Abstract:
Field-programmable gate arrays (FPGAs) have been used as pre-silicon validation platforms in VLSI designs. In this paper, we propose a FPGA-based you-only-look-once (YOLO) v2 object detector implementation that provides better performance in terms of speed, achieves higher accuracy, and requires fewer resources compared with the alternatives. It is constructed using a convolutional deep neural network (CNN). We apply high-level synthesis (HLS) to model and optimize the implementation using multiple directives, such as pipelining, loop unrolling, in-lining, etc. The proposed YOLO v2 design is implemented on a Xilinx Zynq xc7z020clg484-1 device. We run simulations to test its functionality using an xSim simulator. The proposed implementation not only runs faster, but it utilizes an order of magnitude fewer resources than available implementations in the literature.