Abstract:
We explore the potential applications of virtual elements for solving the Sobolev equation with a convective term. A conforming virtual element method is employed for spatial discretization, while an implicit Euler scheme is used to approximate the time derivative. To establish the optimal rate of convergence, a novel intermediate projection operator is introduced. We discuss and analyze both the semi-discrete and fully discrete schemes, deriving optimal error estimates for both the energy norm and -norm. Several numerical experiments are conducted to validate the theoretical findings and assess the computational efficiency of the proposed numerical methods.