DSpace Repository

Simulated microgravity promoted differentiation of bipotential murine oval liver stem cells by modulating BMP4/notch1 signaling

Show simple item record

dc.contributor.author Majumder, Syamantak
dc.date.accessioned 2021-10-02T17:49:10Z
dc.date.available 2021-10-02T17:49:10Z
dc.date.issued 2011-03-23
dc.identifier.uri https://onlinelibrary.wiley.com/doi/10.1002/jcb.23110
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/2433
dc.description.abstract Faster growth and differentiation of liver stem cells to hepatocyte is one of the key factors during liver regeneration. In recent years, simulated microgravity, a physical force has shown to differentially regulate the differentiation and proliferation of stem cells. In the present work, we studied the effect of simulated microgravity on differentiation and proliferation of liver stem cells. The cells were subjected to microgravity, which was simulated using indigenously fabricated 3D clinostat. Proliferation, apoptosis, immunofluorescence assays and Western blot analysis were carried out to study the effects of simulated microgravity on liver stem cells. Microgravity treatment for 2 h enhanced proliferation of stem cells by twofold without inducing apoptosis and compromising cell viability. Analysis of hepatocyte nuclear factor 4-a (HNF4-a) expression after 2 h of microgravity treatment revealed that microgravity alone can induce the differentiation of stem cells within 2–3 days. Probing bone morphogenic protein 4 (BMP4) and Notch1 in microgravity treated stem cells elaborated downregulation of Notch1 and upregulation of BMP4 after 2 days of incubation. Further, blocking BMP4 using dorsomorphin and chordin conditioned media from chordin plasmid transfected cells attenuated microgravity mediated differentiation of liver stem cells. In conclusion, microgravity interplays with BMP4/Notch1 signaling in stem cells thus inducing differentiation of stem cells to hepatocytes. Present findings can be implicated in clinical studies where microgravity activated stem cells can regenerate the liver efficiently after liver injury. en_US
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.subject Biology en_US
dc.subject BIPOTENTIAL MURINE OVAL LIVER STEM CELLS en_US
dc.subject BMP4 en_US
dc.subject MICROGRAVITY en_US
dc.title Simulated microgravity promoted differentiation of bipotential murine oval liver stem cells by modulating BMP4/notch1 signaling en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account