DSpace Repository

Kynurenine monooxygenase inhibition and associated reduced quinolinic acid reverses depression-like behaviour by upregulating Nrf2/ARE pathway in mouse model of depression: In-vivo and In-silico studies

Show simple item record

dc.contributor.author Khare, Pragyanshu
dc.date.accessioned 2025-03-04T10:30:48Z
dc.date.available 2025-03-04T10:30:48Z
dc.date.issued 2022-09
dc.identifier.uri https://www.sciencedirect.com/science/article/pii/S0028390822002283
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/18146
dc.description.abstract Kynurenine pathway, a neuroimmunological pathway plays a substantial role in depression. Consistently, increased levels of neurotoxic metabolite of kynurenine pathway; quinolinic acid (QA) found in the suicidal patients and remitted major depressive patients. QA, an endogenous modulator of N-methyl-d-aspartate receptor is produced by microglial cells, may serve as a potential candidate for a link between antioxidant defence system and immune changes in depression. Further, nuclear factor (erythroid-derived 2) like 2 (Nrf2), an endogenous antioxidant transcription factor plays a significant role in maintaining antioxidant homeostasis during basal and stress conditions. The present study was designed to explore the effects of KMO-inhibition (Kynurenine monooxygenase) and association of reduced QA on Keap1/Nrf2/ARE pathway activity in olfactory bulbectomized mice (OBX-mice). KMO catalysis the neurotoxic branch of kynurenine pathway directing the synthesis of QA. KMO inhibitionshowed significant reversal of depressive-like behaviour, restored Keap-1 and Nrf2 mRNA expression, and associated antioxidant levels in cortex and hippocampus of OBX-mice. KMO inhibition also increased PI3K/AKT mRNA expression in OBX-mice. KMO inhibition and associated reduced QA significantly decreased inflammatory markers, kynurenine and increased the 5-HT, 5-HIAA and tryptophan levels in OBX-mice. Furthermore, molecular docking studies has shown good binding affinity of QA towards ubiquitin proteasome complex and PI3K protein involved in Keap-1 dependent and independent proteasome degradation of Nrf2 respectively supporting our in-vivo findings. Hence, QA might act as pro-oxidant through downregulating Nrf2/ARE pathway along with modulating other pathways and KMO inhibition could be a potential therapeutic target for depression treatment. en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.subject Pharmacy en_US
dc.subject Depression en_US
dc.subject Nuclear factor erythroid 2 related factor 2 en_US
dc.subject Oxidative stress en_US
dc.subject Inflammation en_US
dc.subject Agitated depression en_US
dc.subject Quinolinic acid en_US
dc.title Kynurenine monooxygenase inhibition and associated reduced quinolinic acid reverses depression-like behaviour by upregulating Nrf2/ARE pathway in mouse model of depression: In-vivo and In-silico studies en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account