DSpace Repository

Effect of Hydrogen Enrichment Strategy on Performance and Emission Features of Biodiesel-Biogas Dual Fuel Engine Using Simulation and Experimental Analyses

Show simple item record

dc.contributor.author Verma, Saket
dc.date.accessioned 2023-10-12T05:54:07Z
dc.date.available 2023-10-12T05:54:07Z
dc.date.issued 2020-12
dc.identifier.uri https://asmedigitalcollection.asme.org/energyresources/article/143/9/092301/1091648/Effect-of-Hydrogen-Enrichment-Strategy-on
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/12350
dc.description.abstract In the present work, hydrogen enrichment in biogas is studied as a potential approach to improve the performance and emission features of a biodiesel-biogas dual fuel engine. A single-cylinder diesel engine is modified to operate in dual fuel mode using Jatropha curcas biodiesel as the pilot fuel and biogas as the main fuel. An electronic control unit is developed in-house to study 5−20% hydrogen enrichment in biogas using the timed manifold injection (TMI) technique. A three-dimensional computational fluid dynamics-based simulation methodology is presented for optimal selection of TMI parameters to ensure efficient and safe operation of the engine. Subsequently, the optimized injection conditions are used for the experimental evaluations, which are performed for performance and emission characteristics of the engine at low and high engine loads. Engine performance is analyzed based on energy and exergy analyses, whereas hydrocarbon (HC), carbon monoxide (CO), oxides of nitrogen (NOx), and smoke emissions are analyzed for emission characterization. The simulation results show that the injection angle and injection pressure influence in-cylinder mixture formation and hydrogen accumulation in the intake manifold. A combination of injection angle = 60 deg and injection pressure = 150 kPa offers good mixture formation. Experimental results show that at 20% hydrogen enrichment, exergy efficiencies of the dual fuel engine are increased from 8.4% to 10.1% at low load and 23.3% to 25.5% at high load. However, maximum reductions in HC and CO emissions of 35.6% and 50.0%, respectively, are calculated at low load en_US
dc.language.iso en en_US
dc.publisher ASME en_US
dc.subject Mechanical Engineering en_US
dc.subject Biodiesel en_US
dc.subject Biogas en_US
dc.subject Dual fuel en_US
dc.subject Hydrogen energy en_US
dc.subject Renewable energy en_US
dc.subject Emissions en_US
dc.title Effect of Hydrogen Enrichment Strategy on Performance and Emission Features of Biodiesel-Biogas Dual Fuel Engine Using Simulation and Experimental Analyses en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account