Abstract:
Vehicular ad-hoc network (VANET) security has been an active area of research over the past decade. However, with the increasing adoption of the Internet of Things (IoT) in VANETs, the number of connected vehicles is set to grow exponentially over the next few years, which translates to a higher number of communication interfaces and a greater possibility of cybersecurity attacks. Along with these cybersecurity attacks, the instances of compromised vehicles sending faulty information about their positions and speeds also increase exponentially. Thus, there is a need to augment the existing security schemes with anomaly detection schemes which can differentiate normal vehicle data from malicious and faulty data. Since, the number of anomaly types can be many, deep neural networks would work best in this scenario. In this paper, we propose a deep neural network-based vehicle anomaly detection scheme. We use a sequence reconstruction approach to differentiate normal vehicle data from anomalous data. Numerical results show that we can correctly detect data corresponding to several anomaly types.