Abstract:
Copper uptake in the diazotrophic cyanobacteriumNostoc calcicola was found to be typically biphasic, comprising rapid binding of the cations to the cell wall (during the first 10 min) followed by the subsequent metabolism-dependent intracellular uptake for at least 1 h, with a curvilinear kinetics saturating at 40 µM (Km 25.0 µM, Vmax 3.0 nmol Cu mg−1 protein min−1). The cellular Cu uptake was light- and ATP-dependent, and the addition of 3(3,4-dichlorophenyl)-1,1-dimethylurea or exogenous ATP proved that the energy to drive Cu transport was derived mainly through PS II reactions. The application of metabolic inhibitors and uncouplers like carbonylcyanidep-nitrofluoromethoxylphenyl hydrazone, N,N′-dicyclohexycarbodiimide, azide, and p-chloromercuribenzoate revealed that -SH group(s), proton gradient across the cell membrane, and ATP hydrolysis were involved in the transmembrane movement of Cu inN. calcicola. While monothiol (2-mercaptoethanol) caused a twofold reduction in Cu uptake rate, dithiol (dithiothreitol) contributed towards a further drop in the cation uptake rate.