dc.description.abstract |
Composite laminates are increasingly used for blast-resistant applications in structures owing to the rise of such fanatic activities. For the safe and economical design of blast-resistant structures, it is necessary to study the influence of various laminate characteristics on their dynamic behavior. Here, the influence of design parameters of fiber-reinforced polymer (FRP) laminates in mitigating the dynamic response of a concrete wall when subjected to surface blast loads has been studied. Furthermore, a generalized analytical approach employing classical laminate theory has been presented to analyze the dynamic behavior of a concrete wall applied with the FRP laminate(s) under various explosion-induced load scenarios. It is found that the stacking sequence of the laminae and the number of layers in the laminate decrease the response by about 5% and 15% among the considered configuration, respectively. Moreover, using the FRP laminates reduce the dynamic response of the concrete wall by 18%. Through a detailed parametric study, it has also been observed that the center node displacement of the wall decreases with an increase in standoff distance, an increase in the thickness of the concrete wall, and a decrease in charge weight. |
en_US |