dc.contributor.author | Kumar, Rahul | |
dc.date.accessioned | 2023-08-17T09:07:55Z | |
dc.date.available | 2023-08-17T09:07:55Z | |
dc.date.issued | 2022-12 | |
dc.identifier.uri | https://link.springer.com/chapter/10.1007/978-981-19-3898-6_10 | |
dc.identifier.uri | http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11473 | |
dc.description.abstract | Let R be a commutative ring with unity and S be a (unital) subring of R such that R is integral over S and S⊆R has FCP. Let M be an R-module. For any submodule N of M, it is shown that R(+)N⊆R(+)M has FCP if and only if S(+)N⊆S(+)M has FCP. We also discuss FMS modules. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.subject | Mathematics | en_US |
dc.subject | FCP extension | en_US |
dc.subject | Idealization | en_US |
dc.subject | Artinian ring | en_US |
dc.title | A Note on FMS Modules and FCP Extensions | en_US |
dc.type | Article | en_US |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |