DSpace Repository

Diazapentacene Derivatives as Thin-Film Transistor Materials: Morphology Control in Realizing High-Field-Effect Mobility

Show simple item record

dc.contributor.author Shukla, Paritosh
dc.date.accessioned 2021-11-11T10:53:55Z
dc.date.available 2021-11-11T10:53:55Z
dc.date.issued 2009
dc.identifier.uri https://pubs.acs.org/doi/10.1021/am9004418
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/3289
dc.description.abstract 5,7,12,14-Tetrachloro-6,13-diaza-6,13-dihydropentacene (TCDAHP) and 5,7,12,14-tetrachloro-6,13-diazapentacene (TCDAP) were synthesized and assessed as the active channel materials for thin-film transistor applications. Analyses of the crystal structures of these molecules revealed that both exhibited slipped π−π stacking of the long and fused aromatic moiety. Although the packing features of the two compounds are basically identical, their highest occupied molecular orbitals, which are relevant to hole transport, are very different. Better mobility was predicted for TCDAHP over TCDAP based on the dimeric structure in the X-ray coordinates. The morphologies of thin films of TCDAHP and TCDAP prepared by thermal evaporation depend critically on the substrate on which the molecules were deposited: from the amorphous state on a SiO2/Si surface to the crystalline state on a pentacene buffer layer surface. The performance of thin-film transistors prepared on various substrate surfaces was studied. While no field-effect mobility was observed for these films deposited on SiO2/Si, a high mobility of 1.4 cm2/(V s) for the TCDAHP film was achieved when deposited on a pentacene buffer layer prepared on a rubbed monolayer of n-nonyltrichlorosilane on a SiO2/Si surface. A similar device prepared from TCDAP gave a mobility of 0.13 cm2/(V s). en_US
dc.language.iso en en_US
dc.publisher ACS en_US
dc.subject Chemistry en_US
dc.subject Hydrocarbons en_US
dc.subject Thin films en_US
dc.subject Layers en_US
dc.subject Deposition en_US
dc.subject Aromatic compounds en_US
dc.title Diazapentacene Derivatives as Thin-Film Transistor Materials: Morphology Control in Realizing High-Field-Effect Mobility en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account