dc.contributor.author |
Yadav, Sangita |
|
dc.date.accessioned |
2025-02-13T09:10:42Z |
|
dc.date.available |
2025-02-13T09:10:42Z |
|
dc.date.issued |
2024-06 |
|
dc.identifier.uri |
https://www.cambridge.org/core/journals/anziam-journal/article/optimal-def-xmlpi-1def-mathsfbi-1boldsymbol-mathsf-1let-le-leqslant-let-leq-leqslant-let-ge-geqslant-let-geq-geqslant-def-pr-mathit-prdef-fr-mathit-frdef-rey-mathit-rel2-estimates-for-the-semidiscrete-galerkin-method-applied-to-parabolic-integrodifferential-equations-with-nonsmooth-data/9BD823EB0433DDDE473C6A1666C43C4C |
|
dc.identifier.uri |
http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/17692 |
|
dc.description.abstract |
We propose and analyse an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time-dependent parabolic integro-differential equation with nonsmooth initial data. The method is based on energy arguments combined with repeated use of time integration, but without using parabolic-type duality techniques. An optimal L2-error estimate is derived for the semidiscrete approximation when the initial data is in L2. A superconvergence result is obtained and then used to prove a maximum norm estimate for parabolic integro-differential equations defined on a two-dimensional bounded domain |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
CUP |
en_US |
dc.subject |
Mathematics |
en_US |
dc.subject |
Parabolic integro-differential equations |
en_US |
dc.subject |
Finite element method |
en_US |
dc.subject |
Semidiscrete solution |
en_US |
dc.subject |
Energy argument |
en_US |
dc.title |
Optimal L2 estimates for the semidiscrete galerkin method applied to parabolic integro-differential equations with nonsmooth data |
en_US |
dc.type |
Article |
en_US |