Abstract:
Luminescent materials have great potential in diverse applications in their solid state. Because these materials are subject to the aggregation-caused quenching (ACQ) effect, increasing attention is focused on synthesizing aggregation-induced emission (AIE) active materials to avoid the ACQ effect. Herein a new class of AIE active, excimeric platinum(II) complex, [Pt(C^N)(L1)(Cl)], 3 [C^N = 2-phenylpyridine; L1 = N1-tritylethane-1,2-diamine] is reported. The complex 3 exhibited mechanofluorochromism (MFC) and thereby transformed into an orange-emitting complex, 3a, upon grinding. Crushing of 3 (or 3a) with meso-structured silica produced a luminescent composite material, 3b, and thereby the AIE Pt(II) complex moved into the mesopores and the process signaled with a drastic change of emission color (yellow → green). The solid-state luminescent behaviour of these complexes was thoroughly studied. The photophysical properties were also supported by TD-DFT based theoretical study.