Abstract:
We present an approach to detect lung cancer from CT scans using deep residual learning. We delineate a pipeline of preprocessing techniques to highlight lung regions vulnerable to cancer and extract features using UNet and ResNet models. The feature set is fed into multiple classifiers, viz. XGBoost and Random Forest, and the individual predictions are ensembled to predict the likelihood of a CT scan being cancerous. The accuracy achieved is 84% on LIDC-IRDI outperforming previous attempts.