DSpace Repository

Local spectral theory of endomorphisms of the disk algebra

Show simple item record

dc.contributor.author Trivedi, Shailesh
dc.date.accessioned 2023-08-17T11:03:29Z
dc.date.available 2023-08-17T11:03:29Z
dc.date.issued 2016
dc.identifier.uri https://www.degruyter.com/document/doi/10.1515/dema-2016-0009/html
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11486
dc.description.abstract LetApDqdenote the disk algebra. Every endomorphism ofApDqis inducedby someφPApDqwith}φ}≤1. In this paper, it is shown that ifφis not an automorphismofDandφhas a fixed point in the open unit disk then the endomorphism induced byφis decomposable if and only if the fixed set ofφis singleton. Further, we determine thelocal spectra of the endomorphism induced byφin the cases when the fixed set ofφeitherincludes unit circle or is a singleton. en_US
dc.language.iso en en_US
dc.publisher De Gruyter en_US
dc.subject Mathematics en_US
dc.subject Algebraic Approach en_US
dc.title Local spectral theory of endomorphisms of the disk algebra en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account