dc.description.abstract |
The physical mechanism of heat and mass transfer in solute dispersion in a two-fluid model of the blood flow through porous layered tubes with absorbing walls has been studied in the present work. For a more realistic representation of the blood flow in microvessels, the two-fluid approach is employed by considering the fluid in which the blood particles like RBCs, WBCs, and platelets are suspended as a micropolar fluid in the core region and the cell-free layer of plasma as Newtonian fluid in the peripheral region. A thin Brinkman layer mathematically governed by the Brinkman equation replicates the mechanical aspects of the porous layer near the tube wall. Either no-spin or no-couple stress condition at the micropolar-Newtonian fluid interface has been taken in to account to compare our findings with previous studies and the stress-jump condition of Ochoa-Tapia and Whitaker (J.A. Ochoa-Tapia and S. Whitaker, Int. J. Heat Mass Transfer 38 (1995) 2635–2646) is employed at the fluid-porous interface. A uniform magnetic field has also been applied in the transverse direction of the flow pattern to understand some of the clinically relevant aspects of blood flow in the cardiovascular system. |
en_US |