DSpace Repository

Insights of zinc ion storage in chilli-stem derived porous carbon enabling ultrastability and high energy density of zinc-ion hybrid supercapacitors

Show simple item record

dc.contributor.author Roy, Tribeni
dc.date.accessioned 2025-10-24T07:10:58Z
dc.date.available 2025-10-24T07:10:58Z
dc.date.issued 2024-12
dc.identifier.uri https://pubs.acs.org/doi/full/10.1021/acsami.4c17525
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/19908
dc.description.abstract Aqueous zinc ion hybrid supercapacitors (ZIHSCs) are promising as low-cost and safe energy storage devices for next-generation applications. Still, their energy-power performance and durability are far from satisfactory. Here, we present an energy-dense, and ultrastable ZIHSC realized using activated porous carbons derived from chilli-stems. KOH activation resulted in a high specific surface area of 1710 m2/g, abundant mesoporous structure, and oxygen functionalities, which helped the KOH-activated carbon (CSK) to yield an impressive specific capacity and energy density of 192 mA h/g and 172 W h/kg, respectively, and makes it the top-performing ZIHSC in recent times. ZIHSC’s cycling performance is exceptional, retaining over 90% capacity even after 50,000 charge–discharge cycles. Molecular dynamics simulations reveal easy Zn ion diffusion through interconnected channels and subsequent pore fillings within the carbon electrodes, rendering impressive performance. Simulations further reveal important atomic interactions, demonstrating that higher currents drawn from the device cause partial filling of pores and blockages in the channels and result in a decrease in the device’s specific capacity. Benefitted by CSK’s impressive performance, the aqueous Zn@pCu//CSK full-cell device has demonstrated good energy-power densities (57.7 W h/kg and 4.5 k W/kg) and durability over tens of thousands of cycles, further substantiating ZIHSCs’ application prospects in real life. en_US
dc.language.iso en en_US
dc.publisher ACS en_US
dc.subject Mechanical engineering en_US
dc.subject Zinc ion hybrid supercapacitor en_US
dc.subject Biomass-derived porous carbon en_US
dc.subject Ion diffusion kinetics en_US
dc.subject Ultrastable cycle life en_US
dc.subject High energy density en_US
dc.title Insights of zinc ion storage in chilli-stem derived porous carbon enabling ultrastability and high energy density of zinc-ion hybrid supercapacitors en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account