factoid QA (or entity search or entity ranking) system from the web 

largely proceeds along the following line [Cheng et al., 2007, Ko et al., 2007]: Given a query, 

first a set of snippets (defined in the next paragraph) that are likely to contain the answer are
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retrieved from the web. The snippets are then represented using a feature vector and scored 

using a learned model. Figure 1.1 shows the steps involved in collecting and scoring snippets 

for a query. Individual snippet scores obtained at this stage are often not sufficient to identify the 

relevant snippets. This is mostly because the snippets are retrieved using simple IR techniques 

and the snippet features are very noisy indicator of relevance. Therefore one more step is 

generally deployed to exploit the redundancy of information on the web. Given the redundancy 

property of the web, the correct answer is likely to be repeated across multiple snippets. To 

exploit this property, the scores of the snippets containing same or similar answers are then 

aggregated. The final score of an answer is this aggregated score and the top K answers are 

presented to the user.

A snippet is a fragment of text that contains some query keywords and an entity of the 

expected answer type for the given query. Some example snippets are shown in the Figure 

1.1. The text fragment could be defined as a sentence, paragraph or a window of tokens. The 

expected answer type is the entity type of the correct answer. For factoid questions, the expected 

answer type could be “person”, “organization” or “location” etc., for QCQ, the expected answer 

type is a quantity type (e.g. “height”, “weight” or “USD” etc). Depending on the interface, the 

expected answer type could be determined by analyzing the question or may be provided by the 

user. Given this definition of the snippet, the snippets for a query can be retrieved by simply 

matching the query keywords and the expected answer type to the text fragments in the corpus. 

Thus existing techniques of fast retrieval from inverted indexes can be directly applied.

The snippet features reflect how good the query matches to the text of the snippet, how far 

the query keywords are from the candidate entity in the snippet etc. We will discuss the details 

of the feature design of a snippet in the Section 3.3.2. A learned model is used to score each 

snippet independently. But the individual snippet scores are generally not sufficient to identify 

the relevant snippets (snippets containing correct answer entity). Therefore, the scores of the 

snippets containing same entity are then accumulated. That is, a snippet votes its score for the 

entity it contains. The entities are then ranked using this accumulated score. Instead of just 

aggregating the scores of the snippets containing exactly same entity some syntactic variation 

also generally taken into account. For example, for the question “who is the prime minister of 

India?”, two snippets containing entities “Dr. Singh” and “Manmohan Singh” respectively can 

vote for the same entity “Dr. Manmohan Singh”. This form of score aggregation is basically 

weighted voting.
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Figure 1.1: Snippet generation and scoring in standard entity rank system. The numbers in the 

circles show the step sequence. Often the scores of the snippets containing same or similar answer 

are aggregated and then the answers are ranked based on this score. For clarity this step is not 

shown in the diagram

The weighted voting score aggregation is inadequate to answer QCQs from the web. 

Weighted voting, when adopted for QCQ, can only be defined for each distinct quantity. But 

in QCQ, the snippets containing nearby quantities should reinforce each other. For example, 

consider the QCQ “price of Canon Powershot SD700 IS”. Each retrieved snippet will have a 

quantity of type “USD” along with some query keywords (e.g. “price”, “canon” etc.). It is 

inadequate to aggregate the scores of distinct quantities. For a QCQ, the correct answer is not a 

single quantity but rather a distribution over the quantities. The correct price of Canon Power

shot could vary from 375 - 400 USD (say). A snippet containing 375 USD as the answer should 

also vote for the quantities (e.g. 400 USD or 350 USD) near it. Therefore for QCQ, scoring 
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each snippet independently is not going to work and also just taking weighted vote for each 

distinct quantity is not of much help. Rather we need to design a corroborative and collective 

scoring mechanism that will score a set of snippets with near by quantities.

Our Contribution

In this work, our first contribution is that we introduce the notion of quantity consensus query 

(QCQ). We also propose two novel algorithms that can respond to QCQs using the web as 

the information source. We demonstrate that it is inadequate to adopt a standard entity rank 

system and score individual snippets or even to aggregate the scores of the distinct quantities. 

We argue that scoring and ranking mechanism should be corroborative and collective so that 

the snippets containing near by quantities are scored together. Towards this, we propose novel 

algorithms that directly score and rank quantity intervals (e.g. 300-400 is a quantity interval 

for the above QCQ about Canon camera). The quantity intervals are scored using the features 

and the candidate quantities of the supporting snippets (snippets whose quantities are lying 

inside the interval). An example output (quantity intervals and supporting snippets) of the 

QCQ algorithms is shown in the Figure 1.2. The proposed algorithms yield about 20% better 

accuracy compared to the best known collective ranking algorithms, and are 35% better than 

scoring snippets independent of each other.

________ Query_______
driving time between Mumbai and Pune QCQ 

Engine
1.2.5-3 hours
2.1 hour

Quantity intervals Supporting 
snippets

Driving time between' 
Mumbai and Pune is 
2 and half hours

Its 3 hours drive to 
’ Pdhb from Munibai

Index of 
Web Pages

Figure 1.2: Output of a QCQ engine is a ranked list of quantity intervals and supporting snippets 

for each interval.

Apart from demonstrating the effectiveness of the proposed algorithms using a set of sam

ple queries and sample snippets, we have developed a fully functional QCQ system that uses 

a web scale corpus of 500 million pages as the information source. The developed system 

addresses many scalability issues that a real QCQ system will encounter.
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We move ahead further and show one more use of a web information resource in an

swering QCQs. We use Wikipedia [UrlWikipedia] to disambiguate and accurately identify the 

entities mentioned in the corpus. The entities mentioned in the 500 million pages are mapped 

to Wikipedia entities using a recent technique [Kulkarni et al., 2009]. This mapping resolves 

the ambiguity in the entities mentioned in a natural language text. For example, if the entity 

“Steve Jobs” in a document refers to the Apple CEO then only this entity will get mapped to 

the Wikipedia page “Steve Jobs” about Apple CEO. Other “Steve Jobs” will not get mapped to 

the Wikipedia page about the Apple CEO. So a user can express an unambiguous query (say 

“Steve Jobs net worth”) by pointing to the appropriate Wikipedia entity for “Steve Jobs”. An

other example is, the mention of entities “HP” and “Hewlett Packard” both will get mapped to 

the Wikipedia page about the company “Hewlett Packard”. So to respond to the QCQ “Hewlett 

Packard revenue”, the snippets containing the entity “HP” (and a quantity of type USD) will 

also be considered. Note that entity “HP” can refer to the company “Hindustan Petroleum” as 

well. The mapping ensures that “HP” gets mapped to the Wikipedia entity “Hewlett Packard” 

only when it is actually referring to that.

1.2.2 Generating Topic Features from a Web Corpus

In this section, we will introduce the second sub-problem addressed in the thesis. Here we de

velop methods to obtain topic features of documents of a text classification/clustering task from 

a web corpus. Text classification and clustering are used in wide variety of applications, e.g. 

news classification/ clustering, spam filtering, clustering search results based on topics etc. Text 

classification is the task of identifying the class or category of a text document. Text clustering 

aims to discover natural grouping within a collection of text documents. We demonstrate that 

the topic features improves the accuracy of text classification and clustering algorithms.

To apply a text classification or clustering algorithms on a set of documents, generally 

the documents need to be represented in a m dimensional feature space or vector space (Rm). 

One conventional method of representing documents in a feature space is using bag of words 

technique where each term in the vocabulary is considered as an independent feature. The 

vocabulary here is the union of all terms appearing in the document collection of the classifi

cation/clustering task. In the feature vector representation of a document, a feature gets a non

zero weight if the corresponding term appears in the document. Various weighting schemes 

have been defined to weigh the features [Salton and McGill, 1986]. The weight of a feature 
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generally captures the frequency of the corresponding term in the document and also the overall 

importance of the term.

There are several shortcomings of this method of document representation. Firstly, an 

individual term can be ambiguous (apple computer vs apple tree) and multiple terms can have 

the same meaning (synonyms). Secondly, the bag of words approach uses only those pieces 

of information (terms) that are explicitly mentioned in the documents. A document is often 

written assuming some background knowledge of the readers (e.g. the piece of news text “Steve 

Jobs Video Dream” assumes readers’ familiarity with the Apple CEO). Document collection 

used in a classification or clustering task is often small and therefore not sufficient to provide 

the background knowledge or contexts of all the concepts, entities or terms described in the 

documents.

Various extensions of bag of words approach have been proposed in the past. This include 

augmenting (or replacing) the bag of words representation with phrases or n-grams [Lewis, 

1992, Bekkerman, 2004], linguistically motivated features e.g. part-of-speech [Sable et al., 

2002] etc. More recent works use some external resources to bring in information that is not 

available in a small document collection. The external resource is generally used to obtain 

additional features of the documents. Since the additional features are obtained from a much 

larger (external) resource they provide information that are not readily available in a document. 

One line of work in this direction uses a dictionary or thesaurus to add synonyms or hypernyms 

(terms with is-a relation) of terms as features. For example, Scott and Matwin [1999] used syn

onyms and hypernyms obtained from the largest online thesaurus WordNet [Fellbaum, 1998] as 

additional features. However, using a manually built thesaurus has scaling issue, e.g. there is no 

entry for “Steve Jobs” in the WordNet. And ideally we want the features to capture the context 

in which the concepts, entities or terms of the documents are generally used. For example, for 

the text “Steve Jobs Video Dream”, “Apple Inc” and “Apple CEO” are better features (to deter

mine that the text is related to Apple Inc) than feature like “visual communication” that can be 

obtained from the WordNet hypernym hierarchy of the term “video”.

Web is a tremendous information source to obtain context information for any concept, 

entity or term described in a document. Therefore, recent research is more oriented towards ob

taining features from web resources [Gabrilovich and Markovitch, 2006,2005]. One prominent 

work in that direction is feature generation from Wikipedia by Gabrilovich and Markovitch 

[2006]. We give the overview of this method in the contribution subsection (next) as we have 
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used a very similar method to generate topic features from Wikipedia.

Our Contribution

In this work, we develop a method to obtain topic features from a web corpus and demonstrate 

that topic features improve the accuracy of text classification and clustering algorithms. A topic 

feature corresponds to a topic from a predetermined set. We will provide formal definition of 

a topic later. Broadly a topic is a concept like “Apple Inc”, “Sports” etc. A topic feature of 

a document indicates how much the document is aligned to (talking about) the corresponding 

topic. The set of topics is obtained from a large web corpus. Therefore the topic features of 

a document provide information that cannot be obtained from that document. For example, 

the news text “Steve Jobs Video Dreams” is likely to have high value for a topic like “Apple 

Inc” although that information is not available in the document. The topic features basically 

capture the contexts in which the terms of the documents generally appear and therefore provide 

valuable inputs to a classification/clustering algorithm.

To generate topic features we first use Wikipedia and adopt a simple method following 

Gabrilovich and Markovitch [2006]. We show that such Wikipedia (topic) features help in 

two different tasks; “short text clustering” and “inductive transfer”. Although such Wikipedia 

features are helpful in improving the accuracy of various tasks, we observe some shortcomings 

in this method of feature generation. We then propose a more principled approach of feature 

generation that addresses some of those shortcomings.

Generating Topic Features from Wikipedia In this approach, a topic is a title of a Wikipedia 

article. A topic feature of a document broadly indicates whether the document is related to the 

corresponding Wikipedia article or not. For a given document, we obtain these topic features 

(also referred as Wikipedia features) using a very simple technique. We first built an inverted 

index of the Wikipedia dump. Then a set of top matching Wikipedia articles are retrieved 

from that inverted index using the text of the given document as a query. The titles of the top 

matching Wikipedia articles are considered as the topic features of the document. For example, 

some topic features, that are obtained from Wikipedia, for the news text “Steve Jobs Video 

Dreams” are “Steve Jobs”, “Apple Inc” etc. Figure 1.3 shows the block diagram of the process 

of generating topic features from Wikipedia. We demonstrate that when these topic features 

are used in addition to the bag of words features it helps in improving the accuracy of two
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different tasks; i) short text clustering [Banerjee et al., 2007] and ii) inductive transfer for text 

classification [Banerjee, 2007]

Documents of the 
classification or 
clustering task

query

WikipediA
TltImRKydtf*£t

Inverted index of 
Wikipedia

Top matching 
Wikipedia 

pages

Titles of the Top 
matching 

Wikipedia pages

Topic features of the 
query document

Figure 1.3: The steps of topic feature generation from Wikipedia

Although the Wikipedia features help in improving the accuracy of different tasks, this 

method has shortcomings in terms of its ad-hoc nature and performance issues. For example, 

what ranking function to use to retrieve Wikipedia articles from the inverted index, how many 

retrieved Wikipedia articles to be used as the topic features and how the method behaves as 

Wikipedia evolves? There are no possible guideline to address these questions. Also, since 

Wikipedia has more than 3 million pages, the number of Wikipedia features obtained could be 

very large. This can have an adverse impact on the performance of the downstream classifica

tion/clustering algorithms. In this thesis, we propose a novel method of feature generation that 

addresses some of these shortcomings.

The Proposed Method of Feature Generation The proposed method takes more principled 

approach of feature generation from a web corpus. It deploys a topic modeling technique [Biei 

et al., 2003] to extract K topics from a given web corpus. The definition of a topic here is the 

probability distribution over the words in the vocabulary. If the ith topic is denoted as Zi then 

Zi is the probability distribution p(w\zi) where w is a word in the vocabulary. This probability 

distribution actually defines the topic. For example, if the topic Zi is about “sports” then a sports 

related word w (e.g. “football”, “cricket” etc.) are likely to have high value forp(w|^). A topic 

modeling technique also provides methods to estimate the probability distribution of the K 

topics for a given document d (i.e. p(zifd)lzi € {^i... z^}). The proposed feature generation 

method uses topic modeling and works as follows (Figure 1.4)

1. Given a web corpus W it applies a topic modeling technique (in particular Latent Dirichlet 

Allocation [Biei et al., 2003]) to extract K topics (z^.. zk) from W. A topic Zi is the
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probability distribution over the words of the vocabulary.

2. Now lets assume a classification or clustering task is to be performed on a document 

collection {D}. For each document d € D , the probability distribution (p(^|d)) of the 

K topics is then estimated using topic modeling technique. p^Zi |d) is then used as the ith 

topic feature of the document d.

3. The documents are then represented in feature space consisting of bag of words features 

as well as the K topic features. Once the documents are represented in a feature space 

standard classification/clustering algorithms can be applied directly.

Documents of the 
classification or 
clustering task

Topic features of the 
document d

Figure 1.4: The proposed feature generation algorithm

Our experiments show that these topic features can help in improving text classification 

accuracy by more than 30% on average. Also, the proposed feature generation method ad

dresses many of the limitations observed in the retrieval based feature generation method from 

Wikipedia described earlier. For example, it does not depend on the titles of the Wikipedia and 

therefore can work with any other web corpus. It uses only K features, where K is typically in 

the range of 200-300.

1.2.3 Gathering Training Data for Web Page Classification

The third sub-problem addressed in the thesis is to use the web information sources to gather 

training data to build a web page classifier for any given concept. A web page classifier for 

a concept can discriminate between the pages the belong to the concept and those which do 
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not. Web page classifier is an important tool to deal with the problem of information overload. 

Better visualization and navigational capability can be added by categorizing the web pages 

under different categories. Web pages are very diverse. To build a web page classifier that can 

perform well across different types of pages, a substantial amount of training data is generally 

required. Moreover, in some settings the target categories could be user defined and therefore 

not predetermined. For example, a user may want all the incoming news/blog articles related 

to “German Car” to be put under a certain folder. In this work, we develop methods to auto

matically gather training data from different web sources for any arbitrary category or concept. 

Obtaining labeled training data is generally a manual and expensive step in building a classifier. 

Here we demonstrate that it is possible to automatically build highly accurate classifiers for 

arbitrary concepts by leveraging different web sources.

Labeled training data for a text classifier is a set of text documents along with the cor

rect class labels. A correct class label is an element of a predetermined set of classes (also 

called concepts or categories in text classification). For example, let say the set of classes are 

World, Science & Technology, Entertainment and Other. Then the labeled training data for the 

corresponding text classification task will be a set of documents where each document is .as

sociated with one or more of those four classes. A supervised classifier (e.g. Support Vector 

Machine [Vapnik, 1995]) learns a model from the labeled training data. This learned model 

can then be used to classify new documents that were not there in the training set. These new 

documents are also referred to as test data as they are used to evaluate the classifier accuracy.

One essential step in building a supervised classifier is gathering labeled training data. 

Generally it is assumed that the training data is drawn from the same distribution as the test 

data. The accuracy of the learned classifier is highly dependent on the quality and the amount 

of the training data. In the case of web page classification, the web pages are very diverse. 

Therefore obtaining a training set that reflects the distribution of the test data is difficult. Also, 

if the target classes are arbitrary and not predetermined then it is not feasible to obtain training 

data manually.

The problem of gathering training examples to build a web page classifier was recognized 

in the past as well [Davidov et al., 2004]. But most prior approaches in this area assume web 

directory like Dmoz [UrlDmoz] as a good source of training data [Davidov et al., 2004]. Dmoz 

is a human edited web directory with five million pages categorized under nearly six hundred 

thousand categories. The categories in Dmoz form an hierarchy. Examples of Dmoz category 
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hierarchy are Top/Arts/Movies/..Top/Recreation/Food/... etc. Given that the web pages in 

Dmoz are manually categorized and the huge size of Dmoz, it is natural to assume Dmoz as a 

source of good quality training data for those categories. In fact when the test data is also drawn 

from Dmoz, the accuracy achieved by a classifier, trained on Dmoz data, is quite high. But 

we show that this cross validation accuracy over the data obtained from Dmoz is misleading. 

Surprisingly even many recent papers related to web page classification just report the cross 

validation accuracy [Bennett and Nguyen, 2009, Xue et al., 2008] on Dmoz data.

The pages in Dmoz do not reflect the distribution of pages obtained from other sources in 

the web. Therefore, a classifier built using training data obtained from Dmoz actually performs 

badly while classifying the web pages of other sources. We need to generate more robust set 

of training data so that the trained classifier performs well in classifying pages from different 

sources in the web.

Our Contribution

In this work, we demonstrate the possibility of building web page classifiers without the hassle 

of manually labeling training examples. We propose methods to automatically gather training 

data utilizing different web sources. Given a concept name (e.g. German Car) several web 

sources are utilized to obtain training data to build a classifier for that concept. In particular, 

we use four different web sources, Wikipedia, Google, Dmoz and Delicious [UrlDelicious], to 

obtain labeled training data. Figure 1.5 shows the high level block diagrams of the process of 

gathering training data from different web sources.

First we establish that any single web source is not sufficient to build a highly accurate 

classifier that can perform well across test data of different sources. Therefore, we need to ex

ploit more than one sources to construct our training data to build a classifier. We then demon

strate that the sources differ considerably from one another. The underlying distribution of the 

pages or the definition of the concept are different in each source. Therefore, blindly mixing 

the training data obtained from different sources actually creates a far noisier, heterogeneous 

training data that actually hurts the classifier performance. We then develop several intelligent 

methods to combine the training data obtained from these different sources. We show that 

when the training data is created by intelligently combining the different sources, the classifier 

achieves more than 13% higher accuracy when compared with the baseline approach of blindly 

mixing the data of different sources together. Finally, we demonstrate that by leveraging differ-
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ent web sources it is possible to build classifiers that can perform well across different types of 

web pages.

Figure 1.5: Training data generation from different web sources

Combined r
Training data

Pages about
German Car

Tram a
Classifier for
German Car

Classifier
or German

Car

News, blogs or Web 
content stream

1.3 Overall Contributions

The key contributions of the thesis are

1. We introduce and formalize the notion of quantity consensus query (QCQ) and propose 

novel algorithms that can provide answer to QCQs by gathering evidences from the web.

2. We demonstrate that the topic features obtained from Wikipedia can improve the accuracy 

of clustering short text documents and also are valuable in a setting of inductive transfer 

for text classification

3. We propose a novel method of feature generation from an additional corpus that ad

dresses some of the shortcomings of a recently proposed feature generation method from 

Wikipedia

4. We develop methods to automatically obtain training data from different web sources. We 

demonstrate that it is possible to build highly accurate classifiers by combining training 

data obtained from multiple web sources.
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Chapter 2

Literature Review

The major contributions of the thesis are the novel techniques of mining the web to answer 

quantity consensus queries, obtaining topic features and gathering training data for a given 

topic. But several methods and experiments described here use many state of the art machine 

learning algorithms. It is important to give an overview of the machine learning algorithms used 

in the thesis to set the notations and terminology. Therefore we divide this chapter into two 

sections. The first section describes different document representation techniques and machine 

learning algorithms used in the thesis. The second section reviews the prior work related to the 

contribution of the thesis.

2.1 Machine Learning Algorithms Used in the Thesis

This section first reviews techniques for text document representation. The document repre

sentation techniques include vector space model [Salton and McGill, 1986] and different topic 

modeling techniques. We then review the state of the art machine learning algorithms for text 

clustering, text classification and learning to rank. The notations used here are mostly standard, 

so that the reader familiar with any of these techniques can skip the corresponding subsection.

2.1.1 Document Representation

Most machine learning and information retrieval algorithms work on vector space or feature 

space representation of the documents. Once the documents are represented in a vector space, 

the similarity or distance between two documents can be computed using standard methods 

like cosine similarity or euclidean distance between the corresponding vectors. Most popular 
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method of representing documents in a feature space is bag of words method. Although simple 

and widely used, bag of words representation has some limitations. In particular, bag of words 

representation cannot model well the ambiguity of individual terms or the relation between dif

ferent terms. Topic modeling technique addresses some of these shortcomings by representing 

the documents in a low dimensional space. A brief overview of these two techniques are given 

next.

Bag of Words Representation

In this method, each dimension of the vector space corresponds to a separate term in the vo

cabulary. Sometimes the terms are stemmed by collapsing the morphological variants. If there 

are m terms in the vocabulary then each document is represented as a vector of m dimensions 

(Rm). If a term appears in the document then the corresponding element in the vector gets a 

non-zero weight. There are several ways to compute this weight of a term in a document. The 

most popular weighting method is TF*IDF where, TF is frequency of the term in the document 

and IDF is the inverse of the document frequency of the term in the whole corpus. Definition of 

TF (Term Frequency) and IDF (Inverse Document Frequency) are given below.

_ A. a. j xj Number of times t appears in dTF of term t m the document d = —-——----------—----------
Total number of terms in d

_ „ _ t . Total number of documents in the corpusIDF of term t = log —— ---- —------ ------- ------------------ - ------
Number of documents where the term t appears

This way of document representation with TFIDF weighting is also known as vector space 

model and was first presented in [Salton et al., 1975]. More details can be found in [Salton 

and McGill, 1986]. In chapter 4, we will be using the bag of words representation of docu

ments as the baseline representation to compare against the proposed algorithms. The proposed 

algorithms represent the documents in an enriched feature space containing topic features in 

addition to the term features and thereby addresses some of the shortcomings of bag of words 

representation.

Topic Modeling

When the dimensions of the vector space are individual terms then the cosine similarity between 

the documents just captures the syntactic matching between the individual terms. The similarity 
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value in this case is basically the lexical matching between the terms of the two documents. It 

ignores the connection between the terms and the ambiguity of individual terms in a language.

Topic modeling techniques try to model the connection between the terms. It assumes 

that two terms are related if they are often referred in similar contexts [Jones, 1971]. A topic 

modeling technique basically groups the terms appearing in similar contexts. Such group of 

terms are referred as topics. The documents are then represented in a vector space where each 

dimension corresponds to a topic. The value of a feature (or the value of an element in the 

vector) represents the prominence of the corresponding topic in the document. Number of topics 

is far less than the number of terms in the vocabulary as each topic is a group of (related) terms. 

Therefore, the number of dimensions in this topic based representation is far less compared to 

the bag of words method. Since each topic is a group of related terms, this representation can 

model the connection between the terms. Also, if a term is ambiguous (has multiple meanings) 

it can belong to multiple topics. The estimated topics for a document is expected to capture 

the meanings of the terms as used in the document. For example, the term “play” could belong 

to the topic “Theatre” or to “Sports”. If a document is talking about “Theatre” then the term 

“play” in the document will contribute to the topic “Theatre” and the corresponding feature will 

have higher value. So the ambiguity of individual terms is also addressed in some sense.

The first work in the area of topic modeling was Latent Semantic Analysis (LSA) [Deer

wester et al., 1990] which was published in early 90s. But only recently the term “topic model

ing” has been coined and it has become an active area of research [Steyvers and Griffiths, 2007]. 

Now there are several methods for topic modeling (e.g. pLSA [Hofmann, 1999], LDA [Biei 

et al., 2003], hLDA [Biei et al., 2004], etc.). These topic modeling methods differ in the way 

they define and estimate the topics (groups of related terms). Next we briefly describe LDA, the 

topic modeling technique most popular in the community and used in this thesis.

Latent Dirichlet Allocation (LDA) Latent Dirichlet Allocation (LDA) [Biei et al., 2003] is 

probably the most widely used topic modeling technique in the literature. LDA is a generative 

model and assumes that the words in a document are generated from K hidden topics. In LDA, 

each document d is viewed as a multinomial distribution 0 qnqt the K topics. Also for each 

topic z there is a multinomial distribution over the words (ft). Each word of a document is 

generated by first sampling 0 from a Dirichlet distribution with parameter a, then a topic z from 

0 and then the word w from ft. The steps of the document generation process is shown below.
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• For each document d in the corpus

- Draw a topic distribution 0 ~ Dir(a), where Dir(a) is the Dirichlet distribution 

with parameter a.

- For each word w in the document

* Draw a topic assignment z ~ Mutinomial(0)

* Draw a word w ~ Multinomial^ d), where 0Z is the distribution of words 

given the topic z.

Graphical model representation of LDA is shown in the Figure 2.1. Note that here a topic 

z is a probability distribution over the words (/?,). The meaning of the topic is interpreted from 

this probability distribution. For example, if in ^z, sports related words (e.g. “football”, “play”, 

“win” etc.) have high probability then the topic z can be interpreted as sports. Similarly, each 

document is viewed as a probability distribution (0) over the topics. If the document is about 

sports then the topics related to sports is likely to have higher probability in 0.

Figure 2.1: Graphical Model Representation of LDA

Learning in LDA involves estimating the parameters 9 (for every document) and (3Z (for 

every topic z) from a corpus. LDA also has an inference procedure for estimating the topic 

distribution 0 for any given document. The given document may not be part of the corpus 

from where the LDA parameters are learned. That is, using LDA inference we can estimate the 

topic distribution even for a new document. Several algorithms, including variation approxi

mation [Biei et al., 2003], Gibbs Sampling [Griffiths and Steyvers, 2004] have been proposed 

for learning and inference in LDA. Gibbs sampling method is easy to setup and is used in our 

implementation of LDA.

LDA model is essentially a Bayesian version of the pLSA model and addresses many 

shortcomings of pLSA. In fact it can be shown that the pLSA model is a special case of LDA 
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under uniform Dirichlet prior distribution [Girolami and Kaban, 2003]. Having the Dirichlet 

prior often generates more reasonable topic distribution in practice. LDA has got quite popular

ity in the research community and many follow up papers are regularly being published in the 

recent conferences.

In this thesis, we show another use of LDA rather than using it to represent documents 

in a topic space. In the Section 4.2, we demonstrate that LDA can be used to generate topic 

features to improve text classification/clustering accuracy. For that purpose, we first use LDA 

to extract K topics from a web corpus. These K topics are then used as K topic features 

of the documents of the given classification/clustering task. For each document in the given 

classification/clustering task, we estimate the distribution of K topics (0) using the inference 

procedure of LDA. Now this K dimensional probability distribution acts as K topic features of 

the document. We show that these additional topic features can improve the accuracy of text 

classification often by huge margin.

2.1.2 Text Clustering

Text clustering is an important machine learning tool and has many different applications. Text 

clustering is used in organizing and visualizing a document collection, e.g. grouping news of 

same topic or clustering search results for better visualization. Text clustering is an unsuper

vised machine learning tool. It has been widely studied in the literature and an overview of 

different clustering algorithms can be found in [Chakrabarti, 2002]. This section reviews the 

clustering algorithms which will be used later to test our hypothesis that topic features can help 

in improving the text clustering accuracy.

Clustering Algorithms

The goal of text clustering is to partition a set of documents into K clusters (Ci,..., Ck). 

Clustering is commonly done by optimizing an objective function that measures the quality of 

the clusters. The cluster quality can be measured in terms of intra-cluster similarity or inter

cluster distance. Intra-cluster similarity denotes an aggregated similarity between the elements 

(documents) belonging to the same cluster. Inter-cluster distance is a measure of aggregated 

distance between the elements of different clusters. Some examples of cluster quality functions 

are shown below.
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Intra-cluster similarity I E sim(di, dj)
i=i ni di^Ci

K
Inter-cluster similarity E = 52 nisim(Ci, C)

i=l
! ni i n

Ci = Centroid of cluster i = — 52 dj and C = centroid of the corpus = - 52 dj
J=1 ;=1

Here sim is a similarity function and can be cosine similarity, ni is the number of elements 

in the cluster i and n is the total number of elements in the corpus. The documents need to be 

represented in the vector space to compute the cosine similarity. Also note that E is the inter

cluster similarity and generally the reciprocal of E is considered as the inter-cluster distance. 

The cluster quality functions I and E can both be combined to create a single objective

maximize H = (2.1)

The above formulation is just one way to formulate the clustering objective. There are 

many other ways to define an objective function for document clustering [Zhao and Karypis, 

200]. Once the objective is defined the partitioning approach of clustering can proceed in two 

ways, bottom-up or top-down.

bottom-up This approach starts with each document as a cluster and then in each iteration 

collapse two clusters into a single cluster. The two clusters are chosen by optimizing 

the clustering objective. The iterations continue until there are only K clusters. This 

bottom-up approach is also known as Agglomerative Clustering.

top-down A well known member of this family is k-means clustering. K-Means clustering 

starts with random assignment of documents into K clusters. Then in each iteration 

documents are assigned to the cluster with most similar centroid (or to cluster for which 

the clustering objective is optimized). Once the documents are assigned to clusters the 

cluster centroids are re-computed. The iterations continues until the cluster assignment 

of documents or the clustering objective do not change much.
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Agglomerative clustering often yields better cluster quality but it is slow as it needs to do 

exhaustive pair wise comparison in each iteration. K-Means clustering is fast but the cluster 

quality depends on the choice of initial cluster assignments.

The above techniques are known as partitioning approach to clustering. There are others 

approaches, for example generative models or probabilistic approaches [Chakrabarti, 2002]. 

Also, the above clustering assignment is known as hard cluster assignment as a document is 

assigned to a single cluster. There are soft clustering algorithms where a document is assigned to 

multiple clusters with some weights (or probability distribution). For example, pLSA and LDA 

are soft clustering techniques where the documents are assigned to K cluster with a probability 

distribution (0 in LDA).

Stopping Criteria Most clustering algorithms, including the partitioning approaches described 

above, require the user to specify the number of clusters K to be obtained. One possible way to 

overcome this problem is to start with K = 1 and continue to explore K 4- 1 as long as some 

cluster quality function improves. One need to be cautious that the cluster quality function does 

not have any singularity. That is the cluster quality function should not encourage a single clus

ter or number clusters equal to the number of elements. For example, intra-cluster similarity 

will be the maximum value when the number of clusters is equal to the number of elements. On 

the other hand the clustering objective H defined in (2.1) can be used to choose the optimum 

number of clusters.

Evaluation A clustering algorithm can be evaluated against a gold standard data using a mea

sure called accuracy. The gold standard data should contain the ideal clustering, i.e. the exact 

number of clusters and cluster assignment of the documents. Let say the gold standard clus

tering is Ci,..., Cx and the clustering algorithm comes up with clustering Ci,..., Cl- Here, 

K and L are the ideal number of clusters and number of clusters discovered by the clustering 

algorithm respectively. K and L could differ. To compute the accuracy of the clustering al

gorithm, first each element in {Ci,..., Cl} need to be exclusively mapped to an element in 

{Cf,.. •, C*K}. Let say Ci is mapped to Cj*. Then the overlap between the elements of Cj* 

and Ci can be thought of as the correct assignment. Accuracy of a clustering algorithm is the 

fraction of total elements that are correctly assigned to the clusters.

The computed accuracy depends on the mapping between Ci and Cj. Therefore the map
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ping is done such that the accuracy is maximized. That is the mapping of Ci and Cj* need to 

be done by maximizing the total overlap of elements between Ci and Cj*. This is an instance 

of assignment problem or maximum weighted matching in a bipartite graph and can be solved 

in polynomial time.

Cluto [UrlCluto] is a clustering tool that provides six different clustering algorithms under 

partitioning approach. It also has a wide range of objective functions to select. We use Cluto 

in our experiments with text clustering. In the Section 4.1.1 we show that when documents are 

represented in a feature space containing topic features obtained from Wikipedia, the accuracy 

of different clustering algorithms improve significantly.

2.1.3 Text Classification

Text classification (TC) (a.k.a text categorization) is the task of labeling natural language texts 

with class labels from a predefined set. Formally, given k class labels (C = Ci... Ck) the task is 

to assign one or more class labels from C to a document d. In Single-Label classification, only 

one class label is assigned where as in Multi-Label classification, more than one class labels 

can be assigned to a document d. Initially a set of documents dy... di 6 D and the ground 

truth class labels for each document is given as the training data. The training data is used to 

learn a classifier (or model). The learned classifier is then used to do the actual TC task on any 

given (new) document d. Often the number of possible class labels k = 2 and the classifier has 

to assign either of the class labels to a document. This type of classification task is known as 

binary classification task and the class labels are denoted as 4-1, —1 also called as positive and 

negative class respectively. Binary classification is fundamental to the classification task and 

can be extended to build a multi class classification system.

The performance of a learned classifier is evaluated on a test set. A test set, like the 

training set, is again a collection of documents d\.. .df € D with ground truth class labels 

of each document. The classifier is shown only the documents but not the class labels. The 

classifier is evaluated by comparing the classifier predicted class labels and the ground truth 

class labels of the documents. Common evaluation measures are accuracy (fraction class labels 

predicted correctly) and F-Measure (harmonic mean of precision and recall). Details of these 

evaluation measures can be found in [Sebastiani, 2002].

TC dates back to the early ’60s, but only in ’90s it became an active research topic among 

information retrieval and machine learning communities [Sebastiani, 2002]. TC is now being 
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used in a range of applications, including news/blog content categorization, spam filtering, per

sonalization, word sense disambiguation etc. TC is still a very active field of research with 

many new techniques are coming up for web page classification [Qi and Davison, 2008], clas

sification under a taxonomy hierarchy (instead of flat set of class labels) [Xue et al., 2008] and 

several others.

A number of different classification techniques exists in the literature. The most com

monly used text classifier is Support Vector Machine (SVM), first introduced by Boser, Guyon 

and Vapnik in COLT92 [Boser et al., 1992]. It is often observed that SVM outperforms other 

classifiers like Naive Bayes, Decision Tree, Neural Network etc. in the tasks of text classifi

cation [Joachims, 1998, Yang and Liu, 1999]. As argued by Joachims [1998], SVM has two 

important advantages in TC.

• In traditional feature space (i.e. BOW) representation of the document, the number of 

dimensions is very high (i.e. size of the vocabulary). SVM is fairly robust to over fitting 

and can scale up to very high dimensions.

• Not much parameter tuning is required and the theoretically motivated default choices of 

parameters generally work well in TC.

In this thesis also we used SVM as the base classifier to establish our hypotheses. In 

particular we show that

• Topic features can help in improving the accuracy of SVM classifier in many different 

text classification tasks (chapter 4).

• Different web sources can be used to get training data to automatically build a SVM 

classifier for web page classification (chapter 5)

Next we give a brief description of the SVM classifier.

Support Vector Machine (SVM)

Support Vector Machine (SVM) is a linear classifier with a decision surface of the form w • x 4- 

6 = 0, where x is the suitable feature vector representation (e.g. BOW) of the document. The 

weight vector w and the bias parameter b is determined using the training data. Document x is 

classified to the class positive (+1) or negative (-1) based on whether the quantity w • x + b is 

greater or less than 0.

26



w • x 4- b = 0 is an equation of a hyperplane with the two different sides of the hyperplane 

are denoted by w • x + 6 > 0 or w ■ x + b < 0. SVM chooses the hyperplane (i.e. the parameter 

w and b) that maximally separates the positive and negative training examples. Assume that 

there are n training examples (represented as vectors in JRm) from the two classes. SVM seeks 

a hyperplane that separates the positive and negative examples by the widest possible margin. 

This can be written as

• 1Minimize -w • w
2 (2.2)

subject to Ci(w • Xi + b) > 1 Vi = 1...n

Where Xi... xn are the training document vectors and Ci... Cn are the class label of the cor

responding document. Each class label Ci has value in {+1, — 1}. The obtained hyperplane is 

orthogonal to the shortest line connecting the convex hull of the positive and negative classes.

In the equation (2.2), the assumption is that it is possible to draw an hyperplane separating 

the positive and negative examples of the training data. That is, the positive and negative exam

ples of training data are separable which is often not the case. To handle the general case where 

the training data is not separable, slack variables £i... are introduced. The slack variable & 

measures the degree of misclassification of the training example x^ With the slack variables the 

equation (2.2) becomes

Minimize -w • w + C 
a I 

subject to Ci(w • Xi + b) > 1 — & Yi = 1... n

and & > 0 Vi = 1... n

Equations (2.2) and (2.3) are instances of (convex) quadratic objective function with linear 

constraints and therefore can be solved using a quadratic programming package. For n docu

ments, time taken to train a SVM is na, where a is typically between 1.7 and 2.1 [Chakrabarti, 

2002]. The recent development in this area has made it possible to train SVM in linear time 

using cutting plane method of convex optimization [Joachims, 2006].

2.1.4 Learning To Rank

So far we have studied the machine learning techniques to cluster similar documents or to 

predict the class labels of a document from a predefined set of labels. But in many applications 
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the central issue is ranking. For example, in document retrieval, a ranked list of documents 

need to be presented given a keyword query. Other such applications are collaborative filtering, 

product rating etc. Learning to rank is a machine learning technique that learns to rank set of 

items from a given set of training examples.

Learning to rank is an active field of research with a strong motivation in document re

trieval. The ranking function of earlier generation search engine was a combination of small set 

of features (e.g. TF, IDF and document length). Since the number of features were small it was 

possible to manually tune the ranking parameters. Today’s search engines use hundreds of fea

tures to produce the ranked list of search results. Apart from TF, IDF type features, the features 

used today are PageRank [Page et al., 1998] and other link based measures, users’ feedbacks 

(e.g. clicks on search results), user’s browsing history, general reputation of the site etc. Man

ually tuning the parameters of ranking function that combines all such features is an extremely 

difficult and unreliable task. Recently the IR community started exploring the use of machine 

learning techniques to learn the ranking function. For a given query, a set of documents are 

first retrieved from the index. Each document is then represented in a feature space where the 

features are obtained using query as well as the document. The ranking function usually scores 

each document of the query as a linear or non-linear combination of the feature values. The 

documents are then ranked in the decreasing order of the scores.

The job of a machine learning algorithm here is to learn a ranking function from a set of 

manually labeled training data. Training data for learning to rank algorithm is prefect or partial 

ordering defined among a set of documents for a set of queries. The task then is to learn a 

ranking function that maximally fits the given ordering of documents for the training queries 

subject to some regularization. Next we describe a simple training and evaluation scenario of 

learning to rank to provide more clarity on standard learning to rank algorithms.

Simple Training and Evaluation Scenario

Training data for learning to rank consists a set of query Q. Each query has a set of documents 

with relevance labels assigned to them. The relevance labels define the partial ordering among 

the documents of a query. Suppose q is a query from the set Q and = {zgi... a;gn} is 

the set of n documents for that query. Here the document xqi is represented in a d dimensional 

feature space IRd. Unlike classification and clustering, the features here are not BOW features 

but computed from the query-document {q, xqi} pair. The features denote various similarity 
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measure of the query to the document (e.g. BM25 [Salton and McGill, 1986]) or document 

quality (e.g. PageRank [Page et al., 1998]).

The training data comes with relevance labels of the documents. The relevance label yqi 

of a document xqi is in general given in a ordinal scale {ri... r*}. There exists a total order 

between the relevance labels ri > r2 > ... > rk- Therefore the relevance labels define the 

partial order among the documents of a query. For example, if yqi > yqj then the document 

xqi is assumed to be more relevant than the document xqj. Such pairs of are called

preference pair and denoted as xqi >- xqj. If xqi is preferred over xqj (i.e. xqi xqf) then xqi 

need to be ranked higher than xqj.

Let Yg = {yqi.. .yqn} is the relevance labels of the documents of the query q. Then the 

training data of learning to rank algorithm can be denoted as

The task is to learn a ranking function f : Rd h-> R that takes the feature vector of a 

document (xqi) as input and returns a score. The documents of a query q are then ranked in the 

decreasing order of their scores. The ranking function is learnt such that it mostly obeys the 

pair preference (>) orders in the training data. That is,

Xi >- Xj <=> f(Xi) > f(Xj)

At the time of deployment or testing, given a test query tq a set of documents = 

{xt i,..., ^n} are first retrieved from the index and then the documents are ranked in the 

decreasing order of the scores

RankSVM There exists many algorithms to learn the ranking function f from the training 

data. A comprehensive list of ranking algorithms can be found in [UrlLetor]. In this thesis, 

we used RankSVM [Herbrich et al., 2000] to rank the snippets of a given query in QCQ. 

RankSVM scores the documents as the linear combination of the features. That is, the scoring 

function f is defined as f(x) = w • x. Training procedure in RankSVM learns the weight 

vector w by minimizing the violations in the pair preference. That is, if xqi >- xqj in the training 

data then RANKSVM tries to learn a w such that w ■ xqi > w ■ xqj. This can be written as the
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following quadratic optimization problem.

QU
Minimize

subject to 

and

’ ^qi %qj) > 1 £qij G Q ^Xqi Xqj

£qij — 0

The above optimization formula looks very similar to the optimization formula of SVM 

(equation (2.3)). In fact one way to look at RankSVM is that it uses the SVM classification 

formulation over pair of instances. For each preference pair {xqi,xqj}, it creates an instance 

(xqi — Xqj). If Xqi > xqj then the instance is labeled as +1 otherwise -1. The advantages of 

the RankSVM includes the simplicity of the model. It is also shown to be very effective in 

document retrieval [Joachims, 2002].

RankSVM view each preference pair as a training instance. This type of learning to 

rank algorithms are called pairwise approach. There are two other approaches: pointwise 

approach [Li et al., 2007] where individual document is used as an instance, listwise ap

proach [Joachims, 2005, Chakrabarti et al., 2008] where entire ranked list of documents of 

a training query is used as a training instance.

In the chapter 3, we use RankSVM to rank the snippets of a given QCQ. We have exper

imented with other learning to rank algorithms (e.g. [Yue et al., 2007]). But in our experiments 

RankSVM was giving better accuracy. In standard learning to rank formulation individual 

snippets are ranked independently. In the chapter 3, we argue that for QCQ we need design a 

ranking algorithm that ranks a set of snippets collectively. We propose novel methods towards 

that and showed huge improvement in accuracy when compared to standard learning to rank 

algorithms.

Evaluation Measures Standard evaluation measures of IR are used to evaluate a learning 

to rank algorithm. A learning to rank algorithm reports a ranked list of items (documents or 

snippets) for a given query. For evaluation, a manually labeled data set (similar to the training 

data) is used. The evaluation measures credit an algorithm for ranking the more relevant items 

on top of the less relevant items.

The commonly used evaluation measures in IR are mean reciprocal rank (MRR) [Voorhees, 

2001], mean average precision (MAP) [Yue et al., 2007] and normalized discounted cumulative 

gain (NDCG) [Jarvelin and Kekalainen, 2000]. Assume there are Q queries in the test set. For

J
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each query q we consider only the top n documents reported by the ranking algorithm. Then 

MRR, MAP and NDCG are defined as follows.

Mean Reciprocal Rank (MRR) For some queries, e.g. navigational queries (“Hewlett Packard”), 

there is mainly one relevant URL (http: //www. hp. com/). Therefore, it is important to 

evaluate the ranking algorithm based on where it ranks the relevant URL. MRR is a suitable 

evaluation measure for that purpose. MRR evaluates an algorithm based on the top most rank 

of the relevant documents. If the topmost rank at which a relevant document for q is found is 

rq, then reciprocal rank for q is Averaging over all q € Q MRR is defined as follows

<MRR>

Mean Average Precision (MAP) MAP evaluation measure can be used when the relevance 

labels of the items are binary.

Precision at rank r is defined as

p@r = #{relevant items up to rank r} 
r

The average precision for a query q is defined as

AP(q) =
EXi * 1 [item at rank r is relevant]

number of relevant items

MAP is averaged over all queries Q in the test set.

MAP = r^AP^ (MAP)

Normalized Discounted Cumulative Gain (NDCG) NDCG evaluation measure is of recent 

interest in Information Retrieval and Machine Learning community. The DCG of a query q and 

ranked list of documents is defined as
n

DCG(q) = + i) (DCG)
1=1

Where r(i) is the relevance label of the item ranked at i. NDCG is normalized DCG and 

the normalization is done by the maximum achievable DCG for q. Maximum DCG (DCG*) 
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is obtained when the documents are ranked in the decreasing order of their relevance labels. 

NDCG for a test set is defined as

—

2.2 Review of Related Work

So far we have reviewed the machine learning techniques used in the thesis. Next we review 

the work that are related to the specific contribution of the thesis. In section 2.2.1, we review 

prior work addressing quantity query and question answering from web in general. Section 2.2.2 

describes prior approaches of feature generation from WordNet and Wikipedia. In section 2.2.3, 

we discuss work related to gathering training data from web corpora.

2.2.1 Answering Quantity Consensus Queries (QCQs)

As such there is no prior work addressing “quantity consensus queries” or even “quantity related 

queries”. Quantity search is a special case of entity search. In entity search, a user searches for 

a particular type of entity (e.g. “person”, “organization”, “place” etc.). From internal system 

perspective entity search is same as factual question answering. The accuracy of entity search 

or factual question answering from web often improves by exploiting the redundancy of infor

mation in the web [Clarke et al., 2001]. Aggregating evidences found in multiple websites often 

improves the ranking accuracy in entity search. But evidence aggregation techniques used in 

standard entity search is not adequate for quantity queries. To answer quantity queries we need 

to design a ranking algorithm that collectively scores a set of snippets (text segments) contain

ing near by quantities. But in the past there has been relatively little work on collective ranking 

of this form. One recently proposed approach that can be adapted to do collective ranking for 

quantity query is Laplacian consensus. In this section, we first discuss evidence aggregation 

techniques used in entity search. Then we give an overview of the Laplacian consensus tech

nique.

Evidence Aggregation in Entity Search

Entity search or answering factoid questions from web require different approach than answer

ing questions from a small collection of documents. A small corpus is not expected to have 
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much redundancy. Therefore, often sophisticated natural language processing is required to de

tect the single or few mentions of the correct answer in the small corpus. On the other hand, 

while answering questions from web it is often profitable to exploit the redundancy of infor

mation in web [Brill et al., 2002, Clarke et al., 2001]. Therefore evidence aggregation is an 

important step of question answering from web.

Standard entity search system is designed to answer general factoid questions (e.g. who, 

what, where, when etc.). The evidence aggregation in such system is commonly defined as 

weighted voting. Given a query, first a set of snippets are retrieved from the corpus. Each snip

pet here contains an entity as the candidate answer. Retrieving snippets of a query commonly 

involves entity extraction and standard information retrieval. Each snippet is then scored inde

pendently using a learned model or some heuristics (e.g. how good the snippet text matches to 

the query, confidence of the entity extractor on the entity of the snippet etc.). The score of an en

tity is defined as the aggregated scores of the snippets containing that particular entity [Clarke 

et al., 2001, Brill et al., 2002, Wu and Marian, 2007]. Some syntactic variation in the entity 

mention can also possibly be detected (Barack Obama vs Mr. Obama). In such case the scores 

of those (syntactically varied) entities are aggregated.

As argued in the introduction section, such weighted voting is not adequate to answer 

quantity queries. In quantity search, we need to reinforce evidence from nearby quantities. For 

example, if 480 USD is a correct price of a Canon camera then it is likely that 470 or 490 

USD are also correct prices. In the paper published by Wu and Marian [2007], they talked 

about answering quantity queries. But again simple weighted voting was used for evidence 

aggregation.

Some researchers [Moriceau, 2006, Prager et al., 2007] have devised type theories with 

rule systems to conflate syntactic and quantitative variations of candidate answers, aggregate 

evidence across these variations, and perhaps explain them. Substantial handcrafting of type 

systems and conflation rules are required in this approach.

Recently Ko et al. [2007] have proposed a probabilistic graphical model to do collective 

ranking of entities. An undirected graphical model (specifically a Boltzmann machine [Hinton 

and Sejnowski, 1986]) is defined where the nodes are the answer candidates and the edges 

denote the similarity between the answer candidates. The joint prediction model over the graph 

can estimate both the correctness of individual answers as well as their correlations. Although a 

principled approach but the joint prediction model has exponential time complexity. Also when 
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applied to the quantity search, defining edge weights will become a problem. The difference of 

quantity values is not a proper indicator of quantity similarity. The similarity function between 

quantities are query dependent. For example, if the query is distance between Sun and Pluto 

then “10 billion” and “12 billion” may be similar quantities where as they might be less similar 

for other queries.

Laplacian Consensus Another way to do collective ranking is using Laplacian consensus 

as shown in [Qin et al., 2008]. This Laplacian method was originally proposed for pseudo 

relevance feedback scenario of information retrieval. When adapted to quantity search, the 

Laplacian method defines a graph over the snippets similar to the probabilistic graphical model 

discussed above. But it has tractable inference procedure and therefore used in the thesis for 

comparison (section 3.5).

The Laplacian consensus method used in the thesis works in the following way. Given a 

query, a graph is defined where the retrieved snippets are the nodes. The edge weight between 

two snippets denotes some similarity between those two snippets. The similarity could be 

defined to capture either the textual similarity of the snippets (as done in [Qin et al., 2008]) or 

the similarity between the quantities of the snippets. The idea of Laplacian consensus is that if 

two snippets are similar then we are reluctant to say one snippet is relevant and the other snippet 

is irrelevant. At the same time the relevance of each snippet can be judged independently based 

on the features of the snippet. In Laplacian consensus, the final scores of the snippets are 

assigned by considering these two factors. In section 3.5.5, we will give the exact details of the 

scoring function for this approach.

As in the case of probabilistic graphical model, defining edge weight is problematic for 

Laplacian method. Also, as we will see later that another major problem of Laplacian is that it 

tries to smooth the scores across all edges of the graph. Given a query there are many irrelevant 

quantities. We need not to smooth the scores between the irrelevant quantities (snippets). In this 

thesis, we propose asymmetric scoring functions that pay more attention to a quantity interval 

where most likely the relevant snippets belong to (section 3.6 and 3.7).

2.2.2 Generating Topic Features from a Web Corpus

The second major contribution of the thesis is obtaining topic features from a web corpus. 

Here we review the prior works that address the limitations of bag of words representation 
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by obtaining features from different sources. Earlier approaches in this direction was using a 

dictionary to get the synonyms or hypernyms (higher level terms in the “IS-A” hierarchy) of 

terms. In most cases, the WordNet [Fellbaum, 1998] was used as the dictionary. The growth of 

Web 2.0 has created tremendous knowledge resources like Wikipedia. The scale and quality of 

Wikipedia corpus has prompted many recent research to look at Wikipedia resource for feature 

generation. In this section, we first review the feature generation techniques from WordNet and 

then describe several recently proposed methods to obtain features from Wikipedia.

Feature Generation from WordNet

WordNet [Fellbaum, 1998] is a large online thesaurus that captures the synonyms and hyper

nyms relationship between the words. Hypernyms, i.e. “IS-A” relationships (e.g. Einstein is-a 

Physicist) between the terms, form a hierarchy in the WordNet. Each node in this hierarchy is 

a synset (Synonym set). A synset is a set of words or phrases that are synonyms to each other 

with respect to a particular meaning. If a word or phrase has multiple meanings then it will 

appear in multiple synsets. Scott and Matwin [1999] proposed an approach where they used 

the synsets and hypernyms of the words as features. Given a document to be represented in the 

feature space, they first take the words of the document that has entries in the WordNet. For 

each word, the synset id hypernyms are then added as the feature of the document. Not much 

gain was observed in text classification with this new features.

Feature Generation from Wikipedia

Wikipedia is a classic example of the power of collaborative editing. Wikipedia is the largest 

and fastest growing encyclopedia in the world. With more than 3 million pages, 10 million 

registered users and 18 edits per page [UrlWikiStat], the coverage and the quality of Wikipedia 

articles are enormous. In a sense, Wikipedia contains a significant fraction of the knowledge 

of the world. Moreover Wikipedia corpus is freely available for download1. This has prompted 

many researchers to use Wikipedia as a knowledge source in various tasks including feature 

generation for document representation.

Gabrilovich’s Method Gabrilovich and Markovitch [2006,2007] first used Wikipedia in fea

ture generation. The feature generation method works as follows. For each document first

’at http: //download.Wikimedia.org/
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a set of contexts are extracted. The contexts of a document are individual words, sentences, 

paragraphs and the entire text of the document. Then for each context, 10 best matching 

Wikipedia articles are retrieved. The matching is done based on the textual similarity of the 

context and the Wikipedia article. The title of the retrieved Wikipedia articles are then used 

as the Wikipedia features of the document. The Wikipedia features are used in addition to 

the bag of words features. They showed that Wikipedia features can improve text classifica

tion accuracy [Gabrilovich and Markovitch, 2006] and can also help in determining semantic 

relatedness [Gabrilovich and Markovitch, 2007].

It was claimed that the Wikipedia features give more background information of the doc

ument. For example (as mentioned in the paper), for the document title “Apple Patents a Tablet 

MAC”, the retrieved Wikipedia titles were “MAC OS”, “LAPTOP”, “AQUA” (the GUI of MAC 

OS X), iPOD etc. It was argued that this type of features contain relevant information and can 

also help in disambiguating the ambiguous contexts. Empirical results were shown to corrobo

rate this claim.

In section 4.1, we will apply a very similar method of feature generation from Wikipedia 

and show that those Wikipedia features can help in “clustering short texts” [Banerjee et al., 

2007] and “doing inductive transfer over text classifiers” [Banerjee, 2007]. Our feature genera

tion method is slightly simpler than the method proposed by Gabrilovich et al. but still able to 

improve the accuracy of the both the tasks by a good margin.

Exploiting the Structure of Wikipedia in Feature Generation Wikipedia is not just a col

lection of pages but it has lots of structure information as well. For example, Wikipedia ar

ticles contain hyperlinks to other Wikipedia articles, each article is placed under one or more 

categories or sub-categories, the category sub-category graph of Wikipedia has a hierarchical 

structure. This structure information of Wikipedia is quite rich and the method proposed by 

Gabrilovich does not make use of it. More recent researches show how to use this structure 

information of Wikipedia in feature generation [Hu et al., 2008, Wang et al., 2007, Wang and 

Domeniconi, 2008]. The method shown in [Hu et al., 2008, Wang et al., 2007] first builds a 

WordNet like thesaurus from Wikipedia. An entry of the thesaurus is a Wikipedia article. The 

entry of the thesaurus or the Wikipedia article is referred as a concept. They define several 

relations between the concepts based on the content and the structure information of Wikipedia 

articles. The relations are described below
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Synonym: The redirect hyperlinks of Wikipedia connects the concepts that are synonyms. 

For example, the acronyms U.S.A., U.S., USA, US redirect to the article “United States”. 

This redirect links along with the anchor texts were used to define the synonyms.

Polysemy: The Wikipedia disambiguation page was used to identify the polysemy relation 

between the concepts. A disambiguation page of Wikipedia lists multiple senses of a 

concept. For example, the disambiguation page of Apple contains several different uses 

of the term Apple, including “Apple Inc”, “Apple (album)”, persons with name “Apple” 

etc.

Hyponym: Hyponym is the opposite of the hypernym in the “IS-A” relation (Einstein is-a 

Physicist, here Einstein is the hyponym of physicist whereas physicist is the hypernym of 

Einstein). But in that paper the term hyponym is used to mean hypernym only. Hyponym 

relation between the Wikipedia concepts can be identified using the category hierarchy 

of Wikipedia. Each article in Wikipedia belongs to some categories or sub-categories. 

Categories and sub-categories links form a hierarchy in Wikipedia.

Associative Relation: Associative relation defines similarity between the Wikipedia articles. 

Associative relation between two concepts is defined based on the textual similarity of 

the corresponding articles, overlap of the categories they belong and the path distance 

between those categories in the category hierarchy.

Given a document, they first select a candidate set of Wikipedia concepts that are men

tioned in the document. Then for each selected concept the synonyms, hyponyms and the 

associated concepts are added as features. If the new concepts that are added have multiple 

meanings (i.e. the concept has an entry in a Wikipedia disambiguation page) then a disam

biguation process takes place. The disambiguation process selects the closest concept from the 

list of entries in the Wikipedia disambiguation page. Here the closest concept is identified by 

the textual similarity of the document to the corresponding Wikipedia article of the concept and 

the link distance from the other unambiguous concepts added to the document. They reported 

modest gain in text classification and clustering accuracy.

Proposed Feature Generation Method The feature generation methods described above are 

quite ad-hoc in nature and can have performance issues. In the Gabrilovich method, Wikipedia 

articles were retrieved by textual “similarity” of the contexts to the Wikipedia articles. Top 10 
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retrieved Wikipedia articles were used as the Wikipedia features. It is not clear how the quality 

of the Wikipedia features depend on the “similarity” function being used or the number (here it 

is 10) of top articles kept for features. In both the above described methods a new feature is a 

Wikipedia article. Since the number of Wikipedia articles is 3 million, the new representation of 

documents can have millions of features. This can have performance penalty on the downstream 

learning algorithms. The algorithms heavily depends on the Wikipedia corpus (the text, title and 

even the structure of Wikipedia). Wikipedia is fast growing and evolving corpus. The impact 

of this evolution on the above feature generation methods is unknown and hard to measure or 

predict.

In this thesis we propose a more principled approach of feature generation using topic 

modeling (section 4.2). The number of new features added in this method is controlled by a 

parameter K where K is typically of the order of 100. The proposed method does not use any 

Wikipedia specific characteristics (e.g. Wikipedia titles or link structure) to generate features. It 

automatically extracts the topic features from the given corpus using topic modeling technique. 

Therefore, it can extract features from a corpus other than Wikipedia as well.

2.2.3 Gathering Training Data for Web Page Classification

Our third major contribution is automatically gathering training data to build web page classifier 

for any arbitrary concept. Training data generation is often manual and an expensive process. 

Gathering training data to build web page classifiers is even more challenging. Web pages are 

diverse and therefore collecting a representative sample may involve huge effort. Also in the 

scenario targeted in this thesis the target categories are not predefined. A user may define an 

arbitrary category and the system needs to automatically build a classifier. To build classifiers 

without involving any manual step we need to device a way to gather training examples auto

matically. In this thesis, we develop methods to utilize different web sources to automatically 

gather training data.

Surprisingly there is not much research in this direction. Most research in web page classi

fication assumes Dmoz as the source for labeled training data [Qi and Davison, 2008, Xu et al., 

2007, Xue et al., 2008]. Dmoz [UrlDmoz] is a web directory maintained by a community of 

users. It has 0.6 million categories and the categories are organized in a hierarchy. 4 million 

web pages are manually classified under these categories. Given the pages are categorized by 

human editors it is natural to use Dmoz as the source of training data. Even the cross validation 
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accuracy reported in the past [Qi and Davison, 2008, Xu et al., 2007, Xue et al., 2008] is quite 

high. Davidov et al [Davidov et al., 2004] directly addressed the question of generating labeled 

training data. But they also used Dmoz as the source and reported cross validation accuracy.

But as we will see later, that the distribution of pages in Dmoz is not representative of the 

distribution of the pages obtained from other sources in the web. Therefore, the cross validation 

accuracy using Dmoz as the training as well as the test corpus does not necessarily reflect the 

actual accuracy of the classifier in all different types of web pages. Here we are interested in 

building a classifier that performs well across web pages of different sources. Therefore we 

need to utilize sources other than Dmoz as well. In this thesis, we use three other sources apart 

from Dmoz to obtain training data. The sources are Wikipedia, search engine Google and the 

social bookmarking site Delicious [UrlDelicious]. We develop methods to obtain training data 

from these sources.

In the past, there has been relatively little work in utilizing web sources like Google, 

Wikipedia or Delicious to generate training data. Fergus et al [Fergus et al., 2005] used the 

image search engine of Google to automatically gather training examples for image object cat

egory recognition. Given an image category name (e.g. “airplane”), they retrieve top few 

images from the image search engine of Google using the category name as the query. Then 

an extended version of pLSA is applied to extract K topics from the these images. Using a 

validation set they choose a particular topic that indicates the target category (here “airplane”) 

of the images. A new image can be classified by estimating the probability of the selected topic 

in the image. This approach is unlikely to bring much success in the text domain as the data is 

much more noisy and constructing a good validation set in an unsupervised manner can become 

problematic.

Although Google, Wikipedia, Delicious sources were not used much for the purpose of 

training data generation, they have been used in many other information retrieval and text min

ing related tasks. For example, Wikipedia was used in named entity disambiguation [Cucerzan, 

2007], improving the quality of search results [Milne et al., 2007], keyword extraction and word 

sense disambiguation [Mihalcea and Csomai, 2007], question answering [Buscaldi and Rosso, 

2006] etc. Google search engine had been used for the tasks like obtaining n-gram statistics 

[Keller and Lapata, 2003], meaning discovery [Cilibrasi and Vitanyi, 2007]. It was shown that 

the “tags” available for web sites in the site like Delicious can be used to improve the quality of 

search results [Heymann et al., 2008, Yanbe et al., 2007].
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In this thesis, we used four different sources, namely Google, Wikipedia, Dmoz and Deli

cious to obtain training data for an arbitrary concept. We develop methods to combine the noisy 

training data obtained from each individual source. There is a large volume of work in the name 

of semi-supervised learning that shows methods to combine labeled and unlabeled data [Blum 

and Mitchell, 1998, Nigam et al., 2000]. But our problem is different as we need to combine 

noisy labeled data obtained from heterogeneous sources.
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Chapter 3

Answering Quantity Consensus Queries

(QCQs)

In this chapter we give the details of the first sub-problem addressed in the thesis - answering 

quantity consensus queries from the web. We first introduce the notion of quantity consensus 

query (QCQ). We then discuss the system architecture that we have designed to respond to 

QCQs (Section 3.3). We then study the performance of several possible approaches to answer 

QCQs and establish that existing ranking algorithms are not sufficient to answer QCQs (Sec

tion 3.5). Next we propose two novel ranking algorithms to collectively score and rank the 

quantity intervals in respond to a QCQ (Section 3.6 and 3.7).

Apart from proposing novel and more accurate ranking algorithms we have also designed a 

fully functional quantity search engine operating over a multi-terabyte web crawl (Section 3.9). 

The designed system addresses many scalability issues that a large scale QCQ system will have 

to solve. Finally, we show the use of Wikipedia annotations in improving the quantity search 

experience (Section 3.10).

3.1 Introduction

3.1.1 Entity Search and Corroboration

Search engines are getting increasingly sophisticated in extracting and exploiting structured data 

from unstructured and semistructured Web pages. Most major search engines identify mentions 

of people, places, organizations, street addresses, ZIP codes, dates, prices, disease names, and
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several other types of named entities mentioned on the Web pages they crawl.

Entity search has become a standard task in the research community as well. INEX1 

features a track where the aim is to return entities that satisfy a query. The TREC enterprise 

track2 includes an expert search task, an important special case of entity search. Answers to 

TREC-style factoid questions (TREC-QA3) are frequently named entities.

1 http ://inex.is.informatik.uni-duisburg.de/
2http://tree.nist.gov/pubs/trecl5/
3http://trec.nist.gov/data/qamain.html
4http://tree.nist.gov/data/qamain.html

Approaches to entity and expert ranking include probabilistic generative models that cap

ture relations between the query, documents, latent topics [Fang and Zhai, 2007, Balog et al., 

2009], and lexical proximity between query words and candidate entities [Petkova and Croft, 

2007, Cheng et al., 2007, Balog et al., 2009].

Corroboration of an entity, mentioned redundantly across multiple sites, often increases 

ranking accuracy and robustness [Clarke et al., 2001]. Syntactic variations (“Washington” vs. 

“George Washington”) may exist in candidate mentions, and each mention may have a score 

based on query, language, topic and proximity considerations.

3.1.2 Quantity Consensus Queries (QCQs)

In this chapter we focus on quantity search, an important special case of entity search. A 

quantity may be a unitless number or have an associated unit like length, mass, temperature, 

currency, etc. TREC-QA4 2007, 2006, and 2005 have 360, 403 and 362 factoid queries, of 

which as many as 125, 177, and 116 queries seek quantities. As against “spot queries” seeking 

unique answers like date of birth, we are specifically interested in what we call quantity consen

sus queries (QCQs), where there is uncertainty about the answer quantity (“driving time from 

Paris to Nice” or “battery life of Lenovo X300”). TREC-QA 2007, 2006, and 2005 have at 

least 61, 39 and 28 such queries. To learn a reasonable distribution over the uncertain quantity, 

the user may need to browse thousands of pages returned by a regular search engine. A QCQ 

system reduces this cognitive burden by zooming down from document to snippet to quantity 

level. QCQ engines can also support sites that offer comparison of prices and features related 

to products, services and travel.

In the information extraction, integration and warehousing literature, a curate-and-query 

approach is popular; it assumes the existence of entity and relationship extractors [Agichtein 
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and Gravano, 2000, Bunescu and Mooney, 2005] for limited domains, which populate (possibly 

probabilistic) relational databases [Cafarella et al., 2007, Wu and Weld, 2007]. We argue that 

open-domain ad-hoc QCQs cannot leverage the curate-and-query strategy, because the queries 

are too diverse and the sources are too unstructured for a priori schema design or informa

tion extraction. Our hypothesis is that some combination of string-oriented IR and structured 

aggregation is essential at query time.

3.1.3 Our Contributions

We introduce QCQs (Section 3.2) and give novel algorithms that aggregate evidence in favor 

of candidate quantities and quantity intervals from snippets in a collective and corroborative 

fashion, without attempting deep NLP on snippets.

For a given query, the ith snippet is a segment of text tokens, centered around the mention 

of a quantity A quantity is a number or a range accompanied by an (optional) unit of 

measurement. To the left and right of the central quantity mention are other context tokens of 

the snippet.

As baseline, we first consider (Section 3.5) algorithms that learn to rank items (documents 

or snippets) represented as feature vectors [Joachims, 2002, Joachims et al., 2007, Yue et al., 

2007]5. An item (here, a snippet) is usually represented as a feature vector Zi G in response 

to a query. In our case, Zi will encode the presence of query words in the snippet context, 

lexical proximity between query words and quantity Xt, and rarity of matched query words in 

the corpus (IDF). Using manually-provided snippet relevance labels yi G ±1, these algorithms 

learn a model vector such that the score of the zth test snippet is w^Zi, and snippets are 

then sorted by decreasing score. We show that scoring using Zi performs poorly, because Zi by 

itself is a very noisy relevance signal.

5for a comprehensive list visit http: //research. microsoft. com/users/LETOR/

We then evaluate a recent technique [Wu and Marian, 2007] that aggregates evidence 

across snippets i, j only if xi} Xj match exactly. This fails in the face of close but not identical 

quantities in dominant clusters. Next we adapt a graph Laplacian smoothing technique [Ko 

et al., 2007, Qin et al., 2008] that balances between individual snippet score evidence wTZi and 

quantity proximity, say, |a?i — Zj|. This formulation cannot ignore quantity proximity among 

irrelevant snippets, and gives only modest gains.

These trials and observations prompt us to propose (Section 3.6) new scoring mechanisms 
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for entire intervals of x values, instead of individual snippets, as was done in prior work. We 

show how to aggregate snippet scores into candidate interval scores, and then pick the best 

intervals. This dramatically boosts accuracy.

In Section 3.7, we give another algorithm: it represents an interval I with novel feature 

vectors zi, where some features are aggregated from snippet-level scores wTz^. Note that i in

dexes individual snippets and I represents an interval. We use max-margin methods [Joachims, 

2002] to learn a “stacked” model w. During testing, w^zj is used to sort candidate intervals.

Our stacked ranker further enhances accuracy compared to interval scoring using w alone. 

It achieves over 20% relative improvements in snippet-level MAP and NDCG compared to 

Laplacian smoothing, which in turn is 10-15% better than independent snippet ranking. We 

compare favorably with the best TREC-QA participants wrt precision-at-1. We also present a 

new way to evaluate sequences of quantity intervals, as against snippet lists.

Providing snippet labels yi is more tedious than providing ground truth Xi values per query. 

In Section 3.8, we propose a very simple alternative to training w and w using only ground truth 

x^ with a very small drop in quality.

Given the extreme diversity and noise in snippets, it is astonishing that clear and often 

correct consensus can be mined without the help of deep NLP, even for completely ad-hoc 

queries. .

Finally, we address some scaling issues of building a quantity search engine over a multi

terabyte web corpus. We also show the use of Wikipedia in enriching the quantity search expe

rience.

3.2 Terminology

3.2.1 Query

A QCQ has two main parts: a set of words or phrases, and a quantity type specifier. Some 

words or phrases may be marked compulsory with a prefixed *+’. The latter may be unitless, 

if a count is desired, or have an unit. Some example QCQs are shown in Figure 3.1. As with 

ordinary Web queries, the onus of getting better snippets, through the use of ‘+’ and phrases, 

lies with the user.

A third optional component of QCQs that gives additional control is a user-defined relative
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Figure 3.1: QCQs with snippets (matches underlined; quantities in boldface, jgood[, maybe ,

+giraffe, +height; foot
La Giraffe was small (approx. 11 feet tall) because she was still young, a full grown giraffe can reach a height of 18 feet.
Giraffe Photography uses a telescopic mast to elevate an 8 megapixel digital camera to a height of approximately ^0 feef
The record height for a Giraffe unicycle is about [100 fj (30.5m).

+weight, weigh, airbus, +A380; pound
Since the Airbus A38O weighs approximately 1,300,000 pounds whcn Mly loaded w‘1'1 Passcnpcrs —______________________  
The new mega-liner A38O needs the enormous thrust of four times |70.000 pounds in order to take off.______________________  
According to Teal, the 319-ton A380 would weigh in al |l. 153 pounds per passenger

far traccoon relocate; mile
It also says - unnervingly - that relocated raccoons have been known to return from as far away as |75 miles.__________________ 
Sixteen deer, 2 foxes, one skunk, and 2 raccoons are sighted during one [35 milt] drive.____________________________________  
One study found that raccoons could move over 10 miles from the drop-off point in a short period of time.

width parameter r, where 0 < r C 1, meaning that the user is looking for a quantity interval 

[z, z'], such that x' < (1 + r)x, which has strong collective evidence from snippets, r is 

necessarily user-defined: a QCQ about Olympic record times has a fundamentally different 

expectation of precision compared to a QCQ about the distance between the Sun and Pluto. 

Only the user can provide that domain knowledge. In practice, a large number of QCQs run 

well with a default setting like “r = 0.05”. In any case, r is an upper bound on the relative 

width, and our system will tighten the interval if it can.

3.2.2 Snippet (xi,

A snippet is a suitably large window of tokens around a candidate quantity which matches the 

unit specified in the QCQ. A quantity scanner (Section 3.3.1) identifies token segments that 

express quantities. The quantity, including unit, is called Xi for the Ah snippet for a given query. 

The surrounding text is turned into a suitable feature vector representation zt G (zi depends 

also on the query).

The design of z^ must consider the proximity between the central quantity mention to 

snippet tokens that match query tokens, and is described in detail in Section 3.3.2. Any snippet 

that has one or more token matches with the query is potentially a relevant snippet, and its 

quantity a candidate quantity. Some sample relevant and irrelevant snippets for the above QCQs 

are shown in Figure 3.1. These snippets make clear the great variety of contexts in which 

plausible quantities appear close to significant query words.
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3.2.3 Consensus

As is clear from the examples, QCQs are characterized by the absence of an absolute or single 

truth. Our first impulse was to model the quantity of interest as a random variable, and build 

a system to return a distribution over it. But the event space is too complex: it involves nat

ural language usage and extraction accuracy, among other uncertainties. We therefore avoid 

generative models for quantities, and explore discriminative, collective ranking techniques for 

snippets. Informally, a consensus interval is a tight range [z, a/] of quantities that enjoys strong 

collective support from high-scoring snippets. We will give more precise proposals in Sections 

3.6 and 3.7. There, we will see that this simple notion of consensus performs very well.

To be fair, consensus is not the only form of useful aggregation; in some cases, it may 

be limiting or misleading. E.g., plutonium has multiple isotopes with diverse half lives, and a 

name may refer to many people with diverse birth years. Our QCQ system performs reason

ably despite such ambiguity, because it reports (snippets from) not one but a number of top

scoring ^-intervals. Time-variant quantities offer another challenge. E.g., the QCQ +"bill 

gates ", assets, worth; USD may give an outdated answer, depending on Web cov

erage. A complete solution would require “carbon dating” each snippet, which appears even 

more challenging than reliable timestamping of whole Web pages. The causes of multi-valued 

answers have been analyzed in some detail [Moriceau, 2006, Prager et al., 2007].

3.3 QCQ System

The QCQ system architecture is shown in the Figure 3.2. The functionality of different stages 

are as follows:

• Filtered j 
4snlppgts? 
I '(A .

, Snippet j 
' 'filter ' H Hit URts, j

Web
Search : 

t API ‘

-_____
&|iht^bit! : j

iihwMiW J ‘ -* -te ■

pr; “BrowsefUl'tor ' 
l.... r_ annotation of v.

• Our training 
algorithms Models w, w

Ourtesting 
algorithms. [

'W' 
"Wi 
III (

Figure 3.2: Sketch of our QCQ system prototype. Processing stages are numbered from 1 onward.
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Stage 1 The input to the system is a QCQ. As mentioned in the previous section, a QCQ 

consists of query keywords and/or phrases, desired unit type and an interval width parameter (r). 

For the purpose of evaluation, each QCQ (q) in our testbed comes with a ground truth quantity 

set (X9). The ground truth quantity set of a QCQ are the set of correct correct quantities for the 

QCQ.

Stage 2 & 3 The query keywords and phrases are sent to a search engine and a set of pages 

corresponding to the top matched URLs are fetched. Each page is then tokenized and the 

quantity mentions in the page are annotated by a quantity scanner. The quantity scanner detects 

the text segments that are likely to be quantity mentions and also identifies the type of the 

quantity. For example, text segments like “15 km” or “fifteen to sixteen kilometers” will be 

detected as quantities of type “kilometer”. We will discuss the details of the quantity scanner 

shortly. Once the quantity mentions are detected, the snippets for the given QCQ are generated 

by taking a suitable window of token around the quantities with desired unit type. The suitable 

window is defined either by fixed number of tokens or the sentence boundary whichever is 

shorter. Some example snippets are shown in the Figure 3.1.

In this particular implementation we took help from web search engine to get a set of pages 

from where the snippets are extracted. Later in this chapter we will discuss the scaled version 

of this system where the snippets are extracted from our own corpus of 500 million pages.

Stage 4 We filter the snippets that does not contain at least one query word/phrase because 

those snippets are unlikely to be relevant to the QCQ. At this stage we have set of snippets for 

the given QCQ. Each snippet Si is a window of tokens containing a quantity Xi of the desired 

unit type and some query words/phrases. A snippet (Si) is then represented using a feature 

vector (z^. The features of a snippet is extracted using both the query as well the snippet. We 

will describe the features of the snippets shortly.

Stage 5 & 6 For the purpose of training and evaluation we need ground truth relevance labels 

of the snippets. To collect ground truth relevance, labels we developed a browser based GUI 

where manual relevance feedback can be provided against the snippets of a QCQ. Using this 

browser GUI we collected manual feedback on a set of snippets of a set of sample QCQs. The 

details of this labeled data set is described in the section 3.4. This labeled data set is used to 

train a model (w or w) and to evaluate different algorithms.
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Stage 7 Given a test QCQ we follow stage 1 to stage 4 to generate the snippets of the test 

QCQ. We then apply the learned model of stage 6 to rank the snippets of the QCQ. The ranked 

list of snippets are then presented to the user or used to evaluate the ranking algorithm. As we 

will see later that our algorithms can output a ranked list of quantity intervals not just ranked 

list of snippets.

Next we describe the quantity scanner that annotates a text document with quantity occur

rences (Section 3.3.1) and the design of feature vector of a snippet (Section 3.3.2).

3.3.1 Quantity Scanner for Annotating Xi

A quantity scanner annotates character spans that are likely to be quantity mentions, which 

come in diverse forms. Some have unit prefixes, like currency symbols. Some have unit suf

fixes, like scientific measures. Some have exponent modifiers, like “10 million liters” or “€50 

million”. Units are expressed diversely, e.g., *$’ vs. USD, ‘m’ vs. meter vs. metre. Even the 

numerals are written in diverse styles. Scientific quantities may be written without commas, 

commas after every third digit, or at irregular spacing, as in “Rs 1,20,000”. There may be spu

rious spaces before or after commas. Periods may end sentences or be decimal points. Very 

large or small quantities may be written in mantissa-exponent form. Small numerals like 1, 2, 

30 may be written as words. 1889 might be a unitless count or a year. *$’ may indicate different 

currencies. Xi may also be a range, e.g., 10-20 feet.

We used the rule-based JAPE engine, which is part of the well-known GATE NLP package 

(http://gate. ac. uk/). We compiled about 150 rules covering mass, mileage, power, 

speed, density, volume, area, money, time duration, time epoch, temperature length and so 

on. Augmenting our rule base to capture more types of quantities should be straightforward. 

Manual spot checks on our annotator led to estimates of precision, recall and Fl as 0.92, 0.97, 

0.95. Luckily, ranking intervals using consensus is robust to this small rate of scanner glitches.

Unit normalization: In the example QCQs above, each query has an associated specific 

unit (unless the answer is a count). In a deployed system, more generic units should be allowed, 

such as length in place of mile or km, or time interval in place of hour or year. This would 

also assist collecting consensus across candidate quantities expressed in different units. Our 

prototype does not handle this issue, except identifying different standard forms of a unit (e.g. 

foot, feet, ft), but it can be added on easily.
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3.3.2 Feature Vector Design for Zi

We defined two families of features on (the query and) snippet text: first, standard vector-space 

ranking features [Liu et al., 2007, Liu, 2008], and second, features that encode lexical proximity 

between query word matches and quantity tokens [Petkova and Croft, 2007, Cheng et al., 2007, 

Balog et al., 2009].

Standard ranking features

Each snippet was characterized by the tokens in five fields F: snippet, a window of 10 sentences 

above and below the snippet, the text of the page from where the snippet is originated, the 

HTML title of the page, and the URL of the page. For each of the five fields F, three features 

were added to feature vector zf.

TFSum: Ete^TF(t, F)

IDFSum: IDF(i)

TFIDFSum: E^TF^.^IDFW

TF(t, F) is the term frequency of t in F and IDF(t) is the standard IDF of t with respect to a 

reference corpus (union of all documents over all queries). In addition, we used:

• Jaccard similarity  between query and snippet tokens. Jaccard similarity between two 

sets (A and B) are defined as

6

6http: //en. wikipedia. org/wiki/Jaccard_index

} |XuB|

• Number of tokens in the snippet.

Lexical proximity features

Guided by the work on locality or proximity based ranking [de Kretser and Moffat, 1999, Cheng 

et al., 2007, Petkova and Croft, 2007, Balog et al., 2009], we defined the proximity between the 

mention of quantity Xi and a query token match t in its vicinity as the reciprocal of the number 

of tokens between the mention of Xi and t (zero if no t exists).

Queries have a variable number of tokens. Therefore we define four proximity features 

aggregated over query tokens:
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• Maximum proximity of Xi to any query token.

• Proximity of Xi to the rarest (largest IDF) query token.

• Proximity of x^ to the smallest IDF query token.

• IDF-weighted average of proximity to all query tokens.

The weights in w corresponding to these proximity features were among the highest when w 

was learnt using RANKS VM [Joachims, 2002]. To keep our system robust and scalable, we 

avoided deeper NLP techniques like learning to spot relations from dependency parse trees.

Altogether, we used 21 features: 4 proximity, 5x3 similarity features and 2 other features.

3.4 Testbed

3.4.1 QCQs with ground truth

We collected 162 QCQs from diverse sources. Some examples of QCQs used in the experiments 

here are shown in Appendix A. Each QCQ q was collected along with ground a truth quantity 

set Xq. Most Xqs contained multiple values or ranges. Unless noted otherwise, we report 

performance on the union of these QCQs.

Infobox: We created 40 QCQs by sampling Wikipedia Infoboxes for numeric attributes of 

Wikipedia entities.

TREC-QA: We chose TREC-QA queries that had non-unique quantity answers: 16 from 

TREC-QA 2004 and 61 from TREC-QA 2007.

Mise.: 9 queries were contributed by W&M [Wu and Marian, 2007]. 36 QCQs were con

tributed by volunteers, who found ground truth Xq through careful Web search.

Growing our QCQ set is limited only by snippet-labeling effort (described next).

3.4.2 Snippet Label yi Collection

We used Web search APIs to collect snippets (stage 2 & 3 in the QCQ system architecture, 

Figure 3.2). Unlike QA-oriented text indices, major Web search APIs do not allow us to ask 

for documents containing, say, a distance in feet within 20 tokens of the word elephant. This 
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necessitated a two-step filtering approach. In the first step, we sent words, phrases and unit 

names in the QCQ to the engine. Response URLs were fetched, tokenized, and quantities 

annotated. Quantities that matched the QCQ unit, and were within one sentence (or a maximum 

token window) from a query word were retained, with their snippet context.

For training and evaluation, a selection of 100 snippets per QCQ were presented, using a 

browser-based GUI, for manual labeling of yi G ±1, the relevance of snippet i. Six volunteers, 

including the author, annotated the snippets. There were (infrequent) inconsistencies between 

the contributed answer quantities and yi labels. I.e., snippets with quantities not in the ground 

truth ranges were sometimes marked relevant, mostly because the Web has a more up-to-date 

ground truth. We did not attempt to make these consistent, insisting that a robust algorithm must 

take this in stride. As a whole we have provided manual relevance labels to about 15,000 snip

pets of 162 queries. We have made this data available in the public domain7. Unless specified 

otherwise the experiments in this chapter are conducted in this data set.

3.4.3 Response and Comparative Evaluation

QCQ systems may return a ranked list of snippets, with the quantities highlighted (Figure 3.1). 

The advantage is that the user can glance over and judge the snippets directly. Traditional crite

ria [Liu, 2008], such as Mean Average Precision (MAP) or Normalized Discounted Cumulative 

Gain (NDCG) can then be used directly. (Mean Reciprocal Rank or MRR is not appropriate for 

QCQs because it does not give credit for comprehensive coverage of consensus values.)

Alternatively, to display many promising quantities within scarce real estate, QCQ systems 

may report a list of ^-intervals, each subject to the user-provided relative width constraint. 

Evidence snippets can be shown if an interval is clicked. Evaluating a list of intervals, or 

comparing a system that ranks snippets with one that ranks intervals, are new challenges. We 

will discuss these in Section 3.7.4

3.5 Prior approaches and insights

We describe existing approaches that can be adapted for QCQs, culminating in a comparison 

shown in Figure 3.5.

7can be download from http: //www. cse. iitb. ac. in/soumen/doc/QCQ/
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3.5.1 Using Web search directly

The minimal baseline (that any useful QCQ system must beat) is to send QCQ words/phrases to 

a search engine, get the top snippets, scan them for qualifying quantities with proper units, and 

list them if they appear within a stipulated distance of at least one query token. A listed quantity 

x is judged correct if it matches (or is contained by) a ground truth quantity (or interval).

Such snippet-level evaluation gives very poor MAP and NDCG (below 0.15), partly be

cause search engines have no mechanism to promote to top ranks those snippets that contain 

quantities of specified types and query words. We can be generous and give credit for unsup

ported but correct quantities anywhere on the pages (not just reported snippets), which is what 

we show in Figure 3.5. We use two major engines (called Webl and Web2). Our algorithms 

are better at promoting relevant snippets to top positions, comfortably beating the generous 

evaluation of Web search engines.

3.5.2 Snippet-level RankSVM

We tried several techniques for learning [Joachims, 2002, Yue et al., 2007, Liu, 2008] a snippet

level w given snippets (zi, yi) (Xi is ignored here), with the score w1 Zi used for ranking snippets. 

We found standard pairwise RankSVM [Joachims, 2002] (formulation given below) as good 

as direct optimizers of MAP [Yue et al., 2007] or NDCG [Chapelle et al., 2007].

min |wTw + C E E ^ij subject to (3.1)
i‘Vi~ 1

I & > oVz s.t. yi = 1, Vj s.t. yj = -1, <
[w7Zi + ^ij > Uj Zj + 1

j upper bounds the number of pair preferences violated and C balances between viola

tions and |w|. Details of RankSVM algorithm is mentioned in Section 2.1.4.

Figure 3.5 compares the accuracy of various baseline algorithms. (For all RANKS VM- 

style learning algorithms in this paper, five-fold cross validation was used and the best value of 

C in (3.1) was picked from among {10-3,10“2, .1,1,10}.). Figure 3.5 shows that RankSVM 

is generally better than Webl and Web2. As for MAP, remember that Webl and Web2 are given 

massive advantage while RankSVM snippets are evaluated stringently. However, a closer look 

at RankSVM (next) provides key actionable insight.
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3.5.3 Vertical Bands in Zi vs. Xi Scatter

RankSVM considers only w^Zi scores, but how do these relate to corresponding XfS? Fig

ure 3.3 plots scatters of w^Zi (t/-axis) against Xi (z-axis) for three representative queries. For 

visual uniformity across queries, both axes have been scaled to [0,1]. Snippets are also called 

“points”. If optimization (3.1) were perfect, all good points would lie higher along the ?/-axis 

than all bad points. This is rarely the case: although Zi was designed with considerable care, de

cent separation between relevant and irrelevant snippets is never achieved on the basis of wTZi 

alone.

+height +giraffe; foot how fast does the +Concorde fly; mph +cordless +phone +frequency; MHz

Figure 3.3: Scatter of w^Zi against Xi for representative QCQs; relevant (irrelevant) points 

marked *+’ (‘o’).

But the scatter plots also show a valuable clue: relevant points often cluster in vertical 

bands. From Figure 3.3 and the simplified sketch in Figure 3.4, it seems that for each query, one 

or few upward-open rectangular strips capture most good snippets with very few bad snippets.

It is natural to ask at this point why we cannot use decision trees (which naturally find 

rectangle discriminators) or S VMs with nonlinear kernels. The reason is that the width, location 

and even the number of semi-open rectangles (equivalently, parameters of non-linear kernels) 

change from query to query. Parameters learnt by decision trees or nonlinear SVMs will not 

generalize across diverse queries. We need a more non-parametric approach.

3.5.4 Wu and Marian’s System (W&M)

A first approach to integrating x from snippets is to take weighted voting, similar to exploiting 

redundancy in QA. W&M accumulates a score for each distinct x from snippets where x occurs. 

The snippet score is determined by the following considerations:

• It decays geometrically with the rank assigned by the search engine to the source page.

53



A Rectangles
WT Z, containing

relevant 
>/ snippets

Clouds of 
irrelevant ; • Bottom L_I
snippets . < boundary > ! X,

t——Interval projected on x

Figure 3.4: Our proposed “hypothesis class” of semi-open rectangles.

• It decreases reciprocally with the number of candidate quantities on the source page.

• It decreases exponentially with the number of duplicate/mirror pages and pages from the 

same domain. (Search engines already enhance diversity and eliminate duplicates, so this 

rarely fires.)

• It decreases reciprocally to the shortest distance between the quantity and a query token 

(lexical proximity).

Score aggregation happens only on exact equality of x. Figure 3.5 shows that W&M is consis

tently worse than RankSVM. Often, relevant snippets are found at quite poor ranks, because 

the whole-page ranking imposed by Webl and Web2 are often not suited for QCQs. Recall 

again that Webl and Web2’s accuracy may be substantial overestimates.

3.5.5 Laplacian Smoothing

A second way to combine Xi and wT Zi is via a graph Laplacian approach [Qin et al., 2008]. 

Each snippet is made a node in a graph G = Each node/snippet has an associated

feature vector Zi as before, inducing a (noisy) local score wTZi. Meanwhile, the Xi values at 

nodes are used to define edges weights inversely related to |zj — xj.

The formulation seeks a model w while assessing a loss (£ — wTZi)2 for deviations be

tween final scores fi and local scores, and a roughness loss ^{i j}eE - fj)2’ where

f e Rnxl is the column vector of final scores. Finally, there is the usual training loss if the 

final score of a good snippet is less than the final score of a bad snippet. The training loss is 

expressed using standard hinge loss E^max-fO,1 + fb - fg} > Hg,bUg hl Here fa and 

fb denotes the scores of good (relevant) and bad (irrelevant) snippets. The weight vector w is 

learnt by minimizing these three loss functions.
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Minimizing this three loss functions turns out to be a quadratic program with linear con

straints [Qin et al., 2008]. During testing or deployment we have the learned model w. So the 

final scores of the snippets of the test query can be computed by minimizing the deviation and 

roughness losses. The snippets are then ranked in the decreasing order of their final scores.

The design of edge weights R critically determines the algorithm, but there is no generic 

guideline. We tried the following reasonable definitions:

Xi = Xj equality: Following W&M’s weighted voting semantics, we define R(i, j) = 1 if = 

Xj and 0 otherwise.

- Xj\ distance: R(i,j) = max {o, 1 - }

— Xj| decay: R(i,j) is defined as exp(-s||:ci — xj||) or exp(—s(xi — Xj)2), where s is a 

tuned spread parameter (inverse variance).

Snippet cosine: Following the pseudorelevance feedback [Qin et al., 2008] setting, we ignore 

x^ Xj and use cosine similarity between the text of snippets i and j as R(i, j). Snippet 

text is represented as a binary vector over token space. The intuition is that if snippet texts 

for i and j are similar, they should have similar score.

Figure 3.5: Initial results (bold => max in column).

MAP NDCG@1 NDCG@5 NDCG@10
Web1 0.375 0.338 0.362 0.380
Web2 0.350 0.413 0.357 0.377

RankSVM 0.369 0.450 0.412 0.406
W&M - i W? ,..^30'3' JO^

c Equality 0.384 0.369 0.353 0.382
Distance 0.407 0.413 0.401 0.420

a. Decay 0.421 0.433 0.422 0.435
Jj Cosine 0.375 0.438 0.396 0.405

Figure 3.5 summarizes accuracies of all approaches discussed thus far. Laplacian smoothing 

with the “decay” option gives modest gains over Webl, Web2, RankSVM, and W&M. The 

gains are limited by two factors. First, the Laplacian formulation assesses the roughness penalty 

on all edges, even those between snippets putatively labeled irrelevant. For QCQ, we should 

favor smoothness of fi only among relevant snippets. Second, there is no ready way to tune the 

width parameter s reliably across diverse queries and associated quantities. Our algorithms get 

around these issues.
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1: inputs: snippet set S with Xi and w^Zi values, interval width tolerance parameter r

2: sort snippets S in increasing Xi order

3: fori = 1,...,ndo

4: for j = i,..., n do

5: if Xj < (1 + r)xi then

6: let I = , Zj]

7: merit <— GetIntervalMerit(S, I)

8: maintain intervals with top-A; merit values

9: for surviving intervals I in decreasing merit order do

10: present snippets in I in decreasing wTZi order

Figure 3.6: Interval merit enumeration.

3.6 Listing and Scoring Intervals

Instead of scoring and ranking snippets, we shift our focus to quickly enumerating and scoring 

rectangular regions as shown in Figure 3.4. We begin with searching for the position and width 

of a promising rectangle on the z-axis, i.e., searching over intervals I = [z, z'], with x' < 

(1 + r)x as specified in Section 3.2.1. We will overload I to also mean a set of snippets. A 

snippet Si = (x^ z^ is said to belong to I if Xi G I. In case a snippet mentions a range (such as 

10-20 feet), the snippet belongs to I if the range is contained in I.

For a query q with nq snippets, there are at most functionally distinct (in terms 

of the snippets they contain) intervals on the x axis. Some of these intervals I = (x, x') are 

too wide (x' > (14- r)x) and can be discarded. Usually r 1, so the enumeration of valid 

candidates I G Tr can be done efficiently using a left-to-right sweep that takes close to linear 

time in practice. For simplicity Figure 3.6 shows a naive O(nty enumeration of intervals.

Figure 3.4 suggests that we should also search over all possible bottom boundaries of I. 

In practice, this makes negligible difference. Our results in Section 3.8 may explain why this is 

the case.
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3.6.1 Merit Functions GetlntervalMerit^ Z)

As we enumerate over intervals I, we need to use the signal from w^Zi for i G I and potentially 

i £ I, to evaluate GetIntervalMerit(S, I). If there is any useful signal in wTZi, we should 

prefer intervals I such that points in I have generally larger values of w^Zi than points not in I. 

Accordingly, we provide three choices of merit (to maximize over I):

(Sum)

EiS/Ej?/(«'TZi “ WTZj) (Diff)

Eiez Ej«z max {0, w^Zi - w^Zj } (Hinge)

Observe that terms in (Diff) can be positive or negative; favorable and unfavorable score pairs 

can cancel out. This is prevented in (Hinge). In machine learning, one minimizes hinge loss 

rather than maximize hinge gain, but in QCQ, the former leads to tiny proposed relevant clusters 

that are often incorrect.

3.6.2 Snippet-level Evaluation Experiments

We compare three algorithms: the best two approaches from Figure 3.5 (RANKS VM and Lapla

cian Decay) and interval merit enumeration (for which the snippet-level model w was trained 

using RANKS VM). For MAP (Figure 3.7), we vary interval width tolerance r (shown as a per

centage). For NDCG (Figure 3.8) we hold r = 8% and report NDCG at ranks 1... 10. Note that 

r = 0 means an interval of width zero, but this can contain multiple snippets if they mention 

the exact same quantity. RANKS VM and Laplacian Decay do not depend on r.

Interval merit beats all baselines First, interval enumeration with (Diff) beats all other ap

proaches by a wide margin. Interval enumeration with (Hinge) is second, still beating all others.

Effect of r (Diff) and (Hinge) show significant boost in accuracy as r is increased beyond 0. 

(Diff) is stable between r = 3% and 9%. This is direct evidence that robust aggregation over Xi 

values is critical to success.

(Diff) better than (Hinge) Occasionally, avoiding deep NLP leads to systematic pollution 

from irrelevant but dense intervals. E.g., for the QCQ +giraffe +height: foot, an 

irrelevant cluster (as per predominant human interpretation) develops around 6 feet thanks to
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Figure 3.7: Interval merit evaluation (MAP).

Figure 3.8: Interval merit evaluation (NDCG).

snippets like this: “newborn giraffe calves begin their lives by falling from a height of 6 feet”, 

“A young giraffe has to survive a fall of six feet”, or “A giraffe's legs alone are taller than many 

humans—about 6 feet”. These intervals have a lower average w^Zi and (Diff) reveals this better 

than (Hinge).
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3.7 Learning to Rank Intervals

In the previous section we proposed a way to score intervals, based on aggregating scores 

of snippets inside and outside the intervals. In this section we design a learner that directly 

learns to rank intervals instead of individual snippets.

As in Section 3.6, we will use relative tolerance r to define Zr, the set of candidate intervals 

satisfying r. We already know that |Zr| = O(nq).

Every candidate interval I € Tr will be represented by an interval feature vector zj. The 

interval ranker will learn a corresponding scoring model vector w.

3.7.1 Interval Features zj

Unlike in snippet-level RANKS VM, we are at liberty to define collective features of intervals, 

rather than just aggregate {zi: G I}, in simple ways as in Section 3.6. Specifically, a simple 

average of feature vectors may fail to capture certain significant clustering in the Zi space. There 

may be much stronger clues to guess how good an interval is.

For example, an interval is good if most of the points in the interval are relevant to the 

query, if the interval has high merit (as defined in Section 3.6.1) and most of the points in the 

interval have consensus on a quantity or there are relatively few distinct quantities. We capture 

these clues by designing a set of additional features that are collective across an interval. We 

call them interval features:

1. Whether all snippets in I contain some query word

2. Whether all snippets in I contain the minimum IDF query word

3. Whether all snippets in I contain the maximum IDF query word

4. Number of distinct words found in snippets in I

5. Number of words that occur in all snippets in I

6. One minus the number of distinct quantities mentioned in snippets in I, divided by |Z|

7. Number of snippets in I, divided by nq

8. Three features corresponding to the three merit functions defined in Section 3.6.1, which 

require w to compute.
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Apart from the above interval features we also append to zj the vector average of the feature 

vectors Zi with i E I.

3.7.2 Interval Relevance and Preferences

Recall that we want to learn to compare intervals, but our ground truth yi is collected over 

snippets. The next piece is to define a relevance score over each interval I €lr. We assign a 

relevance score to an interval I based on the fraction of relevant snippets in I. I.e., if I has rtf 

relevant snippets and nj snippets overall, then its relevance score is defined as n*/nj. Thus, 

snippet-level yi labels determine the relevance score of intervals.

For two intervals I and I', if the relevance score of I is larger than that of I', we assert 

a pairwise preference I I' between the intervals. These interval comparisons will replace 

individual snippet comparisons in (3.1). (Other algorithms [Yue et al., 2007, Chapelle et al., 

2007, Liu, 2008] may be used in place of RankSVM.)

1: inputs^

2: for each interval I € do

3: compute the relevance of I using snippet labels yi

4: compute feature vector zj

5: generate interval pair preferences I ^1'

6: set up a RankS VM problem involving intervals:

miri .+ C &,r s.t. (IntervalRank)

VI >- I1: zi—zp > 1 —

7: train using RANKS VM to get w

8: return w , . ..

Figure 3.9: Interval training algorithm.

Initial experience with the algorithm shown in Figure 3.9 suggested that we were gener

ating too many preference pair constraints based on insignificant interval relevance differences. 

We improved both training speed and accuracy by discretizing interval relevance to an ordinal 

scale of 0-10. In other words, the relevance of an interval was defined as [10n, /nj\. We tried 
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between 5 and 10 ordinal levels and the accuracy was not very sensitive to the number of levels.

Suppose the interval ranker learns model w. Given a test query, Zr is enumerated as before. 

Then the intervals in Tr are ranked by decreasing wTzi. If a snippet list must be provided, we 

run down the intervals in decreasing zi order, and order snippets within each interval using 

snippet score wTZ{.

Results We compare the best algorithm from Section 3.6, viz., (Diff) merit score for intervals, 

against the (IntervalRank) algorithm presented in this section.

Figure 3.10 compares MAP obtained by IntervalRank vs. Diff as width tolerance r is 

varied. IntervalRank is better, reaching a MAP of 0.511 against 0.421 by Laplacian smoothing 

and 0.369 by RankSVM. The story with NDCG (Figure 3.11) is almost similar, the gains 

increasing with rank. IntervalRank achieves NDCG @10 of 0.513 against 0.435 by Laplacian 

smoothing and 0.406 by RankSVM. The improvement in accuracy in IntervalRank is due to 

the fact that it scores an interval based on various features and using a learned model. Whereas 

in Diff the intervals are scored using a single pre-defined merit function.

Figure 3.10: Comparison of Merit-Diff and interval ranking algorithms (MAP).

Figure 3.11: Comparison of Merit-Diff and interval ranking algorithms (NDCG).

We did an ablation study by removing one feature from all zj at a time. The maximum 

MAP reduction was for feature #6 (one minus number of distinct quantities mentioned in the 

interval). This shows that quantity consensus is an important feature of the interval.
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3.7.3 Comparison with TREC-QA Participants

We have used quantity queries of the question answering track of TREC (of the year 2004 

and 2007) in our experiments. From the TREC website we obtained the performance of the 

participants of the QA track. Direct comparison is not possible as we used web to extract the 

answers whereas the corpus used in TREC was different.

TREC QA track uses precision-at-1 as the evaluation measure. So we just compare the 

precision-at-1 value of our IntervalRank algorithm against the precision-at-1 achieved by TREC 

participants on our sample of quantity queries of those two tracks. For our sample queries of 

TREC-QA 2007, we are second-best and for our sample queries of TREC-QA 2004, we are 

at rank 5 out of 63 teams. While not very meaningful for QCQ, this shows that our system is 

competitive wrt precision-at-1.

3.7.4 Interval-oriented Evaluation

Our algorithms rank intervals, but to evaluate them wrt snippet-level yi ground truth, we iterated 

through intervals by decreasing w^zj, listing snippets i G I by decreasing w1 Snippet-level 

NDCG or MAP is suitable when users inspect snippet lists [Robertson, 2008]. If a QCQ system 

presents a list of intervals, the user may inspect at most a small number of evidence snippets 

per interval, so snippet-level MAP or NDCG may not accurately reflect cognitive burden. We 

propose recall and precision criteria that recognize an interval, not a snippet, as a unit of atten

tion. Suppose there are n+ snippets marked relevant for a QCQ, and our algorithm A outputs 

A, • • •, An, where Ij contains nj snippets, of which kj arc good. The interval-oriented precision 

of A at interval rank j is defined as (&i H----- 1- kj)/(ni -I------ 1- nj). The interval-oriented recall

is defined as (&i H------- 1- kj)/n+. To compare with a snippet-listing algorithm A1 we simply 

line up the first m H-----+ nj snippets, assume that A' reported intervals A,.... A„, and eval

uate similar to A, • • •, An- Note that IntervalRank cannot cheat at recall using arbitrarily large 

r, because precision will plummet. Results in Table 3.1 show that collective interval scoring 

and presentation can increase both recall and precision, particularly for the top few intervals. 

Laplacian decay is between RANKS VM and IntervalRank.
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Table 3.1: Interval-oriented evaluation.

Algo, measure 1

# Intervals —>

52 3 4

IntervalRank recall 0.521 0.581 0.637 0.647 0.685

Lapl. decay recall 0.510 0.569 0.614 0.634 0.655

RankSVM recall 0.458 0.514 0.554 0.596 0.618

IntervalRank prec 0.443 0.432 0.416 0.388 0.371

Lapl. decay prec 0.382 0.367 0.350 0.330 0.316

RankSVM prec 0.330 0.312 0.298 0.294 0.284

3.8 Quantity-imputed Labeling

We have assumed throughout that the label yi is known for each training snippet (‘‘complete” 

supervision). However, it is much more natural and efficient to train a QCQ system based on 

ground truth quantity set Xq and Zi. Another advantage of this form of “partial” training is that 

we can semi-automatically glean training data from social media, such as Wikipedia Infoboxes.

Suppose we sloppily impute yi values using Xq: any snippet with Xi G Xq, or contained 

in a range in Xq, is considered relevant. These imputed ^s may conflict with “true” y& (if 

available). How drastically might w, w deteriorate because of using ^s to train our system in 

place of yiS?

We sampled queries leading to 14,562 ^-labeled snippets. & gave only 571 false positives 

and 395 false negatives. These modest fractions may explain why modeling the bottom bound

ary of rectangles in Figure 3.4 did not make a significant difference. Table 3.2 shows the effect 

of imputed training on test MAP score. The drop in test accuracy is very mild. Our algorithm 

continues to beat all baselines.

Table 3.2: Effect of imputation on test MAP.

yi known yi imputed

RankSVM 0.369 0.361

Merit-Diff 0.487 0.475

IntervalRank 0.511 0.480
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3.9 Scaling QCQ to Terabyte Corpus

So far in this chapter we used a search engine to get a set of pages for a QCQ (stage 2 in the 

Figure 3.2). The snippets for the QCQ were extracted from those set of pages. The major 

limitation in using a search engine is that it does not support quantity type as a query term. 

For example, web search engines does not allow us to ask for documents containing the terms 

“price”, “Canon” or “camera” within a distance of 20 tokens from a quantity of type USD. 

Another limitation of using search engine is the performance issue. Given a QCQ we need to 

fetch the top result pages. It takes substantial time even to download top few (say 500) pages.

To support more precise query language and to build a live quantity search engine we have 

build our own index of 500 million pages. The index supports querying for quantity types as 

well. Having our on index also makes it possible to respond to queries in real time. In the 

implemented live QCQ system a user can enter a QCQ through a search box and get a list of 

quantity intervals (reported by our algorithms described above) as the response. The quantity 

intervals can be expanded to view the supporting snippets (Figure 3.12).

We had to address several engineering challenges in building such a large scale system.

Quantity Scanner The JAPE rule based quantity scanner described in the Section 3.3.1 has a 

throughput of 10 pages per second. Annotating 500 million pages with that throughput is 

clearly unacceptable even after reasonable parallelization.

Distributed Search Index of this huge corpus has to be hosted in multiple machines. Therefore 

we had to create multiple indexes containing a subset of pages. We also had to develop 

a search system that can perform the search over the indexes distributed across multiple 

machines

To tackle the first problem, we had to redesign our quantity scanner to reduce the depen

dency on NLP techniques and JAPE engine of GATE. The second problem was mostly tackled 

using standard tools. Although we had to modify those tools for performance reasons. Next 

we first give an overview of the implemented live QCQ system and then describe the improved 

quantity scanner that can annotate our corpus in acceptable speed and accuracy.

The corpus of 500 million pages is stored in highly compressed format and divided into 

several smaller files. The total size of the corpus is about 4.5 terabytes divided into 60 smaller 

files each containing around 8 to 10 million pages. Each smaller file is separately indexed using 

64



Lucene [UrlLucene]. Each index is of size about 32GB. The 60 Lucene indexes are then hosted 

in 6 machines. These machines are called as index server. A user sends a QCQ to the QCQ 

server (Figure 3.12). The QCQ server then forwards the QCQ to the index servers. Each index 

server does a local search on the indexes it is hosting and retrieves top K pages containing the 

query terms in the proximity of a quantity with desired unit type. The top K is computed using 

Lucene’s scoring function. Lucene’s scoring functions require IDF of the query terms. IDF is 

a global property and cannot be computed locally by the index servers. Therefore, the QCQ 

server first accumulates the document frequency (DF) of each query term from all the index 

servers. It then broadcasts the IDF (log(N/DF)) of the query terms to the index servers.

Snippets (as defined in section 3.2.2) are then extracted from this top K pages. Only the 

snippet feature vector (z^ and the quantity (x^ are extracted as only those two things are used 

in our algorithms. The actual text of the snippets are only required while displaying it to a user 

and not used by the algorithms. Lucene index contains the term vector of the pages. Computing 

feature vector (zi) only requires access to the term vector, query terms and query terms IDF. 

Therefore, can be computed locally by the index servers. The index server then sends back 

the snippet information (ziy Xi, docid, start and end character offsets of the snippet) to the QCQ 

server. The QCQ server enumerates and ranks the quantity intervals using our algorithms and 

then shows it to the user. A user can click on a quantity interval to see the supporting snippets 

(Figure 3.14). Once a quantity interval is clicked then only the actual snippet texts need to be 

shown to the user. The snippet texts are retrieved from a froward index which can return the 

text segment given docid and start/end character offsets.

3.10 Quantity Search over Wikipedia Annotated Corpus

In this section, we show one more use of a web resource in answering quantity queries. We 

show the use of Wikipedia to disambiguate concepts and to support more specific query lan

guage. We used a recently developed system at IIT Bombay that annotates the entities men

tioned in a corpus with entity IDs from Wikipedia [Kulkarni et al., 2009]. For example, the 

entity mentions like “Michael Jordon” (or even “Michael” referring to Michael Jordon) will 

get mapped to the Wikipedia entity “Michael Jordon”. But there are seven different “Michael 

Jordon’s” in Wikipedia referring to basketball player, footballer, machine learning researcher 

etc. So the challenge is to map the entity mentions (referred as spot) to the proper Wikipedia
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Figure 3.12: Distributed indexes in live QCQ system

entity. The guiding premise of the algorithm was that a document largely refer to topically co

herent entities. While Michael Jordon and Stuart Russell can refer to seven and three persons 

respectively in Wikipedia, a page where both Michael Jordon and Stuart Russell is mentioned 

is almost certainly talking about computer science and machine learning researcher Michael 

Jordon. They developed a collective annotation algorithm to accurately annotate the spots with 

Wikipedia entities.

One major advantage of annotating entity mentions with Wikipedia entity IDs is that it 

helps in disambiguation. Basketball player Michael Jordan and machine learning researcher 

Michael Jordan get linked to the respective Wikipedia entities and that helps in distinguishing 

them. Another scenario is “HP” and “Hewlett Packard” will both get linked to the Wikipedia 

entity about the company “Hewlett Packard”. Note that because of the same disambiguation the 

instances of “HP” that are referring to “Hindustan Petroleum” will not get linked to “Hewlett 

Packard”.

We have annotated our corpus of 500 million pages with Wikipedia entity IDs using the 

collective annotation algorithm. The inverted indexes of the corpus now contains the Wikipedia 

annotations as well. Therefore, one can use a Wikipedia entity ID as a query term. In the 

implemented system, a user can enter a Wikipedia entity with braces, e.g. {Luxembourg (city)}. 

A drop down menu is developed to assist a user in typing the Wikipedia entity.

In Figure 3.13 and 3.14 we show a sample query and output quantity intervals of the query.
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In this example, a user is looking for the revenue of the company “Hewlett Packard”. Wikipedia 

entity '{Hewlett Packard} is used as a query term. Since mentions of both “HP” and “Hewlett 

Packard” get linked to this Wikipedia entity, both of them will be considered as query terms.

gio Edi ^ow History D*)ciout Qookmarkt $>olt H«lp

6 '.3 $ hd bJ ft^l poT httpV/toumon c««.»tb.ac jn/<}CQft»p/Tortj»p

M Cocgl* Mai • inbox • tom... Q |ol Curating and Soarchag th— O । .o', Curating and saarehing th— O [if latent dlricNat allocation • —O \v Latent Dirichlet avocation — O ।

Curating and Searching the Annotated Web

|+{Hawlett-Packard} +revenue (USD1 
'J result as url list

7.7615E10-8.5785E10 (57 Snippets)
7.9135E10-8.7465E10 (49 Snippets)
7.59O5E1O-0.3095E1O (45 Snippets)
7.695E1O-0.5O5E1O (43 Snippets)

Correct Answers
75000000000-8500000000

tS ES ® I DictionaryDon*

Figure 3.13: QCQ search interface. Wikipedia entities in the query are specified using ’{’ (e.g. 

{Hewlett Packard}). A ranked list of quantity intervals are shown as the response. The number 

of snippets supporting the quantity interval is shown within bracket. “Correct answers” are the 

answers that could possibly be extracted by manually browsing the corpus (data of 2006)

67



M GooqIo Mal • Inbo* ■ tom— □ ' Ctnting and Saarthng th— □ i o Ciaating and Starting th... □ latent dtrkMa* allocation - — Q \V Latent Okkhlet allocation — □ v'

Ble ^ow History Dtfcteu* Bookmark* £ol> H«lp :

6 B,| po~http7/lojm»n ci«.utb at in/OCQ/|tp/U<t |tp v |IC)V la!ant dnchl.t aDocatwr^]

Curating and Searching the Annotated Web

7.7615E10-8.5785E10 
7.9135E10-8.7465E10 
7.5905E10-8.3895E10 
7.695E10-8.505E10 (4

Correct Answers 
75000000000-85

|+{Hewlett-Packard} +revenu< 
J result as url list

" ‘......... x
Executive Carly Florina said on 
Tuesday. The computer, server, 
printer and camera company with 
*80 billion In revenue wants a place 
at the home-entertainment table 
alongside the well-known names 
businesses, personal Uvea and 
communities. Currently ranked #11 
on the Fortune 500, HP generated 
$78.4 billion tn revenue during fiscal 
year 2004. Clients

[USD1_________________________ Q| A ’

global services and Imaging and 
printing. The merged company had 
combined revenue of approximately 
$81.7 billion In fiscal 2001 and 
operations tn more than 160 
countries. Information about HP and

___________________ ...HP merged with Compaq Computer 
Corp, on May 3, 2002. The merged 
company had combined revenue of 
approximately $81.7 billion tn fiscal 
2001 and operations tn more than 
160 countries. More Information 
about HP Is available at. © 2005 
Hewlett-Packard Development 
Company
and printing. For the four fiscal 
quarters ended Oct. 31, 2004, HP 
revenue totaled $79.9 billion. More 
Information about HP (NYSE, Nasdaq: 
HPQ) Is available at. © 2005

CSE danartment

Oono E9 S f Dictionary_______________ J | < |

Figure 3.14: The expanded list of supporting snippets for a quantity interval is shown here

3.11 Conclusion

We introduced QCQs, and proposed algorithms for returning consensus intervals in response 

to QCQs. We showed that corroborative ranking of intervals is more accurate than ranking 

snippets independently. The experiments show that the proposed ranking algorithms achieve 

about 20% higher accuracy than most state of the art approaches. We have made our QCQ 

system more powerful by replacing search APIs with our own quantity index on Web-scale 

corpora. We have also shown that how Wikipedia annotations can be used to enrich the QCQ 

system.
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Chapter 4

Generating Topic Features from a Web

Corpus

In the last chapter, we discussed techniques for mining the web to answer quantity queries. In 

this chapter, we will discuss the use of web resources to improve the accuracy of text classi

fication and clustering tasks. In particular, we will discuss the second sub-problem addressed 

in the thesis, namely obtaining topic features from a web corpus. Broadly we will describe the 

methods to obtain topic features from a web corpus and will experimentally show that the topic 

features helps in improving the accuracy in various tasks of text classification and clustering.

The organization of the chapter is as follows; we first study a simple method of feature 

generation from Wikipedia (Section 4.1). The feature generation method largely follow the 

Gabrilovich’s method described in the Section 2.2.2. We then show that features generated from 

Wikipedia can help in clustering short texts and doing inductive transfer for text classification. 

Next we point out some shortcomings of the Gabrilovich’s method of feature generation and 

propose a novel method of feature generation from a web corpus (Section 4.2). The proposed 

method addresses some of the shortcomings of the Gabrilovich’s method and also improves the 

accuracy of text classification tasks.

4.1 Generating Topic Features from Wikipedia

In this section, we deploy a very simple method to generate topic features from Wikipedia. 

The method is very similar but slightly simpler to the method of feature generation proposed 

by Gabrilovich and Markovitch [2006]. The deployed feature generation method works as 
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follows; an inverted index of the Wikipedia pages is first created from the XML dump of 

Wikipedia. Given a text document, a set of Wikipedia pages are retrieved from the inverted 

index using a query (or set of queries) constructed from the text of the document. The titles 

of the top K retrieved Wikipedia pages are used as the K topic features of the given docu

ment. These K topic features are also called as Wikipedia features. The documents are then 

represented in a features space consisting of “bag of words” as well as the Wikipedia features.

Wikipedia XML dump is freely available for download 1. Only the dump of the English 

language Wikipedia pages are used in the experiments here. The dump used in the experi

ment was obtained on November 26, 2006. A preprocessing step was used to filter out not so 

informative Wikipedia pages and thereby reducing the size of the index. The pages removed 

were Template pages (starts with “Template:”) or other pages describing the Wikipedia features 

(starts with “Wikipedia:”). A stop word filter was then applied on the Wikipedia pages. Short 

articles in Wikipedia are either under construction or about overly specific concept. Therefore, 

any page that contains less than 50 words at this stage were also removed. At the end there were 

1,174,107 pages. An inverted index of these pages were created using Lucene [UrlLucene]. 

Lucene is an open source java based indexing and search technology. To obtain Wikipedia fea

tures of a document, a set of top matching Wikipedia article was retrieved from this Lucene 

index using the queries constructed from the text of the document.

The following example shows how Wikipedia features are obtained and used to enrich the 

document representation. Consider the following two news headlines as two text documents.

docl: Sony to Slash PlayStation3 Price

doc2: Jittery Sony Knocks $100 Off PS3 Price Tag

Table 4.1 shows the bag of words representation of these two documents. Each row in the 

table is the feature vector representation of the corresponding document. For clarity, binary 

weighting is used instead of TF*IDF weighting. In binary weighting, if a word appears in the 

document the corresponding feature gets weight 1 otherwise it gets weight 0. Note that the 

words are converted to lowercase in the feature. Lowercase conversion, stop word removal (and 

sometime setmming) are standard preprocessing steps of document representation. Table 4.1 

shows that there are very few term overlaps between the two documents although the documents 

are talking about the same news topic. The readers of this thesis can easily figure out that the 

’available at http: //download. wikimedia. org/
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above two documents are about the same topic. This is because the readers have the background 

knowledge that “PIayStation3” and “PS3” refers to the same object and also a human can easily 

understand that “knocking off price” and “slashing price” have same meaning.

Table 4.1: BOW representation (binary weighting)

sony slash playstation3 price jittery knocks ps3 tag

docl 1 1 1 1 0 0 0 0

doc2 1 0 0 1 1 1 1 1

Figure 4.1 shows the titles of the retrieved Wikipedia articles for these two documents. 

Note that there is quite a bit of overlaps in the retrieved title lists although the word overlaps of 

those documents was few. This is because in Wikipedia articles the synonyms (e.g. PlayStation3 

and PS3) are used interchangeably therefore they are able to retrieve similar lists of articles. The 

titles of the top K Wikipedia articles are then added as topic features of the document. The new 

feature space consists of bag of words as well as the topic features. This features space is 

referred here as the enriched feature space. Table 4.2 shows the representation of these two 

documents in the enriched feature space.

Table 4.2: Enriched representation with Wikipedia features

sony slash Playstation Network Platform Playstation 2 Ken Kutaragi Playstation 3

docl 1 1 ... 1 1 1 1

doc2 1 0 1 0 1 1

4.1.1 Clustering Short Texts

Now we show how the Wikipedia features can help in improving the accuracy of clustering 

short text documents. Text clustering is an important tool for content management and dealing 

with the problem of information overload. In many applications, the items to be clustered are 

short segments of texts, e.g., search result snippets, forum & chat messages, blog & news feeds, 

product reviews, books & movie summary etc. The short texts consists of few words to few 

sentences. Because of the short length the individual text items are unable to provide enough 

contexts or word co-occurrence statistics for a good similarity measure between the items. The 

general problem of bag of representation (e.g. synonyms, polysemy) are also more prominent
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2. PlayStation 3
3. Ratchet & Clank (PS3)
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7. Console manufacturer
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11. Singstar: Next Gen
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(b)

Figure 4.1: Feature generation from Wikipedia

when the text items are of short lengths. Therefore, clustering (or even classification) short texts 

is a challenging problem.

The examples in the Figure 4.1 show that the Wikipedia features can provide context 

information that are not even there in the documents. For example, the Wikipedia features 

suggest that both the documents are related “PlayStation Network Platform”, “PlayStation 3”, 

“PlayStation” etc although such terms may not appear in the document. The hypothesis here is 

clustering short texts with Wikipedia features will improve the clustering accuracy. To test this 

hypothesis we conduct an comparative study of several clustering algorithms between BOW 

representation and the enriched representation of the documents. The results indicate that for 

many clustering algorithms, significantly higher accuracy is obtained when the documents are 

represented in the enriched feature space. Next we discuss the datasets and the results of the 

experiment.
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Dataset

The labeled dataset for the experiments was were created from Google News [UrlGoogleNews]. 

The goal was to collect a set of news articles belonging to a set of topics with known topic 

assignment. A topic is considered as a cluster2 and the news belonging to a topic are considered 

as the members of the corresponding cluster. We run the different clustering algorithms on these 

news articles and compute clustering accuracy against the ground truth cluster memberships.

2There could be other notion of clusters in a set of news articles. But topic based clustering is common in the 

literature (e.g.. [Allan, 2002]) and has practical importance

Google News homepage contains short articles (news clips) on different news topics. For 

each article there is a link pointing to the other articles on the same topic. Figure 4.2 shows 

one such article and the associated link (circled red) to the other articles of the same news 

topic. Following the red circled link in the Figure 4.2 will lead to a page that contains 30 

news clips on the same topic. If there are more than 30 news clips available on that topic then 

there will be a link to the “Next” page. Therefore following the link to the related article and 

the subsequent “Next” pages one can gather news articles of a particular topic. Repeating this 

procedure starting from another news clip of some other topic we can gather a set of news clip 

belonging to a set of topics. Since we know the topic memberships of the news clips, we can 

use this data to evaluate a clustering algorithm.

Walk This Wav? Man’s First Footprints
ABC News - Feb 27, 2009
By DANA HUGHES Scientists have discovered footprints in northern Kenya that 
prove human beings have been walking our walk for at least 1.5 million years. 
Footprints show human ancestor with modern stride Reuters 
Archaeologists Discover First Ancient Human Footprint NewsOXY 
TopNews United States • Capital FM • CNN • Sydney Morning Herald 
(all 245 news articles »]

Figure 4.2: A news clip from Google News

We took a snapshot of the Google News homepage on February 16, 2007. That page 

had 26 news articles on 26 different topics and so 26 links pointing to the other articles of the 

corresponding topics. We crawled those 26 links and the “Next” page from each link and then 

extracted the news clips by parsing the crawled pages. This way we gathered 1557 news clips 

belonging to the 26 different topics (i.e., approximately 60 articles per topic). Each news clip 

here consists of a title and one line of description. Note that the original 26 links of the Google 

News homepage served as the cluster identifiers.
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News articles of the above dataset were then represented in two different ways and six 

different clustering algorithms were run using each of the representation. The first represen

tation is the bag of words representation (referred as baseline) and the second one was the in 

the enriched representation with Wikipedia features (referred as wikijnethod). As mentioned 

earlier, the Wikipedia features of a news clip was obtained by querying the Lucene index of the 

Wikipedia dump. Two separate query was used to get the Wikipedia features of a news clip. 

One query is the title and the other one is the description sentence of the news clip. For each 

query, 10 top matching Wikipedia articles were retrieved from the Lucene index; i.e. total 20 

Wikipedia articles were retrieved. The titles of these 20 Wikipedia articles were then used as 

the features. Note that in this list of 20 titles some titles may appear twice since two queries 

were used separately. The weight of the corresponding Wikipedia feature was set appropriately.

The title of a news article is generally more important than the description. We obtained 

better results by giving more importance to the terms that appear in the title. In the baseline 

representation, this was achieved by giving double weights to the terms appearing in the “title” 

of the news article. Similarly in the wikijnethod, we double the weights of the Wikipedia 

features that were retrieved by the title of the news clip.

In the experiments, the freely available clustering package SenseClusters [UrlSenseclus- 

ters] was used. SenseClusters uses Cluto [UrlCluto] for clustering but provides suitable inter

faces for text processing, parameter setting and evaluation. As mentioned in the section 2.1.2 

Cluto provides six different clustering algorithms, three partitioning methods (rb, rbr and di

rect), two agglomerative methods (agglo, bagglo) and one graph based method. The details of 

these clustering algorithms can be found in the cluto manual. The goal here is to show that the 

representation in the enriched space can help different types of clustering algorithms. There are 

some parameters to choose in clustering, e.g. the stopping criterion function. All the parameters 

were left at the default settings of the SenseClusters.

Results

Table 4.3 shows the accuracy achieved by the baseline and the wikijnethod with the different 

clustering algorithms. The wikijnethod achieved the best overall accuracy of 89.56%. It also 

achieved better accuracy than the baseline in 5 out of 6 clustering algorithms. When averaged 

across the six different clustering algorithms the wikijnethod achieves accuracy of 74.81%, an 

improvement of 33.26% from the baseline overall average accuracy of 56.14%.
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Only in the case of “rbr” wiki-method is little worse than the baseline. We could not find 

exact explanation for this degradation of performance as the Cluto manual does not provide the 

exact details of the clustering algorithms. One possible reason we believe is over fitting, rbr is 

the extension of the rb and tries to globally optimize the solution by repeatedly calling the rb 

algorithm, rb already optimizes the number of clusters and a cluster criterion function. There

fore, the multiple objectives and local optimization of those objectives in a higher dimensional 

feature space in rbr can potentially over fit the data.

Table 4.3: Clustering accuracy

rb rbr direct agglo graph bagglo

baseline 63.20 79.38 67.05 22.03 81.62 23.57

wiki-method 85.42 63.65 82.66 83.88 89.56 43.67

4.1.2 Improving Inductive Transfer for Text Classification

In machine learning literature, inductive transfer “refers to the problem of retaining and apply- 

' ing the knowledge learned in one or more tasks to efficiently develop an effective hypothesis 

for a new task” [Silver et al., 2005]. A great deal of research on inductive transfer has been 

done under various names, e.g., learning to learn, life-long learning, transfer learning, multi

task learning, hierarchical Bayes etc. Labeled training data is usually scarce or expensive. But 

labeled training data might be easily available in some related tasks. Also, in some scenario 

there might already exist a learned model for a related task. The purpose of inductive transfer is 

to use the knowledge learned on the related tasks to improve the performance on the target task. 

For example, Wu and Dietterich [2004] showed that the image classification accuracy can be 

improved when S VMs are trained on a large number of related images but relatively few target 

images. In their experiment, the target image was scanned tree leaves whereas the related im

ages where a collection of dried plant specimens easily available from a university Herbarium. 

It has been observed that transferring knowledge often helps if the target and the related tasks 

are similar enough. But it can also hinder performance if the tasks are too dissimilar. This later 

phenomena is known as “negative transfer” [Silver et al., 2005].

In this section, we show a method of improving the performance of inductive transfer in 

the task of text classification using Wikipedia features. In particular, we target an inductive 
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transfer scenario shown to be useful in daily classification task [Forman, 2006]. The inductive 

transfer model (described shortly) is basically a classifier re-use model [Bollacker and Ghosh, 

1998]. A set of classifiers are built for a related set of tasks. Knowledge transfer from these 

classifiers is done by using the outputs of these classifiers as inputs in the target task. In our 

method, the classifiers from which knowledge need to be transferred are trained in the feature 

space consists of the Wikipedia features. We observed that classifiers trained in such feature 

space are more effective in transferring knowledge than the classifiers trained on the bag of 

words features.

Next we describe the daily classification task and the inductive transfer model to reuse the 

past classifiers in the daily classification task. We then show that the inductive transfer becomes 

more effective when the past classifiers are trained in the Wikipedia feature space.

Daily Classification Task (DCT)

The daily classification task (DCT) is the task of building a classifier daily to classify news 

articles. Consider the text categorization problem for a news agency. Everyday the news agency 

receives lots of news articles and they want to categorize the articles under certain categories 

or classes (e.g. “sports”, “business”, “Sci/Tech”, etc.). In addition, the news agency has some 

human annotators who provides ground truth class labels for a subset of news articles received in 

any particular day. The news articles with ground truth class labels can be used as the training 

data to build a classifier. The task is to classify the remaining articles (for which the ground 

truth class labels are not available). The performance is measured by taking the average of the 

classification accuracy over all days.

Formally, everyday the system receives N news articles. Out of these N articles, ground 

truth labels of T articles are available for training. The job is to classify the remaining (N-T) 

articles of that day. Performance will be reported by taking the average performance over 365 

days (say).

In the news domain, as time progresses new events occur and old events disappear. There

fore, the underlying concepts are not stable but change over time. This problem is known as 

concept drift. In such setting, classifiers built in the past are not very effective in predicting the 

class labels of todays (or futures) news articles. Therefore as time progresses we need to build 

new classifiers using the labeled training data made available recently.

The strawman approach of solving the DCT problem is to build a classifier everyday using 
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only the T training cases available that day. Then use this classifier to predict the class labels 

of the remaining (N-T) cases of that day. But we should leverage the training examples made 

available in the past. A straightforward approach to do that is to use all the training examples 

available up to the current date. For example, when building a classifier on the ith day i * 

T training examples are available. We can use all the training examples together to build a 

classifier. As observed by Forman [Forman, 2006], this approach also does not work well. Due 

to the change in concepts over time, putting all training examples together actually hurts the 

performance. In addition, using all training examples has performance penalty as training time 

will increase and feature space will blow up due whole bunch of new terms in the training set.

More sophisticated and effective approach in solving the DCT problem is to transfer the 

knowledge of the previously built classifiers to the new classifier being built. This can be done 

by using an inductive transfer model.

Inductive Transfer Model for DCT

An inductive transfer for DCT can be designed by using the outputs of the past classifiers as 

additional input features to a new classifier. Like the strawman algorithm, everyday a new 

classifier is trained using the T available training cases. Inductive transfer is done by adding 

P additional binary features (positive/negative) to the cases of today. These P features are the 

predictions of the P previous days’ classifiers on the today’s cases. The prediction of a classifier 

on an article (case) is whether the article belongs to the target class or not (positive/negative). 

These features are referred here as the prediction features. Here the value of P determines the 

number of previous days’ classifiers we can use. By varying the value of P in our experiment 

we will see the impact of P. Note that these P prediction features are used in addition to the 

other features (e.g. bag of words and Wikipedia features) of the articles. Also, these prediction 

features are added to the todays training as well as test cases.

An example of our inductive transfer model for F = 2 is shown in the Figure 4.3. At 

day 1 there is no past classifier. Therefore, the classifier of day 1 is built using the T training 

cases without any prediction features. At day 2 there is the past classifier of day 1. For each 

cases of day 2, the prediction of the classifier of day 1 is added as an additional binary feature. 

Now the classifier of day 2 is built using the T training cases where each training case has an 

extra binary feature. At day 3, we have 2 previous days’ classifiers available. Therefore, two 

additional prediction features are added to the each cases of day 3. At day 4 also there are only
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2 previous days of classifiers are available as we choose to use P=2 in this example.

• T : Number of Training cases on any day. The boxes are feature vector representation of the 

today’s cases (training and test)

• Ci'. Classifier built on day i using the T training cases of that day

• Prediction of the classifier Ci on each of the cases.

Figure 4.3: Inductive Transfer Model

One problem in doing inductive transfer in this fashion is that all the past classifiers remain 

always in use for any value of P > 0. For P = 1 today’s classifier depends on the yesterday’s 

classifier only. But the yesterday’s classifier depends on the one from the day before it, and so 

on. To break this recurrence while doing inductive transfer from the past classifiers we have to 

make sure that the past classifiers are independent. This is done by building the past classifiers 

separately simply using the T training data without adding prediction features to them. That is, 

each day two different classifiers are built. One is dependent on the P previous days classifiers 

and this classifier is used in predicting the class label of remaining (N-T) cases of that day. This 

classifier is referred here as today's classifier. Average performance of the today's classifiers 

over a period of time (365 days) is used as the performance measure of the system. The other 

classifier is trained without any prediction features and therefore independent of any previous 

classifier. This latter classifier is used in future while doing inductive transfer. Here the term 

previous days' classifiers always refer to this kind of classifiers.

Doing inductive transfer in the above mentioned way has many advantages. Firstly, the 

past classifiers are used just to provide features to the cases of today. A state of the art classifier 

should be able ignore those features that are useless. Classifiers, like support vector machine 
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(S VM) are known to be able to ignore large set of redundant words in the text classification task. 

Therefore, doing inductive transfer through features with a state of the art classifier reduces the 

risk of negative transfer. Secondly, the performance overhead of this inductive transfer model 

is just adding and using P additional features and therefore expected to be negligible.

The inductive transfer model used here is very similar to the temporal inductive transfer 

(TIX) model described by Forman [Forman, 2006]. But to make the previous days’ classifiers 

useful he had to use hindsight. Hindsight is the ground truth labels of a percentage of the past 

cases that were not in the training set. In his work, while training the previous days’ classifiers, 

in addition to the T training cases a percentage of (N-T) cases were included in the training set 

with proper ground truth labels. The best performance was observed using full hindsight. Full 

hindsight means previous days’ classifiers are trained using all the N cases of the corresponding 

day. In such scenario all the N cases have to be properly labeled. The problem here is that there 

is no easy way to obtain the hindsight.

In our setting, no hindsight has been used. Previous days’ classifiers are trained using only 

the T training cases of the corresponding day.

Experiments

The hypothesis for the experiments here is that the inductive transfer from the classifiers trained 

using the Wikipedia features are more effective. The Wikipedia features of the news articles 

of a particular class are more stable, whereas the terms appearing in such news articles can 

change overtime. Therefore, when the previous days’ classifiers are trained using the Wikipedia 

features they are able to predict the class label of today’s articles better. As a consequence 

the P prediction features becomes more informative and improves the accuracy of the today’s 

classifier.

Dataset We used the news articles of RCV1 corpus [Lewis et al., 2004] to setup the daily 

classification task. The RCV1 corpus contains more than 800,000 news articles produced over 

365 days (from 1996-08-20 to 1997-08-19). The news articles are manually categorized to many 

topics.

We sorted the news articles by day and everyday only 400 articles were used just to keep 

the experiment time manageable. Out of those 400 articles, 100 articles were used as training 

cases and the job was to classify the remaining 300 articles everyday (i.e. as per our terminology
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N = 400 and T = 100). The macro average F-measure over 365 days is used as the measure of 

performance

Methods Three methods are evaluated in our experiment. All three methods differ only in 

representing the articles in terms of features. The first method represents the articles only using 

the bag of words, the next two use the Wikipedia features also. Otherwise, all three methods 

deploy the same inductive transfer model described above. Each day the today’s classifier is 

trained using the 100 training articles and this classifier is used to predict the class labels of the 

remaining 300 articles of that day. Inductive transfer is done by adding the predictions of P 

previous days’ classifiers as additional features of the articles. The previous days’ classifiers are 

trained without using these prediction features (to break the recurrence as discussed earlier).

Linear Support Vector Machine (SVM) of Weka library [Witten and Frank, 2005] (version 

3.5) was used as the base classifier. Only binary feature weighting has been used with the 

parameter C of SVM was set to default value 1. Next we describe the different methods in 

details.

Baseline Each news article is represented only using bag of words. The stop words are re

moved.

BOW+Wiki The bag of words features of each article is augmented with the Wikipedia fea

tures of the article. Therefore, in this representation the features of an article are either 

the terms appearing in the article or the Wikipedia titles retrieved using the article as a 

query. The today’s classifiers as well as the previous days’ classifiers use this as the base 

representation of the articles. Note that in addition to these features, P prediction features 

are added to the articles while training and testing the today’s classifier.

WikiOnly Our conjecture is that the Wikipedia features are more stable in terms of concept 

drift as it captures the background knowledge of contents of the articles. To make full use 

of it we choose to train the previous days’ classifiers only using Wikipedia features of the 

articles. That is, everyday we train the classifier that will be used in future for inductive 

transfer with only the Wikipedia features of the training articles. The other classifier, i.e., 

the today’s classifier, is trained using bag of words (and P prediction features) similar 

to the Baseline method. Also note that while generating the prediction features of to

day’s articles the previous days’ classifiers use only the Wikipedia features of the todays
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articles.

Results

The above described methods were tested on the DCT of binary classification for several in

dividual categories in the RCV1 corpus. Figure 4.4 shows the average F-measure (over 365 

days) achieved by different methods on four major classes in the RCV1 corpus; ECAT (ECO

NOMICS), M13 (MONEY MARKETS), GCAT (GOVERNMENT/SOCIAL), GSPO (SPORTS). 

The results are shown here by varying the value of P from 0 to 128.

P (Previous Days Classifiers Used) P (Previous Days Classifiers Used)

P (Previous Days Classifiers Used)

baseline —■— Hiki+BOH —

P (Previous Days Classifiers Used)

HikiOnly —

Figure 4.4: Results for 4 major classes in the RCV1 coipus: ECAT and M13 (top), GCAT and

GSPO (bottom)

Figure 4.4 shows that the performance of the baseline method remains flat with the in

crease of P. Only in the case of M13 we can see some marginal improvement as P increases.
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P = 0 means no prediction features from the previous days' classifier and therefore no induc

tive transfer. So the F-measure at P = 0 gives the performance of the strawman algorithm. The 

flat curves of the baseline method thus indicate that the inductive transfer from previous days' 

classifiers has almost no effect when the previous days’ classifiers are trained using only bag of 

words features

Next we observe that in the most cases the BOW+ Wiki method yields much higher average 

F-measure than the baseline for all different values of P. Here also P = 0 means no inductive 

transfer but the articles are represented in the enriched feature space consisting of bag of words 

as well as the Wikipedia features. That led to a significant increase in F-measure in most cases 

even for P = 0 (almost 10 points for ECAT, GCAT, and GSPO). But in this case also the curves 

remain almost flat with the increase of P. This implies that in this method also there is not much 

value in using the predictions of the previous days' classifiers.

In the WikiOnly method, the today's classifiers use only the bag of words representation 

of the articles. Therefore, the performance at P = 0 is the same as the baseline method. But 

as P increases the average F-measure starts improving. At P = 128 this method either surpass 

the performance of BOW+Wiki method (for ECAT and Ml3) or at least yields same average 

F-measure. This huge increase in performance is just because of the inductive transfer from 

the previous days’ classifiers. Here the previous days' classifiers are trained using only the 

Wikipedia features of the articles.

In news domain the words change very frequently [Forman, 2006]. Therefore, a classifier 

trained using the word features fails to provide good prediction in the news articles of future 

dates. That is the main reason for the flat curves of the baseline and BOW+Wiki approaches. 

The Wikipedia features of an article captures the broader contexts of the concepts described 

in the articles. Unlike the word features, the Wikipedia features remain stable for different 

articles describing same (or nearly same) concepts. Therefore, the classifiers trained only on 

the Wikipedia features provide more useful predictions on the articles of future dates.

Since the WikiOnly method was performing best in our experiment, in Figure 4.5 we show 

the performance impact of this method on 30 major categories in the RCV1 corpus. In this 

figure, the length of an arrow indicates the impact on performance for P = 0 to P = 128. It 

can be seen that for the majority of the classes there are significant improvements in the average 

F-measure. Also, there is no negative impact on the performance (no downward arrow) so no 

“negative transfer”.
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Figure 4.5: Results for 30 major classes in the RCV1 corpus

4.2 Feature Generation using Topic Modeling

So far in this chapter we adopted a simpler version of feature generation method proposed by 

Gabrilovich et al. We showed that such Wikipedia features are useful in text clustering and 

inductive transfer over text classifiers. Some earlier work show that such features are useful 

in other tasks like text classification [Gabrilovich and Markovitch, 2006], computing semantic 

relatedness between words [Gabrilovich and Markovitch, 2007] and web search [Milne et al., 

2007]. Although the results of all these work show that the Wikipedia features are useful in 

different information retrieval related tasks but the above method of feature generation from 

Wikipedia has the following limitations.

Ad-hoc retrieval method The above method of feature generation from Wikipedia depends on 

ad-hoc retrieval technique. A set of queries are constructed from the given document and 

a set of Wikipedia features are retrieved from the inverted index of the Wikipedia corpus 

using a ranking function. There is no guidelines about how to construct the queries, what 

ranking function to use or how many Wikipedia features to add.

Large number of features The total number of Wikipedia features added is the number of dis

tinct Wikipedia pages retrieved by the documents of the classifications/clustering task.
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Therefore, the feature space can become very large. For example, consider the scenario 

where each document retrieves a different set of Wikipedia pages. Wikipedia has millions 

of pages and therefore the feature space can potentially grow to have millions of dimen

sions. There is no proper way to control the growth of the feature space. High dimensional 

feature space can have performance impact on the downstream classifications/clustering 

algorithms.

Dependency on the Wikipedia corpus This method retrieves the Wikipedia articles using tex

tual similarity to the given document and uses the “titles” assigned to the Wikipedia ar

ticles as the additional features. Therefore, it heavily depends on the similarity of the 

document to the Wikipedia articles and the titles given to the Wikipedia articles. But 

Wikipedia is a fast evolving corpus. It is not known how this method will behave as the 

Wikipedia corpus evolves.

In this section, we develop a novel method of feature generation from an additional corpus. 

The additional corpus can be the Wikipedia corpus or any other corpus available in the web. In 

this method K topics are extracted from the additional corpus using a topic modeling technique. 

These K topics then act as K additional features. Instead of ad-hoc retrieval, this method uses 

more principled inference methods of topic modeling to estimate the topic probabilities in a 

given document. The parameter K controls the total number of new features to be added. 

Therefore, the growth of feature space is limited by K which is typically in the range of 100 - 

200. Also, unlike the Wikipedia features, the features here are extracted “topics” and not the 

“titles” of the articles in the corpus. Therefore, this method can work with any other web corpus 

not just with Wikipedia like encyclopedia corpus.

4.2.1 Overview of the method

First we recall and show some examples of the topic modeling technique Latent Dirichlet Al

location (LDA) [Biei et al., 2003] introduced in the Section 2.1.1. LDA can extract K topics, 

zx. .. zk, from a corpus. Here a topic is the probability distribution over the words, i.e. topic 

Zi is the probability distribution P(w\zi) where w is a word in the vocabulary. Also, for each 

document d, LDA determines the probability Pfa |d) that the document contains the topic z^ 

LDA has a principled mechanism for inference, i.e. given a new document dnew, which was not 

in the corpus, it can determine the topic probabilities (P(zi\dnew)) for the new document.
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Some example topics extracted from two different sample collections of Wikipedia pages 

are shown in the Figure 4.6. Here each sample collection contains 10,000 Wikipedia pages 

and 200 topics were extracted from each collection using LDA. Figure 4.6 shows 10 extracted 

topics for each sample collection. In the tables, each column represent a topic (a probability 

distribution over the words). For each topic z^ the words are sorted based on the probability 

P(w|Zi) and only the top 5 words are shown in the Figure 4.6. Here the words are stemmed to 

keep the vocabulary size manageable.

Zb Zc Zd Zc Zf zg zh Zi Zj

band radio parti style militari school airport engin game Jewish

music station elect background unit univers airlin design player jew

record broadcast vote color fore student intern power video rabbi

album televis parliament font armi colleg flight model dragon hebrew

rock channel minist border war educ air electr plai ben

(a) random sample -1

Zk Z| Zm Zn Zo Zp Zq Zr Zs zt

album radio parti style war school air design game israel

music station elect text armi student aircraft engin player Jewish

band broadcast vote background fore high airport power card jew

record televis box font battl educ flight imag video isra

song channel candid width militari grade airlin model plai rabbi

(b) random sample - II

Figure 4.6: Topics extracted from Wikipedia

Few interesting things can be noticed in the Figure 4.6. Firstly, lots of extracted topics can 

be interpreted as high level real world topics (e.g. music, politics, education etc). Secondly, the 

topics shown in the table a and table b in Figure 4.6 are extracted from two different random 

samples of Wikipedia pages. But still the topics look very similar. Each corresponding column 

of table a and b in the Figure 4.6 has at least 3 words in common. It shows that it is possible to 

extract general real world topics, like music, politics, education etc, from a sample collection of 

Wikipedia pages. Note that corresponding columns in table a and b of figure 4.6 have different 

topic numbers (e.b. za vs Zk for the first columns). This is to emphasize the fact that even if 
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two extracted topics from two different Wikipedia corpora looks same there is no guarantee that 

those topics will be found under the same topic id.

The feature generation method proposed here applies LDA over the additional corpus to 

extract 200 topics. Now given the documents of a classification or clustering task, it uses the 

LDA provided inference technique to estimate the probability distribution of the 200 topics 

for each document d. This probability distribution or the 200 probability values are 

used as the 200 topic features of the documents. As before the topic features are used in addition 

to the bag of words features of the documents.

We used LDA with Gibbs sampling [Griffiths and Steyvers, 2004] methods for learning 

(extracting topics P(w\zi)) and inference (estimating topic probability P^d)). Topic extrac

tion is done over the additional corpus and therefore can be done off-line to the current clas- 

sification/clustering task. The inference in Gibbs sampling is very fast. An iteration during 

inference using Gibbs sampling involves computation of the order of the number of words in 

the new document and 50 iterations are good enough for our method. Next we show that these 

topic features can help in improving the accuracy of text classification tasks.

4.2.2 Improving Text Classification Accuracy

We tested the proposed method of feature generation on the RCV1 corpus [Lewis et al., 2004]. 

A sample collection of 10,000 random pages of Wikipedia was used as the corpus to generate 

topics. Only 10,000 pages were taken instead of the whole Wikipedia corpus as our current im

plementation of LDA cannot run on very large corpus. From this collection of 10,000 Wikipedia 

pages, 200 topics were extracted using LDA. Then for each document (d) in the RCV1 corpus, 

the probability that the document contains each of those 200 topics (P(zi\d)Yi e {1... 200}) 

were estimated using the inference technique of LDA. These 200 topic probabilities act as 200 

topic features of the document. Topic features are used in addition to the bag of words features.

Figure 4.7 shows the comparison of the F-measures between the bag of words representa

tion (baseline) and the document representation with the topic features. Classification accuracy 

(F-measure) of 30 major categories of RCV1 corpus are shown in the figure. For each category 

a SVM was trained with the first 10% of the documents in the RCV1 corpus. The remaining 

90% documents were used for testing. Since the topic features here are constructed from a 

random collection of Wikipedia pages, we report the average accuracy of 10 runs with 10 ran

dom samples of Wikipedia pages. It can be seen in the Figure 4.7 that for many categories the
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F-measure has improved by the topic features. For some categories (e.g. GSPO, GPOL etc) the 

improvement is huge. Also, the topic features never hurts the performance as the F-measures 

with topic features is always as good as the F-measures of the baseline.

Figure 4.7: Classification accuracy: baseline vs topic features

Next we show the impact on classification accuracy as the amount of training data changes. 

Learning with few training data is of practical importance as gathering labeled training data is 

an expensive and often manual process. Figure 4.8 shows how the F-measures changes as we 

change the training data from 10% to 50%. The F-measure here is the average F-measure of the 

30 categories (and 10 runs for the topic features). The interesting observation here is that the 

improvement with the topic features is more when the training data size is less.

At this point one question arises that instead of using an additional corpus could we have 

used the training set to extract the topics and hence the topic features. In fact in [Biei et al., 

2003] this scenario was considered in the experiment without much improvement in classifica

tion accuracy. Training set is often small (due to manual effort involved in creating it) therefore 

may not be sufficient to apply a statistical technique like LDA to extract the topics. The ex

tracted topics may be of poor quality and hence the topic features might not provide much 

meaningful information.
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Figure 4.8: F-Measures at different training data size

One major problem of extracting topics from a random collection 10,000 Wikipedia pages 

is that the most of the meaningful topics are very general. For example, as shown in the Fig

ure 4.6 the extracted topics resembles general topics like e.g. music, politics, education etc. A 

topic feature of a document indicates how much the document is aligned to the corresponding 

topic. Since the extracted topics are general, the topics features may not provide meaningful 

information when the target categories are very specific. This is evident in the results shown in 

the Figure 4.7. For categories like Mil (EQUITYMARKETS) or M132 (FOREXMARKETS), 

the improvements in F-measure are less. Because to categorize the documents under MU or 

Ml32 a topic feature corresponding to a general topic like music may not provide much valu

able information. On the other hand, major improvements are obtained for general and popular 

categories like GSPO (SPORTS), GPOL (POLITICS), GVIO (WAR) and GCRIM (CRIME).

We therefore conjectured that it will be better to extract the topics from a corpus that con

tains pages about the target categories of the current classification task. If the target categories 

are among the discussed topics in the corpus then LDA will most likely be able to extract topics 

that are (related to) target categories. In that case, the topic features can provide more useful 

information to the classification task.
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4.2.3 Feature Generation from Related Corpus

Now we will describe a method to construct a corpus that are likely to contain pages discussing 

topics related to the current classification task in hand. We will use this corpus to extract topics 

using LDA and then apply the proposed method to generate topic features for the documents of 

the classification task. We will show that improvement in classification accuracy is more when 

the corpus is related to the classification task in hand.

Towards this we adopted a very simple method of corpus construction. We use the target 

category names to obtain a set of pages from the web. Each category in the RCV1 dataset has 

a category name, e.g. 'SPORTS (GSPO), EQUITY MARKETS (Mil) etc. We used the names 

of the 30 RCV1 categories as queries to the Google search engine. For each query (i.e. the 

name of the category) we downloaded the landing pages of the top 500 URLs. That way we 

were able to create a corpus containing around 5,500 pages. We call this corpus as the Google 

Corpus. Since the discussed topics of the Google corpus are related to the RCV1 categories, 

the LDA extracted topics are also likely to be related to those categories. Therefore the topic 

features of the documents can provide more useful information to the classifier. The results in 

the Figure 4.9 confirms this hypothesis.

Figure 4.9: Classification accuracy: baseline, Wikipedia random corpus and Google corpus
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Figure 4.9 shows the comparison of all the three methods, baseline, representation with 

topic features obtained from 10,000 random sample of Wikipedia pages and representation with 

the topic features obtained from the Google Corpus. It can be observed in the Figure 4.9, 

that in most cases the topic features from Google corpus helped a huge gain over the baseline 

and even over the Wikipedia corpus based approach. Quantitatively, taking average over the 

30 categories, the F-measure achieved by the baseline, Wikipedia corpus and Google corpus 

based methods are 37.23%, 43.45% and 49.2% respectively. Topic features when obtained 

from random Wikipedia corpus improves the overall average classification accuracy by 16.71%. 

Whereas, when the topic features are obtained from a custom build corpus (Google corpus 

here) the improvement in average accuracy is 32.15%, almost double. Only in the cases where 

baseline classification accuracy is near zero or more than 80% the topic features could not 

provide more improvement. If the baseline accuracy is near zero or very high then it is very 

hard to improve anyway.

4.3 Conclusion

This chapter shows that the web resources can be used to obtain information about the topics 

described in a document. Such topic information, when obtained from a large web resource, 

provides broader contexts of the concepts described in the document. The broader contexts 

helps a classification or clustering algorithm to understand the content of the document better 

and thereby improves their accuracy. In this chapter, we discussed and developed novel methods 

to obtain topic features from a web corpus. The topic features provide topic information hence 

broader context information. We conducted several experiments on various text classification 

and clustering tasks and showed that a classification or clustering algorithm achieves much 

higher accuracy when the document representation contains topic features.
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Chapter 5

Gathering Training Data for Web Page

Classification

In the previous chapter, we described how a web corpus can be used to improve the accuracy 

of various classification and clustering tasks. In this chapter, we will demonstrate how different 

web sources can be utilized to gather training data to build a web page classifier for any arbitrary 

concept.

The organization of the chapter is as follows: First we will give the motivation and intro

duction of the problem (Section 5.1). We then describe methods to automatically obtain training 

data from different web sources (Section 5.2). Next we show that any one of these sources is 

itself not sufficient to provide high quality training data (Section 5.4). We need to leverage 

multiple sources to obtain training data for building a high accuracy classifier. We then develop 

(Section 5.5) different techniques to utilize multiple sources to build a high accuracy classifier.

5.1 Introduction

The classification of textual documents is a typical and important machine learning task with an 

enormous variety of applications. Web related examples where such classifiers are successfully 

applied include the categorization of news and blog content, spam filtering, and the filtering of 

web content with respect to user-specific interests.

The classical text classification literature focuses on controlled clean corpora, single-label 

problems, and most noticeably, it comes with the independent and identically distributed (i.i.d.) 

assumption, that is, the assumption that training and test set were sampled from the same under
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lying distribution. This assumption simplifies matters a lot, because in this case cross-validation 

results are reliable indicators for how well the target concept has been learned. But many web 

page classification tasks do not fit this classical setting of classification. Often the goal is to 

train classifiers that perform well on a broad variety of pages, ranging from clean dictionary 

entries over Internet shopping sites to noisy blogs. We cannot expect to get an i.i.d. sample 

from the target distribution, because it may not even be a fixed distribution but depend on the 

current user, and even the labels may sometimes be debatable. Therefore in practice sampling 

a training set from the “right” distribution would involve crawling representative sites from the 

web and manually labeling them, which is too tedious and expensive for many tasks.

In many practical settings of web page classification, the target classes or categories are 

not known in advance. A user will provide the category name and the system need to come up 

with a classifier on the fly. One example of such application is feed reader which is typically 

used to consume news, blogs and other web contents. In a feed reader, a user may like to 

organize all the news, blogs or other web pages about a particular concept (e.g. German Car} 

under a certain folder. In such scenario we cannot pre-build the classifier.

Building a classifier require labeled training data. Constructing labeled training data is 

a major bottleneck for supervised text mining applications, which e.g., gave rise to semi

supervised techniques like multi-view learning [Zhou and Li, 2005] that aim for minimizing 

the demand for labeled data. Like in the scenario of web page classification in many other 

domain as well, drawing training data following i.i.d. rule is impractically. Just recently, part 

of the research community started to work on various practically relevant, but much more dif

ficult classification settings in which the classifiers are used with data distributions that do not 

obey the convenient i.i.d. rule at deployment time. Examples include learning under concept 

drift (e.g., [Forman, 2006]), where the target concept changes over time, transfer learning (e.g., 

[Banerjee, 2007]) where classifiers learned for similar but different concepts are exploited to 

learn the target concept, and learning under sample selection bias [Fan and Davidson, 2006], 

which subsumes a variety of other problems that involve non-i.i.d. sampled training sets.

In this chapter, we are addressing a practical aspect of web page classification: the con

struction of training data sets for broadly applicable multi-label web page classifiers. To this 

end, we propose a general framework that involves gathering and labeling data in an automatic 

fashion by utilizing various sources on the web. This approach avoids both the process of man

ually labeling web pages and the complexity of semi-supervised learning, while promising to 
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produce highly accurate classifiers.

Two major contributions are shown in this chapter. First, we demonstrate that it is possible 

to build accurate web page classifiers without the hassle of labeling examples manually, while 

avoiding the pitfalls of unrealistic assumptions like stationary and homogeneous data collections 

that dominate the literature. Second, we show that the different web sources we exemplary use 

in the experiments in fact follow different underlying distributions, and that the diversity found 

in these sources cannot be ignored. We then study which sources and combination strategies 

are able to overcome the discovered problems, and hence allow to build the widely applicable 

classifiers we aim for.

5.2 Building Training Sets Automatically

The Web 2.0 provides a variety of resources that are promising for data mining problems. It 

leveraged joint efforts like tagging web contents and building up structured and semi-structured 

knowledge in electronic form, most prominently the online encyclopedia Wikipedia [UrlWikipedia] 

and the open directory of web pages, DMOZ [UrlDmoz]. The results are manually labeled, 

structured, or annotated pages, and - as we will show in the remainder of this chapter - can be 

used as cheap proxies for self-labeled data.

Our goal is to construct training sets for real-world web page classification. It is often 

problematic and inappropriate to assume that all web pages exclusively belong to a single cate

gory. We hence frame our learning problem as a set of binary classification problems, in which 

each document can belong to none, one, a few, or all categories. A binary classifier determines 

the estimated membership function for each category. To build a binary classifier for a category 

we need training set containing positive (belonging to the category) and negative (not belonging 

to the category) examples. We use different web sources to gather training corpora. A training 

corpus here is a (binary) labeled training set from a specific source for a specific category. We 

will be using the terms training corpus and source interchangeably.

For brevity, our studies focus on a representative set of four sources and corresponding 

extraction and labeling techniques. Further sources and different extraction methods can be 

integrated easily. The selection of sources will be motivated inline. Our extraction techniques 

were all chosen to be (i) simple enough to be reproducible, (ii) generic enough to cover a vast 

majority of potentially relevant concepts, and (iii) not to require extensive human interaction
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during the corpus construction phase. As we shall see, they still allow to build highly accu

rate classifiers. The specific problems (categories) this chapter exemplary focuses on will be 

described in more detail in the Section 5.3.1.

Open directory (DMOZ). DMOZ is a human edited web directory that contains almost 5 

million web pages, categorized under nearly 600,000 categories. Each category in DMOZ 

represents a concept, and the categories are organized hierarchically.

The way DMOZ structures the data in terms of natural, human interpretable concepts and 

the fact that every page is interpreted and classified by a human annotator makes the DMOZ 

collection the most natural and probably most popular choice for building training sets in the 

web domain (e.g., [Davidov et al., 2004]). It basically provides a gigantic, manually labeled 

training set which could roughly reflect the distribution underlying the WWW.

For our experiments, we crawled an RDF dump of DMOZ from November 26, 2006, 

and we downloaded all pages referenced in that dump. Pages in the sub-tree rooted at any 

specific category can be thought of as the positive examples of the corresponding class, and the 

remaining pages as negatives.

We constructed training corpora from DMOZ by selecting 1000 positive examples by 

“breadth first search” in the corresponding sub-trees of relevant categories, and an equal amount 

of negative examples chosen at random from pages outside those trees.

Search engine (Google). Search engines provide a simple interface to obtain web pages for 

any given concept. We simply used the target category name (e.g., photography} as a search 

query to Google search engine [UrlGoogle] and used the landing pages of the first 1000 hits 

as positive examples; we selected 1000 negatives from DMOZ in the same way as described 

above. 1

1A similar method was used to construct a related corpus in the Section 4.2.3 of the previous chapter. There we 

did not require negative examples and the corpus consisted only of the result pages from Google.

When considering search results as training examples, one should keep in mind that the 

pages are relevant in terms of e.g., the PageRank [Brin and Page, 1998] measure, but that they 

do not necessarily provide definitions for the queried term(s) or any kind of descriptive content. 

Many of the pages hence have a low signal. For example, start pages of topic-specific portals are 

legitimate search results, but they often contain more ads and navigational parts than descriptive 

text.
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However, search engines have recently been recognized as useful for gathering data sets in 

different contexts, e.g., n-gram statistics [Keller and Lapata, 2003] and meaning discovery [Cili- 

brasi and Vitanyi, 2007]. Fergus et al. [Fergus et al., 2005] used the image search engine of 

Google to automatically gather training examples for object category recognition, and most 

recently a bootstrapping scheme has been suggested for text classification [Guzman-Cabrera 

et al., 2007].

Social bookmarking site (Del.icio.us). Del.icio.us [UrlDelicious] is a social bookmarking 

site that allows users to save and tag URLs. The tags used by multiple people for a particular 

URL are often quite representative of the concept mentioned in the web page of the URL. 

Pages tagged with a category name can be thought of as the positive examples for that category. 

Tagging is a very recent activity on the web, so not many text mining approaches utilize tags 

so far. One example is Yanbe et al. [Yanbe et al., 2007], who showed that tags can be used 

to improve the results of web search engines. An advantage of social tagging in our setting is 

that tags capture semantics in a way that resembles human perception at an appropriate level 

of abstraction, without introducing any unnatural assumptions, like categories being mutually 

exclusive. The tags are unstructured and freely composable.

Del.icio.us provides an API to obtain web pages with any specified tag. For example, given 

the category photography, we would simply use the Del.icio.us API to obtain pages tagged with 

the term “photography”. Positive examples for Del.icio.us are obtained by crawling 1000 (wher

ever available) such pages. An equal number of negative examples from DMOZ are chosen as 

outlined above.

Encyclopedia (Wikipedia). Wikipedia is a community edited encyclopedia containing pages 

in many different languages. The English version of Wikipedia contains 3+ million pages and 

has 10+ million registered users [UrlWikiStat]. A recent study states that the coverage as well 

as the quality of Wikipedia is comparable to encyclopedia Britannica [Giles, 2005].

Important properties of Wikipedia in our context include (i) its semi-structured nature, 

with no labels being given a priori, but therefore (ii) deeper semantics when comparing to 

any of the other considered sources, and (iii) very clean pages that provide definitions and 

refer to related concepts. Wikipedia was recently successfully utilized for various text mining 

applications, including text categorization [Gabrilovich and Markovitch, 2006, Wang et al., 
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2007], text clustering [Hu et al., 2008], named entity disambiguation [Cucerzan, 2007], and 

improving search results [Milne et al., 2007].

To gather positive examples for a given concept, we constructed a Lucene [UrlLucene] 

index of the Wikipedia dump and used the target concept as the search query, in the same way as 

described for the Google corpus. Again, we used the top 1000 pages as our positive examples. 

For selecting negative examples for a concept, we excluded the first 2000 hits (returned by 

Lucene) from Wikipedia for each query under consideration, and then sampled 1000 negative 

examples from the remaining pages. We found that it is necessary to also use Wikipedia pages 

rather than DMOZ pages as negatives examples, because pages from Wikipedia and DMOZ 

have quite different characteristics.

We also tried graph-based page similarity calculation techniques to retrieve similar pages 

for a given concept. As long as the given concept can be characterized by a specific Wikipedia 

page, there are random walk techniques to obtain similar pages. We experimented with Topic 

Sensitive PageRank [Haveliwala, 2002] and Green Measure [Ollivier and Senellart, 2007], both 

of which did not work well. The top few results were usually good, but the noise level (unrelated 

pages) rapidly increased when going further down the list, so retrieving 1000 relevant pages for 

our training corpus was not possible with these techniques.

5.3 Experimental Setup

The previous section described ways of obtaining training examples from different web sources 

for almost any given category. This data can be used to train a set of binary classifiers in the 

next step. This section describes our test bed and justifies our evaluation scheme, before we 

move on to the actual experiments in the following section.

5.3.1 Data Sets for Evaluation

We selected a set of 10 diverse categories for our empirical evaluation. For the sake of simplicity 

and clarity, our concepts were chosen as to satisfy the following constraint: Each concept had 

to match a category name in DMOZ and a tag in Del.icio.us. This does not narrow down 

applicability in practice; if there is no exact match then a number of very similar categories/tags 

can easily be substituted.

We used the categories health, shopping, science, programming, photography, linux, recipes, 
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web design, humor and music, which span across three different levels of the DMOZ hierarchy 

and therefore vary considerably in terms of specificity. For each of these 10 concepts, we 

constructed a separate training corpus from each of the four different sources. Each corpus con

tained 1000 positive examples and an equal number of negatives as discussed in Section 5.2.

We preprocessed the raw HTML pages by removing any non-textual content (HTML tags 

and scripts), tokenized the page, removed stop words, and applied a Porter stemmer. We re

moved all pages that contained less than 50 words at that point, because they usually did not 

refer to the concept under consideration. For the experiments, we finally applied the standard 

TF-IDF weighting and built binary classifiers for each category using the SMO-SVM of the 

Weka library [Witten and Frank, 2005] with the default settings. Our evaluation measure is 

classification accuracy averaged over all categories, which is similar to F-Measure in our case, 

because our corpora have balanced class distributions.

5.3.2 Evaluation Strategy

In the common data mining setup, we would simply cross-validate our learning algorithm on 

the data sets mentioned above. One round of cross validation involves partitioning the training 

data, training the classifier in one partition and testing it on the other partition. Cross valida

tion accuracy of a classifier is representative of its true performance only when the test and 

training data is generated from the same distribution. We do not assume the training corpus 

to resemble the distribution of web pages at deployment time, however. We will hence only 

use cross-validation in the specific case where we evaluate classifiers on the same source it was 

trained on. For the most part, we will switch to evaluation schemes where we evaluate on a 

single source that is not available during training, and we will compare different strategies for 

constructing well suited training sets from the remaining (three) sources in this setting. There

fore, our evaluation strategy can be thought of as hold-out evaluation, but at the level of data 

sources.

Our rationale is that each corpus will typically contain noise and systematic mistakes. The 

DMOZ concept of photography does not subsume underwater photography, for example. The 

mere fact that a DMOZ category name, a Del.icio.us tag, and a Wikipedia page title are iden

tical does not necessarily imply identical underlying semantics. We assume that there is still 

agreement between large parts of the different taxonomies, tags, and labels, respectively. This 

agreement is rooted in a common conceptualization of human annotators. In real deployment 
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setting also a web page classifier will face the challenge of identifying pages belonging to com

mon conceptual class but changed underlying semantics. Therefore, evaluating a classifier on a 

source that is not used during the training gives better indication of the classifier’s performance 

at deployment. The evaluation of a classifier trained under a different distribution than the one 

it is deployed on is known from various settings, e.g. classification under sample selection 

bias [Fan and Davidson, 2006].

Our primary goal is hence to find techniques that allow to learn good classifiers for each 

source, although that source is not part of the training set. To train the classifier we can use 

any or all of the remaining three sources. First we will capture and quantify the difference be

tween individual corpora. For that we train the classifier on a single training corpus and test 

the classifier on the hold-out corpus. That is, we evaluate ordered pairs (i, j) of corpora by 

training a classifier on corpus i and then measuring its performance on corpus j. We refer to 

this strategy as cross-corpus evaluation. For any pair of corpora that share a common under

lying distribution, the expected cross-validation and cross-corpus evaluation results would be 

identical, whereas, for any pair of highly incompatible corpora applying each of the classifiers 

to the other corpus would result in much lower classification accuracies. As we will see next 

that cross corpus evaluation establishes the fact that our training corpora are quite different from 

each other. Then we will explore different strategies to use multiple different corpora during 

training and evaluate the classifier on a hold-out (test) corpora.

5.4 Experiments with a Baseline Method

We will first discuss the results of the corresponding cross-corpus evaluation. Figure 5.1 shows 

an overview of all the pairwise performances. For each pair of category and data source we 

trained a separate classifier and applied it to all data sets of the same category. We substituted 

tenfold cross-validation results whenever the same source was used for training and testing. We 

will (for the most part) discuss aggregates, i.e., accuracies averaged over all of our 10 concepts 

in this paper. Table 5.1 shows such aggregates over all results where the classifier was built 

from the same source (row) and applied to another source (column). Again, all entries on the 

main diagonal are averages of the corresponding 10-fold cross-validation accuracies.

For convenience, we set the highest accuracy achieved by any other corpus for each test 

corpus in bold (maximum of each column) and the lowest accuracy in italics. The numbers in
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(b) Training set: DMOZ

Figure 5.1: Pairwise cross-corpus evaluation results at the category level. Each of the four blocks 

describes the result for a common training set. The colors of the bars indicate the test sets.

40

Training set: Wikipedia

bold are reasonable upper-bounds for how much of the ’’real” concept is reflected by the corpus; 

it shows the maximum possible agreement with a classifier built from an independent data set 

that is only connected to the training set via a common concept name used for both the corpus 

constructions. The 10-fold cross-validation accuracies (main diagonal) can be referred to as the 

corresponding upper-bounds of the accuracy we can hope for when given a sample of the same 

type, because the error rate under these (effectively) i.i.d. samples is an artifact of the learning 

strategy and not caused by a difference between train and test distribution.

It is clearly evident from the cross-corpus evaluation that the individual sources are quite 

different. From the table 5.1, we can see that any individual source is not good enough to build 

a classifier that can perform well across all other sources. Another interesting finding is the 

poor performance of the community-built DMOZ collection of web pages in our experiments, 

compared to the much simpler Google corpora. The third row of Table 5.1 shows that the clas

sifiers built on Dmoz corpus generally achieve very low accuracy when tested on other corpora. 

Although the cross-validation accuracy is moderate (diagonal element). We think this contra

dicts common beliefs, and that the problems we found illustrate why corpora systematically 

contradict each other for some concepts: The DMOZ categories are not organized in terms of 

a taxonomy (tree), but of a directed graph. Care has to be taken when constructing the sub-tree
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Table 5.1: Results of cross-corpus evaluation. Rows are training sets, columns the test sets.

Google Delicious DMOZ Wikipedia

Google (96.44) 84.17 63.42 87.12

Delicious 90.00 (93.54) 68.36 76.71

DMOZ 79.98 77.15 (83.92) 75.84

Wikipedia 88.28 76.21 65.05 (94.26)

for a concept, so that all the positive examples of the concept are covered and cannot be sampled 

as negatives. This is hard, however, because a large number of categories in DMOZ are spread 

out over the concept graph without any proper path connecting the pieces. For example, the 

top level categories Regional, Reference, and News cover many categories that reoccur in other 

parts of DMOZ without any connecting path. In turn, there are debatable links at the level of the 

concept hierarchy that affect large sub-trees of documents in a systematic way, i.e., they might 

become false positives. This does not compromise the cross-validation accuracy, because in this 

case the evaluation happens on uniform sub-samples of the same corpus, so the classifier might 

capture all these conventions quite well. However, the classifier’s concept may not reflect the 

natural meaning very well, and consequently does not generalize to other corpora. This is why 

cross-corpus validation is a useful tool. We addressed noise issues during corpus construction, 

e.g. by respecting the complex link structure and by disregarding known-noisy nodes; still we 

expect our Dmoz corpora to contain unreliable labels that hurt performance.

Having established that any single source is not sufficient to build a highly accurate classi

fier, we now explore strategies to exploit more than one training sources to build a classifier. As 

mentioned earlier, the evaluation strategy will be to set aside one source and build the classifier 

from the remaining three sources. The baseline method just merges the data of the three cor

pora that are available for training and fits an SVM classifier to that single training data set. The 

baseline method simply ignores that our web corpora might all have different characteristics.

The second line in Table 5.2 shows the results of the baseline method that simply aggre

gates the training corpora. For each category we combined the three different training sources 

with equal weights and tested on the remaining corpora (column). For example, when a single 

training corpus is created by combining the data (positive and negative) of Del.icio.us, DMOZ 

and Wikipedia for each concept, it gives 76.94% accuracy on average on the Google corpora 

of 10 different concepts. Note that the training sets in this experiment are 3 times larger than 
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in the cross-corpus matrix. Since we do not assume to know the test set at training time, we 

aim for a strategy that gives us performances that are close to the bold numbers in Table 5.1, 

repeated in line 1 of Table 5.2. In this light, the performance of the baseline strategy is very 

poor. Surprisingly, in 3 out of 4 cases this method performs just about as good as the worst 

single-source classifier, see Table 5.1. When testing on DMOZ, the result is in an acceptable 

range, but low in absolute terms.

Looking at the Figure 5.1 and inspecting some pages from the different sources confirms 

the assumptions made in the Section 5.3.2; the corpora differ in fact considerably, and mixing 

them blindly results in far noisier, heterogeneous, and non-separable corpora that contain exam

ples that sometimes systematically contradict each other because of different concept definitions 

used by different sources.

5.5 Leveraging Multiple Sources

In response to the bad performance of the baseline method and the demonstrated differences 

between the distributions underlying different web sources we will now evaluate two different 

strategies to utilize multiple training corpora. The first one is an ensemble technique, the second 

one refines the baseline method by introducing example weights before training.

5.5.1 Majority Vote

Leaving Dmoz the other numbers in the first line of the Table 5.2 are respectable accuracy 

number. Recall that the first row of the Table 5.2 is the bold numbers of the Table 5.1 (maximum 

achievable accuracy by any other corpus on a test corpus). This means, for a particular test 

corpus among the remaining three corpora there usually is at least one that would work very 

well compared to the baseline method. For this reason, we did not mix training data from 

different sources for the experiments in this subsection, but trained a separate classifier for each 

training corpus. We applied Platt’s scaling [Platt, 1999] to turn SVM outputs into calibrated 

probability estimates.

As our remaining challenge, it is generally unknown which training set provides good per

formance on a previously unseen example. The predictive performance of training sets appar

ently depends on both the concept and the test set. A natural goal is to get an overall predictive 

performance that is close to the best individual classifier. This goal is known as tracking the 
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best expert in the literature on concept drift [Kolter and Maloof, 2005], where the term expert 

refers to individual classifiers. If true labels were revealed after classifying each instance then 

we were in the setting of classifying data streams under concept drift.

Instead, we address the harder, but more relevant case, in which the true labels are not 

revealed, so we cannot dynamically adapt classifier weights. In this case, we can still pick 

appropriate weights offline. Line 3 in Table 5.2 shows the results of an unweighted majority 

vote, where we averaged the soft predictions of three classifiers and tested on the indicated 

(column header) fourth corpus of that category.

It can be seen that - by just keeping the corpora separate during training - we already 

improved drastically, and got results that are (on average) much closer to the best available 

individual classifier shown in the first line of Table 5.2. Under our weak assumptions, this im

plies that these classifiers generalize better to unseen corpora (or different types of web pages). 

Weighting the classifiers, e.g., by their average cross-corpus performance did not further im

prove the results in our experiments, so we skip the details.

5.5.2 Weighting Training Data by Confidence

The second strategy is to encourage agreement between the different views on the same concept. 

It is inspired by multi-view learning, see e.g. [Zhou and Li, 2005], a semi-supervised technique 

where each data point has multiple representations. For multi-view learning techniques, the 

generalization error can be upper-bounded surprisingly well if the learner manages to enforce 

agreement on both the labeled and unlabeled data across the different views. The theory requires 

unlabeled data and test set to follow the same distribution.

Our setting is different as we do not have an unlabeled sample from the target distribution. 

But still we can encourage agreement between the classifiers regarding their training sets. Be

fore describing this in more detail, it is worth fleshing out the different reasons why an example 

eB sampled from source B could be misclassified by a classifier Ca trained on source A:

1. The example e# is noisy, that is, the labeling process just failed or someone inserted a 

bad reference between concepts into DMOZ etc.

2. The abstraction from the data collected from A to the function Ca done by the learner is 

imperfect. Even all the cross-validation results in Table 5.1 are below 100%. So the label 

of eB is correct, Ca errs.
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3. The classifier and the label of the examples are both correct, but the conventions between 

the two corpora A and B are inconsistent. This is no “noise” in the classical sense, but 

a different kind of problem, related to transfer learning: Concepts are similar but not 

identical across different sources.

Given the lack of reliable information, it should be clear that it is very hard to address point 3, 

if we have to handle points 1 and 2 at the same time. For this reason, our solutions cannot be as 

grounded theoretically as techniques in multi-view learning, but still intuitively compelling.

We start with the classifiers that we trained in the last subsection. Our advantage over 

the setting sketched above is that we have multiple classifiers that we can consult in order to 

decide on the expected utility of cb- This allows us to incorporate the confidence of all the 

different “views” captured by classifiers trained from different, independent sources, which 

helps to reduce the impact of any source-specific noise.

To this end, we prepare a weighted version of each category-specific training set. Lets 

assume we have A, B, C sources for training and have set aside the source D for testing. For 

computing the weight of any specific example cb, with word vector xb and label ys from 

source B, we consult the classifiers Ca and Cc built from the sources A and C respectively. 

Each of these classifiers Ca and Cc provides calibrated probability estimate P(yB | %b) that 

the example cb belongs to the category ys. We use the average of those estimates as the weight 

for 6b. As desired, examples hence require the agreement of classifiers trained from different 

sources in order to receive a high weight. In the next step, we join all examples from the three 

training sources to a single corpus per category, similar to the baseline method. The difference 

is that we use the weights during the subsequent step of classifier training. Finally, we train a 

classifier on this weighted training set and apply the classifier to the test corpora of the fourth 

source (source D). Note that the test corpora are at no point used during training.

Line 4 in Table 5.2 shows the averaged accuracies for this weighting technique. Compared 

to the equal weight combination (line 2), the accuracy improved drastically. It is now compara

ble to the performance of majority voting. This indicates that corpus-specific noise is the main 

reason for the bad baseline performance, and that it can be mitigated by seeking agreement 

between the various sources.

We want to take this idea one step further. Bad conventions, missing or questionable links 

between categories, and other kinds of white and systematic noise all share the property that 

they are not found across multiple sources, but are local problems. As a final refinement of the
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Table 5.2: Results of the different methods discussed in Sections 5.4 and 5.5.

Google Delicious DMOZ Wikipedia

Best single cross-corpus result ( 5.4) 90.00 84.17 68.36 87.12

Equal weight combination (5.4) 76.94 76.47 68.74 76.79

Majority Vote (5.5.1) 92.95 84.45 65.10 84.44

Weighted training instances (5.5.2) 93.88 84.65 66.08 85.73

Weighting & noise elimination (5.5.2) 93.29 87.52 70.21 87.50

weighting strategy, we exclude all examples for which the majority (here: “both”) of classifiers 

predicts the opposite label when making a discrete (boolean) prediction, and assign the highest 

possible weight of 1 whenever all classifiers predict the label assigned to the example. That 

is, in this weighting scheme, the example cb will be excluded from the training set if the both 

classifiers Ca and Cc predict class label other than yB. On the other hand eB will get weight 1 

if Ca and CB both predict the class label as yB. In the latter case, all the classifiers agree that an 

example has the correct label. In the former case, the label of the example is very questionable 

when leaving the context of the specific source it came from. We conclude that it is not helpful 

to include it at all, but that we are either in case 1 or in case 3 above. Most, but not all of our 

classifiers confirm that the example has the correct label attached. As before, we weight these 

examples by confidence that their labels are correct in a general scope.

The last line in Table 5.2 shows the results for this stronger noise reduction and emphasis 

on agreement. The averaged accuracies are higher for Del.icio.us, DMOZ and Wikipedia com

pared to just weighting training instances (line 4). In case of the Google data set, the previous 

results were already quite good (« 93%) and we observe no further improvement. Overall, 

the results of this method are better than all other methods we tried so far. When averaged 

over of all test corpora (average of the rows in Table 5.2) the baseline achieves 74.74% accu

racy. Whereas the weighting & noise elimination method achieves overall average accuracy of 

84.63%, an improvement of 13.23%. Note that by utilizing the cross-corpus diversity we were 

able to outperform the best single-corpus accuracies, see line 1. Even though the best single

corpus method requires knowing the test corpus affront to chose the best training corpus and 

therefore not realistic.
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5.6 Conclusions

In this chapter, we showed that several web sources can be utilized to build highly accurate 

classifiers with low efforts and costs. Our evaluation assumed that we want a classifier that give 

good results on a variety of different sources. For that purpose we used hold-out evaluation 

at the corpus level. The cross-corpus evaluation quantifies the discrepancy between corpora 

constructed from different sources. It turned out that ignoring the diversity of sources is a 

surprisingly bad strategy. In response, we developed a cross-corpus example selection and 

weighting technique based on a set of mild assumptions that takes advantage of this diversity. 

With our novel learning schemes we show that it is possible to build classifiers that perform 

consistently well across different sources.
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Chapter 6

Conclusion

The World Wide Web is an enormous source of information that can be used by information 

processing tools. The challenge is that the information is unstructured, noisy and ever evolving. 

However, it is possible to make sense from this cacophony of information when an aggregated 

view is taken. The work in this thesis shows that by deploying proper aggregation techniques it 

is possible to eliminate or greatly alleviate the impact of noise and to gather useful information 

from the web.

We have developed techniques that use the web as an information source in order to:

• answer quantity queries

• determine topic features of documents

• retrieve sample documents for a given topic

The developed techniques obtain information by aggregating evidences from different web 

sources. Firstly, for quantity consensus queries our collective ranking algorithms aggregate 

evidences from multiple snippets in a quantity interval and achieve nearly 20% higher accuracy 

compared to the state of the art approaches. Secondly, the topic features of a document provide 

aggregated views of the contexts in which the terms of the document appear across different web 

sources. Such aggregated contexts capture the usage of the terms of the document in broader 

contexts and provide valuable inputs to the classification and clustering algorithms. Thirdly, 

sample documents for a topic were obtained by utilizing multiple web sources and aggregating 

the documents of different sources with proper weighting. We demonstrated that it is possible 

to build a high accuracy classifier for a topic from training data constructed from this set of 

documents.
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Our work also contributes to the growing body of work in utilizing the collective human 

effort in Web 2.0 resources, such as Wikipedia, Dmoz, and Delicious, to improve machine 

intelligence. We used Wikipedia to disambiguate entities in our corpus and to support a more 

specific query language in our quantity search. Otherwise, such entity disambiguation and 

specific querying would have required rigorous semantic information of the documents and 

substantial user input. We demonstrated that Wikipedia and other web corpora can be used to 

obtain topic features of documents. The topic features substantially improve the accuracy of text 

classification and clustering algorithms. The topic features also reduce the amount of training 

data required in classification to achieve a desired accuracy. Generating training data typically 

requires substantial manual effort. We demonstrated that Web 2.0 resources and a web search 

engine can be used to obtain training data for web page classification with minimum manual 

effort.

Web 2.0 resources are where the efforts of thousands of users are captured and stored. 

Therefore, Web 2.0 resources provide tremendous opportunity to use the collective human effort 

in assisting intelligent information processing or other machine learning tasks. The thesis made 

progress in tapping this collective effort to make various intelligent information processing tools 

more useful and effective.

6.1 Summary of Results

Quantity Consensus Query (QCQ) We developed novel algorithms to aggregate answers of 

a QCQ from hundreds of pages across the web. We show that typical signals used in 

entity ranking, like rarity of query words and their lexical proximity to candidate quan

tities, are very noisy. Our algorithms learn to score and rank quantity intervals directly, 

combining snippet quantity and snippet text information. We report on experiments using 

hundreds of QCQs with ground truth taken from TREC QA, Wikipedia Infoboxes, and 

other sources, leading to tens of thousands of candidate snippets and quantities. Our al

gorithms yield about 20% better MAP and NDCG compared to the best-known collective 

rankers, and are 35% better than scoring snippets independent of each other.

Topic Features from Wikipedia We demonstrated that the topic features obtained from Wikipedia 

can help in two different tasks.
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Clustering Short Texts: The accuracy of clustering short text documents improves when 

the documents are represented in an enriched feature space consisting of Wikipedia 

features and the bag of words features. In a clustering task of around 15000 short 

news clips, we showed that the accuracy of well known clustering algorithms im

proved by more than 33% on an average when the news clips are represented in this 

enriched feature space.

Inductive Transfer: The Wikipedia features (i.e. the topic features obtained from Wikipedia) 

are more stable features of a document than the words of the document. The words 

may vary even between documents describing the same topic whereas the Wikipedia 

(topic) features are likely to be similar. Therefore a classifier trained using the 

Wikipedia features is more effective in classifying documents even when the word 

distribution of the documents are different from the training set. This property of 

Wikipedia features was utilized in inductive transfer over text classifiers.

We used the Wikipedia features in an inductive transfer setting for “daily news clas

sification task”. In this task, every day there are some labeled news articles for 

training a classifier. The trained classifier is used to predict the class labels of the 

remaining news articles of that day. Instead of throwing away the classifiers built in 

the past, an inductive transfer setting was used to re-use those past classifiers. We 

demonstrated that when the past classifiers are trained on the Wikipedia features of 

the news articles, the classification accuracy of the news articles improves signifi

cantly. In our experiments, we observed major improvement in terms of F-measure 

for several categories in the RCV1 corpus. We also observed that doing inductive 

transfer from classifiers trained on Wikipedia features did not hurt the performance. 

This means that it did not have a negative transfer effect.

Obtaining Topic Features using Topic Modeling We have proposed a novel feature genera

tion method using a topic modeling technique. The proposed method addresses many 

shortcomings of the retrieval based feature generation method from Wikipedia. Firstly, 

it is based on a more principled approach and therefore provides a way to select the pa

rameters used in the system. It only contributes to the limited growth of the feature space 

and therefore it does not have much of a performance penalty on the downstream learning 

algorithms. We conducted experiments to demonstrate the usefulness of the topic features
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obtained using this method. The experiments show that the topic features when obtained 

using the proposed method can improve the accuracy by more than 32% on an average 

across 30 different RCV1 categories.

Training Data Generation Web page classification is a challenging task because of the diverse 

nature of the web pages. Obtaining a good representative sample of training examples is 

a laborious task while building a web page classifier. We developed methods to automat

ically obtain training examples from different web sources to build a highly accurate web 

page classifier. We demonstrated that different sources have different characteristics and 

it is not possible to blindly mix the data obtained from different sources. We addressed the 

issue of specificity of different sources by using several techniques to combine the train

ing data from different sources. Our technique for combining the training data achieves 

13.33% higher classification accuracy as compared to the baseline technique of blindly 

mixing the data from different sources.

6.2 Scope for Future Work

The techniques developed in the thesis obtain evidences from the web by simple means and 

focus more on aggregating the evidences using statistical methods to get useful information. We 

have demonstrated that aggregating the noisy evidences using statistical methods is definitely 

a promising approach to obtain useful information from the web. But this approach can also 

be augmented with the rich literature available in the area of deep semantic understanding of 

natural language. For example, it might be possible to obtain better results by using natural 

language processing techniques while obtaining QCQ snippets, Wikipedia features or sample 

pages for a topic. However many issues, including performance and the free and evolving 

languages used in web pages, would need to be addressed to do this.

Another direction in which our work can be extended is to apply the developed techniques 

on media types other than text. The web is an enormous source not only for textual documents 

but also for images and videos. For example, it will be interesting to see whether the web 

sources can be used to obtain topic features for image classification/clustering or can be used to 

obtain training data for image categorization. In general, we believe the web can potentially act 

as a valuable source of information in processing non-textual information as well.
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Appendix A

List of Quantity Queries Used in the

Experiments

The testbed of QCQ experiments in the Chapter 3 contains 162 queries. Each query has a query 

string that contains the keywords and phrases of the query and also the desired unit type of the 

answer quantities. The query string was used to search the index (or sent to the search engine). 

For the purpose of evaluation, the QCQs in the testbed also contain ground truth quantities. The 

QCQs were collected in a XML file. The format of the XML file and the list of queries collected 

are shown below.

<iitb.Quantitysearch.Query>
<queryID>A unique string id of the query</queryID>
<numericID>A unique numeric id of the query</numericID>
<queryString>Query string that was used to search the index</queryString> 
<descriptionString>Detailed description of the query string.

This was not used in the processing</descriptionString> 
<standardUnitName>The desired unit type of the answer quantity 
</standardUnitName> 
<answerSet>

<!— List of ground truth quantities —>
<string>Ground truth quantity</string>

</answerSet>
</iitb.Quantitysearch.Query>

Figure A.1: The XML format in which QCQs are collected

A sample set of queries used in the experiments are shown below. The full list of 162 

queries are available in the website http: //soumen. cse. iitb. ac. in/doc/QCQ/

<object-stream>
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ciitb.QuantitySearch.Query>
<queryID>Samik-l</queryID>
<numericID>l</numericID>
<queryString>What is the age of the universe</queryString>
<descriptionString>What is the age of the universe</descriptionString>
<standardUnitName>year</standardUnitName>
<answerSet>

<string>l3000000000-15000000000</string>
</answerSet>

</iitb.QuantitySearch.Query>
ciitb.Quantitysearch.Query>

cqueryID>Samik-4c/queryID>
<numericID>2</numericID>
cqueryString>+"half life" of plutonium</queryString>
<descriptionString>What is the "half life" of plutonium</descriptionString>
<standardUnitName>year</standardUnitName>
<answerSet>

cstring>86-88c/string>
cstring>24000-25100c/string>
<string>80800000-82000000</string>
<string>13-15</string>
<string>373300-380000</string>

</answerSet>
</iitb.QuantitySearch.Query>
ciitb.Quantitysearch.Query>

cqueryID>Samik-7c/queryID>
cnumericID>3c/numericID>
cqueryString>+height of a +giraffe?c/queryString>
cdescriptionString>What is the height of a giraffe?</descriptionString>
cstandardUnitName>footc/standardUnitName>
canswerSet>

cstring>16-18c/string>
c/answerSet>

c/iitb.QuantitySearch.Query>
ci itb.Quantitysearch.Query>

cqueryID>Samik-8c/queryID>
cnumericID>4c/numericID>
cqueryString>weight of a +A380 +airbus?c/queryString>
cdescriptionString>What is the weight of a A380 airbus?c/descriptionString>
cstandardUnitName>lbc/standardUnitName>
canswerSet>

Cstring>1200000-1300000c/string>
c/answerSet>

c/iitb.QuantitySearch.Query>
ciitb.Quantitysearch.Query>

cqueryID>Samik-12c/queryID>
cnumericID>7c/numericID>
cqueryString>+slant of "Leaning tower of Pisa"?c/queryString>
cdescriptionString>What is the +slant of "Leaning tower of Pisa"?c/descriptionSt 
cstandardUnitName>degreec/standardUnitName>
canswerSet>

cstring>3.97-4c/string>
c/answerSet>

c/iitb.QuantitySearch.Query>
ciitb.QuantitySearch.Query>

cqueryID>Anjanalc/queryID>
cnumericID>8c/numericID>
cqueryString>+revenue of +Microsoft in 2004?c/queryString>
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<descriptionString>What was the revenue of Microsoft in 2004?</descriptionString>
<standardUnitName>USD</standardUnitName>
<answerSet>

<string>9000000000-10000000000</string>
</answerSet>

</iitb.QuantitySearch.Query>
<iitb.QuantitySearch.Query>

<queryID>Anjana3</queryID>
<numericID>10</numericID>
<queryString>+distance between +moon and +earth?</queryString>
<descriptionString>What is the distance between moon and earth?</descriptionStrir
<standardUnitName>kilometer</standardUnitName>
<answerSet>

<string>356410-409000</string>
</answerSet>

</iitb.QuantitySearch.Query>
ciitb.Quantitysearch.Query>

<queryID>Anjana4</queryID>
<numericID>ll</numericID>
<queryString>+mileage of +Bajaj +scooty pep?</queryString>
<descriptionString>What is the mileage of Bajaj scooty pep?</descriptionString>
<standardUnitName>kilometer</standardUnitName>
<answerSet>

<string>50-55</string>
</answerSet>

</iitb.Quantitysearch.Query>
<iitb.Quantitysearch.Query>

<queryID>Anjana5</queryID>
<numericID>12</numericID>
<queryString>+printed +price of +canon +powershot 700IS?</queryString>
<descriptionString>What is the printed price of canon powershot 700IS?
</descriptionString>
<standardUnitName>USD</standardUnitName>
<answerSet>

<string>477-499</string>
</answerSet>

</iitb.QuantitySearch.Query>
<iitb.Quantitysearch.Query>

<queryID>Anjana7</queryID>
<numericID>13</numericID>
<queryString>average +lifespan of a +chicken?</queryString>
<descriptionString>What is average lifespan of a chicken?</descriptionString>
<standardUnitName>year</standardUnitName>
<answerSet>

<string>8-13</string>
</answerSet>

</iitb.QuantitySearch.Query>
<iitb.QuantitySearch.Query>

<queryID>Anjana8</queryID>
<numericID>14</numericID>
<queryString>maximum +speed of a +"Mercedes Benz"?</queryString>
<descriptionString>What is the maximum speed of a "Mercedes Benz"?</descriptionSt
<standardUnitName>KilometersPerHour</standardUnitName>
<answerSet>

<string>315-340</string>
</answerSet>

</iitb.Quantitysearch.Query>
<iitb.QuantitySearch.Query>
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<queryID>TREC-2004-7.2</queryID>
<numericID>19</numericID>
<queryString>What is the average life span of an +agouti?</queryString>
<descriptionString>What is the average life span of an +agouti?</descriptionStrin
<standardUnitName>year</standardUnitName>
<answerSet>

<string>12-20</string>
</answerSet>

</iitb.Quantitysearch.Query>
<iitb.QuantitySearch.Query>

<queryID>TREC-2004-12.3</queryID>
<numericID>20</numericID>
<queryString>What is the +annual +revenue of +"Rohm and Haas"?</queryString>
<descriptionString>What is the +annual +revenue of +”Rohm and Haas"?
</descriptionString>
<standardUnitName>USD</standardUnitName>
<answerSet>

<string>6500000000-8200000000</string>
</answerSet>

</iitb.QuantitySearch.Query>
<iitb.Quantitysearch.Query>

<queryID>TREC-2004-20.4</queryID>
<numericID>25</numericID>
<queryString>How fast does the +Concorde fly?</queryString>
<descriptionString>How fast does the +Concorde fly?</descriptionString>
<standardUnitName>MilesPerHour</standardUnitName>
<answerSet>

<string>1330-1350</string>
</answerSet>

</iitb.QuantitySearch.Query>
<iitb.QuantitySearch.Query>

<queryID>TREC-2004-21.l</queryID>
<numericID>27</numericID>
<queryString>How many +"Club Med" +vacation +spots are there worldwide?</querySt:
<descriptionString>How many +"Club Med" +vacation +spots are there worldwide?
</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>80</string>
</answerSet>

</iitb.QuantitySearch.Query>
<iitb.Quant itySearch.Query>

<queryID>Minji-5</queryID>
<numericID>40</numericID>
<queryString>+"mini marathon" distance</queryString>
<descriptionString>+"mini marathon" distance</descriptionString>
<standardUnitName>mile</standardUnitName>
<answerSet>

<string>10-13.l</string>
</answerSet>

</iitb.Quantitysearch.Query>
<iitb.Quantitysearch.Query>

<queryID>Minji-7</queryID>
<numericID>42</numericID>
<queryString>+TV viewing +distance</queryString>
<descriptionString>+TV viewing +distance</descriptionString>
<standardUnitName>foot</standardUnitName>
<answerSet>
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<string>10</string>
cstring>7c/string>
<string>5</string>
cstring>14c/string>

c/answerSet>
</iitb.Quantitysearch.Query>
ciitb.Quantitysearch.Query>

<queryID>Live-HowFar-3</queryID>
<numericID>46</numericID>
<queryString>How far should +raccoons be +relocated miles</queryString>
<descriptionString>How far should +raccoons be +relocated miles</descriptionStrir
<standardUnitName>mile</standardUnitName>
<answerSet>

<string>10-20</string>
</answerSet>

c/iitb.Quantitysearch.Query>
ciitb.Quantitysearch.Query>

cqueryID>Live-HowFast-lc/queryID>
cnumericID>47c/numericID>
<queryString>how fast can +otters swim speed mph</queryString>
<descriptionString>how fast can +otters swim speed mph</descriptionString>
<standardUnitName>MilesPerHour</standardUnitName>
<answerSet>

<string>5.5-9c/string>
</answerSet>

c/iitb.Quantitysearch.Query>
ciitb.QuantitySearch.Query>

cqueryID>Live-Frequency-lc/queryID>
cnumericID>50c/numericID>
cqueryString>+cordless +phone +frequency mhzc/queryString>
cdescriptionString>+cordless +phone +frequency mhzc/descriptionString>
cstandardUnitName>MHzc/standardUnitName>
canswerSet>

cstring>49c/string>
cstring>900c/string>

c/answerSet>
c/iitb.QuantitySearch.Query>
ciitb.Quantitysearch.Query>

cqueryID>Soumen-3c/queryID>
cnumericID>54c/numericID>
cqueryString>What is the distance between +Paris and +Romec/queryString>
cdescriptionString>What is the distance between +Paris and +Romec/descriptionStr:
cstandardUnitName>kilometerc/standardUnitName>
canswerSet>

cstring>1106c/string>
c/answerSet>

c/iitb.Quantitysearch.Query>
ciitb.QuantitySearch.Query>

cqueryID>RU-lc/queryID>
cnumericID>55c/numericID>
cqueryString>What is the average annual rainfall of Mumbaic/queryString>
cdescriptionString>What is the average annual rainfall of Mumbaic/descriptionStr: 
cstandardUnitName>millimeterc/standardUnitName>
canswerSet>

cstring>1800-2200c/string>
c/answerSet>

c/iitb.QuantitySearch.Query>
ciitb.QuantitySearch.Query>
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<queryID>WikiInfobox-2</queryID>
<numericID>63</numericID>
<queryString>Hewlett-Packard employees</queryString>
<descriptionString>Hewlett-Packard employees</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>350000-450000</string>
</answerSet>

</iitb.QuantitySearch.Query>
<iitb.QuantitySearch.Query>

<queryID>WikiInfobox-7</queryID>
<numericID>68</numericID>
<queryString>Microsoft net income</queryString>
<descriptionString>Microsoft net income</descriptionString>
<standardUnitName>USD</standardUnitName>
<answerSet>

<string>16000000000-17500000000</string>
</answerSet>

</iitb.Quantitysearch.Query>
<iitb.Quantitysearch.Query>

<queryID>WikiInfobox-18</queryID>
<numericID>77</numericID>
<queryString>Mumbai population</queryString>
<descriptionString>Mumbai population</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>l2000000-13500000</string>
</answerSet>

</iitb.Quantitysearch.Query>
<iitb.Quantitysearch.Query>

<queryID>QA07:221.5</queryID>
<numericID>202</numericID>
<queryString>+dimes +mint month monthly produce</queryString>
<descriptionString>How many dimes does the Mint produce each month? U.S. Mint
</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>2000000000-2500000000</string>
</answerSet>

</iitb.Quantitysearch.Query>
<iitb.Quantitysearch.Query>

<queryID>QA07:234.2</queryID>
<numericID>20 6</numericID>
<queryString>number +songs +"irving berlin" composed wrote</queryString>
<descriptionString>How many songs did Irving Berlin compose? Irving Berlin
</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>800-1500</string>
</answerSet>

</iitb.Quantitysearch.Query>
<iitb.Quantitysearch.Query>

<queryID>QA07:242.5</queryID>
<numericID>214</numericID>
<queryString>+"percent" of alcohol by volume in Guinness Brewery Stoutc/queryStr:
<descriptionString>What is the percent of alcohol by volume in Guinness Stout?
Guinness Brewery</descriptionString>
<standardUnitName>Percent</standardUnitName>
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<answerSet>
<string>3.8-4.3</string>

</answerSet>
</iitb.Quantitysearch.Query>

<numericID>241</numericID>
<queryString>+,,rockets" +”fired" at Israel from Gaza after Israel evacuation of t 
Gaza Strip</queryString>
<descriptionString>In the three months following the evacuation, how many rockets 
were fired at Israel from Gaza? Israel evacuation of the Gaza Strip
</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>230-240</string>
</answerSet>

</iitb.QuantitySearch.Query>
<iitb.Quantitysearch.Query>

<queryID>QA07:269.3</queryID>
<numericID>242</numericID>
<queryString>final death toll from this earthquake? Pakistan earthquakes of Octol: 
2005</queryString>
<descriptionString>What was the final death toll from this earthquake? Pakistan
earthquakes of October 2005</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>70000-85000</string>
<ZanswerSet>

</iitb.QuantitySearch.Query>
<iitb.Quantitysearch.Query>

<queryID>QA07:270.4</queryID>
<numericID>243</numericID>
<queryString>+Opportunity +"traveled" on +Mars? The Mars rovers, Spirit and
Opportunity distance meters</queryString>
<descriptionString>How many meters has Opportunity traveled on Mars? The Mars 
rovers, Spirit and Opportunity distance</descriptionString>
<standardUnitName>meter</standardUnitName>
<answerSet>

<string>600-650</string>
<string>13000-14000</string>

</answerSet>
</iitb.Quantitysearch.Query>
<iitb.QuantitySearch.Query>

<queryID>QA07:273.l</queryID>
<numericID>24 4</numericID>
<queryString>Limbaugh's listening audience? Rush Limbaugh</queryString>
<descriptionString>Number of audience Rush Limbaugh</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>13000000-20000000</string>
</answerSet>

</iitb.Quantitysearch.Query>
<i itb.QuantitySearch.Query>

<queryID>QA07:273.2</queryID>
<numericID>245</numericID>
<queryString>Limbaugh's radio show carry +”markets" Rush Limbaugh</queryString>
<descriptionString>How many markets carry Limbaugh's radio show? Rush Limbaugh
</descriptionString>
<standardUnitName>count</standardUnitName>
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<answerSet>
<string>600</string>

</answerSet>
</iitb.Quantitysearch.Query>
<iitb.QuantitySearch.Query>

<queryID>QA07:273.4</queryID>
<numericID>246</numericID>
<queryString>Rush Limbaugh +"married” times</queryString>
<descriptionString>How many times has Limbaugh been married? Rush Limbaugh
</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>3</string>
</answerSet>

</iitb.Quantitysearch.Query>
<iitb.QuantitySearch.Query>

<queryID>QA07:274.5</queryID>
<numericID>247</numericID>
<queryString>oil was spilled by the Exxon tanker Valdez? Exxon Mobil Corp
</queryString>
<descriptionString>How much oil was spilled by the Exxon tanker Valdez? Exxon Mol
Corp</descriptionString>
<standardUnitName>Gallon</standardUnitName>
<answerSet>

<string>l0000000-11000000</string>
</answerSet>

</iitb.Quantitysearch.Query>
<iitb.QuantitySearch.Query>

<queryID>QA07:274.6</queryID>
<numericID>248</numericID>
<queryString>cost of the oil clean-up? Exxon Mobil Corp</queryString>
<descriptionString>What was the cost of the oil clean-up? Exxon Mobil Corp
</descriptionString>
<standardUnitName>USD</standardUnitName>
<answerSet>

<string>3000000000</string>
</answerSet>

</iitb.QuantitySearch.Query>
<iitb.Quantitysearch.Query>

<queryID>QA07:276.3</queryID>
<numericID>249</numericID>
<queryString>B-17 bomber built during World War II</queryString>
<descriptionString>How many B-17's were built? B-17 bomber during Worl War II
</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>12500-13000</string>
</answerSet>

</iitb.QuantitySearch.Query>
<iitb.Quantitysearch.Query>

<queryID>QA07:276.5</queryID>
<numericID>250</numericID>
<queryString>B-17 bomber the Memphis Belle fly missions</queryString>
<descriptionString>How many missions did the Memphis Belle fly? B-17 bomber
</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>25</string>
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</answerSet>
</iitb.QuantitySearch.Query>
<iitb.QuantitySearch.Query>

<queryID>QA07:280.6</queryID>
<numericID>260</numericID>
<queryString>+people visit Angkor Wat annually</queryString>
<descriptionString>How many people visit Angkor Wat annually? Angkor Wat temples
</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>1000000-2000000</string>
</answerSet>

</iitb.QuantitySearch.Query>
<iitb.Quantitysearch.Query>

<queryID>QA07:282.6</queryID>
<numericID>261</numericID>
<queryString>Pamuk's +"translated" into +,’languages"</queryString>
<descriptionString>Into how many languages have Pamuk's works been translated?
Orhan Pamuk</descriptionString>
<standardUnitName>count</standardUnitName>
<answerSet>

<string>20-40</string>
</answerSet>

</iitb.QuantitySearch.Query>
</object-stream>
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