Abstract:
MEMS based single and dual-axis gyroscopes have been widely explored for potential application in automotive, space, defense, and consumer electronics sectors. Tri-axis gyroscopes based on MEMS, however, have been sparsely studied. This work presents a novel design for tri-axis MEMS gyroscope and an analytical model to obtain the natural frequencies in drive and sense modes. These frequency values have been compared with the numerically obtained frequencies using Finite Element Analysis (FEA). The analytical results lie within 10% of their numerically obtained values. The frequency matching process involves many iterations of geometric dimensions if the end application requires minor design changes. The proposed analytical model will make the design customization easy as the frequencies of each mode will be expressed as a function of critical geometrical parameters saving multiple numerical runs required for design optimization.