dc.description.abstract |
Acute kidney injury (AKI) is a collection of clinical syndromes with persistent increases in morbidity and mortality rates. Hyperglycemia is a risk factor for AKI development. Renin-angiotensin-aldosterone system (RAS) disequilibrium and Klotho downregulation also play a pivotal role in the pathogenesis of AKI. Moreover, the relationship between Klotho and ACE2 (a component of non-conventional RAS) regulation in AKI remains an unexplored area of research. Hence, in this study, we investigated ACE2 and Klotho regulation in AKI using ischemic Wistar rats and NRK52E cells under normal and hyperglycemic conditions. Our findings suggested that hyperglycemia exacerbates renal ischemia-reperfusion injury (IRI)/hypoxia-reperfusion injury (HRI) induced AKI. Systemic and renal Klotho deficiency is a novel hallmark of AKI. Additionally, ACE2 is a protective component of the RAS, and its inhibition/deficiency leads to inflammation, apoptosis, Klotho downregulation, and thus AKI development. However, ACE2 activation resulted in the amelioration of AKI. Importantly, ACE2 plays an important role in Klotho upregulation, which might act as an intermediate for ACE2-mediated reno-protection. In conclusion, ACE2 activator i.e. DIZE restored endogenous ACE2-Ang-(1-7)-Klotho level, inhibited apoptosis and inflammation, and ameliorates IRI/HRI induced AKI under diabetic and non-diabetic conditions. Hence, in future, targeting ACE2-Ang-(1-7)-Klotho axis may prove a novel therapeutic strategy against AKI, where further preclinical and clinical investigations are required to verify the clinical potential of this finding. |
en_US |