DSpace Repository

EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda

Show simple item record

dc.contributor.author Chowdhury, Rajdeep
dc.date.accessioned 2021-09-27T08:07:24Z
dc.date.available 2021-09-27T08:07:24Z
dc.date.issued 2010
dc.identifier.uri https://pubmed.ncbi.nlm.nih.gov/20956315/
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/2308
dc.description.abstract It is being realized that identification of subgroups within normal controls corresponding to contrasting disease susceptibility is likely to lead to more effective predictive marker discovery. We have previously used the Ayurvedic concept of Prakriti, which relates to phenotypic differences in normal individuals, including response to external environment as well as susceptibility to diseases, to explore molecular differences between three contrasting Prakriti types: Vata, Pitta, and Kapha. EGLN1 was one among 251 differentially expressed genes between the Prakriti types. In the present study, we report a link between high-altitude adaptation and common variations rs479200 (C/T) and rs480902 (T/C) in the EGLN1 gene. Furthermore, the TT genotype of rs479200, which was more frequent in Kapha types and correlated with higher expression of EGLN1, was associated with patients suffering from high-altitude pulmonary edema, whereas it was present at a significantly lower frequency in Pitta and nearly absent in natives of high altitude. Analysis of Human Genome Diversity Panel-Centre d'Etude du Polymorphisme Humain (HGDP-CEPH) and Indian Genome Variation Consortium panels showed that disparate genetic lineages at high altitudes share the same ancestral allele (T) of rs480902 that is overrepresented in Pitta and positively correlated with altitude globally (P < 0.001), including in India. Thus, EGLN1 polymorphisms are associated with high-altitude adaptation, and a genotype rare in highlanders but overrepresented in a subgroup of normal lowlanders discernable by Ayurveda may confer increased risk for high-altitude pulmonary edema. en_US
dc.language.iso en en_US
dc.publisher PNAS en_US
dc.subject Biology en_US
dc.subject EGLN1 en_US
dc.subject Ayurveda en_US
dc.title EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account