Abstract:
Band-to-Band Registration (BBR) is a pre-requisite image processing operation essential for specific remote sensing multispectral sensors. BBR aims to align spectral wavelength channels at sub-pixel level accuracy over each other. The paper presents a novel BBR technique utilizing Co-occurrence Scale Space (CSS) for feature point detection and Spatial Confined RANSAC (SC-RANSAC) for removing outlier matched control points. Additionally, the Segmented Affine Transformation (SAT) model reduces distortion and ensures consistent BBR. The methodology developed is evaluated with Nano-MX multispectral images onboard the Indian Nano Satellite (INS-2B) covering diverse landscapes. BBR performance using the proposed method is also verified visually at a 4X zoom level on satellite scenes dominated by cloud pixels. The band misregistration effect on the Normalized Difference Vegetation Index (NDVI) from INS-2B is analyzed and cross-validated with the closest acquisition Landsat-9 OLI NDVI map before and after BBR correction. The experimental evaluation shows that the proposed BBR approach outperforms the state-of-the-art image registration techniques.