Abstract:
Mobile molecular communication among nano-devices has potential applications in diverse fields such as targeted drug delivery systems, designing and deploying nano-sensors and nano-actuators for detection, treatment of a large set of diseases, and monitoring of environmental conditions. In this paper, we consider a mobile molecular communication system where the fluid medium has a fully developed homogeneous turbulence, and both the transmit and the receive nano-devices are mobile. The considered molecular communication system uses information molecules to transmit information from a transmit nano-device to a receive nano-device. To fully characterize and describe this mobile molecular communication channel, we derive its statistical properties like mean, correlation function, and distribution functions. We then analyze the performance of the system in terms of its symbol error probability and channel capacity. Numerical results corroborate the derived analytical findings.