DSpace Repository

Optimal L2 estimates for semidiscrete Galerkin methods for parabolic integro-differential equations with nonsmooth data

Show simple item record

dc.contributor.author Yadav, Sangita
dc.date.accessioned 2023-08-16T04:01:59Z
dc.date.available 2023-08-16T04:01:59Z
dc.date.issued 2014
dc.identifier.uri https://core.ac.uk/download/pdf/97237.pdf
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11400
dc.description.abstract In this article, we discuss an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time dependent parabolic integro-differential equation with nonsmooth initial data. It is based on energy arguments and on a repeated use of time integration, but without using parabolic type duality technique. Optimal L2- error estimate is derived for the semidiscrete approximation, when the initial data is in L2. en_US
dc.language.iso en en_US
dc.publisher OUP en_US
dc.subject Mathematics en_US
dc.subject Parabolic integro-differential equations (PIDE) en_US
dc.subject Finite element method en_US
dc.subject Semidiscrete solution en_US
dc.subject Energy arguments en_US
dc.subject Optimal error estimate en_US
dc.title Optimal L2 estimates for semidiscrete Galerkin methods for parabolic integro-differential equations with nonsmooth data en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account