DSpace Repository

Comparative study of singularly perturbed two-point BVPs via: Fitted-mesh finite difference method, B-spline collocation method and finite element method

Show simple item record

dc.contributor.author Kumar, Devendra
dc.date.accessioned 2023-07-21T06:43:33Z
dc.date.available 2023-07-21T06:43:33Z
dc.date.issued 2008-10
dc.identifier.uri https://www.sciencedirect.com/science/article/pii/S0096300308005456
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/10948
dc.description.abstract The objective of this paper is to present a comparative study of fitted-mesh finite difference method, B-spline collocation method and finite element method for general singularly perturbed two-point boundary value problems. Due to the small parameter , the boundary layer arises. We have taken a piecewise-uniform fitted-mesh to resolve the boundary layer and we have shown that fitted-mesh finite difference method has -uniform first order convergence, B-spline collocation method has almost second order -uniform convergence and Ritz–Galerkin method en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.subject Mathematics en_US
dc.subject Singular perturbation en_US
dc.subject Boundary layer en_US
dc.subject Shishkin-type mesh en_US
dc.subject Finite difference method en_US
dc.subject Finite element method en_US
dc.title Comparative study of singularly perturbed two-point BVPs via: Fitted-mesh finite difference method, B-spline collocation method and finite element method en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account