DSpace Repository

Contributions to a conjecture of Mueller and Schmidt on Thue inequalities

Show simple item record

dc.contributor.author Sharma, Divyum
dc.date.accessioned 2023-08-16T09:05:44Z
dc.date.available 2023-08-16T09:05:44Z
dc.date.issued 2017-09
dc.identifier.uri 10.1007/s12044-017-0353-4
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11444
dc.description.abstract Let F(X, Y ) = s i=0 ai Xri Yr−ri ∈ Z[X, Y ] be a form of degree r = rs ≥ 3, irreducible over Q and having at most s + 1 non-zero coefficients. Mueller and Schmidt showed that the number of solutions of the Thue inequality |F(X, Y )| ≤ h is s2h2/r (1 + log h1/r ). They conjectured that s2 may be replaced by s. Let = max 0≤i≤s max ⎛ ⎝ i−1 w=0 1 ri − rw , s w=i+1 1 rw − ri ⎞ ⎠ . Then we show that s2 may be replaced by max(s log3 s, se ). We also show that if |a0| = |as | and |ai| ≤ |a0| for 1 ≤ i ≤ s − 1, then s2 may be replaced by s log3/2 s. In particular, this is true if ai ∈ {−1, 1}. en_US
dc.language.iso en en_US
dc.publisher IAS en_US
dc.subject Mathematics en_US
dc.subject Thue Equations en_US
dc.subject Thue inequalities en_US
dc.subject Archimedean Newton polygon en_US
dc.title Contributions to a conjecture of Mueller and Schmidt on Thue inequalities en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account