DSpace Repository

An Aminolytic Approach toward Hierarchical β-Ni(OH)2 Nanoporous Architectures: A Bimodal Forum for Photocatalytic and Surface-Enhanced Raman Scattering Activity

Show simple item record

dc.contributor.author Basu, Mrinmoyee
dc.date.accessioned 2021-11-11T10:52:33Z
dc.date.available 2021-11-11T10:52:33Z
dc.date.issued 2010
dc.identifier.uri https://pubs.acs.org/doi/10.1021/ic1015065
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/3272
dc.description.abstract A surfactantless, trouble-free, and gentle wet chemistry approach has been used to interpret the precisely controlled growth of β-Ni(OH)2 with the assistance of ammonia and nickel acetate from seedless mild hydrothermal conditions. A thorough investigation of the reaction kinetics and product morphology with varied concentration of NH3 and different reaction times suggests that a putative mechanism of dissolution, recrystallization, and oriented attachment supports the intelligent self-assembly of nanobuilding blocks. Associated characterizations (FTIR, PXRD, FESEM, EDAX, HRTEM, and Raman) have identified it to be pure β-Ni(OH)2 without any signature of contamination. The assembled units result in porous frameworks (nanoflowers and nanocolumns) and are indeed full of communally intersecting nanopetals/nanoplates with both lengths and widths on the order of micrometer to nanometer length scale. The as-synthesized material could also be used as a precursor for nanometric black NiO under calcination. The hydroxide has been found to be a potent and environmentally benign material because it warrants its photocatalytic activity through dye mineralization. Finally, Ni(OH)2 has been photochemically derivatized with dosages of silver nanoparticles bringing a competent composite authority Ag@Ni(OH)2, to give a full-proof enhanced field effect of prolific SERS activity. In a nutshell, these results are encouraging and fetch new promise for the fabrication of a low-cost and high-yielding greener synthetic protocol for a functional material with promising practicability. en_US
dc.language.iso en en_US
dc.publisher ACS en_US
dc.subject Chemistry en_US
dc.subject Oxides en_US
dc.subject Anions en_US
dc.subject Transmission electron microscopy en_US
dc.title An Aminolytic Approach toward Hierarchical β-Ni(OH)2 Nanoporous Architectures: A Bimodal Forum for Photocatalytic and Surface-Enhanced Raman Scattering Activity en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account