dc.description.abstract |
The wandering subspace problem for an analytic norm-increasing -isometry on a Hilbert space asks whether every -invariant subspace of can be generated by a wandering subspace. An affirmative solution to this problem for is ascribed to Beurling-Lax-Halmos, while that for is due to Richter. In this paper, we capitalize on the idea of weighted shift on a one-circuit directed graph to construct a family of analytic cyclic -isometries which do not admit the wandering subspace property and which are norm-increasing on the orthogonal complement of a one-dimensional space. Further, on this one-dimensional space, their norms can be made arbitrarily close to . We also show that if the wandering subspace property fails for an analytic norm-increasing -isometry, then it fails miserably in the sense that the smallest -invariant subspace generated by the wandering subspace is of infinite codimension. |
en_US |