DSpace Repository

Organocatalytic, Enantioselective Intramolecular [6 + 2] Cycloaddition Reaction for the Formation of Tricyclopentanoids and Insight on Its Mechanism from a Computational Study

Show simple item record

dc.contributor.author Kumar, Indresh
dc.date.accessioned 2021-10-27T04:28:22Z
dc.date.available 2021-10-27T04:28:22Z
dc.date.issued 2011
dc.identifier.uri https://pubs.acs.org/doi/10.1021/ja108516b
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/3183
dc.description.abstract Diphenylprolinol silyl ether was found to be an effective organocatalyst for promoting the asymmetric, catalytic, intramolecular [6 + 2] cycloaddition reactions of fulvenes substituted at the exocyclic 6-position with a δ-formylalkyl group to afford synthetically useful linear triquinane derivatives in good yields and excellent enantioselectivities. The cis-fused triquinane derivatives were obtained exclusively; the trans-fused isomers were not detected among the reaction products. The intramolecular [6 + 2] cycloaddition occurs between the fulvene functionality (6π) and the enamine double bond (2π) generated from the formyl group in the substrates and the diphenylprolinol silyl ether. The absolute configuration of the reaction products was determined by vibrational circular dichroism. The reaction mechanism was investigated using molecular orbital calculations, B3LYP and MP2 geometry optimizations, and subsequent single-point energy evaluations on model reaction sequences. These calculations revealed the following: (i) The intermolecular [6 + 2] cycloaddition of a fulvene and an enamine double bond proceeds in a stepwise mechanism via a zwitterionic intermediate. (ii) On the other hand, the intramolecular [6 + 2] cycloaddition leading to the cis-fused triquinane skeleton proceeds in a concerted mechanism via a highly asynchronous transition state. (iii) The fulvene functionality and the enamine double bond adopt the gauche-syn conformation during the C–C bond formation processes in the [6 + 2] cycloaddition. (iv) The energy profiles calculated for the intramolecular reaction explain the observed exclusive formation of the cis-fused triquinane derivatives in the [6 + 2] cycloaddition reactions. The reasons for the enantioselectivity seen in these [6 + 2] cycloaddition reactions are also discussed. en_US
dc.language.iso en en_US
dc.publisher ACS en_US
dc.subject Chemistry en_US
dc.subject Reaction products en_US
dc.subject Cyclization en_US
dc.subject Addition reactions en_US
dc.subject Energy en_US
dc.title Organocatalytic, Enantioselective Intramolecular [6 + 2] Cycloaddition Reaction for the Formation of Tricyclopentanoids and Insight on Its Mechanism from a Computational Study en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account