dc.description.abstract |
Dynamic instability analysis of laminated composite skew plate for different skew angles subjected to different type of linearly varying in-plane loadings is investigated. The analysis also includes the instability of skew plate under uniform bi-axial in-plane loading. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is mapped into a square plate over which a set of orthonormal polynomials satisfying the essential boundary conditions is generated by Gram–Schmidt orthogonalization process. Different boundary conditions of skew plate have been correctly incorporated by using Rayleigh–Ritz method in conjunction with Boundary Characteristics Orthonormal Polynomials (BCOPs). The boundaries of dynamic instability regions are traced by the periodic solution of governing differential equations (Mathieu type equations) with period T and 2T. The width of instability region for uniform loading is higher than various types of linearly varying loadings (keeping the same peak intensity). Effect of various parameters like skew angle, aspect ratio, span-to-thickness ratio, boundary conditions and static load factor on dynamic instability has been investigated |
en_US |