DSpace Repository

Bio-inspired and artificial intelligence enabled hydro-economic model for diversified agricultural management

Show simple item record

dc.contributor.author Srinivas, Rallapalli
dc.date.accessioned 2022-12-21T09:05:36Z
dc.date.available 2022-12-21T09:05:36Z
dc.date.issued 2022-07
dc.identifier.uri https://www.sciencedirect.com/science/article/pii/S0378377422001858?via%3Dihub
dc.identifier.uri http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/8004
dc.description.abstract Neoteric phenomena such as climate change, scarce water availability and excessive fertilizer usage necessitate an augmentation of resource utilisation efficiencies in the agricultural sector. There is a need to reorient the agroecosystems to curb stress on environmental resources while meeting rising socio-economic objectives under changing hydro-climatic conditions. Considering this, optimal land allocation for diversified agriculture is essential. We propose a combinatorial optimisation approach for land allocation considering agronomic, socio-economic, environmental and hydro-climatic objectives using bio-inspired optimization algorithms. The stochastic approach tackles the problem of optimal agricultural land allocation for crops in a multidimensional context by simultaneously addressing the conflicting goals of farm-level risk management as well as district-level contingency planning. The efficiencies and sensitivity of the proposed framework are assessed through a case study of the Dharwad district in Karnataka, India using the data (water and fertilizer consumption and cost, crop type, cultivable land, man and machine hours, etc.) from the year 2019–2020. Results indicate that Multi-objective Genetic Algorithm (MOGA) is more capable of optimising agricultural resources management by suggesting optimal land allocation for diversified crop planning. Although Cuckoo Search (CS) and Particle Search Optimisation (PSO) also produced productive Pareto fronts, they were observed to be less effective than MOGA. The annual increase in profits and crop yield obtained using MOGA are 103% and 97% respectively, while water usage is reduced by 5% compared to the conventional routines in Dharwad. The proposed hydro-agronomic decision support framework (DSF) can be utilised to assist the AI-enabled crop planning process for the sustainable management of agroecosystems. en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.subject Civil Engineering en_US
dc.subject Agronomy en_US
dc.subject Artificial Intelligence en_US
dc.subject Crop Diversification en_US
dc.subject Hydro-economics en_US
dc.title Bio-inspired and artificial intelligence enabled hydro-economic model for diversified agricultural management en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account