dc.contributor.author |
Yadav, Sangita |
|
dc.date.accessioned |
2023-08-16T04:01:59Z |
|
dc.date.available |
2023-08-16T04:01:59Z |
|
dc.date.issued |
2014 |
|
dc.identifier.uri |
https://core.ac.uk/download/pdf/97237.pdf |
|
dc.identifier.uri |
http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11400 |
|
dc.description.abstract |
In this article, we discuss an alternate approach to a priori error estimates for the
semidiscrete Galerkin approximation to a time dependent parabolic integro-differential
equation with nonsmooth initial data. It is based on energy arguments and on a repeated
use of time integration, but without using parabolic type duality technique. Optimal L2-
error estimate is derived for the semidiscrete approximation, when the initial data is in
L2. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
OUP |
en_US |
dc.subject |
Mathematics |
en_US |
dc.subject |
Parabolic integro-differential equations (PIDE) |
en_US |
dc.subject |
Finite element method |
en_US |
dc.subject |
Semidiscrete solution |
en_US |
dc.subject |
Energy arguments |
en_US |
dc.subject |
Optimal error estimate |
en_US |
dc.title |
Optimal L2 estimates for semidiscrete Galerkin methods for parabolic integro-differential equations with nonsmooth data |
en_US |
dc.type |
Article |
en_US |