Abstract:
In this work, a graphene based strain sensor has been reported for explosive vapour detection applications by exploiting the piezoresistive property of graphene. Instead of silicon based cantilevers, a low cost polymeric micro-cantilever platform has been used to fabricate this strain sensor by embedding the graphene nanoplatelet layer inside the beam. The fabricated devices were characterized for their mechanical and electromechanical behaviour. This device shows a very high gauge factor which is around ∼144. Also the resonant frequency of these cantilevers is high enough such that the measurements are not affected by environmental noise. These devices have been used in this work for reliable detection of explosive vapours such as 2,4,6-Trinitrotoluene down to parts-per-billion concentrations in ambient conditions.