Abstract:
Malaria is a severe disease that is transmitted by female Anopheles mosquitoes and caused by the Plasmodium parasite. Despite a decrease in mortality rate, it continues to pose significant challenges such as resistance to antimalarial drugs and insecticides, which necessitates the need for novel malaria control and elimination strategies. To identify new molecular targets for malaria control, there is a need to understand the molecular interaction between mosquitoes and parasites. Plasmodium ookinetes interact with the mosquito midgut proteins during midgut invasion and sporozoites interact with the mosquito salivary gland (SG) proteins. These interactions are crucial for the parasite's invasion of the mosquito midgut and SG, respectively. This review explores the involvement of various Plasmodium genes in male and female gametogenesis and parasite transmission, their interaction with the mosquito genes that facilitate parasite invasion, and how the mosquito immune system defends itself from the invading parasite. Understanding the biology underlying the interaction between mosquitoes and parasites may lead to a better comprehension of the disease and could help design efficient vector control strategies.