Abstract:
In recent years, Fibre-Reinforced Polymer (FRP) bars have been used as reinforcement in concrete beams. However, the ductility of the beams is highly dependent on the properties of concrete since the failure mode of concrete is due to crushing. Substitution of concrete with Engineered Cementitious Composite (ECC) can avoid the ductility and durability problems associated with the concrete. In this paper, the flexural behaviour of FRP reinforced ECC-Concrete composite beams is numerically investigated through the Finite Element (FE) platform. To verify the robustness of the FE model of the composite beams, the simulation results were compared against the experimental results available in the literature and good agreements were achieved. An extensive parametric study was then conducted to examine the effect of the FRP reinforcement ratio against ECC layer thickness. It was observed that the load-carrying capacity of the composite beams is improved with the increase in ECC height replacement and Basalt Fibre Reinforced Polymer (BFRP) reinforcement ratios. In addition, composite beams show enhanced load-carrying capacity of 40% and 2%, of ECC layer thickness and FRP reinforcement ratio, respectively.