Abstract:
5G communications technologies are the backbone of future communications systems in satisfying different heterogeneous requirements of the industry and consumer applications. These systems rely on standardized protocols and heterogeneous architectures to engineer massive scaling of communication devices. Network Slicing (NS) can be incorporated into 5G to cater to the ever increasing needs of smart communications, ranging from Enhanced Mobile Broadband (eMBB) to Ultra-Reliable Low Latency Communications (URLLC). In this article, we present the performance analysis of such a network using real-world deployment and testing scenarios with state based network slice allocation. To account for transparency and security, a Blockchain-based model is integrated within the network operations. In particular, we carefully account for the latency aware operations of Network Slicing along with its UE state based allocation by telecom providers using Blockchain. Furthermore, provisioning the Blockchain in the Network Slice allocations increases the transparency and efficiency of resource handling operations within the network