dc.description.abstract |
The present work focuses on establishing the role of polysiloxane precursors in the synthesis of aligned porous polymer derived silicon oxycarbide ceramics. The precursors used for the synthesis are, polymethylhydrosiloxane, vinyl terminated polydimethylsiloxane and cyclic tetramethyl-tetravinlycyclotetrasiloxane. Hydrotalcite is used for attaining aligned macroporosity during the crosslinking stage itself. Subsequently, pyrolysis of the sample has been carried out to synthesize the ceramics. The evolution of pore structure in these PDCs during the crosslinking and pyrolysis is co-related to the thermal decomposition behaviour. The pore morphology, structure and the size were analyzed using SEM, X-ray computed tomography and BET. Our studies confirm the presence of bimodal porosity in these PDCs. These PDCs have a specific surface area ranging from 77 to 160 m2/g and a total pore volume ranging from 0.18 to 0.29 cm3/g. These results could be significant for achieving a controlled synthesis process of porous materials suitable for various applications like adsorption, filtering and electrochemical storage. |
en_US |