DSpace Repository

Advances in the diagnosis of herpes simplex stromal necrotising keratitis: A feasibility study on deep learning approach

Show simple item record

dc.contributor.author Raman, Sundaresan
dc.date.accessioned 2024-11-11T09:49:42Z
dc.date.available 2024-11-11T09:49:42Z
dc.date.issued 2022-09
dc.identifier.uri https://journals.lww.com/ijo/fulltext/2022/09000/Advances_in_the_diagnosis_of_herpes_simplex.24.aspx?context=LatestArticles
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/16323
dc.description.abstract Infectious keratitis, especially viral keratitis (VK), in resource-limited settings, can be a challenge to diagnose and carries a high risk of misdiagnosis contributing to significant ocular morbidity. We aimed to employ and study the application of artificial intelligence-based deep learning (DL) algorithms to diagnose VK. en_US
dc.language.iso en en_US
dc.publisher Wolters Kluwer en_US
dc.subject Computer Science en_US
dc.subject Deep Learning (DL) en_US
dc.subject Necrotising keratitis en_US
dc.title Advances in the diagnosis of herpes simplex stromal necrotising keratitis: A feasibility study on deep learning approach en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account